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Abstract

Human viral pathogens are a major public health threat. Reliable information that accurately

describes and characterizes the global occurrence and transmission of human viruses is

essential to support national and global priority setting, public health actions, and treatment

decisions. However, large areas of the globe are currently without surveillance due to limited

health care infrastructure and lack of international cooperation. We propose a novel surveil-

lance strategy, using metagenomic analysis of toilet material from international air flights as

a method for worldwide viral disease surveillance. The aim of this study was to design,

implement, and evaluate a method for viral analysis of airplane toilet waste enabling simulta-

neous detection and quantification of a wide range of human viral pathogens. Toilet waste

from 19 international airplanes was analyzed for viral content, using viral capture probes fol-

lowed by high-throughput sequencing. Numerous human pathogens were detected includ-

ing enteric and respiratory viruses. Several geographic trends were observed with samples

originating from South Asia having significantly higher viral species richness as well as

higher abundances of salivirus A, aichivirus A and enterovirus B, compared to samples origi-

nating from North Asia and North America. In addition, certain city specific trends were

observed, including high numbers of rotaviruses in airplanes departing from Islamabad.

Based on this study we believe that central sampling and analysis at international airports

could be a useful supplement for global viral surveillance, valuable for outbreak detection

and for guiding public health resources.
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Introduction

Viral infectious diseases are a major burden on human society. Viral pathogens are a very

diverse group with recognized species responsible for both gastroenteritis [1], respiratory

tract infections [2], hepatitis [3], cancer [4], and numerous other syndromes collectively kill-

ing millions each year [5–7]. In addition, an increasing number of re-emerging viruses have

been reported, including ebola virus (EboV) [8], SARS [9], MERS [10] and Zika virus [11],

causing large and serious epidemics. Effective surveillance systems are critical for outbreak

detection and corresponding timely implementation of public health interventions. Addi-

tionally, as international trade and travel increases, the need for global surveillance is grow-

ing, as viruses do not respect national borders [12,13]. Several transnational pathogen

specific viral surveillance networks exist, including NoroNet (http://www.rivm.nl/en/

Topics/N/NoroNet) and GISRS [14], covering noroviruses and influenza viruses, respec-

tively. However, the surveillance of the vast majority of viral human pathogens is being orga-

nized at a regional or national level, with limited data sharing and cooperation. In addition,

many developing countries do not have the infrastructure of doctors, reference laboratories,

and health care bodies required for traditional pathogen surveillance, creating large black

boxes on the global health map [15].

Several alternative solutions for disease surveillance have been explored, including drug

sales [16] and Google search patterns [17], but consistency and sensitivity have been lacking

[18,19]. Environmental surveillance has been used as a tool for monitoring the spread of polio

for more than 50 years [20], and combined with high throughput metagenomic sequencing

could be an attractive and cost effective surveillance strategy for viral pathogens [21]. Metage-

nomics is an unbiased detection technique allowing for both the detection of known pathogens

as well as the discovery of novel viruses [22,23]. However, significant logistic challenges exist

for implementing global environmental sampling and metagenomic analysis in a timeframe

relevant for producing actionable information.

In 2017, 4 billion passengers travelled by airplane, and this number is expected to rise in the

future [24]. This makes airports attractive control points for infectious diseases. In addition,

international airports also allow for unique access to human fecal material from all over the

world. The feasibility of using toilet waste for global disease surveillance was explored in a pre-

vious study, focusing on bacterial pathogens and antimicrobial resistance, with promising

results [25]. In addition, this strategy would allow for a high degree of flexibility, with the

option of increasing the sampling frequency of incoming airplanes from certain regions,

which could be very valuable in outbreak situations.

The aim of this study was to produce and evaluate a method for viral analysis of airplane

toilet waste enabling simultaneous detection and quantification of human viral pathogens.

Our protocol, including viral capture probes followed by metagenomic sequencing, was

evaluated on airplane sewage from 19 long distance airliners.

