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Summary 

Τhe decline of wild fish stock and the increasing demand for food and fish 

protein have accelerated the development of fish farming. The intense fish 

production in limited space (e.g. sea cages) has potentially deteriorated the 

aquatic environments (nutrient accumulation from uneaten feed and excreta 

cause eutrophication, pollution, chemical compounds, disease outbreaks, es-

capes etc.) gaining the scientific and societal attention. The environmental 

impact of aquaculture in combination with the competition for land use (lei-

sure activities, aesthetic impact, tourism, residential development etc.) and 

the desire for a profitable business have contributed to a shift to land-based 

aquaculture systems.  

Recirculating aquaculture systems (RAS) are closed-containment systems 

where fish are farmed in reused water and provide a stable annual fish pro-

duction. Due to the controlled farming environment, where water quality con-

trol systems and waste treatment technologies are installed, the fish quality 

and growth are improved while the risk of fish escapees and miscellaneous 

incidents are minimized. However, because of the recirculation (up to 99%) 

and the increased stocking density, waste derived from fish feed and fish ex-

creta is accumulated. The control of organic matter in a RAS is of high im-

portance for the good management of the facility. High organic matter load-

ing in the water deteriorates the water quality, favouring the microbial 

blooming which might lead to disease outbreak directly affecting the fish. 

Additionally, increased levels of organic matter reduce the efficiency of the 

various water treatment processes. 

Several technologies have been installed to remove waste, and consequently 

organic matter, from the water stream of a closed system. However, waste 

removal processes are not fully optimized and the interactions between the 

waste treatment units are not well understood. Ozone has been implemented 

in several water treatment applications as a secondary treatment step to im-

prove the water quality by oxidizing the organic matter and miscellaneous 

dissolved compounds in the water, having also bactericidal properties ensur-

ing simultaneously disinfection. However, ozone is also toxic for aquatic or-

ganisms in extremely low concentrations (0.01 mg O3/L). Therefore, the risk 

of losing fish because of overdosing inhibits the full implementation of ozone 

in aquaculture industry. 
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The aims of this PhD thesis were to design an ozonation system for RAS, 

based on the ozone demand of the specific system, where the water quality is 

improved without compromising the fish welfare, and then, to be able to 

monitor the ozone within the system with a novel, accurate and real-time 

measuring method relying on the fluorescence sensitivity towards ozone. 

Aquatic dissolved organic matter has numerous fluorescent properties and it 

is highly reactive with ozone. Water samples were collected from several 

aquatic facilities around Denmark and then were analysed with fluorescence 

spectroscopy to determine the fluorescent character. RAS samples were sub-

jected to ozonation to investigate the responsiveness towards ozone. Similar 

fluorescence components were present in all studied RASs, with different 

reactivity suggesting that a florescence based sensor could be used as an indi-

rect ozone dosage determination tool in water, since the fluorescence intensi-

ties and dissolved organic matter degradation by ozone were well correlated.  

Furthermore, potential applications of such a sensor were proposed. 

To design an optimal ozonation system, the water from the specific facility 

should be analysed in terms of ozone demand and ozone lifetime. Each facil i-

ty is unique since the process water content of solutes, the operational condi-

tions, and the water treatment units, the fish species and stocking density vary 

greatly, resulting in different water matrix. Therefore, the ozone reactions in 

this particular water should be investigated prior to installation, to ensure that 

the amount of ozone required to improve water quality is sufficient and it will 

be degraded long before it reaches the biofilters or the culture tanks. 

Having experimentally determined the ozone demand and kinetics, the pre-

dicted ozone dosages were applied in pilot-scale RASs to verify the effect of 

ozone on water quality of continuous operated freshwater RASs. Several wa-

ter parameters were investigated including non-volatile organic matter, chem-

ical oxygen demand, biological oxygen demand, ammonia, nitrate and nitrite 

levels, particles number and size, and microbial activity. Fluorescence organ-

ic matter was analysed by fluorescence Excitation Emission Matrix (EEM) 

spectroscopy coupled with Parallel Factor analysis (PARAFAC) for a more 

accurate identification of the organic matter. The overall water quality was 

significantly improved upon ozonation, proportionally to ozone dosage ap-

plied, suggesting that the predicted ozone dosages matched with the needs of 

the water. During ozonation no fish mortality was observed. 

The water matrix has huge influence in the design of an ozonation system. 

The determination of ozone in seawater samples is more complicated than in 
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freshwater. In seawater, where bromide is naturally present, brome-oxides are 

formed in presence of ozone, which are toxic to fish. Thus, it is vital to be 

able to determine the critical point between the ozone dosage required to im-

prove water quality and avoiding the formation of brominated by-products. 

Attempts to measure fast ozone in brominated water were made setting the 

basis for a modified analytical method. Further investigations are needed to 

increase the accuracy and to verify the breakpoint between optimal ozonation 

and brominated by-product formation inhibition in seawater RAS. 

In conclusion, this PhD study elucidated that when ozone is properly imple-

mented in a RAS, having taken into consideration the ozone demand and the 

lifetime of ozone for the system of interest, the water quality of a RAS will 

be remarkably improved. To determine the ozone demand and lifetime, fluo-

rescence spectroscopy was used, since it was found to be a good indicator of 

organic matter accumulation in RAS and highly sensitive towards ozone 

treatment. The detailed analysis of the fluorescence dissolved organic matter 

contained in RAS water, revealed four independently varying fractions with 

different reactivity and responsiveness to ozone, suggesting that a fluores-

cence based sensor targeting a specific wavelength transition could be used to 

determine indirectly the ozone concentration in water.  
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Dansk sammenfatning 

Nedgangen i den vilde fiskebestand og den stigende efterspørgsel efter mad 

og fiskeprotein har ført til fiskeopdræt i det marine miljø. Den intense fiske-

produktion i snævre rum (fx havbure) har medført forringelse af vandmiljøet 

(næringsopbygning fra ufordøjet foder og udskillelse forårsaget af eutrofie-

ring, forurening, kemiske forbindelser, sygdomsudbrud, undslip osv.), som 

har givet videnskabelig og offentlig opmærksomhed. Miljøpåvirkningen fra 

akvakultur i kombination med konkurrencen om arealanvendelse (fritidsakti-

viteter, æstetisk påvirkning, turisme, boligudvikling mv.) og ønsket om ren-

tabel virksomhed har bidraget til et skifte tilbage mod landbaserede akvakul-

tursystemer. 

Recirkulerende akvakultursystemer (RAS) giver en stabil fiskeproduktion. På 

grund af det kontrollerede produktionsmiljø, hvor vandkvalitetsstyringssy-

stemer og affaldsbehandlingsteknologier er implementeret, kan fiskekvalite-

ten og væksten forøges, mens risikoen for fiskeundslip og diverse uheld mi-

nimeres. Men på grund af den høje recirkulationen (op til 99 %) og den øgede 

strømning akkumuleres affald fra fiskefoder og fiskesekreter.  Dermed bliver 

kontrollen af organisk stof i RAS af stor betydning for at sikre en god for-

valtning af anlægget. Høj organisk stofbelastning i vandet forringer vandkva-

liteten, hvilket favoriserer den mikrobielle blomstring, der kan føre til syg-

domsudbrud. Derudover vil øgede niveauer af organisk materiale reducere 

effektiviteten af de forskellige vandbehandlingsteknologier. 

Flere teknologier er blevet installeret for at fjerne partikler og organisk mate-

riale fra vandet. Imidlertid er vandbehandlingsteknologierne ikke fuldt opti-

merede, og interaktionen mellem dem ikke forstået. Ozon er blevet imple-

menteret i flere vandbehandlingssystemer så som spildevandsrensning, 

svømmebassiner mv., som et sekundært behandlingstrin for at forbedre vand-

kvaliteten. Derudover har ozon bakteriedræbende egenskaber, der sikrer des-

infektion. Dog er ozon giftig for vandlevende organismer i ekstremt lave 

koncentrationer (0.01 mg O3/l). Frygt for at miste fisk fra overdosering af 

ozon hæmmer brugen af ozonbehandling i RAS. 

Formålet med denne ph.d.-afhandling er at designe et ozonsystem til RAS 

baseret på ozonbehovet i det specifikke recirkulerede akvakultur system, hvor 

vandkvaliteten forbedres uden at kompromittere fiskens velfærd. Herudover 

har målet været, at kunne overvåge ozonkoncentrationen i systemet med en 
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ny, præcis, realtids målemetode baseret på fluorescens-følsomhed overfor 

ozon.  

Det er velkendt, at vandopløst organisk stof har fluorescens egenskaber og er 

meget reaktivt med ozon. Vandprøver indsamlet fra flere anlæg omkring 

Danmark blev analyseret med fluorescerende spektroskopi for at bestemme 

RAS-vandets fluorescerende karakter og for at identificer ligheder i fluore-

scensbestanddelene i vandprøver fra de forskellige RAS. Prøverne blev deref-

ter udsat for ozonering og efterfølgende analyse med fluorescensmetoden for 

at validere ozon-effekten. Det viste sig, at bestanddele med ensartede fluore-

scensaktiviteter var til stede i vandprøver fra alle involverede RAS, men med 

forskellig ozon-reaktivitet. Dette tyder på, at en fluorescens baseret sensor 

kan anvendes som et indirekte ozondoserings-bestemmelsesværktøj i vand, da 

fluorescensintensitet og det opløste organiske materiales nedbrydning ved 

ozonering var godt korreleret. Potentielle anvendelsesområder af en sådan 

ozon-måle-metode er også blevet vurderet. 

For at designe et optimalt ozonsystem skal vandet fra det specifikke anlæg 

analyseres med hensyn til ozonforbrug og ozonlevetid. Hvert anlæg er unikt, 

da fiskeart, foderstrategi, tætheder/biomasse, vandbehandlingseffektivitet og 

andre driftsbetingelser varierer meget, og som resultat giver en vandmatrix 

der varierer – ikke blot fra anlæg til anlæg, men også over produktionscyklus 

på det aktuelle anlæg. Ozonreaktionerne i det specifikke vand bør undersøges 

inden installationen for at sikre, at mængden af ozon, der kræves for at for-

bedre vandkvaliteten, er tilstrækkelig og ozon vil blive nedbrudt længe før 

det når biofilterne eller kulturtankerne. 

Efter at ozonforbrug og kinetik blev eksperimentelt bestemt, blev de forudbe-

stemte ozondoser anvendt i pilotskala-RAS for at verificere effekten af ozon-

doser på vandkvaliteten af kontinuert anvendte ferskvands-RAS. Flere vand-

parametre blev undersøgt, herunder fluorescensorganisk stof, ikke-flygtigt 

organisk materiale, kemisk iltforbrug, biologisk iltbehov, ammoniak, nitrat 

og nitritniveauer, partikelantal og -størrelse og mikrobiel vandkvalitet. Den 

samlede vandkvalitet blev signifikant forbedret ved ozonering, proportional 

med den anvendte ozondosering. Under ozonprøverne blev der ikke observe-

ret fiskedødelighed. 

