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Abstract 10 

Long-term operation strongly affects the microstructure of Ni/YSZ cermets used in state of the art fuel 11 

electrodes for solid oxide cells. The microstructural changes are considered to heavily affect the cell 12 

degradation. In this paper, the characterization of the Ni/YSZ electrode of a solid oxide electrolysis cell tested 13 

as part of a stack tested for 1 year was performed through focused ion beam-scanning electron microscopy and 14 

energy dispersive X-ray spectroscopy. A reference cell and two locations of interest in the tested cell were 15 

selected: one at the steam inlet side and the other at the outlet. Considerable microstructural changes were 16 

observed in the tested cell compared to the reference cell and between the inlet and outlet side. A decrease in 17 

Ni (from 30 % in the reference cell to 24 % in the tested cell), and in percolating triple phase boundaries length 18 

(from 2.83 µm/µm3 in the reference cell to 0.76 µm/µm3 in the tested cell) was observed in the active fuel 19 

electrode. Based on the results of this work and previous studies we hypothesize that the degradation trend 20 

between different operating conditions at the inlet and outlet of the cell is related to the current redistribution 21 

inside the cell. 22 

 23 

 24 

This work is an extension of the work presented at the 15th International Symposium on Solid Oxide Fuel 25 
Cells (Hollywood, Florida, USA July 23 – 28, 2017) with the title “Microstructural Characterization of Ni/YSZ 26 
Electrodes in a Solid Oxide Electrolysis Stack Tested for 9000 Hours” (published on ECS Transactions, 78 [1] 27 
3049-3064 (2017)). 28 
 29 
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Introduction 30 

The increased share of intermittent renewable energy in future green energy scenario raises the need for 31 

managing the energy production/energy demand mismatch. In this regard, developing effective means of 32 

converting and storing the electrical energy surplus generated by overproduction peaks is crucial for overall 33 

system economy and security of supply. The role of devices capable of efficiently converting electrical energy 34 

into a storable medium (e.g. hydrogen or carbon-based synthetic fuels) are become important in this context. 35 

For this purpose, solid oxide cells (SOCs) represent an interesting technology [1,2] since the same cell can be 36 

operated either in fuel cell mode as a solid oxide fuel cell (SOFC) or in electrolysis mode as a solid oxide 37 

electrolysis cell (SOEC) [3]. This characteristic makes it possible to use the same device for both electrical 38 

energy production and storage depending on the specific need.  39 

Operational life spans of several years are required to make SOCs systems economically competitive on the 40 

market and long-term stability has to be guaranteed [4-8]. Hence, the systems, stacks, and cells and their 41 

individual components (such as manifolds, interconnects, electrodes etc.) must be reliable, robust and durable 42 

[3, 5]. Relating the specific cell operation conditions with the degradation processes of the cell material and 43 

microstructures has been the objective of many studies [8-18]. This field of research aims to ensure and 44 

improve the long-term durability of the individual cells in a stack. Microstructural changes have been seen to 45 

affect all the components inside the cells and are considered one of the main causes of performance degradation 46 

[3, 8, 11-18]. Furthermore, additional studies have been performed with the aim of relating the specific 47 

microstructure changes with the decrease in electrochemical performance [e.g. 7, 8, 11].  48 

Several degradation mechanisms in SOECs have been proposed in the last years [3, 7, 8, 10, 11]. Specifically, 49 

several studies were performed to investigate the effects of temperature, gas composition and current density 50 

[7, 11-13]. In order to compare the microstructure of different cells, ideally several complementary 51 

characterization techniques have to be applied on the same sample to obtain a proper description of the specific 52 

phenomenon observed. Concerning the changes in the materials composition and microstructure, scanning 53 

electron microcopy (SEM) and energy dispersive X-ray spectroscopy (EDS) are useful techniques [3]. To 54 

obtain a full microstructural characterization of the electrode structures, focused ion beam-scanning electron 55 



microscopy (FIB-SEM) technique has been extensively used [19-25]. The microstructural details that can be 56 

extracted from 3D tomographic reconstructions such as particles size distribution [26] and triple phase 57 

boundary (TPB) length [19-21, 25] provide quantification of microstructural features of the complex cermet 58 

structure. These parameters can complement and support the interpretation of electrochemical performance 59 

and durability data. Combining complete microstructural and electrochemical characterization can enable the 60 

description and quantification of specific degradation mechanisms occurring in the cell.  61 

An attempt to relate electrochemical and microstructural degradation in SOECs was made by Hauch et al. [8] 62 

on cells tested for more than 1500 hours. It emerged that the Ni/YSZ electrode was the main source of 63 

performance degradation and Ni coarsening was one of the main mechanisms contributing to the decrease of 64 

active TPB sites for electrochemical reactions [27]. A qualitative post-mortem analysis was performed by Chen 65 

et al. [11] on SOECs tested up to 1500 hours,  the authors showed the influence of temperature and current 66 

density on the Ni/YSZ electrode microstructure. It was observed that higher temperature and current density 67 

cause significant loss in percolation in the active fuel electrode. Recently, a microstructural investigation on 68 

long-term (i.e. 1000 hours) tested SOEC was reported by Hauch et al. [8]. By combining SEM and 69 

electrochemical impedance spectroscopy (EIS) measurements, the authors proposed an optimized fuel 70 

electrode microstructure capable of tolerating high p(H2O) and current density with a low enough fuel electrode 71 

overpotential to make the SOC last for more than 5 years potentially. Few studies have investigated 72 

microstructural characterization of SOEC tested for longer than a few thousands hours. Tietz et al. [10] carried 73 

out a qualitative metallographic analysis of a 9000 hours tested SOEC by means of SEM images. For that 74 

specific cell, the main microstructural degradation was observed in the electrolyte while the Ni-YSZ electrode 75 

did not seem to be significantly affected by operation. In this context, a systematic quantification based on 3D 76 

tomographic reconstructions of SOECs tested for several thousands of hours is missing. 77 

