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Economic Value of Electric Vehicle Reserve
Provision in the Nordic Countries under Driving

Requirements and Charger Losses
Andreas Thingvad, Charalampos Ziras, Mattia Marinelli

Abstract—Electric vehicles can be used for delivering primary
frequency control (PFC) and the revenue can compensate for the
costs of driving. However, the average system frequency can be
biased over the hour, which can lead storage units performing
PFC to become either fully charged or depleted. This is also
called the energy content of the frequency. Another important
role is played by the V2G charger efficiency, which negatively
affects the service energy flow. In the paper, the characterisation
of the charger and the influence of the losses are detailed. Real
frequency and market data are used for calculating the revenue
under the Nordic regulatory framework. Earnings are calculated
for the best case where the future energy content is known in
advance. The results show that, in order to fulfill the service
delivery specifications, a crucial role is played by the bid power
compared to the size of the energy storage. Recommendations
are given in order not to fail regulatory requirements along
with considerations on the influence of service provision on the
degradation.

Index Terms—Ancillary Services, Battery degradation, Electric
Vehicles, Frequency Control, Vehicle-to-Grid

NOMENCLATURE

ft System frequency at time t.
yt Normalised power response for PFC on the

grid side at time t.
ŷt Normalised power response for PFC on the

battery side at time t.
Pt Power response from PFC at time t.
Pcap Rated power of converter for both charging

and discharging
N The number of measurements of the

system frequency per hour.
n The period index during the year
k The number of hours in period n
ω, h Optimisation index; scenario/day index,

hour index.
K,H Optimisation horizon,Number of days and

number of hours.
∆t The optimisation time step.
ebias
n Normalised energy content of the grid

frequency in hour n.
ebat
n Normalised energy delivered to the battery

in hour n.
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SOCk,h State of charge of the EV battery in a
certain hour and day.

SOC,SOC Upper and lower limit of the State of
charge.

cE
h Electricity price at day-ahead spot market.
cr
h PFC capacity payment.
P c
h, P

d
h Charging and discharging power scheduled

day-ahead.
P c
h,ω, P

d
h,ω Charging and discharging power traded at

the intra-day market one hour before.
P r
h Committed power capacity for PFC

reserve.
lintra
n Intra-hourly energy loss at hour n.
lbias
n Hourly bias loss at hour n.
lall
n Total energy loss at hour n.
Eh,ω Scheduled hourly energy flow in a specific

hour.
Q Battery capacity in kWh.
ηc, ηd Charging and discharging efficiency.
Edrive Daily energy consumption for driving.

I. INTRODUCTION

The electrification of the transportation sector is expected
to substantially facilitate the use of electric vehicles (EVs).
Controlling the charging would make it possible for the EVs
to minimise their energy costs through adaptive/predictive
charging and for the power grid to achieve multiple operational
objectives simultaneously [1]. The use of EVs for providing
ancillary services to the power system can be an additional
revenue for EV owners and can assist the integration of
larger amounts of renewable sources [2, 3]. A fast response
of battery-based energy resources can cover the regulation
requirements of significantly larger generating units with
slower ramp rates, which are decreasing in numbers, as the
generation is transitioning towards renewable production [4].

Any kind of smart integration of EVs with the power
system can rely on either bidirectional or unidirectional
charging [3, 5]. The unidirectional integration has been defined
by the authors in [6] as a power adjustment maintained
from a particular moment, for a certain duration, and at a
specific location. External bidirectional DC chargers enable
the bidirectional integration and can substantially increase the
capabilities and profitability of EVs, since they are able to offer
power to the system, a concept referred to as Vehicle-to-Grid
(V2G) [7, 8].

www.aces-bornholm.eu
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Unidirectional integration involves limiting the power of
the internal EV charger with no extra infrastructure, other
than the communication and control system [3]. In this case,
the EV can still be used for both upward and downward
regulation services, as the power can either be decreased
or increased. Because of the inexpensive setup and the
relatively high losses currently associated with V2G chargers,
[9] concludes that only unidirectional services are feasible
in practice. Unidirectional integration involves no additional
charged energy because the efficiency of the charger does not
change significantly when reducing power [10], and since no
discharge occurs, there is no additional cost of energy or wear
of the battery.

A suitable ancillary service for EVs is primary frequency
control (PFC), because it is compensated per power capacity
and the energy requirements are relatively small. It is
beneficial for EVs because they can have a large power
capacity and very fast response, but limited energy capacity
[11]. In this service, loads/generators are expected to modify
their consumption/production according to the frequency
deviation signal in a linear way, as contracted with the
Transmission System Operator (TSO) [12].

The TSO will not make contracts with individual EVs
because their contribution is negligible, and it would be an
excessive burden to trade and control the service of so many
units. The minimum bid size of PFC in Denmark is 0.3 MW.
There has to be an entity that pools the resources and makes
a collective bid, referred to as the aggregator. The value of
each EV as a resource for the aggregator depends both on
the period length it is connected and available for the grid
and how predictable the plug-in and plug-out times are. Ref.
[13] finds that by analysing the individual user profiles, the
average EV can deliver one hour more of PFC with the same
reliability compared to when the plug-in prediction was based
on the overall group behaviour. By bidding less than the full
capacity, the aggregator of a large group of EVs can make
sure that the departure of a few EVs does not compromise
the delivery of the service, as the remaining capacity can be
used to compensate. The overall charged energy or state of
charge (SOC) of a large fleet is also more predictable than the
SOC of individual EVs and the aggregator can distribute the
charging and discharging between the EVs to align the SOC,
so it is only necessary to estimate the average [14].

