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Preface 

 

The PhD thesis work “Hyperspatial mapping of land surface water, energy and 

CO2 fluxes from Unmanned Aerial Systems” was conducted at the Department 

of Environmental Engineering at the Technical University of Denmark from 

October 2015 to January 2019 under the supervision of Associate Professor 

Monica Garcia and co-supervisors Professor Peter Bauer-Gottwein and Senior 

Scientist Andreas Ibrom. An internal PhD grant from the Department of Envi-

ronmental Engineering at DTU is acknowledged for providing funding for this 

PhD project. Five scientific papers constitute the PhD work presented here. 

The papers are outlined below and will be referred to using the Roman numer-

als I-V throughout the thesis. 

 

I  Wang, S., Baum, A., Zarco-Tejada, P., Dam-Hansen, C., Thorseth, A., 

Bauer-Gottwein P., Bandini F., & Garcia M. (2018) “Unmanned Aerial 

System multispectral mapping for low and variable solar irradiance condi-

tions: potential of tensor decomposition”. Submitted. 

 

II  Wang, S., Ibrom, A., Bauer-Gottwein, P., & Garcia, M. (2018). “Incorpo-

rating diffuse radiation into a light use efficiency and evapotranspiration 

model: An 11-year study in a high latitude deciduous forest”. Agricultural 

and Forest Meteorology, 248, 479-493. 

 

III Wang, S., Garcia, M., Ibrom, A., Jakobsen, J., Josef Köppl, C., Mallick, 

K., Looms, M., & Bauer-Gottwein, P. (2018) “Mapping root zone soil 

moisture using a temperature-vegetation triangle approach with an Un-

manned Aerial System: incorporating surface roughness from Structure-

from-Motion”. Remote Sensing, 10 (12), 1978. 

 

IV Wang, S., Garcia, M., Bauer-Gottwein, P., Jakobsen, J., Zarco-Tejada, P., 

Bandini, F., Sobejano Paz, V., & Ibrom, A. (2018) “High spatial resolution 

monitoring land surface energy, water and CO2 fluxes from an unmanned 

aerial system”. Under review.  

 



iv 

V   Wang, S., Garcia, M., Ibrom, A., & Bauer-Gottwein, P. (2018) “Interpo-

lating rapidly changing land surface energy, water and CO2 fluxes between 

remote sensing acquisitions from an Unmanned Aerial System”. Manu-

script. 
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TEXT FOR WWW-VERSION (without papers) 

In this online version of the thesis, paper I-V are not included but can be ob-

tained from electronic article databases e.g. via www.orbit.dtu.dk or on request 

from DTU Environment, Technical University of Denmark, Miljoevej, Build-

ing 113, 2800 Kgs. Lyngby, Denmark, info@env.dtu.dk. 

 

In addition, the following publications, not included in this thesis, were also 

parts of my PhD work:  

 

Wang, S., van der Tol, C., Ibrom, A., Bayat, B., Yang, P., Bauer-Gottwein, P., 

Josef Köppl, C., Riedel, N., Dam-Hansen, C., & Garcia, M. (2018) “Cou-

pled leaf-canopy and atmosphere radiative transfer modeling to evaluate 

the influence of aerosol optical depths on land surface CO2 and water 

fluxes”. In preparation. 

Wang, S., Ibrom, A., Bauer-Gottwein, P., & Garcia, M. (2018) “Optimizing 

the revisit interval of remotely sensed observations for continuous estima-

tion of rapidly changed land surface variables through the Bayesian analy-

sis”. In preparation. 

Bandini, F., Lopez-Tamayo, A., Merediz-Alonso, G., Olesen, D., Jakobsen, J., 

Wang, S., Garcia, M., & Bauer-Gottwein, P. (2018). “Unmanned aerial ve-

hicle observations of water surface elevation and bathymetry in the cenotes 

and lagoons of the Yucatan Peninsula, Mexico”. Hydrogeology Journal, 1-

16. 

Bandini, F., Olesen, D., Jakobsen, J., Kittel, C. M. M., Wang, S., Garcia, M., 

& Bauer-Gottwein, P. (2018). “Bathymetry observations of inland water 

bodies using a tethered single-beam sonar controlled by an unmanned aerial 

vehicle”. Hydrology and Earth System Sciences, 22(8), 4165-4181. 

Christian, K., Bandini, F., Wang, S., Garcia, M., Bauer-Gottwein, P. (2016). 

Applying drones for thermal detection of contaminated groundwater influx 

(Grindsted Å). Appendix in Anvendelse af drone til termisk kortlægning af 

forureningsudstrømning. Report of Drone System (Henrik Grosen, Sune 

Nielsen), edited by Miljøstyrelsen. 
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Summary 

The sustainable management of water resources and agricultural production is 

a key issue for socio-economic development. A first step to improve monitor-

ing of water consumption, ecosystem production and water use efficiency of 

agricultural or natural ecosystems is to provide valuable and near-real time in-

formation to stakeholders. As an interdisciplinary approach, land surface mod-

elling is an essential tool to quantify the coupled water, energy and CO2 fluxes 

between the land surface and the atmosphere, e.g. net radiation (Rn), soil mois-

ture, evapotranspiration (ET) and gross primary productivity (GPP). Un-

manned aerial systems (UAS) can provide remotely sensed imagery of ecosys-

tems at very high spatial resolution (meter level) with low cost and flexible 

revisit times regardless of cloudy conditions, which can be incorporated into 

land surface models. However, there remain challenges for operational moni-

toring of land surface fluxes from UAS, especially in northern latitudes: the 

limited payload capacity (< 2kg) of most commercial UAS, low signal-to-noise 

ratios of miniaturized sensors, the frequent cloudy weather, the lack of ad-hoc 

operational methodologies to estimate fluxes, implications of flying under 

overcast conditions, or temporal gaps in fluxes between the image acquisitions.  

This thesis aims to design an operational UAS monitoring system to estimate 

land surface fluxes by integrating land surface models and UAS imagery. Spe-

cifically, the thesis addresses the following questions:  

(Objective 1) Can high quality reflectance and thermal imagery be obtained 

from UAS for quantitative remote sensing research? What kind of accuracy can 

be achieved for UAS imagery obtained in low and variable irradiance? 

(Objective 2) Can the high spatial resolution of land surface water, energy and 

CO2 fluxes be mapped from UAS imagery? What controls the spatial variabil-

ity of land surface fluxes?  

(Objective 3) Can UAS based instantaneous estimates of fluxes be temporally 

upscaled to the continuous daily values? Is there any important environmental 

factor to influence the temporal dynamics of land surface fluxes at the consid-

ered ecosystem? 

To achieve these objectives, UAS optical and thermal imagery and eddy co-

variance observations were integrated with ‘top-down’ operational land sur-

face models, which quantify ET and GPP with joint environmental constraints. 

Case studies were mainly conducted in a Danish willow bioenergy forest eddy 



ix 

covariance site (DK-RCW), while the long-term eddy covariance observations 

from a deciduous beech forest eddy covariance site (DK-Sor) were used for 

model development. The thesis includes three main parts to address each of the 

three objectives stated above. 

Sensor calibration and image processing: With thorough laboratory sensor cal-

ibration for low illumination and application of the improved image processing 

procedures, the potential of UAS multispectral mapping in low and variable 

irradiance conditions of northern latitudes was exploited. Particularly, a four-

way Tucker tensor decomposition method was used to remove the cloud 

shadow in UAS imagery. Outdoor experiments indicate that the multispectral 

imagery can provide reliable reflectance with root mean square deviations 

(RMSDs) around 3%. This shows the potential of UAS mapping for quantita-

tive Remote sensing research.  

Spatial variability of land surface fluxes: A simple but operational ‘top-down’ 

ET and GPP snapshot model, which jointly estimates evapotranspiration and 

carbon assimilation with the same environmental constraints, was developed 

(Wang et al., II). To provide soil moisture constraints for ET simulation, the 

root-zone soil moisture from UAS optical and thermal imagery was estimated 

by the modified temperature-vegetation triangle approach at DK-RCW show-

ing the benefits of incorporating tree height from the Structure-from-Motion 

(SfM) (Wang et al., III). Furthermore, high spatial resolution of Rn, ET and 

GPP at the time of flights was estimated with the ‘top-down’ snapshot model 

(Wang et al., IV). Compared to the source-weighted footprint, the case study 

at DK-RCW shows that this joint model with UAS optical and thermal imagery 

can well estimate ET, GPP, and water use efficiency with RMSDs equal to 41.2 

W∙m-2, 3.12 μmol∙C∙m-2∙s-1, and 0.35 g∙C∙kg-1, respectively. Our spatial scale 

analyses stressed the importance to consider the heterogeneity within the eddy 

covariance footprint, as the model performance degraded with coarser spatial 

resolution. By using the semivariogram and an experiment aggregating model 

inputs into different spatial resolutions, it was found that imagery resolution 

consistent with the tree crown size (1.5 m in our case) was sufficient to capture 

the spatial heterogeneity of the fluxes. Our results highlight the importance of 

considering the heterogeneity of land surface for flux modeling and the source 

contribution within the eddy covariance footprint for model benchmarking at 

appropriate spatial resolutions. 

Temporal variability of land surface fluxes: In the temporal upscaling from the 

instantaneous to the diurnal, it was found that it is important to consider the 
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change of eddy covariance footprints during the course of the day for model 

benchmarking with eddy covariance observations (Wang et al., IV). To tem-

porally interpolate the flux estimates between days without UAS data acquisi-

tions, a dynamic Soil-Vegetation, Energy, water and CO2 traNsfer model 

(SVEN) was developed (Wang et al., V). Based on instantaneous estimates 

(Wang et al., IV), this model can accurately provide continuous estimates of 

land surface fluxes. This provides a methodology to temporally upscale the 

remote sensing based instantaneous estimates into daily or longer time scales. 

Furthermore, with 11-year long-term eddy covariance observations, Wang et 

al. (II) analysed the independent and joint effects from diffuse radiation on the 

temporal variability of GPP and ET. In this Danish ecosystem, diffuse radiation 

plays a crucial role to enhance ecosystem light use efficiency and water use 

efficiency. 

This UAS based monitoring system can be valuable for applications in agricul-

tural and water resources management, and it would also be beneficial for sci-

entific communities, e.g. remote sensing, ecohydrology and micrometeorol-

ogy, to identify processes at high spatial resolution. Additionally, this system 

requires limited ground observations and can be applied for routine monitoring 

applications in data-scarce regions.  
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Dansk sammenfatning 

Bæredygtig forvaltning af vandressourcer og landbrugsproduktion er afgø-

rende for socioøkonomisk udvikling. Først og fremmest skal overvågningen af 

vandforbrug, økosystemproduktion og udnyttelsen af vandressourcer i land-

brugs- eller naturlige økosystemer forbedres for at opnå data tæt på realtids-

information. Landoverflade-modellering er et væsentligt redskab til at kvanti-

ficere koblede vand-, energi- og CO2-fluxe mellem landoverfladen og atmo-

sfæren, f.eks. nettostråling (Rn), jordfugtighed, evapotranspiration (ET) og 

brutto-primærproduktivitet (GPP). Til anvendelse i landoverflademodeller kan 

ubemandede luftfartøjer (UAS) tilvejebringe remote sensing billeder af økosy-

stemer med meget høj rumlig opløsning (meter-niveau) med lave omkostninger 

og fleksible tidsrum mellem observationer uanset overskyede forhold. Imidler-

tid er der stadig en lang række udfordringer for operationel monitering af land-

overflade-fluxe med UAS, især på de nordlige breddegrader: den begrænsede 

nyttelastkapacitet (<2 kg) af de fleste kommercielle UAS, den lave ratio mel-

lem signal og støj for minisensorer, det hyppigt overskyede vejr, manglen på 

ad hoc-operationelle metoder til at estimere flux, konsekvenser af flyvning un-

der overskyede forhold og tidsmæssige huller i flux mellem billeddata-opta-

gelser. 

Formålet med denne afhandling er at designe et operationelt UAS-overvåg-

ningssystem til vurdering af landoverfladeflux ved at integrere landoverflade-

modeller og UAS-billeder. Afhandlingen har specielt fokus på følgende 

spørgsmål: 

(Formål 1) Kan der opnås højkvalitets-reflektans og termisk billeddannelse fra 

UAS til kvantitativ remote sensing forskning? Hvilken slags nøjagtighed kan 

opnås for UAS-billeder opnået i lav og variabel bestråling? 

(Formål 2) Kan den høje rumlige opløsning af overfladevand, energi og CO2-

fluxe kortlægges fra UAS-billeder? Hvad styrer rumlig variation af fluxe fra 

jordoverfladen? 

(Formål 3) Kan UAS-baserede øjeblikkelige estimater af fluxe opskaleres mid-

lertidigt til løbende daglige værdier? Er der nogen vigtig miljøfaktor, der på-

virker den tidsmæssige dynamik af overflade-fluxe i det betragtede økosystem? 

For at nå ovenstående målsætninger blev optiske og termiske UAS billeder og 

eddy covariance observationer integreret med 'top-down' operationelle land-

overflade-modeller, som kvantificerer ET og GPP med fælles miljømæssige 
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begrænsninger. Case-studierne blev primært udført på en dansk energi-pile-

skov (DK-RCW), mens de længerevarende eddy covariance observationer fra 

en dansk løvskov (DK-Sor) blev anvendt til modeludvikling. Afhandlingen in-

deholder tre hoveddele, der hver behandler et af de tre ovennævnte formål. 

