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SUMMARY

The collection of proteins secreted from a cell—the
secretome—is of particular interest in cancer patho-
physiology due to its diagnostic potential and role in
tumorigenesis. However, cancer secretome studies
are often limited to one tissue or cancer type or focus
on biomarker prediction without exploring the asso-
ciated functions.We therefore conducted a pan-can-
cer analysis of secretome gene expression changes
to identify candidate diagnostic biomarkers and to
investigate the underlying biological function of
these changes. Using transcriptomic data spanning
32 cancer types and 30 healthy tissues, we quantified
the relative diagnostic potential of secretome pro-
teins for each cancer. Furthermore, we offer a poten-
tial mechanism by which cancer cells relieve secre-
tory pathway stress by decreasing the expression
of tissue-specific genes, thereby facilitating the
secretion of proteins promoting invasion and prolif-
eration. These results provide a more systematic un-
derstanding of the cancer secretome, facilitating its
use in diagnostics and its targeting for therapeutic
development.

INTRODUCTION

Early diagnosis is amajor factor contributing to cancer treatment

success (Etzioni et al., 2003; World Health Organization, 2017).

As such, there have been extensive efforts to identify with

improved accuracy and sensitivity biomarkers that indicate the

presence of cancerous cells in a subject (Belczacka et al.,

2019; Sawyers, 2008). Recent work has focused on the analysis

of markers in biofluids, such as urine, plasma, or cerebrospinal

fluid, as they are non-invasive and can be tested with greater

frequency than tissue biopsies (Crowley et al., 2013; Diaz and

Bardelli, 2014;Webb, 2016). A class of proteins that are of partic-

ular interest in this context is the secretome, which is the set of

proteins secreted to the extracellular space, as they are gener-
2622 Cell Reports 26, 2622–2635, March 5, 2019 ª 2019 The Author
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ally more abundant in biological fluids than intracellular proteins

(Kulasingam and Diamandis, 2008; Stastna and Van Eyk, 2012).

The secretome is considered a valuable reservoir of potential

biomarkers for cancer and other diseases (Makridakis and Vla-

hou, 2010; Xue et al., 2008), and a number of studies have aimed

to explore this class of proteins in search of tumor biomarker

candidates. For example,Welsh et al., 2003 usedGeneOntology

(GO) terms associated with an extracellular location and protein

sequence patterns to define the secretome to compare the mi-

croarray gene expression profiles of 150 carcinomas spanning

10 tissues of origin to those of 46 healthy tissue samples.

Biomarker candidates were validated via comparison with previ-

ous studies that hadmeasured increased expression of the gene

or protein in cancer tissue or in the serum of cancer patients.

Other bioinformatics-based approaches to predict secreted

cancer biomarkers include those of Prassas et al. (2012) for co-

lon, lung, pancreatic, and prostate cancers, and Vathipadiekal

et al. (2015) for ovarian cancer. These and other, similar investi-

gations demonstrate the validity of using a bioinformatics-based

approach to predict proteomic biofluid markers and to identify

many new, promising biomarker candidates. However, these

studies were generally restricted to a limited number of samples,

tissue types, and/or cancer types; were often based on microar-

ray data rather than RNA sequencing (RNA-seq) data; provided

only a single set of candidates rather than a complete ranked

list; and conducted little or no exploration of the biological func-

tions associated with the proposed biomarkers.

Proteomic approaches have often been used to profile the

cancer secretome (Brandi et al., 2018; Geyer et al., 2017; Hanash

et al., 2008; Makridakis and Vlahou, 2010; Papaleo et al., 2017;

Schaaij-Visser et al., 2013; Xue et al., 2008). These studies

generally involve in vitro analyses of cell-line conditioned media

or analysis of tumor interstitial fluid (or a more distant fluid such

as blood, plasma, urine, or saliva) (Papaleo et al., 2017). For

example, Wu et al. (2010) used SDS-PAGE followed by liquid

chromatography-tandem mass spectrometry (LC-MS/MS) to

analyze the secretome of conditioned media for 23 human can-

cer cell lines spanning 11 cancer types, which enabled the iden-

tification of both cancer-specific and pan-cancer serological

biomarker candidates. Four of the candidates were validated

experimentally, showing significantly elevated levels in the
s.
creativecommons.org/licenses/by-nc-nd/4.0/).
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serum or plasma of liver, lung, or nasopharyngeal carcinoma pa-

tients relative to healthy controls. Despite the extensive informa-

tion gained from these experimental investigations, there still

exist a number of challenges that result in high variability and

conflicting results among studies. For example, the use of cell

lines is not an ideal representation of the in vivo system, culturing

conditions can affect cell physiology and protein detection, there

is a bias toward high-abundance proteins, protein concentra-

tions span a large dynamic range in plasma, studies differ in

sample collection and storage methods, and artifactual proteins

are often identified, despite little or no relation to the disease in

question (Geyer et al., 2017; Hanash et al., 2008; Kulasingam

and Diamandis, 2008; Papaleo et al., 2017).

In the present study, we conducted a systematic analysis of

cancer-associated changes in secretome expression to predict

candidate biomarkers that could be significantly elevated in

the biofluids of individuals with cancer and are therefore more

likely to be detectable. We then investigated the patterns and

biological functions associated with shifts in secretome expres-

sion among different cancer types, focusing on shared ‘‘core’’

secretome behaviors, as well as cancer-specific features. The

cancer secretome was explored in the context of tissue-specific

genes, revealing a general pattern whereby tumor cells reduce

their secretory pathway burden in an effort to relieve endo-

plasmic reticulum (ER) stress and the associated unfolded

protein response (UPR). We expect the resulting ranked lists of

biomarkers for each of the 32 different cancer types, in addition

to the insight gained from the functional analysis of the

cancer secretome and associated modulation of the secretory

pathway in cancer cells, to expedite the development of effective

diagnostic biomarkers and illuminate potential strategies for

improved anti-cancer therapies.

RESULTS

Evaluation of Secretome Biomarker Candidates
To focus on proteins that are intentionally and actively secreted

from the cell, we defined the secretome as all proteins possess-

ing an N-terminal signal peptide and annotated as having a sub-

cellular location of ‘‘secreted’’ (UniProt; Bateman et al., 2017).

This yielded a set of 1,816 secretome genes for evaluation. In
Figure 1. Overview of Cancer Secretome Biomarker Consensus Scorin
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our investigation of cancer-specific secretome changes, we first

sought to identify secretome genes whose encoded proteins

were most likely to exhibit detectable changes in a biofluid as

a result of their altered expression in a tumor. Our analysis pipe-

line therefore involved the comparison of primary tumor tran-

scriptomes with those of (1) paired-normal tissue, (2) healthy tis-

sue corresponding to the cancer tissue of origin, and (3) all

healthy tissues in the human body (Figure 1A). Primary tumor

and paired-normal RNA-seq profileswere retrieved for 32 cancer

types from The Cancer Genome Atlas (TCGA), whereas healthy

tissue profiles were obtained from the Genotype-Tissue Expres-

sion (GTEx) database (STAR Methods; Table S1).

Generation of a Consensus Score

To integrate information from the three comparisons performed,

the results were combined to generate a consensus score for

each gene in each cancer type. Top-ranked (high-scoring) genes

for each cancer type were those with elevated expression in tu-

mor samples compared to paired-normal tissue, healthy tissue

of origin, and all healthy tissues. The complete set of consensus

scores for all cancer types, as well as the fold changes (log2FC)

and significance values (p values) used to determine the scores,

are presented in Table S2.