Among several degradation mechanisms observed in Ni-YSZ electrodes Ni agglomeration and coarsening is 78 

considered one of the main causes of performance loss for solid oxide cells [13, 28]. Many studies have been 79 

focusing on the Ni coarsening effect in the last years and it has been found that the particles growth is faster 80 

during the first hours (0-1000 h) of the test [13]. Much attention has been paid to microstructural changes in 81 



the Ni phase, indeed, and at typical cell operating conditions, the YSZ can be considered a stable scaffold 82 

wherein Ni re-distributes and increases in particles size. Tanasini et al. [28] observed this behavior through the 83 

analysis of SEM images. To the best of the authors´ knowledge, only few studies addressed quantitative 84 

microstructural characterization of Ni/YSZ electrode of SOEC tested as part of a stack [7, 29, 30] and a 85 

quantitative assessment of Ni coarsening for several thousands of hours of operation under technologically 86 

relevant conditions is still missing up to now.  87 

In addition, only few examples of microstructural characterization of cells tested as part of a long-term tested 88 

SOC stack can be found in the literature. Faes et al. [13] tested several stacks for a maximum of 1900 hours in 89 

fuel cell mode and characterized the microstructure of Ni/YSZ electrodes by means of SEM micrographs. 90 

Rinaldi et al. [30] tested a short SOEC stack for 10,700 hours and then analyzed the microstructural degradation 91 

of each layer, the nickel depletion in the innermost region of the active fuel electrode was observed. Brisse et 92 

al. [31] tested the cell characterized in this work as part of a stack for ~ 9000 hours in technologically relevant 93 

operating conditions at the European Institute for Energy Research (EIfER). A preliminary microstructural 94 

characterization of the same cell was reported by our group [29] with the aim of investigating the 95 

microstructural degradation and we highlighted the differences between 2D and 3D quantification of the same 96 

electrode microstructure. 97 

Quantifying microstructural changes of SOC is important for understanding the degradation processes 98 

occurring at the micrometer scale. With the aim of providing a detailed characterization of the microstructure; 99 

we combine here 3D tomographic reconstructions with EDS. The 3D characterization performed on FIB-SEM 100 

data provides detailed information on the network properties defining, not only the particles size, but also the 101 

quality of the connections. However, only small volumes can be analyzed with this technique and, in this 102 

regard, EDS maps provide important additional information of large areas of the cell. Two locations exposed 103 

to different local operating conditions (i.e. gas composition, current density, and temperature) inside the same 104 

cell were chosen for analysis: at the steam inlet and outlet. The microstructures of the two regions analyzed 105 

were compared with a reference cell exposed to reduction only and no long-term operation. Ni re-distribution 106 

was detected and changes in TPB and surface area of the three phases (i.e. Ni, YSZ and pores) were quantified. 107 



Moreover, hypotheses are proposed to explain the difference observed between the two locations in the long-108 

term tested cell (inlet and outlet). 109 

Experimental  110 

One of 25 identical SOEC cells from a stack produced by Topsoe Fuel Cell A/S (Cell number 17 counting 111 

from top of the stack) is analyzed in the present work. The cells have a Ni/3YSZ support (~ 300 µm thickness) 112 

and a Ni/8YSZ fuel electrode (~ 15 µm thickness), a 8YSZ electrolyte, a CGO (Ce1-xGdxO2-x/2) barrier layer, 113 

and a CGO/LSCF ((La,Sr)(Co,Fe)O3-δ) oxygen electrode. On the top of the oxygen electrode a current collector 114 

layer is applied. The cells have an active area of 87.7 cm2 and are stacked in between coated Crofer 115 

interconnects [31]. 116 

Testing and sample preparation 117 

The long-term electrolysis testing of the stack analyzed in this work was performed at the EIFER. Essential 118 

parameters used for the operation are summarized in Table 1. Additional details about the test and stack 119 

performance can be found elsewhere [31]. The reference cell used in this work was a cell from the same 120 

production batch of the 25 cells in the stack. The reference cell was reduced at 750°C for 4 hours in moisturized 121 

10 % H2 in N2 (10 % H2, 90 % N2) and not tested further. The Ni/YSZ electrode of the reference cell was 122 

utilized for comparison with the tested cell. 123 

3D Characterization 124 

After the test, part of the stack (Cells 11-25) was embedded in epoxy resin and then sectioned for further 125 

analysis. A sketch of the stack top view with relative sectioning is shown in Figure 1 a). A Zeiss XB1540 126 

Crossbeam microscope was used for data collection by FIB serial sectioning on the reference cell and the two 127 

locations of interest on the long-term tested cell: the fuel inlet and outlet side. For the sake of simplicity, the 128 

three locations investigated will henceforth be defined as reference, inlet, and outlet, respectively. Cross 129 

sections of the same cell were analyzed in a previous work [29] to compare 1D and 3D microstructural 130 

characterization and to quantify degradation between the reference and the tested cell at the micrometer scale. 131 

Three-dimensional characterization was previously performed only for the reference and the inlet part of the 132 



tested cell [29]. Here, a more complete view of the aged cell is presented by adding the outlet dataset. 133 

Furthermore, EDS analysis was performed on the regions of interest to estimate the chemical composition in 134 

different locations of the cells. The regions used for FIB-SEM characterization and EDS analysis are illustrated 135 

in Figure 1 b) and c) on the top of a SEM image of the reference cell showing the Ni/YSZ electrode and part 136 

of the YSZ electrolyte. The yellow box in Figure 1 b) highlights the innermost 8 µm of the active fuel electrode 137 

extracted from FIB-SEM dataset and used for the computation of microstructural parameters.  Figure 1 c)  138 

illustrates the areas used for acquiring EDS data, smaller areas of 25 x 3 µm2 and  25 x 10 µm2 were also used 139 

for the fuel electrode and support layer, respectively. Figure 1d) shows a schematic drawing of the electrolyte 140 

(~ 5 µm), the active fuel electrode (~ 15 µm), and part of the support layer (overall thickness ~ 300 µm) defined 141 

with dashed lines since only partially interested by the analysis. The direction of the FIB milling front is 142 

illustrated in Figure 1d together with the direction and width of the line scan recorded for the EDS analysis. 143 

Due to slightly different microscope set-ups for the three samples analyzed, three different voxel sizes were 144 

obtained:  25 x 25 x 40.80 nm3 for the reference, 25 x 25 x 35.60 nm3 at the inlet and 25.53 x 25.53 x 37.79 145 

nm3 at the outlet of the tested cell. In order to analyze the same volume size (approximately 12.5 x 8 x 20 µm3) 146 

in each sample, three sub-volumes were selected: 501 x 321 x 490 pixels for the reference cell, 501 x 321 x 147 

