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Light with finite rotation – an attempt for a theoretical description 
Steen G. Hanson, Department of Photonics Engineering, Technical University of 

Denmark, Denmark1 

ABSTRACT: 

The metamaterial filter introduced in the form of the so-called METATOY Johannes Courtial et al., j. opt. 13 
(2011))[1] has a series of interesting properties, although it can presently only be realized as an array of discrete 
elements, being it an array of Dove prisms or lens arrays. Nevertheless, a theoretical analysis of field propagation 
through such a twisting filter is still lacking. Based on the complex-valued ray matrix formalism (ABCD-
matrices/canonical transforms), the propagation through such a filter can be mimicked by using the known Green’s 
function (e.g. Aykut et al. Journal of the Optical Society of America a (2010) 27(9) 1896)[2]. This matrix for an 
entire system including a flipping filter is non-symplectic, which in fact indicates that this filter’s perturbation is ray-
optically forbidden. However, if we proceed and insert the matrix-values into this Green’s function, we arrive at 
results that are in agreement with the previously shown examples with METATOY. It is further shown how e.g. 
Fourier transformation of this filter will give rise to unexpected ray transformations. Finally, a new ray-optically 
forbidden element is discussed, as will possible future applications.  

Keywords: Metamaterial, Canonical Transforms, Matrix Optics. 

1. INTRODUCTION

The use of ray matrices for description of ray propagation – and field propagation, as well – has been commonly 
used for analyzing propagation through optical elements with transverse phase variations up to second order, i.e. 
lenses, free space and curved mirrors [3], all applicable within the Fresnel region. Later, the introduction of Gaussian 
shaped apertures were introduced giving rise to complex valued entries in the ray matrices [4],[5]. This has opened 
up for deriving analytical results within speckle-based sensors, interferometry, and optical coherence tomography, 
just to mention a few.  

In the following, we will first address the possibilities and restrictions for the ray transfer matrices used up until 
now. Then will follow a presentation of the light-ray-direction-flipping plate, named METATOY [1], [6],[7] and [8] 
and hereafter named the flipping filter. The crux of this presentation will be the introduction of a non-symplectic 
matrix to describe the METATOY plate. Following this, we will apply the matrix elements in the Green’s function 
and give some examples of incoherent and coherent propagation through an optical system that includes the ray-
flipping filter.  

Finally, we will introduce a new optical –forbidden – element that flips the light direction based on its incident 
position. A lens does this, but here the optical element flips the light azimuthally. Again, we will provide a matrix 
description for the element. 

1 vsgh@fotonik.dtu.dk 
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2. SYMPLECTIC MATRICES FOR SECOND-ORDER OPTICAL ELEMENTS

The general matrix for 2-D optical systems in paraxial systems is given by: 

11 12 11 12

21 22 21 22

11 12 11 12

21 22 21 22

 or 
' '' '
' '' '

x x

y y

x x

y y

p pA A B B x x
p pA A B B y y
p pC C D D x x
p pC C D D y y

⎧ ⎫ ⎧ ⎫⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬

⎩ ⎭⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭⎩ ⎭ ⎩ ⎭

A B
C D

     (1) 

Here the input coordinates and input slopes are (x,y) and (x’,y’), respectively, and the corresponding coordinates in 
the output plane are (px,py) and (px’,py’). Thus, the submatrices act as follows: 

• A is a 2x2 matrix giving the relation between output and input ray positions, i.e. the “magnification” of the
optical system

• B is a 2x2 matrix governing the relation between output position and input slope, i.e. the “length” of the
optical system. Exact imaging usually requires the real part of this element to vanish.

• C is a 2x2 matrix relating the output slope with the input position, i.e. an “anamorphic lens”, or in case the
matrix elements are complex, a tilted Gaussian aperture.

• D is a 2x2 matrix that relates the output and input slopes.

When we deal with a 4x4 ray tranfer matrix, we have included optically elements that are not aligned with the 
principal axes. 