Transcriptomic data of top-ranked genes were examined

to confirm their distinct and elevated expression in tumor

versus non-tumor samples. T-distributed stochastic neighbor

embedding (t-SNE) was performed on tumor, paired-normal tis-

sue, and healthy tissue transcript per million (TPM) values of the

top 10 consensus-ranked genes for each cancer type (Figures

1B and S1). The majority of tumor samples exhibited clear clus-

tering and separation from non-tumor samples, confirming

distinct expression profiles between these groups among the

highly ranked genes. The t-SNE plots also demonstrate differ-

ences between paired-normal tissue and healthy tissue sam-

ples, highlighting the importance of including both tumor versus

paired-normal tissue and tumor versus healthy tissue compari-

sons in the consensus rank. Although a difference in data sour-

ces (TCGA versus GTEx) could contribute to the observed

paired-normal tissue versus healthy tissue separation, a previ-

ous analysis of the same two datasets found robust differences

even after normalizing for potential batch effects (Aran et al.,

2017), thus supporting a biological component.
g Approach and Results
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The elevated expression of top-scoring candidates in tumors

compared to all normal tissues is illustrated in Figure 1C for

two example genes, cystatin SN (CST1) and angiopoietin-like 4

(ANGPTL4). These genes are representative of two types of

biomarker candidates: those with elevated expression in one

cancer type (ANGPTL4) and markers with elevated expression

in multiple cancer types (CST1). Previous studies have experi-

mentally confirmed significantly elevated protein levels of

ANGPTL4 in the serum of patients with renal cell carcinoma

(Dong et al., 2017) and of CST1 in the serum and urine of colo-

rectal cancer subjects (Yoneda et al., 2009) relative to non-can-

cer controls.

Top-Scoring Biomarker Candidates

The results for the top-ranked genes across the 20 cancer types

included in all three comparisons are illustrated in Figure 1D.

There was a marked clustering of high ranks among many can-

cers for the collagen (COL) and matrix metalloproteinase (MMP)

genes. Many members of the MMP family have been detected

at significantly elevated levels in the plasma, serum, and/or urine

of patients with cancers such as bladder (Eissa et al., 2007),

esophageal (Mroczko et al., 2008), colorectal (Dragutinovi�c

et al., 2011), prostate (Roy et al., 2008), lung (Izbicka et al.,

2012), breast (Patel et al., 2011), and renal (Sarkissian et al.,

2008), compared to non-cancer controls. Collagens have simi-

larly been validated as tumor biomarkers. Previous studies

have, for example, measured a significant increased abundance

of type IV collagens in the plasma of pancreatic cancer subjects

(Ohlund et al., 2009), COL10A1 in the serum of colorectal cancer

subjects (Solé et al., 2014), COL6A3 in the urine of bladder cancer

subjects (Lindén et al., 2012), or degradation products of types I,

III, and IV collagens in the serum of ovarian and breast cancer

patients (Bager et al., 2015) relative to controls.

Many of the top-scoring, cancer-specific markers have also

been experimentally validated as significantly elevated in a bio-

fluid of subjects harboring that particular type of cancer, some

of which are currently used in the clinic for diagnosis. For

example, four of the top five scoring candidates for liver hepato-

cellular carcinoma (LIHC) have been experimentally validated as

biofluid LIHC biomarkers (ESM1, AFP, GPC3, and MDK); AFP is

the most commonly used serological LIHC marker in the clinic

(Capurro et al., 2003; Lou et al., 2017; Spangenberg et al.,

2006; Yang et al., 2017; Zhu et al., 2013). Likewise, two (ANGPT2

[Gayed et al., 2015] and ANGPTL4 [Dong et al., 2017]) of the top

five candidates for kidney renal clear cell carcinoma (KIRC) and

the top candidate (LAMC2 [Kosanam et al., 2013]) for pancreatic

ductal adenocarcinoma (PAAD) have been measured at signifi-

cantly higher concentrations in the plasma, serum, or urine of

subjects harboring the respective cancer types compared to

non-cancer controls.

Extension to an Experimentally Defined Secretome

The biomarker analysis described here included only classically

secreted proteins that contain a signal peptide, but many pro-

teins are secreted through unconventional routes and possess

similar diagnostic potential (Rabouille, 2017). However, defining

a list of unconventionally secreted proteins is non-trivial due to

themany secretion routes available (e.g., exosomes, pore-medi-

ated translocation, ATP-driven transport [Rabouille, 2017]), as

well as the variation in their protein cargo across different cell
types or conditions (Vlassov et al., 2012). We therefore used

the Human Cancer Secretome Database (HCSD) (Feizi et al.,

2015) to generate a list of all of the proteins (regardless of signal

peptide) that had been experimentally detected in the secretome

among any of the 35 studies encompassed by the database. This

yielded an ‘‘experimental secretome’’ consisting of �6,500 pro-

teins, �800 of which were present in our signal peptide-derived

secretome. The results and associated consensus ranks for the

experimental secretome are presented in Table S3.

Exploration of the ‘‘Core’’ Cancer Secretome
Definition of the Core Secretome

Shifts in secretome expression associated with malignant trans-

formation can be used to identify candidate cancer biomarkers;

however, based on our global analysis across different cancer

types, it is also possible to address the more fundamental ques-

tion of why cancer cells restructure their secretome profile

throughout tumorigenesis. We therefore sought to investigate

the biological features underlying the altered secretome expres-

sion. Motivated by the large number of multi-cancer candidates

in our biomarker analysis, we first explored the core cancer se-

cretome—the subset of the secretome exhibiting strong differ-

ential expression across most or all of the cancer types studied.

Secretome genes were ranked based on the magnitude and sig-

nificance of their expression fold changes (tumor versus paired

normal) across all cancer types, referred to here as the PF rank

(STAR Methods).

Members of the Core Secretome

Upon inspection of the genes populating the top 1% (16 of 1,563

genes) of the pan-cancer PF ranks, two key features were imme-

diately apparent (Figure 2A). First, each gene exhibited an

expression change in the same direction across all (or nearly

all) of the cancer types, despite ignoring the fold change direc-

tion in the rank calculation. This is supportive of an important

and defined tumorigenic role for each of the associated encoded

proteins, independent of the tissue or cell type fromwhich it orig-

inates. Second, 15 of the 16 top-ranked genes exhibited an

expression decrease across all or nearly all of the cancer types,

suggesting that cancer type-independent shifts in secretome

expression tend to be decreases.

Given the high number of cancer types exhibiting a coordi-

nated expression decrease (or increase) of these core secre-

tome genes, we reasoned that these genes would likely be

responsible for important tumor-specific functions. Many of the

genes exhibiting decreased expression are putative or estab-

lished tumor suppressors (e.g., ANGPTL1, C2orf40, CHRDL1,

OGN, C7, GREM2) (Hu et al., 2018; Kuo et al., 2013; Li et al.,

2015; Pei et al., 2017; Tsubamoto et al., 2016; Ying et al.,

2016), are involved in the remodeling of the extracellular matrix

(ECM) (e.g., DNASE1L3, CLEC3B, PI16, CCBE1) (Barton et al.,

2010; Hawes et al., 2015; Hazell et al., 2016; Obrist et al.,

2004), and/or participate in cell-matrix adhesion functions (e.g.,

MFAP4, DPT, MAMDC2) (Avilés-Vázquez et al., 2017; Pilecki

et al., 2016; Yamatoji et al., 2012).

