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Improving genomic predictions by
correction of genotypes from genotyping
by sequencing in livestock populations
Xiao Wang1,2, Mogens Sandø Lund1, Peipei Ma1,3, Luc Janss1, Haja N. Kadarmideen2 and Guosheng Su1*

Abstract

Background: Genotyping by sequencing (GBS) is a robust method to genotype markers. Many factors can
influence the genotyping quality. One is that heterozygous genotypes could be wrongly genotyped as homozygotes,
dependent on the genotyping depths. In this study, a method correcting this type of genotyping error was
demonstrated. The efficiency of this correction method and its effect on genomic prediction were assessed
using simulated data of livestock populations.

Results: Chip array (Chip) and four depths of GBS data was simulated. After quality control (call rate ≥ 0.8 and
MAF ≥ 0.01), the remaining number of Chip and GBS SNPs were both approximately 7,000, averaged over 10
replicates. GBS genotypes were corrected with the proposed method. The reliability of genomic prediction
was calculated using GBS, corrected GBS (GBSc), true genotypes for the GBS loci (GBSr) and Chip data. The
results showed that GBSc had higher rates of correct genotype calls and higher correlations with true genotypes than
GBS. For genomic prediction, using Chip data resulted in the highest reliability. As the depth increased to 10, the
prediction reliabilities using GBS and GBSc data approached those using true GBS data. The reliabilities of genomic
prediction using GBSc data were 0.604, 0.672, 0.684 and 0.704 after genomic correction, with the improved values of 0.
013, 0.009, 0.006 and 0.001 at depth = 2, 4, 5 and 10, respectively.

Conclusions: The current study showed that a correction method for GBS data increased the genotype accuracies
and, consequently, improved genomic predictions. These results suggest that a correction of GBS genotype is
necessary, especially for the GBS data with low depths.

Keywords: Genomic prediction, Genotype correction, Genotyping by sequencing, Simulation

Background
Genotyping by sequencing (GBS) can produce multiplex
libraries of samples based on restriction enzyme and
DNA barcoded adapters, and potentially reduce the cost
of genotyping [1]. With the reduced-representation
sequencing of multiplexed samples, GBS has been devel-
oped as a robust method to discover and genotype
genome-wide molecular markers [2]. For some species, a
commercial chip array is not available, thus GBS will be
a good approach to obtain genotypes of DNA markers
[3]. However, genotyping quality of GBS tends to be
lower than for a chip array [4]. Since genome-wide

sequence read depth varies along each sequenced
genome of different individuals, genotype quality also
varies accordingly [5]. Therefore, the proportion of cor-
rectly called genotypes will decrease after decreasing
read depths.
Several studies have suggested that it is more powerful

to sequence more individuals at the lower coverage [6].
Low-coverage sequencing could capture as much of the
variation across the genome as SNP arrays and yielded a
commensurate increase in statistical power, which would
be a more attractive strategy for the studies of complex
trait genetics [7, 8]. In Gorjanc’s report [4], expanding
the training set resulted in higher overall accuracy of
estimated breeding value (EBV), even with reducing the
quality of genotyping for lower expense, but genotyping
quality may be more important for the prediction set. It
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was shown that prediction accuracy increased greatly
when read depths also increased in the prediction set
[4].
Due to the lower coverage, heterozygous genotypes

wrongly genotyped as homozygotes are considered to be
a serious problem in GBS data. For example, a read
depth of one would genotype only one allele of a diploid
at random, so that a true Aa genotype is definitely geno-
typed into aa or AA genotype by mistake. Previous stud-
ies have proposed the maximum-likelihood (ML)
method for calling genotypes in low-coverage sequen-
cing data [9, 10], and also developed related programs,
such as ANGSD [11] and polyRAD [12]. The R package
polyRAD estimated a posterior probability from the
priors and likelihoods for each individual and allele
using Bayes’ theorem. It applied information from
high-depth markers to improve genotyping accuracy of
low-depth markers using population structure and link-
age between loci [12], Additionally, some studies investi-
gated relationship estimation for better relatedness
matrices construction using GBS with low depth [13, 14].
In practice, it is possible to correct the wrong geno-

type calls of GBS data based on read depths and allele
frequencies and, consequently, improve the GBS quality
to some extent. Therefore, genotype error correction
methods are required to complement the future use of
GBS data [8]. Simulation is a highly valuable tool to
assess such GBS correction methods. Thus, the objective
of this study was to propose a method of genotype cor-
rection for original GBS data, and then investigate the
improvement of genomic prediction (GP) using the sim-
ulated data of livestock populations. In this study, four
different read depths of GBS genotypes and chip array
(Chip) genotypes were simulated. Breeding values were
predicted using GBS, corrected GBS (GBSc) and Chip
genotypes. The accuracies of genomic predictions were
compared to assess the value of GBS and the improve-
ment of GBSc from genotype correction using different
genotype data sets.