The four most commonly used matrices are: 

The anamorphic lens:   

1 0 0 0
0 1 0 0

1/ 0 1 0
0 1/ 0 1

lens
x

y

f
f

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬−⎪ ⎪
⎪ ⎪−⎩ ⎭

M    (2) 

If the lens was tilted with respect to the axes, the C-matrix would have real-valued off-diagonal elements. 

Free space propagation a distance L:    

1 0 0
0 1 0
0 0 1 0
0 0 0 1

free space

L
L

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

M  (3) 

An assymetric Gaussian aperture: 2

2

1 0 0 0
0 1 0 0

2 / 0 1 0
0 2 / 0 1

aperture
x

y

i k
i k

ω
ω

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬−⎪ ⎪
⎪ ⎪−⎩ ⎭

M      (4) 

Here, complex-valued off-diagonal elements would appear if the aperture was not aligned with the axes. 
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multiplied in order to characterize an entire optical system with only one matrix. Note that some articles erroneously 
state that absorption gives rise to the determinant being different from unity! The requirement that the determinant is 
unity means that a 4x4 matrix has 10 degrees of freedom, or independent variables. In case of a 2x2 matrix 
describing a symmetric system, three independent variables exist if the input and output medium have the same 
refractive index. If we derive the matrix for a succession of two identical optical elements, we get the expected 
combined effect.  

What in connection with this paper is more important is the requirement that the matrices for the above optical 
systems have to be symplectic [3] in order for the eikonal to follow Fermat’s principle. This implies that for any 
optical matrix M the following relation must hold: 

,T =MΩM Ω       (5) 

where .=
⎧ ⎫
⎨ ⎬
⎩ ⎭

0 1
Ω

-1 0
 And for the mentioned matrices, these all are symplectic matrices belonging to the symplectic 

Lie group SL2(R), and if we include the matrix for the aperture, the group is expanded to SL2(C). Thus, a 
multiplication of such matrices will give a new matrix within this group. Should an optical system not obey Fermat’s 
principle, its associated matrix – if it exists – will not be symplectic.  

3. MATRIX FOR THE LIGHT-RAY-DIRECTION-FLIPPING PLATE

We now follow the descriptions given for the light-ray-direction-flipping plate named METATOY in [6], [7], and 
[8].  

We consider a plate that acts on an incident ray having an in-plane direction (x’,y’). The outgoing ray will, by virtue 
of this plate, obtain a directional change θ causing the outgoing direction (px’,py’) to become: 

( ) ( )', ' 'cos[ ] 'sin[ ], 'cos[ ] 'sin[ ] ,

or in matrix form:
' cos[ ] sin[ ] ' '

,
' sin[ ] cos[ ] ' '

x y

x

y

p p x y y x

p x x
p y y

θ θ θ θ

θ θ
θ θ

= + −

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬⎨ ⎬ ⎨ ⎬−⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

R

(6) 

Where [ ]θR  is the 2x2 rotation matrix having unit determinant. Therefore, an incident ray hitting the plate at an
arbitrary position will be rotated an angle θ  about the normal to the plate’s normal.  It is emphasized in view of the 

following that the matrix
θ

θ

⎧ ⎫
⎨ ⎬
⎩ ⎭

R[ ] 0

0 R[ ]
 that rotates both the input/output positions and simultaneously the 

associated ray directions will be symplectic. Following the example given in [6] and [9] we examine the effect of the 
flipping plate on a one-dimensional expanding field 2exp / (2 )ikx R−⎡ ⎤⎣ ⎦  with radius of curvature R. The light ray

direction of this is ( ) ( )0’, ,’ /x x Ry = , where we have omitted the unimportant z-component. The curl of this will
vanish as expected due to the curl of a field that is determined by the gradient of a potential equals zero. We now let 
this field pass the flipping plate with an angular twistθ , after which the ray direction according to Eq.6 becomes 

( ) ( )cos[ ] / , sin[ ] / .’, ’x yp p x R x Rθ θ=  The curl of this is:

( ) ( )sin[ ] / / cos[ ] / / sin[ ] / ,x R x x R y Rθ θ θ∂ ∂ − ∂ ∂ =                              (7)

All the above matrices will have unit determinant, and so will the matrix arising when a succession of matrices are 
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which only vanishes for the angle of rotation being zero or pi. In short, the ray plate has created a field with non-zero 
curl across the entire field! Such a field cannot be created as a continuous field, but the possibility of doing so in a 
pixelated way has been devised and experimentally proven in two ways. One way was to establish an array of Dove 
prisms, each of which flipped the incident ray direction the desired angle [7]; another experimental setup obtained 
the same pixelated filter by having two cylindrical lens arrays sharing the same focal point [7]. The outcome of these 
experiments are not shown here, but will later be linked with the results presented in the following.  

4. THE NON-SYMPLECTIC MATRIX FOR THE RAY-FLIPPING PLATE

By scrutinizing the effect of the ray matrix (1) and the outcome of the ray-flipping plate (6), it is tempting to 
introduce a new matrix: 

1 0 0 0
0 1 0 0

.
0 0 cos[ ] sin[ ]
0 0 sin[ ] cos[ ]

Flip θ θ
θ θ

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪−⎩ ⎭

M

 (8) 

The determinant of this matrix is unity, but as expected, it is only symplectic for flipping angles zero and pi, the 
latter mimicking the effect of phase conjugation.   

Knowing the ray matrix, we are able to derive the Green’s function that connects the field in the output plane with 
the field in the input plane [10]: 

( ) ( ) ( )1 1 1exp 2 .t t t
out inU U i dπ

∞ ∞ − − −

−∞ −∞
⎡ ⎤∝ − +⎣ ⎦∫ ∫p r r B Ar r B p p DB p r

   (9) 

Here the suffix “t” stands for “transpose” and the three submatrices are displayed in (1). In the above equation, we 
have omitted a common factor, which is of little importance in what follows.  

When we analyze a general 2D optical system, the result will be analytical but usually rather lengthy. Therefore, we 
will provide some simple examples showing what to expect if a flipping filter is included in an optical train of 
elements.  

In case of Fourier transforming the filter, we establish the matrix for the optical train consisting of filter with 
flipping angle θ - free space f - lens focal length f - free space f. Next, we derive the Green’s function connecting the 
field in the input and output planes (9). The matrix for the Fourier transform of the filter becomes: 

0 0 cos[ ] sin[ ]
0 0 sin[ ] cos[ ]

1/ 0 0 0
0 1/ 0 0

f f
f f

f
f

θ θ
θ θ

⎧ ⎫
⎪ ⎪−⎪ ⎪
⎨ ⎬−⎪ ⎪
⎪ ⎪−⎩ ⎭    (10) 

The A submatrix being zero indicates that the output position of a ray is independent on the ray’s input position, as 
is to be expected when Fourier transforming a field. On the other hand, in this case the rays’ output position at a 
given position depends on both components of the ray’s input slope! In the extreme, where / 2θ π= , we have that 
the output y-position depends only on the input slope in the x-direction. However, for an arbitrary direction of the 
filter, the Fourier properties are “twisted”, i.e. a given input slope gives rise to an impact at an angularly shifted 
position as seen by the rotation properties of the B-matrix.  
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6. CONCLUSIONS

An operational way of dealing with two optically elements that can only be implemented in discrete form, and which 
do not obey Fermat’s principle, has been discussed. The method hinges on assigning non-symplectic ray matrices 
(Canonical Transform) to the element, and based on these, use the associated Green’s function. A couple of 
examples on field propagation show good agreement with simulations with the so-called METATOY program [1].  

The field having passed the filters will possess finite curl, which means that vortices will be predominant opening up 
for applications within optical tweezers, cell sorting and measurement involving orbital angular momentum. The 
main issue for future application centers on how to implement a structure inducing finite curl! If we start with the 
pixelated structure, a decrease in each substructure will increase the diffraction properties, believed to inevitable blur 
the filter’s effect.  
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