The only top-ranking core secretome gene exhibiting an

increased expression was MMP11, which was also one of the

MMPs that scored highly as a potential candidate biomarker

for many cancer types. In addition to the tumor-specific
Cell Reports 26, 2622–2635, March 5, 2019 2625
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Figure 2. Constituents and Functions of the Core Cancer Secretome

(A) A heat-scatterplot presenting the log2FCs and corresponding significance (false discovery rate [FDR]-adjusted p values) for the 16 genes making up the top

1% of the non-directional core secretome. The color and size of the points correspond to the log2FC and log-transformed p values, respectively, from the DE

analysis between tumor and paired-normal samples.

(B) The top 1% of the increased core secretome, obtained in the samemanner as the non-directional set in (A), except the fold change direction was incorporated

to identify secretome genes exhibiting increased expression across many cancer types.

(C) Gene sets found to be significantly enriched in the decreased (left column), non-directional (center column), or increased core secretome (right column), in

which the top 20most significant sets from each directional class are shown. The intensity of the color in the heatmap indicates the enrichment significance of the

gene set. Gene set names are colored according to the Molecular Signatures Database (MSigDB) collection from which they originate: Hallmark, Kyoto Ency-

clopedia of Genes and Genomes (KEGG), Reactome, GO biological process, and GOmolecular function. A non-stacked bar plot to the left of the heatmap shows

the sizes (number of genes) of the original gene sets (gray bars) and of the filtered gene sets containing only secretome genes (black bars).

See also Figure S2.
functions attributed to the MMP family, MMP11 is somewhat

unique in that it is secreted in its active form and its ECM sub-

strates differ from those commonly targeted by MMPs (Pei

et al., 1994). MMP11 has been reported to enable tumor invasion

by inducing de-differentiation of surrounding adipocytes and

supporting the accumulation of peritumoral fibroblasts (Andara-

wewa et al., 2005).
2626 Cell Reports 26, 2622–2635, March 5, 2019
To investigate core secretome genes that exhibited pan-can-

cer expression increases, the gene-ranking process was

repeated, except that the direction of expression fold change

was incorporated instead of using the absolute log2FC values.

The set of 16 secretome genes with the highest directional PF

ranks (top 1%) across the different cancer types exhibited a

lower degree of coordination compared to the non-directional



set (Figure 2B). Regarding function, the majority of the core

increased secretome genes were involved in the structure and

composition (e.g., COL1A1, ACAN, ZP3) (Iozzo and Schaefer,

2015; Pickup et al., 2014; Rankin and Dean, 2000) or modifica-

tion (e.g., metalloprotease MMPs and a disintegrin and metallo-

proteinase with thrombospondin motifs [ADAM(TS)]) (Egeblad

and Werb, 2002) of the ECM. Another function shared by many

of the proteins was signaling, either as receptors or effectors.

For example, EFNA4, NXPH4, and GPC2 facilitate signaling

associated with neuronal and developmental events, which sup-

ports essential tumor functions such as angiogenesis, cell adhe-

sion, and motility (Kurosawa et al., 2001; Missler and S€udhof,

1998; Wilkinson, 2001). Other proteins with signaling-related

functions included CTHRC1 and C1QTNF6, which are involved

in vascular remodeling (Park et al., 2013; Takeuchi et al.,

2011), and SPP1, which is known to facilitate cell-matrix interac-

tions (Shevde and Samant, 2014). Overall, core secretome shifts

contribute to diverse malignant processes, particularly those

relating to ECM remodeling, or to a reduction in tumor-suppres-

sive activity.

Enrichment of Functions in the Core Cancer Secretome

Although analysis of the top-ranked core secretome genes

offered insight into common functions that were downregulated

(or upregulated) across the different cancer types, it excludes in-

formation about the remaining 99% of secretome members. We

therefore conducted a gene set analysis (GSA) to account for the

PF ranks of all of the secretome genes in determining coordi-

nated shifts in secretome function. The GSA was performed us-

ing both non-directional and directional PF ranks.

Themost significant gene sets associated with the core secre-

tome were related to ECM turnover, cell-matrix adhesion, and

signaling processes involving the ECM or immunity and inflam-

mation (Figure 2C). Furthermore, the secretome expression in-

crease associated with the epithelial-mesenchymal transition

(EMT) underscores the importance of the cancer secretome in

metastatic and invasive processes, regardless of cancer type.

Gene sets related to glycosaminoglycan (GAG) binding, specif-

ically heparin, were among the most significant coordinated de-

creases in secretome expression. As the genes within these sets

encode for proteins associated with cell-matrix and basement

membrane adhesion, their decreased expression further sup-

ports a contribution of the secretome to a more migratory and

invasive phenotype.

The Effects of Tumor Purity on Core Secretome

Expression Profiles

Tumors are infiltrated to varying degrees by non-cancerous

cells, such as stromal or immune cells (Hanahan and Weinberg,

2011). Molecular profiles of bulk tumor samples will therefore

contain signatures from these infiltrating cells, which can

obscure or be misinterpreted as those originating from tumor

cells. To assess whether infiltrating cells were responsible for

any of the identified features of the core secretome, we repeated

the analyses using only tumor samples with a consensus purity

estimate (CPE) (Aran et al., 2015) of at least 80% (Figure S2).

Themajor features remained largely unchanged, supporting their

association with the cancerous cells themselves. For example,

all 16 genes in the top 1% of the core secretome exhibited a sig-

nificant expression decrease inmost or all of the included cancer
types, and 11 of those genes were also present in the top 1% for

the original analysis. Functions related to ECM turnover were

again enriched among core secretome expression increases,

although to a lesser extent when considering only high-purity

tumor samples.

Cancer Type-Specific Secretome Expression Profiles
Following the investigation of coordinated pan-cancer secre-

tome shifts, we were interested in evaluating the cancer types

individually and determining which processes and functions ex-

hibited strong changes within each type. We therefore conduct-

ed a directional and non-directional GSA of the differential

expression (DE) analysis results, in which the direction of expres-

sion fold changeswere included or excluded, respectively (STAR

Methods; Väremo et al., 2013).

In the directional GSA (Figure 3A), cancer types generally ex-

hibited expression increases associatedwith ECM components

and metalloprotease activity; however, cholangiocarcinoma

(CHOL) and head and neck squamous cell carcinoma (HNSC)

accounted for the most significant increases, whereas prostate

adenocarcinoma (PRAD), bladder urothelial carcinoma (BLCA),

uterine corpus endometrial carcinoma (UCEC), and the kidney

cancers displayed no coordinated change or even a modest

decrease in expression. For these latter cancers, the non-direc-

tional GSA results (Figure 3B) revealed significant expression

changes associated with these processes, but it was a mix of

increases and decreases rather than a coordinated shift in

one direction. Conversely, expression decreases related to

adhesion and GAG binding were observed across many cancer

types, with the most significant decreases occurring in kidney

chromophobe (KICH), BLCA, and UCEC. Again, when ignoring

the direction of expression change, virtually all of the cancers

exhibited significant shifts in the secretome related to these

functions. These results suggest that different cancer types

are shifting their secretome expression in accordance with a

common set of molecular functions, but the extent and direction

of these changes are often tuned specifically to the tissue of

origin.

