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ARTICLE

The human gut Firmicute Roseburia intestinalis is a
primary degrader of dietary β-mannans
Sabina Leanti La Rosa 1, Maria Louise Leth2, Leszek Michalak1, Morten Ejby Hansen 2, Nicholas A. Pudlo3,

Robert Glowacki3, Gabriel Pereira3, Christopher T. Workman2, Magnus Ø. Arntzen1, Phillip B. Pope 1,

Eric C. Martens3, Maher Abou Hachem 2 & Bjørge Westereng1

β-Mannans are plant cell wall polysaccharides that are commonly found in human diets.

However, a mechanistic understanding into the key populations that degrade this glycan is

absent, especially for the dominant Firmicutes phylum. Here, we show that the prominent

butyrate-producing Firmicute Roseburia intestinalis expresses two loci conferring metabolism

of β-mannans. We combine multi-“omic” analyses and detailed biochemical studies to

comprehensively characterize loci-encoded proteins that are involved in β-mannan capturing,

importation, de-branching and degradation into monosaccharides. In mixed cultures, R.

intestinalis shares the available β-mannan with Bacteroides ovatus, demonstrating that the

apparatus allows coexistence in a competitive environment. In murine experiments, β-
mannan selectively promotes beneficial gut bacteria, exemplified by increased R. intestinalis,

and reduction of mucus-degraders. Our findings highlight that R. intestinalis is a primary

degrader of this dietary fiber and that this metabolic capacity could be exploited to selectively

promote key members of the healthy microbiota using β-mannan-based therapeutic

interventions.
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The human gastrointestinal tract harbors an extremely dense
and diverse microbial community, known as the gut
microbiota1. In a mutually beneficial relationship, the gut

microbiota supplies enzymes able to depolymerize dietary car-
bohydrates that cannot be hydrolyzed by human enzymes2,3. The
monosaccharides generated are further fermented into host-
absorbable metabolites, including the short-chain fatty acids
butyrate, acetate, and propionate. In particular, butyrate pro-
duced by commensal bacteria serves as the main energy source
for colonocytes4,5 and it exhibits anti-carcinogenic, anti-inflam-
matory, and barrier protective properties in the distal gut6–8. The
relevance of this metabolic output to human health has prompted
increasing interest in intentionally modulating the composition of
the gut microbiota to promote wellbeing and combat disease, e.g.,
by the use of prebiotics9. Established prebiotics have been tradi-
tionally developed based on their selective fermentation by bifi-
dobacteria and lactobacilli generally regarded as conferring health
benefits to the host. Notably, other potentially beneficial targets
are the butyrate-producing Firmicutes9.

Roseburia spp., together with Faecalibacterium prausnitzii and
Eubacterium rectale, constitute a group of dominant butyrate-
producing Firmicutes, estimated to account for 7–24% of the total
bacteria in the healthy human colon10,11. Interest in Roseburia
spp. has increased with reports that the abundance of these
bacteria is reduced in individuals affected by inflammatory dis-
eases12–14 and colorectal cancer15,16. Complementary studies
have shown that Roseburia spp. play an important role in the
control of gut inflammatory processes17, amelioration of ather-
osclerosis18 and in the maturation of the immune system, pri-
marily through the production of butyrate19. R. intestinalis
preferentially colonizes the mucin layer20,21 and this intimate
association to the host may contribute to the local level of
butyrate available for the colonic epithelial cells22. This species
appears to be a specialist able to grow only on a few glycans23,24

and has been recently shown to be a prominent xylan degrader
in vitro25 and in the healthy human colon26.

β-Mannans are widespread in the human diet: they are widely
used in food as thickening, stabilizing, and gelling agents27

(glucomannan and galactomannan, Fig. 1). They are found in the
endospermic tissue of nuts (homopolymeric mannan), coffee
beans, coconut palm, tomato, and legume seeds (galactomannan)

(Fig. 1)27–29, and play vital roles in the cell wall structure and as
storage polysaccharides in plants. Notably, the structure of
galactoglucomannan29 from non-edible sources (softwood)
shares striking similarities with that from edible sources (Fig. 1).

Prevalent Gram-negative Bacteroides spp. encode β-mannan
polysaccharide utilization loci (PULs) and have been recently
shown to utilize mannans30–32. Despite members of the Firmi-
cutes phylum being numerically dominant in the gut, insight is
lacking into the metabolic strategies adopted by these Gram-
positive bacteria to utilize β-mannans.

Here, using a combination of microbiology,”omic” and enzy-
mology approaches, we unravel the molecular mechanism
evolved by R. intestinalis L1–82 to depolymerize β-mannans that
are potentially available in the large intestine. Our findings show
that R. intestinalis growth on β-mannan is dependent on the
expression of a highly specific multi-modular cell attached
endomannanase, an ATP-binding transporter and an intracel-
lular enzyme cocktail through which linear and substituted
manno-oligosaccharides are completely hydrolyzed to compo-
nent monosaccharides for further metabolism. Using germ-free
mice colonized with a model gut microbiota, we demonstrate
that β-mannan alters the community composition, facilitating
bacteria that have mannan degrading machineries. Besides
extending the knowledge on the enzymatic basis of β-mannan-
metabolism by members of the most numerous Firmicutes
phylum, our results have implications for the design of targeted
intervention strategies to manipulate the gut microbiota via
supplementation of prebiotics to the diet to restore or improve
health.

Results
Two multi-gene loci mediate β-mannan utilization. R. intesti-
nalis L1–82 grows efficiently on a variety of complex β-mannans
as a sole carbon source (Fig. 2a), causing a concomitant acid-
ification of the medium (Fig. 2b). To evaluate which fractions of
β-mannan breakdown products are internalized, we analyzed the
culture supernatants during R. intestinalis growth on AcGGM
using high-performance anion-exchange chromatography with
pulsed amperometric detection (HPAEC-PAD) (Supplementary
Fig. 1a, b). Neither oligosaccharides nor monosaccharides
accumulated in the stationary phase culture (Supplementary
Fig. 1a, b), indicating that the bacterium possesses a highly effi-
cient apparatus to cleave and import all the sugars derived from
the breakdown of this complex glycan.

To examine the molecular basis underlying β-mannan
utilization by R. intestinalis, we performed an RNA sequencing
(RNAseq) transcriptional analysis during growth on konjac
glucomannan (KGM), spruce acetylated galactoglucomannan
(AcGGM) and glucose (Glc). The top 20 upregulated genes in
β-mannan transcriptome encode a β-mannanase belonging to the
glycoside hydrolase (GH) 26 family (GH26 according to the
CAZy classification33), a solute binding protein (MnBP) and two
permeases (MPP) of an ABC transporter, two phosphorylases
(GH130), one epimerase (Mep), two β-glucosidases (GH3) and
two carbohydrate esterases (CEs) (Fig. 2c and Supplementary
Data 1). These genes are located in two loci, which were
designated mannan-utilization locus large (MULL:
ROSINTL182_05469–83) and mannan-utilization locus small
(MULS: ROSINTL182_07683–85) (Fig. 2d). Among the MULL
genes expression of a LacI-type transcriptional regulator,
predicted glycosyl hydrolases belonging to GH113, GH36, GH1,
and a phosphomutase also increased. The response was specific to
β-mannan as no differential expression of these genes was
observed during growth of R. intestinalis on galactose, a building
block in mannan (Supplementary Table 1).
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Proteomic analysis under the same growth conditions
corroborated the RNAseq results; indeed, proteins encoded by
the genes located in MULL and MULS were abundant in the
AcGGM samples compared to the glucose samples (Fig. 2e,
Supplementary Data 2).

We carried out a comparative genomic analysis to establish the
distribution of β-mannans utilization loci equivalent to the
identified MULL and MULS in other representative Roseburia
spp. and Clostridium cluster XIVa members. The results showed
that R. faecis and R. hominis shared an overall MULL and MULS
organization with that of R. intestinalis (Supplementary Fig. 2,
Supplementary Table 2), suggesting that the utilization of β-
mannan is shared by these three Roseburia spp. However, the lack

of the critical GH26 endomannanase, required to break down
mannan (see later results for R. intestinalis β-mannanase
RiGH26), is likely to render R. hominis only able to metabolize
manno-oligosaccharides. Orthologous mannan utilization loci
were identified in specific members of the Clostridium cluster
XIVa, although a similar organization and complete conservation
of all MULL and MULS components was not observed
(Supplementary Fig. 2).