Sensorkalibrering og billedbehandling: Med en grundig laboratoriesensorkali-

brering til den lave indstrålingsintensitet og de forbedrede billedbehandlings-

procedurer blev potentialet ved UAS multispektral kortlægning undersøgt for 

lave og variable strålingsforhold gældende for nordlige breddegrader. Især blev 

en four-way Tucker tensor dekompositions-metode brugt til at fjerne skyggen 

fra skyer i UAS billeder. Udendørs eksperimenter indikerer, at multispektrale 

billeder kan give pålidelig refleksion med root mean square afvigelser (RMSD) 

omkring 3%. Dette viser potentialet for brugen af UAS-kortlægning i kvanti-

tativ remote sensing forskning. 

Rumlige variationer af jordoverfladeflux: En simpel men operationel 'top-

down' ET og GPP snapshot model, der samlet vurderer evapotranspiration og 

carbon-assimilering med samme miljømæssige begrænsninger, blev udviklet 

(Wang et al., II). For at tilvejebringe jordfugtigheds-grænser for ET-simule-

ring blev jordzonefugtigheden fra UAS-optiske og termiske billeder estimeret 

ved den modificerede temperatur-vegetation triangulerings-metode i DK-

RCW, hvilket viste fordelen ved at inkludere træhøjde fra Structure-from-Mo-

tion (SfM) (Wang et al., III). Desuden blev den høje rumlige opløsning af Rn, 

ET og GPP på tidspunktet for flyvninger anslået med 'top-down'-snapshot-mo-

dellen (Wang et al. IV). Sammenlignet med et kildevægtet footprint viser case-

studiet på DK-RCW, at den integrerede model med optiske og termiske UAS 

billeder kan estimere ET, GPP og udnyttelsen af vand med RMSD'er svarende 

til 41,2 W∙m-2, 3,12 μmol∙C∙m-2∙s-1 og 0,35 g∙C∙kg-1. Vores rumlige skalaana-

lyser viste betydningen af at tage heterogeniteten af eddy covariance footprints 

i betragtning, da modellens ydeevne blev forringet med en grovere rumlig op-

løsning. Ved at anvende semi-variogrammet og et eksperiment, der aggregerer 

modelindgange i forskellige rumlige opløsninger, blev det fundet, at billedop-

løsningen i overensstemmelse med trækronens størrelse (1,5 m i vores tilfælde) 

var tilstrækkelig til at fange fluxenes rumlige heterogenitet. Vores resultater 

fremhæver vigtigheden af at medtage heterogeniteten af landoverfladen til 

fluxmodellering og kildebidraget i eddy covarinace footprints til model-bench-

marking med passende rumlige opløsninger. 
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Tidsvariabilitet af landoverfladeflux: I den tidsmæssige opskalering fra det øje-

blikkelige til daglige værdier blev det fundet, at det er vigtigt at medtage æn-

dringen af eddy covariance footprints i løbet af dagen til model-benchmarking 

med eddy covariance observationer (Wang et al., IV). For temporært at inter-

polere flux estimaterne mellem dage uden UAS data opkøb blev der udviklet 

en dynamisk Soil-Vegetation, Energy, Water og CO2 traNsfer model (SVEN) 

(Wang et al., V). Baseret på snapshot estimater (Wang et al., IV) kan denne 

model give nøjagtige, kontinuerlige estimater af landoverflade-flux. Hermed 

opnås en metode til at opskalere remote sensing snapshot målinger til daglige 

eller længere tidsskalaer. Endvidere analyserede Wang et al. (II) de uaf-

hængige og fælles effekter fra diffus stråling på den tidsmæssige variabilitet af 

GPP og ET ved udnyttelse af 11 års eddy covariance observationer. I det be-

tragtede danske økosystem spiller diffus stråling en afgørende rolle for at for-

bedre økosystemets indstrålings-effektivitet og effektiviteten af vandforbruget. 

Dette UAS-baserede overvågningssystem kan være værdifuldt for applikatio-

ner inden for forvaltning af landbrug og vandressourcer, og det ville også være 

til gavn for videnskabelige grene som f.eks. for remote sensing, økohydrologi 

og micro-meteorology til at identificere processer ved høj rumlig opløsning. 

Systemet kræver begrænsede landobservationer og kan anvendes til rutine-

mæssige overvågninger og i områder med dataknaphed. 
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CI Cloudiness Index 
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1 Introduction 

1.1 Background and motivation 
The sustainable management of water resources and food production is a key 

issue for the socio-economic development. During the past 50 years, water 

consumption has tripled and agriculture consumes two thirds of world water 

resources (Gilbert, 2012). Due to global climate change and growing popula-

tion, the pressure on water and food security is going to increase in the next 50 

years. Based on global climate projections, the future global agricultural water 

consumption will increase around 20% by 2050 (Wada and Bierkens, 2014). 

The first step to achieve sustainable management starts by quantifying the use 

of water and carbon assimilation by terrestrial ecosystems continuously in 

space and time. Particularly, the high spatial resolution metrics on water use 

and carbon assimilation have the potential to inform policy makers, conserva-

tion agencies, farmers and agribusinesses to detect the early stressed patches 

to take adaptive management to avoid damage to a larger scale.  

The precise impact of climate changes and extreme events on ecosystems re-

mains largely unknown, due to knowledge gaps on the joint regulation of water 

and carbon fluxes between the varieties of interplayed processes. Modeling 

schemes should aim at unifying the coupled ET, carbon and energy budgets 

(Fisher et al., 2017). Land surface modelling, which aims at quantitatively es-

timate coupled energy, water and carbon fluxes between terrestrial ecosystems 

and the atmosphere, has emerged as an interdisciplinary from hydrology, me-

teorology, ecology and remote sensing communities. It is a useful tool to for 

scientists to quantify the coupled energy, water and carbon budgets, but also 

policy makers to evaluate policies to mitigate the climate change effects. The 

core of land surface modelling focuses on quantifying interactions among veg-

etation carbon assimilation, energy and water. Vegetation is a highly dynamic 

component of the Earth system and plays a vital role in regulation of the sur-

face-atmosphere flux exchanges, with photosynthesis converting light, water 

and CO2 into sugar and oxygen. During the past decades, Earth observation 

(EO) techniques offer rich data sources to monitor vegetation dynamics in a 

large scale. For instance, satellite remote sensing data have been used as inputs 

or parameters to significantly improve the land surface modelling. However, 

our understanding of land surface energy, water and carbon dynamics is limited 

by the coarse spatial resolutions of current land surface modelling schemes, 
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which cannot represent the spatial heterogeneity in topography, soils, and veg-

etation (Wood et al., 2011).  

With progress on the platform stability, reliability and flexibility, Unmanned 

aerial systems (UAS), commonly known as drones, Unmanned Aerial Vehicles 

(UAV) or Remotely Piloted Aircraft Systems (RPAS), deployed with minia-

turized imaging sensors can provide timely remote sensing imagery of ecosys-

tems at very high spatial resolution (VHR, meter level). The VHR imagery 

from UAS presents an unprecedented opportunity to provide for hyper-resolu-

tion land surface characterizations, monitoring, modelling and predictions 

(Vivoni et al., 2014). With UAS remote sensing imagery, ecohydrological var-

iables as evapotranspiration (ET) and gross primary productivity (GPP), or 

crop yields can be accurately quantified at VHR. This is of great potential for 

the sustainable water resources and ecosystem management.  

Compared satellite-based observations, UAS can provide VHR imagery with 

flexible revisit time and low cost. The combination of VHR UAS data and land 

surface modelling has the following merits: First, the high-resolution spatial 

data can fill the scale discrepancy between satellite imagery and field meas-

urements. Traditionally, most of land surface modelling using satellite-based 

data operate at spatial resolutions of 40km, if coupled to climatological models 

(online), or around 1-3 km, in off-line approaches (Anderson et al., 2011). Land 

surface modelling at such coarse resolution involves uncertainties in mixture 

of land cover types within the pixel and in model benchmarking with field 

measurements (Lipton et al., 2015). However, UAS bring remote sensing (RS) 

observations into a sub-meter level and the imagery will mainly consist of pure 

pixels (only one land cover type inside). This is beneficial to detect the spectral 

change of the land cover, especially for vegetation. Besides the high spatial 

resolution, new types of spectral information from UAS can be incorporated 

into land surface models via data assimilation or directly as model forcing. The 

combination of thermal and optical sensors such as hyper-spectral and multi-

spectral images can be used to retrieve several key land surface variables or 

parameters, e.g. vegetation indices, surface albedo, radiometric temperature, 

emissivity, spectral indicators of light use efficiency and photosynthesis, can-

opy water content and near surface soil moisture (Clevers and Kooistra, 2012; 

Sims et al., 2006). They can improve the current capabilities of land surface 

modelling, in which prescribed leaf area index or albedo are routinely used 

(e.g. Community Land Surface model, Lawrence et al., 2011). Other ad-

vantages of UAS compared to satellites are their flexible turnaround times and 

the capability of flying in cloudy conditions. This makes them applicable in 
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precision agriculture, wildfire detection, flood and glacier monitoring (Berni 

et al., 2009; Colomina and Molina, 2014). Additionally, the operating costs of 

UAS are lower compared to manned airborne surveys or satellite observations. 

This offers new opportunities for scientists and companies, and promotes the 

flexible UAS based remote sensing applications around the world. 

1.2 Research objectives 
This main objective of this PhD thesis is to design an operational UAS based 

monitoring system to map the land surface water, energy and CO2 fluxes in-

cluding net radiation, soil moisture, ET and GPP with high spatial resolution. 

Specific objectives are addressed below as questions:  

(Objective 1) Can high quality reflectance and thermal imagery be obtained 

from UAS for quantitative remote sensing research? What kind of accuracy can 

be achieved for UAS imagery obtained in low and variable irradiance? 

(Objective 2) Can the high spatial resolution of land surface water, energy and 

CO2 fluxes be mapped from UAS imagery? What controls the spatial variabil-

ity of land surface fluxes?  

(Objective 3) Can UAS based instantaneous estimates of fluxes be temporally 

upscaled to the continuous daily values? Is there any important environmental 

factor to influence the temporal dynamics of land surface fluxes at this ecosys-

tem? 

 

1.3 Thesis structure 
To achieve these objectives, this thesis has following content: 

1. Sensor calibration and image processing: Conduct thoroughly calibration 

of the UAS imaging sensors and improve UAS image processing proce-

dures, e.g. cloud shadow removal, for low and variable irradiance condi-

tions in northern high latitudes (Wang et al., I).  

2. Spatial variability of land surface fluxes: Develop a joint ‘top-down’ ET 

and GPP snapshot model to estimate land surface fluxes (Wang et al., II). 

To provide the soil moisture constraint for ET, the root-zone soil moisture 

from UAS optical and thermal imagery was estimated by the modified tem-

perature-vegetation triangle approach with showing benefits of incorporat-

ing tree height from the Structure-from-Motion (SfM) (Wang et al. III). 
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Furthermore, Wang et al., (IV) estimated the spatial variability of Rn, ET 

and GPP at the time of flights, assessed the optimum spatial resolution to 

benchmark models with eddy covariance observations, and identified the 

major factor to control the spatial variability of land surface fluxes in the 

study site.  

3. Temporal variability of land surface fluxes: Wang et al. (IV) shows the ap-

proach to upscale the UAS based instantaneous estimates to the diurnal es-

timates. Further, a temporal dynamic model was developed to interpolate 

the flux estimates between UAS data acquisitions (Wang et al., V). Addi-

tionally, Wang et al. (II) analysed the independent and joint effects from 

diffuse radiation to the temporal variability of GPP and ET with 11-year 

long-term eddy covariance observations and included the effect of diffuse 

light in the modelling framework. 

This synopsis is structured in seven chapters. The first chapter introduces the 

motivation and objectives of this thesis. The second chapter briefly summarizes 

the state-of-the-art UAS remote sensing techniques, the monitoring and mod-

elling approaches on land surface water, energy and CO2 fluxes, and the model-

data integration.  

Successively, the chapter on the study sites describes the climate and environ-

mental conditions for the study sites. Then, the materials and methods section 

summarize the UAS platform and sensors, in-situ measurements, UAS image 

processing techniques and modelling approaches. This chapter also shows the 

approach to incorporate VHR remote sensing imagery from UAS into ‘top-

down’ land surface models to estimate land surface fluxes spatially and tem-

porally.  

The results section highlights the scientific achievements of the research ob-

jectives (belonging to five scientific papers) demonstrating the benefits of us-

ing UAS remote sensing techniques for monitoring land surface fluxes. De-

tailed connections among five scientific papers are summarized in Figure 1-1.  

In conclusion and future perspectives, the potential applications of this UAS 

monitoring system and future improvements for monitoring land surface fluxes 

are discussed.   
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Figure 1-1. Graphic abstract of this thesis. The roman number corresponds to 

each scientific paper. UAS imagery: an imaging payload consisting of a six 

band multispectral camera, a thermal infrared camera and a normal Red-Green-

Blue channel camera was deployed on a hexacopter to conduct flight cam-

paigns at an eddy covariance site DK-RCW. With radiometric and geometric 

correction and noise reduction, the UAS imagery was processed into high-qual-

ity orthophotos (Wang et al. I). The modelling framework includes three parts, 

the development of the joint ET and GPP model (Wang et al., II), the simula-

tion of the spatial variability of land surface fluxes, and the simulation of the 

temporal variability of land surface fluxes. Spatial: UAS based vegetation in-

dex (VI), surface temperature (Ts) and digital surface elevation model (DSM) 

were further used as inputs of the modified temperature-vegetation triangle ap-

proach to estimate soil moisture (Wang et al., III), and later as inputs of the 

joint ET and GPP model to simulate net radiation, evapotranspiration (ET) and 

gross primary productivity (GPP) (Wang et al., IV). These simulated land sur-

face fluxes were validated with the eddy covariance (EC) observations and ex-

plore spatial scaling issues. Temporal: to interpolate the snapshot estimates, 

the UAS data were used as inputs of the dynamic ‘SVEN’ model to continu-

ously estimate ET and GPP (Wang et al., V).  
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2 Background 

2.1 Unmanned aerial system based remote sensing 

of land surface fluxes 

Remote sensing is a technique to acquire information about an object based on 

the reflected or emitted electromagnetic or gravitational signals without any 

physical contact (Sanderson, 2010). Remote sensing is an essential approach 

to monitor land surface conditions to provide various spatial, temporal and 

spectral information. Based on the platform, remote sensing can be classified 

into satellite, manned and unmanned airborne techniques. As an emerging 

field, UAS are highlighted to offer unprecedented opportunities in ecological 

and environmental monitoring (Anderson and Gaston, 2013), particularly in 

the context of precision agriculture (Zarco-Tejada et al., 2012). The UAS re-

mote sensing technique is acknowledged as one of the most exciting recent 

advances in near-Earth observation (McCabe et al., 2017). From the number of 

publication, as shown in Figure 2-1, there is a rapid growing trend for the UAS 

application in environmental monitoring, especially during the last five years 

(Manfreda et al., 2018).  

