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Abstract: The propagation of aerodynamic noise from multi-wind turbines is studied. An efficient
hybrid method is developed to jointly predict the aerodynamic and aeroacoustics performances of
wind turbines, such as blade loading, rotor power, rotor aerodynamic noise sources, and propagation
of noise. This numerical method combined the simulations of wind turbine flow, noise source and
its propagation which is solved for long propagation path and under complex flow environment.
The results from computational fluid dynamics (CFD) calculations not only provide wind turbine
power and thrust information, but also provide detailed wake flow. The wake flow is computed with
a 2D actuator disc (AD) method that is based on the axisymmetric flow assumption. The relative
inflow velocity and angle of attack (AOA) of each blade element form input data to the noise source
model. The noise source is also the initial condition for the wave equation that solves long distance
noise propagation in frequency domain. Simulations were conducted under different atmospheric
conditions which showed that wake flow is an important part that has to be included in wind turbine
noise propagation.

Keywords: wind turbine noise source; wind turbine noise propagation; wind turbine wake

1. Introduction

The generation and propagation of wind turbine aerodynamic noise exhibit several special
characteristics as compared to some other industrial noise problems. Considering the generation
of wind turbine aerodynamic noise, the rotor aerodynamic noise level depends on airfoil profiles
at cross sections, blade shape (the spanwise distribution of chord, twist, and airfoils), rotor size,
rotational speed, yaw angle, tilt angle, pitch setting, the angular position of blades, wind speed profile,
inflow turbulence level, density, and viscosity of air. From the perspective of aerodynamic noise
propagation (ANPropagation), aerodynamic noise source (ANSource) of large wind turbines is often
located at high altitude which leads to more significant problem for ANPropagation over long range.
Intrinsically, the study of wind turbine noise is a multi-disciplinary subject which should consider
wind farm aerodynamic noise generation (ANGeneration), ANPropagation, and energy production.
However, ANGeneration from a single airfoil has a similar basis in the nature of aerodynamics
and aeroacoustics as that from a large wind farm. Sophisticated numerical methods are needed to
understand the physical mechanisms of flow induced noise. Computational aero-acoustics (CAA)
methods were widely applied favored by the high-performance computing technology. However,
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advanced large eddy simulation (LES)/CAA method still requires heavy computational effort.
Consequently, conventional CAA methods are neither efficient to model wind farm noise source,
nor to predict long range ANPropagation. In the following paragraphs, feasible aerodynamic and
aero-acoustic modeling techniques are briefly reviewed and the numerical methods employed in the
current study are introduced.

As a prerequisite for wind turbine noise source and propagation modeling, a proper aerodynamic
tool should be considered. There are many methods developed for wind turbine aerodynamic
simulations. The classic blade element momentum (BEM) method [1,2] is a commonly used
semi-engineering technique that simulates the aerodynamics of a single wind turbine. With a BEM
model, one can apply engineering approaches to compute the noise source level of a wind turbine.
When the prediction accuracy increases, the model complexity as well as the computational cost also
increases. It is known that the CFD based methods predict the rotor aerodynamic forces and the wake
flow behind the rotor more accurately. Considering long-distance ANPropagation of wind turbines,
CFD methods become time consuming because the wake flow should be simulated in the large range
whose size is the same as that of the ANPropagation. In the present study, the velocity field is the
input data for the ANPropagation solver. Instead of conventional CFD methods, other sophisticated
methods are developed for wind turbine applications, such as the AD/AL/AS (actuator disc /actuator
line /actuator surface) methods, these methods have good trade-off between model accuracy and
computational efficiency. The actuator disc method [3,4] is applied in this study which has relatively
high computational efficiency. The rotor is assumed as a permeable disc. The aerodynamic loadings
of the rotor are treated as external volume force terms of the momentum equations of Navier–Stokes
(NS) equations. The rotor disc of a horizontal axis wind turbine (HAWT) has an inherent axisymmetric
characteristic. In this study, to reduce computational time the 3D-AD method is simplified to 2D-AD.
The boundary condition of rotor center is axisymmetric, such that the obtained flowfield with 2D-NS
equations will be exactly identical to that of the 3D case. Since the axisymmetric assumption is made,
it has to be mentioned that the solution only holds correct for axisymmetric uniform inflow conditions
and rotor under no yaw and tilt manipulations.