Degradation of the β-mannan backbone. RiGH26, (locus tag:
ROSINTL182_07683), is a predicted extracellular modular β-
mannanase comprising a carbohydrate binding module of family
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27 (CBM27), a catalytic module of GH26 followed by a CBM23
(Supplementary Fig. 3a). Furthermore, two C-terminal Ig-like
domains and a proline-glycine rich region likely mediate cell
attachment34 and binding within the cell wall35. The extracellular
localization of RiGH26 was corroborated experimentally by
immunofluorescence microscopy (Fig. 3). RiGH26 exhibited
activity toward decorated mannans including KGM, carob
galactomannan (CGM) and AcGGM (Fig. 4a and Supplementary
Fig. 3b), generating linear and substituted manno-
oligosaccharides. The enzyme was active on mannopentaose
(M5) and mannotetraose (M4) but not mannobiose (M2) (Sup-
plementary Fig. 3c). Overall, the product profiles suggest cap-
ability of endo-action and indicates that RiGH26 targets large
polymers and can accommodate the galactose and acetyl dec-
orations present in these substrates. Further analysis indicated
that RiGH26 is a potent enzyme as, when used at the con-
centration of 10 nM, it was able to hydrolyze high concentrations
of spruce AcGGM (50 mgml−1) into oligosaccharides in 1 h at
standard assay conditions (Supplementary Fig. 3d). No detectable
activity was measured when RiGH26 was incubated with linear
cello-oligosaccharides, birch xylan, curdlan, lichenan or barley
derived β-glucan, thus confirming the specificity of RiGH26
towards β-mannan (Supplementary Fig. 3c).

BlastP searches showed that homologs of RiGH26, including
the two predicted carbohydrate binding modules CBM27 and
CBM23, were exclusively found in β-mannanase encoded by
Firmicutes belonging to various other members of the Clostri-
dium cluster XIVa (Supplementary Fig. 4, Supplementary
Table 3–5). To investigate the biochemical properties of the two
modules, RiCBM27 and RiCBM23 were expressed in Escherichia
coli and their capacities to bind to a range of different soluble
cello-oligosaccharides and manno-oligosaccharides were evalu-
ated using surface plasmon resonance (SPR). Recombinant
RiCBM27 and RiCBM23 bound only manno-oligosaccharides
(Table 1), but differed in their binding profiles. Similar to a
previously described GH26-associated CBM2736, RiCBM27
preferred mannohexaose (M6) (Kd= 165 ± 10 µM, two indepen-
dent experiments, ± indicates standard deviation), (Table 1,
Supplementary Fig. 5a) and its affinity dropped for ligands
smaller than a tretrasaccharide (Table 1). By contrast, RiCBM23
was selective for shorter oligosaccharides with its highest affinity
for M4 (Kd= 130 ± 50 µM, two independent experiments)
(Table 1, Supplementary Fig. 5b), although mannotriose (M3)
was also bound with good affinity (Table 1).

Internalization of break-down products from β-mannan.
Within the MULL cluster, the three genes (ROSINTL182_05477 –
ROSINTL182_05479) that encode an ATP-binding cassette

(ABC) importer were shown to exhibit the highest level of
increased expression during growth on β-mannan (and when
compared to growth on glucose). The thermodynamic binding
parameters of the ABC-transporter associated solute binding
protein, RiMnBP, to linear and substituted manno-
oligosaccharides were determined using isothermal titration
calorimetry (ITC). RiMnBP bound a range of unsubstituted
manno-oligosaccharide with a preference for M5 (Kd of 2.55 µM)
followed by M3 and M4 (Table 2, Supplementary Fig. 6). Acet-
ylations had a marginal effect on the binding affinities, thus
providing evidence that these fragments are efficiently captured
by the transport protein. Overall, these results support the pre-
dicted role of RiMnBP in the uptake of manno-oligosaccharides
generated by RiGH26, showing optimal affinity for undecorated
or acetyl substituted ligands with a degree of polymerization (DP)
of 4−5.

Decomposition of internalized β-manno-oligosaccharides. The
affinity of the solute binding protein RiMnBP to manno-
oligosaccharides and the predicted intracellular location of the
debranching and exo-acting enzymes is consistent with a hier-
archical degradation of the internalized manno-oligosaccharides
following extracellular degradation of the β-mannan polymers by
RiGH26.

The ROSINTL182_05471 (RiCEX) and ROSINTL182_05473
(RiCE2) gene products possess SGNH hydrolase-type esterase
domain signatures37. Comparison to previously characterized
CEs revealed that RiCE2 showed 25–30% identity to a CE2 from
Clostridium thermocellum38 and the acetyl xylan esterase Axe2C
of Cellvibrio japonicus38. In contrast, RiCEX did not display

ba

5 μm 5 μm5 μm

RiGH26

AcGGM Glc

RiXyn10A

WAX

Fig. 3 Cellular location of the endomannanase RiGH26. a Fluorescent
microscopy images of R. intestinalis cells cultured on AcGGM or Glc and
incubated with polyclonal antibodies raised against the recombinant
endomannanase RiGH26. Glucose-grown cells exhibit a low intensity
fluorescence signal; this is consistent with the results of the proteomics
data showing that, when the organism is cultured on glucose, RiGH26 is
expressed at basal levels. b Fluorescent microscopy images of R. intestinalis
cells grown on WAX (positive control) and incubated with antibodies
raised against the known surface endoxylanase RiXyn10A25. Localization
microscopy images are representative data from two biological duplicates

Table 1 Binding parameters of RiCBM27 and RiCBM23 to
manno-oligosaccharides and cello-oligosaccharides

Kd (µM)

Ligand RiCBM27 RiCBM23

M3 1593 ± 30 230 ± 20
M4 658 ± 20 130 ± 50
M5 321 ± 20 198 ± 70
M6 165 ± 10 205 ± 40
Glc4 No binding No binding
Glc6 No binding No binding

Binding was determined by SPR. Values show the means and standard deviations of at least two
independent experiments
Kd dissociation constant

Table 2 Thermodynamic binding parameters of RiMnBP to
linear and decorated manno-oligosaccharides

Ligand Kd

(µM)
ΔG
(kcal
mol−1)

ΔH
(kcal
mol−1)

−TΔS
(kcal
mol−1)

n

M3 2.62 −7.6 −33.2 25.6 0.7
M4 3.89 −7.4 −28.6 21.2 0.7
M5 2.55 −7.7 −21.8 14.1 0.8
M6 33.75 −6.2 −17.8 11.6 0.5
M4Ac2 25.65 −6.3 −21.9 15.6 0.9
M5Ac2 23.53 −6.3 −20.2 13.9 0.8

Binding was measured by ITC. Data are means of two independent titrations
Kd dissociation constant, ΔG Gibbs free energy, ΔH enthalpy, −TΔS entropy, n binding
stoichiometry

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08812-y

4 NATURE COMMUNICATIONS |          (2019) 10:905 | https://doi.org/10.1038/s41467-019-08812-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a

P
A

D
 r

es
po

ns
e 

(n
C

) 

Time (min)

M5

M2
M3

M4 M6

5.0 10.0 15.0 20.0 25.0 30.0

M2-M6 standards

AcGGM no enzyme

AcGGM + RiGH26

CGM + RiGH26

CGM no enzyme

KGM + RiGH26

KGM no enzyme

Time (min)

P
A

D
 r

es
po

ns
e 

(n
C

) 

G1

G2 G3 G4 G5 G1-G5 standards

G1 standard

G5 no enzyme

G5 + RiGH3A 

G5 + RiGH3B 

G4 no enzyme

G4 + RiGH3A 

G4 + RiGH3B 

5.0 7.5 10.0 12.5 15.0

e

+ GOX

68
9.

4

84
9.

5

10
09

.5

11
71

.6
D

P
7O

X
2

D
P

6O
X

2

D
P

5O
X

1

D
P

4O
X

1

600 800 1000 1200

68
7.

4

85
1.