Vandmatrixen har stor indflydelse på udformningen af et ozonsystem. I hav-

vand, hvor bromid er naturligt til stede, dannes bromoxider, der er giftige for 

fisk, i tilstedeværelse af ozon. Bestemmelsen af ozon i havvandsprøver er 

mere kompliceret end i ferskvand. Forsøg på at måle hurtig ozon i bromeret 
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vand blev lavet som grundlag for en modificeret analysemetode. Yderligere 

undersøgelser er nødvendige for at øge nøjagtigheden og for at verificere det 

kritiske punkt mellem ozon- doseringen, der er nødvendig for at forbedre 

vandkvaliteten og undgå dannelsen af bromerede biprodukter i havvands-

RAS. 

Afslutningsvis konkluderer denne ph.d.-afhandling, at når ozon er korrekt 

implementeret i RAS, da vil vandkvaliteten blive bemærkelsesværdigt for-

bedret, når der tages hensyn til ozonforbruget og ozons levetid for det pågæl-

dende system. Til bestemmelse af ozonbrug og ozons levetid blev fluore-

scensspektroskopi anvendt og det viste sig at være en god indikator for ak-

kumulering af organisk stof i RAS og meget følsom over for ozonbehandling. 

Den detaljerede analyse af det opløste organiske stof i fluorescens optaget i 

RAS-vand afslørede fire uafhængigt varierende fraktioner med forskellig re-

aktivitet og reaktion over for ozon, hvilket tyder på, at en fluorescensbaseret 

sensor rettet mod en specifik bølgelængdeovergang kunne anvendes til at be-

stemme indirekte ozonkoncentrationen i vand. 
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1 

 Introduction  1

1.1  Background  
The decline in stocks of commercially caught fish, in combination with the 

increasing need for fish protein due to continuing population growth have led 

to the rapid development of aquaculture industry, worldwide. According to 

Food and Agriculture Organization of the United Nations 50% of all fish are 

produced in aquaculture systems (FAO, 2016). The past 8 years the fish pro-

duction in Europe has increased by 23% (FEAP Production Report, 2017) and 

it is expected to continue growing at a rate higher than most other industries 

for the anticipated future.  

The water use and discharge is of great importance since the environmental 

impacts of the aquaculture industry have increased and consequently raised 

the scientific and societal concern. Land-based recirculating aquaculture sys-

tems (RAS) are closed-containment systems where fish are farmed in reused 

water (Lekang, 2007). RAS has become increasingly important as the availa-

ble water is better utilized, achieving production continuity. However, the 

reused water, the high production intensity and feed loading (Colt et al., 

2006; Pedersen et al., 2012) lead to accumulation of waste products in the 

water (Martins et al., 2010; Verdegem, 2013). Although fish can grow in wa-

ter of sub-optimal quality, their performance will be affected. Thus, these in-

tense closed systems require good water quality to support growth and mini-

mise disease outbreaks.  

To achieve good water quality, several processes are needed. Aeration, pH, 

salinity and temperature adjustment, particle removal, control of ammonia 

and nitrite (Piedrahita, 2003; Martins et al., 2010) are normally used to create 

optimal conditions, while disinfection is also needed to reduce the burden of 

microorganisms. Disinfection in RAS relies on oxidative agents or other 

types of disinfection like Ultraviolet (UV) irradiation and ozone. Nonethe-

less, chemical residuals might affect the cultivated species, the facility and 

the nearby environment (Wooster et al., 2005; Pedersen et al., 2010) and UV 

installations are expensive. 

Ozone has been widely implemented as a supplementary water treatment 

technology in other industries (Von Gunten, 2003; Hansen et al., 2010; 

Hansen et al., 2016; Hansen, et al., 2016) having undeniable benefits towards 

water quality. Although ozonation has been applied for years in aquaculture 

(Owsley, 1991; Summerfelt et al., 1997; Good et al., 2011), there is lack of 
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knowledge regarding the reaction kinetics, the control of the dosage and side 

effects of excessive ozonation. The risk of losing fish or damaging the biofil-

ters leads to a reluctance of the aquaculture managers to integrate ozone in 

RAS. 

The design of a complete and reliable ozone system for the water treatment of 

semi-closed aquatic systems would improve the water quality. The project 

aimed to address the hypotheses:  

 Fluorescence technique is an alternative to indigo (colorimetric) assay 

in terms of ozone dosage determination in the aquatic phase.  

 The proper ozonation design of a RAS can be made by analysing water 

samples in the laboratory and thus predicting the ozone demand for the 

specific system.  

 Ozone dosage requirements vary significantly depending on the water 

matrix characteristics potentially leading to undesirable side effects for 

cultured species.  

 Proper and controlled ozone injection can reduce the formation of 

bromine by-product in seawater RAS. 

 

1.2  Research objectives 
The overall objective of the PhD project was to contribute to the knowledge 

that is needed to design optimal ozonation systems for aquaculture and the 

ability to monitor ozone. Thus, the specific objectives of the PhD thesis were:  

 To design a continuous ozonated RAS by improving the water quality 

without compromising the fish welfare (Paper II) by 

o using fluorescence spectroscopy to continuously measure and 

control ozone in aqueous solution (Paper I)  

o investigating the ozone kinetics and lifetime and utilising them 

to predict the ozone requirements of a RAS (Paper II) 

 To determine which water quality parameters were improved due to 

ozonation and the potential side effects in 

o freshwater (Papers II, III, IV) and  

o marine RAS water  
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  Recirculating aquaculture systems 2

Recirculating aquaculture systems (RAS) are land-based systems where fish 

are farmed in reused water (Figure 1). The circulation of the water and the 

internal water treatment make the RAS distinct from traditional flow-through 

systems and the amount of water used per kg fish produced is significantly 

reduced.  

The water treatment system in a conventional RAS may include physical, 

chemical and biological processes to maintain the water quality in acceptable 

levels. More specific, the removal of large particles, which is essential for the 

RAS (Cripps and Bergheim, 2000), is achieved by drum filters, sedimentation 

tanks, swirl separators, sand filters etc. (Nam et al., 2000; Timmons et al., 

2002) depending on the size of the particles. Fine particles are accumulated 

over time within the system (Chen et al., 1993; Fernandes et al., 2014; 2015) 

and can be removed by upcoming processes e.g. membrane filtration technol-

ogy and foam fractionators (protein skimmers). The dissolved organic matter 

can be removed in the biofilters. The commonly used biofilters in RAS are 

fixed bed and moving bed filters. Aeration and degassing units (e.g. trickling 

filters) are also integrated in the system, while temperature and pH are con-

tinually adjusted to provide optimal growth conditions. To control or elimi-

nate pathogens and to further improve the water quality, disinfection is also 

needed (Gonçalves and Gagnon, 2011; Pedersen and Pedersen, 2012) which 

is achieved by ozonation, UV irradiation or use of chemotherapeutants.  
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Figure 1: Schematic representation or a recirculating aquaculture system.  
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2.1  Challenges in RAS 
Although RAS is considered as the most promising solution and an environ-

mental friendly technology, the recirculation technology can also cause prob-

lems for RAS operation and water quality. The prolonged hydraulic retention 

times in combination with the low-water exchange and the high feed loading 

(Blancheton et al., 2013; Rurangwa & Verdegem, 2015) entail accumulation 

of organic and inorganic compounds (Bullock et al., 1997; Davidson et al., 

2011), where slow/non-degradable dissolved organic matter (DOM), micro-

particles and heavy metals are the most pronounced (Davidson et al., 2009). 

These compounds mainly come from the uneaten fish feed and the subsequent 

dissolved and particulate fish excreta 

(Figure 2; Dalsgaard and Pedersen, 

2011) or are produced by the various wa-

ter treatment technologies.  

The physicochemical properties of waste 

are highly related to feed composition 

and affect directly the organic matter 

(OM) and the nitrogen and phosphorous 

output (Dalsgaard and Pedersen, 2011; 

Nijhof, 1994; Timmons et al., 2002). 

Good management keeps the uneaten 

feed at low levels (Reid et al., 2009; Bu-

reau and Hua, 2010) while the daily produced fish waste should be removed 

from the stream and treated (Cripps, 1995).  

The accumulated OM or elevated chemical oxygen demand (COD; Fu et al., 

2015) in RAS favour bacteria, protozoa and micro-metazoa blooming, affect-

ing fish and system performance (Bullock et al., 1997). These microorgan-

isms can be found in several locations within the system e.g. in biofilters, in 

the water column and on other surfaces while they are able to metabolize 

OM, ammonia, nitrite, and nitrate (Blancheton & Canaguier, 1995; Bullock et 

al., 1997; Hagopian & Riley, 1998; Blancheton, 2000; Leonard et al., 2000; 

Nam et al., 2000). Although some niches are vital for the system e.g. bacte-

ria that convert ammonia to nitrite (e.g. Nitrosomonas, Nitrosospira) 

and bacteria that convert nitrite (toxic to fish) to nitrate (e.g. Nitrosospira), 

there are potential pathogens with fast life-cycles that might adversely affect 

the cultured species (Bullock et al., 1997).  

Figure 2: Faecal and soluble waste 

in a system produced by fish. 
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Besides being a good substrate for bacterial growth, OM might give patho-

gens a transport potential within the plant (Summerfelt, 2003) allowing the 

disease to propagate. Additionally OM might inhibit the disinfection efficien-

cy which aims to maintain the micro-organisms in low levels. More specifi-

cally, in case of UV treatment, OM absorbs the UV radiation and shields mi-

crobes from the treatment. During ozonation, the OM is readily oxidized by 

ozone, since it is easily degradable, leaving low residual ozone concentration 

in the water, which might not be sufficient to ensure disinfection. Thus, the 

successful management of a RAS relies, among others, on the control of 

DOM (Hambly et al., 2015) while the disinfection is highly required to en-

sure fish welfare and increased production. 

 

2.2  Current disinfection methods in RAS 
Disinfection has been applied as part of the management of RAS to control or 

eliminate pathogens (Pedersen and Pedersen, 2012) improving simultaneous-

ly the water quality (Gonçalves and Gagnon, 2011). Disinfection can occur at 

different points within the system. The inlet water can be exposed to UV ir-

radiation preventing the entrance of potential pathogens from external water 

source in the system (Timmons et al., 2002). However, the high cost and the 

risk of fouling inhibit the UV installation in RAS.  

Chemotherapeutants can be applied in the rearing tanks to treat the cultured 

species directly, controlling microbial profusions and preventing disease out-

breaks e.g. formalin, hydrogen peroxide and peracetic acid (Noble & 

Summerfelt, 1996; Pedersen et al., 2010; Pedersen & Pedersen, 2012; 

Attramadal et al., 2012; Pedersen et al., 2013; Verner-Jeffreys, 2015). If 

chemotherapeutants are not administered properly, fish will experience in-

creased physiological stress. High concentrations of chemotherapeutants 

might impair biofilter performance, kill the synergetic microorganisms along 

with the pathogens, be present at too high concentrations in the culture tank 

affecting the fish (Noble & Summerfelt, 1996; Schwartz et al., 2000), jeop-

ardise employee safety and set the ecosystem at risk when non-degraded re-

siduals are released into nearby aquatic recipients (Hohreiter & Rigg, 2001; 

Masters, 2004; Wooster et al., 2005; Pedersen et al., 2010). In November 

2008, the Danish Association of Danish Aquaculture had announced that the 

use of formalin is expected to be phased out within 5 years. 