Dealing with the modeling of ANSource, the CAA methods, based on high fidelity
techniques [5–10], can model the physical details of flow induced noise mechanisms. Nevertheless,
the atmospheric acoustic scientists mainly focus on sound propagation problems with larger scales or
sizes [11–13]. It is true that the governing equations of most CAA based methods can solve both wind
turbine ANGeneration and ANPropagation problems, but the heavy simulation cost often limits the
computational domain into small size. It is clear that more efficient methods with less computational
effort are needed. To satisfy this requirement, the flow passing wind turbine, the ANSource and the
ANPropagation through long path are naturally combined together in this study. The engineering
ANSource model for wind turbine [14–16] is built into the above mentioned AD flow solver. Such that
the relative inflow velocity and AOA of each blade section are obtained from the AD-CFD simulation
and then fed into the noise source model of wind turbine.

Afterwards, the relative sound pressure level (RSPL) from wind turbines is simulated over large
distances from the turbine positions to the desired receivers. The wind turbine ANSource are the
key inputs to the propagation solver [11,12]. The wind turbine wake flow, computed by the AD-CFD
method, is considered as the medium of ANPropagation. The complex flow environment is found
as an important factor for long-path wind turbine ANPropagation. In the previous study of Lee [17]
and Heimann [18], the influences of atmospheric conditions on ANPropagation were investigated.
Both studies showed that there is large noise variation under different wind profile and atmospheric
stability conditions. More recently, this parabolic equation (PE) method is used by Barlas et al. [19,20]
for wind turbine noise applications. It was clearly shown that the wind turbine ANPropagation has
different refraction characteristics under various wake conditions. The present work focuses on an
integrated method for modeling of flow, ANSource and ANPropagation, and the detailed phenomenon
of ANPropagation through multi-wind turbine wakes are studied.
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This paper is organized following the sequences: In Section 2, the numerical method for wind
turbine flow simulation, ANGeneration and ANPropagation modeling are described; Section 3
provides results of various validation cases first and more results from the integrated flow-noise
model afterwards; conclusions are provided in the last section.

2. Numerical Methods

The related numerical methods applied in the study are described separately in this section: (1)
The RANS/AD model for wind turbine flow simulation; (2) The BPM (named after Brooks TF, Pope DS,
Marcolini MA [14]) wind turbine ANGeneration model; (3) The wind turbine ANPropagation model.
The relations between the solvers are shown in the schematic diagram below in Figure 1. It is seen that
the flowfield data are the input to both the wind turbine noise source and propagation models.
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2.1. RANS/AD Method

To simulate the flow passes wind turbine rotor, the general equations are modified by adding the
aerodynamic loadings of the rotor as external volume force terms in the momentum equations of the
NS equations
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where xi is the displacement in the inertial coordinate system and ui is the velocity components. t,
ρ, and P represent time, air density and pressure respectively. ν is the kinematic viscosity term, fext

is the added source term. With the assumption based on the axisymmetric property of the HAWT,
2D-RANS/AD method is utilized such that the computational effort can be greatly decreased.

The rotor is assumed as permeable disc such that the mass equation remains unchanged. To avoid
numerical instability the volume force in Equation (2) should be smeared along the flow direction
using 1D Gaussian function. For the elements which are away from the disc with a normal distance of
d, the smeared force f ’ is computed by convolution computation

f ′ = fAD ⊗ η1D (4)

η1D(d) = 1/
(
ε
√

π
)

exp
[
−(d/ε)2

]
(5)
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where the free parameter ε = 3∆z is three times larger than the axial size of reference grid ∆z. What is
more, the body forces of rotor can be computed using blade element theory with the aerodynamic data
of airfoil and the simulated information of flowfield.

The present 2D-AD method solves the ideal axisymmetric flowfield. The axial and tangential
induced velocities are naturally combined with the NS equations, such that the inflow angle and the
relative inflow velocity are determined from

φ = tan−1
(

V0 −Wz

Ωr + Wθ

)
, V2

rel = (V0 −Wz)
2 + (Ωr + Wθ)

2 (6)

The local AOA is easily computed by α = φ− γ, where γ is the real twist angle (added by pitch)
at local blade element. The lift and drag forces per unit span are computed using Equation (7) with the
aerodynamic data of airfoil.

L =
1
2

ρV2
relcBCl , D =

1
2

ρV2
relcBCd (7)

The blade forces are updated after each iteration using newly computed velocity field, then the
external volume force terms of the NS equations apply renewed blade forces in the next iteration.