5

10
13

.5

11
75

.6

m/z

P
A

D
 r

es
po

ns
e 

(n
C

) 

M2 M3 M4 M5 M6

M2 G
al

1M
3

G
al

1M
4

G
al

2M
4

Gal1

5.0 10.0 15.0 20.0

G
al

2M
5

M2-M6 standards

M1 standard

CGM + Ri GH26 + Ri GH36

Gal1 standard

CGM + Ri GH26 

c

Time (min)

b

500 600 700 800 1000 1100900

AcGGM + RiGH26

+ RiCE2

+ Ri CEX

+ RiCE2 + RiCEX

m/z

D
P

4

D
P

4A
c 1

D
P

4A
c 2

D
P

4A
c 3

D
P

5
D

P
5A

c 1
D

P
5A

c 2
D

P
5A

c 3
D

P
6

D
P

6A
c 1

D
P

6A
c 2

D
P

6A
c 3

D
P

3A
c 1

D
P

3A
c 2

D
P

3

Time (min)

5.0 10.0 15.0 18.0

f

P
A

D
 r

es
po

ns
e 

(n
C

) 

M2 standard

M1P standard

M3 no enzyme

M4 no enzyme

M4+Ri GH130_2 

M3+Ri GH130_2

d

P
A

D
 r

es
po

ns
e 

(n
C

) 

Time (min)

5.0 10.0 15.0 20.0

M1 standard

CGM + Ri GH26

CGM + Ri GH26
+ Ri GH113 

M
1

M2 G
al

1M
3

G
al

1M
4

G
al

2M
4

G
al

2M
5

G
al

1M
3

G
al

1M
4

G
al

2M
4

G
al

1M
2

Fig. 4 Cleavage of the β-mannans backbone, removal of the side chains and further depolymerization of the resulting linear manno-oligosaccharides.
a HPAEC chromatograms showing the oligosaccharide products after overnight digestion of KGM, CGM and AcGGM with RiGH26. Samples were analyzed
with the following manno-oligosaccharides as external standards: M2, mannobiose; M3, mannotriose; M4, mannotetraose; M5, mannopentaose; M6,
mannohexaose. b MALDI-TOF analysis of RiGH26-digested AcGGM incubated with either RiCE2, RiCEX or both enzymes. Peaks are labeled by DP and
number of acetyl groups (Ac). c HPAEC chromatograms showing products generated from CGM pre-digested with RiGH26 and subsequently treated with
RiGH36. Assignments for peaks not occurring in the standard samples are based on comparison with the product profiles obtained by MALDI-TOF MS of
RiGH26-digested CGM (black spectrum) treated with galactose oxidase (GOX; brown spectrum). GOX converts a galactose residue in the
oligosaccharides into its corresponding aldehyde, giving a mass-to-charge ratio (m/z) of -2. All assigned masses are sodium adducts. Abbreviations: Ox,
oxidation; Gal1, galactose; Gal1M3, galactosylmannotriose; Gal1M4, galactosylmannotetraose; Gal2M4, digalactosylmannotetraose; Gal2M5,
digalactosylmannopentaose. d Product profiles from RiGH26-digested CGM degradation experiments with RiGH113 analyzed by HPAEC-PAD. The release
of mannose confirms the exo-activity of RiGH113. e HPAEC-PAD traces showing activity of RiGH3A or RiGH3B towards G5 and G4 with the corresponding
controls (no enzyme). Product profiles at various time points during the reaction are shown in Supplementary Fig. 6. Taken together, the data show that
RiGH3B is able to hydrolyze completely both tetramers and pentamers, producing glucose. RiGH3A shows exo-activity towards both substrates that are
converted slowly to glucose and a mixture of cello-oligosaccharides. Samples were analyzed with the following cello-oligosaccharides as external
standards: glucose, G1; cellobiose, G2; cellotriose, G3; cellotetraose, G4; cellopentaose, G5. f Chromatograms showing products generated upon incubation
of RiGH130_2 with M4 and M3. The M1P released (red arrow) was identified by co-migration with the appropriate standard. In all panels, the data displayed
are representative of at least three biological triplicates
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significant relatedness to other characterized CE catalogued in the
CAZy database33, which excluded RiCEX from being classified in
any of the 16 CE families. RiCEX and RiCE2 showed mannan
acetyl esterase activity on a mixture of oligosaccharides generated
via RiGH26 hydrolysis of AcGGM (Fig. 4b). RiCE2 partially
removed acetyl groups from the acetylated oligosaccharide
substrate (Fig. 4b). RiCEX deacetylated the substrate mainly to
free and monoacetylated oligosaccharides (Fig. 4b). These results
indicate that RiCEX has a preference for oligosaccharides with a
degree of acetyl substitution ≥2, but is less efficient on mono-
substituted substrates. At the same time, it suggests that an acetyl
group present at a specific position (O-2 or O-3) is resistant to
enzymatic deacetylation by RiCEX. The combination of RiCEX
and RiCE2 resulted in the almost complete deacetylation of the
manno-oligosaccharides, indicating a cooperative interaction of
the two esterases (Fig. 4b).

RiGH36 released galactose from internally substituted CGM
and AcGGM after the treatment with the RiGH26 β-mannanase
(Fig. 4c and Supplementary Fig. 7). Interestingly, RiGH36
released galactose from CGM-endomannanase products with
100% efficiency (Fig. 4c, Supplementary Fig. 8a) as no oxidized
product could be observed after treatment of these samples with
galactose oxidase. The enzyme exhibited limited activity on large
polymers (Supplementary Fig. 8b) consistent with the activity on
internalized oligosaccharides in vivo. Similarly, α-galactosidase
activity increased after de-acetylation of the oligosaccharides
(Supplementary Fig. 8c, d). Beside cleaving single internal
galactose residues from manno-oligosaccharides, this enzyme
was capable of removing α-1,6-galactose from the reducing-end
of a substituted manno-oligosaccharide (Supplementary Fig. 8e)
and from an oligosaccharide containing two consecutive
substitutions (Supplementary Fig. 8f). Corroborating these
results, RiGH36 cleaved galactose decorations from endomanna-
nase products of highly substituted guar gum galactomannan
(Supplementary Fig. 8b).

Sequence searches showed that the protein encoded by
ROSINTL182_05483 (MULL, RiGH113) exhibited 40% identity
to the only characterized enzyme from this family, the endo-β-
mannanase AaManA from Alicyclobacillus acidocaldarius39

(Supplementary Fig. 9a). Alignment of RiGH113 and AaManA
showed that the catalytic and substrate interacting residues are
conserved (Supplementary Fig. 9a). When RiGH113 was assayed
for activity on linear manno-oligosaccharides, it revealed an
ability to cleave linear manno-oligosaccharides to yield mannose
and M2 (Supplementary Fig. 9b). Strikingly, time-course analysis
of RiGH113 activity revealed that this enzyme displays a different
sub-specificity by hydrolyzing manno-oligosaccharides to man-
nose and a minor amount of M2 (Supplementary Fig. 9c). After
overnight incubation with RiGH113, M2 was partially degraded to
mannose (Supplementary Fig. 9d), confirming the exo-
mannosidase activity as opposed to the endo-fashion cleavage
reported for the AaManA. The substituted manno-
oligosaccharides galactosylmannobiose (Gal1Man2) and digalac-
tosylmannopentaose (Gal2Man5) were hydrolyzed to a lesser
extent than non-substituted substrates (Supplementary Fig. 9e);
no activity could be detected on Gal1Man2 while Gal2Man5 was
hydrolyzed to yield mannose and digalactosylmannotetraose
(Gal2Man4), which was resistant to further hydrolysis. When
the reducing end of manno-oligosaccharides was blocked
(Supplementary Fig. 10a–d), no RiGH113 activity could be
detected demonstrating that this enzyme possesses a previously
unknown reducing end mannose-releasing exo-oligomannosidase
activity. Consistent with the view that RiGH113 is an intracellular
enzyme, release of mannose was detected after incubation of the
enzyme with RiGH26-generated CGM-oligosaccharides (Fig. 4d).
The closest homologs of this enzyme are encoded by Clostridium

cluster XIVa strains and a range of Firmicutes (Supplementary
Fig. 10e).