564 pixels for the inlet and 491 x 314 x 531 pixels for the outlet. With the aim of analyzing the innermost part 148 

of the active fuel electrode the dataset used for the computation of microstructural parameters starts, for each 149 

volume, ~ 3 µm away from the electrode-electrolyte interface and extends ~ 8 µm towards the support layer. 150 

The FIB milling front along the electrolyte is perpendicular to the electrode-electrolyte interface [32] (Figure 151 

1); ~ 35 nm are milled away, a picture of the support/electrode/electrolyte cross section is obtained, and next 152 

another 35 nm is milled away, and so forth, effectively collecting pictures of the cross section moving in the 153 

direction parallel to the electrode-electrolyte interface. Two sets of images (i.e. obtained from Inlens and SE2 154 

detectors) were recorded for each sample and used for post-processing and segmentation as described 155 

elsewhere [32].  156 

Once the segmented volumes were obtained, several analyses were performed on the inner fuel electrode sub-157 

volumes in order to compare the microstructure of the three locations investigated. The phase fraction of each 158 



phase in the region of interest was calculated by dividing the overall volume of a single phase by the total 159 

volume analyzed. The continuous PSD was computed as described earlier [26, 29, 32]. This method consists 160 

in evaluating, for each 2D section of the 3D reconstructions, the largest circle that fits the particle and extending 161 

that circle to a 3D sphere. The continuous PSD distribution is obtained by calculating the distribution of the 162 

largest spheres that can fit inside each part of the structure. Moreover, the total and percolating TPBs were also 163 

determined [22]. For what concerns the percolating sites, not only their total amount was determined but also 164 

the networking quality through the characteristic pathway diameter [32]. In addition, the tortuosity factor of 165 

the Ni and pore phase along the three directions of the volumes was determined using the program TauFactor 166 

[33]. 167 

Energy Dispersive X-ray Spectroscopy (EDS)  168 

In addition to the 3D microstructural characterization, compositional information was obtained for the 169 

locations of interest by EDS. A field emission gun scanning electron microscope (Carl Zeiss Supra 35) 170 

equipped with an energy dispersive X-ray detector (Thermo Electron Corporation – NORAN System SIX) was 171 

used for the investigation. The EDS analyses were performed both as X-ray mapping, wide line scans, and as 172 

area analysis on polished carbon coated cross section surfaces. The applied acceleration voltage of 15 kV 173 

resulted in an interaction volume of ~1 µm3. Cell number 17 in the stack was analyzed in the region close to a 174 

contact point between the cell and the interconnect. EDS data from 25 x 3 µm2 and 50 x 3 µm2 areas were 175 

recorded with NSS software using Proza (Phi-Rho-Z) correction, the data were then used to calculate the Ni/(Zr 176 

+ Y) atom ratio close to the electrode-electrolyte interface. In a larger area of the support layer, EDS data from 177 

25 x (3 to 10) µm2 and 50 x (3 to 20) µm2 areas were used to calculate the Ni/(Zr + Y) atomic ratios. The 178 

regions used for the EDS analysis is illustrated if Figure 1 c). The counting statistic error for each measurement 179 

was estimated to be less than 1 %. In addition, 50 µm wide EDS line scans (50 points per line) perpendicular 180 

to the electrode-electrolyte interface were recorded for the three locations of interest (Figure 1). The 181 

measurement of each line scan started 4-5 µm inside the electrolyte and extended into the support layer 182 

covering an overall length of ~ 38 µm. Acquisition times of 75 seconds per spectrum was used for the line 183 

scans obtaining ~ 30,000 nickel counts and a background of ~ 2,500 counts. 184 



 185 

Results  186 

3D Volumes 187 

A 3D rendering of three sub-volumes extracted from the investigated geometries is shown in Figure 2. The 188 

dimension of each sub-domain is ~ 8 x 8 x 8 µm3 and the three phases of interest are represented as follows: 189 

Ni particles are red, YSZ scaffold is gray and pores are transparent. Part of the electrolyte is also introduced 190 

in the 3D reconstructions of Figure 2. Qualitative microstructural changes in the Ni phase can be identified 191 

clearly between the reference and both locations analyzed for the tested cell by simple visual inspection of the 192 

three cubes in Figure 2. The results of the 3D microstructural characterization performed on the three regions 193 

are presented in further detail in Table 2.  194 

The central 8 µm of the Ni/YSZ active electrode were analyzed starting ~ 3 µm away from the electrolyte-195 

electrode interface and stopping ~ 1 µm before the interface between the active electrode and the support layer. 196 

Table 2 summarizes microstructural parameters quantified on each of the volumes investigated. 197 

Overall phase fractions of the fuel electrode: 198 

The first parameter discussed is the phase fraction. The results are shown in Table 2. The cell under analysis 199 

has been manufactured aiming for a Ni/YSZ volume ratio of 40/60 vol%, therefore the minimum theoretical 200 

pore phase fraction obtainable after NiO reduction will be ~ 22%. This in turn leads to an upper limit for Ni 201 

phase fraction of 31.2 %. The computed Ni phase fraction of 30% for the reference cell is in good alignment 202 

with manufacturing data. A decrease of overall Ni phase in the active fuel electrode to approximately 23 % in 203 

the inlet side of the tested cell was observed. Meanwhile, the porosity showed an increase from 25 % calculated 204 

for the reference cell to 29 % after the test, both at the inlet and at the outlet. While the percentage of YSZ at 205 

the inlet side is almost un-changed compared to that of the reference cell, an apparent decrease is observed at 206 

the outlet side. Such a decrease can be attributed to the uncertainty of the measurement itself, as it will be 207 

explained later. The general trend observed in the present study for the Ni phase fraction is in agreement with 208 



[34]. Performing the quantification of microstructural parameters in the innermost 8 µm of the electrode 209 

provides important information on the degradation of the active part of the fuel electrode. In the data analysis, 210 

the volume between 3 and 11 µm from the electrolyte interface was used for deducing microstructural 211 

characteristics from the reconstructions. It should be noted that besides the Ni depletion observed in this zone 212 