2.2. BPM Model for Noise Source or Generation

The original BPM noise model was developed by Brooks et al. [14] which is able to predict airfoil
self-noise. The model was based on scaling the wind tunnel experimental data using the NACA 0012
airfoil with chord lengths varies from 2.5 cm to 61 cm. Here, the BPM model was integrated with the
BEM method [15] in order to deal with the complicated flow for wind turbine. The required boundary
layer thickness data in the BPM model is obtained from the Xfoil computation so that this data varies
with the airfoils rather than fixed with NACA 0012. A general expression of the BPM model is shown
in Equation (8)

SPL = 10log10

(
δMnlD

r2

)
+ G1(St) + G2(Re) + G3(δ) + C (8)

In the equation, it is shown that rotor aerodynamic noise is mainly a function of parameter δ

which represents boundary layer thickness. The boundary layer thickness depends on airfoil shape,
Reynolds number, AOA, turbulence level etc. l is the spanwise length of an airfoil segment. G1, G2, and
G3 are related to the Strouhal number St, Mach number M, Reynolds number Re and boundary layer
thickness parameter δ. Detailed descriptions of noise mechanisms can be found in references [14,15].
ANSource level of rotor generally depends on the blade shape and operational conditions, such as
rotational speed, wind speed, yaw, tilt, etc. Instead of combining the engineering BEM model, the
BPM noise model is directly integrated into the NS equations with the AD model. The BPM model
is a passive subroutine that can be activated anytime with the inflow velocity and AOA provided
from AD simulations. The trailing edge boundary layer thickness is interpolated from the existing
database prepared with Xfoil through a wide range of Reynolds numbers and AOAs. To take clean
and rough blade surface conditions into account, the boundary layer thickness database is created
under different surface roughness cases, such that wind turbine noise under free transition and fully
turbulent flows can be modelled. A fully-turbulent boundary layer thickness database is utilized to
calculate the noise of rotor whose blade surface is rough, and free transition database is applied for a
rotor with a clean surface.

2.3. Noise Propagation Method

Sound speed in an ambient flow is written as ce f f = c+ vx where c is the constant sound speed at a
given air temperature, vx is the wind speed component through the propagation path. The wind speed
components may come from field measurements, empirical expressions or numerical simulations.



Appl. Sci. 2019, 9, 100 5 of 22

For an incompressible wind flow, the air density is assumed as a constant, the wave equation in a
moving atmosphere reads [12][

∇2 + k2(1 + ε)− 2i
ω

∂vi
∂xj

∂2

∂xi∂xj
+

2ik
c0

v · ∇
]

P′(r) = 0 (9)

where k = ω/c0, ω is the radian frequency of sound wave, c0 is the reference sound speed, P′(r)
denotes the monochromatic field of sound pressure and ε = (c0/c)2− 1. If the effect from ambient flow
is neglected, this equation can be further reduced to Helmholtz equation. The ANSource of a wind
turbine is placed on the left boundary of the computational domain depicted in Figure 2. A classical
approach to represent a monopole ANSource is to distribute the source along the vertical direction
which is also called starting field. In this study, the rotor noise source is located at the hub height as
sketched at the left side of the boundary. Based on the initial source strength, the equation or the sound
pressure amplitude is computed along the x-direction, such that solution is renewed from P(x) to P(x +
∆x). The boundary condition applied on the ground surface is calculated from the impedance of the
ground. The empirical impedance model for absorbing materials developed by Delany and Bazely [21]
is used in this study,

Z = 1 + 0.0511
(

σ

f

)0.75
+ i 0.0768

(
σ

f

)0.73
(10)

where Z is the normalized acoustic impedance, σ represents the flow resistivity and f is the frequency.
The similar approach can be applied on the top surface. A constant of the normalized acoustic
impedance Z = 1 is implemented on the top grid, such that the vertical waves through the top surface
is vanished without any reflection. However, to sufficiently eliminate wave reflections, an absorbing
layer is defined on top of the grid. As shown in the figure, the grey region sketched on top of the
domain is the absorbing layer. In the study, the width of such an absorbing layer is defined as 50λ.
This implies that for lower frequency sound propagation, a larger absorbing layer is needed. The sound
pressure along the vertical line is updated from step n to n + 1 until the receiver position is reached.
The solution procedure starts with the separation of the forward and backward propagation waves.
Here, only the forward wave propagates from source towards receiver is considered (in the positive
x-axis), which is in the downwind direction. Detailed mathematical manipulations of the equation are
found in [12,13].