Product analysis of end point assays and a time course study
revealed that both RiGH3A (ROSINTL182_07684) and RiGH3B
(ROSINTL182_07685) were β-glucosidases, with redundancy in
structure (Supplementary Fig. 11a, b), active on linear cello-
oligosaccharides (Fig. 4e). RiGH3B completely hydrolyzed
cellotetraose (G4) and cellopentaose (G5) into glucose monomers,
whereas RiGH3A released glucose and a range of oligosaccharides
with lower efficiency compared to that of RiGH3B (Supplemen-
tary Fig. 11c, d). Neither of these enzymes were active on manno-
oligosaccharides (Supplementary Fig. 11e, f). While RiGH3B
was able to hydrolyze glucosylmannose (G1M1) and, partially,
mannosylglucose (M1G1) into monomers (Supplementary
Fig. 11f), RiGH3A displayed activity only towards G1M1.
No activity was detected on polymeric KGM (Supplementary
Fig. 12a), while glucose was released after incubation of
both RiGH3A and RiGH3B with RiGH26-generated
KGM–hydrolysate (Supplementary Fig. 12b). Importantly, the
latter results demonstrate that RiGH26 can accept a glucose
moiety at the subsite +1, generating oligosaccharides with a
glucose residue at the non-reducing end.

Recombinant RiGH130_2 (MULL, ROSINTL182_05474)
phosphorolyzed M4 into M3, M2 and mannose-1-phosphate
(M1P) while M3 was processed to M2 and M1P (Fig. 4f). The
enzyme was inactive on cello-oligosaccharides (Supplementary
Fig. 13). RiGH130_2 was functional only in the presence of
inorganic phosphate, confirming that RiGH130_2 is a mannosyl-
phosphorylase.

Catabolism of mannobiose and mannosylglucose units. The
concerted action of the MULL and MULS encoded enzymes
described above on the oligosaccharides generated by RiGH26,
suggest an intracellular accumulation of M2. Hydrolysis of this
product into monosaccharides is accomplished through the
action of two enzymes encoded by the co-transcribed
genes ROSINTL182_05476 (RiMep) and ROSINTL182_05475
(RiGH130_1).

RiMep was active on M2 and cellobiose (G2), releasing M1G1

and G1M1, respectively (Fig. 5a). These data show that RiMep is
an enzyme active on the reducing end sugar and catalyzes the
conversion of disaccharide substrates to the corresponding C2
epimer. This enzyme exhibited epimerization activity not only
for the substrate but also for the product as, under high
enzyme amount and long reaction time, it was able to convert
M1G1 and G1M1 to M2 and G2, respectively (Supplementary
Fig. 14a). In addition, RiMep exhibited epimerization activity
towards oligosaccharides with a DP > 2 but not on mono-
saccharides (Supplementary Fig. 14b).

ROSINTL182_05475 encodes a specific mannosylglucose
phosphorylase belonging to the GH130 subfamily 140.
RiGH130_1 was inactive on G1M1 and oligosaccharides with a
DP ≥ 2 (Supplementary Fig. 15). RiGH130_1 displayed activity
only towards M1G1 in the presence of inorganic phosphate,
releasing glucose and M1P (Fig. 5b, c).

Catabolism of phosphorolysis products. RiPgm catalyzes the
interconversion of M1P and mannose 6-phosphate (M6P)
(Fig. 5d). In addition, the enzyme displayed activity also against
D-glucose 1-phosphate (G1P) yielding D-glucose 6-phosphate
(G6P) (Supplementary Fig. 16a), thus indicating that RiPgm is a
phosphomannomutase (PMM)/phosphoglucomutase (PGM)
which can use either glucose or mannose as substrate. Consistent
with the presence of a predicted magnesium-binding loop
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(Supplementary Fig. 16b), the RiPgm-mediated catalytic activity
was detected only when MgCl2 was present in the reaction.

ROSINTL182_05469/70 encodes a predicted bi-functional
protein consisting of an N-terminal glucosidase domain
(RiGH1_D1, aa 1–246) and a C-terminal family GH1 isomerase
domain (RiGH1_D2, aa 247–768). RiGH1_D1 shares 44%
identity to the previously characterized β-glucosidase TmGH1
from Thermotoga maritima41. The recombinant RiGH1_D1
displayed no catalytic activity against all the tested substrates,
including G4, M4, M5, M6P, G6P, and fructose 6-phosphate
(F6P). Thus, RiGH1_D1 functional significance is currently
unclear. RiGH1_D2 is a phosphomannose isomerase catalyzing
the interconversion of M6P into F6P (Fig. 5e).

R. intestinalis competes with Bacteroides for β-mannans. The
ability of R. intestinalis to capture, breakdown β-mannan and
efficiently internalize manno-oligosaccharides may increase its
fitness to compete with other resident β-mannan degraders,
including the glycan generalist Bacteroides30. To test this
hypothesis, we performed in vitro co-cultivation of R. intestinalis
and the efficient β-mannan degrader Bacteroides ovatus ATCC
848330. Both bacteria showed similar growth rates in individual
cultures supplemented with AcGGM (Fig. 6a). Population esti-
mates using qPCR indicated that, in the mixed cultures, both B.
ovatus and R. intestinalis grew well during the exponential growth
phase, suggesting that the bacteria shared the available carbon
source and maintained coexistence. (Fig. 6b). During the

stationary phase, when glycan availability is limited, the mean
relative abundance of R. intestinalis and B. ovatus in the culture
was approximately 72.5% versus 27.5%, respectively. In contrast,
R. intestinalis showed slow growth on mannose (Fig. 6c) and was
outcompeted when co-cultured in this carbon source with B.
ovatus (Fig. 6d).

R. intestinalis responds rapidly to β-mannan supplementation.
To elucidate whether dietary supplementation of β-mannan can
result in expansion of key gut bacteria able to utilize this hemi-
cellulose, germfree mice were colonized with a synthetic micro-
biota composed of 14 sequenced strains of human commensal gut
bacteria42. Colonized mice were fed a high-fiber diet for 14 days
before being switched to a series of diet regimes with a varying
amount of AcGGM (Fig. 6e). Overall, the levels of four species (R.
intestinalis, Bacteroides uniformis, B. ovatus and Marvinbryantia
formatexigens) gradually increased at both AcGGM doses
(Fig. 6f–i) and these strains were able to suppress the bacteria
foraging on the glyco-protein rich mucus layer (Akkermansia
muciniphila, Bacteroides caccae, Bacteroides thetaiotamicron,
Bacteroides intestinihominis) (Fig. 6e and j–m) and the amino
acids degraders (E. coli, Clostridium symbiosum and Collinsella
aerofaciens) (Fig. 6e and n). Upon feeding of a fiber-deficient diet,
the fecal bacterial abundance of the mucin-eroding bacteria, the
sulfate-reducer Desulfovibrio piger and the three amino acid
degraders (Fig. 6e) rapidly increased with a corresponding decline
of the fiber-degrading species.
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Fig. 6 R. intestinalis and B. ovatus co-culture experiments and in vivo modulation of a synthetic human gut microbiota via AcGGM. a, c Growth rates of
mono- and mixed cultures of R. intestinalis L1–82 (Ri) and B. ovatus ATCC 8483 (Bo) on either AcGGM or mannose. Growth rate is defined as the maximum
increase in absorbance at 600 nm (ODmax) divided by the time (Tmax, in hours) to reach the maximum growth. b, d In vitro competition experiment with R.
intestinalis L1–82 and B. ovatus ATCC 8483 on either AcGGM or mannose as sole carbon source. The pH of the stationary phase cultures after growth on
either AcGGM or mannose was 5.8 ± 0.16 and 5.6 ± 0.11 (two biological triplicates, ± indicates the s.d.), respectively, thus showing that the results are not
due to differences in acid sensitivity between the two strains. The relative abundance of the bacteria for each different phases of growth was determined by
quantitative PCR of species-specific vs universal primers targeting the 16 S rRNA genes. In a–d, the histogram bars show the mean of two biological
replicates, with three independent measurements per replicate. Error bars represent s.d. Abbreviations: Early exp, early exponential phase; Middle Exp;
middle exponential phase; Late exp, late exponential phase; Stat, stationary phase. e Relative abundance of bacteria in fecal samples from germfree mice
colonized with a synthetic human microbiota. Mice were shifted from a fiber-free (FF) diet to varying amounts (2.5% and 7.5% w/w) of AcGGM over time.
Data are average of seven mice. f–i Relative abundance of individual β-mannan-degrading bacteria and j–m mucus-degraders. n Additive relative
abundances of three amino acids degraders. In f–n histogram bars show the average of seven biological replicates while error bars represent s.d. P-values
were calculated by two-tailed Student’s t test. An asterisk (*) indicate a statistically significant difference (P < 0.05) in the relative abundance of each
bacterium compared to that of the specific pre-FF diet. ns, not significant (P≥ 0.05)
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Discussion
β-Mannans are widely present in the human diet as constituents
of hemicellulose in beans, some nuts and food additives, but are
recalcitrant to intestinal digestion by host enzymes. These glycans
instead serve as a carbon source for mannanolytic bacteria in the
distal gastrointestinal tract, primarily Firmicutes and Bacter-
oidetes. Recent studies have characterized a few enzymes encoded
by two polysaccharide utilization loci (PULs) implicated in the
metabolism of galactomannan in B. ovatus30,43 and homo-
polymeric mannan in Bacteroides fragilis32. To date, a full
understanding of β-mannan utilization by Firmicutes, however,
remains underexplored. The human gut butyrate-producing Fir-
micute R. intestinalis has previously been shown to utilize
galactomannan and glucomannan as a carbon source42 and
possesses predicted genes for the utilization of these substrates24.
However, no data are available relating the mannanolytic activity
at a biochemical level. In this study, we show that two conserved
loci, MULL and MULS, collectively provide R. intestinalis the
capacity to depolymerize this plant polysaccharide. Detailed
biochemical studies of the encoded enzymes allowed us to