Modern optimisation methods can be used to schedule and
bid in the reserve market and the day ahead spot market, to
achieve an optimal economic performance. In [15], the authors
calculate the optimal regulation bid in terms of capacity
payment with dynamic programming. The purpose of the
method is to maximise the value of the regulation and fully
charge the EVs in the hours when the spot prices are lowest.
The problem in this approach is that it assumes that the
positive and negative regulation is equal and results in zero
energy exchanged with the grid over time.

If the frequency deviation is unbiased, i.e. its integral over a
time period is zero, then the overall energy exchange between
the EV and the grid would be very small. However, frequency
deviations can be significantly biased in consecutive hours,
which could lead to relatively large energy exchanges. The

energy content of the frequency is not a problem for a thermal
power plant, but for a storage unit like an EV with a limited
battery capacity, it is very likely that the batteries will be fully
charged or depleted within the reserve provision period; in that
case, the aggregator will not be able to provide the committed
reserves. Ref. [9] takes the energy content into account in the
scheduling phase when making an optimisation with dynamic
programming, but only for unidirectional PFC and only when
the same reserve capacity is delivered in all the hours. Ref. [16]
is scheduling delivery to the Automatic Generation Control
to the California Independent System Operator, which is a
secondary control that is high-pass filtered to have a zero
energy content over an hour, and has a performance-based
compensation.

In Europe, PFC has a capacity-based payment, as it is
contracted to guarantee delivery. In ref. [17], PFC in Regional
Group Continental Europe (RG-CE) is analysed and the
variance of frequency is causing an uncertainty for the State
of Charge (SOC) of storage units delivering the service.
The revenue is found to be increased by up to 25% by
co-optimising the day-ahead scheduling of PFC and self
consumption, compared to only delivering PFC. In order to
have an optimisation time step like the spot market, [17],
calculates the average normalised frequency deviation over
the hour. In order to get a linear problem, the charging and
discharging efficiency is added to the normalised frequency
before the hourly deviation is calculated. Both methods are
applied in the present manuscript, but more analysis is given
to the consequences of these simplifications.

Ref. [18] shows that when not committing the full power
capacity of a battery for PFC, the remaining power can be
used for constraining the SOC by changing the operating point
during operation. Ref. [18] finds that a wide range of allowed
SOC is preferable to minimise the use of correcting power,
because some energy content cancels out the previous.

The average daily driving distance of cars with internal
combustion engines in Denmark is 45 km/day, which
considering an average consumption of 5 km/kWh results in
a consumption of 9 kWh/day. As the battery capacity of the
new EV models increases, the daily energy use becomes a
smaller part of the total capacity. The EV therefore does not
have to be fully charged at the end of service provision, as
for instance assumed in [9, 15]. It is possible to provide PFC
until the EV is needed for driving without allocating time for
pure charging, when it is not required to have it fully charged.

In [19], a data-driven model based on historical Automatic
Generation Control activation data is presented, modelling the
uncertainty of SOC as a function of the reserve capacity and
provision time. In ref. [11], the energy content of the frequency
in the Nordic grid is modelled as an increasing confidence
interval as a function of the service provision capacity and
duration. The uncertainty can only be modelled as an interval
when the same PFC capacity is delivered every hour. This way
of modelling the PFC energy content is only accurate when the
reserve capacity is constant during the whole period, because
the energy content of a certain hour is correlated with the
content of previous hours. This relationship is used by [20] to
predict the future energy content based on the values of the
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last two hours. By using scenarios it is possible to take the
behaviour of the frequency into account without having the
same reserve capacity in all hours. The energy losses due to
charger efficiency are found to converge to an average value,
that can be approximated with a constant efficiency.

In the present manuscript, the real energy content of the
frequency in the periods where the service is delivered, is used
as scenarios in a stochastic optimisation. This gives a more
accurate modelling of the behaviour of the energy content.
The method of using scenarios to make a robust schedule is
also suggested by [21], where 100 scenarios are generated
from a Gaussian distribution per period. This does not capture
the correlation between the hours and specific time behaviour,
which can be exploited by using the real frequency for the
scenarios.

An additional challenge is introduced by the efficiency of
the chargers, which causes energy losses to the EV batteries,
and which must be also accounted for, when bidding in the
power markets. In ref. [11] the energy losses due to charger
efficiency are found to converge to an average value, that can
be approximated with a constant efficiency. The authors of
[22] have made an overview of literature stating that losses in
the charger are often neglected or considered very low. While
the charger efficiency presented in this paper does not make
the service provision technically impossible, it does reduce
the profit dramatically and completely cancels out the profit if
the electricity price is including tariffs and taxes. This paper
will present a comprehensive characterisation of the charger
efficiency to make the economical analysis more realistic.

The main contributions of this paper are the following:

• Realistic earnings based on historical market data and
charger efficiency.

• Analysis of accuracy of representing the charger losses
on an hourly basis.

• A method for optimal scheduling taking energy
constraints and frequency behaviour into account.

• Considerations on the consequences on the battery
degradation because of intense service provision.

The remainder of the paper is structured as follows. Section
II presents an overview of the grid code regarding provision
of PFC in the Nordic countries, and to which extent the
EVs can deliver the service by different charging methods.
The section also presents measurements of the efficiency of a
commercial V2G charger. Section III contains a description
of the behaviour of the frequency and how it affects the
SOC of the EV during PFC provision. It also presents an
analysis how the frequency affects the charger losses, caused
by continuous charging and discharging and how this can be
estimated on an hourly resolution. Finally, the section presents
the optimisation model and cost function. Section IV presents
the result of the optimisation, which are validated based
on full resolution time series simulations, and the charger
loss estimation errors are calculated. A discussion on the
influence of battery degradation concludes the section. Section
V concludes the paper.