Methods
In this study, genomic and phenotypic data of ten repli-
cates for each scenario were generated by QMSim
software (version 1.10) [15]. Parameters used for gener-
ating the population structure and genome are given in
Table 1 and Table 2.

Population structure
During the historical generations, the foundation popu-
lation of 2,000 individuals (1,000 males and 1,000 fe-
males) was kept at a constant size across 1000
generations, and then reduced gradually to 400 individ-
uals (200 males and 200 females) in the following 200
generations, generating linkage disequilibrium (LD) as a

result of the domestication process. Among the 400 indi-
viduals in the last generation of historical population, 40
males and 200 females were randomly chosen. Each
male mated randomly with five females and each female
produced five progeny for population expansion. In the
recent generations, 100 males and 500 females from the
last generation of the expanded population were selected
as the parents of the next generation. This continued for
ten generations, keeping a male to mate randomly with
five females and each female producing five progeny.
Selection and replacement was performed based on
EBV. The replacement rate was 80% for males and 40%
for females. The breeding values were estimated by best
linear unbiased prediction (BLUP) using an animal
model [16]. In the whole process of simulation, the

Table 1 Simulation parameter of population structure

Step Population structure Value

Number of replicates 10

Overall heritability 0.3

QTL heritability 0.3

Phenotypic variance 1.0

Step1: Historical
generation (HG)

Foundation population
size of HG

2000

Number of generation
in phase 1

1000

Population size in the
end of phase 1

2000

Number of generation
in phase 2

200

Population size in the
end of phase 2

400

Number of male in
the last HG

200

Number of female
in the last HG

200

Number of male from HG 40

Number of female from HG 200

Step 2: Expanded
generation (EG)

Number of generation 1

Litter size 5

Proportion of male progeny 50%

Mating design Random

Number of male from EG 100

Number of female from EG 500

Step 3: Recent
generation

Number of generation 10

Litter size 5

Proportion of male progeny 50%

Mating design Random

Sire replacement 80%

Dam replacement 40%

Selection design EBV
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individuals of each sex were produced with equal prob-
ability based on the random union of gametes, which
were sampled from both the male and female gamete
pools. The overall heritability, quantitative trait locus
(QTL) heritability and phenotypic variance were set as
0.3, 0.3 and 1.0, respectively. No remaining polygenic ef-
fect was simulated, so all the genetic variance was ex-
plained by QTLs. The phenotypes were created by
adding random residuals to the true breeding values
(TBV); TBVs were defined as the sum of individual QTL
additive effects. The targeted level of LD in this study
was close to the values for cattle [17, 18] and pig [19].
The decay of LD between the markers is shown in Fig. 1,
which indicates that the mean r-squared of LD in the last
(10th) generation of the population was 0.259 (SE = 0.004)
based on markers with interval less than 50 kb (0 ~ 0.05
cM) and minor allele frequencies (MAF) > 0.01, averaged
over 10 replicates.

Genome
Initial LD was created by the process of mutation-drift
equilibrium in the historical generations. In this process,
mutation and drift were considered as the only two evo-
lutionary forces due to no selection, no migration and
random mating. Crossovers were simulated to be ran-
domly located across the chromosome and the number
of crossovers was sampled from a Poisson distribution.
A total of 5 × 106 SNP markers were evenly distributed
on five chromosomes of length 100Mb. Allele frequen-
cies of the bi-allelic markers and QTLs were initiated
through randomly sampling from a uniform distribution
in the first historical generation. In total, 500 QTLs were

simulated and randomly distributed on these five chro-
mosomes. Thus, QTL positions for each replicate were
different due to the random distribution. QTL allele ef-
fects were sampled from gamma distribution with the
shape parameter equal to 0.4. The original QTL effect
was that one allele had effect and the other allele had
zero effect, and then QTL allelic effects at each locus
were scaled as (Allelic effect – QTL mean of population)