Materials and methods

Sampling

Sampling was done as previously described [25]. Briefly, airplane toilets were sampled from 19

long distance flights arriving in Copenhagen between June and September 2013, from the nine

cities: Bangkok, Beijing, Islamabad, Kangerlussuaq, Newark, Singapore, Tokyo, Toronto, and

Washington DC, with permission from the airline (SAS) cleaning service. Three 0.5 L samples

of toilet waste were obtained from each airplane, pooled, aliquoted, and stored at -80 ˚C until

nucleotide extraction (Fig 1).

Global surveillance of viruses using metagenomic analysis of toilet waste from long distance flights

PLOS ONE | https://doi.org/10.1371/journal.pone.0210368 January 14, 2019 2 / 15

programmes/horizon2020/en/, under grant

agreement no 643476 (COMPARE) (FMA), and The

Villum Foundation, https://veluxfoundations.dk/en,

(VKR023052) (FMA). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://www.rivm.nl/en/Topics/N/NoroNet
http://www.rivm.nl/en/Topics/N/NoroNet
https://doi.org/10.1371/journal.pone.0210368
https://ec.europa.eu/programmes/horizon2020/en/
https://veluxfoundations.dk/en


Nucleic acid extraction

Before extraction the highly basic airplane toilet waste (pH > 11) was pH adjusted to 7 using

HCl (12M). 140 μl of airplane toilet waste was used as input for nucleic acid extraction. A posi-

tive and negative extraction control was included consisting of a mixture of 8E5 cells carrying

one copy of proviral human immunodeficiency virus 1 (HIV-1) genome and human adenovi-

rus (HadV) [26], and sterile molecular grade H2O, respectively. DNA and RNA were co-

extracted using the QIAamp Viral RNA Mini kit (Qiagen, Valencia CA, USA) according to

protocol. The eluate was then split into a RNA and DNA fraction. The RNA fraction was

treated with Turbo DNA-free Kit (Invitrogen, USA) to remove DNA, and the remaining RNA

purified with the RNeasy MinElute Cleanup kit (Qiagen, Valencia CA, USA). The purified

RNA was used as input for cDNA synthesis and subsequent PCR amplification as previously

described [27]. Briefly, first strand cDNA synthesis was performed using the SuperScript III

First-Strand Synthesis SuperMix (Invitrogen, Carlsbad, California) and 1 μL Primer A

(50 μM) (5’-GTTTCCCAGTCACGATCNNNNNNNNN-3’) according to the manufacturer’s

instructions. Second strand DNA synthesis was performed using Klenow Fragment exo-poly-

merase. Double stranded DNA products were PCR amplified using AmpliTaq Gold (Qiagen,

Valencia CA, USA) as per manufacturer’s instruction using 0.8 μM Primer B (50-
GTTTCCCAGTCACGATC -30) and the following conditions, 10 min at 95˚C, 25 cycles of

amplification (94˚C for 30 s, 40˚C for 30 s, 50˚C for 30 s and 72˚C for 1 min), and 1 cycle of

elongation (72˚C for 10 min). PCR products were purified using the MinElute PCR Purifica-

tion Kit (Qiagen, Valencia CA, USA).

Library building, viral enrichment and sequencing

Double indexed sequencing libraries were produced using the Nextera DNA library prep kit

(Illumina, CA, USA), with input consisting of a pool of 25 ng of DNA and 25 ng of amplified

cDNA for each individual sample. In addition, a negative library control was included using

sterile molecular grade H2O. The libraries were then enriched for viral sequences using a cus-

tom SeqCap EZ probe library designed and synthesized by Roche Nimblegen (CA, USA). The

probes were constructed from a reference list consisting of 2,339 viral sequences and genomes

Fig 1. Protocol flowchart. Overview of the different steps in sampling, extraction, cDNA synthesis, library building,

sequencing and bioinformatics used in our protocol for the detection and quantification of human viral pathogens

from airplane toilet waste.

https://doi.org/10.1371/journal.pone.0210368.g001
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from viruses infecting vertebrates downloaded from Genbank in 2014 [28]. The capture reac-

tion was done according to protocol except for the 2 x dilution of Hybridization component A,

which allowed for a less stringent hybridization between sample DNA fragments and the viral

capture probes, increasing the probe selectivity range [29]. Four to five Nextera libraries were

pooled and run together in one capture reaction. After capture, the libraries were sequenced

on an Illumina HiSeq 2500 producing 100 bp single-end reads.