II. BACKGROUND

A. Frequency normal operation reserve

The Danish power system is part of two synchronous zones:
Western Denmark (DK-1) is a part of RG-CE, and Eastern
Denmark (DK-2) is a part of the Regional Group Nordic
(RG-N). DK-2 is the focus of this paper. In both parts PFC
reserve is paid per available power capacity, Pcap, for each
hour, independent of how often and how much the reserve is
activated, and the price is determined by the market. Fig. 1
shows the average capacity payment in DK-1 and DK-2 during
the day.

The average capacity payment for the last two years is 21.4
EUR/MW per hour in DK-1 and 24.1 EUR/MW per hour in
DK-2, but the capacity payment in DK-2 is close to three times
higher than in DK-1 during the night, where the EVs are often
available for grid services.

Fig. 1. Average hourly capacity payment in DK-1 and DK-2

The prices in DK-2 were lower in 2015 because it was a
year with extraordinary high amount of rain in the Nordic
region, which caused the hydro power plants to deliver more
reserve than usual and thereby caused the prices to decrease.
Apart from the hourly variability of the regulation prices, a
seasonal variability is also observed, with prices in summer
generally being 30% higher than in winter. This is caused by
the large number of combined heat and power plants in the
system, that are only delivering services in the winter, when
they also are delivering heat. The PFC service in DK-2 is
called Frequency Normal-operation Reserve (FNR), and has
the average seasonal prices shown in Table I.

TABLE I
AVERAGE SEASONAL FNR CAPACITY PRICES FOR 2017

Season Winter Spring Summer Autum
EUR/MW 22.13 22.46 29.14 21.84

The Transmission System Operators (TSOs) in RG-N are
jointly responsible for procuring 600 MW of FNR reserves,
proportional to each TSO’s share of the production. The
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service is bought on market terms one or two days ahead with
a minimum bid size of 0.3 MW. FNR is a symmetrical service,
which requires the provider to offer the same power capacity
for upwards and downwards regulation. Frequency reserves
must be provided linearly, with full activation for deviations
of ±100 mHz, without a deadband. For a frequency value ft
at time t, the normalised response yt is calculated as

yt =

 −1, if ft < 49.9 Hz
(ft − 50)/0.1, if 49.9 Hz ≤ ft ≤ 50.1 Hz

1, if ft > 50.1 Hz
(1)

The power required by the service provider at time t is
calculated as

Pt = Pcap · yt (2)

B. FNR provision with electric vehicles

FNR can be provided with series-produced EVs in two
ways; by modulating the unidirectional power flow using the
on-board 3.7 kW charger seen on the right of Fig. 2, or with
an external bidirectional charger seen on the left of the figure.
Fig. 2 shows the different charging options for Nissan LEAF,
which is considered in this study.

Fig. 2. Physical setup - Nissan LEAF with different charging options

1) Potential value of unidirectional FNR: The lowest
charging value allowed by the IEC 61851 and SAE J1772
standards is 6 A. The maximum possible reserve, when
performing unidirectional FNR with a single EV, is obtained
by setting the charging set point to 11 A. In that case, the
current can be modulated with ±5 A in a range of 6− 16 A,
giving a FNR capacity of ±1.15 kW [3].

Providing FNR with the internal charger involves low
installation cost because all power conversion occurs inside the
EV. The disadvantage is that the service can only be provided
until the EV is fully charged, which on average would be after
receiving 9 kWh (45 km) of energy. Several series-produced
EVs have been found to have an efficiency of the on-board
charger of around 90%. Given the daily driving consumption,
the efficiency of the charger and a charge cycle with an average
of 11 A (2.5 kW), the EV would be fully charged in four
hours [10]. Using an EV with a higher charging power or
energy capacity would not increase the revenue, since the
limiting factor is the energy demand from driving. The average
charging time is four hours, which means that in the days
where the frequency on average is too high, the EV would
charge with higher power and be fully charged sooner. Three
hours of service would therefore be a more realistic estimate.

2) Potential value of bidirectional FNR: Providing
bidirectional FNR lifts this time limitation, as the EV over
time is expected to deliver the same amount of energy to
the grid as it receives, giving a zero energy balance. It is
therefore only the daily number of grid-connected hours and
the power capacity of the power converter that determines the
potential capacity payment. Assuming that the EV is parked
from 16:00 in the evening to 07:00 in the morning, it would
be available for 15 hours to provide grid services. The energy
company ENEL has produced a bidirectional charger, seen on
the left in Fig. 2, with a capacity of ±10 kW that via the
CHAdeMO DC connection can be used to perform FNR with
all series-produced EVs using that standard.

During a pilot project with the Danish TSO and DTU, a
commercial operation of EVs providing FNR in Denmark with
40 of the ±10 kW V2G chargers and EVs. The used EVs
are the Nissan e-NV200 with a battery capacity of 24 kWh
and Nissan LEAF with 30 kWh capacity. The EVs do not
allow discharging below 35% and cannot charge with full
power above 90%, which means that the available capacity
is 13.2 and 16.5 kWh respectively. With a SOC in the middle
of the range, the EVs could both deliver and receive half of
the amount, and could be fully charged or depleted within
one hour. To handle this problem, the aggregator is offsetting
the power dynamically as a function of the SOC, to avoid
being fully charged or depleted. This is done even though
the full charger capacity has been committed for FNR, which
means it does not live up to the regulative requirements in the
RG-CE or RG-N [23]. The aggregator reports a yearly revenue
of 1000−1400 EUR per EV, based on an average plug-in time
of 19 hours per day [24]. The experimental results have shown
that such an offset on a daily basis would get up to 5 kW. This
means that in order to deliver the service with a capacity of
±10 kW it would be necessary to have a ±15 kW charger
[23].