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Defined QTL variance

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Observed QTL variance

p , where the observed QTL variance

were the sum of QTL variances in the last historical gen-
eration. By the scaling, the sum of QTL variances in the
last historical generation equals to the defined QTL vari-
ance (total additive genetic variance in this study). The
effect sizes of two alleles of 500 QTLs in one replicate
are shown in Additional file 1. In order to establish
mutation-drift equilibrium in historical generations,
marker and QTL recurrent mutation rates in historical
population were both set as 2.5 × 10− 5. The recurrent
mutations assumed that a mutation altered an allele to
another instead of creating a new allele and these transi-
tion probabilities were equal. The number of mutations
for one chromosome of an individual was sampled from
a Poisson distribution with the mean u (u = 2 × number
of loci × mutation rate), and then each mutation was
assigned to a random locus in the genome. However,
recurrent mutations were generally very rare and there
was no evidence that these mutations contributed
significantly to the erosion of LD between SNPs [20]. In
the recent populations, no mutations were generated.

Creating GBS and chip array data
De Donato et al. [21] reported that the distribution of
distances between the GBS SNPs differed to that from a
chip array data in cattle. For GBS data, the percentage of
neighboring SNP less than 50 kb was 44.0% and of more
than 150 kb was 13.8%. Following the results of De
Donato et al. [21], the distribution of the distances
between the neighboring SNPs in this study were set as
13, 8, 8, 12, 9, 6, 5, 16, 7 and 16% for 0.5 kb, 2.5 kb, 7.5
kb, 15 kb, 25 kb, 35 kb, 45 kb, 75 kb, 125 kb and 200 kb,
respectively (Fig. 2).
Sequencing errors were not simulated, but low read

depths could result in incorrect genotype calls with
each allele sampled from Binomial distribution p � Bð
n; 12Þ. Thus, the probability of a heterozygous genotype

being correctly called was 1−2ð12Þ
n (e.g., 0.00 when n

= 1, 0.50 when n = 2, and 0.25 when n = 3). In other
words, the probability of a true heterozygous geno-
type being wrongly called as one of the observed
homozygous genotype was ð12Þ

n . In the simulation, the
number of reads (n) per locus was drawn from a
Poisson distribution n~P(x), where x was the average

Table 2 Simulation parameter of genome

Genome Value

Number of chromosome 5

Chromosome length 100 Mb

Number of marker loci on one
chromosome

1,000,000

Marker position Evenly

Number of marker alleles in the first HG 2

Marker allele frequencies in the first HG Random

Number of QTL loci on one chromosome 100

QTL position Random

Number of QTL allele in the first HG 2

QTL allele frequency in the first HG Random

QTL allele effect From gamma
distribution with
shape 0.4

Maker mutation rate in the historical
population

2.5 × 10−5

QTL mutation rate in the historical
population

2.5 × 10−5
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depth (x = 2, 4, 5, 10). Actually, the distribution of
reads might not reflect the observed distributions ac-
curately due to many factors influencing the variabil-
ity. Nevertheless, it should not affect the comparisons
of genomic prediction results, even though the simu-
lated data has much less variability than observed in
practice [22].
We created the GBS genotypes at a heterozygous locus

by sampling a random number (r) from a uniform distri-
bution r~U(0, 1). If r≤ð12Þ

n , the heterozygous genotype

was replaced by aa. If ð12Þ
n
< r < 2ð12Þ

n , the heterozygous
genotype was replaced by AA, else the heterozygous

genotype was correctly assigned as Aa. Afterwards, the

GBS genotypes aa, Aa and AA were recorded as 0, 1

and 2, respectively.
Quality control criteria of call rate ≥ 0.8 and MAF ≥

0.01 for SNPs were used to edit the GBS data. After
quality control, missing genotypes (zero reads) were set
as the mean genotype value for the same loci before gen-
omic prediction. In addition, chip array (Chip) data with
no sequencing errors or missing genotypes was also sim-
ulated for comparison. The SNP markers of Chip were
evenly distributed on five chromosomes with a distance
of 50 kb between two adjacent markers.