According to the methodologies described in Sections 2.1 and 2.2, the noise spectrum of a given
wind turbine is the logarithmic sum of sound pressure level (SPL) from all the blade elements such that

Lp( f ) = 10log10

(
n

∑
i

100.1SPLi
total

)
(11)

where n is the number of the blade elements and SPLi
total is the SPL of the ith blade element, which

accounts for all the noise mechanisms. The SPL of wind turbine ANSource Lp( f ) is the initial condition
for calculating long-path ANPropagation. The sound power level Lw( f ), which is a representation of
wind turbine total noise strength, it does not change with propagation range. The SPL at the receiver is

Lp( f ) = Lw( f )− 10log104πD2 − αD + ∆L (12)

where the first term on the right side is the sound power level, the second term −10 log10 4πD2 is the
geometric attenuation term that corresponds to the sound intensity loss when the sound wave sphere
is expanding. The third term shows the attenuation due to air absorption, which is proportional to
the absorption coefficient α and the propagation length D. ∆L is the relative SPL differences caused
by factors such as ground reflection/absorption (flat/irregular terrain), atmospheric refraction, wind
and turbulence and sound barriers, etc. It does not include the effects of geometric attenuation and air
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absorption. The ∆L varies along the propagation path with these factors, which is beneficial to clearly
manifest the effects of propagation. Most of the discussions and results in Section 3 are dealing with
this relative pressure level which is abbreviated as RSPL. The values of α depend on sound frequency,
air temperature, pressure and humidity. In the following studies, unless specified separately, a relative
humidity of 70% and temperature of 10 ◦C are assumed.
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The wave equation is solved based on each frequency. The ANSource and wake information
of given wind turbines from BPM/AD computations are combined into the ANPropagation solver.
For each frequency, the corresponding ANSource, known as the starting field, is individually applied
as the initial condition to the computational domain. Detailed descriptions about starting field
formulation can be found in publication from Salomons [11]. The horizontal size of the simulation
range is determined by the location of the receiver. However, the size of the vertical domain is flexible
such that the height of domain can vary with the simulated frequency. The maximum vertical size of
the grid should be less than ∆x = ∆z = λ/8 so that a sound wave can be resolved with at least eight
grid points. As a result, the domain height is inversely proportional to frequencies for a fixed number
of vertical grids. Besides, a larger CFD domain should be used in the simulation such that the flow
field can fully cover the noise propagation domain.

3. Results and Discussions

A few validations about ANPropagation cases are shown first. Under various flow conditions,
the flow passing wind turbine rotor, ANGeneration and ANPropagation problems are discussed in
detail. The RSPL ∆L over a long distance is computed for each frequency. After the validations, the
wind turbine ANPropagation across multi-wakes is shown. In all the cases, the temperature at the
ground level is 15 ◦C, such that the equivalent sound speed is 340 m/s.

3.1. Validation of Long-Range Sound Propagations without Ambient Flow

This validation case considers the idealized long-range sound propagation without any moving
medium or temperature gradient effects. The terrain contains a flat and acoustically soft surface with a
total length of 200 m. The flow resistivity of a grassland are usually in range from 100 kPa · s ·m−2

to 300 kPa · s ·m−2. The absorbing ground surfaces in the current simulation has a flow resistivity of
250 kPa · s ·m−2. The ANSource locates at x = 0 m, z = 0.5 m and the receiver at x = 200 m, z = 1.5 m.
The current results are compared with the data presented in reference [22] where either measured
data or data obtained from other models are available. The sound transmission losses over 200 m are
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shown in Figure 3 where the selected frequencies in the 1/3-octave band are gathered. At very low
frequencies, i.e., f = 20 Hz and f = 40 Hz, the RSPL ∆L is increased with the propagation distance.
At higher frequencies, ∆L gradually decreases along the propagation distance. The ∆L values at 200 m
are compared in Figure 4 which shows that there is a large propagation loss between 400 Hz and
1000 Hz. The present simulation agrees with the reference data and the simulation obtained from the
Nord2000 commercial model [23].
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3.2. Validation of Long-Range Sound Propagations with a Positive Temperature Gradient

In this case, the terrain distance, source, and receiver locations remain the same, but the ground
is an acoustically hard surface, meaning that the flow resistivity is close to infinity. The temperature
gradient was measured as 0.0846 K/m. If a linear temperature variation is assumed, the temperature
and sound speed profiles are easily computed using the following relations

