
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 30, 2019

Local Estimation of the Earth's Core Magnetic Field

Hammer, Magnus Danel

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hammer, M. D. (2018). Local Estimation of the Earth's Core Magnetic Field. Kgs. Lyngby: Technical University
of Denmark (DTU).

http://orbit.dtu.dk/en/publications/local-estimation-of-the-earths-core-magnetic-field(edff864d-3a1b-42c7-9301-d0e8b3a58aec).html


Local Estimation of the Earth’s
Core Magnetic Field

PhD thesis presented by

Magnus Danel Hammer

for the degree of Doctor of Philosophy to

DTU Space - National Space Institute
Technical University of Denmark

September 2018



Supervisors

Prof. Christopher Charles Finlay
Geomagnetism, DTU Space
Technical University of Denmark
Denmark

Prof. Nils Olsen
Geomagnetism, DTU Space
Technical University of Denmark
Denmark

Location

DTU Space
National Space Institute
Technical University of Denmark
Kongens Lyngby, Denmark

Ph.D. thesis

Copyright © 2018 - Magnus Danel Hammer



iii

Preface

This Phd thesis entitled Local Estimation of the Earth’s Core Magnetic Field is the out-
come of a three-year PhD program at the Division of Geomagnetism, at the Technical
University of Denmark.

The project supervisors were:

• Prof. Christopher Charles Finlay at DTU Space, Technical University of Denmark

• Prof. Nils Olsen at DTU Space, Technical University of Denmark

The project was funded by the Technical University of Denmark and The Danish Council
for Independent Research - Natural Sciences, Grant DFF-4002-00366.

In connection with this thesis, work carried out has been included in two scientific ar-
ticles enclosed in Appendix A:

• Magnus Danel Hammer and Christopher Charles Finlay, 2019. Local Averages of
the Core-mantle Boundary Magnetic Field from Satellite Observations. Geophysical
Journal International, 216, 1901-1918

• Olivier Barrois, Magnus Danel Hammer, Christopher Charles Finlay, Yannick Mar-
tin and Nicolas Gillet, 2018. Assimilation of ground and satellite magnetic measure-
ments: inference of core surface magnetic and velocity field changes. Geophysical
Journal International, 215(1), 695-712



iv

Abstract

The geomagnetic field is generated in the Earth’s outer core by fluid motions in a process
known as the geodynamo. During the past 18 years satellite magnetic measurements have
provided new insights into the spatial structure of the field and its time variations. Among
these observations are the decay of the dipole field, the signature of a high latitude jet,
pulse-like features in the second time derivative of the field at the core-mantle boundary
(CMB) and rapid field changes called geomagnetic jerks. Theories into the origin and
dynamics of these phenomena may begin to converge as numerical dynamo simulations
reach more Earth like conditions and magnetic field measurements are made continuously
spanning longer time intervals. In order to gain further geophysical insights into the geo-
dynamo processes, there is a need for robust estimation of the core field and its evolution
and to quantify the uncertainty and resolution of these estimates. In this thesis two local
techniques for estimating the core-generated magnetic field are described and implemented
using satellite data from the Swarm and CHAMP satellite missions.

The first technique is the Virtual Observatory (VO) method, in which time series of the
field and field gradients at pre-specified locations at satellite altitude, are calculated via a
local procedure, such that short-period variations of the core signal can be investigated.
These VO time series resembles the time series from ground observatories which have
higher temporal resolution. We show that using a refined VO setup together with an im-
proved data selection and handling scheme, the VO time series exhibit strong correlation
in all three field components with time series of nearby ground observatories. Using the
VO time series, signs of field changes over South America around 2016 and in the Pacific
region in 2017 may be the first indications of a new geomagnetic jerk taking place. We
find that field models built using both vector and gradient VO data show evidence for
secular acceleration activity in the Pacific region.

In order to construct reliable estimates of the field tracking its evolution at the CMB,
appraisal is crucial. Appraisal consists of spatial resolution and variance estimation. The
second technique used builds on a modified Backus-Gilbert inversion approach called Sub-
tractive Optimally Localized Averages (SOLA). Using the SOLA method, localized av-
erages of the field and its first time derivative are estimated at the CMB, determined
via spatial averaging kernels, accounting for both internal and external field sources. We
incorporate information from data error covariance matrices which include along-track
serial error correlation. We show an example of a global collection of SOLA estimates
for the radial main field (MF), with widths of the averaging kernel varying between ∼18◦

and ∼54◦ depending on latitude, with a standard deviation of ∼10µT. We present global
collections of SOLA estimates for the radial secular variation (SV) at the CMB, based on
2yr data windows, with averaging kernel widths of ∼42◦, ∼33◦ and ∼30◦ at the equator,
with corresponding standard deviations of ∼0.25µT/yr, ∼2.5µT/yr and ∼5µT/yr. We
find that the morphology of the MF and SV maps agree well with results from spherical
harmonic (SH) based field models, however our method involves only averaging in time
and space and not spectral truncation or temporal regularization. We compute the local
accumulated secular acceleration (SA) by subtracting the SV SOLA estimates, based on
2yr data windows, from epochs 2 years apart, which have averaging kernel widths of ∼42◦

at the equator and standard deviation of ∼0.2T/yr2. Comparison of the SOLA based SA
and SH field models show good agreement, however we have direct control over the chosen
time window length and spatial averaging kernel. Investigating the time evolution of the
SA along the geographical equator and pushing towards higher temporal resolution, we
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compute 1 year SV differences, based on 1yr data windows. We are able to track coherent
structures of the SA and their evolution in time-longitude plots. In particular, we find a
distinctive SA ”cross-over”event having adjacent and strong oppositely signed SA features,
at longitude 25◦W in mid 2007. The SOLA technique proves to be well suited for high
resolution local studies of the rapidly evolving SA, while at the same time providing the
necessary means of appraisal.
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Dansk Resumé