Fig. 1 Decay of LD (r-squared) between markers averaged over 10 replicates. Lines combined with solid circle are average r-squared values in the
last (10th) generations of recent population based on MAF > 0.01 and bars indicate SE

Fig. 2 Distribution of distances between the neighboring SNPs
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Genotype correction for GBS data
The genotype correction in this study is to adjust GBS
genotypes according to Bayes’ conditional probability
P(G|GBS), where G is the true genotype (unknown) and
GBS is the GBS genotype (known) which is subject to
genotyping errors. The expected genotype dosage after
genotype correction can be rounded to GBSc genotype
types (most probable GBSc genotype, i.e., dosage < 0.5:
aa; dosage > 1.5: AA; else: Aa). Right and false correction
of GBSc were displayed when comparing GBSc geno-
types with GBS and true (GBSr) genotypes (Table 3).
Homozygous genotypes of GBSc could be corrected into
heterozygous genotypes or keep the same homozygous
genotypes. If the homozygosity was corrected into het-
erozygosity and the true genotype of GBSr was also het-
erozygous, this kind of genotype correction was right
genotype correction. However, such genotype correction
could be false genotype correction when the true geno-
type of GBSr was homozygous.
If GBSaa (genotype is labeled in the subscript for the

nomenclature) is observed, there are two possible true
genotypes (Gaa and GAa), and the probabilities are

P GaajGBSaað Þ ¼ P Gaað Þ P GBSaajGaað Þ
P GBSaað Þ ;

P GAajGBSaað Þ ¼ 1−P GaajGBSaað Þ:
Similarly, If GBSAA is observed,

P GAAjGBSAAð Þ ¼ P GAAð Þ P GBSAAjGAAð Þ
P GBSAAð Þ ;

P GAajGBSAAð Þ ¼ 1−P GAAjGBSAAð Þ:
If GBSAa is observed, GAa is the only possible true

genotype,

P GAajGBSAað Þ ¼ 1:

Let assume p = P(A) and q = P(a) for the true genotype,
the relevant probabilities can be written as:

P GBSaað Þ ¼ P Gaað Þ þ P GBSaajGAað Þ
¼ q2 þ 2pq 1

.
2

� �n
;

P GaajGBSaað Þ ¼ P Gaað Þ � P GBSaajGaað Þ=P GBSaað Þ
¼ q2=P GBSaað Þ;

P GAajGBSaað Þ ¼ P GAað Þ � P GBSaajGAað Þ=P GBSaað Þ
¼ 2pq 1

.
2

� �n
=P GBSaað Þ;

P GBSAAð Þ ¼ P GAAð Þ þ P GBSAAjGAað Þ
¼ p2 þ 2pq 1

.
2

� �n
;

P GAAjGBSAAð Þ ¼ P GAAð Þ
� P GBSAAjGAAð Þ=P GBSAAð Þ

¼ p2=P GBSAAð Þ;

P GAajGBSAAð Þ ¼ P GAað Þ � P GBSAAjGAað Þ=P GBSAAð Þ
¼ 2pq 1

.
2

� �n
=P GBSAAð Þ:

Let 0, 1, and 2 denote aa, Aa and AA genotype, re-
spectively. The original GBS genotypes are scored as
GBSaa = 0, GBSAa = 1 and GBSAA = 2. The correction of
GBS used in this study is to correct GBS homozygous
genotypes to be expected genotype dosage. Thus,

GBScaa ¼ 2pq 1
.
2

� �n
= q2 þ 2pq 1

.
2

� �n� �
;

GBScAA ¼ 2p2 þ 2pq 1
.
2

� �n� �
= p2 þ 2pq 1

.
2

� �n� �
;

GBScAa ¼ 1:

Allele frequency can be calculated from the data in-
cluding all reads when assuming Hardy-Weinberg equi-
librium. It can be estimated from the known GBS data
in this way:

P GBSAAð Þ−P GBSaað Þ ¼ p2 þ 2pq 1
.
2

� �n� �

− q2 þ 2pq 1
.
2

� �n� �
¼ p2−q2 ¼ 2p−1;

p ¼ P GBSAAð Þ−P GBSaað Þ þ 1
2

Statistical analysis
Based on the GBS, GBSc, GBSr and Chip data, genomic
breeding values (GEBV) were predicted by a SNP-BLUP
model using the BayZ package (http://www.bayz.biz/).
The model was

y ¼ 1μþMgþ e;

where y was the vector of phenotypic values, 1 is the
vector of ones, μ is the overall mean, g is the vector of
random unknown marker effects to be estimated, M is
the coefficient matrix of genotypes which links g to y,
and e is the vector of random residuals. It was assumed
that g � N ð0; Iσ2

gÞ.