(Table 2) an even stronger depletion is seen close to the electrolyte (Figure 3 a)), within the first three microns, 213 

which is not included in values behind Table 2. Estimating accurate confidence intervals for parameters 214 

calculated from 3D image data is notoriously challenging. It is worth mentioning that several sources of errors 215 

can bias the results: local variations of the structure, representative volume size, a subjective segmentation 216 

step, finite resolution, and the parameter estimation method itself [35 - 37]. This is compounded by different 217 

parameters having very different sensitivity to each of these types of errors. The equipment used for recording 218 

the data combined with the implemented post-processing procedure allowed analysis of volumes of 12.5 x 8 x 219 

20 µm3 for each sample. Considering the mean radius of Ni particles ~ 1.26 µm [29] for the cell analyzed in 220 

the current work and using the definition of dimensionless length given by Harris et al. [36], the dimensionless 221 

dimensions of the volumes analyzed are 9.92 x 6.35 x 15.87 in dimensionless units. Lombardo et al. [37] 222 

performed a volume-dependence investigation for Ni/YSZ SOFC anodes that showed that a characteristic 223 

dimensionless length of ~ 6 is required for computing reliably the properties of the YSZ phase. In the current 224 

work, the relative small size of the volume obtained from FIB-SEM reconstructions is reflected in the 225 

uncertainty intervals estimations reported in Table 2. The tortuosity factor is one of the parameters most 226 

affected by the size of the volume analyzed in particular when the percolation factor is low; in line with this, 227 

the uncertainty of this parameter is estimated to be quite high (ca. 20 % at the inlet side as reported in Table 228 

2). The uncertainty intervals in Table 2 are estimated on the basis of experience in parameters computation on 229 

the same types of samples and imaging technique [35]. However, the results for the YSZ phase can provide 230 

information on the accuracy of the measurements since the structure of this phase can be treated as stable. It 231 

was sintered at 1300 °C and is unaffected by cell operation at 750 °C. For example, there is a discrepancy in 232 

the YSZ phase fraction observed between the three locations: 45 % ± 2.50 in the reference, 47 % ± 2.50 at the 233 



inlet and 43 % ± 2.50 at the outlet. This measurement provides an estimate for the uncertainty level for the 234 

calculated phase fractions.  235 

Interface areas and TPB length: 236 

The surface area of each phase and the interface area between phases are used for the evaluation of 237 

microstructural changes occurring in the Ni/YSZ electrode due to the long-term operation of the cell. The 238 

results are summarized in Table 2. The overall surface area of Ni is decreased from ~ 1.7 to ~ 0.9 µm2/µm3 239 

after long-term operation. The interface areas of pore and YSZ with Ni show a reduction after the testing 240 

reaching ~ 0.3 and ~ 0.7 µm2/µm3 at the inlet side, respectively. The results point out similar degradation at 241 

inlet and outlet side of the same cell after 1 year of operation, though to different degrees. 242 

It is well known that electrochemical reactions inside the cell occur at active TPB sites only and these sites 243 

need to be part of a percolating TPB to be active. A percolated site is obtained when the three phases defining 244 

the TPB each have a percolating path for the conducted species (i.e. electrons through Ni, oxygen ions through 245 

YSZ and gas through pores). Table 2 shows the results obtained from the computation of the TPB in the 246 

samples analyzed. The length of total and percolating TPB was obtained as the average of the length computed 247 

in each of the six directions of the 3D geometry analyzed. Table 2 shows that also the percentage of active 248 

sites decreases after the long-term test. While 86 % of the overall TPB length was percolating in the reference 249 

cell, only 53 % was percolating at the inlet of the tested cell. A significant difference can be appreciated in the 250 

loss of active TPB sites between inlet and outlet, where 62 % of the TPB is percolating at the outlet.  251 

While similar nickel depletion in the active electrode can be detected at the inlet and outlet side of the cell, a 252 

more pronounced TPB length decrease is observed at the inlet side when compared to the outlet. This effect is 253 

presumably linked with an effect of the local polarization, which is much larger at the inlet compared to the 254 

outlet (the total cell overpotential was estimated to be ~ 420 mV at the inlet and ~ 320 mV at the outlet) 255 

resulting also in a higher local current density [38]. The same trend obtained in the cell analyzed in this study 256 

was qualitatively observed in the ~ 700 hours tested cells in reference [39], where 2D low voltage SEM images 257 

showed a lower percolation degree at the inlet side. Moreover, the higher steam content at the gas inlet side of 258 



the cell could contribute to the higher degradation observed there. Pihlatie et al. [40] observed that the cell 259 

conductivity decreases as the steam content increases. Indeed, high steam content in the fuel promotes the 260 

formation of Ni(OH)2 complex that facilitates nickel diffusion and particles growth. In addition to that, the 261 

steam content and the local polarization of the electrode affect the local pO2 in the electrode that in turn 262 

influences the wettability of Ni on YSZ. Experimental evidence of the effect of oxygen activity on Ni/YSZ 263 

interaction was presented by Jiao et al. [41] and a theoretical correlation between pO2 and Ni contact angle on 264 

YSZ was proposed. Different wettability properties of Ni/YSZ cermets were qualitatively observed in [8] and 265 

[39] between the inlet and the outlet of the cell where both gas composition and current density assume 266 

different values.   267 

Phase fractions as a function of distance from the electrolyte-fuel electrode interface: 268 

Figure 3 illustrates the phase fraction calculated on each slice of the segmented volume parallel to the 269 

electrode-electrolyte interface (i.e. the distance between the two neighboring slices is between 35 nm and 40 270 

nm). The overall length covered by this analysis is ~ 16 µm for each sample. In the graphs of Figure 3 the 271 

electrolyte is located to the left. Two vertical-dashed black lines indicate the region used for the computation 272 

of the other microstructural parameters reproduced in Table 2. This region starts ~ 3 µm away from the 273 

electrode-electrolyte interface and ends approximately 1 µm before the support layer. Due to the irregular 274 

structure, it is not easy to define precisely where the interface between the electrode and the electrolyte is 275 

placed. Conventionally, we placed the interface where the first nickel particle is found when moving from the 276 

electrolyte towards the electrode. As evident from Figure 3 a significant decrease of the Ni content in the active 277 

area is observed after long-term operation at both the inlet and the outlet of the cell to more or less similar 278 

extent. In the support, on the other hand, no such depletion is observed, the Ni content in  each slice of the 279 

support layer in the tested cell is not much different from the one in the reference cell. In consistency with the 280 

finding on the Ni phase Figure 3 b) shows a slight increase in porosity in the active fuel electrode after 1 year 281 

of cell operation, whereas the porosity in the support layer after the long-term operation is not significantly 282 

different from the reference one. The content of the YSZ along the direction perpendicular to the electrode-283 

electrolyte interface is illustrated in Figure 3 c). It is evident as the YSZ fraction in the electrode does not 284 



change on aging. Even though Ni migration can be qualitatively appreciated in Figure 3, the local 3D analysis 285 

performed in this study does not allow the observation of whereto the Ni moves due to the intrinsic limitation 286 

of the analyzed volume with FIB-SEM tomography. Among the factors that lead to uncertainty in the analysis, 287 

it must be remembered that raw FIB-SEM data were recorded and segmented such that the focus was on the 288 

inner active fuel electrode. This means that data away from this region (i.e. the support layer) are more likely 289 

to be affected by artifacts occurring in the segmentation process of the whole volume.  290 

