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Effects of control measures on the 
spread of LA-MRSA among Danish 
pig herds between 2006 and 2015 – 
a simulation study
Jana Schulz  1, Anette Boklund1, Nils Toft1 & Tariq Halasa  1,2

There has been a rapid increase in Danish pig herds testing positive for livestock-associated Methicillin-
resistant Staphylococcus aureus (LA-MRSA) since the first screening in 2008. Despite a national action 
plan to control LA-MRSA in the Danish pig population, 88% of pig herds tested positive in a 2016 cross-
sectional study of 57 herds. The national action plan was initiated in April 2015 and aimed to reduce 
the spread of LA-MRSA among pig herds. However, its success is uncertain. We used a simulation 
model mimicking the spread of LA-MRSA among pig herds between 2006 and 2015 to evaluate the 
impact of control strategies if these had these been implemented in 2007 or 2010. The strategies 
were combinations of the following control measures: (1) a reduced number of herds using high-risk 
antibiotics, (2) a reduced probability of indirect transmission among herds via humans, (3) movement 
restrictions, and (4) voluntary eradication in 5–7.5% of the herds. Almost all tested control strategies 
simulated a reduction in the spread of LA-MRSA. The combination of two, three or four intervention 
strategies showed additive effects and led to larger reductions in the predicted herd prevalence. In 
addition, the prevalence of LA-MRSA-positive herds at the time when control measures were initiated 
influenced the effects of the control strategies. Combining the simulated control measures can be 
considered in future action plans to control LA-MRSA.

Methicillin-resistant Staphylococcus (S.) aureus (MRSA) is a group of S. aureus that is resistant to most β-lactam 
antibiotics1. The main reservoir for livestock-associated MRSA (LA-MRSA) is the pig population, though it has 
also been found in humans and other animal species2. In humans, (LA-) MRSA can cause severe infections in 
children, elderly or immunosuppressed people. The number of LA-MRSA cases in humans has increased in 
recent years3. Transmission from livestock to humans has been established4,5, so limiting the spread of LA-MRSA 
in the pig population may limit the number of LA-MRSA cases in humans.

The first detection of LA-MRSA in Danish pig farms was in isolates from samples taken in 20066. In 2008, a 
survey conducted in 26 European countries by the European Food Safety Authority (EFSA) found 3% of Danish 
production herds, but no Danish breeding herds, were positive for LA-MRSA type CC3987. However, a 2014 
national survey found a prevalence of 63% in breeding herds and 68% in slaughter pig herds8, and a similar survey 
from 2016 found a prevalence of 88% in finisher herds3.

Danish pig production has a pyramidal structure with breeding herds at the top, production herds in the mid-
dle and slaughterhouses at the bottom9. Pig movements mainly occur vertically (i.e. from the top to the bottom 
of the pyramid) in accordance with pig production, but horizontal connections (i.e. among herds of the same 
herd type) also exist9. Pig movements were identified as an important route for the spread of LA-MRSA among 
pig herds10,11. The Danish Veterinary and Food Administration (DVFA) published an action plan for controlling 
LA-MRSA in April 2015, based on recommendations from a risk assessment12. This action plan aimed to reduce 
the use of antibiotics in pig production by 15% from 2015 to 2018, thereby reducing levels of LA-MRSA in pig 
herds. Catry et al.13 described potential control measures to limit the spread of LA-MRSA among pig herds based 
on risk factors for LA-MRSA spread. They suggested: (1) improved hygiene within herds and during transport, 
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beginning with the breeding herds and followed by the rest of the production chain, and (2) prevention of pig 
movements from MRSA-positive to MRSA-negative herds.

Schulz et al.14 developed an agent-based Monte Carlo simulation model of the spread of LA-MRSA among pig 
herds in order to study the epidemic behaviour and to identify the driving factors in LA-MRSA spread among pig 
herds. The model suggested that the spread of LA-MRSA could be explained by three transmission routes: animal 
movements, indirect contact and unexplained introductions. None of the three transmission routes on their own 
were able explain the rapid increase in LA-MRSA prevalence in Denmark. However, combining all three routes 
under the model assumptions mimicked a development of LA-MRSA-positive herds similar to the trend observed 
in Denmark. Both the frequency and effectiveness of indirect contact with humans visiting more than one herd 
on the same day were identified as sensitive parameters in the model presented by Schulz et al.14. The model can 
be used to assess which control measures could have been used to control the spread of LA-MRSA among herds. 
Retrospective studies on how an epidemic in a country/region could have had been influenced may aid in con-
trolling future epidemics in the same or in similar areas.