 

Figure 2-1. Number of articles extracted from the database ISI-web of 

knowledge published from 1990 up to 2017 (last access 15 January 2018). 

(Manfreda et al., 2018) 
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Compared to satellites or manned airborne systems, UAS are affordable, can 

be operated autonomously and offer exceptional spatial resolution for observ-

ing the land surface. In addition, UAS have the potential to be deployed rapidly 

and repeatedly to acquire high spatial and temporal resolution data with legis-

lation and permits being the most limiting factor for operational approaches. 

The VHR imagery from UAS can fill the gaps between satellites and tower 

based remote sensing to facilitate our understanding towards the scaling issues 

(Anderson and Gaston, 2013; Klosterman et al., 2018). Moreover, UAS flight 

campaigns can be conducted under various weather conditions. This enables to 

collect optical and thermal imagery under cloudy weather conditions, while 

satellites in optical and thermal domains cannot provide observations of the 

land surface. This is particularly important for high latitudes e.g. Denmark, 

where cloudy days are frequent (Wang et al., 2018a). Low operation cost is 

also an advantage of UAS remote sensing techniques.  

The flexibility to deploy various sensors is another advantage of UAS remote 

sensing. Ideally, all kinds of satellite remote sensing techniques and methods 

can be applied with UAS but they also require adaptation (Wang et al., 2018b). 

However, with limitation of the payload weight capacity, the most common 

used UAS remote sensing techniques are RGB (Red-Green-Blue channel), 

multispectral, hyperspectral, thermal imaging and LiDAR (light detection and 

ranging techniques) as shown in Figure 2-2. These remote sensing techniques 

including optical, sun induced fluorescence (SIF), thermal and LiDAR data 

have their own unique but also shared values for vegetation status monitoring 

(Guan et al., 2016). For instance, reflectance, SIF, thermal and LiDAR data 

can be utilized to analyse the vegetation water stress. However, as shown in 

Figure 2-2, different techniques reflect the drought stress in different stages 

and time scales. SIF directly links with the photosynthesis rate and can be an 

early stress indicator (Guanter et al., 2014). The thermal infrared signals reflect 

the transpiration rate of vegetation and the photochemical reflectance index 

indicates the photosynthesis at short time scales. Both of them can be used as 

indicators of early stage stress (Zarco-Tejada et al., 2013). With more severe 

drought, the leaf water content, leaf inclination angles and pigments will 

change. At this late stage, the stress can be detected by changes in reflectance 

using the UAS multispectral or hyperspectral techniques. Further, the drought 

induces senescence and deciduousness in the canopy. UAS based LiDAR tech-

niques can be applied to monitor the change of leaf area index and vegetation 

morphology. 
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In this thesis, UAS based thermal and multispectral techniques were utilized to 

detect vegetation status and further to estimate land surface fluxes.  

 

Figure 2-2. Overview of various UAS based remote sensing techniques for 

detecting the physiological, biochemical, and structural responses of vegeta-

tion to the water stress. Purple arrows and lines indicate fluorescence radiation 

emitted by plants. Red arrows and lines relate to thermal radiation emission. 

The yellow lines represent the reflected solar spectrum while the green lines 

indicate the reflected LiDAR signals. Sun induced fluorescence (SIF), thermal 

radiation, reflectance and LiDAR signals obtained from UAS can be used to 

detect different levels of vegetation water stress and the corresponding adap-

tation processes in different time scales. (Adapted from Damm et al., 2018) 

 

UAS based remote sensing has been widely applied for various environmental 

monitoring applications, such as vegetation height (e.g. Zarco-Tejada et al., 

2014), vegetation species classification (e.g. Laliberte et al., 2011), vegetation 

biophysical parameters (e.g. Berni et al., 2009) and  vegetation water stress 

(e.g. Zarco-Tejada et al., 2013). Anderson and Gaston (2013) highlighted that 

the VHR imagery can improve our understanding on the land surface-atmos-

phere interactions. However, studies on using UAS for monitoring land surface 

fluxes are rare.  
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Regarding soil moisture, Hassan-Esfahani et al. (2015, 2017) used the artificial 

neural network to estimate the spatial variability of soil moisture from UAS 

optical and thermal imagery. Results indicated that a good accuracy with root 

mean square deviations (RMSDs) equal to 0.05 m3·m−3 can be achieved. Wang 

et al. (2018) used the water deficit index (Moran et al., 1994) to quantify soil 

moisture in experimental plots of spring wheat (Wang et al., 2018c) and 

achieved a good accuracy with a coefficient of determination (R2) of 0.63 and 

RMSDs less than 0.10 m3∙m−3.  

For ET, recent studies demonstrated that UAS thermal imagery incorporated to  

the Two Source Energy Balance (TSEB) model (Kustas and Norman, 1999) 

can estimate ET with RMSDs around 10-30% of the measured fluxes over ir-

rigated crops (Hoffmann et al., 2016; Kustas et al., 2018; Ortega-Farías et al., 

2016) and grasslands (Brenner et al., 2017). For GPP, Zarco-Tejada et al. 

(2013) demonstrated chlorophyll fluorescence, physiological indices (e.g. pho-

tochemical reflectance index, PRI), and structural indices (e.g. normalized dif-

ference vegetation index, NDVI) and enhanced vegetation index derived from 

UAS observations correlate well with the measurements of CO2 fluxes from 

the eddy covariance. 

 

2.2 Eddy covariance technique 

Emerging from micrometeorology, the eddy covariance technique has been 

widely applied across different ecosystems and climate regions around the 

world to measure flux exchanges e.g. heat, water vapour or trace gasses (CO2 

or methane) between the land surface and the atmosphere (Baldocchi, 2003). 

It has been increasingly used to interpret the ecohydrological processes or to 

benchmark land surface models (Jung et al., 2011). 

In terms of terrestrial ecology, eddy covariance measurements are often con-

ducted with a tower installed within the atmospheric surface boundary layer, 

seen as Figure 2-3A. The atmospheric airflow that surrounds the tower is by 

turbulences and can be visualized as a general horizontal flow comprised of 

rotating eddies (Metzger, 2018). Eddies facilitate the upwards and downwards 

transport of the land surface fluxes, seen as Figure 2-3B. The net flux ex-

changes depends on the covariance between the vertical transport velocity fa-

cilitated by the eddies (momentum transport) and the concentration of the 

tracer gases transported (Kljun et al., 2015). 
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Figure 2-3. The overview of eddy covariance techniques. (Burba, G., 2013. 

Eddy Covariance Method for Scientific, Industrial, Agricultural and Regula-

tory Applications: a Field Book on Measuring Ecosystem Gas Exchange and 

Areal Emission Rates. LI-COR Biosciences, Lincoln, USA, 331 pp.) 

The eddy covariance flux tower networks have been widely implemented at the 

global scale to measure the exchange of water vapour, energy and CO2 fluxes 

between the terrestrial ecosystems and the atmosphere, e.g. Integrated Carbon 

Observatory System (ICOS, www.icosinfrastructure.eu) in Europe, National 

Ecosystem Observatory Network (NEON, www.neonscience.org) in USA, 

AsiaFlux in Asia (http://www.asiaflux.net/), and global FLUXNET 

(www.fluxnet.ornl.gov). The main function of FLUXNET is to provide data 

series for i.e. carbon fluxes alongside with auxiliary outputs of energy and wa-

ter fluxes for data interpretation (Baldocchi, 2003). The data can be inde-

pendently used to integrate the ecohydrological processes and also can be in-

tegrated with models as model inputs or parameters (Running et al., 1999).  

In this thesis, the eddy covariance measurements were used for model bench-

mark to test the accuracy of the designed UAS monitoring system for estima-

tion of land surface water, energy and CO2 fluxes. On the other hand, the VHR 

imagery from this UAS monitoring system can provide insights into the heter-

ogeneity of the eddy covariance footprint. This can facilitate our understanding 

on the scaling issues and energy closure issues for the eddy covariance system 

(see Figure 1-1 integration part).  

 

http://www.icosinfrastructure.eu/
http://www.neonscience.org/
http://www.asiaflux.net/
http://www.fluxnet.ornl.gov/
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2.3 Land surface modelling 
The modelling of atmosphere-land exchange processes, i.e. the energy, water 

and CO2 flux exchanges between the land surface and the atmosphere, across 

a range of spatial and temporal scales can improve our understanding of eco-

system functioning. Quantification of land surface fluxes is also important for 

the establishment of regional and global carbon budgets for climate change 

mitigation. It also has great benefits for local applications, e.g. precision agri-

culture.  

Land surface modelling can be broadly classified into two categories (Houborg 

et al., 2009), ‘top-down’ and ‘bottom-up’ approaches. The ‘top-down’ ap-

proach neglects the behaviour of individual leaves and considers the effective 

canopy response to its environment as a bulk. ‘Top-down’ approaches estimate 

the potential functioning of canopy in terms of water and carbon fluxes under 

ideal conditions, and then down-regulate the functioning from this potential 

state into the actual value by considering the effect of various environmental 

constraints (García et al., 2013; Houborg et al., 2009). On the contrary, ‘bot-

tom-up’ approaches provide detailed mechanistic descriptions of leaf-level 

photosynthetic processes, which are then upscaled to the canopy level. The 

‘top-down’ method is similar to what has been referred in hydrology as a Dar-

winian approach, more concerned with explaining the ecological behaviour of 

systems (e.g. watersheds or canopies) as a whole and identifying processes by 

analysis of the statistical relationship between environmental constraints and 

surface fluxes as in Budyko approaches (Farmer et al., 2003; Zhang et al., 

2008). While the ‘bottom-up’ method can be considered as part of what in hy-

drology has been referred to as a Newtonian modelling approach, where the 

detailed physical mechanisms are explicitly described at all spatial scales 

(Sivapalan et al., 2003). 

The ‘top-down’ ET and GPP models treat the canopy/soil (or pixel) as a bulk 

and are generally less complex. The potential GPP or ET is constrained by 

various empirical relationships describing environmental stressors (e.g. tem-

perature, soil moisture). This ‘top-down’ approach is capable to incorporate 

various remote sensing information to describe these environmental stressors 

(García et al., 2013; Houborg et al., 2009). One of the ‘top-down’ GPP model 

examples is the light use efficiency (LUE) approach, as shown in Figure 2-4. 

It is based on the assumption that plants adjust their growth to optimize re-

source acquisition of light and water (Fisher et al., 2008; García et al., 2013; 
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Nemani and Running, 1989). The representation of the ‘top-down’ model var-

iables can be directly connected to remote sensing observations. For instance, 

GPP can be directly linked to SIF (Guanter et al., 2014). The fraction of the 

absorbed PAR can be estimated from vegetation indices e.g. normalized vege-

tation difference index (NDVI) (Wang et al., 2018a). The actual light use effi-

ciency (ε) can be assessed by photochemical reflectance index (PRI) and fluo-

rescence yield (Garbulsky et al., 2011; van der Tol et al., 2009). Similar to the 

LUE approach to estimate carbon assimilation, ET can also be calculated 

through the ‘top-down’ approach, for example Priestley-Taylor Jet Propulsion 

Laboratory ET model (PT-JPL, Fisher et al., 2008). The PT-JPL model first 

estimates the potential ET with the Priestley-Taylor equation. Then the model 

down regulates the potential ET to the actual one by various remote sensing 

and meteorological observations reflecting the environmental constraints of 

vegetation and soil, such as NDVI, soil adjusted vegetation index (SAVI), en-

hanced vegetation index (EVI) or air temperature. 

  

Figure 2-4. Representation of the LUE model, showing optical measurements 

useful for model parameterization and validation (red text), including solar in-

duced fluorescence, NDVI, PRI and fluorescence yield. Alternatively, light ef-

ficiency (ε) can be addressed using meteorological data (temperature and vapor 

pressure deficit) or thermal remote sensing and modeling methods (Gamon, 

2015).  

Land surface modelling intended for routine applications should attempt to bal-

ance computation demands and the capability for simulating the responses of 

CO2, water, and energy fluxes to environmental and physiological forcing. As 

the ‘top-down’ approach is simple but operational, it can be routinely applied 

to monitor the land surface fluxes. For instance, the MODIS products using the 

LUE approaches can provide global estimates of GPP every 8 day (Running et 

al., 2004). Thus, the ‘top-down’ approach is adopted in this thesis to combine 

with UAS imagery for monitoring land surface fluxes.   
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3 Study sites and in-situ measurements 

This study was conducted in two Danish eddy covariance sites. One is a willow 

short rotation coppice site in Risoe (DK-RCW) (55.68°N, 12.11°E) and the 

other one is a temperate deciduous beech forest site located in Soroe (DK-Sor) 

(55.48°N, 11.63°E). In Risoe site, the main willow species are Salix schwerinii 

× S. viminalis × S. vim. and Salix triandra × S. viminalis. Rapeseed (Brassica 

napus) was grown in the nearby field. The eddy covariance system has been 

operated from 2012 until now. Regular UAS flight campaigns were conducted 

at Risoe during the growing seasons of 2016 and 2017. In the Soroe site, the 

dominant tree species are European beech (Fagus sylvatica L.) and approxi-

mately 20% conifers, Norway spruce (Picea abies (L.) Karst.) and European 

larch (Larix decidua (Mill.)). The Soroe flux site has been operated since 1996 

and has 22-year long-term eddy covariance observations until now. Details of 

this site are reported in Pilegaard et al. (2011) and Wu et al. (2012).   