Figure 4 shows the results of the EDS analysis. Based on 1 to 5 measurements at different places in each of 291 

the samples of interest, the Ni/(Zr+Y) atomic ratio was computed on a region of the electrode close to the 292 

electrolyte interface and on a larger area of the support layer. The results are illustrated in Figure 4 a). The 293 

ratio shown in Figure 4 a) is an indication of the Ni content in the different areas of the electrode. The intrinsic 294 

uncertainty of the characterization method and the inhomogeneity of the sample can affect the measurement 295 

of the nickel content. In this regard, 9 measurements were performed in the active electrode and 4 EDS maps 296 

were recorded for the large area analyzed in the support layer. In order to give an estimation of the inaccuracy 297 

of the measures, the standard deviation was computed to be ~ 0.18 and ~ 0.07, respectively for the active 298 

electrode and the support layer. A significant nickel depletion in the region of the active electrode closest to 299 

the electrolyte is observed at both inlet and outlet of the tested cell. A Ni/(Zr+Y) atom ratio of approximately 300 

~ 1.7 was obtained for the reference cell while the value drops below 1 in both locations of the tested cell. This 301 

indicates that the migration of nickel away from the interface between the Ni/YSZ electrode and the electrolyte 302 

occurs to similar extents at the inlet and the outlet side of the cell. Interestingly, the Ni/(Zr+Y) atom ratio 303 

computed on the large area of the support layer does not vary considerably in the regions analyzed and it varies 304 

between 1.6 and 1.8 for the three samples as shown in Figure 4 a).  305 

Line scans were recorded starting from the electrolyte toward the support layer and used as further evidence 306 

of nickel depletion in the active fuel electrode. The results are summarized in Figure 4 b). The graph in Figure 307 

4 b) shows three line scans for the three locations of interest (i.e. reference, inlet and outlet) and the theoretical 308 

Ni/(Ni+Y+Zr) atomic ratio of ~ 67% resulting from the production process (dashed gray line). The black 309 

dashed line points out the electrode-electrolyte interface. The line scan results are in agreement with what 310 



observed in Figure 3 and Figure 4 a). A systematic decrease in Ni content in the 5 µm of the active fuel 311 

electrode closest to the electrolyte is recorded after long-term operation while only small variations can be 312 

appreciated in the support layer.   313 

Particle size distributions: 314 

When performing the microstructural characterization of SOC electrodes it is useful to define the particle sizes. 315 

In this work, the continuous particle size distribution method [26] was applied to compute the results shown 316 

in Figure 5. For what concerns Ni particles, it was observed that the average particle radius is subjected to a 317 

shift from approximately 350 nm in the reference cell to ~ 600 nm in both locations analyzed on the long-term 318 

tested cell. A shift towards larger pore sizes was observed at both analyzed locations of the tested cell compared 319 

to the reference cell, the measured YSZ particle size distribution is unaffected by the long-term operation. This 320 

observation is well in line with previous studies [8, 28, 29] and the trend observed for Ni particles agrees with 321 

the analysis performed by Hauch et al. [34], where the mean intercept length principle was applied on 2D SEM 322 

micrographs and an increase in Ni particle size from ~ 1.01 µm in the reference cell to ~ 1.26 µm in the tested 323 

one was observed. These results are in line with the particles size distribution obtained from the analysis of 2D 324 

SEM images of the same cell analyzed here, the increase of Ni particle size from ~ 1.03±0.02 µm in the 325 

reference cell to ~ 1.39±0.03 µm at the inlet side of the tested cell was observed [29]. The testing conditions 326 

used for the cells analyzed in [34] were different from the ones applied to the stack analyzed leading to different 327 

values of the Ni particles radius. However, the trend is the same in both cases.  328 

Characteristic pathway diameter and Ni tortuosity: 329 

The concept of characteristic pathway diameter has been used in other studies [29, 32], however, there using 330 

the term “critical pathway radius” instead. The characteristic pathway diameter is the diameter of the largest 331 

sphere that can be squeezed through the network of the phase of interest. This idea is sketched in Figure 6 332 

where percolating TPBs are highlighted and possible pathways of electrons in the Ni phase are drawn. The 333 

characteristic pathway diameter is pointed out in Figure 6 by red arrows.  334 



The characteristic pathway diameter is a measure to evaluate the quality of the pathway connections of the 335 

different phases; i.e. the width of the “Nickel highway” for the electrons and similar for the gas phase in the 336 

pores and oxide ions in the YSZ phase. This parameter is important for understanding the quality of the 337 

pathways connecting the three phases throughout the electrode. If the percolation of TPB sites is guaranteed 338 

by pathways characterized by a very narrow diameter (e.g. 20 nm), then impurities, carbon deposition or 339 

similar situated at the TPB may more easily break the network connectivity and therefore reduce the degree of 340 

electrode percolation in the overall cell performance. On the other hand, if the pathway is characterized by a 341 

larger characteristic diameter (e.g. 200 nm or above), the structure is more robust and impurities are less likely 342 

to obstruct the connectivity. A significant change of the characteristic pathway diameter for the Ni phase can 343 

be observed in Figure 7 a). Assuming for instance that a high performing cell is characterized by Ni connected 344 

through pathways with a diameter around 200 nm, the percentage of paths with this characteristic is higher 345 

than 80 % in the reference cell and is below 50 % at both the inlet and the outlet side of the tested cell. After 346 

testing, the pores are connected through bigger paths as illustrated in Figure 7 b) whereas YSZ does not show 347 

appreciable changes with respect to characteristic pathway diameter (Figure 7 c)). 348 