The objective of this study was to investigate how the spread of LA-MRSA of type CC398 (hereinafter referred to 
as LA-MRSA) among Danish pig herds between 2006 and 2015 could have been influenced by: (1) a reduced num-
ber of herds using high-risk antibiotics, (2) a reduced probability of indirect transmission via humans visiting more 
than one herd per day (reflecting high levels of biosecurity), (3) movement restrictions between LA-MRSA-positive 
and negative herds, and (4) voluntary eradication of MRSA in 5–7.5% of the herds. Additionally, we compared two 
starting points for these control actions to evaluate the impact on the reduction of LA-MRSA spread.

Materials and Methods
Simulation model. We used an agent-based Monte Carlo simulation model mimicking the spread of 
LA-MRSA among Danish pig herds between 2006 and 2015. Figure 1 illustrates the structure of the original 
model, which is described in detail by Schulz et al.14 Herd information on Danish pig herds and movement data 
from 1st January 2006 to 31st December 2015 were used as the basis for modelling.

Within-herd spread was simulated using a three-compartment SIS model with different transmission rates 
within the three compartments of sows, weaners and finishers, and with high- and low-risk transmission routes 
between these compartments. PERT distributions with higher minimum, mode and maximum values were used 
for herds using high-risk antibiotics (Table 1). A stochastic and time-discrete simulation process was imple-
mented to mimic spontaneous recovery from LA-MRSA (i.e. colonised pigs could randomly be cleared of 
LA-MRSA at any time, according to pre-defined cure rates).

Between-herd spread was modelled via two routes: direct and indirect contact among pig herds. Direct trans-
missions were modelled using data on animal movements registered in the Central Husbandry Register (CHR)15. 
Registered movements among herds were used directly in the model. In the original model, the number of regis-
tered sows, weaners and finishers and the number of positive pigs in each of these compartments was recorded for 
each herd during the simulation. Each pig movement record consisted of the date of the movement, the number 
of pigs moved (batch size) and the types of pigs moved out of the sending herd and into the receiving herd (i.e. 

Figure 1. Structure of the LA-MRSA spread simulation model (adapted from Schulz et al.14). The original 
structure is enhanced by four potential control strategies (dark grey ellipses).

Use of high-risk 
antibiotics

Within-compartment 
transmission rate

Low-risk between-compartment 
transmission rate

High-risk between-compartment 
transmission rate

no

min = 0.111 min = 0.00175 min = 0.07184

max = 0.856 max = 0.00301 max = 0.48155

mode = 0.307 mode = 0.00233 mode = 0.18301

yes

min = 0.211 min = 0.00330 min = 0.13689

max = 2.924 max = 0.01029 max = 1.64515

mode = 0.784 mode = 0.00583 mode = 0.46796

Table 1. Assumed values for a PERT distribution to define herd-specific transmission rates based on the use of 
high-risk antibiotics, adapted by Broens et al.17. The original table was presented in Schulz et al.14.
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sows, weaners or finishers could be moved out of the sending herd and sows, weaners or finishers could be moved 
into the receiving herd). Pig movements were modelled as follows:

 (1) If the sending herd was negative for LA-MRSA (i.e. the number of positive pigs was zero in each of the 
three compartments), no pigs were moved because transmission was not possible, and herd sizes were kept 
constant during each simulated year.

 (2) If the sending herd was LA-MRSA positive, the number of LA-MRSA-positive pigs in the movement batch 
was calculated based on the prevalence of the sending herd (i.e. if the sending herd had a within-herd prev-
alence of 50%, the prevalence in the movement batch was also assumed to be 50%). In the receiving herd, 
an increased prevalence was calculated based on the number of positive pigs in the receiving herd plus the 
number of positive pigs in the movement batch.

Indirect contact was mimicked as the transmission of LA-MRSA via humans visiting more than one pig herd 
per day and via trucks that collect pigs for slaughter from more than one herd on the same day. While data for 
the collection of pigs sent to the abattoir was available in the movement register and these were used to calculate 
herd-specific lambdas, herd-level data did not exist for visitors. This contact type was modelled as a Poisson 
distribution with the same mean (λ) for all indoor or outdoor herds (Table 2). The probability of infection via 
indirect contact with LA-MRSA-positive herds was modelled as a PERT distribution (Table 2).

Herds at different addresses could be owned by the same farmer, and transmission among these pig herds 
was modelled to mimic the contact and potential transmission of LA-MRSA via shared workers or equipment. 
If a herd was positive for LA-MRSA, transmission was implemented among all herds owned by the same farmer. 
Therefore, the herd prevalence was calculated for the positive herd and a low-risk transmission rate was used 
for between-compartment transmission in order to model the spread between the positive herd to the sow (or 
weaner or finisher) section of the other herds owned by the same farmer (Table 1).