When repeating the analysis with high-purity tumor samples

(Figure S2), much of the enrichment of secretome expression

increases in ECM-related functions were reduced or absent,

indicating a potential contribution of non-tumor cells to this

behavior. However, significant coordinated expression de-

creases among genes associated with adhesion and GAG

binding were observed to an even greater extent when using

high-purity tumor samples, suggesting a more tumor-specific

behavior.

Another feature of interest was the significant decrease in

expression associated with several gene sets that was unique

to CHOL and LIHC. Even when ignoring the directionality of

expression change, only CHOL and LIHC exhibited significant

changes in these sets (Figure 3B). These sets included genes

associated with normal liver function, including binding or

activity related to lipids, alcohols, sterols, and lipoproteins.

Thus, it appeared that CHOL and LIHC, which both originate

from the liver, were decreasing the expression of their healthy,

tissue-specific secretome components in favor of those related

to malignant and invasive processes.
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Figure 3. Gene Set Analysis of the Cancer Secretome
Heatmaps illustrate the (A) directional and (B) non-directional GSA results for secretome genes based on the tumor versus paired-normal fold changes and

significance in 17 different cancer types. Only the GOmolecular function gene set collection (MSigDB) was evaluated, and sets with <10 genes were excluded. In

(A), the distinct directional gene set p values are calculated for coordinated increases (padj,dist-dir-up) and decreases (padj,dist-dir-down) in expression. The more

significant (lower value) of the two directional p values for each gene set is shown in the heatmap as a log10-transformed value. The value is also ‘‘signed,’’

meaning that gene sets with a more significant decrease than increase (padj,dist-dir-down < padj,dist-dir-up) are made negative; otherwise, they are positive. Only gene

sets with a padj,dist-dir % 0.01 (in either direction) in at least one cancer type are shown. A non-stacked bar plot to the left of the heatmap shows the sizes of the

original gene sets (gray bars) and of the filtered gene sets containing only secretome genes (black bars). *The ammonium ion binding gene set was identical to the

quaternary ammoniumgroup binding set after removing non-secretome genes; thus, the latter set is not shown. **The chemokine activity gene set was identical to

the chemokine receptor binding gene set after removing non-secretome genes; thus, the latter set is not shown. See also Figure S2.
Decreased Expression of Genes Specific to Tumor
Tissue of Origin
Given that liver-derived cancers CHOL and LIHC exhibited

significant and coordinated decreases in the expression of the

secretome components specific to liver function, we investi-

gated expression changes in the context of tissue specificity

across all cancer types. In addition, to obtain a more compre-

hensive picture of the secretory pathway clientele, we expanded

the analysis to include any protein possessing a signal peptide,

not only those that are destined for secretion (e.g., membrane

proteins). This corresponded to a set of 3,491 signal-peptide

genes, referred to hereafter as SP genes.

Tissue-specificity data from the Human Protein Atlas (HPA)

(Uhlén et al., 2015) was used to define the set of SP genes asso-

ciated with each tissue (STAR Methods; Table S4). The DE anal-

ysis (tumor versus paired normal) results for each cancer type

were then evaluated in the context of the tissue-specific gene

sets to determine whether any of the cancer types exhibited sig-

nificant expression changes in the subset of SP genes that are

typically associatedwith a particular healthy tissue. As in the pre-

vious analyses, directionality of fold change was also taken into

account to determine whether there were significantly coordi-

nated expression increases or decreases.

In addition to the liver-derived cancers, the trend of a decrease

in tissue-specific SP gene expression generally held true among

the other cancers (Figures 4 and S3), all of which exhibited either

a significant coordinated decrease or no significant change in
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the genes specific to their respective tissue of origin. Further-

more, the same behavior was observed even when including

only high-purity tumor samples (Figure S4A).

Consistent with the GSA results, LIHC and CHOL exhibited a

significant coordinated decreased expression of liver-specific

genes. None of the 176 liver-specific SP genes were significantly

(padj < 0.05) increased in either LIHC or CHOL relative to paired-

normal tissue, whereas 156 (89%) and 174 (99%) of these genes

exhibited a significant decrease in expression for LIHC and

CHOL, respectively. These genes encoded functions such as

lipid and cholesterol transport andmetabolism (apolipoproteins),

the complement system, coagulation, and protease inhibition

(serpins). Similar strong, coordinated decreases in the expres-

sion of tissue-specific SP genes were observed in breast, colo-

rectal, and lung cancers, in which only three or fewer genes in

each set (<6%) were significantly increased in expression, while

the majority were significantly decreased. The four cancer types

that did not show a significant coordinated decreased expres-

sion in SP genes specific to their corresponding tissue of origin

were BLCA, esophageal carcinoma (ESCA), PRAD, and UCEC.

However, ESCA, PRAD, and UCEC did exhibit a significant

decrease in the expression of genes specific to a tissue near their

tissues of origin (stomach, seminal vesicle, and ovary, respec-

tively) (Figure S3), suggesting a similar phenomenon. The data

cannot distinguish between tumor cells that have actively

decreased their tissue-specific gene expression and those that

originated from more stem-like cells from the start; however,



Figure 4. Tissue-Specific Expression Changes in SP Genes

The heatmap shows the significance and direction of coordinated expression changes in SP genes classified as specific to various tissue types. Cancer and

tissue types are organized such that entries along the diagonal represent cancer types paired with their tissue of origin and are outlined in a solid box if there is a

significant (padj < 0.05) coordinated expression decrease among the tissue-specific SP genes for that cancer type or in a dotted box otherwise. The log-

transformed p values of cancer types sharing the same tissue of origin were averaged to facilitate this organization. The complete results for each individual tissue

and cancer type are presented in Figure S3. The number of tissue-specific SP genes for each tissue type are indicated in the bar plot to the left of the heatmap.

The distribution of tissue-specific SP gene expression changes across different cancer types is presented for two representative tissue types: prostate and liver.

The log2FC values for each set of genes are represented by boxplots, with the individual gene values shown as gray points whose sizes indicate the significance

(p value) of their FC. See also Figure S4.
the end state is the same in that (most) cancer types exhibit a

lower expression of tissue-specific SP genes in tumor cells

than in the corresponding normal tissue.

Evaluation of Secretory Pathway Stress Signatures
The common decrease in the expression of tissue-specific SP

genes across many different cancer types suggests a general

pattern in which tumor cells are relieving the burden on an

already strained (Ma and Hendershot, 2004) secretory system.

By limiting the production and secretion of tissue-specific com-

ponents, tumor cells may be able to dedicate more resources to

processing proteins that contribute to cell proliferation and other

malignant processes. To investigate further, we evaluated the tu-

mor versus paired normal DE data for signs of increased stress

or burden on the secretory pathway.

Activation of the UPR

Disruption of the secretory pathway results in the accumulation

of misfolded proteins, which in turn activates a series of adaptive

processes collectively known as the UPR to restore ER

homeostasis (Ron andWalter, 2007). Coordinated expression in-

creases in UPR-associated genes would therefore be indicative

of cells undergoing secretory pathway stress and UPR activa-

tion. For each cancer type, we evaluated the enrichment of

expression changes in genes affiliated with the UPR (all affiliated

genes, not only secreted or SP genes). The results revealed a

significant coordinated increase in UPR-related gene expression

in nearly all cancer types (Figures 5 and S5A), consistent with
previous reports regarding the prevalence of UPR activation

among many cancers (Dejeans et al., 2014; Ma and Hendershot,

2004). CHOL and papillary thyroid carcinoma (THCA), however,

exhibited a negligible coordinated expression increase in UPR-

associated genes. The same results were observed when

considering only high-purity tumor samples (Figure S4B),

although CHOL was excluded due to the absence of purity

scores for this cancer type.