T =
∂T
∂z
· z + T0 (13)

c = c0 ·
√

T/T0 (14)
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Such a temperature gradient leads to a downward sound propagation. As a result, the RSPL
along the propagation direction will probably increase. In Figure 5, it is seen that there is a general
increase of ∆L along the propagation path except near the source locations (x < 40 m). The ∆L values
are gathered at x = 200 m distance and are depicted in Figure 6. It is found that the ∆L values are
positive between 20 Hz and 5 kHz. The current prediction fits well with the reference data.
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3.3. Validation of Long-Range Sound Propagations with Upward Refraction under Wind Condition

Similar as shown in the previous test case, the ground acoustic impedance is also infinity. However,
an upward refraction case is considered which is caused by a moving atmosphere. The wind speed
recorded at 10 m height above the ground is −4.165 m/s, and the surface roughness length is 0.1 m.
In a moving medium, the sound speed can be computed using the equation below

ce f f (z) = c0 + b ln
(

z
z0

+ 1
)

(15)

where ce f f is the profile of effective sound speed along the vertical direction, c0 = 340 m/s is the
sound speed and z0 = 0.1 m is the roughness height. Knowing the wind speed at 10 m height and
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the roughness length, it is easy to show that b ≈ −1. Such a sound speed profile represents a slightly
upward atmospheric refraction. In Figure 7, except at very low frequencies, the RSPL decays very fast
along the propagation path. Figure 8 shows a very good agreement with the reference data which
indicates the capability of the current method to handle noise propagations through moving media.
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3.4. Coupled Flow and Noise Simulations for a Wind Turbine Array

3.4.1. Wake Modeling of a Wind Turbine Cluster

Wind turbine flow are simulated for a Vestas wind turbine called NM80. The AOA and the
relative velocity at all blade elements from RANS/AD simulations are inputted to the BPM model.
The AD solver is much more efficient because it represents the rotor by volume force term rather than
the dense body-fitted-mesh around blade surface. The flow computations are carried out with the
in-house developed flow solver [24–26] which is an incompressible flow solver.

The grid for AD simulation and a typical flowfield with multi-wake structures are depicted in
Figure 9. In Figure 9a, two wind turbines, depicted with thick white lines, are used for demonstration.
The inflow boundary is applied on the left and top domain edge (numbered as 1 in Figure 9), the
axisymmetric boundary on bottom edge (numbered as 2) and outflow boundary on the right edge
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(numbered as 3). The computational domain consists of the several blocks whose number is the same
as that of wind turbines to be investigated. Each block contains grid points of 64 × 64. Using this
approach, multi-wake flowfield can be efficiently modelled. A typical horizontal velocity contour plot
is shown in Figure 9b.
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To show the model accuracy, in Figure 10, some results from the current simulations using RANS
turbulence model are compared with the LES results under same flow conditions [27,28]. On the
modeling of wind turbine wake, many studies can be found [29–31]. In the present study, it is not
of our primary interest to go into more details on this topic. Some more details of the AD modeling
approach and cross comparisons can be found from our previous works [32–34].Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 22 
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3.4.2. Modeling of the Wind Turbine ANSource

As is shown in the above AD simulation, every wind turbine has different inflow conditions
because some wind turbines are in the wake of another, which leads to different ANSources.
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The simulation were conducted for a free-stream wind velocity of 8 m/s. For a receiver at 120 m far
away, the detailed noise spectra solely from the first upstream wind turbine are shown in Figure 11.
The noise spectra for other downstream wind turbines will be shown in the later sections. As shown in
the figure, the total SPL spectrum is name as SPL-TOTAL which is logarithmically summed from several
noise mechanisms. These noise mechanisms include: noise from blade tip (SPL-TIP); from trailing
edge bluntness (SPL-TEBLUNT); from the shedding of laminar boundary layer vortex (SPL-LBLVS);
from flow separation (SPL-SEPARATION); from turbulent boundary layer trailing edge (SPL-TBLTE);
from turbulent inflow (SPL-INFLOW) [14–16]. Later, the total noise spectrum will be applied into the
noise propagation computations.
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3.4.3. Sound Profiles Inside wind Turbine Wakes