In the original study by Schulz et al.14, 17 initialisation scenarios were simulated in which LA-MRSA was 
introduced to pig herds in 2006 and, depending on the scenario, further introductions followed in subsequent 
years. The predicted herd prevalence was compared to LA-MRSA screening results in 2008 and 2014. We defined 
a new initialisation scenario for the introduction of LA-MRSA in the first years of the simulation period, aiming 
at a median herd prevalence between 60% and 70% in 2015. We selected 400 production herds and 10 breeding 
and multiplier herds at random to be LA-MRSA positive in 2006. A second introduction was modelled in 2009, 
again by random selection of 400 production herds and 10 breeding and multiplier herds positive for LA-MRSA.

In the following scenarios, the predicted herd prevalence on 31st December 2012 was the basis for comparison 
among different control strategies.

Control strategies. To simulate different interventions and to evaluate their performance, the initial model 
developed by Schulz et al.14 was enhanced. Four control measures were simulated, either separately or in dif-
ferent combinations. All control measures were initiated on 1st January 2007 (initiation date) and continued 
until the end of the simulation. To investigate the effect of starting date, i.e. the effect of the initial prevalence of 
MRSA-positive herds, all scenarios were also run with 1st January 2010 as the initiation date for the simulated 
control strategy. The results were measured as the prevalence of LA-MRSA-positive herds on 31st December 2012 
(for initialisation in 2007) and 31st December 2015 (for initialisation in 2010). This enabled us to compare the 
effects after a similar time period. If several control measures were combined, all control measures were initiated 
on the same date. In addition, this allowed us to quantify the effects of control measures under a higher initial 
LA-MRSA prevalence compared to the initial prevalence in 2007.

The relative reduction was calculated as the proportion Rs for each scenario s, calculated as:

=
−R Prev Prev

Prev
,s

d s

d

with Prevs as the predicted median prevalence of scenario s and Prevd as the predicted median prevalence of the 
default scenario.

Variable name Default value Description Reference

Modelling disease spread among herds

Spread via indirect contact

λin 0.256 Average daily probability of indirect contact 
originating from an LA-MRSA-positive indoor herd

Adjusted based on 
Boklund et al.27

λout 0.1864 Average daily probability of indirect contact 
originating from an LA-MRSA-positive outdoor herd

Adjusted based on 
Boklund et al.27

probin PERT (min = 0.001, max = 0.01, mode = 0.005071) Probability of infection via contact from an LA-
MRSA-positive indoor herd Expert opinion

probout PERT (min = 0.001, max = 0.01, mode = 0.0035) Probability of infection via contact from an LA-
MRSA-positive outdoor herd Expert opinion

proba PERT (min = 0.001, max = 0.01, mode = 0.004714) Probability of infection via abattoir movements Expert opinion

Table 2. Overview of simulation parameters and default values used in the LA-MRSA spread model developed 
by Schulz et al.14. Only those parameters related to transmission via indirect contact that varied in the presented 
study are shown.
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Reduction of high-risk antibiotic use (AB). Tetracycline and β-lactam antimicrobials were defined as high-risk 
antibiotics, as these antimicrobial classes select for LA-MRSA CC39816 and were shown to affect its transmis-
sion17. The original model included information on the prescription of β-lactams or tetracycline at herd level14. 
Herds that received prescriptions for these antibiotics were modelled with higher within-herd transmission rates 
(value high-transmission) compared to herds that did not receive prescriptions (value low-transmission; Table 1). 
In the scenarios that used this control measure, 50% or 100% of herds that received prescriptions for high-risk 
antibiotics on the initiation date were randomly chosen. From the initiation date until the end of the simulation 
period, cessation of high-risk antimicrobial use was simulated by changing the within-herd dynamics of these 
herds using transmission rates for herds that did not use high-risk antibiotics.

Reduced probability for indirect transmission via humans (ProbIT). In scenarios using this control measure, we reduced 
the minimum, maximum and mode value of the default PERT distributions by 50% or 75% in all herds (Table 2).

Movement restriction (MR). To limit the spread of LA-MRSA via pig movements, a potential control option 
would be to prohibit movements from LA-MRSA-positive to LA-MRSA-negative herds. In this case, the status of 
the herds must be known. We enhanced the initial model by simulating periodic LA-MRSA screenings within the 
herds. Testing was simulated by nasal swabs with a sensitivity of 78% and a specificity of 99.9%18. We randomly 
assigned test results to the simulated herds based on assumed test characteristics of the true status of the herds on 
the day of an LA-MRSA screening.