The results illustrated in Figure 7 confirm the degradation trend observed in Figure 5: the characteristic 349 

diameters of percolated pathways are degraded significantly to a similar degree for both the inlet and outlet 350 

part of the cell after one year of testing.  351 

The results in Table 2 show lower values of percolating TPB at the inlet side while the graphs presented in 352 

Figure 7 report lower nickel percolation at the outlet. This effect could be due to the fact that the percolating 353 

TPB length is computed by checking the percolation through all the three phases. Instead, the characteristic 354 

pathway diameter shown in Figure 7 consider the individual percolation of each phase separately. One more 355 

parameter that can be used as indication of networking quality is the tortuosity factor. This parameter was 356 

computed using the TauFactor program [33]. The results are reported in Table 2, for Ni and pore phases of the 357 

active fuel electrode. Increased tortuosity of the Ni networking and therefore pronounced degradation can be 358 

appreciated when comparing the tested cell with the reference, although a clear difference between inlet and 359 



outlet cannot be detected. The tortuosity factor computed on the pore phase reveals reduced tortuosity in the 360 

tested cell compared to the reference. 361 

Discussion 362 

The locations investigated in this study were exposed to different local conditions: gas compositions, current 363 

densities and temperatures inside the tested cell. The results presented here on phase fraction (Table 2) and Ni 364 

migration (Figure 3) are in agreement with Mogensen et al. [39] where a study of Ni migration correlated with 365 

current load is reported for SOFC and SOEC. In electrolysis mode, a loss of Ni in the innermost active fuel 366 

electrode was observed [39]. A qualitative comparison between inlet and outlet based on 2D SEM images after 367 

~ 700 hours of testing is reported in reference [39] showing appreciable bigger Ni particle size and higher 368 

percolation loss at the inlet than at the outlet side. The results for Pore/Ni and YSZ/Ni interface area 369 

summarized in Table 2 show a decrease of approximately 69 % and 29 %, respectively, when comparing the 370 

inlet side of the tested cell with the reference cell. The difference in the extend of the decrease can be related 371 

to the inhibiting effect of YSZ on Ni coarsening as discussed in [40, 42]. Huber et al. [42] observed that the 372 

morphological variation of nickel during the coarsening process is more pronounced on the Ni surface in 373 

contact with the gas phase than at the YSZ/Ni interface. Indeed, the energy related to the Pore/Ni interface is 374 

lower than the energy related to the adhesion of Ni on YSZ. This results in the smaller decrease of YSZ/Ni 375 

interface area when compared to the decrease of Pore/Ni interface area (Table 2). The Ni rearrangements 376 

observed in the cell investigated in this work are well in line with the observations of Hubert et al. [42] where 377 

the inhibiting effect of the YSZ skeleton on Ni coarsening at typical SOC operating temperature was pointed 378 

out. The homogenization of microstructural parameters as observed here after one year of electrolysis operation 379 

leads to the tentative conclusion that the different conditions experienced by the cell at the two extremities are 380 

more important in the first hundreds of hours of cell life. On the other hand, different percolation degrees 381 

through the Ni phase were observed at the two extremities of the cell after the long-term testing showing, when 382 

using this parameter, the most severe change to the Ni network at the inlet where the cell is more polarized.  383 



All the microstructural features investigated in this study pointed out significant degradation both at the inlet 384 

and the outlet of the tested cell that was used in a 25-cell stack compared to the non-tested reference cell. 385 

Moreover, the degree of degradation of the two locations analyzed in the tested cell shows similar trends and 386 

only some microstructural parameters (e.g. TPB length) indicate significant difference between the inlet and 387 

the outlet side of the tested cell. Several studies proved that the Ni particle size increases mainly in the first 388 

thousands of hours of testing [28, 43-45] and only small modification can be detected afterwards. After 1 year 389 

of operation, as it is the case in the current study, the coarsening rate of Ni in the electrode is supposed to be 390 

slow. This would explain the almost identical Ni PSD at the inlet and the outlet side of the long-term tested 391 

cell shown in Figure 5. Moreover, the local testing conditions between inlet and outlet will make the 392 

degradation occurring first at the inlet side and with the time also at the outlet. Ni rearrangement dictates 393 

changes in porosity and therefore a significant difference in pore size between the reference and the tested cell 394 

can be detected, however the size of the pores computed on the tested cell is almost unchanged between the 395 

two locations analyzed. A number of tests under the same operating conditions (temperature, current density, 396 

polarization, and gas composition) but for different time duration have been run in order to investigate 397 

intermediate stage of degradation. The Ni/YSZ electrode microstructure is currently being characterized and 398 

the results will be reported elsewhere.  399 

The results for the characteristic pathway diameter illustrated in Figure 7 highlight a significant reduction in 400 

percolation through the nickel phase, the total amount of pathways percolated throughout the volume (i.e. 401 

percolating TPB sites) decreases strongly. Nevertheless, the diameters of the pathways that remain percolated 402 

shows a mild increase. This could be the effect of a microstructural degradation driven by curvature 403 

minimization. The effect of this process will lead to the disconnection of pathways connected through small 404 

bottlenecks while a more stable behavior during operation will be observed for wider pathways characterized 405 

by low curvature resulting in an overall decrease in percolation but an increase of the characteristic pathway 406 

diameter for the remaining Ni pathways. De Angelis et al. [46] used x-ray tomography for investigating 407 

Ni/YSZ cermets evolution. They observed that nickel coarsening leads to a loss of nickel connectivity and an 408 



improvement in connectivity through the pore phase. The reduced tortuosity for the pore phase reported in 409 

Table 2 finds an explanation in the improved connectivity of the pores.  410 

An additional effect of the coarsening process is the increase of particle size shown in Figure 5: smaller nickel 411 

particles are present in the reference cell after the reduction of NiO to Ni, these particles are characterized by 412 

high curvature and disappear during the coarsening process in favor of bigger features with lower curvature. 413 