Read processing and alignment

Bioinformatic analysis was done as previously described [27]. Briefly, the quality assurance

was done using Cutadapt [30], trimming reads with a Phred score below 20, removing adap-

tors and subsequent discarding reads shorter than 50 bp. Read assignment was done using the

read-alignment software MGmapper (https://cge.cbs.dtu.dk/services/MGmapper/), which is

based on the BWA-MEM algorithm run with default settings (ver. 0.7.7-r441) [31,32]. Reads

were mapped to a series of freely available reference databases, covering viruses, bacteria and

eukaryotes (S1 Table). Reads were mapped in best-mode, meaning that mapping was per-

formed against all databases simultaneously, and later for each read the best hit among all

alignments was chosen. A read was considered as a hit only if the alignment score (AS) was

above 30 and was higher than the score from the second best alignment (XS). Throughout the

mapping approach, only the most reliable hits were accepted i.e. reads were accepted provided

that each read maps with an alignment length being at least 70% of the read length. As the sin-

gle read mapping approach can be unspecific in cases where homologues regions are shared

between database entries, virus hits were conservatively reported on the species level, to reduce

the chance of misclassification. The raw Illumina sequences are publicly available at the Euro-

pean Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/data/view/PRJEB30546).

Statistics

To test for significant regional differences the 19 airplanes were divided into the three regions;

North America (Toronto, Newark, Washington DC, and Kangerlussuaq), South Asia (Singa-

pore, Bangkok, and Islamabad), and North Asia (Tokyo, and Beijing). The viral read counts

per million (VRPM) were calculated by normalizing the read count for each specific virus rela-

tive to the total viral read count. This was done for each sample as follows: (read count virus A/

total viral read count)�106. This normalization accounts for differences in sequencing depth,

and removes the influence of variation in bacterial/human reads. As the data were not nor-

mally distributed, the non-parametric Kruskal-Wallis test was used to test for significant dif-

ferences between the three regions. If p< 0.05 additional pairwise Wilcoxon rank sum tests

were performed with Bonferroni correction for multiple testing. Heatmaps were done using

the R package pheatmap [33]. All statistics were done in R [34].

Results

The sequencing of the 19 airplane sewage samples produced an average of 19.4 million 100 bp

single-end reads per sample. Around 50% of the reads did not map to any of the databases

used in this study, which is in line with previous studies [27,35,36], whilst the majority of

assigned reads mapped to bacterial databases (S1 Fig). Only an average of 0.24% of the reads

mapped to viruses, and 0.01% to human viruses despite the use of the viral capture probes. The

viral reads mapped to 287 different viral strains from the viral databases, but due to the high

chance of misclassification using read aligners we conservatively agglomerated all reads on the

species level. This resulted in a total of 104 viral species, from 31 different viral families (Fig 2).
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Of these species 37 had a confirmed or suspected human host, 6 were parasite or animal

viruses, 12 were plant viruses and 49 were bacteriophages.

Sequencing quality control

Sequencing reads mapping to HAdV, EboV and HIV were detected in the negative control

and these species were conservatively removed from the dataset prior to further analysis [37].

The presence of a large number of reads mapping to EboV in the positive control were investi-

gated by coverage analysis, elucidating that all reads mapped to the same short region of the

EboV reference genome (S2 Fig). When blasting that region against the NCBI nr database, the

top hits included both EboV and HIV-1, suggesting that the presence of EboV reads were a

Fig 2. Heatmap of the top 50 most abundant viruses in the airplane toilet waste. Read number values were converted to Viral Reads Per Million

(VRPM) and log 10 transformed. Hierarchical clustering was done on the airplane samples and colored by region. The putative viral host is marked in

the left column. In some cases the host is debated, and these are discussed more in the Discussion and Strengths and Limitations sections.

https://doi.org/10.1371/journal.pone.0210368.g002
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product of misclassification during read assignment due to a homologous region shared by the

two viruses.