For all movements, we then checked the following cases:

 (1) If the sending herd had a negative test result, pigs were moved according to the movement data.
 (2) If the sending and receiving herds were simulated to have positive test results, pigs were also moved ac-

cording to the movement data.
 (3) If the sending herd had a positive test result, but the receiving herd had a negative test result, we assumed 

that the pigs were moved to another LA-MRSA-positive herd. For all LA-MRSA-positive herds, we checked 
for a potential new receiver of the same herd category (dependent on the number of registered sows, 
weaners and finishers) and randomly selected one, if available. If there were no potential new receivers, we 
assumed that the pigs were exported and therefore disregarded the movement.

We ran two scenarios to mimic movement restrictions: testing all herds once per year and testing all herds four 
times per year. We assumed that all herds were tested on the same day.

Voluntary eradication (Erad). Mimicking an eradication process (i.e., depopulation followed by cleaning and 
disinfection) also required testing the herds, as only herds testing positive for LA-MRSA would initiate an erad-
ication programme. We assumed that 7.5% of the breeding and multiplier herds and 5% of all other herd types 
would begin eradication after testing positive for LA-MRSA. These herds were chosen randomly out of all breed-
ing and multiplier (other herds) that tested positive for LA-MRSA. The eradication process lasted between 168 
and 378 simulation days, depending on the production type of the herd (Table 3). These values were based on 
experience of previous eradication programmes performed in Danish pig herds (personal communication, Finn 
Udesen – SEGES, Danish Agriculture & Food Council). During this time period, no movements (either in or out) 
were performed. We ignored these movements, assuming that the herd did not send pigs to other herds, except 
for slaughter or culling. Moreover, we assumed that the herd would have been restocked with LA-MRSA-negative 
pigs. As soon as the eradication period ended, registered in-coming and out-going movements were modelled 
as implemented in the original model. We ran this control measure assuming that herds would be screened for 
LA-MRSA once per year. When voluntary eradication was combined with movement restrictions based on test-
ing all herds four times per year, herds were sampled four times per year as well as at the start of the eradication 
process. An upper limit of 25% of all registered breeding and multiplier herds was set. If this limit was exceeded, 
no additional breeding and multiplier herds initiated eradication. No limit was set for other herd types.

All control strategies were added to the original model individually and combined in all possible combinations.
Simulation modelling and graphical presentation of results were performed in R version 3.2.2 - “Fire Safety“19. 

Like the original model, all simulations were run with 500 iterations to cover any extra variability in the different 
scenarios.

Results
The default initialisation scenario without control measures led to a predicted median herd prevalence of 47% 
on 31st December 2012 and 62% on 31st December 2015 (Table 4). On 1st January 2007, the median prevalence 
was 4% [90% prediction interval: 3–7%]. Control strategies with this initiation date are presented in Table 4. 
No reduction in median prevalence was observed when the number of herds using high-risk antibiotics was 
reduced by 50% (Table 4, Scenario 1.1: AB (50%)). However, a relative reduction of 38% was observed if all herds 
reduced the use of high-risk antibiotics (Table 4, Scenario 1.2: AB (100%)). Furthermore, these scenarios showed 
larger variation compared to the default scenario. Reducing the probability of effective indirect contact from 
LA-MRSA-positive herds by 50% or 75% (Scenarios 1.3 and 1.4: ProbIT (75%) and ProbIT (100%)) led to reduc-
tions in the median prevalence to 37% and 31%, respectively (Table 4). Movement restrictions did not lead to a 
reduction in the predicted median prevalence when it was based on testing herds once per year (Table 4, Scenario 
1.5: MR (1/year)), while a relative reduction of 22% was observed when movement restrictions were based on 
four yearly screenings (Table 4, Scenario 1.6: MR (4/year)). Voluntary eradication (Scenario 1.7: Erad (1/year)) 
led to a limited reduction in the median prevalence to 43%.
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In the next step, we combined two control scenarios. We observed an additive effect that was slightly larger 
when the combination included a reduction in high-risk antibiotic use in all herds (Table 5, Scenarios 2.6–2.10). 
The variance increased in all scenarios that included the reduction of high-risk antibiotics. The lowest median herd 
prevalence (15%) was found when reduced high-risk antibiotic use in 100% of the herds was combined with a 75% 
reduction in the probability of effective indirect contact from LA-MRSA-positive herds (Table 5, Scenario 2.7).