construct a model of sequential action for the mannan utilization
system encoded by MULL-MULS (Fig. 7). The RiGH26 and the
mannan ABC uptake system components RiMnBP/RiMPP1/
RiMPP2 transcripts and proteins were the most upregulated in
both the RNA sequencing and proteomic analyses, respectively
(Fig. 2c, e). This highlights the crucial role of this endomannanase
and the ABC transport system in the β-mannan metabolic
pathway. RiGH26 is the only enzyme displayed on the cell surface
(Fig. 3), allowing direct access to the intact β-mannan polymers
through dynamic capture mediated by two appended carbohy-
drate binding modules (RiCBMs). The SPR data showed that
RiCBM23 displays ~7- and 5-fold higher affinity for M3 and M4,
respectively, than RiCBM27, suggesting that the two CBMs play
different roles to mediate binding of RiGH26 to mannans. The
RiCBMs’ Kd values for the preferred manno-oligosaccharides
were in the 100−200 µM range (Table 1). This moderate affinity
to the bound substrate constitutes an advantage as it has lower
impact on the catalytic activity compared to canonical counter-
parts from other organisms, and suggests an evolutionary adap-
tation of R. intestinalis to compete with other microbial enzymes
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Fig. 7 Model for the degradation and utilization of complex β-mannans in R. intestinalis. Intracellular degradation of an acetylated galactoglucomanno-
oligosaccharide is used as an example. Sugars are represented as in Fig. 1. Initial depolymerization of acetylated galactoglucomannan
(AcGalactoglucomannan) occurs at the outer surface of R. intestinalis by the activity of RiGH26 (green). The extracellular recruitment of β-mannan is
facilitated by interactions with CBM27 and CBM23. Import of products occurs through the ABC transporter RiMnBP/RiMPP1/RiMPP2 (orange). Within the
cytoplasm, the acetyl and galactosyl decorations are removed by the two acetyl esterases RiCE2 and RiCEX (pink) and the α-galactosidase RiGH36
(yellow). The two β-glucosidases RiGH3A and RiGH3B (blue) release glucose from the non-reducing end of the β-manno-oligosaccharide. In addition, the
reducing end mannose-releasing exo-oligomannosidase RiGH113 (green) can catalyze the removal of mannose units from the decorated manno-
oligosaccharides until it reaches a galactosyl substituent at the subsite −1. Once de-ornamented, the β-manno-oligosaccharides are saccharified by the
exo-acting RiGH130_2 (light green) with accumulation of M2. The M2 undergoes subsequent epimerization and phosphorolysis by the concerted activity of
RiMep - RiGH130_1 (light green), with release of glucose and M1P. These end products enter the glycolytic pathway either directly (for glucose) or after
being converted into M6P and F6P by the phosphomannose mutase RiPgm (red) and the isomerase RiGH1_D2 (turquoise, purple domain). Released
mannose is converted to M6P by a hexokinase and processed as described above. Galactose enters glycolysis after conversion to G1P via the Leloir
pathway. The pyruvate generated from glycolysis is converted to acetyl-CoA and then butyrate. Black arrows show reactions demonstrated in this study.
Green arrows indicate previously demonstrated steps for the generation of butyrate from monosaccharides fermentation68 by R. intestinalis
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with canonical higher- affinity CBMs, but with reduced catalytic
rates44. Reliance on multi-modular cell-wall anchored enzymes is
a common feature in Firmicutes;45 consistently, RiGH26 orga-
nization was primarily found in β-mannanase from other Rose-
buria species and members of the Clostridium cluster XIVa
(Supplementary Fig. 4, Supplementary Table 3–5). Multiplicity of
CBMs provides a contrast with the system for mannan metabo-
lism in Bacteroides ovatus30,43, where the binding and catalytic
activity are distributed between two surface located binding
proteins and the single domain mannanase BoMan26B.

Collectively, our results point to a model in which the smaller
manno-oligosaccharides generated by RiGH26 are imported
through a dedicated β-mannan transport system consisting of
RiMnBP/RiMPP1/RiMPP2 (Fig. 7). In the cytoplasm, acetylated
and galactosylated manno-oligosaccharides are systematically
debranched by RiCE2, RiCEX and RiGH36, and subsequently
depolymerized. Removal of glucose units from glucomannan-
oligosaccharides is carried out by RiGH3A and RiGH3B. Based
on the highest transcriptional and protein regulation, the main
depolymerization strategy for breakdown of unsubstituted
manno-oligosaccharides is mediated by the activity of two
synergistic mannoside phosphorylases (RiGH130_2 and
RiGH130_1) and an epimerase (RiMep), similar to the mannan
catabolic pathway proposed in the ruminal bacterium Rumino-
coccus albus46. A similar system has been reported in B. fragilis32

and B. ovatus30, although only composed of an epimerase and a
mannosylglucose phosphorylase (GH130_1) that, together, pro-
cess GH26s-generated M2 units. The presence of the manno-
oligosaccharide phosphorylases RiGH130_2 allows R. intestinalis
to process undecorated manno-oligosaccharide of DP > 2, con-
sistent with the internalization of large manno-oligosaccharides
generated by RiGH26-hydrolysis of polymeric mannan. However,
GH130_2s mainly catalyze the phosphorolysis of undecorated
manno-oligosaccharides47. Removal of mannose units from
substituted substrates is mediated by the reducing end mannose-
releasing exo-oligomannosidase RiGH113, which displays a pre-
viously undescribed specificity. The two different approaches
based on the phosphorylases and the GH113 are likely to be a
functional adaptation to accelerate the depolymerization process
of mannan. Eventually, mannan catabolism fuels monosaccharide
fermentation via glycolysis and leads to the production of buty-
rate, which is the primary energy source for host colonocytes5,48.
Colonocytes oxidize butyrate to carbon dioxide49, thereby keep-
ing the epithelium hypoxic (<1% O2). This condition promotes
gut homeostasis by stabilizing the hypoxia-inducible transcription
HIF that coordinates barrier protection in the mucosa50,51.
Recently, it has been shown that antibiotic-mediated depletion of
butyrate-producing Clostridia increases colonocytes oxygenation
and drives aerobic pathogen expansion in the gut lumen, resulting
in Salmonella enterica-induced gastroenteritis52. Importantly, R.
intestinalis has been found to affect host histone epigenetic states,
direct colonic epithelial cells metabolism away from glycolysis
and towards fatty acid metabolism, reduce the levels of inflam-
matory markers and ameliorate atheriosclerosis in a diet-
dependent fashion18. The athero-protective effect was in part
attributed to butyrate, as this SCFA has been shown to inhibit key
inflammatory pathways involved in cardiovascular disease
development18.