To address the need for environmentally friendly disinfectants, drifting away 

from chemotherapeutants, ozone has been introduced as an alternative in 
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RAS, which can be applied within the recirculation loop, prior to biofilters. 

The biofilters will function as buffer; the bacteria in the biofilters will have 

time to adjust to potential residual concentrations (Bullock et al., 1997; 

Summerfelt and Hochheimer, 1997; Tango & Gagnon, 2003; Sharrer and 

Summerfelt, 2007; Summerfeltet al., 2009; Davidson et al., 2011; Attramadal 

et al., 2012; Powell et al., 2015; Paper I; Paper II) ensuring that no ozone 

would reach the culture tanks.  

 

2.3  Ozone 
Ozonation is a well-established technology with indisputable benefits for wa-

ter quality (Powell and Scolding, 2016). Ozone is a strong oxidizing agent, 

reacting rapidly and in low concentrations, first with the easily degradable 

DOM (Eq.1) and inorganic pollutants, and then with the decreasingly reduc-

tive pollutants (von Sonntag and von Gunten, 2012). If more ozone is dosed 

than the immediate demand, ozone will be decomposed to hydroxyl radicals 

(Eq. 2), which are non-selective and highly reactive species. This reaction is 

pH dependent. Hydroxyl radicals are able to oxidize a range of recalcitrant 

pollutants (Eq. 3) (von Sonntag and von Gunten, 2012).  

DOM  +   O3       →   DOMselectively oxidized                Equation 1 

H2O    +   O3       →   O2 + 2 HO
•
                            Equation 2 

DOM  +   HO
•
     →   DOMradical oxidized         Equation 3 

Ozone enhances water quality by oxidising natural organic matter (NOM) 

leading to reduced COD, while it removes colour and suspended solids 

(Summerfelt & Hochheimer, 1997; Summerfelt et al., 2009; Davidson et al., 

2011; Paper II). Moreover, it accelerates protein degradation and improves 

coagulation and filtration processes (Antoniou and Andersen, 2012). In pres-

ence of ozone, the oxidation-reduction reaction (REDOX) level is increased, 

stabilizing the oxygen concentration in the water. It contributes to odorant 

reduction (geosmin and 2-methylisoborneol (MIB)), improving the taste of 

fish (Gonçalves and Gagnon, 2011). 

When ozone acts as disinfectant, a specific dissolved ozone concentration for 

a given contact time is required, which might be higher than the concentra-

tion required to improve water quality (Bullock et al., 1997; Summerfelt et 

al., 1997). Ozone inhibits infectious viruses (Owsley, 1991), bacteria 

(Colberg & Lingg, 1978; Liltved et al., 1995; Tango & Gagnon, 2003; 

Summerfeltet al., 2009) and protozoan (Tipping, 1988) in several aquaculture 



 

7 

systems resulting in improved growth (Good et al., 2011). Therefore, ozone 

appears to improve remarkably the water quality in RAS.  

Despite ozone significantly enhances the water quality in RAS (Bullock et 

al., 1997; Summerfelt & Hochheimer, 1997; Powell et al., 2015; Paper I; 

Paper II; Paper III; Paper IV), it should be ensured that ozone residuals  

will never reach the fish and therefore, ozone residual exiting the ozone reac-

tion tank must be removed or completely consumed prior to culture tank. 

 

2.3.1  Ozonation challenges in RAS 
In a non-meticulously designed system, residual ozone (due to overdose) may 

reach the culture tanks causing significant harm to cultured species (Bullock 

et al., 1997; Davidson et al., 2011). Ozone is toxic to a wide range of marine 

and freshwater organisms at very low residual concentrations (0.01 mg/L - 

0.1 mg/L; Gonçalves & Gagnon, 2011) by oxidizing the gills and the tissues 

of fish and eventually leading to death. The risk of losing fish and the high 

investment and running costs are limiting parameters and lead to a reluctance 

by the aquaculture industry to use ozone. Therefore, ideally, ozone should be 

correctly delivered and controlled to ensure that it is fully degraded before 

the treated water returns to the culture tanks.  

Depending on the water matrix, additional issues emerge. In freshwater RAS, 

ozone reacts with humic substances, producing several detrimental by-

products (Summerfelt and Hochheimer, 1997; Summerfelt, 2003), mainly a 

mix of aldehydes, ketones, carboxylic acids, and esters, which are potentially 

toxic (Matsuda et al., 1992; von Gunten, 2003; Hammes et al., 2006). These 

compounds are typically removed during a subsequent biological treatment 

step (Hammes et al., 2006). Seawater naturally contains bromide ions (Heeb 

et al., 2014). During ozonation of seawater, brome-oxides are formed 

(Antoniou and Andersen, 2012; Heeb et al., 2014) with long lifetime in the 

water. These newly formed compounds are toxic to fish, bivalves and crusta-

ceans.  

A well-designed ozone system, taking into account the amount of ozone that 

each facility (cultured species, life stage and hydraulics) requires and the dai-

ly variation in ozone demand has not been yet proposed. Additionally, the 

amount of ozone added in the water as well as its residual concentration 

should be also determined accurately and in real time in order to prevent in-
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cidents with detrimental consequences for the cultivated species and the facil-

ity in general, with enormous economic impact. 

 

2.3.2  Ozone determination in water 
If ozone is not correctly applied nor analytically verified, under-dosing or 

overdosing might occur with detrimental effects the RAS. A widely used 

method to determine the actual ozone concentration in water is by test kits 

(e.g DPD). Other colourimetric methods using chemical reagents (e.g. indigo 

method; Bader and Hoigné, 1981) require skilled operators working under 

laboratory conditions, which is difficult under commercial RAS operation. In 

this method, ozone decolorizes the indigo solution, and the level of decolour-

ization is measured by a spectrophotometer at 600 nm. 

The delivered/nominal ozone concentration in gas can be determined by the 

absorbance at 254 nm which has provided immediate and real time measure-

ment of ozone dosage in WWTP effluent (Bahr et al., 2007; Gerrity et al., 

2012). Hansen et al. (2010) found an equally good correlation at 272 nm. An-

other issue with absorbance spectroscopy is that it is not possible to identify 

the components contained in the OM in a water sample and its sensitivity to 

detect ozone in low concentrations is limited.  

Oxidation reduction potential (ORP) probes measure the ratio of the oxidising 

and reducing species in the water. Essentially, the higher the ORP, the more 

oxidising agents are present in the water. Nonetheless, ORP sensors are not 

specific, and they cannot distinguish which dissolved oxidants increase RE-

DOX potential, for example, ozone from chlorine. Furthermore, they do not 

have a stable relationship with the actual concentration of oxidants in water 

(Tango and Gagnon, 2003), without providing a stable ORP baseline. In the 

presence of free ozone, ORP sensors tend to fail becoming unable to measure 

ozone (Bullock et al., 1997) since their surface is oxidised by ozone forming 

platinum oxide.  

Dissolved ozone can also be determined indirectly by measuring the 

formation of ozonated by-products (OBP) in marine water, which is aslo a 

complicated method due to water chemistry (Tango and Gagnon, 2003). A 

method to determine the amount of ozone delivered into water is missing. 

Thus, there is a need for a fast and sensitive method, reagent free, to deter-

mine online and in real-time the changes of OM in a RAS.  
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  Fluorescence spectroscopy 3

DOM consists of a mixture of molecules able to absorb light energy (chro-

mophores) and molecules that re-emit the absorbed light (fluorophores). Flu-

orescence is the release of energy, in the form of light, when molecules, 

namely fluorophores, are excited with a high energy light source. Humic sub-

stances and amino acids contained in proteins and peptides and their sub-

categories are the most extensively studied fluorophores in aquatic environ-

ments (Coble, 1996; Hudson et al., 2007).  

Although both absorption and fluorescence spectroscopy can provide insight 

into the nature of DOM, such as changes in chemical character or an indica-

tion of DOM source, fluorescence spectroscopy is a more selective and sensi-

tive technique and has become a well-established analytical tool (Coble et al., 

2014) in several water treatment applications. It is an inexpensive and 

straight forward measurement, able to optimise processes (Reynolds and 

Ahmad, 1997) and to identify deteriorating agents (Hudson et al., 2007). Flu-

orescence determines fast and accurately DOM in wastewater effluent 

(Hudson et al., 2007; Henderson et al., 2009; Carstea et al., 2016), drinking 

water (Cumberland et al., 2012), fresh water (Baker, 2001; Downing et al., 

2009), seawater (Coble, 1996; Chen, 1999; Conmy et al., 2004; Baker & 

Spencer, 2004) and RAS (Hambly et al., 2015; Paper I; Paper II; Paper 

III). Additionally, it correlates with total organic carbon (TOC) (Carstea et 

al., 2016), biological oxygen demand (BOD) (Hudson et al., 2008), phos-

phate, nitrogen-based compounds (Baker and Inverarity, 2004) and microbial 

abundances (Cumberland et al., 2012). Excitation-emission matrices (EEMs) 

along with parallel factor analysis (PARAFAC) (Bro, 1997; Stedmon et al., 

2003) can accurately identify the fluorescent components in a water sample. 

These underlying fractions can be cross-referenced across natural and engi-

neered aquatic systems.  

There are few studies that have investigated the decomposition behaviour of 

different fluorescent components in various ozonated systems using the cou-

pled EEM-PARAFAC methodology (Liu et al., 2016; Chen et al., 2017; 

Mangalgiri et al., 2017; Peleato et al., 2017). In case of RAS, EEMs and 

PARAFAC have been used to monitor changes in water quality (Hambly et 

al., 2015), as well as to control the operation of individual water treatment 

systems and avoid pathogen outbreaks (Henderson et al., 2009; Carstea et al., 

2010; Murphy et al., 2011; Stedmon et al., 2011). However, no attempt has 
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yet been made to investigate the FDOM change in continuous ozonated RAS 

water utilising the EEM-PARAFAC technique. 

 

3.1  Determination of dissolved organic matter 
Currently the monitoring of DOM in RAS is achieved by analytical methods 

such as COD and BOD5 (Hambly et al., 2015; Rojas-Tirado et al., 2017). 

BOD5 is a slow analysis and it cannot be carried out within a timeframe 

which allows operators to react before fish health is compromised. Although 

COD analysis can be conducted in 1-2 h, it is not able to distinguish inert 

from bioavailable OM and they are quite expensive. Thus, an online detection 

and subsequent treatment control of DOM in the system would be of great 

importance for the efficient and low-risk operation of RAS (Paper I; Paper 

II; Paper III). 