TPB sites were quantified after segmentation for each of the three volumes analyzed and given in Table 2. The 414 

lower percentage of percolated sites computed at the inlet side of the tested cell compared to the outlet is in 415 

agreement with the observation reported by Mogensen et al. [39] and by Hauch et al. [8 (Cell A and B)] at the 416 

cell level, Fang et al. [14] reported similar funding at the stack level . The inlet side is supposed to be exposed 417 

to highest value of local current density which can contribute to a faster degradation. Chen et al. [38] simulated 418 

the current density distribution in the cell in the direction of the steam flow for two cells with different oxygen 419 

electrodes, the average current density of the two cells was ~ 0.9 and ~ 1.2 A/cm2, respectively [38]. The 420 

differences between inlet and outlet in current density were ~ 0.19 and ~ 0.35 A/cm2, for the two cells 421 

respectively. A rough estimation of the difference in current density between inlet and outlet for the cell 422 

analyzed in the current study can be done considering that such a difference is approximately 20% of the 423 

average value. Therefore, for the current case we can estimate the difference to be ~ 0.14 A/cm2 resulting in ~ 424 

0.79 A/cm2 at the inlet side and ~ 0.65 A/cm2 at the outlet. Starting from 86 % of active TPB sites for the 425 

reference cell only 62 % and 53 % were found at the outlet and the inlet of the tested cell, respectively. Knibbe 426 

et al. [7] and Chen et al. [11] investigated the effect of the current density on the Ni/YSZ electrodes 427 

microstructure. Ni coarsening and re-distribution were the main effects when the cells were tested at a current 428 

density below -1 A/cm2 (the cells were tested at 800 and 850 °C and an estimated fuel electrode polarization 429 

of ~ 50 - 150 mV) [11]. For higher values of current density the formation of nanoparticles and impurities, and 430 

the detachment of Ni from the YSZ scaffold were observed in the microstructures [7, 11]. These phenomena 431 

contributed to the more pronounced performance degradation observed at higher current density [7, 11]. The 432 

low current density used for the stack examined in the present study can explain the lack of nanoparticles at 433 

the interfaces between Ni and YSZ as observed in [7] and [11] for higher value of current density and local 434 



polarization. These percolating TPB results also fit well with the analysis of characteristic pathway diameter 435 

and the tortuosity factor, which reveal that the one-year test has weakened transport properties of the Ni-436 

network: there is a loss in TPB percolation through the Ni phase and an increase in the tortuosity factor of the 437 

Ni network for the conduction of electrons.  438 

Not many studies focused on the quantification of SOEC microstructure parameters. Jørgensen and Bowen 439 

[25] determined microstructural parameters for a single SOEC tested for approximately 1300 hours [25, 34] 440 

where the same method for the calculation of TPB was implemented. In that specific case, 80 % of the TPB 441 

was percolating after the testing. The higher percolation recorded in [25] could be due to several factors such 442 

as shorter testing time, lower current density (- 0.5 A/cm2) and therefore lower fuel electrode overpotential, 443 

and also to the different gas composition used (50 % steam and 50 % H2) versus the here used 90/10. More 444 

details on the testing parameters can be found in [34]. A quantification of SOEC Ni/YSZ electrode 445 

microstructure was performed also in [47] where the total TPB length was computed to be 4.63 µm/µm3 with 446 

3.07 µm/µm3 of active sites in the commercial cell analyzed [48] versus the here reported 3.28 µm/µm3 and 447 

2.83 µm/µm3.  448 

Here, the reference cell could be compared only with one more step in time the full 9000 hours. However, a 449 

previous study [39] has showed a difference in the rate of degradation of the percolation between the inlet and 450 

the outlet side of the cell. After 128 hours the degradation is more marked at the inlet than at the outlet while 451 

after 678 hours of test the difference started disappearing [39]. Similar results showing a faster degradation at 452 

the inlet than at the outlet were also reported by Hauch et al. [8 (Cell A and B)]. Further, analyses of the 453 

difference in degradation rate between inlet and outlet are currently underway.     454 

The results presented in this work show that differences between the inlet and the outlet of the cell after long-455 

term testing could be detected only for some of microstructural parameters. TPB length illustrates recognizable 456 

differences between the inlet and the outlet of the tested cell. The trend already reported in other studies [8 457 

(Cell A and B), 14, 39] (i.e. lower degradation rate at the outlet side) was also observed here but only through 458 

some of the features considered. Based on the results of the current and previous studies [29], we hypothesize 459 

herein that the degradation of the investigated cell is connected to different local operating conditions 460 



experienced at the two extremities. In particular, current distribution and gas composition are thought to play 461 

an important role for the differences in degradation. 462 

The characterization performed in this paper provides suitable input for microstructural modelling. The 3D 463 

reconstruction of the reference cell could be used as input for the modelling and microstructural parameters 464 

can be computed on the simulated geometries and linked to the experimental results presented in this work. 465 

The investigation of the modelling results can provide information on the intermediate stages of the coarsening 466 

process and related microstructural changes that cannot be detected and quantified during the operation of the 467 

cell. 468 

 469 

Conclusion 470 

A detailed 3D microstructural characterization of a solid oxide electrolysis cell that was operated as part of a 471 

stack for one year was performed, and microstructural parameters were compared with the results obtained on 472 

a non operated reference cell manufactured as a part of the same batch of cells.   473 

The depletion of Ni in the region close to the electrode-electrolyte interface (~ 5 µm) emerged both from the 474 

EDS results and from the analysis of the three dimensional reconstructions. This effect was observed to occur 475 

both at the inlet and at the outlet side of the cell after the long-term test in electrolysis mode. The same type of 476 

analysis performed on the YSZ shows the stability of this phase during the cell aging. 477 

The long-term test strongly affected the microstructure, starting from a reference cell with 86 % of percolating 478 

sites, to 62 % at the outlet side and only 53 % at the inlet side after the test. Moreover, the shift towards larger 479 

particles size together with the decrease of TPBs percolation and the increase of the tortuosity factor of the 480 

nickel show a strong degradation in the network-quality of the three interpenetrating phases in the cermet. This 481 

fact is likely responsible for the majority of the resistance increase observed over the one year aging: a 482 

resistance increase (ASR) of ~ 42 % was observed over 9000 hours test. [31].  483 



Interestingly, the two locations investigated on the tested cell (i.e. inlet and outlet side) showed similar 484 

characteristics in microstructural changes/degradation, slightly more pronounced at the inlet. The higher loss 485 

of percolating TPB at the inlet side is likely due to the more harsh operating conditions experienced here: 486 

larger current density (stronger polarization) and more moist gas composition.  487 