The absence of oligosaccharides from R. intestinalis AcGGM-
spent supernatant (Supplementary Fig. 1a, b) demonstrates that
the β-mannan degradation apparatus is optimized for efficient
uptake of all the products released by RiGH26, maximize intra-
cellular breakdown and avoid nutrient leakage. This will limit the
access to other bacteria, such as Bacteroides spp., competing for
the same resource. Using AcGGM, we have shown that R.
intestinalis and B. ovatus, which possesses an equally complex

β-mannan degrading system, shared the available resources and
maintained coexistence (Fig. 6b). Notably, R. intestinalis out-
competed B. ovatus in the late exponential and stationary phase
of growth; these results show that R. intestinalis is capable to bind
and import the remaining β-mannan breakdown products (pre-
ferred by the RiMnBP transport protein) more efficiently than B.
ovatus. Thus, it is likely that the β-mannan utilization apparatus
provides R. intestinalis with a selective advantage during nutrient
limitation when microbial competition for the available carbo-
hydrates in the gut is intense. Understanding the mechanism by
which β-mannan is degraded by key commensal members of the
gut is crucial to designing intervention strategies through the use
of targeted prebiotics which aim to program or reprogram the
composition of the microbiota to maximize human health. Our
in vivo study demonstrates that a diet supplemented with
AcGGM can be used to manipulate the gut microbiota and to
facilitate the growth of species equipped with a β-mannan
degrading system, including R. intestinalis (Fig. 6e). This is sup-
ported by the increase in the relative abundance of R. intestinalis,
B. uniformis and B. ovatus, which all possess enzymes able
to degrade AcGGM (BACUNI_00371 - BACUNI_00383;
BACOVA_02087–02097 and BACOVA_03386–03406 respec-
tively). R. intestinalis was highly responsive to the AcGGM within
a day, with a 10 to 30 fold increase at the 2.5% and 7.5% AcGGM
diet, corroborating its ability to respond dynamically to variation
in this dietary fiber. Intriguingly, R. intestinalis’ response did not
last over the 7 day feeding treatment and the acetogen M. for-
matexigens seemed to replace it. A cluster of genes with predicted
functions in β-manno-oligosaccharide utilization (BRY-
FOR_07194- BRYFOR_07206) was identified in the genome of
M. formatexigens (Supplementary Fig.17a). The results shown in
Supplementary Fig. 17b,d suggest that R. intestinalis and M.
formatexigens occupy different metabolic niches in the distal gut;
the former consumes complex β-mannans, whereas the acetogen
feasts on mono- and oligosaccharides. When in co-culture with
either R. intestinalis or B. ovatus, M. formatexigens was out-
competed in vitro (Supplementary Fig. 17e-f). A previous study
with gnotobiotic mice bi-associated with the prominent sac-
charolytic bacterium B. thetaiotamicron and M. formatexigens
showed that the presence of M. formatexigens caused a decrease
in the cecal levels of B. thetaiotaomicron, compared with mono-
associated controls. Transcriptional and metabolic analyses
demonstrated that M. formatexigens is capable of consuming a
variety of plant-derived oligosaccharides and microbial and host-
derived N-glycans (such as N-acetylglucosamine), suggesting that
this ability could confer a fitness advantage when competing with
the glycan-consuming Bacteroides53. Thus, it is likely that, when
present as part of the synthetic microbial community described in
this paper, M. formatexigens may be indirectly benefiting of either
manno-oligosaccharides feeding/cross-feeding with other micro-
organisms or by its ability to grow mixotrophically, simulta-
neously utilizing organic carbon sources and formate or H2 for
energy53. Notably,M. formatexigens outcompeted B. ovatus at the
7.5% AcGGM diet, underscoring the competitiveness of this
acetogen in a community setting. In the context of a complex
microbial community, it is likely that M. formatexigens makes an
important contribution to host nutrition improving fermentation
by acting as a formate or H2 sink and by generating acetate as
main metabolic product53.

Collectively, diet-induced changes involved the promotion of
mannanolytic bacteria producing propionate, acetate and buty-
rate, metabolites that are known to regulate hepatic lipid, glucose
homeostasis and health of the intestinal hepithelium11. These
SCFA-producers gained a competitive advantage over colonic
mucin-degrading bacteria. Given that intermittent dietary fiber-
deprivation results in a thinner mucus layer in mice, eventually
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enhancing pathogen susceptibility42, our results support the
concept that β-mannan-based interventions not only could con-
tribute to preventing mucus barrier dysfunctions but also main-
taining a gut environment that keeps pathogenic bacteria away. If
confirmed in humans, these findings may help to prevent diseases
affecting the integrity of the colonic mucus layer, such as
ulcerative colitis54. Indeed, the fact that the β-mannan degrada-
tion pathway is a core trait found in the majority of the human
gut microbiota55 highlights the relevance of potential therapeutic
interventions through the use of β-mannan formulations to the
general population.

Methods
Glycans. Carbohydrate substrates used in this study are listed in Supplementary
Table 6. All glycan stocks were prepared at 10 mgml−1 in ddH2O and sterilized by
filtration using a 0.22 µm membrane filter (Sarstedt AG & Co, Germany).

Bacterial strains and growth conditions. Unless otherwise stated, R. intestinalis
L1–8223 was routinely grown at 37 °C without agitation in an anaerobic cabinet
(Whitley A95 workstation, Don Whitley, UK) under an 85% N2/10% H2/ 5% CO2

atmosphere. Growth experiments were carried out in YCFA medium (YCFA—
Yeast extract-Casein hydrolysate-Fatty Acids)56 supplemented with 0.5% (w/v) of
the specific carbohydrate to be examined. Overnight cultures (300 µl) were used to
inoculate 30 ml aliquots of YCFA plus the carbohydrate to be tested. These pre-
cultures were passaged at least three times on the same media to ensure cell growth
adaptation on a single carbon source prior to inoculation of the final cultures for
growth experiments, RNA-sequencing and proteomic analysis. Bacterial growth
was determined spectrophotochemically by monitoring changes in the optical
density at 600 nm (OD600). In addition, growth on turbid substrates was assessed
by measuring differences in pH compared to that of starting medium. Growth and
pH curves are averages of three biological replicates, with two technical replicates
each. Routine culturing of Bacteroides ovatus ATCC 8483 and M. formatexigens
DSM 14469 was in anaerobic Chopped Meat Medium57 under static conditions at
37 °C.

Transcriptomic analysis by RNA sequencing. R. intestinalis was cultured in
triplicate on YCFA supplemented with 0.5% (w/v) glucose, galactose, KGM or
AcGGM as described above. Cells were harvested at mid-exponential phase and
RNA was extracted using the RNeasy Mini Kit (Quiagen) according to the man-
ufacturer’s instructions. RNA-seq libraries were prepared using the ScriptSeq
Complete kit from Epicentre. Samples were paired-end sequenced on an Illumina
Hiseq 4000 instrument at Beijing Genomics Institute (BGI). Analysis of the RNA-
seq results was performed exactly as described in25. Differential gene expression
analysis was performed with the DeSeq2 package58.

Cloning, overexpression, and protein purification. The genes encoding mature
forms of the proteins described in this study were amplified from the R. intestinalis
L1–82 genomic DNA (BioProject accession number PRJNA30005 [https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA30005]) by PCR, using appropriate primers
(Supplementary Table 7). PCR products were generated using the Q5 High-Fidelity
DNA Polymerase (New England BioLabs, United Kingdom) with 50 ng DNA as
template. Prior to cloning the DNA fragment encoding RiGH1_D2
(ROSINTL182_05469), sequence ambiguities at the 3’-end of ROSINTL182_05470
were corrected through sequencing the PCR product generated with the primers
listed in the Supplementary Table 8. The gene ROSINTL182_07683 was synthe-
sized without the N-terminal signal sequence predicted by SignalP v.4.159 (residues
1–27 from transcription start). The PCR amplicons were cloned into the pNIC-CH
expression vector by ligation-independent cloning (LIC)60. The gene encoding
RiMnbp (ROSINTL182_05479) was cloned in the vector pETM-11 following the
method described elsewhere25. Recombinant proteins generally contained a C-
terminal His6-tag, although, in some cases, His-tag translation was prevented by
the introduction of one or two stop codons at the end of the open-reading frame
(RiMep, RiGH36, RiPgm and RiGH113). The His6-tag was excluded to prevent
interaction with putative C-terminal active or catalytic residues that could be
detrimental to the enzymes’ activity. Constructs were verified by sequencing
(Eurofins, UK). Proteins were produced in E. coli BL21 Star (DE3) cells (Invitro-
gen) as previously described61. Briefly, cells were cultured to mid-exponential
phase in Tryptone Yeast extract (TYG) containing 50 mgml−1 kanamycin at 25 °C.
Protein overexpression was induced by adding isopropyl β-D-
thiogalactopyranoside (IPTG) to a final concentration of 200 μM, followed by
incubation for a further 16 h at 25 °C. Cells were harvested by centrifugation,
sonicated and recombinant proteins were purified by either immobilized metal ion
affinity chromatography (IMAC) or hydrophobic interaction chromatography
(HIC). For IMAC purification, the clarified cell lysate was loaded onto 5 ml
HisTrap HP Ni Sepharose columns (GE Healthcare) connected to an ÄKTA
purifier FPLC system (GE Healthcare). Protein elution was achieved by using a