Water samples from different facilities in Denmark were analysed to verify if 

RAS water has similar fluorescence DOM (FDOM) character, independently 

on the cultivated species and stock densities, water treatment technologies 

employed and purpose (Paper I). Dissolved organic carbon differed between 

the facilities (from <0.05 to 20.3 mg DOC/L), due to systems’ variability. 

The water samples were initially analysed using fluorescence wavelength 

transitions previously used in a wastewater study (Hudson et al.,  2007). The 

components would be addressed by their emission spectra peaks, i.e. C340.  

In the presence of high OM, the fluorescence intensities in non-ozonated 

RAS samples were elevated (Paper I; Paper II). Water samples derived from 

RASs with high stocking densities consisted mainly of humic-like fluoro-

phores (C450; Figures 3a, 4), which were also present in municipal wastewater 

and are highly correlated with TOC (Carstea et al., 2010). On the contrary, 

the protein-like fluorophores were less pronounced, yet present (C340 and 

C310; Figure 3a, 4). FDOM in aquaria (with low OM content) was detected in 

significantly lower intensities making it difficult to conclude which peak 

dominated (Figure 3b).  
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Figure 3: The effect of different ozone dosages on the fluorescence intensity (I; expressed in arbi-

trary units (AU)) in water from two selected aquaculture systems with different organic matter 

content. Modified from Paper I. 

Thus, it is clear that FDOM exists in RAS water (Hambly et al., 2015; Paper 

I; Paper II; Paper III) independently on the operational conditions. The flu-

orescence components were distinct in the predetermined wavelengths but a 

more detailed identification of the OM character is required. 

 

3.2  Sensitivity of fluorophores to ozone  
Fluorophores are more reactive than DOC and consequently easier to be oxi-

dised by ozone (Liu et al., 2015). Therefore, the fluorescence intensity is af-

fected (Korshin et al., 1999), suggesting that spectra-based methods are suit-

able for online monitoring, due to a high sensitivity and ease of use (Hudson 

et al., 2007; Li et al., 2016). The high reactivity of aquatic DOM with ozone 

has raised questions related to the ability of fluorescence to measure indirect-

ly the delivery of ozone into water. 

Water samples from different RASs were subjected to ozonation (bench 

scale) to provide a representative and comprehensive investigation of the cor-

relation between fluorescence indices and the degradation of DOM (Figure 3; 

Paper I). Low ozone dosages (<5 mg O3/ L) entirely removed the protein-

like fluorophores, which were already in low intensities, and up to 50% the 

humic-like fluorophores (Figure 3; Figure 4). It has been reported that humic-

like fluorophores, when subjected to ozonation, were unaffected, while a de-

crease in protein-like fluorophores was expected (Henderson et al., 2009). 

High ozone dosages (15 mg O3/ L or more) significantly reduced the fluores-

cence intensity, from 60% to 97.7% (Figure 3), without being able to oxidise 
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some fluorophores entirely suggesting that a low fluorescence activity re-

mained in water, which did not react with ozone.  

To verify if fluorescence increases proportionally with the OM accumulation 

within a RAS, water samples were collected from a pilot-RAS were trout 

were farmed. The sampling occurred over time, when the tanks were filled in 

only with clean water, a week after the fish had entered the system and when 

the system had reached steady state, in terms of biofilters performance. Fluo-

rescence intensity was gradually increased from 20 to 60 Au (0 mg O3/ L), 

suggesting that fluorescence is a good indicator of OM accumulation in the 

system (Figure 4; Paper II). 
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Figure 4: Fluorescence degradation of humic- and protein-like fluoropores (I; expressed in 

arbitrary units (AU)) in ozonated RAS water exposed to different ozone levels over time: 

a) make-up water, b) start-up phase and c) steady-state phase. Modified from Paper II. 

 

To visualise the effect of different ozone dosages in RAS water, samples 

from a pilot-RAS were analysed with EEM spectroscopy (emission wave-

length range: 146-692 nm; excitation wavelength range: 240-600 nm; Figure 

5). The samples were analysed before, and throughout 8 days of continuous 

ozone treatments.  
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Figure 5: Typical EEMs of RAS water before ozone addition (top) and after 8-days of 

ozone treatment (bottom) where 3 different ozone dosages levels were applied. Note di f-

ferences in scales, from Paper III. 

 

Although the overall character of the EEMs appeared to remain similar (Pa-

per III), the FDOM intensity from the non-ozonated system (Figure 5; top 

row) was significantly higher than the ozone treated systems (Figure 5; bot-

tom row). More detailed approaches will allow identifying the different fluo-

rescent fractions contained within the RAS water. 

 

3.3  Characterisation of fluorescent dissolved 

organic matter  
The EEM datasets were mathematically decomposed with PARAFAC tech-

nique and four independently varying fractions (Figure 6) were revealed in 

non-ozonated RAS water. Three components had their emission peak in the 

visible region (>380 nm), whereas the last component had an emission peak 

in the UVA region (300-380 nm) with maximum intensity at 340 nm (Paper 

III). The OpenChrom database was used to cross-reference these fluorescent 

components with components obtained in previous studies (Murphy et al., 

2014) to obtain more accurate identification of the fluorescent properties of 

each individual fraction. This comparison revealed that similar fluorophores 

were present in samples from natural, marine and freshwater systems 
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(Stedmon et al., 2007; Jørgensen et al., 2011; Gueguen et al., 2014; Murphy 

et al., 2014;  Yu et al., 2015; Lambert et al., 2016) saline lakes (Osburn et al., 

2011) and in wastewater (Yu et al., 2015).  

 

Figure 6: Loadings (top; stippled line stands for excitation wavelength while full line 

stands for emission wavelength) and contour plots of individual fluorescent components 

derived from the 4-component PARAFAC model (bottom; generated from 249 samples 

from all three ozonation levels and controls) from Paper III. 

 

The C340 was present in streams, rivers (Yamashita et al., 2010; Cawley et al., 

2012), oceans (Stedmon et al., 2011; Cawley et al., 2012), storm water, urban 

ponds (Williams et al., 2016) and in aquaculture (Nimptsch et al., 2015; 

Hambly et al., 2015; Yamin et al., 2017; Paper III). The components identi-

fied in the pilot-RAS water originated from the fish feed (C340), the make-up 

water (C439) and OM produced by fish and water treatment processes (C385 

and C490; Hambly et al., 2015). 

 

3.4  Responsiveness of FDOM to ozone  
The water quality in a RAS with ozonation will eventually reach a new steady 

state (Paper II). Low ozone concentrations were found to reduce the fluores-

cence intensity in RAS samples in batch experiments (Figure 3; Figure 4). 

Since RAS water would be continually treated, it was hypothesized that low 

ozone dosages would be sufficient to maintain a relatively good water quality 

in pilot and full-scale RASs (Paper II).  

A calibration curve is needed to ensure repeatability and reliability of meas-

urements made by a fluorescence-based sensor which aims to control ozone 

dosage. The calibration curve should take into account the nature of fluores-
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cence responsiveness to ozone. The curve and the range are crucial compo-

nents to define the calibration properties. A significant linear regression with 

high R
2 

for humic- and protein-like fluorescent OM was found (Figure 7), 

indicating strong correlation and high accuracy. The slopes suggested that the 

humic-like FDOM (Figure 7a) was more vulnerable and sensitive to ozone 

than the protein-like FDOM (Figure 7b). However, when comparing these 

slopes across different RASs, great variations were observed (Paper I).  
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Figure 7: Calibration curves for a) humic b) and protein-like fluorophores. Modified from 

Paper I. 

 

Previous studies have shown that UV absorbance at 254 (UV254; Bahr et al., 

2007; Audenaertet al., 2013), DOC and COD are good indicators of DOM 

oxidation by ozone. Fluorescence was strongly correlated with absorbance 

(0.91>R
2
>0.99) (Figure 8). Similar trends with small differences in the slopes 

and intensities were observed between the treatments for normalised DOC 

and normalised COD with fluorescence, respectively. However, between flu-

orescence components there were quantitative differences (Figure 8). The 

correlation between fluorescence and absorbance, DOC, and COD, was com-

ponent-dependent (Paper III).  
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Figure 8: Fluorescence correlation with a) absorbance, b) normalised DOC and c) normal-

ised CODTOT respectively and for each component for the 2 selected ozone treatments. 

Modified from Paper III. 

 

RAS water is not a static molecular mixture, the distribution of FDOM 

changes significantly over time, affecting the overall fluorescence character 

of the water. Fluorescence is suitable to monitor changes in water quality due 

to the ability to detailed verify the distinct reactivity of identified fluoro-

phores, which absorbance could not distinguish (Peleato et al., 2017).  

Fluorophores were readily oxidised by ozone; however, variation was ob-

served upon comparison of the slopes of the curves for both humic- and pro-

tein-like fluorescence, among the different water samples (Paper I). That 

suggests that a universal sensor utilising fluorescence removal to control dis-

solved ozone in water cannot be made. The fluorescence removal is not di-

rectly converted to ozone dosage (Paper I). Li et al. (2016) found it also dif-

ficult to compare intensities across wastewater studies. Correction factors are 

needed to directly compare results among sensors (Henderson et al., 2009). 

Therefore, a more accurate identification of the OM in a continually ozonated 

RAS, would provide a more precise fluorescence wavelength transition to 

manufacture a potential sensor (Paper III). 
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3.5  Applications of fluorescence measurement in 

ozonated RAS systems 

A fluorescence based sensor could be applicable in both closed and flow 

through systems. Few studies have tested fluorescence based sensors within 

drinking water, wastewater treatment plants and aquaculture industries. A 

LED UV/fluorescence sensor predicted the DOM degradation during ozona-

tion by measuring the UV289 and protein and humic-like fluorescence (Li et 

al., 2016). Another fluorescence method, processing all the emission fluores-

cence peaks excited at 254 nm as a whole (Gerrity et al., 2012), couldn’t dis-

tinguish the oxidation behaviour between protein and humic-like fluoro-

phores. Hambly et al., (2015) characterised the DOM in a conventional RAS 

using fluorescence EEM spectroscopy and PARAFAC analysis. This coupled 

EEM-PARAFAC methodology has been applied in several ozonated systems 

to investigate the removal behaviour of different fluorescent components (Liu 

et al., 2016; Chen, et al., 2017; Mangalgiri et al., 2017; Peleato, et al 2017). 

However, any attempt has previously been made to investigate the FDOM 

changes in ozonated RAS. 

 

3.5.1 Determination of delivered ozone dosage 
Determination of the delivered ozone dosage is a common problem in various 

ozonation systems. Usually a sensor is installed in the gas flow of the ozone 

generator and another in the off gas flow from the ozone-water contact cham-

ber. This set-up is however, an expensive solution. To evaluate the ozone sys-

tem without any sensor installation (offline monitoring), water samples can 

be collected before and after the ozone injection (Figure 9a; blue dots: sam-

pling locations), transferred to the laboratory. A calibration curve would di-

rectly convert fluorescence to ozone concentration for the specific system. 