Table 3 Genotype changes of corrected GBS (GBSc) in the
lower panel of Fig. 3

Genotype change in the lower panel of Fig. 3 GBS GBSc GBSr

Right correction of GBSc (GBS≠ GBSc = GBSr) aa/AA Aa Aa

False correction of GBSc (GBSc ≠ GBS = GBSr) aa/AA Aa aa/AA
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Validation
In the 6th to 9th generations of the recent population,
7,500 individuals were used as a training set, in which all
individuals were genotyped and phenotyped. The test set
comprised of 2,500 genotyped individuals from the 10th
generation. The reliabilities of genomic predictions using
marker data from GBS, GBSc, GBSr and Chip were
compared. The reliabilities of genomic predictions were
calculated as squared correlations between the predicted
and true breeding values for individuals in the test data
set.

Results
Distributions of read depth (n) at four levels of mean read
depth (x)
Additional file 2 showed the realized frequency distribu-
tions of reads at four mean depths (x = 2, 4, 5, 10),
which were highly consistent with the theoretical fre-
quencies of Poisson distribution. The percentages of
read depth ≤ 5 at mean read depth = 2, 4, 5 and 10 were
98.3%, 78.5%, 61.6% and 6.71%, respectively. The per-
centages of missing genotypes at mean read depth = 2, 4,
5 and 10 were 13.5%, 1.83%, 0.673% and 0.00464%, re-
spectively. Standard deviation (SD) of ten replicates were
all less than 4.74 × 10− 5.

Incorrect genotype calls
It was expected that a heterozygous genotype may be
wrongly assigned to a homozygous genotype with prob-
ability of 2ð12Þ

n . The upper panel of Additional file 3
shows the proportions of incorrect genotype calls over
true genotypes and the SDs of ten replicates were all less
than 6.32 × 10− 3. Although the average number of real-
ized reads for different loci was nearly the same, there
was much variation in the proportion of incorrect geno-
types observed for different loci (lower panel of
Additional file 3). Having a large proportion of incorrect
genotypes in the loci close to QTL regions could affect
genomic prediction.

Improvement of accuracies of GBS genotype by genotype
correction
The accuracies of GBS genotypes were measured as cor-
relations between the true genotype and the GBS geno-
type, as well correct rates of GBS genotype calls. As
shown in the upper panel of Fig. 3, genotype correction
improved the accuracies of GBS genotype. The correla-
tions between reported genotype and true genotype were
highest for the GBSc genotype dosage and lowest for the
original GBS, while GBSc genotype type (most probable
genotype) was in between. The differences among these
three genotype data were larger for lower depth, and not
for depth = 10. Similarly, correct rates of GBSc genotype

type were higher than those of original GBS for depth =
2, 4, and 5, but not for depth = 10. GBSc genotype type
occupied a larger proportion of right genotype correction
than false genotype correction (lower panel of Fig. 3). As
expected, larger improvement was observed in the geno-
type data with lower depth.

Reliabilities of genomic prediction
After quality control (call rate ≥ 0.8 for loci and MAF ≥
0.01), the number of GBS SNPs obtained for the four
depths was approximately 7,000 averaged over 10 repli-
cates. As shown in the Additional file 2, the missing ge-
notypes at mean depth = 2, 4, 5 and 10 were less than
13.5%, so call rate criteria of 80% for loci had nearly no
effect on genotypes editing. However, the missing geno-
types at mean depth = 1 were high, up to approximately
30%; therefore, a large number of loci did not meet this
criterion, and this depth was discarded. In addition, ap-
proximately 7,000 SNPs remained for the Chip data
using the same quality control criteria (call rate ≥ 0.8 for
loci and MAF ≥ 0.01).
The reliabilities (r2) of genomic prediction averaged