 488 
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Table 1: Parameters used for the 1-year stack test [31]. 628 

Period 

[hours] 

Temperature 

[°C] 

Steam 

conversion 

[%] 

(constant) 

Air flow 

[Nl/min] 

Steam[%]/ 

Hydrogen [%] 

feed 

Hydrogen 

flow 

[Nl/min] 

Current 

density 

[A/cm2] 

Degradation 

[%/1000 h] 

Inlet Outlet 

0-2175 

750 50 28 90/10 45/55 
(calculated) 

1.95 -0.57 2.0 

2175-

8700 
2.45 -0.72 2.0* 

*average value 629 

 630 
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 632 
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Table 2: Phase fraction, total and percolating TPB and surface area calculated on 3D reconstructions of all the samples 646 

for the three phases of interest. Based on cell manufacturing data, the volume ratio between Ni and YSZ can be expected 647 

to be Ni/YSZ: 40/60 vol%. 648 

 Reference Inlet Outlet 

Ni [vol%] 30.16 ± 2.50 23.80 ± 2.50 28.37 ± 2.50 

Pore [vol%] 24.66 ± 2.50 29.06 ± 2.50 28.95 ± 2.50 

YSZ [vol%] 45.18 ± 2.50 47.15 ± 2.50 42.68 ± 2.50 

Total TPB [µm/µm3] 3.28 ± 0.10 1.44 ± 0.10 1.67 ± 0.10 

Percolating TPB [µm/µm3] 2.83 ± 0.15 0.76 ± 0.15 1.04 ± 0.15 

Percentage of Percolating TPB [%] 86.28 ± 3.41 52.84 ± 5.02 62.22 ± 4.53 

Percentage of Percolating TPB Pore [%] 95.11 ± 10.00 93.22 ± 10.00 96.29 ± 10.00 

Percentage of Percolating TPB YSZ[%] 98.89 ± 10.00 98.47 ± 10.00 98.86 ± 10.00 

Percentage of Percolating TPB Ni[%] 91.60 ± 10.00 46.52 ± 10.00 42.96 ± 10.00 

Pore surface area [µm2/µm3] 2.09 ± 0.05 1.72  ± 0.05  1.58  ± 0.05 

YSZ surface area [µm2/µm3] 2.09  ± 0.03 2.07 ± 0.03 1.92  ± 0.03 

Ni surface area [µm2/µm3] 1.74  ± 0.05 0.88  ± 0.05 1.05  ± 0.05 

Pore/YSZ interface area [µm2/µm3] 1.22  ± 0.05 1.45  ± 0.05 1.23  ± 0.05 

Pore/Ni interface area [µm2/µm3] 0.87  ± 0.05 0.27  ± 0.05 0.35  ± 0.05 

YSZ/Ni interface area [µm2/µm3] 0.87  ± 0.05 0.62  ± 0.05 0.69  ± 0.05 

Ni tortuosity factor direction 1 6.27  ± 2.00 50.50 ± 20.00 17.80 ± 20.00 

Ni tortuosity factor direction 2  6.64 ± 2.00 13.70 ± 5.00 14.60 ± 5.00 

Ni tortuosity factor direction 3 4.49 ± 2.00 26.40 ± 15.00 32.00 ± 15.00 

Pore tortuosity factor direction 1 7.25 ± 2.00 3.69 ± 2.00 3.34 ± 2.00 



Pore tortuosity factor direction 2 5.78 ± 2.00 4.65 ± 2.00 5.01 ± 2.00 

Pore tortuosity factor direction 3 5.37 ± 2.00 4.34 ± 2.00 4.00 ± 2.00 
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 658 

Figure 1: a) Schematic of stack top view showing the applied sectioning, the steam inlet and outlet are indicated in the 659 

picture together with the locations investigated through 3D reconstructions. b) SEM micrographs of the Ni/YSZ 660 

electrode of the reference cell highlighting innermost 8 µm of the active electrode analyzed in the microstructural 661 

characterization. c) Illustration of the regions for the EDS analysis in the support layer and close to the electrode-662 

electrolyte interface. d) Schematic drawing of electrolyte (~ 5 µm), active fuel electrode (~ 15 µm), and part of the 663 

support layer (overall thickness ~ 300 µm) illustrating the FIB milling front and line scan directions and the width of the 664 

line scan.  665 
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 672 

Figure 2: 3D reconstructions of sub-volumes extracted from: a) reference cell, b) inlet side of the tested cell c) outlet 673 

side of the tested cell. Nickel is shown in red color, YSZ in gray and pores are transparent.  674 
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 683 

Figure 3: Phase fraction of the three phases form the FIB-SEM reconstructions in the direction perpendicular to the 684 

electrode-electrolyte interface: a) Ni, b) pores and c) YSZ. Each graph shows results for the reference cell and the tested 685 

cell at the inlet and the outlet. 686 
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 696 

Figure 4: a) Ni/(Zr + Y) (atomic ratio) mean value in two regions of the fuel electrode: close to the electrode-electrolyte 697 

interface (average of EDS results computed on 25 x 3 µm2 and 50 x 3 µm2 areas) and on a large area of the support. b) 698 

Ni/(Ni + Y + Zr) (atomic ration)  as a function of the distance from the electrolyte (EDS data obtained from 25 x (3 to 699 

20) µm2 and 50 x (3 to 10) µm2 areas), the theoretical atomic ratio from the production is ~ 67 % and it is illustrated by 700 

a dashed gray line. The results are shown for the three sample analyzed in this study: reference, inlet and outlet. 701 
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 713 

Figure 5: Continuous particles size distribution computed on the three volumes analyzed, each line in the graphs refers 714 

to one of the three samples analyzed: reference cell and aged cell at the inlet and the outlet side. Graph a) shows Ni 715 

PSD, graph b) the PSD of pores and graph c) the YSZ PSD. 716 
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 726 

Figure 6: Sketch of characteristic pathway diameter concept. In the drawing, red arrows highlight the characteristic 727 

pathway for the Ni phase, and percolating TPB between Ni (red), YSZ (gray) and pore (transparent) are circled in 728 

green. 729 
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 740 

Figure 7: Characteristic pathway diameter calculated for each of the three phases of the electrode: a) Ni, b) Pore and c) 741 

YSZ. The three lines in each graph represent the reference cell and the tested one at the inlet and the outlet side, 742 

respectively. 743 
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