Jordens magnetfelt genereres dybt inde i vores planet, hvor bevægelser af flydende metal
i den ydre kerne inducerer elektriske strømme i en proces kendt som geodynamoen. Satel-
litm̊alinger af jordens magnetfelt er ideelle til at studere denne proces. I denne afhandling
udvikles og anvendes to metoder til at undersøge magnetfeltet, og der gøres brug af data
indsamlet af Swarm- og CHAMP-satellitmissionerne.

Den første metode er kendt som Virtual Observatory (VO) metoden, der genere-
rer tidsserier af feltet og feltgradienter i forudbestemte positioner i satellithøjde. VO-
tidsserierne ligner tidserier fra jordbaserede observatorier, men er ikke begrænset af den
uregelmæssige geografiske fordeling af jordstationer. I afhandlingen foresl̊ar vi et forbedret
dataudvælgelses- og h̊andteringsprogram, der valideres ved sammenligninger med jordob-
servatorier. Ved hjælp af VO-tidserierne finder vi tegn p̊a ændringer i feltaccelerationen
over Sydamerika i 2016 og over Stillehavsomr̊adet i 2017. Kuglefunktionsmodeller bygget
ved brug af VO-tidserier af feltet og feltgradienter viser ogs̊a tegn p̊a feltacceleration i
Stillehavsomr̊adet. Dette har tidligere været anset for at være et omr̊ade med svag geo-
magnetisk aktivitet.

Den anden metode indebærer bestemmelse af lokale estimater beregnet som middelvær-
dier af magnetfeltet 2891km under jordens overflade ved kerne-kappe grænsen i yderkanten
af geodynamoen. Metoden kaldes Subtractive Optimally Localized Averages (SOLA), og
er en videreudvikling af Backus-Gilbert metoden indenfor seismologi og helioseismologi.
Denne metode muliggøre en omhyggelig kvalitetsvurdering af feltetestimaterne og deres
tidsafledte. I afhandlingen beskrives de teoretiske rammer og den numeriske implemente-
ring af metoden i detaljer. Vi præsenterer anvendelser af metoden til estimering af det
radiale felt, dets første tidsafledte (feltændringen, SV) og dens anden tidsafledte (feltac-
celerationen, SA). Ved hjælp af SOLA metoden viser vi, at det er muligt at kortlægge
tidsudviklingen af sammenhængende strukturer i SA. Specielt identificerer vi en markant
SA ”crossover”hændelse ved længdegrad 25◦W i midten af 2007. SOLA metoden har vist
sig at være velegnet til lokale studier med høj opløsning af feltaccelerationen, samtidig
med at den tilvejebringer den nødvendige kvalitetsvurdering.
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Acrynoms

ADM Axial Dipole Moment
ASM Absolute Scalar Magnetometer
AT Along-Track
BVP Boundary Value Problem
C3FM Continuous Covariant Constrained endpoints Field Model
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CIY4 Swarm CI Field Model
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GO Ground Observatory
GRIMM GFZ Reference Internal Magnetic Model
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gufm1 Geomagnetic Field model from 1590 A.D. to 1990 A.D.
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IMO INTERMAGNET Magnetic Observatory
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LSC-1 Lithospheric Field Model
LEO Low Earth Orbiting
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LSQR Least Squares Quadratic Regularization
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MEME Model of the Earth’s Magnetic Environment
MF Main Field
MF7 Crustal Field Model
MHD Magnetohydrodynamics
MOLA Multiplicative Optimally Localized Averages
NBC Neumann Boundary Condition
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NBVP Neumann Boundary Value Problem
NEC Norht-East-Center Coordinate System
NGDC-720 Crustal Field Model
NWU North West Up
OLA Optimally Localized Averages
OMNI Solar wind magnetic field and plasma data at Earth’s Bow

Shock Nose
PCA Principal Component Analysis
PEJ Polar Electroject
POMME Potsdam Magnetic Model of the Earth
QD Quasi Dipole
QG Quasi-Geostrophic
RC Ring Current index
RMS Root-Mean-Square
SA Secular Acceleration
SAC-C Scientific Applications Satellite - C
SCARF Satellite Constellation Application and Research Facility
SEU South-East-Up Coordinate System
SH Spherical Harmonic
SHA Spherical Harmonic Analysis
SIFM Swarm Initial Field Model
SIVW Selective Infinite-Variance Weightning
SM Solar Magnetospheric
SOLA Subtractive Optimally Localized Averages
Sq Solar Quiet
STR Star Tracker
SV Secular Variation
SWA Swarm satellite Alpha
SWB Swarm satellite Bravo
SWC Swarm satellite Charlie
TL Time-Longitude
UT Universal Time
VFM Vector Field Magnetometer
VO Virtual Observatory
WDC World Data Center for Geomagnetism
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Symbols and notation