Given that CHOL and THCA were among the cancer types ex-

hibiting a strong coordinated expression decrease in tissue-spe-

cific SP genes (Figure 4), the data are supportive of the observed

pattern whereby tumor cells alleviate secretory pathway stress

by reducing the expression of SP genes specific to sustaining

the function of their tissue of origin. Likewise, cancer types

with an insignificant decrease in the expression of their respec-

tive tissue-specific SP genes (BLCA, ESCA, PRAD, and UCEC)

exhibited coordinated expression increases associated with

ER stress and the UPR (Figures 5 and S5A).

Estimation of Secretory Burden

Proteins traversing the secretory pathway undergo a number of

maturation processes such as folding and post-translational

modifications (PTMs). Larger proteins with a greater number of

PTMs will require more cellular resources than shorter, less-

modified proteins, and thus may impart a greater burden on

the secretory pathway (Feizi et al., 2017; Gutierrez et al., 2018).

We reasoned that a shift in expression toward lower-cost pro-

teins may constitute another potential strategy to alleviate
Cell Reports 26, 2622–2635, March 5, 2019 2629



Figure 5. Coordinated Expression Increases Associated with the

UPR
Shown are the log-transformed directional p values representing the signifi-

cance of coordinated expression changes in genes associated with the UPR,

defined as those included in the unfolded protein response gene set in the

Hallmark gene set collection from MSigDB. Bars are colored blue if there is a

significant (padj < 0.05) expression increase among the genes for that cancer

type; if not, they are colored yellow. See also Figures S5 and S6.

Figure 6. Correlation between Protein Secretory Burden and Gene

Expression Fold Change

Cancer types with a significantly (p < 0.05) negative correlation are colored

blue, significantly positive cancers are colored red, and those with an insig-

nificant correlation are colored gray. See also Figures S5 and S6.
secretory pathway stress in tumor cells. To quantify this cost, we

formulated a secretory burden (SB) score for each SP gene i as a

function of its encoded protein length L (i.e., number of amino

acids) and number of disulfide (NDS) and glycosylation (Ngly)

sites:

SBi =
Li

medðLÞ+
NDS;i

medðNDSÞ+
Ngly;i

med
�
Ngly

� (Equation 1)

where each property is normalized by the median (med) value

among all of the SP genes.

For each cancer type, the Spearman correlation between gene

SB scores and expression fold changes was calculated (Figures

6 and S5B). Although the correlation coefficients were low, the

trend was consistent with our observations regarding UPR acti-

vation and decreased expression of tissue-specific SP genes,

which is best illustrated by the two extremes, BLCA and

CHOL. BLCA yielded the strongest negative correlation between

SB score and log2FC, suggesting that expression increases tend

to be associated with low-burden SP genes, whereas the oppo-

site was true for CHOL. Given that BLCA showed evidence of

UPR activation and exhibited the least significant expression

decrease in tissue-specific SP genes, it suggests that the

inability of BLCA cells to relieve secretory pathway stress via

reduction in tissue-specific SP gene expression may constrain

their ability to process proteins with a high secretory burden.

Conversely, CHOL exhibited the strongest expression decrease

in tissue-specific SP genes and showed little evidence of UPR

activation, which is indicative of lower secretory pathway stress,

thus relaxing the constraint on which proteins the secretory

pathway can accommodate. Cancer types mirroring the trend

of BLCA included ESCA, PRAD, and UCEC, whereas THCA

followed that of CHOL.

To further explore the PTM burden, we investigated the

expression changes in genes associated with different PTMs:
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N- and O-linked glycosylation, and protein disulfide bond oxida-

tion and reduction (Figure S5C). Nearly half of the studied cancer

types exhibited a significant coordinated expression increase in

genes associated with glycosylation and/or disulfide bond for-

mation, suggesting an additional effort to reduce secretory

stress. The opposite behavior was observed for CHOL, which

exhibited significant expression decreases associated with di-

sulfide redox and N-linked glycosylation. All of the cancer types

that did not show a coordinated expression increase associated

with these PTMs were those exhibiting a significant decrease in

their tissue-specific secretome, providing additional support for

this relief strategy.

Additional Contributors to the UPR

AlthoughHNSC and rectum adenocarcinoma (READ) exhibited a

coordinated expression decrease in tissue-specific SP genes, as

well as a positive correlation between SB score and gene

expression fold change, these cancer types still show evidence

of an activated UPR, unlike CHOL and THCA. Because the

UPR can be triggered by sources of stress other than an overbur-

dened secretory pathway (e.g., genome instability, hypoxia,

nutrient deprivation) (Corazzari et al., 2017), it is possible that

one or more of these alternative sources are contributing to

UPR activation in HNSC and READ cells, despite their modified

secretory profile. We therefore compared genome instability

among the different cancer types using mutation profiles from

TCGA whole-exome sequencing datasets. HNSC and READ

samples exhibited similar mutation burdens (median of 134

and 127 somatic mutations per sample, respectively), which

were >2-fold greater than CHOL (63 median mutations per sam-

ple) and >10-fold greater than THCA (12 mutations per sample)

(all p < 10�6, one-sided Wilcoxon rank-sum test) (Figure S6).

These results support the possibility that other sources of stress

beyond those directly involving the ER and secretory pathway



could be responsible for elevated UPR activation in HNSC and

READ.

DISCUSSION

The secretome is regarded as an attractive reservoir of disease

biomarkers, as its extracellular nature offers the potential to

evaluate physiological status through easily accessible biofluids

(Kulasingam and Diamandis, 2008; Schaaij-Visser et al., 2013;

Stastna and Van Eyk, 2012). Furthermore, there aremany protein

biomarkers in use for the diagnosis or monitoring of different

cancer types based on their abundance in serum, plasma, or

urine, such as PSA, CA-125, CA19-9, and NuMA for prostate,

ovarian, pancreatic, and bladder cancer, respectively (F€uzéry

et al., 2013).

Beyond its potential as a reservoir of biomarker candidates,

the cancer secretome is known to play a crucial role in tumor

development and invasion. We sought to evaluate cancer-asso-

ciated shifts in secretome expression with regard to the function

of the encoded proteins. The majority of shared pan-cancer

changes in secretome expression were decreases and included

proteins associated with functions such as cell-cell and cell-ma-

trix adhesion, tumor suppressors with anti-proliferative or anti-

migratory activities, and immune response. These proteins har-

bor potential therapeutic opportunities, either by targeting the

factors driving their expression decrease or through direct use

of the tumor suppressor as a therapeutic peptide (Bonin-Debs

et al., 2004; Guo et al., 2014; Oricchio et al., 2011). For example,

ANGPTL1, which was among the top 1% core decreased secre-

tome proteins, has been demonstrated to suppress cell migra-

tion, invasion, angiogenesis, metastasis, and/or therapy resis-

tance in hepatocellular carcinoma (Chen et al., 2016; Yan

et al., 2017), colorectal cancer (Chen et al., 2017), and lung

and breast cancers (Kuo et al., 2013).