Although the flow and the noise source are modelled without wind and temperature gradients,
in reality the effective sound speed profile will be affected by wind and temperature profiles. It was
shown that the combinations of wind speed and temperature gradient forms different types of
sound speed profiles [35]. Three idealized initial sound profiles are considered in the following
sound propagation simulations. In Figure 12a, a uniform sound speed at temperature of 15 ◦C is
assumed at the left boundary. The wind turbines are separated with a normalized distance of seven
rotor diameters. For example, the second wind turbine is located at x = 560 m and the third wind
turbine is located at x = 1120 m. Inside the computational domain, the sound speed is superimposed
with the wind turbine wake field. Similarly, Figure 12b,c represent downward and upward sound
speed contours. These sound profiles merge with the wind turbine multi-wakes and show distinct
characteristics. The sound profiles have significant effects on wind turbine noise propagation as shown
in the next subsection.
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3.4.4. Wind Turbine ANPropagation across Multi-Wake

As shown in Figure 13, the RSPL or ∆L is simulated along 1500 m propagation distance, at
f = 300 Hz and with the noise spectrum in Figure 11. The first wind turbine locates at x = 0 m, the
second at 560 m and the third at 1120 m. The distance between each wind turbine are relative large.
The wind turbine ANSource are placed at a height of 70 m. The ANSources from the second and third
wind turbines, depicted as white lines, are not considered so as to focus on the propagation phenomenon
through the wakes. In Figure 13, RSPL results are shown under several conditions: (1) Case 1,
ANPropagation under homogeneous atmospheric condition, no wake effect; (2) Case 2, ANPropagation
under homogeneous atmospheric condition, considering multi-wakes; (3) Case 3, ANPropagation under
atmospheric condition of down-ward refraction, considering multi-wakes; (4) Case 4, ANPropagation
under atmospheric condition of upward refraction, considering multi-wakes. It is shown that the
wind turbine ANPropagation is clearly affected by the complicated flow environment. For the case
without any wake effect shown in Figure 13a, the ANPropagation is mainly influenced by the reflection
and absorption of ground. As is shown in Figure 13b, the contours of RSPL is more complicated
than that of Figure 13a which distinctly shows the influences of wake. For atmospheric condition
of downward refracting depicted in Figure 13c, the ‘noise pollution’ band also shows a downward
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reflecting behavior. Additionally, a low-noise zone, shown in blue, can be found near x = 1000 m.
In Figure 13d, a much quieter situation is observed under an upward refraction condition. In such a
case, the quiet zone is located between wind turbine #2 and #3. It should be emphasized that uniform
inflow boundary condition is applied in the flowfield simulations of Figure 13c,d. However, the
un-uniform or down/up-ward atmospheric conditions, which means atmospheric altitude-dependent
variation of the sound speed, are used in the ANPropagation computations.
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Manifesting the noise received by humans, the RSPL or ∆L at h = 2 m is extracted from Figure 13
and shown in Figure 14.The sound attenuation ∆L of Case 1 starts to vary linearly with the propagation
distance at around x = 400 m, because the reflection effect becomes weaker after that. In contrast,
the ∆L of Case 2, 3, and 4 vary obviously even after a long distance. In Cases 2 and 3, ∆L fluctuates
over distance due to the wake effect and the strong downward refraction respectively. Whereas in
Case 4, a more significant RSPL loss is shown which is caused by the upward refraction. It should be
mentioned that the ∆L values might be quite different when the observer height changes. From this
comparison, it can be concluded that ANPropagation can be greatly influenced by the environmental
conditions. What is more, the change of SPL in the near downstream is much smaller than that at far
downstream (x > 400 m), which shows the significance of long distance wind turbine noise predictions
under complex atmospheric conditions. The near field (x < 400 m) simulations and measurements only
belong to ANSource study which is not identical to the long-path ANPropagation.
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Result shown in Figure 14 represents the ∆L solely due to propagation which is computed at a
fixed frequency of f = 300 Hz. Repeating the calculation for many frequencies and extracting the data
at a receiver 1500 m away and 2 m height, a full spectrum of ∆L will be obtained. Using Equation (12)
and considering all the effects (including ∆L), the SPL at receiver’s location under Case 1 and Case
3 is gathered and shown in Figure 15. Besides, the spectrum of ANSource and at receiver’s location
(without ∆L) are also depicted in Figure 15. In this work, the ANSource is considered in an 1/3-octave
band from 20 Hz to 5000 Hz. Since a minimal eight grid points are needed to resolve a sound wave,
the grid number for high-frequency simulations increases sharply if the same domain size is adopted.
For instance, there is a 100-fold increase in the grid number for frequency of 3000 Hz compared with
that of 300 Hz. To reduce the computational effort, frequencies above 5000 Hz are not considered here.
Another reason is that the noise reduction due to air absorption, −αD in Equation (12), is much larger
than the other factors at large frequency (f > 5000 Hz). The SPL at the source location is shown with
black line with asterisk and labeled as ‘Source: Lp’ in Figure 15. The black lines with stars represent the
SPL at receiver (2 m height at x = 1500 m) without considering the propagation loss ∆L in Equation (12).
The blue line (Case 1) and red line (Case 3) consider all the factors, including geometric attenuation,
air absorption and ∆L, in the long-path ANPropagation simulations. The big deviation between the
two black lines demonstrates that the geometrical attenuation (10 log10 4πD2) contributes most to the
ANPropagation loss. The even larger reduction of noise, when f > 1000 Hz, means that air absorption
has a larger effect at high frequencies. The differences between blue/red lines and the black line with
stars implies the value of ∆L. The value of blue and red lines are larger than that of black line with
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stars, which means positive ∆L near low frequency (f = 30 Hz). However, Case 1 and Case 3 show
opposite ∆L around f = 200 Hz which implies the influences of wake and downward refraction.
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attenuation and air absorption, Case 1 and Case 3 with all propagation effects.