Symbol Name

α Regularization parameter
β Polynomila coefficients

β̂ Least squares solution
Γpkq Christoffel symbol

γ Angular distance or variogram
γmn Gauss coefficient in complex notation
∆d Magnetic data differences
∆dAT Along-track magnetic data differences
∆dEW East-west magnetic data differences
∆G Data kernels associated with data differences
δ(r− r′) Dirac delta function
δ(Ω− Ω′) Dirac delta function angular part
δB Residual magnetic field vector
δBV O VO residual magnetic field vector
δX Residual magnetic field in northward direction
δY Residual magnetic field in eastward direction
δZ Residual magnetic field in downward direction
δt Time lag
ε Residuals between data and model or external part of RC index
ζn Angle of degree correlation
ν Coefficients of VO magnetic potential
µ Lagrange multiplier
Θ Objective function
ι Internal part of RC index
κ Width parameter of Fisher function
λ SOLA trade-off parameter
ρ Source function or correlation coefficient
ρn Degree correlation
ρr Correlation coefficient of radial component
ρθ Correlation coefficient of meridional component
ρφ Correlation coefficient of azimuthal component
σ̂ SOLA error estimate
σ Electrical conductivity or standard deviation
Σd Magnetic data sums
ΣdAT Along-track magnetic data sums
ΣdEW East-west magnetic data sums
ΣG Data kernels associated with data sums
σw Huber weighted data uncertainies
Ψ Angular distance or scalar function
ψ Magnetic scalar potential
ψint Internal magnetic scalar potential
ψext External magnetic scalar potential
ψC Magnetic potential of core-generated field
ψM Magnetic potential of magnetospheric field
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∇B 3× 3 magnetic gradient field tensor
∇BV O VO 3× 3 magnetic gradient field tensor
τ Target time or correlation time
Φ Scalar function
$ IMF clock angle
η Magnetic diffusivity

A Magnetic vector potential
A Area of spherical surface
a Radius of source surface S1 or mean Earth radius (also ra)
B Magnetic vector field

B̂r SOLA radial magnetic field estimate

B̃L Truncated SH expansion of radial magnetic field
BC Outer core-generated magnetic field
BM Large-scale magentospheric field

Ḃr First time derivative of radial magnetic field
Br Magnetic field component in radial direction
Bθ Magnetic field component in meridional (southward) direction
Bφ Magnetic field component in zonal/azimuthal (eastward) direction
Bt Magnitude of IMF field
Bx IMF field component in sun-ward direction (GSM frame)
By IMF field component in dusk-ward direction (GSM frame)
Bz IMF field component in northward direction (GSM frame)
Bcrust Crustal magnetic vector field
Be
pol External poloidal magnetic field

Bi
pol Internal poloidal magnetic field

Be
tor External toroidal magnetic field

Bi
tor Internal toroidal magnetic field

Biono Ionospheric magnetic vector field
Bmag Magnetospheric magnetic vector field
BMF Main magnetic vector field
BMF
V O VO main field magnetic vector field

BV O VO magnetic vector field
Bsatellite Satellite magnetic vector field measurements
Bsh
pol Poloidal magnetic field in a shell

Bsh
tor Toroidal magnetic field in a shell

b Radius of source surface S2
cw Huber turning constant
dV O VO search radius
E Electric vector field
E Data error covariance matrix
Em Merging electric field
F10.7 Solar flux index at wavelength 10.7cm
f Frequency
G Design matrix

G† Generalized inverse
G∗ General notation of data kernels for vector data or data sums and differences
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GC Exterior data kernels
GM Interior data kernels
gmn Internal Gauss coefficients
H Heaviside function or temporal kernel function
H Temporal kernel Matrix
hmn Internal Gauss coefficients
hV O Altitude of VO above ra
I Identity matrix
J Weight function
J Electrical current density
Jb Electrical current density of bounded currents
Jd Electrical current density of displacement currents
Jf Electrical current density of free currents
Je Electrical currents external to the ionosphere
Ji Electrical currents internal to the Earth’s surface
Jetor Toroidal electrical currents external to the ionosphere
Jitor Toroidal electrical currents internal to the Earth’s surface
Jshtor Toroidal electrical currents within the ionosphere
K Averaging kernel
KC Averaging kernel for core source
KM Averaging kernel for magnetospheric source
k Field component index r, θ, φ
Kp Planetary geomagnetic activity index
L Regularization matrix
lp Lebedev quadrature weights
M(n,m) Sensitivity matrix
Ml B-spline basis functions
NC Exterior Neumann Green’s function
NM Interior Neumann Green’s function
Nlm Surface spherical harmonic pre-factor
NV O Number of VO’s
n̂ Normal vector
P Poloidal scalar potential
P ext External poloidal scalar potential
P int Internal poloidal scalar potential
Pml Associated Legendre functions of degree l and order m
Pl Legendre polynomials of degree l
q SOLA weighting coefficients
qc Electrical charge
qmn External Gauss coefficients
R Real numbers
R Resolution matrix
Re External power spectrum
Ri Internal power spectrum
Rt Toroidal power spectrum
R
y

Rotation matrix about the y axes

R
z

Rotation matrix about the z axes

RSEU
ECEF

Rotation matrix from the ECEF to the SEU frame
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RECEF
SEU