The combination of three control measures led to a maximum reduction in the simulated median prevalence 
to 10% herd prevalence when the reduction of high-risk antibiotics in all herds, movement restrictions based on 

Production type Description
Assumed duration of 
eradication process

Sow herd <5 finishers per sow 266 days

Integrated herd 5–7.7 finishers per sow 378 days

Finisher herd >7.5 finishers per sow 168 days

Table 3. Assumed duration of the eradication process, dependent on herd categories based on the registered 
number of sows and finishers.

Scenario ID
Scenario 
acronym

Predicted median herd prevalence in % on 31st 
December 2012 with initialisation of control 
on 1st January 2007 [90% prediction interval] 
(relative reduction)

Predicted median herd prevalence in % on 31st 
December 2015 with initialisation of control 
on 1st January 2010 [90% prediction interval] 
(relative reduction)

No control measures

0 Default 47 [42–52] 62 [59–65]

Single control measures

1.1 AB (50%) 47 [30–61] (0%) 59 [46–70] (6%)

1.2 AB (100%) 29 [13–44] (38%) 48 [26–60] (24%)

1.3 ProbIT (50%) 37 [31–43] (21%) 57 [52–60] (9%)

1.4 ProbIT (75%) 31 [26–37] (33%) 53 [48–57] (15%)

1.5 MR (1/year) 47 [43–53] (0%) 63 [60–66] (−1%)

1.6 MR (4/year) 37 [32–42] (22%) 55 [51–58] (12%)

1.7 Erad (1/year) 43 [38–49] (8%) 59 [55–62] (6%)

Table 4. Predicted median prevalence of the default scenario and the four individual control measures 6 years 
after initiation of the control programme. The scenario acronyms are described in the main text.

Scenario ID Scenario acronym

Predicted median herd prevalence in % 
on 31st December 2012, initialisation 
of control on 1st January 2007 [90% 
prediction interval] (relative reduction)

Predicted median herd prevalence in % 
on 31st December 2015, initialisation 
of control on 1st January 2010 [90% 
prediction interval] (relative reduction)

Combination of two control measures

2.1

AB (50%)

ProbIT (50%) 36 [22–49] (24%) 52 [39–64] (16%)

2.2 ProbIT (75%) 30 [17–42] (37%) 49 [36–60] (22%)

2.3 MR (1/year) 47 [30–61] (0%) 59 [48–70] (5%)

2.4 MR (4/year) 35 [22–50] (25%) 51 [38–63] (17%)

2.5 Erad (1/year) 42 [26–56] (10%) 55 [41–67] (12%)

2.6

AB (100%)

ProbIT (50%) 22 [11–35] (54%) 41 [23–55] (34%)

2.7 ProbIT (75%) 15 [7–26] (68%) 38 [22–50] (40%)

2.8 MR (1/year) 30 [15–46] (36%) 48 [28–63] (22%)

2.9 MR (4/year) 21 [9–33] (56%) 38 [20–50] (39%)

2.10 Erad (1/year) 26 [11–40] (45%) 41 [24–57] (34%)

2.11

ProbIT (50%)

MR (1/year) 38 [32–43] (19%) 58 [53–61] (8%)

2.12 MR (4/year) 28 [23–33] (41%) 49 [44–53] (22%)

2.13 Erad (1/year) 33 [28–39] (29%) 52 [48–56] (16%)

2.14

ProbIT (75%)

MR (1/year) 32 [27–39] (31%) 54 [49–58] (14%)

2.15 MR (4/year) 23 [19–29] (50%) 45 [40–49] (28%)

2.16 Erad (1/year) 28 [23–34] (41%) 48 [42–52] (24%)

2.17 MR (1/year) Erad (1/year) 29 [25–34] (37%) 46 [42–49] (26%)

2.18 MR (4/year) Erad (4/year) 21 [18–25] (55%) 36 [32–40] (42%)

Table 5. Predicted median prevalence of the default scenario and a combination of two control measures 6 
years after the initiation of the control programme. The scenario acronyms are described in the main text.
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four tests per year, and voluntary eradication scenarios were combined (Table 6, Scenario 3.16). In 14 of 20 sce-
narios, the relative reduction was higher than 50%.

Combining all four control measures showed the highest potential to reduce the simulated prevalence com-
pared to the default scenario (Table 7). The smallest median prevalence was estimated at 6% (90% prediction 
interval: 2–10%) and was observed with the combination of antibiotic reduction in all herds, a 75% reduction in 
the probability of effective indirect transmission via humans, movement restrictions based on testing all herds 
four times per year and voluntary eradication (Table 7, Scenario 4.8). LA-MRSA was not cleared from all simu-
lated herds following the set-up of control measures in any of the simulation scenarios.