Thus the ozone generator performance would be evaluated by comparing the 

obtained data with the manufacturer’s specifications.  

The determination of the OM character of a RAS and the sensitivity of each 

component to ozone would provide a new insight on the effectiveness of 

ozone treatment as a way to control organic matter in land-based aquaculture. 

This requires design of a fluorescence sensor based on a specific wavelength 

transition in order to monitor ozone (Paper III).  
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Figure 9: Schematic representation of potential fluorescence-based sensors applications to 

control ozone dosage in closed and flow through systems. These sensors can be either off -

line or online. From Paper II.  
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3.5.2 Online control in recirculation systems 
An online control system equipped with fluorescence sensors will ensure that 

the ozone delivered in the water will be within predetermined levels. A fluo-

rescence intensity within the calibration curve will be chosen as a control 

point (Figure 9b), and would fluctuate within a predetermined range. When 

fluorescence intensity exceeds that threshold, ozone will be dosed according-

ly to maintain the fluorescence within the limits. With this approach, the 

ozone demand will be well defined preventing excess of ozone into water. 

Although the water quality will be improved, the disinfection will be limited. 

An additional benefit of this concept is the low operational cost since only 

the required ozone dosage will be injected. 

 

3.5.3 Online control in flow through systems 
Ozone dosage control, based on fluorescence spectroscopy, is a technique 

that can be also applied in “flow-through” systems (Figure 9c). An online 

sensor installed in the inlet of the facility would evaluate the influent water 

quality in terms of fluorescence intensity. Based on the fluorescence intensi-

ty, the ozone generator will be adjusted as described previously, oxidising 

pesticides and miscellaneous micro-pollutants and deactivating pathogens 

that the water stream might carry on and which might be harmful to the fa-

cility. A second sensor in conjunction with the ozone generator will ensure no 

residual ozone is left.  

Alternatively, the same set up can be installed in the outlet of the facility, be-

fore water is discharged to the environment to ensure that chemical com-

pounds used within the facility (e.g. antibiotics or other chemicals) are oxi-

dised and consequently absent from the water stream. The purpose of this 

approach is to constantly ensure that certain thresholds are met independent 

on inlet water quality (blue line; Figure 9c). If fluorescence intensity is lower 

than the predetermined fluorescence level in the effluent, then less ozone 

should be fed into the system. 
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 Safe design of ozonation installations 4

Although ozonation has been applied for years in aquaculture, there is still 

knowledge gap regarding the realistic “safety window” (Muller and Milton, 

2012). The added amount of ozone required is system-specific and highly 

dependent on the “ozone demand” which depends on the feed loading, feed 

utilisation, water treatment, degree of dilution, etc. (Summerfelt et al., 2009). 

The ozone demand and the ozone lifetime are key parameters to design a safe 

ozonation system (Figure 10). Therefore, a method to predict the required 

ozone dosage in a RAS by analysing water samples in the laboratory was de-

veloped (Paper II) setting the basis for better design of pilot and full-scale 

systems with the minimal risks and cost and the closest proximity to the facil-

ity’s needs.  

Figure 10: Illustration of the principle to design an ozonation system for a RAS by analys-

ing water samples in the laboratory.  
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Figure 11: Scematic 

reprsentation of a pilot-RAS 

(Rojas-Tirado et al., 2017).  

 

4.1  Optimal ozone dosage for pilot RAS 
Ozone demand and kinetics in RAS water 

were determined. Water samples were col-

lected occasionally from a pilot-RAS 

(Figure 11), starting from the day that the 

fish entered the tanks (0 days) until the 

system reached steady state (70 days) and 

then were subjected to recurrent ozonation 

(bench scale experiments; Paper II). Prior 

to ozonation, the systems had reached 

steady state in terms of biofilters perfor-

mance (Colt et al., 2006). 

 

4.1.1  Ozone kinetics and organic matter 
The lifetime of ozone is important to know to ensure safe and optimal dosage. 

Ozone should be completely degraded before the treated water reaches the 

culture tanks or even the biofilters. To investigate the long-term effects of 

ozone, water samples were repeatedly ozonated (10 mg O3/L) upon ozone 

depletion (Figure 4). Distinct fluorescence removal was observed among the 

cycles (each cycle means addition of 10 mg O3/L). A correlation between the 

ozone dosage applied and the fluorescence removal was found (Paper II). 

The recurrent ozonation simulated water recirculation. In presence of low 

OM (e.g. make-up water), the ozone lifetime did not vary between cycles 

(>130 min), suggesting that there was not enough OM to react with ozone, 

extending its lifetime (Figure 12a). High OM concentration samples had re-

markably shorter lifetimes (< 5min; Figure 12c). The three following ozone 

cycles had considerably longer lifetimes compared to the start-up phase and 

make-up water. More recalcitrant compounds were oxidised by the subse-

quent ozone cycles (Paper II). 
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Figure 12: Ozone kinetics of RAS water during 4 consequent dosings (i.e. cycles; addition 

of 10 mg O3/L per cycle) in a) make-up water, b) start-up phase and c) steady-state phase. 

Expected nominal concentrations of ozone was equivalent to 10 mg O3/l. Modified from 

Paper II. 

 

4.1.2  Ozone demand 
Ozone reacts rapidly with the easily degradable compounds, resulting in an 

immediate ozone consumption (time = 0 min; Figure 12) which will be re-

ferred to herein as “initial ozone demand”, and is correlated to the increasing 

water pollution due to OM accumulation in the system. The greater initial 

ozone demand was observed in high OM concentration water samples. 

Several methods have been suggested over the years regarding the issue of 

ozone demand determination. It has been suggested to dose ozone based on 

ORP levels, feeding (Bullock et al., 1997; Good et al., 2011) or automatically 

adjusted to either changes in fish feeding ratio (Summerfelt et al., 2009) or 

FDOM degradation (Paper I).  

The fluorescence intensity, which reflects the OM accumulation in a system, 

can be used to indirectly determine the ozone applied in a RAS (Paper II). 

The ozone demand for the pilot RAS was exclusively defined based on feed 

input and the associated metabolic excretion, as the make-up water had no 

initial ozone demand (Figure 12). In Paper II, it was described in detail how 

the ozone demand was determined, by taking into account ozone demand for 

the start-up phase and the steady state as well as the ozone lifetime.  

Water samples were collected from a replicated experimental setup (Rojas-

Tirado et al., 2016), built to mimic full scale intense RASs (Figure 13). The 

RAS used freshwater (non-chlorinated ground-water) supplied through the 

public distribution system in Hirtshals, Denmark. Upon recurrent ozonation, 

the 2
nd

, 3
d
 and 4

th
 cycles overlapped (each cycle means addition of 10 mg 
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O3/L; Figure 12), as no further reaction occurred. Thus, the ozone demand for 

the start-up phase (OM built-up in 7 days) was around 18 mg O3/L (between 

10 and 20 mg O3/L). Likewise, the ozone demand for the steady state (OM 

built-up in 70 days) was around 35 mg O3/L. Afterwards, the daily ozone de-

mand for each phase was calculated to be 2.6 and 0.50 mg/L/day, respective-

ly. By taking into account system’s configuration (e.g. volumes, flows) it was 

found that 148 mg O3/h, which correspond to 28 g O3/kg of feed, was needed 

for the specific RAS. If this ozone dosage would be applied continually, the 

OM in the water would be completely oxidised. Addition of 15 to 25 g O3/kg 

of feed was sufficient to improve water quality in full-scale ozonation sys-

tems (Summerfelt & Hochheimer, 1997; Summerfelt et al., 2009; Davidson et 

al., 2011). Although, RAS water should be of good quality, it should not be 

pathogen free, since the immune system of the fish would be completely 

weakened. Thus, lower ozone dosages than the calculated (28 g O3/kg of 

feed) were applied in the pilot-RAS; 10, 15 and 26 g O3/kg of feed (Paper 

II).  

The ozone demand and the ozone lifetime for the specific system were deter-

mined experimentally in the laboratory, the predicted ozone dosages applied 

in up-running pilot-RASs (Figure 13) aimed to test the methodology and to 

verify the effect of ozone on water quality. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The pilot-RAS facility where the experiment was conducted in Hirtshals, Den-

mark. 
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  Ozonation of freshwater pilot-RAS  5

5.1  Ozonation of pilot-RAS  

The predetermined ozone dosages (Section 4.1.2) were injected into pilot-

scale RASs (Figure 13). The ozone pilot-scale trial lasted 2.5 weeks, and the 

overall experiment was divided into three distinct phases. Phase I was the 

pre-ozonation period (6 months), while Phases II and III represented the two 

ozonation periods. During Phase II, two replicated trials occurred (IIA and 

IIB).  

For the Phase IIA six RASs were used, three were operated as controls, where 

no ozone was added. The three remaining RASs were each equipped with one 

ozone reaction tank (18 L) per system (Figure 14). In a side-stream, water 

was pumped from the swirl separator into the reaction tank at a flow of 0.2 

m
3
/h and a retention time of 5.4 min. The remaining water was led to the 

pump sump. From the ozone reaction tank, the treated water was also trans-

ferred to the pump sump with an overflow, before moving on through biofil-

ters (excess water from the trickling filter returned to the pump sump) and 

ultimately to the fish tank.  For the Phase IIB six new RASs were used. In 

Phase III, 50 g O3/ kg of feed, equivalent to twice as much as the highest ap-

plied ozone dosage in Phase II, was tested (High O3 x2). The control values 

consisted of the average for the three individual systems. The study relied 

mainly on the results from the Phase II, as there were some malfunctions in 

the ozone delivery system during the first trial. 

Air
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Swirl
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tor      O3

Dissolver
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Sump

 
Figure 14: Schematic representation of the pilot-RAS (black lines) with the integrated 

ozone (red lines). 
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5.2   Ozone effect on water quality 
Water was tested several times per day, in multiple locations within the RAS, 

for residual ozone. If residual ozone is present in culture tanks might affect 

the fish physiology (damages on tissues or gills or even kill the fish; Powell 

and Scolding, 2016) or behaviour (feeding and/or swimming; Bullock et al., 

1997). By using the indigo method (Section 2.3.2), no ozone residues were 

detected in any RAS at any time and consequently none of these adverse ef-

fects were recorded. Along with the residual ozone, several water parameters 

were determined during the pilot ozone experiment (Figure 15). 
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Figure 15: Effect of ozone on a) UVT% after 8 days, b) COD after 8 days (the % and the 

dotted (upper) parts of the bars represent the particulate COD, while the lower part is 

dissolved COD-normalised data, standard deviation only in control, c) NVOC-normalised 

data, d) nitrite-normalised data, e) nitrate-normalised data, f) ammonium-N-normalised 

data, g) ORP, h) plotein like-fluorescence-normalised data and i) humic-like fluorescence 

degradation-normalised data from Paper II. 
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5.2.1  Ozone effect on water transparency 
Water transparency is vital for RAS management. The fish can see the feed, 

resulting in increased growth with limited feed waste. Increased visibility can 

also improve UV treatment efficacy and several water treatment processes 

within the unit. Water transparency is a good indicator of water quality and is 

described by the transmission of UV254 (UVT), which represents the amount 

of light absorbed by particles and dissolved substances within a sample. In 

RAS water, typical range for UVT% is from 30 to 60% (Paper II). The water 

clarity, expressed as UVT% (Figure 15a), increased pro rata of ozone dosage 

applied and treatment period (Summerfelt et al., 1997; Christensen et al., 

2000; Summerfelt et al., 2009; Davidson et al., 2011; Paper II).   