Rotation matrix from the SEU to the ECEF frame

RC Ring Current index
r0 SOLA target position vector
rp Lebedev position vector
ra Mean Earth radius, 6371.2km
rc Mean CMB radius, 3480km
rm Mean magnetosphere radius, 4ra
S1 NBVP source surface 1
S2 NBVP source surface 2
SC CMB source surface
SM Magnetosphere source surface
SAV O VO secular acceleration
SVV O VO secular variation
smn External Gauss coefficients
T Target kernel
TC Target kernel for core source
TM Target kernel for magnetospheric source
t Time
t0 SOLA target time
tref Taylor series expansion reference time
tm,cn Toroidal expansion coefficients
tm,sn Toroidal expansion coefficients
u Velocity vector field
V Volume or magnetic potential
v Solar wind velocity
W Lebedev matrix
WL Averaging window function
w Huber weights
X Magnetic field component in meridional (northward) direction
Y Magnetic field component in zonal/azimuthal (eastward)
Ylm Surface spherical harmonics
Y m
n,c Normalized (surface) spherical harmonics

Y m
n,s Normalized (surface) spherical harmonics

Z Magnetic field component in vertical downward direction

Physical Constants

Symbol Quantity Value SI units

ε0 permittivity of vacuum 1/(µ0c
2) = 8.854187817× 10−12 F/m

µ0 permeability of vacuum 4π = 12.566370614× 10−7 H/m
c speed of light 2.99792458× 108 m/s
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Chapter 1

Introduction

The Earth’s magnetic field at any given time and position is the sum of the magnetic
field contributions from a wide range of sources, all of which vary in both space and time.
Deciphering this signal in an effort to uncover and investigate the underlying sources and
their underlying processes is a major challenge in geomagnetism. The study of the geo-
magnetic field continuously evolves as more magnetic field measurements are acquired and
new analysis technologies are developed, such that better understanding and new insights
into the geophysical mechanisms can be established. One major piece of this puzzle is
the core-generated magnetic field, originating in the dynamics of the electrical conducting
liquid outer core of the Earth. The core field is generated by a dynamo that is essen-
tially fuelled by the cooling of the Earth. Improved knowledge of the core field and how
it evolves in time may lead to new insights into the inner workings of the dynamo and
to what causes the observed temporal field changes. Perhaps most importantly, a better
understanding of the core dynamics holds the prospects of being able to estimate how the
field will evolve in the near future.

For the past 18 years magnetic field measurements from low Earth orbiting satellites
have provided new information on small-scale field features exhibiting short time scale
variations (Olsen and Mandea, 2008; Lesur et al., 2008; Finlay et al., 2016b). Studies of
the first and second time derivative of the main field (MF), termed secular variations (SV)
and secular acceleration (SA), respectively, have shown that rapid subdecadal changes are
taking place. Such changes may be probed down to a period of perhaps 1 year, limited
by mantle filtering (Mandea et al., 2010; Chulliat et al., 2015). Lately, spatial differences
of multiple satellite magnetic field observations have been used in order to enhance the
recovery of small-scale field features. Compared to using vector data, differences of mag-
netic field measurements are less sensitive towards unmodelled large-scale external field
contamination (Kotsiaros et al., 2015; Olsen et al., 2015; Finlay et al., 2016b). Geomag-
netic field models built using Swarm measurements have shown that the radial SV can be
determined up to spherical harmonic (SH) degree 11 from 1 year of measurements (Olsen
et al., 2015, 2016). However, time-dependent geomagnetic field models based on spheri-
cal harmonics and B-splines are forced to imposed model regularization in a non-uniform
manner that typically influences higher SH degrees more strongly (Constable and Parker,
1988; Olsen et al., 2009). This complicates the interpretation of the truncated SV and SA
signals plotted in global maps, especially in light of the SV and SA power spectra being
blue (i.e. the power increases with SH degree), and because the instantaneous SA may be

1
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formally undefined (Bouligand et al., 2016).

A number of striking observations have been made concerning the morphology and time
evolution of the field. For example, during the last 180 years the dipole field has decayed
in strength by ∼9%, and studies have linked this decay to either expulsion of toroidal mag-
netic field due to fluid upwelling, or the combined effect of asymmetries in the magnetic
field and the motions of a planetary-scale gyre in the southern hemisphere (Gubbins, 1987;
Olson and Amit, 2006; Finlay et al., 2016a). On shorter time scales, using 3 year data
time windows, pulsating features in the radial SA at the CMB focused along the geograph-
ical equator have been reported and interpreted as waves propagating at the core surface,
and possibly in a stably stratified layer at the top of the core (Chulliat and Maus, 2014;
Chulliat et al., 2015). On the other hand, dynamo simulations have suggested that the SA
should be expected to exhibit pulse like behaviour with distinctive equatorial localization
(Aubert, 2018). Geomagnetic jerks have been associated with a change in polarity of SA
pulses (i.e. in between consecutive pulses of opposite sign), and to sign changes in the
non-zonal azimuthal core flow acceleration. Very recently, dynamo simulations have been
used to link geomagnetic jerks with the sudden buoyancy release from within the core, and
the associated triggering of hydromagnetic waves (Aubert and Finlay, 2018). However,
many observational details of the SA signal at short length and time scales remain unclear.