Simulating control measure initiation on 1st January 2010 led to comparable tendencies in the effects of sin-
gle interventions and combinations of the tested control options. The median prevalence on the initiation date 
was 21% [90% prediction interval: 18–34%]. In all scenarios, the predicted herd prevalence was higher when 
control was initiated in 2010, compared to the scenarios with an initiation date of 1st January 2007 (Tables 4–7). 
The smallest median herd prevalence 6 years after initiation in 2010 was 13% (90% prediction interval: 5–19%), 
compared to 6% (90% prediction interval: 2–10%) for controls initiated in 2007 in the scenario combining all four 
control measures (Scenario 4.8). Initiating control measures in 2007 generally led to higher relative reduction 
rates than the same control strategy started in 2010 (Tables 4–7). However, reduction rates were still fairly high 
when the combination of four control measures was initiated in 2010.

Figure 2 shows the development of the predicted LA-MRSA herd prevalence for the default scenario (Scenario: 0),  
and for the scenario with the highest reduction in LA-MRSA herd prevalence (Scenario: 4.8) for both of the con-
trol strategy initiation dates.

Discussion
LA-MRSA spread among Danish pig herds was modelled using four potential control options. The results 
showed that initiating intensive and combined control measures in 2007 would have led to a slower increase in 
the LA-MRSA herd prevalence (Tables 4–7). In particular, the combination of all four implemented control meas-
ures showed the potential to limit the spread among pig herds. Nevertheless, LA-MRSA was not cleared from all 
herds during the study period for any of the tested scenarios. Initiating control measures in 2010 also showed a 
reduction in the predicted herd prevalence of LA-MRSA. However, the relative reductions were smaller when 
compared to simulating the start of control in 2007 (Tables 4–7).

Reducing the use of high-risk antibiotics such as β-lactams and tetracycline has been shown to reduce transmission 
rates for the within-herd spread of LA-MRSA17. We found that reducing the proportion of herds using high-risk anti-
biotics had a limiting effect on the between-herd spread of LA-MRSA. This might be related to the lower within-herd 
prevalence and thus to a lower risk of LA-MRSA transmission among herds. Our results correspond to the findings of 
Sørensen et al.20, who used a mechanistic simulation model to show that reducing antimicrobial consumption reduced 
the prevalence of LA-MRSA within a farrow-to-finisher herd, but that bacteria was not eradicated. Reducing the 
within-herd prevalence would reduce the probability of infection following contact with a susceptible herd, leading to 

Scenario ID Scenario acronym

Predicted median herd 
prevalence in % on 31st 
December 2012 [90% prediction 
interval] (relative reduction)

Predicted median herd prevalence 
in % on 31st December 2015 [90% 
prediction interval] (relative 
reduction)

Combination of three control measures

3.1

AB (50%)

ProbIT (50%)

MR (1/year) 36 [22–49] (23%) 53 [40–65] (14%)

3.2 MR (4/year) 26 [16–38] (44%) 44 [32–56] (29%)

3.3 Erad (1/year) 32 [19–46] (31%) 48 [34–61] (23%)

3.4

ProbIT (75%)

MR (1/year) 32 [20–43] (33%) 50 [38–61] (20%)

3.5 MR (4/year) 21 [13–33] (55%) 40 [28–50] (36%)

3.6 Erad (1/year) 26 [15–38] (44%) 44 [31–55] (30%)

3.7 MR (1/year) Erad (1/year) 29 [18–41] (39%) 42 [32–53] (32%)

3.8 MR (4/year) Erad (4/year) 20 [11–31] (57%) 32 [21–42] (48%)

3.9

AB (100%)

ProbIT (50%)

MR (1/year) 22 [10–35] (53%) 42 [25–56] (32%)

3.10 MR (4/year) 15 [7–25] (68%) 33 [14–44] (48%)

3.11 Erad (1/year) 38 [32–43] (61%) 35 [20–49] (43%)

3.12

ProbIT (75%)

MR (1/year) 19 [7–30] (59%) 38 [22–49] (39%)

3.13 MR (4/year) 13 [6–22] (72%) 29 [16–39] (53%)

3.14 Erad (1/year) 15 [5–26] (68%) 31 [16–43] (50%)

3.15 MR (1/year) Erad (1/year) 16 [8–28] (65%) 30 [15–41] (52%)

3.16 MR (4/year) Erad (4/year) 10 [4–18] (79%) 21 [10–31] (67%)

3.17
ProbIT (50%)

MR (1/year) Erad (1/year) 21 [17–25] (55%) 39 [34–42] (38%)

3.18 MR (4/year) Erad (4/year) 15 [12–17] (69%) 29 [25–33] (53%)

3.19
ProbIT (75%)

MR (1/year) Erad (1/year) 17 [14–21] (64%) 34 [29–39] (46%)

3.20 MR (4/year) Erad (4/year) 12 [9–14] (75%) 25 [21–29] (60%)

Table 6. Predicted median prevalence of the default scenario and a combination of three control measures 6 
years after the initiation of the control programme. The scenario acronyms are described in the main text.
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a reduction in the between-herd prevalence. However, as the transmission rate is not zero after a reduction in the use of 
high-risk antibiotics15, the pathogen can still spread and hence eradication did not occur.