linear gradient from 5 to 500 mM imidazole. RiGH113, RiGH36, RiMep and
RiPgm were purified by HIC by loading the cell-free broth, adjusted to buffer A
(1.5 M ammonium sulfate), onto a 5 ml HiTrap Phenyl FF (GE Healthcare)
equilibrated with the same buffer. Protein was eluted by using a linear reverse
gradient to 100 mM NaCl over 90 min at a flow rate of 2.5 ml min−1. After IMAC
and HIC, samples were concentrated and further purified by size exclusion chro-
matography (SEC) using a HiLoad 16/60 Superdex G75 size exclusion column (GE
Healthcare) and a running buffer consisting of 20mM Tris-HCl pH 8.0 with 200mM
NaCl. Fractions containing the pure protein were combined, concentrated and
buffer exchanged to 20 mM Tris pH 8.0, using a Vivaspin 20 (10-kDa molecular
weight cutoff) centrifugal concentrators (Sartorius Stedim Biotech GmbH, Ger-
many). Protein purity was estimated to be over 95% for all the enzymes using SDS-
PAGE. Protein concentrations were determined using the Bradford assay (Bio-Rad,
Germany).

Glycoside hydrolase and phosphorylase activity assays. Enzyme assays, unless
otherwise stated, were carried out in 10mM sodium phosphate buffer, pH 5.8, for up
to 16 h at 37 °C and 700 rpm. Reactions with RiGH130_1 and RiGH130_2 were
prepared in 100mM sodium phosphate buffer, pH 5.8. The activity of RiPgm against
M1P and G1P was tested in 10mM sodium phosphate buffer, pH 5.8, supplemented
with 1mMMgCl2. To determine the specificity of RiGH113, the recombinant protein
was sequentially incubated with 0.1mgml−1 pre- reduced or oxidized manno-
oligosaccharides at 37 °C overnight. Reduction of manno-oligosaccharides was con-
ducted by incubating 1mgml−1 manno-oligosaccharides in a volume of 75 μl with
sodium borodeuteride (NaBD4; 0.5M in 100mM NaOH) solution. The reaction was
incubated overnight at room temperature then quenched by adding 25 µl of 25mM
sodium acetate. Oxidation of manno-oligosaccharides reducing-end was obtained by
incubating the substrates (1mgml−1) with the Neurospora crassa cellobiose dehy-
drogenase (NcCDH) overnight at 37 °C. Both NaBD4 and NcCDH pretreated samples
were diluted 10X in standard assay buffer before addition of RiGH113. Between three
and five independent experiments were performed to determine the enzyme activities.

MALDI-TOF mass spectrometry of reaction products. Reaction products gen-
erated by the enzymes used in this study were analyzed by matrix-assisted laser
desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) as
described previously62. Briefly, 2 µl of a matrix, consisting of 9% 2,5-dihydrox-
ybenzoic acid (DHB) in 30% acetonitrile, were applied to an MTP 384 ground steel
target plate TF (Bruker Daltonics, Germany). Sample (1 µl) was then mixed with
the matrix and dried under a stream of warm air. Samples were analyzed with an
Ultraflex MALDI-ToF/ToF instrument (Bruker Daltonics, Germany), equipped
with a Nitrogen 337 nm laser beam and operated in positive acquisition mode.
Results were analyzed using the Bruker FlexAnalysis software (version 3.3).

HPAEC-PAD. Mono- and oligosaccharides products were analyzed on a Dionex
ICS-3000 HPAEC system operated by the Chromeleon software version 7 (Dionex,
Thermo Scientific), as described previously62. Sugars were injected onto a Carbo-
Pac PA1 2 × 250-mm analytical column (Dionex, Thermo Scientific) coupled to a
CarboPac PA1 2 × 50-mm guard column kept at 30 °C. Manno-oligosaccharides
and phosphorylated monosaccharides were eluted in 0.1 M NaOH at a flow rate of
0.25 ml min−1 by increasing the concentration of sodium acetate (NaOAc) expo-
nentially from 0 to 0.3 M over 26 min (from 9 to 35 min after injection), before
column reconditioning by 0.1 M NaOH for 10 min. Commercial manno-
oligosaccharides with DP2−6 were used as standards. For cello-oligosaccharides,
the separation was done using a multistep linear gradient going from 0.1M NaOH
to 0.1 M NaOH–0.1 M NaOAc over 10 min, 0.1 M NaOH–0.14M NaOAc after
14 min, 0.1 M NaOH–0.3 M NaOAc at 16 min followed by a 2 min exponential
gradient to 1M NaOAc, before reconditioning with 0.1 M NaOH for 9 min.
Cello–oligosaccharides with DP 2–6 were used as standards. For the analysis of
disaccharides (G1M1 or M1G1) and phosphorylated monosaccharides generated
from the activity of RiGH130_2, RiMep, RiGH130_1, RiPgm and RiGH1, the
elution was done at 0.25 ml min−1 using a 40 min program. The program started
with 0.01 M potassium hydroxide (KOH) for 15 min, reaching the concentration of
0.1 M KOH at 25 min after injection and was kept for additional 5 min at the same
KOH concentration. Between each sample, the column was re-equilibrated by
running initial conditions for 10 min.

Protein cellular localization. Proteins of interest were detected using anti-sera
raised in rats (Eurogentec) against the corresponding recombinant RiGH26 or the
previously characterized RiXyn10A25.

For immunofluorescence microscopy, R. intestinalis cells were grown in YCFA
containing 0.5% AcGGM, wheat arabinoxylan (WAX) or glucose to an OD600 of
0.8, collected by centrifugation (4000 × g for 5 min) and washed twice in phosphate
buffered saline (PBS). Cells were resuspended in 500 µl PBS and fixed by adding an
equal volume of 2 × formalin (9% formaldehyde in PBS) on ice for 30 min. The
bacterial pellet was washed twice with 1 ml PBS prior to resuspension in 1 ml of
blocking buffer (1% bovine serum albumin, BSA, in PBS) and incubation at 4 °C for
16 h. After incubation the cell pellets were harvested by centrifugation and the
supernatant discarded. For labelling, the bacteria were incubated with 0.5 ml of
anti-sera (diluted 1:500 in blocking buffer) for 2 h at 25 °C. The cells were then
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pelleted, washed with 1 ml PBS and resuspended in 0.5 ml goat anti-rat IgG Alexa-
Fluor 488 (Sigma-Aldrich), diluted 1:500 in blocking buffer and incubated 1 h at
25 °C. The cells were again harvested, washed with 1 ml PBS and suspended in 100
µl PBS containing one drop of ProLong Gold antifade reagent (Life Technologies).
Labeled bacterial cells were mounted onto glass slides and secured with coverslips.
Fluorescence microscopy was performed on a Zeiss AxioObserver equipped with
the ZEN Blue software. Images were acquired using an ORCA-Flash4.0 V2 Digital
CMOS camera (Hamamatsu Photonics) through a 100x phase-contrast objective. A
HXP 120 Illuminator (Zeiss) was used as a fluorescence light source.

Analysis of the bacterial proteome. R. intestinalis was grown in triplicate on
YCFA supplemented with either 0.5% (w/v) glucose or AcGGM, respectively, as a
sole carbon source. Samples (10 ml) were harvested at the mid-exponential growth
phase. Cell pellet was collected by centrifugation (4500 × g, 10 min, 4 °C), resus-
pended in 50 mM Tris-HCl, 0.1% (v/v) Triton X-100, 200 mM NaCl, 1 mM
dithiothreitol and disrupted by bead-beating using three 60 s cycles with a Fas-
tPrep24 (MP Biomedicals, CA). Proteins were precipitated with ice-cold tri-
chloroacetic acid (TCA), final concentration of 10% (v/v), incubated on ice for 1 h,
centrifuged (15,000 × g, 15 min, 4 °C) to pellet the precipitated proteins and washed
with 300 μl ice-cold 0.01M HCl in 90% acetone. Proteins were separated by SDS-
PAGE with a 10% Mini-PROTEAN gel (Bio-Rad Laboratories, CA) and then
stained with Coomassie brilliant blue R250. The gel was cut into five slices, after
which proteins were reduced, alkylated, and in-gel digested according to a method
published previously63. The peptides were dried under vacuum, solubilized in 0.1%
(v/v) trifluoroacetic acid (TFA) and desalted using C18 ZipTips (Merck Millipore,
Germany) according to the manufacturer’s instructions.