 

Figure 3-1. The location of the eddy covariance sites. Risoe is planted with 

willow bioenergy plantation. Soroe is a site with temperate deciduous beech 

forest. 

The in-situ measurements used in this study include the standard eddy 

covariance and meteorological observations (e.g. latent heat flux, sensible heat 

flux, GPP, incoming shortwave radiation, outgoing shortwave radiation, 

incoming longwave radiation, outgoing longwave radiation, air temperature, 

vapor pressure deficit, wind speed, wind direction and air pressure), PAR 

sensor observations (above and below the canopy), LAI measurements from 

Licor LAI2200c and in-situ soil moisture meausurements. 
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4 Materials and methods 

The designed UAS monitoring system including the imaging payload and mod-

els for simulation of land surface fluxes is shown in Figure 4-1. This system is 

flexible for various UAS platforms (rotary, fix wing or hybrid types). The only 

requirement of the platform is that it can take 2 kg payload. This system can 

be applied under various weather conditions (sunny, cloudy and overcast). To 

test this monitoring system, pilot studies were conducted in a willow short ro-

tation coppice site Risoe, where eddy covariance systems can provide data to 

validate this monitoring system.  

An UAS imaging payload consisting of a six band multispectral camera, a ther-

mal infrared camera and a normal RGB camera was deployed on a hexacopter 

to conduct flight campaigns at eddy covariance sites. With radiometric and ge-

ometric correction and noise reduction, the UAS imagery was processed into 

high-quality UAS orthophotos. These UAS based multispectral, thermal and 

surface elevation data was further used as inputs of the ‘top-down’ snapshot 

models to estimate soil moisture, net radiation (Rn), ET and GPP. Further, to 

temporally interpolate the snapshot estimates, the UAS data were used as in-

puts of the ‘SVEN’ model to continuously estimate GPP and ET. These simu-

lated land surface fluxes were validated by the eddy covariance observations 

with a footprint model (Kljun et al., 2015). The integration of the UAS based 

VHR imagery with the ‘top-down’ models provides insights into explore the 

spatial and temporal scaling issues in remote sensing. For instance, the optimal 

spatial resolution to capture land surface fluxes and the methodologies to tem-

poral upscaling the remote sensing based instantaneous simulation into diurnal 

and longer time scale estimates.  
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Figure 4-1. Designed UAS based monitoring system in this study. The UAS 

equipped with the imaging payload was used monitor the land surface condi-

tions in a willow bioenergy plantation. The collected optical and thermal data 

were used as model inputs to simulate the net radiation (Rn), soil moisture 

(SM), evapotranspiration (ET), gross primary productivity (GPP) and water 

use efficiency (WUE) with high spatial resolution and continuous records. 

The simulated land surface fluxes were validated by the eddy covariance ob-

servations.  

 

4.1 Unmanned aerial system 

4.1.1 Platform 

In this study, the flight campaigns were mainly conducted with a rotary wing 

platform, DJI hexacopter Spreading Wings S900 equipped with A2 flight con-

troller (DJI, Shenzhen, China), as shown in Figure 4-2. The rotary wing plat-

form has advantage of flexible taking off and landing, high manoeuvrability 

and hovering capability. 
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Figure 4-2. UAS platform (DJI S900) used in this study 

 

4.1.2 Payload 

The payload includes three parts, an imaging system, a navigation system and 

a micro-processor as shown in Figure 4-3. The imaging part includes three sen-

sors, (i) a RGB camera, (ii) a thermal infrared camera and (iii) a multispectral 

camera. The RGB camera is a Sony DSC-RX100 to retrieve high accuracy dig-

ital surface elevation model. The thermal infrared camera FLIR tau2 324 (Wil-

sonville, OR, USA) is deployed to obtain the information of the land surface 

temperature. A six-band multispectral camera Tetra mini-MCA (Multispectral 

Camera Array, Tetracam, Chatsworth, CA, USA) was used to collect surface 

reflectance and calculate vegetation indices to infer the growth status of vege-

tation. These six bands include blue, light green, dark green, red, red edge and 

near infrared with the central wavelength of 470, 530, 570, 670, 710 and 800 

nm, respectively. The full wavelength at half maximum is 10 nm. Details on 

the multispectral and thermal sensors can be found in Wang et al. (I and III).  
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Figure 4-3. Components of the imaging payload designed in this study. The 

imaging part includes three sensor, a RGB camera, a thermal infrared camera 

and a multispectral camera. The navigation part can use either the post-pro-

cessed kinematic (PPK) GNSS solution or single receiver GNSS solution of 

Ublox. The micro-processor is the Beaglebone Black.   

 

4.2 Flight campaigns 

UAS flight campaigns in the Risoe flux site were conducted in the growing 

seasons of 2016 and 2017 as shown in Table 4-1. These days include sunny 

and cloudy weather conditions. Detailed information on the weather conditions 

during the flight campaigns can be found in Wang et al. (III and IV). Figure 

4-4 shows the typical paths of UAS flight campaigns at Risoe.  

Flir Tau2 TetraMini MCA Sony DSC-RX100

around 2kg

Imaging

Navigation

Micro-processor

PPK GNSS + IMU Ublox

Or

Beaglebone Black
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Figure 4-4. The typical flight paths of UAS campaigns conducted in Risoe 

 

Table 4-1. Information on flight campaigns conducted at the Risoe site 

Number Date Acquisition time Weather condition 

1 11-04-2016 11:13-11:26 Cloudy 

2 02-05-2016 14:40-14:55 Cloudy 

3 12-05-2016 10:44-11:55 Sunny 

4 25-05-2016 10:11-10:23 Sunny 

5 01-08-2016 10:06-10:14 Overcast 

6 07-10-2016 11:41-11:55 Sunny 

7 19-05-2017 12:07-12:19 Sunny 

8 22-05-2017 10:15-10:28 Cloudy 

9 26-05-2017 11:13-11:26 Sunny 

10 18-06-2017 12:39-12:51 Cloudy 

 

4.3 Sensor calibration and image processing 
A high quality of the remotely sensed data from UAS is essential for perform-

ing quantitative land surface modelling. The high latitude regions e.g. Denmark 

have a high frequency of the cloudy and overcast weather (Wang et al., 2018a). 

UAS flight campaigns sometimes have to be conducted under suboptimal 

weather conditions. In order to produce UAS imagery with high quality and 

accuracy, several strategies were proposed in this thesis. First, a precisely ge-

ometric and radiometric calibration was conducted in the laboratory. The la-

boratory experiments include geometric calibration to retrieve lens distortion 

Willow

Rapeseed
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parameters based on the Brown-Conrady distortion model, noise correction, 

vignetting correction and radiometric calibration to link the image digital num-

ber to the intensities of spectral radiance. Particularly, the light intensities of 

the calibration facility were designed to match with the typical outdoor condi-

tions in high latitudes and the calibration was conducted with low illumination 

conditions. Further, outdoor experiments were conducted with homogeneous 

targets to compare the sensitivity of different multispectral channels. Finally, 

the flight campaigns with MCA were conducted under both sunny and cloudy 

conditions. UAS orthophotos were generated from hundreds of small footprint 

images acquired from the UAS by using the Agisoft Photoscan software, which 

is based on the Structure-from-Motion (Westoby et al., 2012).  

A multivariate statistical method, the Tucker tensor decomposition (Mørup, 

2011), was tested to remove the cloud shadows in the multispectral images 

collected under variable irradiance conditions due to overlapping of images. 

The UAS multispectral imagery can be understood as data cubes (four-way 

tensors), consisting of two spatial modes, denoted as x and y, and one spectral 

and one temporal dimension. As shown in Eq. 4-1, the four-way tensor can be 

decomposed into a core, four modes (two in the spatial domains, one in the 

spectral domain and one in the time domain) and a residual. By choosing dif-

ferent percentages of signals in decomposed modes, the reconstructed image 

can have different levels of signals from the raw image. As the cloud shadow 

changed with time, the cloud shadow in the UAS imagery can be removed by 

reducing the signals in the time domain for image reconstruction. Finally, the 

accuracy of reflectance from the produced orthophotos were examined. For 

details on this methodology, please refer to Wang et al. (I).  

𝑋𝑖1𝑖2𝑖3𝑖4 = ∑ ∑ ∑ ∑ 𝑔𝑗1𝑗2𝑗3𝑗4𝑎𝑖1𝑗1
𝐽4
𝑗4=1

𝑏𝑖2𝑗2𝑐𝑖3𝑗3𝑑𝑖4𝑗4 + 𝑒
𝐽3
𝑗3=1

𝐽2
𝑗2=1

𝐽1
𝑗1=1

 (Eq. 4-1) 

Where 𝑖1, 𝑖2, 𝑖3, 𝑖4 represent the spatial, spectral and temporal dimensions of the 

four-way tensor obtained from UAS imagery, respectively. 𝑗1, 𝑗2, 𝑗3, 𝑗4 repre-

sent the four dimensions of the tensor core. a, b, c and d are four modes. e is 

the residual and ideally should be noise.  

 

4.4 Land surface modelling framework 
A joint ‘top-down’ ET and GPP model constrained by the same environmental 

variables was proposed in this study by expanding the capabilities on the PT-

JPL ET model (Fisher et al., 2008) and merging it with the LUE GPP model 
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(Potter et al., 1993) as shown in the Figure 4-5. This joint ET and GPP model 

calculates the potential rates of ET and GPP, and then estimates the actual val-

ues based on the environmental constraints. The vegetation stressors, e.g. the 

air temperature constraint, the fraction of green vegetation and plant moisture 

constraint, could be obtained from meteorological observations or the remotely 

sensed data. Further, this joint model incorporated a cloudiness index (CI) rep-

resenting the fraction of diffuse PAR to improve the estimation of the surface 

fluxes in Wang et al. (II). Based on the model, a global sensitivity analysis 

Sobol’ (Sobol, 2001) was used to quantify the first order and global sensitivity 

of model inputs to the inputs of various environmental factors. Along with a 

statistical regression analysis, path analysis (Bassow & Bazzaz, 1998; Huxman 

et al., 2003), the influence of the environmental factor (the diffuse radiation 

fraction) on the GPP, ET, incident light use efficiency, evaporative fraction 

and water use efficiency (WUE) was quantified at the Soroe site.  

One of the most relevant parameters to constrain ET from the potential to the 

actual values is soil moisture. The soil moisture constraint for this joint model 

can be calculated from either in-situ observations as Wang et al. (II) or the 

temperature-vegetation triangle approach as Wang et al. (III) depending on the 

research objective. The temperature-vegetation triangle approach is based on 

the theory that soil moisture influences the ET rate and surface temperature. It 

utilizes the remotely sensed optical and thermal data and has been widely ap-

plied to estimate the soil moisture and ET with satellite or manned airborne 

based data (Carlson et al., 1995; Garcia et al., 2014; Mallick et al., 2009; Moran 

et al., 1994; Sandholt et al., 2002; Stisen et al., 2007). However, in the previous 

studies, the linkage between the soil moisture estimates and surface fluxes is 

not always explicit. Thus, in the Wang et al. (II), the triangle approach was 

modified by considering the influence of the 3D canopy structure (height) to 

the surface fluxes, and applied this method with UAS optical and thermal ob-

servations to map spatial and temporal variability of soil moisture in the Risoe 

site. Finally, the soil moisture estimates from UAS were validated by the in-

situ measurements at different depths and in space. The detailed workflow of 

this soil moisture study is shown in Figure 4-5. 
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Figure 4-5. Workflow of soil moisture mapping from thermal and optical im-

agery. The NDVI, Ts and DSM information were collected by UAS in the field. 

By using the modified temperature-vegetation triangle approach, the spatial 

and temporal variabilities of soil moisture were estimated. Finally, the esti-

mated soil moisture were compared with the spatial soil moisture measure-

ments (2 campaigns) and temporally continuous soil moisture measurements at 

different depths (8 dates). For details on the Taylor diagram validation, refer 

to Figure 13 in Wang et al. (III). 

 

Based on the joint model in Wang et al. (II) and the modified temperature-

vegetation triangle approach in Wang et al. (III), Wang et al. (IV) utilized the 

optical and thermal data to estimate net radiation, ET, GPP and water use eff i-

ciency from high spatial resolution UAS imagery. The eddy covariance obser-

vations along with the footprint model was used to validate the simulated land 

surface fluxes from UAS imagery. Further, with the high spatial resolution 

maps of land surface fluxes, the importance of considering the heterogeneity 

of vegetation and eddy covariance source contribution to the model benchmark 

were evaluated by the semivariogram and an experiment to aggregate model 

inputs to different spatial resolution. In this way, the optimal spatial resolution 

to capture the land surface fluxes was also identified. The control factor on the 
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spatial variability of the land surface fluxes was quantified. Finally, the im-

portance of considering the changes in footprint in the diurnal upscaling from 

the instantaneous ET estimates to the diurnal values was tested.  

 

Figure 4-6. Schematic diagram representing the joint PT-JPL ET and LUE 

GPP model. ‘Ei’ is the evaporation from the intercepted water. ‘Ec’ is the po-

tential transpiration. ‘S’ stands for the vegetation stressors. ‘Es’ is the potential 

evaporation from soil. The soil moisture constraint ‘fSM’ can be obtained from 

either in-situ observations or the temperature-vegetation triangle approach. 