All scenarios that included a reduction of high-risk antibiotics led to increased variance in the predicted 
prevalence on 31st December 2015. Low transmission rates might have led to a higher number of herds in which 
LA-MRSA faded out after introduction. More precisely, LA-MRSA might have been cleared from pigs after the 
introduction of control measures and before transmission within or between the compartments occurred. This 
effect might therefore have reduced the spread of LA-MRSA among pig herds and resulted in lower predicted 
herd prevalences. On the other hand, if LA-MRSA was established in a pig herd, the within-herd prevalence 
reached a similar level to that of herds using high-risk antibiotics14, meaning that the spread from these herds to 
other herds was not affected. This might explain the larger variation in herd prevalence at the end of the study 
period compared to the default scenario.

Reducing the probability of indirect LA-MRSA transmission among pig herds could be interpreted as bios-
ecurity measures for humans visiting more than one herd on the same day. This control measure also showed a 
limiting effect on the between-herd spread (Tables 4–7). Humans visiting a pig herd could carry LA-MRSA for a 
period of a few hours up to 2 days21. Regulations to ensure that farm visitors (veterinarians, advisors, technicians, 
guests) wear masks might help to lower the risk of transmission of LA-MRSA to another farm21. In addition, a 
waiting period between visits of two pig herds might decrease the risk of pathogen transmission as well, as recom-
mended for instance in the United States22.

Although pig movements might play a role in the transmission of LA-MRSA among pig herds10,11,14,23, move-
ment restrictions only seemed to lead to a marginal reduction in herd prevalence. Additionally, it would be nec-
essary to test all herds to ensure that this intervention was effective. This would require logistical and financial 
resources that might not be reasonable in relation to the effects predicted by the model. In addition, there is no 
perfect method for testing herds for LA-MRSA; in the current model, a sensitivity of 78% and a specificity of 
100% were used. Despite the high specificity of the available tests18, the sensitivity is relatively low, leading to 

Figure 2. Predicted LA-MRSA herd prevalence over the whole study period from 1st January 2006 to 31st 
December 2015 for the following three scenarios: (1) Default (blue), (2) Scenario 4.8 (AB (100%) + ProbIT 
(75%) + MR (4/year) + Erad (4/year)) for control measures starting on 1st January 2007 (green), and (3) 
Scenario 4.8 for control measures starting on 1st January 2010 (red). Dark lines represent the predicted median 
herd prevalence, the light dashed areas represent the 90% prediction interval. The scenario acronyms are 
described in the main text.

Scenario ID Scenario acronym

Predicted median herd prevalence in % 
on 31st December 2012 [90% prediction 
interval] (relative reduction)

Predicted median herd prevalence in % 
on 31st December 2015 [90% prediction 
interval] (relative reduction)

Combination of four control measures

4.1
AB (50%) ProbIT (50%)

MR (1/year) Erad (1/year) 20 [12–30] (56%) 34 [24–44] (45%)

4.2 MR (4/year) Erad (4/year) 13 [8–22] (72%) 25 [16–34] (61%)

4.3
AB (50%) ProbIT (75%)

MR (1/year) Erad (1/year) 16 [9–24] (65%) 30 [21–38] (53%)

4.4 MR (4/year) Erad (4/year) 11 [6–16] (77%) 21 [13–30] (66%)

4.5
AB (100%) ProbIT (50%)

MR (1/year) Erad (1/year) 11 [5–19] (77%) 23 [14–33] (62%)

4.6 MR (4/year) Erad (4/year) 7 [3–13] (86%) 16 [6–24] (74%)

4.7
AB (100%) ProbIT (75%)

MR (1/year) Erad (1/year) 9 [5–15] (80%) 21 [11–29] (66%)

4.8 MR (4/year) Erad (4/year) 6 [2–10] (86%) 13 [5–19] (79%)

Table 7. Predicted median prevalence of the default scenario and the combination of four control measures 6 
years after the initiation of the control programme. The scenario acronyms are described in the main text.
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many false negative results. False-negative herds may jeopardise the movement restrictions and might be respon-
sible for the low effectiveness of this strategy.