 

5.2.2  Ozone effect on Oxidation - Reduction 

potential (REDOX) 
ORP was continually monitoring determined to the baseline of RAS water 

and the resulting changes due to ozonation to facilitate the comparison with 

previous studies. ORP probes are often used as part of feedback mechanisms 

to aid in adjusting ozone dosages to the ozone generator (Powell and 

Scolding, 2016). Although, the RASs used for the experiment were identical, 

the REDOX potential did not have the same starting point (Paper II) which 

is a well-known issue. Different safe ORP levels for rainbow trout have been 

reported; 250 mV (Davidson et al., 2011), 300 mV (Bullock et al., 1997), and 

340 mV (Summerfelt et al., 2009). However, ORP levels and consequently 

ozone dosage cannot be compared across studies (Li et al., 2014), since each 

water type is unique and changes are observed even in non-ozonated RAS 

water. These changes might be due to different water compositions, system 

designs, probe specifications and calibration times (Li et al., 2014) to feed-

ing, waste production cycles, oxygen levels and treatment system.  

The ORP baseline the pilot RAS experiment was at 200 mV. The REDOX 

potential increased proportionally to ozone dosage, ranging from 475 to 549 

mV (Figure 15g). Similar REDOX levels (375, 450 and 525 mV) have also 

been observed in an earlier study when similar dosages were applied (24-32 g 

O3/kg of feed; Summerfelt et al., 1997). 
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5.2.3  Ozone effect on organic matter 
Bulk indicators of water quality such as NVOC, COD and BOD have been 

widely used in RAS to determine DOM (Hambly et al., 2015; Rojas-Tirado et 

al., 2017). During the 70-day period, the NVOC was increased by 6.9 mg/L 

(filling water to steady state (Paper II)), due to fish activity, feed loading and 

high system intensity. Such high NVOC concentrations, up to 9.7 mg/L, have 

been found in commercial trout RAS (Paper I). Upon ozonation, NVOC con-

centration diminished (Figure 15c) by 25% (high dosage, IIB). A rapid de-

crease was observed within the first days, following first-order decay. In the 

Phase III, NVOC reduction (17%) was proportional to ozone exposure (Pa-

per II). Low weight assimilated organic carbon or biodegradable OM is pro-

duced when DOM is oxidised by ozone. However, low ozone dosages were 

not able to break down the molecules. In the contrary, ozone may have en-

larged the molecules by breaking double bonds and adding oxygen atoms in 

the parental compound and forming a secondary molecule with higher molec-

ular weight (Von Sonntag and Von Gunten, 2012). These enlarged com-

pounds possibly would be removed by filtration and sedimentation or be 

readily degraded by bacteria, since the newly-formed hydroxyl groups are 

easier to break down.  

A supplementary parameter to quantify oxidisable OM in water is the COD. 

The dissolved fraction was the dominant (Figure 15b). Due to short-term 

treatment, the ozone effect on COD was not clear while there was variability 

in the control samples (standard deviation in control samples; Figure 15b).  

A similar trend to the COD was observed when BOD5-TOT (Paper IV) was 

analysed. BOD5-TOT removal was also proportional to ozone dosage, with a 

decrease from 30 to 39% (Figure 16b). The particulate fraction of the BOD5-

TOT dominated and was significantly reduced by ozone. The BOD5-DISS was 

much lower without being affected by the treatment.  

The biodegradability index, defined as the ratio between BOD and COD 

(BOD/COD), can be used to characterize the OM in water (Paper IV). Srini-

vas (2008) has suggested the following classification: if BOD/COD is >0.6 

the OM is easily biodegradable, if BOD/COD is between 0.3 and 0.6, the OM 

is average biodegradable, and if BOD/COD is <0.3 the OM is not easily bio-

degradable. The mean biodegradability indices for BOD5-TOT/CODTOT prior 

and upon ozonation were 0.10 ± 0.03 and 0.10 ± 0.01 (independent on the 

ozone dosage applied), respectively. The RAS water contained recalcitrant or 

non-biodegradable organic matter (Srinivas, 2008; Dalsgaard and Pedersen, 
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2011). In RAS systems operating under constant conditions for a long period 

the biodegradability index have been reported to range from 0.08 to 0.1 

(Fernades et al., 2015; Rojas-Tirado et al., 2017; 2018).  
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Figure 16: Effect of different ozone dosages, after 8-day-treatment, for the Phase II, on a) 

TAN, these data could be also found in Paper II, b) BOD5 (the % and the stripped (upper) 

part of the bars represents the particulate BOD5, while the lower part is dissolved BOD5) in 

RAS water. The data are normalised and standard deviation applied only in the controls. 

Modified from Paper IV.  

 

5.2.4  Ozone effect on fluorescent organic matter 
The effect of continuous ozonation on FDOM character in aquaculture water 

from constant operated RASs was investigated (Figure 15 h,i). A more de-

tailed identification of the different fluorescent fractions was conducted by 

using the coupled EEM-PARAFAC technique (Paper III). The most pro-

nounced components in untreated water samples were C439 and C385, whereas 

C490 and C340 were present at lower intensities. A few hours after ozone injec-

tion in the systems, no difference were observed between the control, low and 

medium ozone treatments for the C439 and C385 (Figure 17). A decrease was 

observed for each fluorescence component during the same period for the 

high ozone dosage treatment (Figure 17). Both C490 and C340 found to differ-

entiate from the control, where the relative decrease was correlated to the 

ozone treatment concentration. 

The relative decreases were most pronounced with the highest ozone dosages, 

and the level of the decrease was directly related to the level of ozone dosage.  
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Towards the end of the trial, the systems appeared to reach a new steady-state 

in terms of FDOM, which became more pronounced as the ozone dosage in-

creased. This suggests that the rate of FDOM input to the system became 

equal to the rate that ozone was removing it. The time that the steady-state 

occurred for each one of the four fluorescence components differed. 
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Figure 17: Relative removal of FDOM components by ozonation over time for 4 ozone 

treatments, from Paper III.  

 

5.2.5  FDOM component selectivity 
The removal rates of FDOM varied between components suggesting that they 

responded differently to ozone. This provided details about their bioavailabil-

ity and treatability. Fluorophores with emission peaks in the visible region 

are often described as humic-like or fulvic-like, are ubiquitous (freshwater, 

coastal waters, ground water and deep ocean waters) and are consisting pos-

sibly of aromatic rings and electro-donating groups (Li et al., 2016). PARA-

FAC analysis revealed three different signals within the visible region. These 

fluorophores often represent persistent OM which has been accumulated over 

time as by-product of microbial activity (Jørgensen et al., 2011). Marine mi-

croorganisms are not able to decompose components such as C439 and C385, 

and it is believed to be the leftovers of microbial processing (Riopel et al., 

2014; Yamin et al., 2017). These components appear similar recalcitrance 
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towards ozone (Von Sonntag and Von Gunten, 2012; Paper III). Between the 

humic like components contained in our RAS water, the highest removal was 

observed by the C385 (Paper III). Components with shorter wavelength tran-

sitions and most probably lower molecular weight (Fellman et al., 2010), 

might be more amenable to oxidation by ozone (Peleato et al., 2017).   

In intensive aquaculture systems, water may be enriched with peptides or me-

tabolized proteins due to fish excreta and dissolution of fish feed. High UV-A 

fluorescence signal is linked to the amino acids, is then expected (Yamashita 

et al., 2013). UV-A fluorescence signal is commonly attributed to fresh, high-

ly bioavailable (many bacteria utilise tryptophan and tryptophan as a food 

source) and degradable DOM, and therefore it is often associated with biolog-

ical activity and growth (Logue et al., 2016; Sorensen et al., 2018). This 

component is usually present in surface waters (Fellman et al., 2009; 

Stedmon and Cory, 2014) and wastewater effluents (Baker & Spencer, 2004; 

Hambly, et al., 2010; Hambly, et al., 2012; Riopel et al., 2014). It is a 

fraction that can affect the microbial water quality and the microbial 

community. Therefore, the immediate limitation of this component within 

RAS might also affect heterotrophic micro-organism growth. For all ozone 

dosages, and at all-time points, C340 exhibited the greatest % removal of all 

components (Figure 17). Previous studies have shown that ozone preferential-

ly reacts with molecules with higher electron density (Von Sonntag and Von 

Gunten, 2012; Mangalgiri et al., 2017) and is therefore consistent with the 

link to tryptophan content of this component. 

 

5.2.6  Component removal rates 
Ozone oxidizes DOM based on the functional groups of the organic mole-

cules. DOM is a complex mixture of millions of different chemical com-

pounds – with different reactivity and bioavailability. The FDOM compo-

nents exhibited different reactivity with ozone, having distinct removal rates. 

The FDOM removal was proportional to the applied ozone dosage. The long-

er wavelength components (C439, C385, C490) were more recalcitrant to ozone 

compared to the shorter wavelength UVA component (C340; Paper III). Simi-

lar observations were found in ozonated OM extracted from poultry litter 

where the protein-like fluorophores were the first to be removed upon ozona-

tion and with the fastest rate (Mangalgiri et al., 2017).  
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In overall, the humic-like components had higher fluorescence intensities and 

were characterised by higher sensitivity compared to the protein-like compo-

nent (C340<C490<C385<C439; Figure 18). C340 component is also associated 

with microbial activity and BOD (Cumberland et al., 2012a). In combination 

with the removal rate upon ozonation it becomes a key element for the moni-

toring and optimisation of ozone treatment in RAS.  
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Figure 18: a) Reaction rates; and b) log-log graph showing rate order; according to ozone 

dosage for each FDOM component from Paper III. 

 

5.2.7  Ozone effect on particles 
RAS water was also analysed for particle numbers and size distribution in 

samples only from the Phase IIB (Paper IV). Particles allow bacteria to be 

adhered having a positive correlation with bacterial activity (Pedersen et al., 

2017). Prior to ozonation the particle numbers varied from 1.36 to 4.88  10
6
 

particles/ml and from 1.47 to 2.78  10
5
 particles/ml, for the size class 1-3 

µm and 3-30 µm, respectively (Figure 19).  

Upon 8 days of ozonation the micro-particles with size between 1-3 µm were 

decreased evenly in the control and the low ozone dosages, while a slight de-

crease was observed in the medium ozone dosage. The high ozone dosage 

resulted in a reduction of 72% of micro-particles in this size range after 8 

days of continuous ozonation. Davidson et al. (2011) observed the same ef-

fect on micro-particles when applying 20-25 g O3/kg feed.  