The peptide mixture from each fraction was analyzed using a nanoHPLC-MS/
MS system as described previously63, using a Q-Exactive hybrid quadrupole-
orbitrap mass spectrometer (Thermo Scientific) equipped with a nano-electrospray
ion source. Mass spectral data were acquired using Xcalibur (v.2.2 SP1).

MS raw files were processed with the MaxQuant software suite64 (version
1.4.1.2) for identification and label-free quantification (LFQ) of proteins. Proteins
were identified by searching MS and MS/MS data of peptides against the
UniProtKB complete proteome of R. intestinalis L1–82 (4698 sequences)
supplemented with common contaminants (e.g., keratins, trypsin, and bovine
serum albumin). In addition, reversed sequences of all protein entries were
concatenated to the database for estimation of false-discovery rates (FDRs).
Trypsin was set as proteolytic enzyme and two missed cleavages were allowed.
Protein N-terminal acetylation, oxidation of methionines, deamidation of
asparagines and glutamines and formation of pyro-glutamic acid at N-terminal
glutamines were defined as variable modifications while carbamidomethylation of
cysteines was used as a fixed modification. The “match between runs” feature of
MaxQuant, which enables identification transfer only between samples from the
same carbon source based on accurate mass and retention time, was applied with
default parameters. All identifications were filtered in order to achieve a protein
FDR of 1%. A protein was considered “present” if it was detected in at least two of
the three biological replicates in at least one glycan substrate. Missing values were
imputed from a normal distribution (width of 0.3 and down shifted 1.8 standard
deviations from the original distribution) in total matrix mode and differential
abundance analysis was performed using an unpaired two-tailed Student’s t-test
with a permutation-based FDR set to 0.05. Hierarchical clustering and heat map
representations were generated using Euclidean distance measure and average
linkage using Perseus65 (version 1.5.5.3).

Substrate binding assay using SPR. The affinity of RiCBM27 and RiCBM23 to
soluble manno-oligosaccharides and cello-oligosaccharides was evaluated by SPR
using a Biacore T100 (GE Healthcare). The two CBMs, diluted into 10 mM sodium
acetate (pH 4.1) to 2.3 μM, were immobilized on a NTA sensor chip (GE
Healthcare) to a density of 3000−4000 response units (RU). Sensograms were
recorded at 25 °C in phosphate/citrate buffer (20 mM phosphate/citrate buffer;
150 mM NaCl; pH 6.5, 0.005% (v/v) P20 surfactant) at 30 μl per min with asso-
ciation and dissociation times of 90 s and 240 s, respectively. CBMs binding was
tested towards 0.2 nM – 1 mM of carbohydrate ligands dissolved in the same buffer
as above. Data were analyzed using the Biacore T100 evaluation software, and
equilibrium dissociation constants (Kd) were obtained by fitting a single-site
binding model to either the steady-state response data or the full sensograms.

ITC. Binding of manno-oligosaccharides to RiMnBP was measured at 25 °C in
10 mM sodium phosphate pH 6.5 using an ITC200 microcalorimeter (MicroCal).
RiMnBP in the sample cell was titrated by 19 injections of carbohydrate ligand
separated by 120 s. The following concentrations were used: 900 µM of M3 in the
syringe and 76.5 µM RiMnBP in the sample cell; 1365 µM of M4 or M5 in the
syringe and 91 µM RiMnBP in the sample cell; 2270 µM of M6 in the syringe and
117 µM RiMnBP in the sample cell; 750 µM of diacetylated mannotetraose (M4Ac2)
in the syringe and 50 µM RiMnBP in the cell; 1500 µM of diacetylated manno-
pentaose (M5Ac2) in the syringe and 100 µM RiMnBP in the cell. Thermodynamic
binding parameters were determined using the MicroCal Origin software (version
7.0).

Competition experiments. R. intestinalis, B. ovatus and M. formatexigens cells
were grown overnight under anaerobic conditions in YCFA containing 0.5% (w/v)
AcGGM (YCFA-AcGGM) as the sole carbon source. These subcultures were used
to inoculate, in approximately equal proportions (estimated by OD600), 30 ml of the
same medium. A control culture of YCFA-AcGGM was also inoculated with either
R. intestinalis, B. ovatus or M. formatexigens. Growth (OD600) was monitored for
up to 24 h, withdrawing 1 ml samples for quantitative PCR (qPCR) analysis at
selected time points. Cells were pelleted, combined with 200 μl of TE buffer (pH
7.8) and bead-beated for 2 min (FastPrep96, MP Biomedicals, CA) using ≤ 106 μm
acid-washed glass beads (Sigma-Aldrich). Genomic DNA was extracted using the
Mag Midi kit (LGC Group, UK) according to the manufacturer’s instructions.
qPCR was performed in a LightCycler 480 II system (Roche, Germany) using
specific primers for each strain (Supplementary Table 9). In addition, a high-
resolution melting (HRM) analysis was conducted to evaluate the specificity of the
amplification and the lack of primer dimers. The raw data were imported into the
LinReg PCR program66 and the calculated Cq values and PCR efficiency were used
to deduce the ratio of R. intestinalis, B. ovatus and M. formatexigens at each time
point. Statistically significant differences were determined using the unpaired two-
tailed Student’s t-test.

Human gut microbiota-associated mice and diets. All experiments involving
animals complied with all relevant ethical regulations for animal testing and
research and were approved by the University of Michigan, University Committee
for the Use and Care of Animals. Germfree mice were colonized with a synthetic
microbiota composed of 14 fully sequenced human species according to the
methodology previously adopted by Desai et al42. Briefly, seven 6-week-old
germfree male wild-type Swiss Webster mice that had been raised on ad libitum
access to a high fiber chow diet (LabDiet 5013) and autoclaved distilled water were
gavaged for 3 consecutive days with 200 µl each day of a mixture of the 14 different
species. Colonized mice were maintained on this high fiber diet for 14 days before
being switched to a series of diet regimes with varying fibers. This feeding sequence
consisted of 7 days of feeding on a gamma-irradiated fiber-free (FF) diet
(TD.140343, Harlan Teklad, USA) that does not contain AcGGM or related
molecules. Mice were then switched for 7 days to a custom version of the same diet
that contained AcGGM at 2.5% w/w, followed by a 7-day washout period on the FF
diet, and finally 7 days of feeding on a version of this diet containing AcGGM at
7.5% w/w (in both AcGGM diets an equivalent amount of glucose was removed to
accommodate the prebiotic addition). Fecal samples were taken 1 day before and 1
day after each diet transition, effectively allowing us to measure changes in
response to AcGGM supplementation at 1 and 7 days post exposure relative to the
FF diet. The relative abundance of each microbial strain at sampled time points was
measured by qPCR, using previously validated primer sets, from total DNA
extracted from freshly voided fecal pellets (stored at −20 °C until extraction)
exactly as described previously42. Statistically significant differences were deter-
mined using the unpaired two-tailed Student’s t-test.

Comparative genomic analysis. Identification of similar β-mannan catabolic
genes in bacteria belonging to the Clostridium XIVa cluster was performed using
the Gene Ortholog Neighborhood viewer on the Integrated Microbial Genomes
website (https://img.jgi.doe.gov). This was done using the genes encoding RiGH26
(ROSINTL182_07683, GenBank ABYJ02000124.1:7167–11129) and RiMEP
(ROSINTL182_05476, GenBank ABYJ02000025.1:3200–4429) as the search
homolog and the default threshold e-value of 1e-5. Then, a sequence comparison
was conducted where each R. intestinalis L1–82 RefSeq annotated protein sequence
was subjected to BLASTp searches against other Clostridium XIVa members.
Sequences with coverage <60% and amino acid similarity <45% were excluded.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the article and
Supplementary Information, or from the corresponding author upon request. The
transcriptomic data described in this article are submitted under NCBI BioProject
accession number PRJNA516396. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD012448.
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