Eradication (i.e., depopulation followed by cleaning and disinfection) of LA-MRSA in herds that test positive 
for LA-MRSA could be an option to reduce the herd prevalence. We assumed that only small proportions of 
herds that tested positive for LA-MRSA would initiate an eradication programme. Depopulation and re-stocking 
large proportions of pig herds might lead to ethical and economic issues. In Norway, where the prevalence 
of LA-MRSA was low, eradication at herd level helped to limit the spread of LA-MRSA on a national level24. 
Voluntary eradication only marginally reduced the prevalence. However, eradication without the combination of 
movement restrictions poses the risk of re-introduction, especially when the herd prevalence is high, which might 
explain the low effectiveness of this control measure. In contrast, voluntary eradication combined with movement 
restrictions based on four tests per year led to one of the largest reductions in the predicted herd prevalence. This 
example highlights how intensive control measures might have had reduced the spread of LA-MRSA in Denmark. 
However, increasing the proportion of herds to be eradicated might be unrealistic as it would affect Danish pig 
production and lead to substantial economic losses25.

The effects of eradication on the herd prevalence are highly dependent on the proportion of herds that initiate 
an eradication process. Cost-benefit analyses must be included in the decision process when setting up control 
programmes that involve eradication efforts. In addition, the risk of re-introduction must be taken into account, 
for example by combining eradication with movement restrictions to minimise this risk. The role of environ-
mental contamination in the spread of LA-MRSA has not yet been conclusively determined and therefore might 
influence the effectiveness of control programmes.

Herds initiating the voluntary eradication process were chosen randomly. It is therefore possible that herds 
registering no or only a few out-going contacts might have been selected. Prioritising herds with a high number 
of out-going movements or with a large out-going contact chain might increase the effects of the eradication pro-
cess, as clearing these herds would prevent more herds from receiving LA-MRSA via animal movements.

For simplicity, we assumed that all herds were tested on the same day when the herd LA-MRSA status was 
established. In reality, herds would be tested within a certain time period (of 3 months or 1 year). This could 
influence the effect of movement restrictions and voluntary eradication as varying the time points at which 
LA-MRSA-positive herds are identified might result in control measures starting later, and transmission would 
still be possible until initiation of the eradication process.

We assumed that the control measures initialised in 2007 did not influence the second wave of LA-MRSA 
introduction in randomly chosen herds in 2009. Despite phylogenetic analysis confirming several introductions 
of LA-MRSA to Denmark26, the route of these introductions is still unknown. The effect of control measures on 
new introductions could therefore not be estimated. For example, LA-MRSA-positive workers could have intro-
duced LA-MRSA in new herds, as described in Norway24. This route of introduction was not necessarily covered 
by the implemented control measures, depending on how a worker would carry the bacteria into a herd. As a 
result, introduction was still assumed to be possible, even under the implemented control measures.

We compared the effects of control measures starting on 1st January 2007 and 1st January 2010, and found 
that the early initialisation of control measures led to a larger reduction in the predicted herd prevalence on 31st 
December 2012 compared to 31st December 2015 (Tables 4–7). This may not be surprising, as disease control in 
2007 started at a lower herd prevalence compared to initialisation in 2010 (Fig. 2). However, starting the control 
measures in 2010 still led to reasonably high relative reduction rates (Tables 4–7), despite an initial prevalence of 
21%. The prevalence in 2016 was substantially higher at 88%3. Therefore, the effectiveness of these strategies from 
a high initial prevalence should be investigated to understand which measures or combinations could be useful in 
a situation with a very high prevalence, such as the current Danish situation. However, this would require a dif-
ferent approach to modelling animal movements, as data on registered animal movements are only available ret-
rospectively. We therefore emphasise the importance of a region/country with a new introduction of LA-MRSA 
controlling/eradicating it immediately in order to prevent an endemic situation with a high prevalence.

Combinations of control measures reduced the spread of LA-MRSA, especially when all four strategies were 
combined. Using an extreme scenario including limiting the use of high-risk antibiotics, reducing the risk of 
spread via indirect contact by 75%, implementing movement restriction and culling a percentage of positive herds 
led to a prevalence reduction to only 6% with initiation in 2007 or 13% in 2010. This clearly shows that control of 
LA-MRSA can be achieved without culling all infected herds. However, it requires extreme measures, willingness 
from the industry and rigour in implementing these measures, otherwise high relative reduction rates might not 
be reached. In addition, it is important to initiate control measures as early as possible, as the effects are higher if 
the herd prevalence is still low.
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