 

Based on the snapshot model, the ‘top-down’ model was further developed to 

obtain a temporally dynamic model as shown in Wang et al. (V). This was 

achieved by including a module to predict the ground heat flux based on the 

force-restore’ method (Noilhan and Planton, 1989), and simple bucket models 

to simulate the dynamics of canopy wetness and soil water. Figure 4-7 shows 

the linkages between the snapshot model and the continuous model namely 

Soil-Vegetation, Energy, water and CO2 traNsfer model (SVEN). This parsi-

monious continuous model requires limited data inputs and parameterization. 

It can be applied to temporally interpolate the simulated land surface condi-

tions between the remote sensing data acquisitions. 
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Figure 4-7. The development of the Soil-Vegetation, Energy, water and CO2 

traNsfer model (SVEN). The PT-JPL ET model (Fisher et al., 2008) and the 

LUE GPP model (Potter et al., 1993) were combined to the ’top-down’ snap-

shot model (Wang et al., 2018) with the same environmental constraints. Fur-

ther, the snapshot model was combined with the ‘force-restore’ heat transfer 

model and water balance bucket models to continuously estimate land surface 

fluxes.  

 

Integrating in-situ observations or Earth Observations into models can provide 

better model parameterization and improve model simulations. One way is to 

perform model calibration. In Wang et al. (II and V), the Monte Carlo optimi-

zation method was used to calibrate the model parameters for the joint snapshot 

and continuous ET and GPP models using eddy covariance observations. The 

Monte Carlo method can efficiently generate the large data set of possible com-

bined parameter values with given certain ranges of parameter values. By com-

paring the simulated ET and GPP with observations from the eddy covariance 

tower, the model can provide better simulation outputs of land surface fluxes. 

Furthermore, as the land surface model, which outputs multiple variables such 

as soil moisture, ET and GPP, can hardly simulate all variables equally well 

simultaneously (Sorooshian et al., 1993; Vrugt et al., 2003). Wang et al. (V) 

addressed this multiple objective optimization issue by using the Pareto front 

as Yapo et al. (1998). With the Pareto font analysis, the performance of the 

simulated surface temperature and soil moisture by the SVEN model was eval-

uated simultaneously. The optimum values from the Pareto front were identi-

fied to provide good estimates of both surface temperature and soil moisture, 

as they are the two key variables that determine fast changes in land surface 

PT-JPL ET model 

(Fisher et al., 2008)

LUE GPP model

(Potter et al., 1993)

‘Top-down’ snapshot model 

(Wang et al., 2018, AFM)
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fluxes. The calibration of SVEN in Wang et al. (V) with the snapshot simula-

tion outputs from Wang et al. (IV) rather than from in situ eddy covariance 

observations, which makes the model applicable in areas without in-situ data. 

Besides model calibration, model-based analysis and observation-based anal-

ysis were integrated with the purpose to understand better controls on GPP and 

ET and the role of diffuse/direct radiation. In Wang et al. (II), the path analysis, 

which is a multiple regression technique and considers the covariance among 

different variables (Bassow and Bazzaz, 1998; Li, 1975), was used to separate 

the direct and indirect effects from diffuse radiation to land surface fluxes and 

to assess sensitivity of GPP, ET and WUE to diffuse radiation. Additionally, 

based on the model based global sensitivity analysis, the first order and second 

order sensitivities from the model parameters to the simulated outputs were 

identified. The comparison between observation based analysis and model 

based analysis can assess if the ‘top-down’ model had similar sensitivity to 

diffuse light as the results from data mining methods. Additionally, this can 

provide a robust assessment of the direct and indirect effects from diffuse ra-

diation to land surface fluxes. 
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5 Results 

5.1 Sensor calibration and image processing 
Results on the pixel wise sensor calibration of MCA with the low illumination 

conditions (spectral radiance from 0.01 to 0.2 W∙m-2∙sr-1∙nm-1) are shown in 

Figure 5 of Wang et al. (I). With high coefficient of determination (R2) and 

small root mean square deviations (RMSD), this laboratory calibration ex-

tended the sensor exposure time setting from 1 to 4 ms, which is suitable for 

the Mediterranean high irradiance conditions (Berni et al., 2009), to 1 to 8 ms, 

which is designed for the low irradiance high latitude condition. Using the high 

exposure time settings under low irradiance conditions can increase the image 

signal to noise ratios (SNRs). Further, with analysing the sensitivity of differ-

ent MCA channels to the radiance (Figure 6 of Wang et al., I) and the outdoor 

experiments (Figure 7 of Wang et al., I), it is found that different channels have 

different sensitivities and the individual exposure settings for independent 

channels instead of the uniform setting can increase the image SNRs.  

To remove the cloud shadow in the multispectral imagery, this study succeeded 

by using the Tensor decomposition as an example shown in Figure 5-1. The 

comparison between the corrected and un-corrected images shows a significant 

improvement for reflectance in the cloud shadow areas, as the red circle areas 

in Figure 5-1. With the proposed methodology in Wang et al. (I), our study 

demonstrated that it is possible to provide reliable reflectance with RSMD 

around 3% under low (solar radiance around 0.1 W∙m-2∙sr-1∙nm-1) and variable 

irradiance conditions at 55º latitude. This quality of reflectance data is compa-

rable to other studies in higher illumination regions (Berni et al., 2009; 

Laliberte et al., 2011).  
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Figure 5-1. Cloud shadow removal by the tensor decomposition. The images 

are reflectance collected from the UAS campaigns in the willow plantation at 

three moments. The cloud shadow for each pair of images was highlighted with 

the red circles. It can be seen from cloud shadow has been removed in the 

reconstructed images.  

With the thoroughly geometric and radiometric calibration of sensors and im-

proved image processing procedures, UAS multispectral mapping can generate 

reliable and repeatable reflectance in low and variable irradiance conditions. 

Figure 5-2 shows an example of the produced orthophotos of surface tempera-

ture (Ts), NDVI and true colour images from the UAS thermal and multispec-

tral images collected on 25th May 2016.  

 

Reconstructed 

(time point 1)Time point 3

Time point 1 Time point 2

(c) orthophoto(a) Ts (b) NDVI (c) Orthophotos
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Figure 5-2. (a) UAS based surface temperature orthophotos, (b) Normalized 

Difference Vegetation Index (NDVI) and (c) True colour multispectral ortho-

photo on 25th May 2016. 

 

5.2 Spatial variability of land surface fluxes 

As a first step towards UAS based land surface modelling, the soil moisture 

was estimated from optical and thermal imagery in Wang et al. (III) by using 

the explicit linkage between the soil moisture and non-evaporative fraction 

within the temperature-vegetation triangle approach. Figure 11 of Wang et al. 

(III) shows the spatial validation of the estimated soil moisture. By aggregat-

ing the soil moisture estimates to different sizes of buffer zones (see example 

of buffer zones in Figure 1 of Wang et al. (III)), it is found that the best match 

between the estimates and the in-situ measurements is at 1.5 m, which corre-

sponds to the observed average size of tree crown. Wang et al. (III) highlight 

the importance to consider the 3D canopy structure to the soil moisture and 

thermal data interpretation.  

Furthermore, by comparing soil moisture observations at different soil depths 

as the results shown in Figure 13 of Wang et al. (III), it is found that the esti-

mated soil moisture had highest correlation with soil moisture at the depth of 

30-60 cm. This depth tends to be to the soil layer of higher root density for the 

willow plantation (Persson, 1995; Phillips et al., 2014). This agrees with the 

theory that the temperature-vegetation triangle approach detecting the soil 

moisture conditions through the transpiration rate (Carlson et al., 1995; Garcia 

et al., 2014; Mallick et al., 2009; Moran et al., 1994; Sandholt et al., 2002; 

Stisen et al., 2007). This shows the advantage of the temperature-vegetation 

triangle approach to reflect the root-zone soil moisture, which has significance 

to predict near-future vegetation anomalies (Qiu et al., 2014), over the thermal 

inertia or microwave based method, which only detect the soil moisture at the 

surface layer (< 10 cm) (García et al., 2013; Njoku et al., 2003).  

In general, the modified temperature-vegetation triangle approach estimated 

the volumetric soil moisture with an accuracy of the correlation coefficient 

around 0.58-0.69 and RMSDs around 0.025 m3∙m-3 in the Risoe site. Compared 

to other UAS based soil moisture studies (Hassan-Esfahani et al., 2015, 2017; 

Wang et al., 2018c) and manned airborne based studies (Fan et al., 2015; 

Sobrino et al., 2012), this study achieved a similar accuracy, but it requires 
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limited ground measurements and independent of the model calibration. It has 

potential to be used for routinely application in the agricultural sites.  

With the developed ‘top-down’ ET and GPP model (Wang et al., II) and the 

estimated soil moisture from the temperature-vegetation triangle approach to 

constrain the ET, the high spatial resolution net radiation, the fraction of the 

intercepted PAR, ET, GPP, evaporative fraction, light use efficiency and water 

use efficiency were estimated in Wang et al. (IV). By using the eddy covari-

ance observations and the footprint model (Kljun et al., 2015), results indicate 

that our approach can simulate the instantaneous net radiation, ET, GPP and 

water use efficiency with RMSDs of 31.6 W∙m-2, 41.2 W∙m-2, 3.12 μmol∙C∙m-

2∙s-1 and 0.35 g∙C∙kg-1, respectively. More validation results on other variables 

are shown in Figure 7 of Wang et al. (IV). The accuracy of the simulated ET 

is similar or slightly better to other studies (Brenner et al., 2017; Hoffmann et 

al., 2016; Ortega-Farías et al., 2016). This may be due to the fact that this joint 

model is based on the PT-JPL ET model (Fisher et al., 2008), which is a vege-

tation driven approach and relies less on the accuracy of the thermal and soil 

moisture data (McCabe et al., 2017). Additionally, this site is a radiation con-

trolled ecosystem (Wang et al., 2018a) and our methodology has a good esti-

mation of Rn as shown in Figure 7 (c) of Wang et al. (IV). 

To verify the simulated high spatial resolution patterns of fluxes, the VHR 

model inputs (as NDVI and Tb in Figure 5-2) were aggregated to different spa-

tial resolution to simulated land surface fluxes. It was found there is a degra-

dation trend with coarser spatial resolution as shown in Figure 13 of Wang et 

al. (IV). This also confirms the accuracy of our simulated ET and GPP patterns. 

Otherwise, if the simulated pattern were wrong, there  would not be such a 

degradation. Additionally, variations of the eddy covariance footprint during 

the course of the day can sample different areas around the tower, as an exam-

ple of Figure 5-3. As shown in Figure 10 of Wang et al. (IV), the good results 

in the diurnal simulation provides confidence in our simulated spatial patterns 

to some extent.  
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Figure 5-3. An example of the simulated GPP and LE on 25 th May 2016. The 

circles indicates the variations of the eddy covariance footprint. The shaded 

area is the footprint location when the UAS flight campaign was conducted. 

The value in the shaded area indicates the source contribution of the footprint.  

 

Semivariogram analysis was used to explore the control factor dominating the 

spatial variability of the land surface fluxes, Figure 12 of Wang et al. (IV). It 

was found that during the early growth stage, the spatial pattern has highest 

spatial correlation at 1.5-2 m. Further, the model simulation performance with 

different aggregated spatial resolutions shows that there is a change of model 

performance at 1.5 m, as shown in Figure 13 of Wang et al. IV. Together with 

the spatial validation results of soil moisture in Figure 11 of Wang et al. (III), 

these findings indicate the tree crown size may determine the spatial variability 

of the land surface fluxes. The consistent simulation performance with the spa-

tial resolution from 0.03 to 1.5 m in Figure 13 of Wang et al. IV also implies 

that the spatial resolution at the tree crown size may be enough for benchmark-

ing models with the eddy covariance observations. This semivariogram based 

spatial analysis of VHR imagery can also help to determine optimum flight 

height and spatial resolution to estimate ET and GPP for subsequent flights. 

 

5.3 Temporal dynamics of land surface fluxes 
As a first step to temporally upscale the instantaneous estimates of ET and GPP 

from remotely sensed data to the longer time scales (Gentine et al., 2007; 

Morillas et al., 2014), Wang et al. (IV) addressed the upscaling process from 



30 

instantaneous to diurnal. As shown in Figure 5-3, the VHR imagery provides 

opportunities to account for the change of the eddy covariance footprint. Re-

sults of Figure 10 (c) in Wang et al. (IV) show that the temporal upscaling 

approach considering the change of the footprint performs better than the clas-

sic approach assuming the constant evaporative fraction, which is widely used 

in other studies (Brutsaert and Sugita, 1992; P. D. Colaizzi et al., 2006). This 

implies that the high-resolution UAS imagery can be a useful tool to bench-

mark the model with the eddy covariance observations in the temporal upscal-

ing process from the instantaneous to the diurnal. 

To interpolate estimates of land surface fluxes between different days without 

UAS data acquisitions, the Soil-Vegetation, Energy, water and CO2 traNsfer 

model (SVEN) was developed to simulate land surface fluxes for days without 

UAS acquisitions during the growing seasons of 2016. Based on the instanta-

neous estimates from the snapshot models (Wang et al., IV), the SVEN model 

achieved satisfactory simulation results with RMSDs of simulated daily land 

surface temperature, soil moisture, GPP and ET equal to 2.17°C, 2.68% m3∙m-

3, 3.01 g∙C∙m-2∙d-1 and 16.88 W∙m-2, respectively. This study demonstrates the 

potential of UAS multispectral and thermal mapping to continuously monitor 

land surface fluxes. 

Additionally, with the 11-year long-term eddy covariance observations, Wang 

et al., (II) identified the influence of main environmental factors on the land 

surface fluxes at the temperate deciduous forest at Soroe site at different 

months as shown in Figure 5-4. It can be seen that this ecosystem is radiation 

controlled, as both GPP and ET are highly determined by the radiation changes. 