In addition, the negative controls also had large numbers of bacterial Thermus sp. reads,

most likely being a DNA contaminant of the used Taq polymerases as this protein was origi-

nally isolated form Thermus aquaticus YT-1 [38], stressing the importance of the inclusion and

analysis of negative controls to reduce false positives [39].

Evaluation of protocol for viral detection and quantification

Several viral families with human pathogens were detected in the airplane toilet waste includ-

ing Picornaviridae, Caliciviridae, Polyomaviridae, Reoviridae, and Picobirnaviridae, with a total

of 37 confirmed or putative human viral pathogens. However, more than 90% of the viral

reads mapped to the viral families Myoviridiae and Virgaviridae (S3 Fig), consisting of bacteri-

ophages and plant pathogens, respectively.

When studying patterns in the viral community composition, the sewage samples arriving

from South Asia generally had higher abundances of caliciviruses, reoviruses and picornavi-

ruses, resulting in the separate clustering of these samples in a PCA plot (Fig 3).

In addition, samples from South Asia also had significantly higher species richness than

both North America and North Asia (t-test, p<0.01) (Fig 4).

Several enteric viruses were detected in the sewage material, and they were generally more

abundant in the samples from South Asia (Fig 5). This difference was statistically significant

when compared with samples originating from North America for aichivirus A, salivirus A

and enterovirus B (Fig 5A, 5C and 5G).

In this pilot study, we observed that some viruses were found consistently in samples from

specific cities, for example rotavirus A in airplanes departing from Islamabad, which could

suggest a high endemic presence. However, our findings are sensitive to stochastic events and

transit passengers due to the low number of samples in this study, and replication is needed to

confirm our observations.

Not only enteric viruses were detected in the sewage but also the respiratory rhinovirus A,

and the latent skin infection gammaherpesvirus 4, better known as Epstein-Barr virus (Fig 2).

Some viruses were detected in all samples including human polyomavirus 2, better known as

JC polyomavirus (JCV), and the veterinary pathogen porcine picobirnavirus (PBV) (Fig 2).

To study the sensitivity of the metagenomic approach, linear regression analysis was done

on the reads mapping to the norovirus (NoV) GII genome together with qPCR generated

genome copy numbers procured from a previous study using the same samples [25]. A strong

association between the two factors was observed (R2 = 0.58), indicating that our metagenomic

analysis could be used as a semi-quantitative measure of viruses in the sample, although the

qPCR method seemed to be more sensitive (S4 Fig).

Discussion

In this study, toilet waste from 19 airplanes was subjected to metagenomic virome analysis.

Contamination of some of the samples, including the negative controls, with HAdV and HIV

from the positive control were observed. This contamination could have happened in the labo-

ratory, despite working in a dedicated viral clean lab [40], but is more likely a sequencing arti-

fact [26,41]. Because of the large number of PCR cycles for cDNA amplification, library

building, and capture, this type of analysis is very vulnerable to cross contamination, and the

inclusion of negative controls should be considered obligatory [37]. False positives, as were

identified in this study, are a big challenge for diagnostics and metagenomic surveillance sur-

veys and have been reported previously in studies of both bacteria and viruses [42,43].
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NoV GII quantification, using our metagenomics approach, showed good correlation with

previous qPCR analysis (S4 Fig), suggesting that our protocol can be used for quantifying the

viral burden in the sewage samples. A similar relationship was found in a previous study test-

ing eight different viruses, further supporting the quantitative capabilities of viral metage-

nomics [22].

Despite the low number of samples in this study we observed regional differences in the

viral community composition, with the samples originating from South Asia clustering sepa-

rately from the ones from North America and North Asia (Fig 3). This finding is supported by

a recent study detecting national differences in viral exposure [44]. The reason for this geo-

graphical difference is unknown to the authors, but could include factors such as diet, socio-

economic status, host factors, genetics, climate, drinking water quality, sanitary conditions

and hygiene standards [45]. However, airplane passengers might not be accurate representa-

tives of the residents in the city of origin, which should be considered in the interpretation.