The trend of expression decreases among the secretome was

also observed in the cancer-specific analyses, in which liver-

related cancers (LIHC and CHOL) exhibited a particularly strong

decrease in the expression of liver-specific SP genes. This

reduced expression of tissue-specific genes in hepatocellular

carcinoma has been explored previously; the extent of expres-

sion decrease was shown to negatively correlate with tumor

grade or degree of dedifferentiation (Ge et al., 2005; Uhlen

et al., 2017). We investigated this further, focusing on the subset

of proteins targeted to the secretory pathway and spanning

many different cancer types. Using tissue-specific gene classifi-

cation from the HPA, this phenomenon of a significant decrease

in expression of SP genes specific to the tissue of origin of the

cancer was found to hold across the majority of examined can-

cer types.

Since UPR activation (Urra et al., 2016) and increased expres-

sion of secretory pathway machinery (Dejeans et al., 2014) are

common in many cancers, our results suggest a common

pattern by which tumor cells modify their secretory profile to alle-

viate ER stress by reducing the production of tissue-specific

components in favor of tumorigenic factors. Consistent with

this hypothesis, CHOL and THCA, which exhibited among the

strongest decreases in their tissue-specific SP genes, were

associated with the weakest UPR activation and displayed no
bias toward the increased expression of low-burden (shorter

and with fewer PTMs) SP genes. Conversely, the few cancer

types with an insignificant decrease in their tissue-specific SP

gene expression (BLCA, ESCA, PRAD, and UCEC) exhibited

increased expression associated with the UPR and displayed

an apparent bias in expression toward lower-burden SP genes.

Given that different tissues exhibit fine-tuned expression of

their secretory machinery to accommodate their unique secre-

tome profile (Feizi et al., 2017), it is reasonable to expect that a

malignant cell could quickly overload this system and induce

ER stress upon increasing the production of tumorigenic compo-

nents without an accompanying decrease in other SP genes. A

number of anti-cancer therapies that activate the UPR are under

development or approved for clinical use, demonstrating the

importance of this system in cancer treatment (Hetz et al.,

2013). Although many cancers are known to leverage an acti-

vated UPR for its cytoprotective and restorative effects, UPR-

targeted therapies function by driving the response further to a

pro-apoptotic regime. We reasoned that the strong decrease

in tissue-specific SP gene expression observed in CHOL or

THCA cells, coupled with the insignificant coordinated expres-

sion increase in UPR-associated genes, could indicate a height-

ened sensitivity of these cancers toward this form of stress. In

support of this hypothesis, treatment of CHOL cells in vitro and

in a subcutaneous transplantation mouse model with bortezo-

mib, which activates the UPR via proteasome inhibition, was

shown to inhibit proliferation and induce apoptosis (Vaeteewoot-

tacharn et al., 2013). Furthermore, bortezomib has been found to

induce apoptosis in THCA cell lines with half-maximal inhibitory

concentration (IC50) values lower than those of other cancer

types (e.g., glioma, colon, renal, ovarian, prostate) (Mitsiades

et al., 2006), whereas bortezomib treatment of BLCA cell line

253JB-V did not result in significant apoptosis and could not

inhibit 253JB-V tumor growth in mice unless combined with

another therapy (gemcitabine) (Kamat et al., 2004).

Overall, the functional diversity and close involvement of the

secretome in a number of critical tumorigenic and metastatic

processes highlights the importance of this group of proteins in

cancer pathophysiology and presents a strong case for its tar-

geting in anti-cancer therapeutic development. In addition, the

ranked list of secretome biomarker candidates for each of the

32 different cancer types is expected to help facilitate the devel-

opment of more accurate, less invasive diagnostic methods.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

The R Project for Statistical Computing R Development Core Team, 2018 https://www.R-project.org/

Bioconductor Gentleman et al., 2004 https://www.bioconductor.org/

EdgeR Robinson et al., 2010 R Bioconductor

TCGAbiolinks Colaprico et al., 2016 R Bioconductor

MATLAB R2017b The MathWorks, Inc. https://ch.mathworks.com/products/matlab.html

MSigDB database Subramanian et al., 2005 http://software.broadinstitute.org/gsea/msigdb
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Jens Nielsen (nielsenj@

chalmers.se).

METHOD DETAILS

Definition of the secretome and SP genes
The list of proteins comprising the classically secreted secretome was obtained via UniProt (uniprot.org) (Bateman et al., 2017).

Beginning with the entire human proteome (UP000005640), proteins were filtered to include those labeled as ‘‘UniProtKB/Swiss-

Prot (reviewed),’’ with a subcellular location of ‘‘Secreted,’’ and PTM/Processing of ‘‘Signal peptide,’’ yielding 1,838 unique UniProt

entries. The associated Entrez gene IDs and gene names were mapped to Ensembl IDs (GRCh38.p12), where those that did not map

were excluded, and duplicated entries were removed, resulting in a secretome of 1,816 unique genes when analyzing TCGA data.

For analyses also involving GTEx samples, genes absent from the that dataset were excluded, yielding a secretome comprised of

1,810 genes.

SP (signal peptide) genes were defined and generated in the same way as the secretome, except without the requirement for a

subcellular location of ‘‘Secreted.’’ This resulted in a set of 3,491 SP genes, of which 3,111 had associated differential expression

data (TCGA primary tumor versus paired normal).

The experimentally-derived secretome
Many proteins are secreted despite not having a signal peptide. To account for these unconventionally secreted proteins, we defined

an ‘‘experimentally-derived’’ secretome consisting of proteins that had been detected within the extracellular environment in any one

of the 35 secretome studies included in the Human Cancer Secretome Database (HCSD). We first retrieved the label-free proteomic

data from HCSD, and extracted a list of all proteins that had been detected in at least one of the studies. For the label-based studies,

proteins were retrieved if they had been measured to decrease or increase in concentration among any of the studies, as both cases

imply detection. These lists were combined andmapped to the set of genes present in TCGARNA-Seq data, resulting in a secretome

consisting of 6,543 genes.

Retrieval of human plasma proteome data
Given the RNA-based nature of the analysis, we sought to enrich the results through the integration of protein-level data. We

therefore retrieved a list of proteins that have been experimentally detected in plasma, which is a result of the Human Plasma

Proteome Project (HPPP) (Schwenk et al., 2017). This protein evidence information was integrated with the consensus score results

summarized in Figure 1D and Table S2.

The human plasma proteome was retrieved from PeptideAtlas (Farrah et al., 2013) (htpp://www.peptideatlas.org/hupo/c-hppp/).

Only entries with a neXtProt protein evidence (PE) level of 1 (evidence at the protein level) were considered. This yielded four sets of

proteins with categories of ‘‘canonical,’’ ‘‘uncertain,’’ ‘‘redundant,’’ or ‘‘not observed’’ (see Tables S2 or S3 for category definitions).

Non-unique protein entries were combined, where the category of greater evidence was used if multiple categories were assigned to

the same entry. Genes in the present study that did not have a corresponding entry in the plasma proteome dataset were categorized

as ‘‘NA.’’
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Transcriptomic data retrieval
RNA-Seq data (FPKM and raw gene counts) were retrieved from TCGA on May 4, 2017 using the TCGAbiolinks (Colaprico et al.,

2016) package in R (Gentleman et al., 2004; R Development Core Team, 2018), for all 33 cancer types available at that time. One

cancer type, acute myeloid leukemia (LAML), did not have any associated primary tumor RNA-Seq data, and was thus excluded

from all analyses, resulting in a total of 32 cancer types. GTEx RNA-Seq data (V7, TPM and raw gene counts) were retrieved directly

from the site (http://www.gtexportal.org/home/datasets) on October 18, 2017.