C. Characterising the charger efficiency

Since large amounts of energy are exchanged with the grid
during FNR provision, the efficiency of the power converter
has a high impact on the energy consumption. This paper
presents a characterisation of the V2G charger that can make
the foundation for further usage with new control algorithms.
The characterisation is made by charging and discharging with
all possible power levels with a Nissan LEAF 30 kWh battery
at the whole range of SOC. The power is set on the DC side
with a granularity of 1 A, giving a step size of about 0.4
kW. The steady-state powers on both sides of the charger
are averaged over one minute and divided to calculate the
efficiency. The charging efficiency is found as ηc = PDC/PAC
and the discharging efficiency as ηd = PAC/PDC . The whole
range of power values are investigated for different SOC as
shown in Fig. 3.

The extremely low efficiency at power ratings below ±3
kW is caused by the standby loss not being a function of
the power. The voltage level on the DC side is a function of
the SOC but does not have an effect on the efficiency. Based
on measurements of the energy losses in the V2G charger
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Fig. 3. Charger efficiency during charge and discharge cycles at different
SOC levels

performing FNR during 24 hours, it was found that the energy
loss per hour converges to a certain value that corresponds
to an average efficiency of 80% [11]. The charging and
discharging efficiency is chosen to be equal ηc = ηd = 0.8,
which will be used in the rest of the paper.

III. DISPATCHING STRATEGY

A. Frequency Energy Content Model

The analysis has been based on a data set consisting of
one year of system frequency measurements from RG-N with
a sample rate of 10 seconds. The integration of frequency
deviations of a given hour n, referred to as the energy content
or energy bias of that hour, is denoted by ebias

n . For a sample
rate of ts = 10 s, the number of samples per hour is equal to
N = 360. The per unit energy content (normalized per kW of
regulation capacity), is given by

ebias
n =

1

N

n·N∑
t=N ·(n−1)+1

yt · ts (3)

The distribution of ebias
n for every hour of the year is

Gaussian with zero mean.
Since frequency is strictly related to the balance of a power

system, it is based on a multitude of power inputs and outputs
from generators and consumers. While some power injections
are controlled by prime movers, most of the remaining are
randomly distributed. As a consequence, frequency patterns
will tend to follow a normal distribution. The integral of
frequency deviations is kept close to zero over time due to the
applied time control. Thus, the energy bias also tends to be
zero over time. However, the variance of the energy bias of k
consecutive hours does not increase linearly with k, because
of the correlation of ebias

n for different hours. We introduce
ebias,k
n to denote the energy bias of the period starting k hours

before n and ending at hour n.

ebias,k
n =

1

N

n·N∑
t=N ·(n−k)+1

yt · ts, n > k. (4)

It is now possible to calculate a confidence interval for the
energy content which the service provider could be asked to
deliver or receive with a certain probability. In Fig. 4, the
99.5th percentile of the energy content is shown, as a function
of k [11]. Note that the distribution of ebias,k

n for each k is
symmetrical. Therefore, the 0.5th percentiles have the same
values with a negative sign.

Fig. 4. 99.5th percentile of the distribution of ebias,k as a function of k.

The percentiles of the energy content are calculated per PFC
capacity in kW and scales linearly with the reserve capacity.
PFC provision with ±10 kW for 15 hours could result in
receiving or delivering up to 31 kWh of energy, requiring
an available battery capacity above 62 kWh. Using the 2018
Nissan LEAF with a 40 kWh battery and 35−90% of its SOC
available, would mean that PFC could only be delivered for
15 hours with a capacity of ±3.5 kW. The limitation of using
this description is that it holds only when the reserve capacity
is constant over k hours. Short term frequency deviations have
a limited effect on the SOC, but Fig. 5 shows the normalised
energy content every hour of 2016 and it is seen that there
is also a pattern of the hourly energy content and that there
are periods of the day where the EVs are expected to receive
energy, and others where it is expected to deliver energy to the
grid. It is possible to extract more knowledge of the frequency
behaviour by defining the specific time of the day the service is
provided, and which is the reason for using the energy content
from Fig. 5 as scenarios in a stochastic optimisation.

Fig. 5. The values of ebias
n of each hour of the year 2016.

Ref [11] showed that the short term frequency deviations
are following the sunrise and sunset, which are also the times
when there are larger changes in the power consumption. It can
be seen that the frequency also on a hourly time scale has this
behaviour, as it is often too high or too low for an extended
period of time. It should also be noted how one hour of over
frequency often is followed by one hour of under frequency.
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B. Bias and Intra-hourly losses

Continuously charging and discharging during reserve
provision will cause a loss of energy. The losses can be
decomposed into two parts. The first part is the bias loss, lbias,
which is caused by the positive or negative frequency bias and
is given by Eq. 5.

lbias
n =

{
ebias
n (1− ηc) if ebias

n ≥ 0

ebias
n ( 1

ηd
− 1) if ebias

n < 0.
(5)

The overall losses will be equal to lbias
n only if the EVs are

only charging or discharging during this period. If they are
alternating between charging and discharging, which is the
most common case when FNR is provided, additional losses
occur. The remaining losses can be quantified by applying the
effect of the efficiency to the full frequency time series. The
normalised power measured on the battery side of the charger
is denoted by ŷt, and the hourly energy received or delivered
by the battery is denoted by ebat

n .