Particles in the range 3-30 µm also decreased at the end of the trial, propor-

tionally to the ozone dosage applied, from 66 to 86%. The reduction could be 

explained by the ability of ozone to reduce suspended particles, (Summerfelt 

et al., 1997), improving the filter performance. The breakdown of micro-
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particles was significant for the high ozone dosage (26 g O3/kg feed) and very 

consistent with the BOD and COD removal.  
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Figure 19: Effect of different ozone dosages on particle size distribution (ranges 1-3 μm 

and 3-30 μm) and number - normalised data. Modified from Paper IV. 

 

5.2.8  Ozone effect on nitrogen-based compounds 
A large part of dissolved waste in RAS comprises nitrogenous compounds in 

the form of ammonia, ammonium, and urea (Bureau and Hua, 2010; 

Dalsgaard et al., 2015; Dalsgaard and Pedersen, 2011). Biofiltration is a key 

process in RAS water quality management. After the ammonia release, which 

is highly toxic for the fish, bacteria in the biofilters will convert it 

to nitrite, which is still dangerous to the fish (Kroupova et al., 2005; 

Svobodová et al., 2005), and then to nitrate, which is relatively non-toxic. 

Finally, a denitrification filter will transform nitrate to nitrogen gas, which is 

released to the atmosphere.  

The presence of high OM can affect the biofilter performance (Guerdat et al., 

2011). Other bacteria, competitive to nitrification bacteria, might start using 

the OM as carbon source (Blancheton et al., 2013), grow faster and replace 

the nitrification bacteria (Grady et al., 2011). Therefore it is crucial to main-

tain the ammonia and nitrite levels in low concentrations as well the OM con-

tent in the water to ensure that the biofilters will operate satisfactorily.  

Although ozone was able to oxidize OM in a great extent (Paper II; Paper 

III), its effect on nitrite was limited (20% removal) independent on the ozone 

dosage (Figure 13d). No effect was observed on nitrate (Figure 15e) and am-

monia removal (Figure 15f, 16a). Ammonia is not readily oxidised by ozone 

(Timmons et al., 2002), unless pH levels are 9 or above (Rice et al., 1981). 

Nitrification and denitrification in the biofilters appeared unaffected as am-

monium and nitrate concentrations in the system water did not change during 

the experimental ozone treatment. 
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5.3  Ozone effect on microbial water quality 
In RAS, the microbial abundance is highly related to the availability of dis-

solved and particulate biodegradable OM, which is the main nutrient source 

for heterotrophic bacteria (Wold et al., 2014; Attramadal et al., 2016). Bacte-

ria lead to high levels promoting growth of heterotrophic dinoflagellates can 

be toxic and might cause complete loss of fish (Moestrup et al., 2014) with 

large economic impact. The oxidative properties of ozone are able to reduce 

either the absolute numbers of bacteria or the pathogens infectivity, propor-

tionally to the contact time (Langlais, et al., 1991; Powell et al., 2015). An 

investigation regarding the microbial activity and abundance in the RAS wa-

ter upon ozonation was also conducted (Paper IV).  

Usually the bacterial loading in RAS has been assessed by the use of plate 

count agar methodology (colony forming units; CFU) (Sharrer et al., 2005; 

King et al., 2006; Sharrer & Summerfelt, 2007; Attramadal et al., 2012; 

Garrido-Pereira et al., 2013). This technique has low representativeness and 

long response time (Van Nevel et al., 2017). In the present study the microbi-

al water quality was assessed through quantification of bacteria in terms of i) 

activity by the BactiQuant
® 

method and hydrogen peroxide degradation 

method (Rojas-Tirado et al., 2017; Rojas-Tirado et al., 2018) and ii) cell 

number with flow cytometry (Figure 20) prior and after 8 days of ozonation. 

These techniques were used to assess disinfection efficiency rapidly, which 

has not been done before. 

 

5.3.1  Bacterial activity  
Both methods, HP degradation and BactiQuant

® 
analyses, are assays that 

measure water samples (Rojas-Tirado et al., 2018) and take into consideration 

the activity of free-living and particle associated bacteria (Pedersen et al., 

2017; Rojas-Tirado et al., 2018). BactiQuant
®

 measures bacterial activity in-

directly via a common hydrolase enzyme found within a wide range of bacte-

ria (Reeslev et al., 2011) which will remain active in the presence of availa-

ble substrate (Rojas-Tirado et al., 2018), while the hydrogen peroxide degra-

dation assay is based on microbial degradation kinetics (Arvin and Pedersen, 

2015).  

The control RAS increased in average two times in bacterial activity com-

pared to the initial values (Figure 20), while a slight increase (10 and 30%) 

was observed for the low and medium ozone dosages. Assessing the bacterial 
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activity by HP degradation, after 8 days of trial, it was observed that the high 

ozone concentration reduced the activity by 20 %. Bacterial activity within 

RAS prior to treatment, assessed by BactiQuant
®

, had the same values as in 

previous studies where RASs were in steady state (Pedersen et al., 2017; 

Rojas-Tirado et al., 2018). Despite the different ozone dosages applied to 

RAS, no significant inhibition of bacterial activity measured by BactiQuant
®

 

was observed (Figure 20).  
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Figure 20: Microbial water quality results measured with different methodologies: a) 

Bacteria activity measured with HP degradation assay; b) bacterial activity measured with 

Bactiquant
®
; and c) bacterial abundance measured with flow cytometry. Data are 

normalised and standard deviation was applied only in the controls, from Paper IV. 

 

A reason why bacterial activity apparently was not affected by ozonation 

could be that the ozone system was primarily designed to enhance the water 

quality and not necessarily to provide disinfection (Paper II); no residual 

ozone was left in the water at the end of the ozone contact tank. Furthermore, 

the RASs varied greatly in terms of bacterial activity prior to ozonation mak-

ing the observations upon ozonation difficult, requiring data normalisation. 

An additional reason might be that ozone may have broken down organic 

matter to smaller molecules, exposing new available substrate for bacteria to 

either adhere to or be embedded in particles protecting them from disinfec-

tion (Hess-Erga et al., 2008). In case of the high ozone concentration, it could 

have induced to micro-flocculation of small particles into bigger particles 

(Tango and Gagnon, 2003; Gonçalves and Gagnon, 2011) maintaining possi-

bly bacterial activity. Few studies support that OM accumulated in RAS, pro-

tect the fish from parasites and microorganisms (Yamin et al., 2017a; 2017b). 
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5.3.2  Bacterial abundance 
The total number of suspended bacterial cells was quantified by flow cytome-

try using a fluorescent dye (SYBR Green II). Flow cytometry is based on sin-

gle cell level (Rojas-Tirado et al., 2018). No treatment that would cause cell 

detachment from particles occurred. Thus, the data are referred to as “free-

living bacteria”.  

Conversely to bacterial activity, the free living bacteria, measured by flow 

cytometry, were significantly reduced by ozonation. The reduction in bacteri-

al abundance was proportional to ozone dosage level (Figure 20). The highest 

O3 dosage reduced the free-living cell up to 89% after 8 days of constant 

ozonation.  

The retention time of water in the ozone reaction tank was 5.4 min (Paper II) 

meaning 1.40, 2.11 and 3.67 mg O3 min/L were dosed depending on the dos-

age. Different ozone dosages have been used for disinfection, depending on 

the target microorganism, ranging from 0.1-2 mg O2 min /L (Summerfelt et 

al., 1997). The reduction of free living bacteria and persistent bacterial activi-

ty could be attributed to the possible flocculation of micro-particles into larg-

er particles (> 30 μm). This may have sustained further particulate bacterial 

growth and protection. Bullock et al. (1997) used ozone dosages from 25 to 

39 g O3/kg feed without providing even a 1 log10 reduction in heterotrophic 

bacteria count in  RAS water. Hess-Erga et al. (2008) observed larger inhibi-

tion of the free living than particle associated bacteria when applying ozone 

being in agreement with our findings. The particle associated bacteria are 

protected by the structure of the particles. Greater bacteria reduction within 

RAS would have required higher ozone concentration i.e. above 39 mg O3/kg 

feed (Bullock et al., 1997) or the use of a protein skimmer to improve micro 

particle removal, and eventually reduce the particle associated bacteria.  

Due to variations of microbial loadings in the tanks prior to the treatment, 

further investigation is needed to assess the microbial quality parameters in 

ozonated RAS with methods such as BactiQuant
®

, HP and flow cytometry. 
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  Ozonation of marine RAS 6

Ozone chemistry in saltwater is more complex compared to that in freshwa-

ter, due to the higher concentrations of dissolved anions and cations (Jung et 

al., 2017). Bromide (Br
-
) is present in freshwater and seawater at concentra-

tions ranging from 10 to >1000 μg/L and about 67 mg/L, respectively 

(Magazinovic et al., 2004). Bromide is highly reactive with ozone. When 

ozonating seawater, bromide ion (Br
−
) is oxidized to bromate (BrO3

-
) with 

intermediate steps (Eq. 4-6). Hypobromous acid (HOBr) and its dissociation 

form, hypobromite (OBr
-
), are the dominating bromine species in water (Eq. 

7) and are of crucial importance since they have long lifetime allowing to 

several side reactions to occur (Grguric et al., 1994; Wert et al., 2008). OBr
- 

also
 
reacts with ammonia and proteins to form bromamines (R-NBrH; Eq. 8).  

Br
-
         +   O3          →   OBr

-                   
+ 

  
O2

              
Equation 4 

OBr
-   

    +   O3          →   BrO2
-                 

+ 
  
O2

              
Equation 5 

BrO2
- 
    +   O3          →   BrO3

-            
+ 

  
O2

                       
Equation 6 

H
+
         +   OBr

-
       →   HOBr          + H2O                        Equation 7      

OBr
-      

 +   R-NH3
+     

→   R-NBrH      + H2O                        Equation 8   

        

Ozonation in seawater RAS aims to mainly oxidise OM rather to disinfect 

(Summerfelt, 2003; Tango and Gagnon, 2003). Disinfection requires high 

amount of ozone which raises the risk to form brome-oxides. Both broma-

mines and hypobromous acid are toxic to fish, bivalves and crustaceans 

(Crecelius, 1979; Heeb et al., 2014). Marine animals, Neomysis awatschensis 

and Oncorhynchus keta tested for bromate toxicity and it was found to have a 

24-h LC50 of 176mg/L bromate and a 96-h LC50 of 5l2mg/L bromate, respec-

tively. 

To investigate the ozone fate and behaviour in marine water, samples were 

collected from a public aquarium, and were ozonated in the laboratory. The 

water quality was not evaluated since advanced water treatment technology is 

installed. The DOC of the samples was extremely low. Therefore, the interest 

was merely on the ozone determination and its lifetime in salt water. When 

ozonating seawater, it was observed that the lifetime of ozone, determined by 

the indigo method (Bader and Hoigné, 1981), was extremely long (Figure 

19). Similar long lifetimes were found in ozonated distilled water when bro-

mide was added, confirming that ozone reacts with the bromide forming bro-

minated by-products that interfere with the indigo (Figure 21).  
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Figure 21: Kinetics of ozonated (5 mg O3/L) a) distilled water b) distilled water spiked 

with bromide and c) seawater water spiked with bromide. All samples were pH adjusted to 

7.3. 