Most of the detected viral human pathogens were enteric and generally were found in highest

abundance in the airplanes coming from South Asia. Aichivirus A was one of these, and has

been associated with a wide range of clinical illnesses including diarrhea, vomiting, fever,

purulent conjunctivitis, and respiratory symptoms [46]. Furthermore, it has previously been

detected in cases of gastroenteritis in Pakistani children and in Japanese airplane passengers

returning home from South East Asia [47], supporting the notion of a high prevalence of aichi-

virus in this region. Salivirus A, another member of the family Picornaviridae, was also preva-

lent in samples from South Asia. This virus has been associated with gastroenteritis [48] but its

pathogenicity has not been fully resolved as other studies have found it in equal numbers in

Fig 3. Principal component analysis (PCA) of the airplane sewage viral community composition. Log10

transformed viral reads per million (VRPM) values for the 12 most abundant virus families were used as input. The

individual samples are colored according to their assigned region.

https://doi.org/10.1371/journal.pone.0210368.g003
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both healthy and sick children [49]. However, widespread occurrence of salivirus in humans

has been confirmed [50,51] as well as previous detection in sewage [52].

Islamabad, the city of departure with highest rotavirus abundances, and the rest of Pakistan,

have huge problems with rotavirus infections with millions of cases and an estimated 14,700

deaths of children below 5 years of age every year [53]. Intervention strategies include vaccina-

tion and in January 2017 (after the samples were collected) rotavirus vaccination became a

part of the immunization program in Pakistan. We argue that airplane surveillance could be

an excellent tool for producing directly comparable surveillance data across national borders,

to identify areas with high occurrence of viral infection and disease, and guide public health

intervention strategies. Enteric viruses cause high numbers of gastroenteritis globally and are

responsible for hundreds of thousands of deaths each year in the developing world [53,54]. We

believe that national comparisons, such as this pilot study, could help increase awareness in

both local and international public health departments and lead to increased disease interven-

tion efforts.

Human JCV was found in all airplane samples. JCV has been reported in all parts of the

world with seroprevalence rates of 65–90% as well as a high rate of viral excreters through

urine [55]. In addition, JCV has been proposed as a bioindicator for human fecal contamina-

tion [56], and this study confirms global high levels of JCV in human waste.

Fig 4. Viral species richness of the samples grouped according to their city of departure. Statistical analysis was

done on region level, using Anova to test for significance (p<0.05) followed by pairwise t-tests with Bonferroni

correction for multiple testing. �� = p<0.01.

https://doi.org/10.1371/journal.pone.0210368.g004
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In this study, results from the viral analysis of airplane toilet material was finished several

days after landing, too late to isolate infected passengers. However, future development in

sequencing techniques might allow for analysis of air or toilet material during flight [57],

allowing for screening and quarantine of passengers infected with high-risk viruses at the bor-

der [58].

Strengths and limitations

Limitations of this study include the low number of samples representing both individual cities

and larger regions, making baseline values and trends sensitive to stochastic events. However,

the intercontinental airplanes used in this study have room for 245–262 passengers, which in

other contexts would be a quite respectable sample size, especially if sampling was done more

frequently than in this study. Another limitation is the possibility of transit passengers, which

could interfere with the signal from individual cities, especially in small sample studies such as

this one. Airplane passengers might also not be representative of the average citizen in all

countries, with could serve as a bias. It is also a limitation that we do not know the clinical his-

tory of the airplane passengers at the time of flight, which would have been very useful to vali-

date our viral findings.