Primary tumor and paired-normal transcriptomic (RNA-Seq) data were retrieved for 32 cancer types from TCGA, for a total of 9,760

primary tumor and 730 paired-normal samples, where both sample types were available for 697 patients. Healthy tissue RNA-Seq

data was retrieved from the GTEx database, for a total of 11,688 samples spanning 714 donors and 30 tissue/organ types (or 53 sub-

tissue types).

Mutation burden quantification
Mutation annotation files (MAFs) derived fromwhole-exome sequencing data were retrieved for all available cancer types from TCGA

using the TCGAbiolinks R package. The total number of somatic mutation events (insertion, deletion, or single nucleotide polymor-

phism) for each primary tumor sample were summed to yield a total mutation burden for each sample.

Analysis of high-purity tumor samples
Consensus purity estimate (CPE) scores for TCGA primary solid tumor samples were obtained from a previous study (Aran et al.,

2015), which calculated and combined purity scores using four different methods (ESTIMATE (Yoshihara et al., 2013), ABSOLUTE

(Carter et al., 2012), LUMP and IHC (Aran et al., 2015)). All tumor samples with a CPE of less than 80% (0.80), or those that did

not have a score available, were removed from the high-purity analysis. Cancer types that did not have any scores available

(CHOL, ESCA, PAAD, PCPG, STAD), or had 3 or fewer tumor–normal sample pairs after removing low-purity tumor samples

(BLCA, HNSC) were also excluded.

Consensus biomarker score
The consensus biomarker score was generated by combining the results from three types of sample comparison: (1) tumor versus

paired normal, (2) tumor versus healthy tissue of origin, and (3) tumor versus all healthy tissues.

Comparison 1: primary tumor versus paired-normal tissue

The first comparison leveraged the paired nature of TCGA samples, meaning the tumor and normal tissue sample originated from

the same patient. This enabled an estimation of gene expression changes that were specific to malignant transformation,

rather than those arising from variation among patients or tissues of origin. TCGA data were filtered to only keep patients with

paired samples; i.e., those with both a primary tumor and normal tissue sample. Furthermore, only cancer types with at least three

patients after filtering were included, resulting in a final count of 693 patients spanning 20 cancer types. For each cancer type, a dif-

ferential expression analysis was performed, comparing primary tumor with paired normal tissue, using the patient ID as a blocking

factor.

Comparison 2: primary tumor versus healthy matched tissue

The second comparison was conducted in recognition of the fact that paired-normal samples are not always representative of normal

healthy tissue, as nearby tumor cells are known to perturb cellular function (Aran et al., 2017; Huang et al., 2016). Therefore, primary

tumor TCGA samples were compared to GTEx healthy tissue samples (of the same tissue-of-origin) from non-cancer patients. For

this analysis, all 9,760 primary tumor samples were used, not just those with a corresponding paired-normal tissue sample. A differ-

ential expression analysis was performed for each cancer type, comparing primary tumor samples with those of the corresponding

healthy tissue from GTEx.

Comparison 3: primary tumor versus all healthy tissues

The final comparison sought to identify genes with relatively low expression throughout all tissues in the body compared to their

expression in a tumor.We hypothesized that tumor-derived expression changes in such geneswould bemore detectable in a biofluid

than genes expressed at similar or higher levels in many healthy tissues, as the latter could impart a ‘‘dilution’’ effect on the tumor-

associated signal of interest. For this analysis, we were more interested in transcript abundance rather than fold-changes between

two conditions. Therefore, normalized gene counts (FPKM) were retrieved from TCGA for all tumor and paired normal tissue samples

and converted to transcripts per million (TPM). TPM gene counts were also retrieved from the GTEx database for all measured tis-

sues. The complete set of healthy tissues was obtained by combining healthy tissue samples fromGTEx with paired normal samples

from TCGA (Table S1).

For each gene in a given cancer type, the TPM values among all TCGA primary tumor samples for that cancer type were

compared to the TPM values for that gene across all normal samples for a particular tissue type, using a right-tailed Wilcoxon

rank-sum test (i.e., the null-hypothesis being that the tumor counts are not sampled from a distribution with a higher median than

that of the normal tissue counts). This yielded a significance (p value) for each gene for a tissue type, where a low p value corre-

sponded to genes with higher TPM values in primary tumor tissues than in the normal tissue. The comparison was repeated for

all of the healthy tissue types, to obtain a p value for each tissue. The test was performed with each healthy tissue individually rather

than pooling all of the normal samples together, as the pooled test would be biased by variations in the number of samples for
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different tissues. Each of the p values obtained from the different tissues types were then combined (geometric mean) into a single

p-like score (ranging from 0-1). The entire process was repeated for each of the different cancer types, yielding a single score for each

gene and each cancer type.

Consensus score formulation

For the first two comparisons (DE analyses), genes were ranked by their combined fold-change and significance (FDR-adjusted

p value). Fold-changes were ranked directly, with higher ranks assigned to genes with greater positive log2FC (tumor/normal),

and vice versa. Prior to ranking p values, the associated FC direction was incorporated to generate directional p values (pdir) for

each gene i (analogous to the approach described in (Väremo et al., 2013)):

pdir;i =
ðpi � 1Þ,signðFCiÞ+ 1

2
(2)

where sign(FC) is the sign of the corresponding log2(fold-change). In this manner, genes with low p values and a positive FC receive a

pdir near zero, whereas genes with low p values but a negative FC have a pdir close to one. Genes associated with a high p value will

therefore have a pdir near 0.5, regardless of FC direction. These pdir values were then ranked such that higher ranks were assigned to

genes with lower pdir values. Finally, the p-like scores generated from the third comparison (tumor versus all tissues) were ranked

directly, where low p-scores (high significance) were ranked highly, and vice versa.

The consensus rank score was calculated by combining the gene ranks from each of the three comparative analyses, as illustrated

in Figure 1A. Specifically, the FC and pdir ranks from the first comparison were averaged, and this mean rank was averaged with the

mean of the FC and pdir ranks from the second comparison. The resulting combined rank was averaged with the rank of p-like scores

from the third comparison to yield the overall consensus rank score, enabling the prediction of candidate biomarkers for each cancer

type. The effective weight ratios from the three comparisons (tumor versus paired normal, tumor versus healthy tissue-of-origin, and

tumor versus all healthy tissues) in the consensus score were therefore 1:1:2, respectively. The ratios were assigned as such because

the score was designed to place equal weight on expression differences of tumor versus tissue-of-origin, and of tumor versus all

tissues. Since comparisons 1 and 2 both quantify tumor versus tissue-of-origin differences, they were each assigned half the weight

of comparison 3, which quantified tumor versus all tissue differences. Moreover, since the information from the first two comparisons

is likely to exhibit more redundancy (paired normal tissue and healthy tissue-of-origin are relatively similar in their expression profiles

compared to other tissue types), they were weighted less than comparison 3.

Cancer types lacking paired-normal or healthy tissue data

Among the 32 TCGA cancer typeswith available primary tumor samples, 12 lacked sufficient paired-normal tissue data from TCGA to

be included in the first comparison, and 6 types could not be appropriately matched to one of the tissue types defined in GTEx (e.g.,

SARC, ‘‘sarcoma’’), and thus could not be included in the second comparison. However, the genes were still scored based on the

results from the remaining comparisons that could be performed. Although there is less confidence associated with the scores for

these particular cancer types, potential biomarkers could still be identified. For example, the top-scoring candidate for ovarian can-

cer (OV) was WFDC2 (also known as HE4), which is an established OV protein biomarker in both urine and serum (Hellström et al.,

2003, 2010), and the next top 6 candidates included FOLR1, KLK6, KLK7, and MSLN, all of which have been experimentally

confirmed as biofluid diagnostic markers of OV (Badgwell et al., 2007; Diamandis et al., 2003; Leung et al., 2013; Tamir et al., 2014).