CI represents the contribution of the diffuse radiation fraction. It was found 

using path analysis that CI contributes approximately 11% variations of GPP, 

3% variations of ET and 8% variations of transpiration during the growing 

season from May to October.   
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Figure 5-4. The first order sensitivity of the environmental factors to the vari-

ables of the (a) GPP, (b) λET (the total latent heat flux), and (c) λETc (the 

latent heat flux for the transpiration part). CI represents the diffuse radiation 

effects. VPD is the vapour pressure deficit. NDVI represents the vegetation 

growths and Ta is the air temperature and SZA is the sun zenith angle. (Wang 

et al., II) 

Through the statistical based path analysis and the model based global sensi-

tivity analysis, the independent and joint effects of the diffuse radiation frac-

tion on GPP, ET, incident light use efficiency, evaporative fraction and water 

use efficiency were quantified. Results showed that the influence of the diffuse 

radiation fraction on GPP is larger than that on ET and this leads to an increase 

of WUE. Due to the interaction of diffuse PAR with plant canopies, the largest 

model improvements using the diffuse radiation fraction for GPP and ET oc-

curred during the growing season and for the transpiration component, as sug-

gested by comparisons to sap flow measurements. Regarding the influence of 

diffuse radiation to GPP and transpiration, the diffuse radiation fraction was 

incorporated into the GPP and transpiration simulation as an environment con-

straint. Additionally, it was found that due to the increased longwave emission 

from clouds, surface temperature gets higher and closer to optimum, boosting 

GPP and transpiration in the temperature-limited high latitude ecosystem, 

which could be consider for future model improvements.  
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6 Conclusions 

This thesis designed an operational UAS based monitoring system to continu-

ously monitor land surface fluxes at very high spatial resolution under various 

weather conditions. This study was demonstrated in a willow bioenergy short 

rotation coppice (DK-RCW) and a deciduous beech forest (DK-Sor). ‘Top-

down’ ET and GPP models were developed and combined with the optical and 

thermal UAS imagery to simulate the land surface fluxes. This thesis led us to 

the following conclusions to answer our research objectives: 

(i) By thoroughly calibration of UAS sensor and improved image processing 

procedures for the low and variable irradiance conditions at norther lati-

tudes, this thesis achieved an accuracy to obtain high quality of reflectance 

imagery with root mean square deviations (RMSDs) around 3%. This 

shows the potential of UAS mapping for quantitative remote sensing re-

search under challenging irradiance conditions such as those encoun-

tered in Denmark. 

(ii) With a ‘top-down’ ET and GPP model and the modified temperature-vege-

tation triangle approach, satisfactory accuracy of the simulated net radia-

tion, the root-zone soil moisture, ET, evaporative fraction, GPP, light use 

efficiency and water use efficiency were obtained in DK-RCW. By using 

high spatial resolution maps of the simulated land surface fluxes from 

UAS imagery, it was found that the tree crown size (around 1.5 for the 

dense vegetation condition in our site) controls the spatial variability of the 

land surface fluxes and simulation with the spatial resolution at the tree 

crown size is sufficient to capture the spatial variability of fluxes, which 

will allow higher flying heights and higher coverage of UAS imagery.  

(iii) In the temporal upscaling of the land surface fluxes (ET and GPP) from 

the instantaneous to the diurnal, it was found that it is important to con-

sider the change of the eddy covariance footprint during the course of 

the day, when benchmarking the model with the eddy covariance obser-

vations while assuming a constant evaporative fraction during the day 

lead to degradation in the accuracy of ET estimates. To achieve contin-

uous modeling of land surface fluxes (e.g. filling temporal gaps between 

UAS flights), the system merged a ‘top-down’ remote sensing model for 

GPP and ET with time-dynamic modules for ground heat flux and water 

infiltration. This model for temporal interpolation can also be poten-

tially applied with other remote sensing data e.g. satellites. Furthermore, 
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with 11-year long term eddy covariance observations, the independent 

and joint effects from diffuse radiation to the temporal variability of 

GPP and ET were identified. At this ecosystem, diffuse radiation plays 

a crucial role to enhance ecosystem light use efficiency and water use 

efficiency. This effect was incorporated into the joint ET and GPP model 

to constrain transpiration and GPP to make is suitable to use from over-

cast conditions.  

This UAS optical and thermal remote sensing based monitoring framework can 

provide spatially resolved near real time information on land surface fluxes. 

This information is valuable to optimize practical applications for agricultural 

and natural ecosystems. The unprecedentedly high spatial resolution can be 

used to examine scaling issues, identify spatial heterogeneity and benchmark 

models with eddy covariance fluxes. Further, this monitoring system has also 

ability to temporal upscaling the instantaneous estimates of land surface fluxes 

to the daily or longer time scales. Additionally, this system requires limited 

ground measurements and can be applied in the data scarce regions.  
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7 Future perspectives 

7.1 Potential applications of this system 
This UAS monitoring framework has the ability to provide VHR and continu-

ous metrics on vegetation growth and vegetation water use: reflectance, vege-

tation indices, surface temperature, net radiation, ET, GPP and water use effi-

ciency. These valuable spatial and temporal metrics are potentially beneficial 

for practical applications (food and bioenergy production) and fundamental 

science (remote sensing, ecohydrological research, micrometeorology).  

For the agricultural production, there is an urgent need to increase the sustain-

ability of our food systems. One way is to provide more comprehensive metrics 

beyond crop yields per hectare (Sukhdev, 2018), capable to assess ecosystem 

services related with crop water use, carbon fixation or cooling/warming ef-

fects from land (Wallace, 2000). These kind of metrics have the potential to 

inform policymakers, farmers and agribusinesses to avoid negative impacts on 

the managed systems. Currently, agriculture is undergoing a fourth revolution 

triggered by the exponentially increasing use of information technology and 

autonomous systems (Walter et al., 2017). For example, at the farm scale, pre-

cision agriculture is a management strategy to increase long-term, site-specific 

production efficiency and productivity while minimizing the risks of excessive 

chemical environmental pollution or yield loss due to insufficient inputs (Earl 

et al., 1996; Moran et al., 1997). Precision agriculture highly relies on the 

timely spatial information on crop and soil conditions (Moran et al., 1997). Our 

UAS monitoring framework is able to provide VHR maps of metrics such as 

soil moisture, ET, GPP and water use efficiency, which are indicators to de-

scribe the actual crop physiology and physical state. On long-term applications, 

i.e. if crop and site specific data are available and related to crop specific 

harms, the obtained variables can be interpreted as early risk indicators for 

local crop damage or reduced productivity. The high spatial resolution makes 

it possible to identify patches with earliest responses to environmental stresses 

or infections, which could be used as an early warning system to take proactive 

action for crop management and avoid large-scale damage.  

For remote sensing, UAS makes it possible to examine surface processes at 

unprecedented scale, i.e. 2-3 orders of magnitude higher than satellite systems, 

in both sunny and cloudy conditions. The UAS provided VHR multispectral, 

hyperspectral and thermal data for land surface flux simulation are thus com-
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plementary to other remote sensing techniques (e.g. satellite or manned air-

borne). With the rapid development of satellite remote sensing techniques, sat-

ellite missions (e.g. the Planet CubeSat constellation) can provide high tem-

poral frequency broadband spectral data (i.e. blue, green, red and NIR) with 1-

10m spatial resolutions (McCabe et al., 2017), given cloud-free conditions. 

With the VHR optical UAS data, it can easily be tested, whether the resolution 

of satellite imagery is sufficient for monitoring the heterogeneity of water and 

carbon use by crops, which depends on the site, season, climate and manage-

ment as shown in our spatial analysis. In our homogeneous eddy covariance 

site of this study, VHR UAS data still provide considerable advantages to mon-

itor water and carbon use for the patchy early growth stage of vegetation when 

the canopy cover is not complete. As demonstrated by other studies, this type 

of UAS monitoring system is an important tool for quantification of carbon and 

water fluxes in farming systems with higher structural spatial variability, e.g. 

agroforestry systems (Kustas et al., 2018; Zarco-Tejada et al., 2012).  Further-

more, VHR thermal and hyperspectral data, which are up to centimeter level, 

are still not available from satellites, even including near future developments.  

In micrometeorology and ecohydrological research, eddy covariance observa-

tions are often used for benchmarking land surface or remote sensing models. 

VHR UAS data provide extended opportunities to benchmark models more 

precisely with eddy covariance observations. As demonstrated in our study, 

GPP and ET model validation within the eddy covariance footprint using the 

arithmetic mean of the footprint, is biased, especially when the sites are more 

heterogeneous than in the investigated willow plantation. For micrometeorol-

ogy, VHR optical and thermal imagery has the potential to quantify issues from 

so far unmeasurable small-scale land surface heterogeneity, which compromise 

the representativeness of eddy covariance flux measurements. So far, the hor-

izontal heterogeneity was mainly considered at larger spatial scales around flux 

towers, but horizontal heterogeneity within the footprint in a homogeneous 

looking site can now be investigated with UAS technology. UAS based VHR 

maps of energy exchange are a promising means to further observe the notori-

ous lack of energy balance closure as found in the majority of micrometeoro-

logical studies (Metzger, 2018; Stoy et al., 2013; Xu et al., 2017). These maps 

can now be related to solve the discrepancy between land surface conditions 

measured at the eddy covariance tower and the effective states within the foot-

print (Vivoni, 2012). 

 



36 

7.2 Platform and sensor techniques 
A hexacopter DJI S900 was mainly used in this study to deploy with the imag-

ing payload for data collection. However, this UAS platform has limited pay-

load capacity and flight duration time. To cover a large area, a fixed wing plat-

form or a hybrid platform that combines rotatory and fixed wing’s advantages 

could be flown for this research. The advantages of using a rotary wing vehicle 

rather than a fixed wing vehicle include the capability of vertically taking off 

and landing, and the ability to hover above a waypoint. In contrast, the merits 

of a fixed wing platform are the possibility to reach a larger survey coverage 

because of higher speed and longer flight time. However, the hybrid platform, 

which combines rotary wing and fixed wing techniques, has the advantages of 

both platforms. For example, one of these advanced hybrid platforms devel-

oped during the Smart UAV project by the Danish company Sky-Watch and 

the Technical University of Denmark (Bandini et al., 2018). 

The growth of UAS and satellite constellation techniques (e.g. Planet Cubesat) 

promoted scientists and commercial business interest to look at systems that 

operate in between or are a hybrid of UAS and satellites. High Altitude Pseudo-

Satellite (HAPS), e.g. Airbus Zephyr S and T, is a promising technique to fill 

a capability gap between satellites and UAS. Zephyr can navigates to hundreds 

or thousands of kilometres away with the beyond line of sight (BLOS) capa-

bilities. HAPS are systems or platforms that usually float or operate for long 

periods at the stratosphere. The benefits of HAPS is that they can stay station-

ary, but are also manoeuvrable and potentially easier to deploy. They can pro-

vide a longer duration of flight relative to UAS.  

The imaging systems of this study include RGB, multispectral and thermal in-

frared cameras. The next steps to make the system more operational should aim 

to estimate the land surface energy, water and CO2 fluxes from data only from 

the UAS. For instance, a radiometer with a cosine receptor can be installed on 

the UAS to measure incoming shortwave radiation. Wind speed can be esti-

mated using a UAS with a pitot tube (Cho et al., 2011).  

Towards improving the accuracy of monitoring land surface fluxes, other re-

mote sensing techniques (e.g. hyperspectral, LiDAR and microwave sensors), 

as shown in Figure 2-2, can be integrated into the UAS based monitoring sys-

tem. Hyperspectral sensors are able to provide more spectral reflectance and 

indices and this can be used to improve flux estimation, for instance, UAS 

based photochemical reflectance index (PRI) or fluorescence (Zarco-Tejada et 

al., 2012, 2013). The SIF signals directly link to the vegetation photosynthesis 
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rates and can be utilized to detect vegetation stress, GPP and transpiration es-

timation. LiDAR can be applied to generate dense cloud and estimate the can-

opy structure parameters, e.g. LAI, the canopy height and density. UAS based 

microwave sensors can be utilized to monitor soil moisture. 

 

7.3 Modelling and model-data integration 

techniques 
The ‘top-down’ models were applied in this study to estimate the surface-at-

mosphere flux exchanges. However, these models are originally developed for 

coarser resolution satellite based simulations. They neglect the horizontal in-

teractions between neighbourhood pixels and are one-dimensional simulation 

approaches. Large eddy simulations (LES) or other computational fluid dy-

namics models can consider the horizontal interactions between each pixel. 

LES can be combined with VHR data obtained from UAS to understand the 

horizontal interactions for the surface-atmosphere flux exchanges.  

Machine learning and data mining algorithms, e.g., artificial neural networks, 

support vector machine and deep learning, are an essential tool in the data-

driven analysis in this big data era. Machine learning can be utilized to identify 

the key spectral signals related to the biophysical and biochemical parameters 

of vegetation to improve the early stress or disease detection for vegetation 

(Zarco-Tejada et al., 2018) or simulating the surface-atmosphere flux ex-

changes (Moreno-Martínez et al., 2018).  

In this study, the Bayesian approach was used to calibrate the model parameters 

to integrate model and data. Besides the model parameter calibration, other 

model-data fusion techniques, e.g. data assimilation, can also be used to im-

prove modelling performance. The data assimilation approaches, e.g. ensemble 

Kalman filter, three-dimensional or more advanced four-dimension variational 

differential assimilation techniques, can update the state variables, e.g. land 

surface temperature or soil moisture in the SVEN model, to improve the model 

simulation and prediction abilities.  

  



38 

8 References 
Anderson, K. and Gaston, K. J.: Lightweight unmanned aerial vehicles will revolutionize 

spatial ecology, Front. Ecol. Environ., 11(3), 138–146, doi:10.1890/120150, 2013. 

Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., 

González-Dugo, M. P., Cammalleri, C., D’Urso, G., Pimstein, A. and Gao, F.: Mapping daily 

evapotranspiration at field to continental scales using geostationary and polar orbiting 

satellite imagery, Hydrol. Earth Syst. Sci., 15(1), 223–239, doi:10.5194/hess-15-223-2011, 

2011. 

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide 

exchange rates of ecosystems: past, present and future, Glob. Chang. Biol., 9(4), 479–492, 

doi:10.1046/j.1365-2486.2003.00629.x, 2003. 

Bandini, F., Lopez-Tamayo, A., Merediz-Alonso, G., Olesen, D., Jakobsen, J., Wang, S., 

Garcia, M. and Bauer-Gottwein, P.: Unmanned aerial vehicle observations of water surface 

elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico, 

Hydrogeol. J., 1–16, 2018. 

Bassow, S. L. and Bazzaz, F. A.: How environmental conditions affect canopy leaf -level 

photosynthesis in four deciduous tree species, Ecology, doi:10.1890/0012-

9658(1998)079[2660:HECACL]2.0.CO;2, 1998. 

Berni, J., Zarco-Tejada, P. J., Suarez, L. and Fereres, E.: Thermal and Narrowband 

Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial 

Vehicle, IEEE Trans. Geosci. Remote Sens., 47(3), 722–738, 

doi:10.1109/TGRS.2008.2010457, 2009. 

Brenner, C., Thiem, C. E., Wizemann, H. D., Bernhardt, M. and Schulz, K.: Estimating 

spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired 

with a UAV system, Int. J. Remote Sens., 38(8–10), 3003–3026, 

doi:10.1080/01431161.2017.1280202, 2017. 

Brutsaert, W. and Sugita, M.: Application of self-preservation in the diurnal evolution of the 

surface energy budget to determine daily evaporation, J. Geophys. Res., 

doi:10.1029/92JD00255, 1992. 

Carlson, T. N., Gillies, R. R. and Schmugge, T. J.: An interpretation of methodologies for 

indirect measurement of soil water content, Agric. For. Meteorol., 77(3–4), 191–205, 

doi:10.1016/0168-1923(95)02261-U, 1995. 

Cho, A., Kim, J., Lee, S. and Kee, C.: Wind estimation and airspeed calibration using a UAV 

with a single-antenna GPS receiver and pitot tube, IEEE Trans. Aerosp. Electron. Syst., 

47(1), 109–117, doi:10.1109/TAES.2011.5705663, 2011. 

Clevers, J. G. P. W. and Kooistra, L.: Using hyperspectral remote sensing data for retrieving 

canopy chlorophyll and nitrogen content, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 

5(2), 574–583, doi:10.1109/JSTARS.2011.2176468, 2012. 

Colomina, I. and Molina, P.: Unmanned aerial systems for photogrammetry and remote 

sensing: A review, ISPRS J. Photogramm. Remote Sens., 92, 79–97, 

doi:10.1016/j.isprsjprs.2014.02.013, 2014. 

Damm, A., Paul-Limoges, E., Haghighi, E., Simmer, C., Morsdorf, F., Schneider, F. D., van 

der Tol, C., Migliavacca, M. and Rascher, U.: Remote sensing of plant -water relations: An 



39 

overview and future perspectives, J. Plant Physiol., 227, 3–19, 

doi:10.1016/j.jplph.2018.04.012, 2018. 

Earl, R., Wheler, P. N., Blackmore, B. S. and Godwin, R. J.: Precision farming-the 

management of variability, J. Inst. Agric. Eng., 51(4), 18–23 [online] Available from: 

http://agris.fao.org/agris-search/search.do?recordID=US201302863265, 1996. 

Fan, L., Xiao, Q., Wen, J., Liu, Q., Tang, Y., You, D., Wang, H., Gong, Z. and Li, X.: 

Evaluation of the airborne CASI/TASI Ts-VI space method for estimating near-surface soil 

moisture, Remote Sens., 7(3), 3114–3137, 2015. 

Farmer, D., Sivapalan, M. and Jothityangkoon, C.: Climate, soil, and vegetation controls 

upon the variability of water balance in temperate and semiarid landscapes: Downward 

approach to water balance analysis, Water Resour. Res., doi:10.1029/2001WR000328, 2003. 

Fisher, J. B., Tu, K. P. and Baldocchi, D. D.: Global estimates of the land-atmosphere water 

flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, 

Remote Sens. Environ., 112(3), 901–919, doi:10.1016/j.rse.2007.06.025, 2008. 

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M., 

Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D., Perret, J., 

Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., 

Stephens, G. and Wood, E. F.: The Future of Evapotranspiration: Global requirements for 

ecosystem functioning, carbon and climate feedbacks, agricultural management, and water 

resources, Water Resour. Res., doi:10.1002/2016WR020175, 2017. 

Gamon, J. A.: Optical sampling of the flux tower footprint, Biogeosciences Discuss., 12(6), 

4973–5014, doi:10.5194/bgd-12-4973-2015, 2015. 

Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y. and Filella, I.: The photochemical 

reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use 

efficiencies. A review and meta-analysis, Remote Sens. Environ., 

doi:10.1016/j.rse.2010.08.023, 2011. 

Garcia, M., Fernández, N., Villagarcía, L., Domingo, F., Puigdefábregas, J. and Sandholt, 

I.: Accuracy of the Temperature-Vegetation Dryness Index using MODIS under water-

limited vs. energy-limited evapotranspiration conditions, Remote Sens. Environ., 

149(October), 100–117, doi:10.1016/j.rse.2014.04.002, 2014. 

García, M., Sandholt, I., Ceccato, P., Ridler, M., Mougin, E., Kergoat, L., Morillas, L., 

Timouk, F., Fensholt, R. and Domingo, F.: Actual evapotranspiration in drylands derived 

from in-situ and satellite data: Assessing biophysical constraints, Remote Sens. Environ., 

131, 103–118, doi:10.1016/j.rse.2012.12.016, 2013. 

Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G. and Duchemin, B.: Analysis of 

evaporative fraction diurnal behaviour, Agric. For. Meteorol., 

doi:10.1016/j.agrformet.2006.11.002, 2007. 

Gilbert, N.: Water under pressure: a UN analysis sets out global water-management concerns 

ahead of Earth Summit, Nature, 483(7389), 256–258, 2012. 

Guan, K., Wu, J., Anderson, M. C., Kimball, J., Frolking, S., Li, B. and Lobell, D.: The 

shared and unique value of optical, flourescence, thermal and microwave satellite data for 

estimating large-scale crop yields (Accpeted), Remote Sens. Environ., 199, 333–349, 

doi:https://doi.org/10.1016/j.rse.2017.06.043, 2016. 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, 



40 

A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, 

G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M. and Griffis, T. J.: 

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, 

Proc. Natl. Acad. Sci., doi:10.1073/pnas.1320008111, 2014. 

Hassan-Esfahani, L., Torres-Rua, A., Jensen, A. and McKee, M.: Assessment of surface soil 

moisture using high-resolution multi-spectral imagery and artificial neural networks, 

Remote Sens., 7(3), 2627–2646, doi:10.3390/rs70302627, 2015. 

Hassan-Esfahani, L., Torres-Rua, A., Jensen, A. and Mckee, M.: Spatial Root Zone Soil 

Water Content Estimation in Agricultural Lands Using Bayesian-Based Artificial Neural 

Networks and High- Resolution Visual, NIR, and Thermal Imagery, Irrig. Drain., 66(2), 

273–288, doi:10.1002/ird.2098, 2017. 

Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P. and Friborg, T.: 

Estimating evaporation with thermal UAV data and two-source energy balance models, 

Hydrol. Earth Syst. Sci., 20(2), 697–713, doi:10.5194/hess-20-697-2016, 2016. 

Houborg, R., Anderson, M. C., Norman, J. M., Wilson, T. and Meyers, T.: Intercomparison 

of a “bottom-up” and “top-down” modeling paradigm for estimating carbon and energy 

fluxes over a variety of vegetative regimes across the U.S., Agric. For. Meteorol., 149(12), 

2162–2182, doi:10.1016/j.agrformet.2009.10.002, 2009. 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., 

Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, 

W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, 

D., Sottocornola, M., Vaccari, F. and Williams, C.: Global patterns of land-atmosphere 

fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, 

satellite, and meteorological observations, J. Geophys. Res. Biogeosciences, 116(3), 

doi:10.1029/2010JG001566, 2011. 

Kljun, N., Calanca, P., Rotach, M. W. and Schmid, H. P.: A simple two-dimensional 

parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8(11), 3695–

3713, doi:10.5194/gmd-8-3695-2015, 2015. 

Klosterman, S., Melaas, E., Wang, J., Martinez, A., Frederick, S., O’Keefe, J., Orwig, D. A., 

Wang, Z., Sun, Q., Schaaf, C., Friedl, M. and Richardson, A. D.: Fine-scale perspectives on 

landscape phenology from unmanned aerial vehicle (UAV) photography, Agric. For. 

Meteorol., doi:10.1016/j.agrformet.2017.10.015, 2018. 

Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux predictions 

using a simple two-source model with radiometric temperatures for partial canopy cover, 

Agric. For. Meteorol., 94(1), 13–29, doi:10.1016/S0168-1923(99)00005-2, 1999. 

Kustas, W. P., Anderson, M. C., Alfieri, J. G., Knipper, K., Torres-Rua, A., Parry, C. K., 

Hieto, H., Agam, N., White, A., Gao, F., McKee, L., Prueger, J. H., Hipps, L. E., Los, S., 

Alsina, M., Sanchez, L., Sams, B., Dokoozlian, N., McKee, M., Jones, S., Yang, Y., Wilson, 

T. G., Lei, F., McElrone, A., Heitman, J. L., Howard, A. M., Post, K., Melton, F. and Hain, 

C.: The Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment 

(GRAPEX), Bull. Am. Meteorol. Soc., BAMS-D-16-0244.1, doi:10.1175/BAMS-D-16-

0244.1, 2018. 

Laliberte, A. S., Goforth, M. A., Steele, C. M. and Rango, A.: Multispectral remote sensing 

from unmanned aircraft: Image processing workflows and applications for rangeland 

environments, Remote Sens., 3(11), 2529–2551, doi:10.3390/rs3112529, 2011. 

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, 



41 

P. J., Zeng, X., Yang, Z., Levis, S. and Sakaguchi, K.: Parameterization improvements and 

functional and structural advances in version 4 of the Community Land Model, J. Adv. 

Model. Earth Syst., 3(1), 2011. 

Li, C. C.: Path Analysis-a primer., The Boxwood Press., 1975. 

Lipton, A. E., Liang, P., Jiménez, C., Moncet, J. L., Aires, F., Prigent, C., Lynch, R., 

Galantowicz, J. F., D’Entremont, R. P. and Uymin, G.: Sources of discrepancies between 

satellite-derived and land surface model estimates of latent heat fluxes, J. Geophys. Res., 

120(6), 2325–2341, doi:10.1002/2014JD022641, 2015. 

Mallick, K., Bhattacharya, B. K. and Patel, N. K.: Estimating volumetric surface moisture 

content for cropped soils using a soil wetness index based on surface temperature and NDVI, 

Agric. For. Meteorol., 149(8), 1327–1342, doi:10.1016/j.agrformet.2009.03.004, 2009. 

Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. 

B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. 

L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., 

Vico, G. and Toth, B.: On the use of unmanned aerial systems for environmental monitoring, 

Remote Sens., 10(4), 641, doi:10.3390/rs10040641, 2018. 

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., 

Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H. and Wood, E. F.: 

The future of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21(7), 3879–3914, 

doi:10.5194/hess-21-3879-2017, 2017. 

Metzger, S.: Surface-atmosphere exchange in a box: Making the control volume a suitable 

representation for in-situ observations, Agric. For. Meteorol., 255, 68–80, 

doi:10.1016/j.agrformet.2017.08.037, 2018. 

Moran, M. S., Clarke, T. R., Inoue, Y. and Vidal, A.: Estimating crop water deficit using the 

relation between surface-air temperature and spectral vegetation index, Remote Sens. 

Environ., 49(3), 246–263, doi:10.1016/0034-4257(94)90020-5, 1994. 

Moran, M. S., Inoue, Y. and Barnes, E. M.: Opportunities and limitations for image -based 

remote sensing in precision crop management, Remote Sens. Environ., 61(3), 319–346, 

doi:10.1016/S0034-4257(97)00045-X, 1997. 

Moreno-Martínez, Á., Camps-Valls, G., Kattge, J., Robinson, N., Reichstein, M., van 

Bodegom, P., Kramer, K., Cornelissen, J. H. C., Reich, P., Bahn, M., Niinemets, Ü., 

Peñuelas, J., Craine, J. M., Cerabolini, B. E. L., Minden, V., Laughlin, D. C., Sack, L., 

Allred, B., Baraloto, C., Byun, C., Soudzilovskaia, N. A. and Running, S. W.: A 

methodology to derive global maps of leaf traits using remote sensing and c limate data, 

Remote Sens. Environ., 218, 69–88, doi:10.1016/j.rse.2018.09.006, 2018. 

Morillas, L., Villagarcía, L., Domingo, F., Nieto, H., Uclés, O. and García, M.: 

Environmental factors affecting the accuracy of surface fluxes from a two-source model in 

Mediterranean drylands: Upscaling instantaneous to daytime estimates, Agric. For. 

Meteorol., 189–190, 140–158, doi:10.1016/j.agrformet.2014.01.018, 2014. 

Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in 

data mining, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 1(1), 24–40, 

doi:10.1002/widm.1, 2011. 

Nemani, R. R. and Running, S. W.: Estimation of Regional Surface Resistance to 

Evapotranspiration from NDVI and Thermal-IR AVHRR Data, J. Appl. Meteor, 

doi:10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2, 1989. 