Figure 1.1: Illustration of the ESA Swarm constellation satellite mission, having amongst
its science objectives studies of the core dynamics, geodynamo processes, and core-
mantle interaction (Credit: ESA/ATG Medialab, https://earth.esa.int/web/guest/
missions/esa-eo-missions/swarm/mission-overview).

When investigating the geomagnetic field evolution important questions arise: how do
we determine reliable estimates of the MF, SV and SA on both global and local scales?
How can such estimates be used to best map the core flow? What can we say about
the observed time changes, such as the dipole decay, jerks and SA pulses? What does

https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/mission-overview
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/mission-overview
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this tell us about the processes operating in the core? In order to be able to answer
some of these questions, pushing towards finer signal recovery, an essential issue is the
ability to construct robust estimates of the field, together with uncertainty and resolution
information, when mapping the field morphology and tracking its time evolution. It turns
out that in order to properly describe the core-generated magnetic field, detailed knowledge
of the electrical current system surrounding the Earth is required. This constitutes a
very challenging problem and may in fact be the major limiting factor when trying to
determine the core magnetic field. This means that alternative approaches have to be
considered in order to investigate whether observed features are truly reliable, in order
to give confidence that further geophysical interpretation can be carried out. The Swarm
satellite constellation setup is particularly useful for such core field studies, due to the
gradient concept where measurement differences along-track and cross-track (for the side-
by-side flying Swarm Alpha and Charlie pair) can reduce the contamination from large-
scale external fields. When pushing towards retrieval of finer field structures in time
and space, appraisal techniques become important. Appraisal comprises of field spatial
resolution and variance estimation, assessing the limitations of the data and the validity
of field features observed at the CMB. Appraisal is crucial for advancing our knowledge of
core dynamics, and especially when considering the new possibilities of tracking the field
offered by the Swarm satellite constellation mission. Figure 1.1 presents an illustration of
the Swarm satellite constellation orbiting the Earth, measuring the magnetic field.

1.1 Objective of Thesis

The objective of this thesis is to describe and to develop local methods of robustly es-
timating the core-generated magnetic field, and to used these to better characterize the
secular variation and the secular acceleration. Magnetic field observations from the Swarm
and CHAMP satellite missions will be used and, in particular, advantage will be taken of
along-track and east-west (for Swarm only) data differences.

Two local techniques are described and investigated. The first technique is the Virtual
Observatory (VO) method, generating time series of the magnetic field and its spatial
derivatives at pre-specified locations at satellite altitude by using satellite magnetic field
observations. Thereby the VO method tries to mimic the time series of ground observa-
tories. The second technique is based on a modified Backus-Gilbert inversion approach
called Subtractive Optimally Localized Averages (SOLA), where estimates of the field at
the core-mantle boundary are determined by local field averages using satellite magnetic
field observations. A fundamental aspect of the latter method is formal appraisal of spatial
resolution and variance estimation.

1.2 Outline of Thesis

The outline of this thesis is as follows.

Chapter 2 presents an introduction to the Earth’s magnetic field, providing an overview
of the most important contributing sources and their magnetic signature. This is followed
by a short description of different geomagnetic field disturbance diagnostics used in the
thesis when selecting data. This chapter also includes sections on the basic mathematical
description of the geomagnetic field and reviews some recent internal geomagnetic field
models and their limitations.

Chapter 3 describes measurements from the CHAMP and Swarm satellite missions,
and provides details of the data selection criteria and processing steps used. Two data sets
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were built and used in this thesis. An exploratory data analysis was carried out for one
of these data sets, and the chapter includes a description of how the data error covariance
matrices used in this thesis were built.

Chapter 4 describes the virtual observatory (VO) method and how this was imple-
mented. The work carried out relies on previous experience with the method and includes
new modelling initiatives and analyses of these, along with recommendations on future
usage of the VO method.

Chapter 5 describes a modified Backus-Gilbert inversion method called subtractive
optimally localized averages (SOLA). The SOLA method is applied to the geomagnetic
problem of determining the core-mantle boundary radial magnetic field and its time deriva-
tives. Two different approaches to handling the field time-dependence are investigated.

Chapter 6 provides a summary of the results and findings of the VO and SOLA meth-
ods, and some conclusions.

Appendix A includes published and submitted papers, made in connection with the
work of this thesis. Appendix B includes studies made of the VO method using synthetic
data. Appendix C includes results of field computations with the VO method.

1.3 Units and Conventions

In this thesis a scalar is denoted using regular type, e.g. d, a vector is denoted by bold, e.g.
v and a matrix is denoted by bold and two underlines, e.g. G. The real three-dimensional
Euclidean vector space is denoted by R3 in which a point in space using an orthogonal
Cartesian coordinate system is given by the position vector r(x, y, z) or by its spherical
polar coordinates r(r, θ, φ). The convention used here for spherical geometry is that θ
denotes the polar angle also termed colatitude. A unit vector for the vector r having size
|r| is denoted r̂ and given by r̂ = r

|r| . Notation for differentiation follows the standard

Leibniz’s formulation, e.g. df/dx, and partial differentiation is written as ∂f/∂x. Both
Lagrange’s and Newtons’s notations will also be used, e.g. f ′(x) and ẋ (where the dot
notation refers to time derivatives), respectively.