Core secretome definition and analysis
To focus on changes in secretome expression associated specifically with malignant progression rather than inter-individual and in-

ter-tissue variation, the analysis was conducted using paired tumor-normal samples from TCGA. Furthermore, cancer types with only

a few sample pairs (CESC, PAAD, and PCPG; each had only 2 or 3 pairs) were excluded, yielding a final dataset spanning 17 cancer

types, 683 patients, and 1,563 secretome genes (very low-count or non-detected genes were excluded).

To identify the subset of secretome genes with substantial paired normal versus primary tumor expression changes across many

cancer types, a rank-basedmetric was used. The rationale of implementing a relativemetric rather than directly using the fold-change

and significance values from the DE analyses was that their ranges, especially those of the p values, vary widely across cancer types

due to differences in the number of samples for each. We therefore ranked the genes within each cancer type by p value, and by

absolute log2(fold-change) value, then averaged the two ranks to yield a combined ‘‘PF-rank.’’ To identify the genes that exhibited

the greatest and most significant changes across all included cancer types (regardless of fold-change direction), the PF-ranks for

each cancer were averaged to yield a pan-cancer PF-rank.

Directional PF-ranks were also generated, where the direction of expression fold-change was incorporated instead of using the

absolute log2FC values. In addition, the associated p values were converted to directional p values (pdir, Equation 2, Method Details),

such that the lowest rankswere assigned to genes exhibiting a significant decrease in expression acrossmany cancers, and the high-

est to those with a significant increase in expression.

Definition of tissue-specific genes
Gene tissue specificity data was retrieved from the HPA, which has compiled a list of genes for each tissue that are classified as

tissue enriched, group enriched, or tissue enhanced, based on their expression in that tissue compared to others (Uhlén et al.,

2015). Given the relatively small number of tissue-enriched genes for many tissues, especially when removing all non-SP genes,
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we defined tissue-specific gene sets for each individual tissue as the combination of all its tissue-enriched, group-enriched, and

tissue-enhanced genes (Table S4).

Estimation of UPR activation
Activation of the UPR was estimated using a GSA. In this analysis, the full gene sets were used; i.e., they were not filtered to remove

non-secretome genes. The ‘‘Hallmark,’’ ‘‘Canonical pathways,’’ and ‘‘GO gene sets’’ libraries from MSigDB were queried for any set

containing the phrase ‘‘endoplasmic reticulum stress’’ or ‘‘unfolded protein response,’’ and sets with the term ‘‘negative regulation’’

were excluded. This yielded 11 gene sets related to UPR and/or ER stress, which are shown in Figures S4 and S5.

Glycosylation and disulfide bond redox
Expression changes related to glycosylation and disulfide bond oxidation/reduction processes were evaluated by conducting aGSA,

using the ‘‘GO bioprocess: glycosylation’’ and ‘‘GO molecular function: protein disulfide oxidoreductase activity’’ gene sets from

MSigDB, respectively. To add resolution to the analysis of glycosylation activity, two subsets of the glycosylation gene set, ‘‘protein

N-linked glycosylation’’ and ‘‘protein O-linked glycosylation,’’ were also evaluated for coordinated changes in gene expression.

These gene sets were used in their complete form, and were not filtered (e.g., by removing non-secretome genes).

Secretory burden (SB) score
The SB score was calculated for each gene based on its associated protein length (number of amino acids), number of disulfide sites,

and number of glycosylation sites, as described in Equation 1. Data for each of these terms was retrieved from UniProt, where the

number of glycosylation sites was the sum of all N-, C-, O-, and S-linked glycosylation sites.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression (DE) analysis
All differential expression analyses reported in the study were conducted using the edgeR package in R (Robinson et al., 2010), with

the raw gene count (integer) values as input. For the DE analysis comparing primary tumor expression to that of paired normal tissues,

the patient ID number was included as an additional field in the design matrix. When comparing primary tumor gene counts from

TCGA to those of healthy tissues from GTEx, only the sample type was considered (tumor or normal). Counts were normalized using

the EdgeR calcNormFactors function, which scales library sizes using the trimmed mean of M-values (TMM) between each pair of

samples (Robinson and Oshlack, 2010). For each DE analysis, low-count genes were removed beforehand; i.e., only genes with

at least 10 counts in at least half of the samples were retained. Furthermore, DE analyses were only performed if there were at least

3 samples in each of the 2 conditions to be compared.

Gene set analysis
To quantify the extent to which different groups of genes were enriched in a givenmetric (e.g., p values from aDE analysis), a gene set

analysis (GSA) was performed. This type of analysis was applied in a number of situations throughout the study, and followed the

same procedure (described below), unless stated otherwise. The following gene set collections were retrieved from the Molecular

Signatures Database (MSigBD (Subramanian et al., 2005)): hallmark (H) (Liberzon et al., 2015), KEGG (C2 CP:KEGG), Reactome

(C2 CP:REACTOME), GO biological process (C5 BP), and GO molecular function (C5 MF).

Gene set collections were filtered to remove all non-secretome genes from each set prior to analysis, unless otherwise stated. We

note that this filtration can cause the name of a gene set to become less representative if a substantial portion of genes in the set are

removed. In this way, the significance of a gene set does not necessarily represent an enrichment in its named function/pathway, but

instead represents an enrichment in the set of secretome genes that are associatedwith that function/pathway. In addition, gene sets

containing more than 400 genes (before filtering) were also removed, as these sets tended to have a very low fraction of secretome

genes, andwere generally uninformative. Finally, to avoid statistical problemswith very small gene sets, thosewith less than 20 genes

after filtration were excluded from the analysis, unless otherwise noted.

A Wilcoxon rank-sum test statistic was calculated from the DE analysis p values of genes in a given set, and compared to those of

100,000 randomly shuffled gene sets of the same size. The significance (p value) of a gene set was calculated as:

p=
1+NrandRset

1+Nperms

(3)

whereNrand R set is the number of randomly shuffled gene sets with a test statistic greater than or equal to that of the original gene set,

and Nperms is the number of random permutations (100,000 in this study). Gene set p values calculated in this manner correspond to

‘‘non-directional’’ p values (pnon-dir), as they do not take into account the direction (increase or decrease) of the fold-change from the

DE analysis, only the significance.

‘‘Distinct directional’’ gene set p values (pdist-dir-up and pdist-dir-down) (Väremo et al., 2013) were obtained in the samemanner, except

the p values from the DE analysis were first converted to directional p values (Equation 2) before calculating the associatedWilcoxon

test statistic. The resulting gene set pdist-dir-up values quantify coordinated expression increases in a gene set, where a low pdist-dir-up
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indicates a get set that is enriched in genes with significant expression increases. Coordinated expression decreases are quantified

simply as pdist-dir-down = 1 – pdist-dir-up, where low pdist-dir-down values indicate an enrichment of genes with expression decreases.

Adjustment of p values
All adjusted p values (padj) reported in the study were adjusted to control for the false discovery rate (FDR) using the Benjamini-Hoch-

berg procedure. Statistical significance in this study was defined as padj < 0.05.
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