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Outlook
The combination of tridomain modules form vastly different NR-iPKSes will generate insight into the biochemical logic of the NR-iPKSes. As an example, the combination of 
tridomains from long chain and short chain iPKSes will show whether short chain ACPs can carry long chain products or if the PT-ACP-TE domain dictates premature release. 
If the designed linker is found to render the enzymes inactive, another design could focus on investigating a longer more flexible linker. This has been previously shown to 
enable different enzymes to function better in an assembly line fashion.3 Another option would be to mimic previous in vitro assays and express NR-iPKS domains 
individually.1,2

Kresten J. K Olsen, Thomas O. Larsen and Rasmus J. N. Frandsen
Department of Biotechnology and Biomedicine, Technical university of Denmark, Kgs. Lyngby, Denmark

References

[1] Newman et al. (2014). Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and 
rationale for catalytic reprogramming. J Am Chem Soc, 136(20): 7348-7362.
[2] Zhang et al. (2008). Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc Nat Acad Sci, 105(52): 20683-20688.
[3] Albertsen et al. (2011). Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous 
enzymes. Appl Environ Microbiol 77(3): 1033-1040.

Introduction
Polyketides form the basic building blocks of numerous natural products, which are in use in pharmaceuticals, food additives and other fine chemicals. 
Polyketides derived from fungi are formed by type I iterative PKSes (iPKSes). The common domain structure of a non-reducing iPKS (NR-PKS) is SAT-KS-AT-PT-ACP-TE, which 
enables the NR-PKS to produce very complex polyaromatic compounds. Studies have revealed the general catalytic properties of these domains, and for some even the 
specificity can be predicted based solely by bioinformatics.1,2

Some attempts have been made to investigate and engineer NR-iPKSes, but these have focused on in vitro assays. 1,2 To speed up construction and screening the present study 
focusses on in vivo analysis in S. cerevisiae of native and engineered iPKSes. To engineer the NR-iPKSes the combination of SAT-KS-AT and PT-ACP-(TE) tridomain units of 
different origin should create new compounds. The used linker between the tridomain units has been designed by multiple alignment of all the studied NR-iPKSes and by 
HMM investigation of the region between the AT and PT domains. This revealed a 12 amino acid long conserved region. This region is used as a uniform linker in the synthetic 
chimeric iPKSes as it will not extend the overall amino acid chain, thus native protein structure should be conserved.
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In vivo assembly
Fungal genes are often a mix of introns and exons. To
overcome risk of splicing errors of the pre-mRNA in
yeast, the iPKSes are assembled by homologous
recombination without introns.
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iPKS expression
Expression of the native NR-iPKS will show if the
native compound is produced in S. cerevisiae. The
analysis of choice will be HPLC-HRMS as this will be
able to identify breakdown patterns of specific
metabolites.

Chimeric iPKSes
By combining the SAT-KS-AT from one iPKS with the
PT-ACP-(TE) domain from another novel compounds
could be formed.
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Overview of investigated iPKSes
The domain structure, product length and first ring formation are shown. Right
column requires an unloading enzyme as the iPKSes are lacking a TE/RED domain.

Chemical logic of chimeric iPKSes
The SAT-KS-AT tridomain is proposed to control chain length while PT-ACP-(TE)
tridomain control the folding pattern. By combining non-native tridomains it may
be possible to engineer novel polyketide scaffolds.
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