 

Two strategies have been suggested to minimize bromine by-products; the 

removal of precursors or the control of by-product formation (von Gunten 

and Hoigné, 1994). Some of the methods applied to resolve the issue are am-

monia addition, pH depression, OH radical scavenging, scavenging or reduc-

tion of hypobromous acid (HOBr) by organic compounds (Pinkernell and von 

Gunten, 2001), hydrogen peroxide addition (Antoniou and Andersen, 2012) 

and lowering the ozone dosage during treatment to limit the lifetime of ozone 

and quench the intermediates of the bromate formation pathway (Soltermann 

et al., 2017). Treatment units able to remove residual ozone and/or brome-

oxides (e.g. sand filters or biofilters, activated carbon filtration, UV radiation, 

air stripping) have to be integrated in ozonated saltwater aquaculture systems.  

 

6.1  Analytical methods 

6.1.1  Ozone in seawater 
It is difficult to separate ozone and bromine in ozonated saltwater (Jung et al., 

2017). Compared to ozone, bromine is more stable but has a lower oxidation 

potential (ozone=2.07 V and HOBr =1.59 V) in saltwater (Crittenden, 2012). 

The ozone in seawater can be determined by UV light absorbance at 258 nm 

where indigo is used to stop the ozonation (von Gunten and Hoigné, 1994). 

However, the bromine, which is formed during saltwater ozonation, also de-

colorizes the indigo solution, and produces false positive results in the ozone 

measurement (Jung et al., 2017). Jung et al (2017) monitored the ozone con-
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centration online using a flow injection analysis method and excluded the 

false positives which were measured with DPD method. However, DPD also 

reacts with ozone making their approach to subtract the false positive ques-

tionable. The DPD method can be used along with glycine, which destroys 

the ozone in the sample (Palintest). Total residual oxidant (TRO) analysis has 

been also used (Crecelius, 1979). However, this method cannot distinguish 

the different oxidants and if bromamines are also present would also contrib-

ute to the TRO level (Crecelius, 1979). All these methods are characterized 

by complexity and require skilled personnel and laboratory equipment and 

time to obtain reliable results. A real-time method to accurately determine 

ozone in brominated water without any interference is needed.  

 

6.1.2 Optimization of analytical method  
To address the issue of bromine interference with the analytical method to 

determine ozone, it was necessary to mask the effect of brominated species 

towards indigo. To do that two hypothesises were formulated: 

1. Bromite (BrO2
-
), the conjugated base of bromous acid (HBrO2), wouldn’t 

react with indigo. 

2. Ammonia reduces bromate formation during ozonation processes (von 

Gunten and Hoigné, 1994; Pinkernell and von Gunten, 2001). 

The original analysis for ozone determination with the indigo method occurs 

at pH 2 (Bader and Hoigné, 1981), which is too acetic. The shift of the equi-

librium toward HOBr (Eq. 7) slows down its oxidation by molecular ozone 

since only OBr
-
 can be oxidized by ozone (Eq. 5), while the oxidation capaci-

ty, the OH radical exposure, remains constant (Pinkernell and von Gunten, 

2001). Therefore, the ratio of [•OH] and [O3] is decreased when the pH is 

lowered during ozonation, resulting in reduced bromate formation (Pinkernell 

and von Gunten, 2001; Antoniou and Andersen, 2012). The pKa of HBrO2 is 

either 6.25 (Massagli et al., 2010) or  3.43 (Faria et al., 1994). By increasing 

the analysis pH to 5 or 7, higher than the pKa of HBrO2, BrO2
-
 would be 

formed, which was assumed that wouldn’t react with indigo. Therefore, the 

indigo method was modified by replacing the phosphate buffer (pH=2) with 

the corresponding amount of HCl (0.5 M) to achieve the desired pH.  

The pH and alkalinity of the distilled water were adjusted to be the same as in 

the seawater samples. Then, the samples were subjected to ozonation (5 

mg/L) and kinetics experiments were conducted. Results suggested that in-
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creasing method’s pH from 2 to 5 and 7 respectively did  not have any effect 

on the apparent ozone lifetime of seawater (Figure 22). The initial bromate 

formation cannot be reduced since it is pH independent.  
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Figure 22: Kinetics of ozonated (5 mg O3/L) a) distilled water spiked with bromide and  b) 

seawater water spiked with bromide, at different pH. 

 

To further elucidate the effect of ammonia on bromate formation, ozonation 

experiments with seawater were performed in presence of ammonia to mask 

HOBr (Eq. 8), which is an important intermediate species to bromate for-

mation. Varying the ammonia concentration had no effect on the ozone de-

cay, which means that disinfection processes remain unaltered (Pinkernell 

and Von Gunten, 2001). Ammonia concentration higher than 200 µg/L does 

not further reduce bromate (Pinkernell and Von Gunten, 2001). Ammonia 

addition does not alter the ozone stability, and, therefore, oxidation and disin-

fection processes remained unchanged. Although even small ammonia con-

centrations have a positive effect and it is also a cheap way to minimize bro-

mate formation, this method  is not efficient in waters that already contain 

medium to high levels of ammonia (Pinkernell and von Gunten, 2001). 

The colorimetric indigo method (Bader and Hoigné, 1981) was used to de-

termine the ozone concentration. Ammonia addition in the analysis was able 

to partially mask HOBr and to better determine the ozone dosage (Figure 23). 

Results suggested that 2.5 min were required to form bromamine in the sam-

ple prior to indigo addition. Although the bromine effect is reduced in pres-

ence of ammonia, further experiments are needed to reach an optimum solu-

tion.  
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Figure 23: Kinetics of ozonated (5 mg O3/L) a) distilled water and b) seawater water 

spiked with NH4
+
, at different times between sample and indigo addition. 

 

6.1.3  HOBr, Br
-
 and BrO

-
3 in seawater 

In ozonated saltwater samples the quantification of the brominated by-

products is crucial. Brominated by-products were determined using reversed-

phase HPLC-UV measurements (Heeb et al., 2017). Phenol in acidified con-

ditions has been used to quench hypobromous acid (Pinkernell and von 

Gunten, 2001) and then was analysed by HPLC. ABTS (2,2-azino-bis(3-

ethylbenzothiazoline)-6-sulfonic acid - diammonium salt) has been also used 

for HOBr analysis by forming a intensively green coloured stable product 

ABTS
•+ 

(Pinkernell et al., 2000). Bromide and bromate concentrations were 

measured by ion chromatography  (von Gunten and Hoigné, 1994; Pinkernell 

and Von Gunten, 2001; Soltermann et al., 2017). Due to the lack of sensitive 

methods for bromate analysis high bromide concentrations have been used 

(Pinkernell and von Gunten, 2001). 

The complexity of ozonated seawater is still a challenge. Real-time and accu-

rate methods to determine the dissolved ozone in saltwater and brome-oxides 

in site are needed. Additional experiments to investigate the toxicity of these 

compounds are also needed to be conducted. Further investigations are re-

quired to better understand the seawater chemistry in order to integrate safely 

ozone in up-running systems.  
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  Conclusions  7

This PhD study contributed to the knowledge needed to design a safe contin-

uous ozonation system integrated in constant operated freshwater pilot RASs. 

The overall water quality was improved whereas the fish welfare remained 

unaffected by the ozone treatment. The key elements for a safe ozone design 

were the ozone demand and lifetime which are unique for each facility. Both 

were determined indirectly by analysing the removal of FDOM contained in 

RAS water. Fluorescence was a good indicator of organic matter, which ac-

cumulated within the system and is highly sensitive to ozone. By analysing 

specific water samples and determining the ozone demand and kinetics, we 

were able to provide a new method to predict the required ozone dosage for 

an up-running system. 

Detailed analysis of FDOM revealed the most pronounced fluorescent frac-

tions within the RAS with different reactivity and responsiveness to ozone. 

This knowledge provided a further insight into the effectiveness of ozone 

treatment as a method to continuously measure and control organic matter 

and consequently ozone dosing in a RAS. The fluorescence component with 

emission peak in the UVA region exhibited the highest removal rate. This 

could be used to monitor ozone dosage in RAS by manufacturing an online 

sensor targeting this specific wavelength transition to continually evaluate the 

ozone treatment and limit the exposure of fish to excessive ozone levels.  

The ozone determination in marine RAS water was more complicated. Modi-

fication of the analytical method was required since the brome-oxide for-

mation interfered with the original indigo method (Bader and Hoigné, 1981) 

causing a false positive measurement. Further experiments are required re-

garding the brome-oxide formation upon ozonation and the breakpoint where 

ozone can be safely used in saltwater RAS to improve water quality without 

forming the toxic brominated by-products. 

To maximize the benefit from such a treatment, the user has to be clear about 

the purpose of ozonation so as to accurate determine the correct ozone dosag-

es. It is critical that all ozone systems are tested and calibrated in the labora-

tory and if possible in pilot setups, prior to installation to ensure the true out-

put and concentration. 
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  Perspectives 8

8.1  Significance of the work 
This study provides new methods and tools to better understand the ozone 

treatment in RAS, the ozone chemistry in both freshwater and saltwater and 

to utilize the beneficial ozone effects on water quality in RAS. The analysis 

of a few mL of water sample in the laboratory allowed to determine the ozone 

demand and the ozone lifetime of the system and also to predict the ozone 

dosage that was required for a pilot-scale RAS. With this method we can ac-

curately design ozone systems can be designed matching the needs of each 

individual facility. Fluorescence spectroscopy was a valuable tool to monitor 

organic matter concentration in the system. The high sensitivity of FDOM to 

ozone and its selectivity to specific fluorescent components, suggest that flu-

orescence can be used as an online sensor to control the organic matter and 

determine indirectly the delivered ozone dosage in the system. The ozonation 

design was based on the water chemistry, the ozone behaviour in the specific 

water matrix and not on rule of thumb approximations. This study attempted 

to clarify some controversial questions regarding ozonation and to offer new 

technological concepts to make its implementation safe, convincing the aqua-

culture managers to integrate ozone in RAS. 

 

8.2  Suggestions for future research 
There is great potential for an online fluorescence sensor for the ozone treat-

ment of RAS water. However, it is rare for RAS to be operated identically, 

with exactly the same physical, chemical, and microbial water quality. There-

fore, it is unlikely that the same ozone dosage would affect two RASs to the 

same degree. To accurately predict the ozone dosage and kinetics required to 

best improve water quality in distinct RASs, a database describing the effect 

of ozone dosages on different RAS water types would be required. This will 

not only give better predictability of the effect of ozone on a particular type 

of RAS water, but also will provide information of how best to design the 

optimal dosage monitoring sensor and ultimately, regulate the ozone dosage 

in aquaculture systems to appropriate OM content. Further investigation of 

ozonated seawater systems is needed. 
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