To enrich for pathogenic viruses, we used a custom library of viral capture probes targeting

vertebrate pathogens. Viral capture probes have previously been showed to increase the

Fig 5. Enteric viruses detected in the sewage from the 19 airplanes. The airplane samples are grouped according to

their departing city (n = 1–3). The y-axis was log-transformed viral reads per million (VRPM). For the statistical

analysis, the cities were grouped according to their assigned region, and tested for significance using the Kruskal-

Wallis rank sum test. If significant, the pairwise significance was determined using the Wilcoxon test with Bonferroni

correction for multiple testing. � = p-Wilcoxon< 0.05, �� = p-Wilcoxon< 0.01, † = p-Kruskal-Wallis< 0.05.

https://doi.org/10.1371/journal.pone.0210368.g005
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number of viral reads of up to 3 orders of magnitude [59], and by lowering the stringency of

the probe hybridization, as was done in this study, viral sequences not included in the probe

design can also be detected [29]. However, most viruses are still undiscovered and not present

in current databases [60], and thus not included in the SeqCap probe design, which limits our

analysis to only known and already sequenced viruses. Furthermore, the use of capture probes

also increases the length of the sample processing with several days, and physical viral enrich-

ment using filters and nucleases might be a faster and more appropriate alternative for real

time surveillance [27]. As we use toilet waste in this protocol, we are limited to detecting

viruses excreted in the feces or urine, missing important respiratory viruses such as influenza

viruses. However, viral shedding in feces has been detected in emerging viral pathogens such

as severe acute respiratory coronavirus (SARS-Cov) and ebola virus [61,62], suggesting that

they may be possible targets of our protocol. Finally, environmental metagenomic studies,

such as this one, with low abundances of target organisms and corresponding low read counts,

are very vulnerable to read misclassifications [42]. This was also identified in this study, due to

the inclusion of both positive and negative extraction controls. However, our method does not

guarantee that no other cases of misclassification exist in our dataset and interpretations

should therefore take this into account. One possible example is the presence of the veterinary

porcine picobirnavirus in all of our airplane sewage samples, which based on the nature of our

samples, is possibly a human strain with no representative in the viral databases. Porcine and

human picobirnaviruses can be almost identical and require targeted approaches to discrimi-

nate [63]. Alternatively, the detected picobirnavirus could actually be a phage, as has been sug-

gested in two recent publications based on the enrichment of functional prokaryotic ribosome

binding sites in picobirnavirus genomes [64,65]. Assembly based bioinformatic methods have

the potential to reduce the misclassification problem, increasing the specificity of viral assign-

ment, but the low number of viral reads in our samples in combination with a focus on speed

made this option unfeasible. However, assembly based assignment should be pursued in fur-

ther studies of viral surveillance in environmental samples. As we used a reference based

approach our results are also limited by the current state of viral sequence databases, including

only a small part of the viral diversity.

Conclusion

In conclusion, our protocol was able to detect and quantify enteric, respiratory, and latent

viruses in toilet waste from 19 international flights arriving in Copenhagen Airport using

metagenomics. Several viruses were found in significantly higher quantities in samples arriving

from South Asia, including salivirus A, aichivirus A and enterovirus B, and the samples from

this region had a higher viral species richness. In addition, planes from certain cities were iden-

tified as having high amounts of rotaviruses and NoVs in samples taken months apart. How-

ever, an increase in sensitivity and specificity is needed before our approach can be

implemented by public health professionals, which could be overcome by further development

in nucleotide extraction and bioinformatics analysis. With improvements, surveillance of viral

particles in airplane toilet waste using metagenomics could be a valuable addition to current

surveillance efforts, producing global comparable surveillance data relevant for outbreak

detection and implementation of public health interventions.
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(PDF)

S2 Fig. Coverage plot of the three viruses found in the positive control. Reads were mapped

to the reference genomes (A) >NC_001405.1 Human adenovirus C, (B) >NC_001802.1

Human immunodeficiency virus 1, and (C) KC242800 gb Zaire ebolavirus isolate EBOV.

(TIF)

S3 Fig. Viral family abundances of the individual airplane samples and experimental con-

trols. Only the 10 most abundant families are shown. NC = negative extraction control (H2O),

PC = Positive control (HAdV and HIV), LibraryNC = library negative control (H2O).

(PDF)

S4 Fig. NGS and qPCR correlation. Correlation between Norovirus GII qPCR genome copies

and NGS reads (Viral Reads Per Million). Both the qPCR and NGS data were log transformed

prior to the plotting and linear regression analysis.

(PDF)

S1 Table. Overview of reference sequence databases and associated download information.

(PDF)
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