42 

Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K. and Nghiem, S. V.: Soil moisture 

retrieval from AMSR-E, IEEE Trans. Geosci. Remote Sens., 41(2 PART 1), 215–228, 

doi:10.1109/TGRS.2002.808243, 2003. 

Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface Processes for 

Meteorological Models, Mon. Weather Rev., 117(3), 536–549, doi:10.1175/1520-

0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. 

Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, 

C., Ahumada-Orellana, L., Zuñiga, M. and Sepúlveda, D.: Estimation of energy balance 

components over a drip-irrigated olive orchard using thermal and multispectral cameras 

placed on a helicopter-based unmanned aerial vehicle (UAV), Remote Sens., 8(8), 1–18, 

doi:10.3390/rs8080638, 2016. 

P. D. Colaizzi, P. D., S. R. Evett, S. R., T. A. Howell, T. A. and J. A. Tolk, J. A.: Comparison 

of Five Models to Scale Daily Evapotranspiration from One-Time-of-Day Measurements, 

Trans. ASABE, doi:10.13031/2013.22056, 2006. 

Persson, G.: Willow stand evapotranspiration simulated for Swedish soils, Agric. Water 

Manag., 28(4), 271–293, doi:10.1016/0378-3774(95)01182-X, 1995. 

Phillips, C. J., Marden, M. and Suzanne, L. M.: Observations of root growth of young poplar 

and willow planting types, New Zeal. J. For. Sci., 44(1), doi:10.1186/s40490-014-0015-6, 

2014. 

Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelsh??j, P. and Jensen, N. O.: Increasing 

net CO2 uptake by a Danish beech forest during the period from 1996 to 2009, Agric. For. 

Meteorol., 151(7), 934–946, doi:10.1016/j.agrformet.2011.02.013, 2011. 

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A. 

and Klooster, S. A.: Terrestrial ecosystem production: A process model based on global 

satellite and surface data, Global Biogeochem. Cycles, 7(4), 811–841, 

doi:10.1029/93GB02725, 1993. 

Qiu, J., Crow, W. T., Mo, X. and Liu, S.: Impact of Temporal Autocorrelation Mismatch on 

the Assimilation of Satellite-Derived Surface Soil Moisture Retrievals, , 7(8), 1–9, 2014. 

Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S. and Hibbard, 

K. A.: A global terrestrial monitoring network integrating tower fluxes, flask sampling, 

ecosystem modeling and EOS satellite data, Remote Sens. Environ., 70(1), 108–127, 

doi:10.1016/S0034-4257(99)00061-9, 1999. 

Running, S. W., Nemani, R. R., Heinsch, F. A. N. N., Zhao, M., Reeves, M. and Hashimoto, 

H.: A Continuous Satelite-lDerived Measure of Global Terrestrial Primary Production, 

Bioscience, 54(6), 547, doi:10.1641/0006-3568(2004)054, 2004. 

Sanderson, R.: Introduction to remote sensing, New Mex. State Univ., 25–26, 2010. 

Sandholt, I., Rasmussen, K. and Andersen, J.: A simple interpretation of the surface 

temperature/vegetation index space for assessment of surface moisture status, Remote Sens. 

Environ., 79(2–3), 213–224, doi:10.1016/S0034-4257(01)00274-7, 2002. 

Sims, D. A., Rahman, A. F. and Roberts, D. A.: Use of Hyperspectral Reflectance Indices 

for Estimation of Gross Carbon Flux and light use Efficiency Crossdiverse Vegetation 

Types, Int. J. Geoinformatics, 2(1), 2006. 

Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., 

Liang, X., McDonnell, J. J., Mendiondo, E. M., O’Connell, P. E., Oki, T., Pomeroy, J. W., 



43 

Schertzer, D., Uhlenbrook, S. and Zehe, E.: IAHS Decade on Predictions in Ungauged 

Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrol. 

Sci. J., 48(6), 857–880, doi:10.1623/hysj.48.6.857.51421, 2003. 

Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models and their Monte 

Carlo estimates, Math. Comput. Simul., doi:10.1016/S0378-4754(00)00270-6, 2001. 

Sobrino, J. A., Franch, B., Mattar, C., Jiménez-Muñoz, J. C. and Corbari, C.: A method to 

estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: 

Application to SEN2FLEX and SEN3EXP campaigns, Remote Sens. Environ., 117, 415–

428, doi:10.1016/j.rse.2011.10.018, 2012. 

Sorooshian, S., Duan, Q. and Gupta, V. K.: Calibration of rainfall‐ runoff models: 

Application of global optimization to the Sacramento Soil Moisture Accounting Model, 

Water Resour. Res., doi:10.1029/92WR02617, 1993. 

Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R. and Eklundh, L.: Estimation of diurnal 

air temperature using MSG SEVIRI data in West Africa, Remote Sens. Environ., 110(2), 

262–274, doi:10.1016/j.rse.2007.02.025, 2007. 

Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, 

A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, 

E., Kiely, G., Knohl, A., Margolis, H., Mccaughey, H., Merbold, L., Montagnani, L., Papale, 

D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, 

F. and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET 

research sites: The role of landscape scale heterogeneity, Agric. For. Meteorol., 171–172, 

137–152, doi:10.1016/j.agrformet.2012.11.004, 2013. 

Sukhdev, P.: Smarter metrics will help fix our food system world-view, Nature, 558(7708), 

doi:10.1038/d41586-018-05328-1, 2018. 

van der Tol, C., Verhoef, W., Timmermans, J., Verhoef,  a. and Su, Z.: An integrated model 

of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy 

balance, Biogeosciences, 6(12), 3109–3129, doi:10.5194/bg-6-3109-2009, 2009. 

Vivoni, E. R.: Spatial patterns, processes and predictions in ecohydrology: Integrating 

technologies to meet the challenge, Ecohydrology, 5(3), 235–241, doi:10.1002/eco.1248, 

2012. 

Vivoni, E. R., Rango, A., Anderson, C. A., Pierini, N. A., Schreiner-Mcgraw, A. P., Saripalli, 

S. and Laliberte, A. S.: Ecohydrology with unmanned aerial vehicles, Ecosphere, 5(10), 

doi:10.1890/ES14-00217.1, 2014. 

Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W. and Sorooshian, S.: Effective and 

efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. 

Res., doi:10.1029/2002WR001746, 2003. 

Wada, Y. and Bierkens, M. F. P.: Sustainability of global water use: Past reconstruction and 

future projections, Environ. Res. Lett., 9(10), doi:10.1088/1748-9326/9/10/104003, 2014. 

Wallace, J. S.: Increasing agricultural water use efficiency to meet future food production, 

Agric. Ecosyst. Environ., 82(1–3), 105–119, doi:10.1016/S0167-8809(00)00220-6, 2000. 

Walter, A., Finger, R., Huber, R. and Buchmann, N.: Opinion: Smart farming is key to 

developing sustainable agriculture, Proc. Natl. Acad. Sci., 114(24), 6148–6150, 

doi:10.1073/pnas.1707462114, 2017. 

Wang, S., Ibrom, A., Bauer-Gottwein, P. and Garcia, M.: Incorporating diffuse radiation into 



44 

a light use efficiency and evapotranspiration model: An 11-year study in a high latitude 

deciduous forest, Agric. For. Meteorol., 248(July), 479–493, 

doi:10.1016/j.agrformet.2017.10.023, 2018a. 

Wang, S., Garcia, M., Ibrom, A., Jakobsen, J., Josef Köppl, C., Mallick, K., Looms,  M. and 

Bauer-Gottwein, P.: Mapping Root-Zone Soil Moisture Using a Temperature–Vegetation 

Triangle Approach with an Unmanned Aerial System: Incorporating Surface Roughness 

from Structure from Motion, Remote Sens., 10(12), 1978, 2018b. 

Wang, W., Wang, X., Wang, L., Lu, Y., Li, Y. and Sun, X.: Soil moisture estimation for 

spring wheat in a semiarid area based on low-altitude remote-sensing data collected by 

small-sized unmanned aerial vehicles, J. Appl. Remote Sens., 12(2), 22207, 2018c.  

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. and Reynolds, J. M.: 

“Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience 

applications, Geomorphology, 179, 300–314, doi:10.1016/j.geomorph.2012.08.021, 2012. 

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de 

Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, 

P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, 

J., Wade, A. and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a 

grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47(5), W05301, 

doi:10.1029/2010WR010090, 2011. 

Wu, J., Linden, L. van der, Lasslop, G., Carvalhais, N., Pilegaard, K., Beier, C. and Ibrom, 

A.: Effects of climate variability and functional changes on the interannual variation of the 

carbon balance in a temperate deciduous forest., 2012. 

Xu, K., Metzger, S. and Desai, A. R.: Upscaling tower-observed turbulent exchange at fine 

spatio-temporal resolution using environmental response functions, Agric. For. Meteorol., 

232, 10–22, doi:10.1016/j.agrformet.2016.07.019, 2017. 

Yapo, P. O., Gupta, H. V. and Sorooshian, S.: Multi-objective global optimization for 

hydrologic models, J. Hydrol., doi:10.1016/S0022-1694(97)00107-8, 1998. 

Zarco-Tejada, P. J., González-Dugo, V. and Berni, J. A. J.: Fluorescence, temperature and 

narrow-band indices acquired from a UAV platform for water stress detection using a micro-

hyperspectral imager and a thermal camera, Remote Sens. Environ., 117, 322–337, 

doi:10.1016/j.rse.2011.10.007, 2012. 

Zarco-Tejada, P. J., Morales, A., Testi, L. and Villalobos, F. J.: Spatio-temporal patterns of 

chlorophyll fluorescence and physiological and structural indices acquired from 

hyperspectral imagery as compared with carbon fluxes measured with eddy covariance, 

Remote Sens. Environ., 133, 102–115, doi:10.1016/j.rse.2013.02.003, 2013. 

Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V. and Loudjani, P.: Tree height 

quantification using very high resolution imagery acquired from an unmanned aerial vehicle 

(UAV) and automatic 3D photo-reconstruction methods, Eur. J. Agron., 55, 89–99, 

doi:10.1016/j.eja.2014.01.004, 2014. 

Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., Hernández-

Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, 

V., North, P. R. J., Landa, B. B., Boscia, D., Saponari, M. and Navas-Cortes, J. A.: Previsual 

symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations, Nat. 

Plants, 4(7), 432–439, doi:10.1038/s41477-018-0189-7, 2018. 

Zhang, L., Potter, N., Hickel, K., Zhang, Y. and Shao, Q.: Water balance modeling over 



45 

variable time scales based on the Budyko framework - Model development and testing, J. 

Hydrol., doi:10.1016/j.jhydrol.2008.07.021, 2008. 

  



46 

9 Papers 

 

I  Wang, S., Baum, A., Zarco-Tejada, P., Dam-Hansen, C., Thorseth, A., 

Bauer-Gottwein P., Bandini F., & Garcia M. (2018) “Unmanned Aerial 

System multispectral mapping for low and variable solar irradiance condi-

tions: potential of tensor decomposition”. Submitted. 

 

II  Wang, S., Ibrom, A., Bauer-Gottwein, P., & Garcia, M. (2018). “Incorpo-

rating diffuse radiation into a light use efficiency and evapotranspiration 

model: An 11-year study in a high latitude deciduous forest”. Agricultural 

and Forest Meteorology, 248, 479-493. 

 

III Wang, S., Garcia, M., Ibrom, A., Jakobsen, J., Josef Köppl, C., Mallick, 

K., Looms, M., & Bauer-Gottwein, P. (2018) “Mapping root zone soil 

moisture using a temperature-vegetation triangle approach with an Un-

manned Aerial System: incorporating surface roughness from Structure-

from-Motion”. Remote Sensing, 10 (12), 1978. 

 

IV Wang, S., Garcia, M., Bauer-Gottwein, P., Jakobsen, J., Zarco-Tejada, P., 

Bandini, F., Sobejano Paz, V., & Ibrom, A. (2018) “High spatial resolution 

monitoring land surface energy, water and CO2 fluxes from an unmanned 

aerial system”. Under review.  

 

V   Wang, S., Garcia, M., Ibrom, A., & Bauer-Gottwein, P. (2018) “Interpo-

lating rapidly changing land surface energy, water and CO2 fluxes between 

remote sensing acquisitions from an Unmanned Aerial System”. Manu-

script. 

 

  



47 

TEXT FOR WWW-VERSION (with out papers) 

In this online version of the thesis, paper I-V are not included but can be ob-

tained from electronic article databases e.g. via www.orbit.dtu.dk or on request 

from. 

DTU Environment 

Technical University of Denmark 

Miljoevej, Building 113 

2800 Kgs. Lyngby 

Denmark 

 

info@env.dtu.dk. 

 

 

mailto:info@env.dtu.dk


The Department of Environmental Engineering (DTU Environment) conducts sci-
ence-based engineering research within five sections: Air, Land & Water Resour-
ces, Urban Water Systems, Water Technology, Residual Resource Engineering, En-
vironmental Fate and Effect of Chemicals.  
 
The department dates back to 1865, when Ludvig August Colding gave the first 
lecture on sanitary engineering as response to the cholera epidemics in Copenha-
gen in the late 1800s.  

Department of Environmental Engineering  

Technical University of Denmark  

 

DTU Environment 

Bygningstorvet, Building 115 

2800 Kgs. Lyngby 

Tlf. +45 4525 1600 

Fax +45 4593 2850 

 

www.env.dtu.dk 

Sheng Wang 
 
PhD Thesis 
January 2019  

Hyperspatial mapping of land surface  
water, energy and CO2 fluxes from  
unmanned aerial systems  

H
yperspatial m

apping of land surface w
ater, energy and CO

2 fluxes from
 unm

anned aerial system
s 

Sheng W
ang 