Similar as the previous simulations, the following study focuses on the noise propagation area
between 1120 m and 2500 m, and a higher frequency f = 1000 Hz is selected. In this region, the three
individual wind turbine noise sources propagate and superimpose on each other. In Figure 16a, the
results cover the entire domain behind the last wind turbine. The solution differs from Figure 13a
in the sense that it is the RSPL from all the three wind turbines. In Figure 16b, the uniform sound
profile at the inlet boundary is affected by the multi-wake (see Figure 12a), such that the resulted
RSPL is enhanced around wake center. With the prescribed sound profile of Figure 12b, the RSPL is
refracted downwards, as shown in Figure 16c. Similarly, using the sound profile given in Figure 12c,
the resultant sound propagation is refracted upwards, see Figure 16d.

Figure 17 better illustrates the superposition of the sound pressure propagates from each wind
turbine, which is a decomposition of Figure 16d. In the first figure, noise is generated from wind
turbine #1 and propagates through the wake flow. The other two wind turbines are depicted with
white lines, which imply that they are currently excluded for noise propagation. In the next simulation,
shown in Figure 17b, ANPropagation from wind turbine #2 is individually considered, which excluded
noise propagation from wind turbine #1 and #3. Similarly, wind turbine #3 is then considered for
ANPropagation, which does not take account of the two upstream wind turbine noise propagations.
The total RSPL is the summation of sound pressure following the logarithmic sumation rule, which is
shown in Figure 17d.

Figure 18 shows the RSPL or ∆L extracted from a line at 2 m high. The overall sound pressure
variation for different cases is smaller as compared to the previous results shown in Figure 14. This is
due to the mixing of three individually simulated propagation field. Among all the test cases, Case 3
can be regarded as the worst-case scenario. For example, around the distance of x = 1800 m, there is an
obvious increase of SPL due the strong downward refraction at this region, which is also observed in
Figure 16c at x = 1800 m.
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Similar to the procedures previously mentioned for Figure 15, Figure 19a–c show the noise spectra
from wind turbines #1, 2, and 3, respectively. The difference is that the three wind turbines are
individually considered for its noise generation and propagation at the given frequencies (20 Hz–
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5000 Hz). Due to the presence of velocity deficit in the wake, the inflow conditions of the two
downstream wind turbines are slightly different, and thus the ANSources of the three wind turbines
are slightly different from each wind turbine. In each figure, the original ANSource is shown on top of
the other noise spectra. Similar to the situations in Figure 15, geometrical attenuation plays an primary
role in the large noise reduction for ANPropagation at f < 1000 Hz, and the noise absorption by air
has a strong effect at f > 1000 Hz. As expected, Case 3 shows more distinct characteristics for the
frequencies. In Figure 19, the receiver is fixed at x = 2500 m, z = 2 m, therefore the sound pressure is
largely attenuated for wind turbine #1 due to the longest propagation distance. A similar behavior
is seen for wind turbines #2 and #3, where the noise level is the highest for wind turbine #3 due to
the shortest relative distance from source to receiver. Figure 19a–c also show that at different relative
propagation distances 2500 m (#1), 1940 m (#2) and 1380 m (#3), the distribution of SPL maintains
some similarity. The differences of these sound spectra come from the combined effect of wake flow
and the propagation distance. Finally, the total noise received from the three wind turbines can be
got through logarithmically adding the sound spectra from individual wind turbines. In Figure 19d,
the sources Lp1, Lp2, and Lp3 represent the ANSource level of the three wind turbines. The major
difference is seen at the middle frequency range, which is due to the different input velocity data
obtained from flow simulation. Case 1 and Case 3 all show that the most significant influence comes
from wind turbine #3, which is not a surprise. To highlight more detailed difference in the noise spectra,
a few typical values are compared in Table 1. At f = 20 Hz, the summated SPL from three turbines
(Case 3) is 37.92 dB which is 3 dB higher than that from wind turbine #3 (Case 3). This difference
becomes smaller when frequency increases. This implies that the low frequency noise generated
from the far upstream wind turbines still plays an important role. On the other hand, if a simple
sound propagation algorithm is applied, such as shown in the last column of Table 1, a large error is
observed in a frequency range below 1000 Hz. It indicates that the high frequency noise will be heavily
attenuated over long propagation distance except in special cases such as sound propagation over
water (hard surface), stronger downward refraction under special climate conditions.