ŷt =

{
ytηc, if yt ≥ 0

yt
1
ηd
, if yt < 0

(6)

ebat
n =

1

N

n·N∑
t=N ·(n−1)+1

ŷt · ts (7)

The difference between the received energy and the pure
energy content is the total loss, lall

n = |ebias
n − ebat

n |. After
accounting for the bias loss, the remaining losses occur every
time power changes direction. These losses are the second loss
component and are referred to as intra-hourly losses, lintra

n .
The intra-hourly loss is the remaining loss after subtracting
the bias loss, lintra

n = lall
n − lbias

n , and is the energy lost in the
charger because of continuous changing between charging and
discharging. Note that while the bias losses are proportional
to the reserve capacity, the intra-hourly losses depend on the
power reference as well. By power reference we refer to the
power set-point when no reserve is provided. Indeed, a high
power reference will result in the EV mainly charging and
rarely changing to discharging mode; this will happen only
when frequency is very low. Fig. 6 shows the bias loss, the
intra-hourly loss and the total loss of every hour of 2016
against the energy content of the specific hour and with a zero
power reference. It shows that the bias loss is proportional to
the energy content and it accounts, on average, for two thirds
of the total loss with l

bias
= 0.0571 p.u.. lintra

n is larger when
the energy content is low, as in those cases power most often
changes direction and on average is equal to l

intra
= 0.024

p.u.. As the energy content increases in absolute value for a
given hour, frequency is predominantly positive or negative
throughout this period and power rarely changes direction,
resulting in very low lintra losses.

The intra-hourly loss is different for every ebias
n level,

depending on the exact evolution of frequency, but scales
linearly with the reserve capacity, P r

h, if the set point is
zero. The dependency of the operating point on the average
intra-hourly loss is shown in Fig. 7. It is shown that the

Fig. 6. Hourly bias loss, intra-hourly loss and total loss of every hour of
2016 vs. the energy content in that hour, with P r

h = 1kW and P c
h = 0.

intra-hourly loss is reduced to zero when the charging power
is larger than the reserve capacity, as it will never discharge.
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Fig. 7. Average intra-hourly loss. White area represent the combinations
larger than the power capacity of the charger.

C. Linear model of energy flow

The FNR regulation capacity, P r
h, and the day ahead

schedules (P c
h for charging and P d

h discharging) are traded
the day before, and are therefore the same for all scenarios. If
less than the full power capacity is committed day-ahead, then
the remaining power can be used in the individual scenarios
for buying or selling additional energy at the intra-day market.
It was found that because of the large variance in the energy
content, it is never economical to schedule charging at the
day-ahead market, as it limits the flexibility for providing
reserve. This is the case, even when assuming that the price
on the intra-day market is twice as high as on the spot market;
all of the energy needed to correct the SOC is bought at
the intra-day market. The index ω is therefore added to P c

h,ω
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and P d
h,ω to indicate the per scenario values for the intra-day

power schedules. For the scenarios the frequency deviations
of each hour from 16:00 to 07:00 the following day were
used. For each hour h of a scenario ω, the normalized energy
content including all losses, ebat

h,ω , was calculated, considering
a charger efficiency of ηc = ηd = 0.8. ebat

h,ω represents the
energy flowing in/out of the battery at hour h and for scenario
ω, normalized per reserve capacity. This is the real energy
content experienced by the battery ebat

h,ω including all losses
lall
h,ω when the power reference is zero.

As already shown, the intra-hourly losses are a function of
both the reserve capacity and the power setpoint (see Fig. 7).
In the case where the power setpoint is different from zero, the
total intra-hourly losses are reduced. This effect is not taken
into account when ebat

h,ω is scaled with the reserve capacity P r
h.

This allows us to use a linear formulation to express the total
losses. The accuracy of this approach will be investigated in
the following section.

The total energy exchange due to reserve provision is
calculated by multiplying ebat

h,ω with P r
h. We must note again

that this calculation is exact only for zero intra-day power
setpoints, as explained earlier. The SOC of the battery SOCh,ω
in scenario ω can then be calculated as

SOCh,ω = SOCh−1,ω + (P c
h,ωηc + ebat

h,ωP
r
h − P d

h,ω

1

ηd
)
∆T

Q
.

(8)
The variable SOCh,ω is in p.u. and the value at the next

time step is calculated by dividing the added energy with the
battery capacity, Q, which is chosen to be equal to 40 kWh
as the 2018 Nissan LEAF.

D. Case description

The optimisation is based on the average capacity payment
shown in Fig. 1 for 2017, and it is assumed that a bid at this
price is accepted. In Denmark, the retail price is on average
0.32 EUR/kWh, in which the price for the energy accounts
for approximately 12%. However, for the analysed case the
mid-sized industrial customer price will be considered. The
price does not include VAT and other taxes and it is on average
0.08 EUR/kWh [25]. The reason for choosing this price is that
the service is delivered by a commercial aggregator, rather than
a residential customer.

It is assumed that the average SOC of the EV fleet can
be estimated and is equal to 50% at the time of arrival. It is
assumed that the EV drives 45 km and consumes 9 kWh per
day, which should be compensated while it is connected to
the charger so it should leave with a SOC minimum 22.5%
higher than it arrives, giving 72.5%. It is also assumed that
the plug-in time is known in advance, as is the case in the
ACES project, where the plug-in time follows the working
hours of the municipality who uses the fleet [26]. The problem
of defining the availability is simplified by assuming that
all EVs are at the disposal of the aggregator between 16:00
in the afternoon and 07:00 the following morning, at which
time the SOC must be minimum 72.5%. The setup is exactly
the same as the real practical implementation in the ACES
project, where 20 Nissan EVs, located on Bornholm, are used

to provide FNR with the ENEL chargers for 15 hours per work
day.