over 10 replicates at four depths are shown in Fig. 4.
Prediction reliability using Chip data (0.710) was slightly
higher than that using true genotype for the GBS loci
(GBSr) (0.706). As depth increased from 2 to 10, the
prediction reliabilities using GBS and GBSc data
gradually approached the reliabilities using GBSr data.
The worst prediction reliability was from depth = 2 due
to having the most missing and incorrect genotypes
(Additional file 2 and Additional file 3). Genotype cor-
rection improved genomic prediction to different
degrees, consistent with the accuracies of corrected
genotypes (Fig. 3). Thus, the reliabilities of genomic pre-
diction using GBSc data were higher than those using
GBS data at all four depths (Fig. 4). The standard error
(SE) of prediction reliabilities in 10 replicates was
approximately 0.025 for scenarios of different depths
and types of the marker data.
Without quality control (call rate ≥ 0.8 for loci and

MAF ≥ 0.01) for editing genotype data, approximately
8,000 GBS SNPs were obtained at the four depths, aver-
aged over 10 replicates. Table 4 reveals that reliabilities
of genomic prediction using GBS and GBSc data before
editing genotypes were better than those using the data
after editing genotypes. In addition, GBSc led to higher
reliability than GBS no matter that correction was per-
formed before or after genotype editing.

Discussion
Potential application of GBS in breeding programs
As a highly multiplexed technology for constructing
reduced representation libraries, GBS generates large
numbers of SNPs for use in genetic analyses [2]. Unlike
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genotyping approach of chip arrays, GBS allows de novo
marker discovery, even when there is no reference gen-
ome [3]. The GBS technology includes digestion by a re-
striction enzyme, ligation of barcode adapter,
amplification by PCR and sequencing of amplified DNA
[3]. Repetitive regions of genome can be avoided and
lower copy regions can be targeted efficiently to simplify
the alignment problems by using appropriate restriction
enzymes [2, 23]. Single-well digestion and barcode
adapter ligation results in reduced sample handling, less
PCR amplification and no size fractionation limitation
[24]. Currently, GBS has been widely used in many
breeding programs. Poland et al. [25] presented a GBS
approach for barley and wheat lacking of a reference
genome sequence and found GBS to have broad

applications in plant breeding programs. The applica-
tions of genomic selection in aquaculture species has
been underpinned by GBS techniques, which are avail-
able for a handful of aquaculture species [26]. Addition-
ally, GBS has great potential application in domestic
species whose reference sequences are either being de-
veloped or have been fully sequenced, as it enables ac-
ceptable marker density for genomic selection in cattle
at one third of the cost of the current genotyping tech-
nologies [21].
In this study, the highest reliability of genomic predic-

tion was from using the chip array (Chip) data. Obvi-
ously, Chip SNPs were evenly distributed along the
genome, so at least one SNP was in strong LD with
QTLs. However, large distances between some

Fig. 3 Correlations and correct rates for original GBS (GBS), corrected GBS genotype type (GBSc type), corrected GBS genotype dosage (GBSc
dosage) with true genotype in GBS loci (GBSr) data (the upper panel), as well right and false genotype correction of GBSc (type) data (the lower
panel) at four mean depths, averaged over 10 replicates

Fig. 4 Reliabilities (r2) of genomic prediction using original GBS (GBS), corrected GBS (GBSc dosage), true genotype in GBS loci (GBSr) and chip
array (Chip) data, at four depths, averaged over 10 replicates. Bars indicate SE
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neighboring GBS SNPs weakened the LD between SNP
and QTL. De Donato et al. [21] reported that the Bovi-
neSNP50 chip array had a large proportion of intervals
from 20 kb to 100 kb and only 3% had an interval larger
than 150 kb, while GBS data showed that about 14% of
SNP intervals were more than 150 kb. Even if LD exists
at long distances (longer than 1 cM in some regions and
some species), LD will decay as the distance between
marker and QTL increases [27]. This study restricted
the numbers of Chip SNPs and GBS SNPs to be same. If
the number of GBS SNPs increases, GBS data could per-
form as well as Chip data in genomic prediction. In gen-
eral, GBS can produce enough information even at
relatively low coverage, but wrong calls of genotype are
the main disadvantage that requires further improvement.