Table 1. Comparisons of SPL at some selected frequencies

Case 3 (Figure 19c) Case 3 (Figure 19d) Lw−10log104πD2−αD (Figure 19d)

20 (Hz) 34.64 dB 37.92 dB 33.89 dB
100 (Hz) 12.61 dB 15.05 dB 28.53 dB
250 (Hz) 26.25 dB 28.33 dB 27.57 dB

1000 (Hz) 17.10 dB 17.99 dB 18.00 dB

Finally, it is interesting to predict the noise spectra at different receivers. The receiver height is
again fixed at z = 2 m, and the horizontal distances measured from wind turbine #1 are: x = [1620,
1820, 2020, 2220, 2420] m. The noise spectra are shown in Figure 20 and marked with different colors.
The general trend is that the noise level decreases as observer distance increases. However, it does not
always hold true at some distances and frequencies. For example, at x = 1820 m (22.75D), except at low
frequencies, increase of noise level is observed as compared to the x = 1620 m case. The simulations
show that the low frequency noise might be the major wind turbine noise source in the farfield. Since
the spectra are obtained in farfield, the overall SPLs are quite low. According to the wind turbine noise
regulations in many countries (such as 45 dB), the calculated noise evidently fulfill the limit. From the
results, it is seen that SPLs over 1000 Hz is below 20 dB. For future studies, it is indicated that more
focus should be paid on long-path ANPropagation at low frequencies.
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4. Conclusions

Combing the flowfield aerodynamic simulation and the aeroacoustics computation of multi-wind
turbines is the focus of this paper. To achieve this objective, ANSource modeling, flow simulation
and ANPropagation are individually described and then integrated. The numerical computations are
carried out using the in-house developed tool EllipSys. The ANSource modeling and ANPropagation
modeling are implemented in the platform of EllipSys. The steady CFD simulations are performed
to obtain the flowfield with a relatively efficient 2D-AD solver. The ANSource of wind turbine
is calculated using the flowfield information from CFD computations. Then the ANPropagation is
simulated which needs the data from both CFD simulations and ANSource computations. Results from
different case studies show that a long-path ANPropagation are greatly influenced by different flow
conditions, atmosphere conditions and wake condition. An overall trend is that the ANSource from
wind turbines is broadband, but the received noise level at long travelling distances from multi-wind
turbines is complicated. The noise spectra show that the low frequency noise from a wind turbine
cluster might be an important issue to be further investigated. It has been shown in the results that at a
distance over 1 km (about 12 rotor diameter), the high frequency components are largely attenuated,
say at f > 1000 Hz. In a large wind farm with superimposition of noise sources from multi-wind
turbines, the computational load will be heavy if high frequency noise is simulated. The ray theory, as
compared in Sections 3.1–3.2, is a high-frequency approach therefore the low frequency solutions are
not very accurate if strong refraction and diffraction are represented. The present numerical approach
has same accuracy over all frequency range. However, to solve high frequency ANPropagation,
higher grid density is required, thus increasing computational time. Fortunately, results presented in
Figures 18 and 19 indicate that it is the low frequency noise components that contribute to the long
range wind turbine ANPropagation. The receiver distances shown in Figure 19 ranges from 20 to
30 rotor diameters. It is clear that at such a large distance, attenuation of low frequency noise is still
not significant.
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