E. Problem formulation

The optimisation uses a set of 365 days as scenarios, each
containing the energy content of the relevant 15 hour period.
The objective function contains the cost of energy for charging,
the revenue for discharging and the reserve capacity payment,
as it is seen from the aggregator’s perspective. The costs are
positive and the revenue is negative so the objective function
should be minimised.

min
SOC,P c,P d,P r

∑
ω

15∑
h=1

cE
hP

c
h,ω − cE

hP
d
h,ω − cr

hP
r
h (9)

subject to the following constraints, applied for ω =
1, . . . , 365 and for h = 1, . . . , 15

P c
h,ω + P d

h,ω + P r
h ≤ Pmax (10)

P c
h,ω ≥ 0 , P d

h,ω ≥ 0 , P r
h ≥ 0 (11)

SOCh+1,ω = SOCh,ω+[P c
h,ωηc+e

bat
h,ωP

r
h−P d

h,ω

1

ηd
]
∆T

Q
(12)

SOC ≤ SOCh,ω ≤ SOC (13)

where SOC = 0.35 and SOC = 0.9 the minimum and
maximum SOC values respectively. The initial and final SOC
conditions SOC1,ω = 0.5, SOC15,ω ≥ 0.725 are the same for
all scenarios.

IV. RESULTS

In this section, the results of several investigations will
be presented. In subsection IV-A, the linear approximation
model regarding the charging/discharging losses is verified
by comparing the actual and the real losses for each
scenario of the stochastic optimization. In subsection IV-B, the
optimization results are validated for a set of out of sample
scenarios (i.e. scenarios not used in the uncertainty set), and
using the real losses during service provision.

For the optimisation problems the Yalmip environment in
Matlab is used, along with the Gurobi solver [27].

A. Validation of the linear approximation model of losses

A number of 365 scenarios, corresponding to year 2016,
along with the average FNR price for 2016 were used for the
stochastic optimization, and the result is seen in Fig. 8.

The lines of the top graph show the evolution of the SOC
for every realization of 2016. The reserve schedule, which
is always the same, is seen in the second graph of Fig. 8.
These results are obtained by assuming intra-day losses which
correspond to a zero power setpoint. However, this is not the
case for every realization of frequency. In order to calculate
the approximation errors, losses were evaluated using the
full resolution time-series of frequency, and for the realized
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Fig. 8. Top: SOC for each of the 365 frequency realizations of 2016
using the linear approximation. The 15 hour periods take place daily at hour
16:00-07:00. Bottom: Reserve schedule in all scenarios, calculated for 2016
prices.

intra-day rescheduled power setpoints for each scenario. The
evolution of the actual SOC (reflecting the real losses) for each
realization is seen in Fig. 9.

Fig. 9. Simulation with 10-second resolution frequency time series of 2016.
The 15 hour periods take place daily at hour 16:00-07:00

The simulation results are obtained by using an average,
constant efficiency of 80%. As shown previously, efficiency
depends on each EV’s power setpoint (see Fig. 3). However,
an aggregation of EVs can achieve higher average efficiencies
regardless of the power setpoints, by applying appropriate
control methods [28]. As shown previously, even for a constant
considered efficiency, the intra-hourly losses depend on the
power setpoint, and in these simulations this effect is taken into
account. The approximation error can be found by subtracting
the SOC calculated based on the full resolution time series
(Fig. 9) from the one calculated based on the hourly schedule
(Fig. 8). In Fig. 10, the distributions of the accumulated
approximation errors in the 365 scenarios are shown, for each
hour.

According to the optimisation results using the losses
approximation model, EVs receive 9 kWh every day, whereas
the average energy according to the full resolution time series
(which is the real result) is 10 kWh. This is a result of the
small overestimate of losses, which on average accumulate to
1 kWh over 15 hours, as seen in Fig. 10. Additionally, in 99%
of the cases, the losses overestimation amounts to less than 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1

0

1

2

3

4

5

Fig. 10. Distribution of the accumulated approximation error of intra-hourly
losses. The box shows 25-50-75 percentiles, − shows the 1st and 99th

percentile and + shows the outliers.

kWh. Compared to the EVs energy capacity of 40 kWh, the
approximation error are rather small.

B. Evaluation for out of sample frequency realizations

In this set of simulations, the same frequency scenarios
from 2016 are used to obtain the FNR reserve schedule.
Contrary to before, the realizations of frequency correspond
to 2017, and thus are not contained on the uncertainty set.
The optimal values of P c

h,ω and P d
h,ω are calculated based

on the energy content of each realization of 2017, by using
the deterministic counterpart of the stochastic optimization
problem. The optimisation is in this case allowed to violate
the energy constraints with a high cost to make sure that
the problem is feasible. A simulation is made with the
same capacity in every hour, which is the average capacity,
P r
h = ±6.9 kW.
The real losses are calculated in the same way as in

subsection IV-A, to obtain the actual SOC evolution for each
realization (similar to Fig. 9). In Fig. 11, the minimum,
maximum, 1st and 99th percentiles of the realized SOCs for
every hour when following the regulation schedule are shown
with full lines. A few days in 2017 overall have either a lower
or a higher energy content than any day in 2016. It means
that the energy constraints are violated, as the schedule, based
on the 2016 values, did not allocate enough power to correct
the SOC. The dashed lines in Fig 11, shows the results for a
fixed regulation capacity of ±6.9 kW in all the 15 hours. In
this case it is still possible to maintain the SOC to the same
degree as when following the schedule but not the final value,
as less correcting power is available in the last hour.