This thesis implements units of the Système Internationale (International System, ab-
breviated as SI). The vector B is called the magnetic field (formally it is the magnetic
induction or flux density), and the related field H referred to as the auxiliary field or
magnetic displacement vector (Griffiths, 1999; Backus et al., 1996). The magnetic field
measured above the Earth’s surface is to a good approximation B and not H, however since
the permeability µ ∼ µ0 in the atmosphere due to the vanishing magnetic susceptibility
the fields B and H are proportional (LEO satellites take measurements in the thermo-
sphere, i.e. the lower ionospheric F-region) (Gubbins and Herrero-Bervera, 2007; Hrvoic
and Newitt, 2011; Backus et al., 1996). The physical quantity B is in the Euclidean vector
space, a geometric entity equipped with both length and direction, and is measured in the
standard SI-unit Tesla where [1T = V s

m2 ] (the auxiliary field H has units [Am]). In geo-
magnetism the magnetic fields occurring are often stated as being of the order micro Tesla,
i.e. 1µ T= 10−6T or nano Tesla, i.e. 1nT= 10−9T. This thesis shall retain from using
the auxiliary field H altogether, and instead reserve the letter H for the Heaviside function.

All programming work carried out in this thesis was done using Matlab version 2015b.



Chapter 2

The Earth’s Magnetic Field

This Chapter provides an overview of the different sources which contribute to the geo-
magnetic field as measured above the Earth’s surface. It also describes the fundamental
principles used in present day geomagnetic field models and their limitations. Figure 2.1
presents an overview sketch of the spatial location of some the most important sources
which contribute to the magnetic field (top plot) and an associated sketch (bottom plot)
providing insights into their spectral domains, amplitudes, spatial wavelengths and tempo-
ral scales as observed at a typical satellite altitude of 350km. The sources are traditionally
divided into their location relative to the Earth’s surface as being either internal or ex-
ternal. Dynamo action in the liquid outer core and crustal magnetization in the upper
layers of the Earth constitute the internal sources, whereas electrical current systems in
the ionosphere and magnetosphere belong to the external sources. As illustrated in the
plots the external ionospheric current systems are numerous and very complex in their
nature and appearance, and they vary rapidly with location and time. Among these are
E-region current phenomena including the polar and equatorial electrojects (PEJ and EEJ,
respectively), the solar quiet (Sq) field, and F-region currents including plasma bubbles,
interhemispheric field-aligned currents (IHFAC) and magnetospheric field-aligned coupling
currents at polar regions (FAC). In addition to these sources, time variations in the external
fields induce electrical currents within the Earth and oceans thereby producing secondary
magnetic fields. Notice here the region in which satellite measurements are usually taken;
the CHAMP and Swarm satellites fly between altitudes of roughly 200-500km, i.e. within
the ionospheric F-region thus meaning that contributions from the ionospheric E-region
currents would be observed as internal from a satellite perspective.

It is crucial to have an understanding of the length and time scales associated with
the contributions to the magnetic field from all the different sources. The bottom plot
in Figure 2.1 shows this in a schematic way; the bottom and top axes show the spherical
harmonic degree and corresponding spatial wavelength, respectively, while the left and
right axes show the mean field amplitude and the mean squared field amplitude (i.e. the
power), respectively. Because satellites are moving at approximately 8km/s, it is not
possible to decipher if the field measured is due to a temporal or a spatial change; this is
illustrated by the upper most axis which illustrates that the magnetic signal from a source
having a time period τ , would correspond to a certain spatial scale. For instance, a period
of 150s would look like a spatial feature of 1200km Olsen and Stolle (2012). Also shown
in this plot is the observed power spectrum for a given spherical harmonic degree n of the
internal field from the core and crustal sources, by the combination of models CHAOS-4

5
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Figure 2.1: Sketches of the different sources making significant contributions to the mag-
netic field observed. The top plot shows the location of the sources while the bottom plot
shows the corresponding spectral domains, amplitudes, spatial wavelengths and temporal
scales as observed at a typical satellite altitude of 350km. Extracted from Olsen and Stolle
(2012).
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for n ≤ 90, MF7 for 90 < n ≤ 133 and NGDC-720 for n > 133, plotted in black dots. The
plots give of indications as to what can be expected from the internal and external sources;
in particular the internal fields are seen to overlap in the spectral domain, as do internal
and external sources. Lastly, a green curve is plotted which shows the time derivative of
the core field, and what might be expected from this.

2.1 The Field Generated in the Outer Core

The main part of the Earth’s internal magnetic field is believed to be produced by a
self-sustaining dynamo process, called the geodynamo, converting kinetic energy into elec-
tromagnetic energy. The cooling of the Earth along with chemical differentiation at the
inner-core boundary causes vigorous convection in the liquid metallic outer core of the
Earth. Fluid motions gives rise to the geodynamo in the outer core, stretching, twist-
ing and advecting the magnetic field (Buffett, 2000; Jones, 2015). The workings of the
geodymano are governed by the laws of magnetohydrodynamics (MHD) which describe
the motion of electrically conducting fluids in the presence of magnetic fields in a rotating
system (e.g., Gubbins and Roberts, 1987; Finlay et al., 2010a). Magnetohydrodynamics
combines the laws of electrodynamics (given by Maxwell’s equations) with the force balance
of a rotating fluid flow (given by the Navier-Stokes equation), coupled with the continuity
equation (conservation of mass), the Poisson’s equation for the gravity field and finally the
heat equation. The related differential equations together with a number of simplifying
assumptions (such as the Boussinesq approximation) and boundary conditions allow stud-
ies of the geodynamo to be carried out (Gubbins and Roberts, 1987; Roberts, 2015). The
interplay of the different force terms in the Navier-Stokes equation along with magnetic
field feed-back coupling is very complex, but insights can be gained by considering the rel-
ative importance of the force terms. For instance, considering slow motions and neglecting
buoyancy, viscous effects and the Lorentz force leads to the geostrophic balance. Because
the Earth is rapidly rotating, the flow tends to organize in columnar structures parallel to
the rotation axis, such that the flow becomes invariant along these, as described by the
Proudman-Taylor theorem.