Genotype dosage and most probable genotype
This study demonstrated the method of correction for
GBS genotype to improve the accuracy of GBS data, fol-
lowing the previous studies [9–14]. This correction
method resulted in GBSc genotype type and GBSc geno-
type dosage. The GBSc genotype type was derived from
rounding the GBSc genotype dosage. The inferred GBSc

genotype dosage of genotype aa was dosageðGBScaaÞ

¼ 1− q2

q2þ2pqð12Þ
n ¼ 1

q

2pð12Þ
nþ1 , which ranges between 0 and 1.

For example, dosage(GBScaa) = 1 − q if read depth = 1, which
is always larger than 0.5 when q is less than 0.5. When reads
depths become higher, dosage(GBScaa) was closer to zero
(Fig. 5) and the inferred GBSc genotype dosage and inferred
GBSc genotype type were more consistent. The results also
indicate that the rounded genotypes derived from dosage
were more accurate than original GBS genotype, but some
of them might be far from the true genotype, dependent
on the number of reads and allele frequency.

Correction of GBS genotype improved genomic
prediction
The proportions of right genotype correction were more
than the proportions of false genotype correction in this
study, so the correct rates of GBSc increased 0.028,
0.010, 0.005 and 0.001 from original GBS at depth = 2, 4,
5 and 10, respectively (Fig. 3). Therefore, genotype cor-
rection increased the accuracy of GBS genotypes. GBSc
genotype dosage had higher correlation than GBSc geno-
type type, so GBSc genotype dosage was more accurate
(Fig. 3). In fact, all meaningful information about uncer-
tainty is lost by choosing the largest probability [28],
such as the GBSc genotype type rounded from GBSc
genotype dosage in this study. For genotype imputation,
a general approach is also the use of posterior prob-
abilities. Imputed genotypes are predictions instead of
actual observations of genotyping, so incorporating

Table 4 Reliabilities of genomic prediction using original GBS (GBS) and corrected GBS (GBSc) data before and after editing
genotypes, at four mean depths, averaged over 10 replicates

Reliability (SE) GBS (after editing genotypes) GBS (no editing genotypes) GBSc (after editing genotypes) GBSc (no editing genotypes)

Depth = 2 0.591 (0.026) 0.598 (0.023) 0.603 (0.026) 0.610 (0.024)

Depth = 4 0.662 (0.025) 0.663 (0.024) 0.671 (0.025) 0.672 (0.024)

Depth = 5 0.678 (0.025) 0.683 (0.023) 0.684 (0.025) 0.687 (0.023)

Depth = 10 0.703 (0.024) 0.704 (0.024) 0.704 (0.024) 0.704 (0.024)

Fig. 5 Inferred genotype dosage of GBSaa versus q value for different read depths (n)

Wang et al. Journal of Animal Science and Biotechnology            (2019) 10:8 Page 8 of 10



the uncertainty of these predictions could avoid spuri-
ous results in some cases [29].
We only used a SNP-BLUP model for predicting

breeding value in this study. The result indicated that
genomic prediction using corrected GBS data were more
accurate than using the original GBS data (Fig. 4). It is
expected that the gain in reliability of genomic predic-
tion from genotype correction will also present when
using other genomic prediction models such as Bayesian
variable selection models, because genotype correction
increases the accuracies of genotype assignment (Fig. 3).
In this study, retaining more SNPs resulted in higher

prediction reliabilities (Table 4), which meant that a de-
creasing or less stringent thresholds of call rate and
MAF led to an increase in prediction reliability [30]. Our
study also revealed that genotype correction improved
genomic prediction more than removing the MAF
threshold. Cooke et al. [31] expected to reduce genotype
errors in GBS data by estimating allelic dropout. Their
simulation studies using their GBStools package im-
proved genotyping accuracy more than hard filters [31].
Meanwhile, Furuta et al. [32] used their post SNP-calling
error correction to eliminate most errors of raw GBS
data, but some remained. Their studies also found that
simple imputation methods can reinforce the usefulness
of GBS data tremendously, even if up to 75% of missing
data for each marker existed in the raw GBS data [32].
However, methods rely on population types and refer-
ence genomes, so they may not always be applied.

Conclusions
The current study demonstrated a method for the cor-
rection of GBS genotypes. The results showed that the
correction increased the accuracy of GBS genotype and
increased the accuracy of genomic prediction. Therefore,
a correction method for GBS genotype is necessary, es-
pecially for GBS data with low depth.
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