Fig. 11. The minimum, maximum, 1st and 99th percentiles of the realized
SOCs for every scenario in 2017. Full lines are for P r

h equal to the schedule
and the dashed lines are for P r

h = 6.9 kW. The 15 hour periods take place
daily at hour 16:00-07:00
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C. Economic results

Providing ±10 kW of FNR daily between 16.00-07:00 with
the average prices of 2017 would give a revenue of 1395
EUR per year. By bidding all of the power capacity, and not
leaving any power to correct losses and the energy content,
88% of the scenarios will in the end of the period have an
SOC outside the range of the battery capacity. Such a strategy
would lead to SOC violations which would require either set
point adjustments or it would lead to failure in service delivery.
Nonetheless it would lead to the maximum potential earnings
from providing FNR with the full capacity, and is consistent
with the results from [7].

In the unidirectional case with the service provided during
the hours with the highest prices (from midnight and the
following four hours), and a capacity of ±1.15 kW, the average
prices in 2016 would give a yearly revenue of 70 EUR per
EV. Three daily hours would give a revenue of 52 EUR
per EV. Four hours of unidirectional FNR service per day
is the best case, whereas three hours are more realistic, for
this driving behaviour. The value of bidirectional FNR with
the ENEL chargers is about 20 times higher than FNR from
unidirectional charging, because of the low availability time
and power range, as shown in table II.

TABLE II
ECONOMIC COMPARISON OF FNR PROVISION METHODS

Method Provision FNR Yearly Yearly Yearly
Time Capacity Revenue Cost Profit

[hours] [kW] [EUR] [EUR] [EUR]
V2G 15 hours ±10 1395 297 1097
V2G 15 hours Schedule 1118 208 910
V2G 15 hours ±6.9 1107 208 899
Uni 4 hours ±1.15 70 - 70
Uni 3 hours ±1.15 52 - 52

Bidding FNR according to the optimised schedule gives a
capacity payment of 1118 EUR per year, and a consumption
for both FNR and driving of 6.7 MWh, with a cost of of
538 EUR per year. The 9 kWh of daily SOC increases and
the associated losses amounts to, amounts to 4.1 MWh per
year with a cost of 331 EUR. The energy for driving should
be subtracted from the energy consumption for the service
provision, giving a service cost of 208 EUR per year.

This describes the full value created by the EV and should
be split between the aggregator and the EV owner. The
method used in the ACES project is that the municipality
gets free electricity for driving, while the aggregator can keep
the remaining profit, which is most of the revenue as the
aggregator only pays the industrial electricity price. In that
case the aggregators share is a yearly profit of 580 EUR per
EV.

The average regulation power capacity over the 15 hours
is ±7 kW, leaving ±3 kW for correcting the SOC. A fixed
schedule with the same ±6.9 kW regulation capacity in every
hour would give a capacity payment of 1107 EUR per year,
close to the payment of the calculated schedule. Using a
fixed regulation capacity achieves the same results in terms of
respecting the energy constraints as the schedule when used
with the frequency from 2017.

The revenue is calculated with the historical prices and
would increase linearly if the prices go up in the future. This
could be the case as the demand for regulating power increases
when the power system is based on a larger share of renewable
energy. On the other hand, an increasing number of units
delivering the service could also have the opposite effect on
the prices. The Danish TSO is nowadays procuring 50 MW
of PFC and the considered set of EV and V2G charger can
deliver ±6.9 kW, which means that the national demand can
be satisfied with only 7246 EVs. It is worth noting that even
though the amount of reserve will increase with the increase
of renewable generation, it has to be compared with the total
number of vehicles in Denmark, which is 2.3 million.

D. Value of not fully charging the EVs

Knowing that only a small part of the battery capacity is
used for the daily driving requirements, it is possible to provide
FNR for more time, using this flexibility. In Table IV it is
shown how much the minimum SOC at the end of each period
affects the yearly capacity payment. The increased payment is
caused by both longer regulation time and increased average
power capacity, P r

h.

TABLE III
YEARLY CAPACITY PAYMENT AND AVERAGE FNR CAPACITY FOR

DIFFERENT MINIMUM SOC AT THE END OF PROVISION

End SOC ≥ 40% ≥ 50% ≥ 60% ≥ 70% ≥ 80% = 90%

P r
h [ ± kW] 7.7 7.4 7.2 7.0 6.7 6.5

EUR 1239 1200 1160 1117 1072 1025

The optimisation is also run on a seasonal basis with only
91 scenarios, which shows the that since there are more energy
content in the winter, the regulation capacity must be reduced
and therefore also the earnings. The same average prices were
used for all the seasons, but as mentioned in the analysis
section, the prices are on average also higher in the summer.

TABLE IV
SEASONAL CAPACITY PAYMENT AND AVERAGE FNR CAPACITY FOR

DIFFERENT SEASONS

Season Winter Spring Summer Autum
P r
h [ ± kW] 7.2 7.0 7.5 7.0

EUR 288 278 307 283

The energy losses related to providing the service are on
an average day 7 kWh, which involves a large cost, even
considering the very low industrial electricity price, equal to
0.08 EUR/kWh. This would exceed the aggregator’s revenue
if he would pay the domestic electricity price. However, these
chargers are on a prototype level, which means that while the
revenue will not change, the cost for energy losses can be
expected to decrease significantly in the future, when more
mature products enter the market. The cost is only including
the cost of electricity and not the cost of installation and
maintenance, as well as the cost of additional wear of the
battery, which is discussed in section IV-E.
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E. Considerations on battery degradation

One of the aspects without a clear consensus within the
V2G research area is the cost of using the battery in terms
of added battery degradation costs. The factors influencing
battery degradation, measured as capacity fade, can be divided
in two; calendar ageing which is a function of time and cycle
ageing which is a function of the number of charge/discharge
cycles. Most of the capacity fade is caused by calendar ageing
depending on the SOC and temperature during storage, which
means that it is far more important how the battery is treated
while idle than how it is used [29].