Figure 2.2: Snapshot example from a 3D geodynamo simulation showing the magnetic
field intensity within the core and the radial magnetic field at the CMB (left plot) and the
azimuthal (i.e. east-west) velocity (right plot) where the color scale indicates the direction
of the flow. The inner sphere represents the inner core, and the white line in both plots
represents the rotation axis. Extracted from Schaeffer et al. (2017).

However, the origin of the main field was a mystery that persisted up until the mid
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1900s. Speculations into possible mechanisms flourished and the reader is referred to the
interesting reviews given in (Chapman and Bartels, 1940, p. 701), (Rikitake, 1966, p. 13)
and Parkinson (1983) for further details. In 1919 Larmor suggested that dynamo action
could be responsible for the magnetic field of the sun (Larmor, 1919). Dynamo theory
was developed starting with simple dynamo considerations (e.g., Elsasser, 1946; Bullard,
1955), and in 1963 Braginsky established the driving mechanism of the geodynamo (Gub-
bins, 2010), and later Glatzmaiers and Roberts (1995) succeeded in recreating important
properties such as reversals of the geomagnetic field using a 3D geodynamo simulation.
Throughout the intermediate years important studies where carried out in more detailed
using simplified dynamo descriptions, trying to understand the fundamental processes
and mechanisms responsible for the generation and behaviour of the geomagnetic field
(e.g., Gubbins and Roberts, 1987; Merrill et al., 1998; Backus et al., 1996; Gubbins, 2010;
Roberts, 2015). This included kinematic dynamo models having prescribed velocity fields,
and mean-field dynamos (splitting the magnetic field and flow into a mean large scale
part and a small turbulent part) where a small turbulent part of the flow would generate
a large scale magnetic field (Roberts, 2015). Although much progress has been achieved
since 1995, and characteristics such as drift of field features and secular variation, the
role of diffusion, and complex polarity reversals have emerged from the simulations (e.g.,
Aubert et al., 2013; Sheyko et al., 2016; Aubert, 2018; Christensen and Wicht, 2015; Scha-
effer et al., 2017), geodynamo model simulations are still relatively far from reaching real
Earth conditions and unresolved issues include the validity of simplifying assumptions, the
various dynamical interplays and understanding turbulence in the core (Christensen and
Wicht, 2015).

In Figure 2.2 a snapshot example of a 3D dynamo simulations from Schaeffer et al.
(2017) is given, showing the magnetic field intensity within the core and the radial magnetic
field at the CMB (left plot) along with the azimuthal (east-west) fluid velocity (right plot).
Both plots show the outer and inner core with a slice extracted such that the equatorial and
meridional plans are visible. The plots illustrate some of the inner workings of the outer
core producing the radial field at the CMB; for instance the columnar flow features going
parallel to the rotation axis and the effects of the inner core causing differentiated motion
behaviour inside the tangent cylinder compared to outside (i.e. an imaginary cylinder
tangent at the equator of the inner core). In recent years, data assimilation, using the
actual geomagnetic field observations, has begun to be a valuable tool in gaining significant
insights into core dynamics, for instance identifying torsional oscillations and identifying
magnetic diffusion associated with up- and downwellings (e.g., Beggan and Whaler, 2009,
2010; Gillet et al., 2010; Aubert, 2013; Barrois et al., 2018). As more satellite data becomes
available and data assimilation technology progresses, the possibility to better forecast the
evolution of the main field will become an increasing relevant topic (Hulot et al., 2015).

2.1.1 Time Variations of the Core Magnetic Field

The core-generated magnetic field changes on time scales ranging from months to centuries.
The first and second time derivatives of the main field are called the secular variation (SV)
and the secular acceleration (SA), respectively. The temporal changes includes a number of
intriguing features such as the westward drift, noticeable east-west asymmetry of the field
evolution between the Pacific and the Atlantic hemispheres, signatures of an accelerating
high-latitude jet, geomagnetic jerks and decay of the geomagnetic dipole, all of which
have been linked to the processes in the outer core (Jackson and Finlay, 2015; Livermore
et al., 2017). Furthermore, on longer time-scales the geomagnetic field undergoes dramatic
changes, called polar reversals, where the magnetic poles switch places, and at times so-
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called field excursions can take place. In such processes the inner core is believed to play a
significant role (Gubbins, 1999). The time change of the magnetic field is governed by the
magnetic induction equation which is derived form Maxwell’s equations and Ohm’s law
for a moving conductor, here assuming constant conductivity (e.g., Gubbins and Roberts,
1987; Holme, 2015)