Especially for EV applications, calendar ageing tends to
be the dominating effect; this boils down to the fact that
battery degradation is mostly time and temperature dependent,
however economic cost calculations to date have mostly
focused on cycle number as the determining factor of lifetime
[30]. Ref. [31] experimentally finds that depending on the
temperature, there is a 2-3% capacity loss per 1000 full
equivalent cycles.

Ref. [32] finds that degradation is more influenced from
calendar ageing and the battery degradation is twice as much
if it is stored fully charged than stored at a SOC lower than
60%. To maximise battery life, lithium-ion cells should not be
stored at high SOC and for long-term storage, the SOC should
be less than 50% [33]. It therefore has a positive effect on the
state of health that the EV is not fully charged at the end of
the day and stored fully charged all night.

In [32] it is experimentally shown that the battery
degradation cannot only be based on the energy throughput
as it depends on the absolute movement of the SOC, meaning
the depth of discharge. It is found by [32] that by cycling
the battery between 40-60%, it had lost 14% of the original
capacity after 3000 full equivalent cycles with a charge rate
of 1C and a temperature of 35OC. By integrating the absolute
energy flow of the battery the total energy throughput, Etp, can
be calculated with Eq. 14. The daily energy used for driving,
Edrive, is subtracted from the total energy throughput, to get
the added throughput from FNR provision.

Etp =

365∑
k=1

15∑
h=1

∆T (P c
k,hηc+|ebat

k,hP
r
h|+P d

k,h

1

ηd
)−Edrive,k (14)

Following the optimal schedule the battery has a yearly
energy throughput of Etp = 12.2 MWh per year. This is
calculated by integrating the absolute energy flow of each
hour of every period in the year, and subtracting the energy
used for driving, Edrive. With a 40 kWh battery it results in
Etp/(2Q) = 153 charge cycles per year.

The energy throughput calculated on the hourly scale is
lower than if it is calculated on the second scale based on the
full resolution time series, as some of the power flow cancels
out within the hour. The yearly energy throughput calculated
on the second scale is, however not significantly higher and
amounts to Etp = 14.6 MWh or 182 charge cycles per year.

In collaboration with Nissan, the authors in [34], have
modelled the battery degradation of the same setup as
presented in the present manuscript and the result is 0.4%

capacity fade per year caused by service provision. Based on
a single balanced frequency sample, that is repeated every
day, ref. [34] also finds the throughput in the second scale
to be equal to 182 full equivalent charge cycles per year.
Despite delivering 14 hours of PFC with ±9 kW per day,
the degradation is not found to be a significant factor as the
bulk discharge is limited and the cycle ageing only is a small
part of the overall degradation.

The optimal schedule deals with several days of very
imbalanced frequency but still results in the same average
number of charge cycles, and therefore should also result in
0.4% cycle degradation per year. This should be compared
with the magnitude of the calendar ageing, which is 2.8%
in the first year and then close to 1% the following years
[34]. These values are similar to the results from Ref. [35].
Most of the capacity fade of the battery is caused by calendar
ageing which is considered independent of the number of
cycles. The revenue values previously obtained are therefore
expected to be marginally affected by degradation, though
further experimental investigations are necessary to confirm
this.

V. CONCLUSION AND FUTURE WORK

The paper first introduced the regulatory framework and
potential earnings from frequency regulation in RG-N, based
on the technical capabilities of series produced EVs in
different configurations.

It is found that the value of unidirectional FNR during
charging only is up to 70 EUR per year per EV, and while this
method does not give any further energy loss as the EV always
is charging, it gives a very limited revenue. Using bidirectional
V2G chargers the value of the full power availability of ±10
kW is 1395 EUR per year per vehicle although it has the need
for extra equipment.

It is found that the behaviour of the system frequency would
cause the EV to be fully charged or depleted in 88% of the
days in a year, if the full power is committed to the service.
By assuming full knowledge of the energy content of the
frequency, it is possible to make a schedule that would not
fully charge or deplete the battery. This schedule has been
calculated based on the frequency values of 2016 and applied
to the days of 2017. In 2016 it would generate a capacity
payment of 1118 EUR per year per vehicle with an average
regulation capacity of ±6.9 kW out of a nominal capacity of
±10 kW. This amount represents the best-case earnings that
can be achieved given the adopted hardware. It is suggested,
that the aggregator remunerates the EV owner by paying for
the electricity consumption for driving, in which case the
aggregators share of the profit is 580 EUR/year. The EV owner
needs a proper remuneration for the use of the battery and
for only having the EV 72.5% charged in the morning, even
though a lower SOC have a positive effect on the calendar
ageing of the battery.

The experimental results of the commercial V2G charger
shows that the energy losses due to the charger efficiency
amounts to 4.2 MWh out of a total energy throughput
of the battery of 18.8 MWh per year, including driving.
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Even considering the reduced industrial electricity tariff, it
determines a loss in revenue close to one fifth. Considering
the collected experience on battery degradation, the influence
of frequency regulation in the given setup is found
to have marginal consequences. Though further practical
investigations are intended to back up the statement.

As final consideration, it is found that overall the business
model is better in the summer as the prices are 30% higher, the
energy content is lower so 8% more regulation capacity can
be delivered and the energy requirements for driving are also
lower so the minimum SOC could be lower the next morning.

While the paper quantified the value of each individual pair
of EV and charger, it has to be remarked how the value, the
energy costs and the number of stakeholders increase linearly
with the number of EVs. Aggregating a large fleet can make
it possible to predict the average SOC and align the individual
EVs SOC but the revenue per EV will not be higher than the
best case presented here.
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