∂B
∂t

= ∇× (u×B) + η∇2B (2.1)

here B is the magnetic field, u is the fluid velocity (typical ∼ 10 − 20km/yr) and η =
1/(µ0σ) = 1.69m2s−1 is the magnetic diffusivity where µ0 is the permeability of free space
and σ is the fluid electrical conductivity (Gubbins and Roberts, 1987; Finlay et al., 2010a,
e.g.). The second term of equation (2.1) represents the effect of magnetic diffusion due to
the finite resistivity of the fluid. The characteristic time-scale associated with diffusion is
∼ 23.000yrs for a spherical conductor of the size of the Earth’s core, which means that
if there were no fluid flow, i.e. a stationary case where u = 0, the field would diffuse
away (e.g. Gubbins and Roberts, 1987). The first term is the advective effect to the field
evolution, and considering a perfect conductor (σ =∞) the second term drops to zero such
that the magnetic field lines would be frozen into the fluid and moving along with it; this
is also known as Alfvén’s theorem. The time scales of the SV are years to centuries, thus
shorter than the diffusion time. Furthermore, considering the non-dimensional magnetic
Reynolds number, Rm, (i.e. the ratio of the advection to diffusion), applying typical length
and flow scales, leads to Rm ∼ 300− 1000 (Gubbins and Roberts, 1987; Christensen and
Tilgner, 2004). Even though this is a simplified scale analysis using a single system length
scale, by assuming that time variations are sufficiently, short and the magnetic features are
sufficiently large a reduction of equation (2.1) is commonly carried out leading to the frozen
flux induction equation being the main tool for core flow inversions (Roberts and Scott,
1965; Holme, 2015). Thereby the main assumption is, that advection by the core flow is
the primary cause of the observed secular variation. Several studies have investigated the
validity of the frozen flux assumption looking for time changes in null-flux curves at the
CMB (Jackson and Finlay, 2015), and some studies claim to have observed flux expulsion
(e.g., Bloxham and Gubbins, 1985; Chulliat and Olsen, 2010).

Figure 2.3: Comparison between an idealised jerk (top plots) as seen in the MF, SV and
SA, and corresponding monthly mean time series of the Y -component and its derivatives
at the Eskdalemuir (ESK) observatory in Scotland (bottom plots). The amplitude of the
jerk is denoted A. Extracted from Brown et al. (2016).

However, the true nature of the dynamics underlying the observed time changes are
still not clear, for instance, the westward drift which has been known for a long time
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and has often been attributed to large-scale core flow (Parkinson, 1983; Holme, 2015).
Another possible contribution to the westward drift are propagation of magnetic waves in
the Earth’s outer core as identified in the gufm1 field model (Finlay and Jackson, 2003;
Jackson and Finlay, 2015) and it has been linked to inner-core superrotation (Livermore
et al., 2013). Furthermore, geomagnetic jerks which are rapid field changes, also known
as SV impulses, also not well understood. Jerks are seen as sharp changes in the rate of
change of SV, or equivalently as abrupt changes in the SA at the Earth’s surface, and are
especially clear in the Y field component (e.g., Mandea et al., 2010; Jackson and Finlay,
2015). Jerk are identified in time series of the SV as ”V” or ”Λ” shaped features, and the
SA as step changes ”/” or ”\” shaped features centred on zero (Mandea et al., 2010; Brown
et al., 2016). Figure 2.3 illustrates the signature of the 1969 jerk in the Y component of
the field as observed in Eskdalemuir in Scotland and its time derivatives.
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Figure 2.4: The plot shows the variation in magnitude (blue scale) and decay rate (red
scale) of magnetic axial dipole g0

1 from 1840-2010, from the COV-OBS model (Gillet et al.,
2013). Extracted from (Finlay et al., 2014).

Another important feature is the decay of the geomagnetic axial dipole, which makes
a large contribution to the SV observed during the last 180yrs. Figure 2.4 shows the
magnitude of the axial dipole (in blue, left scale) and the corresponding decay rate (in
red, right scale). It can be seen that since 1840 the axial dipole has decayed by 9%.
Underlying mechanisms for the dipole decay has been proposed including; magnetic dif-
fusion at the CMB through toroidal magnetic field flux expulsion associated with fluid
upwelling (Gubbins, 1987), flow oscillations in a stably stratified layer at the top of the
outer core (Buffett, 2014), and it has been linked to southward movement of field patches
in the southern hemisphere and field reversal (Gubbins, 1987; Gubbins et al., 2006; Olson
and Amit, 2006). Finlay et al. (2016a) suggested that meridional transport of field flux
patches, linked to a planetary-scaled gyre motion observed in core flows in the southern
hemisphere, together with asymmetries of the geomagnetic field related to the South At-
lantic Anomaly, are responsible for the observed dipole decay, acting to redistribute energy
into higher SH degrees. In their geodymamo simulations, the authors found no evidence
of increased magnetic diffusion as an explanation for changes in the axial dipole moment.
Figure 2.5 gives an illustration from the geodynamo simulation associated with the studies
of Finlay et al. (2016a), showing part of the outer core dynamics and magnetic field as
well as the surface core flow and magnetic field. In particular, the plot illustrates how
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the equatorward surface flow of the eastern part of the gyre can be linked to columnar
convection within the outer core.

Figure 2.5: The plot gives an illustration from a geodynamo simulation showing the CMB
radial magnetic field (in orange and blue color) and the associated core surface flow (global
maps in the bottom and top subplots, respectively), the average azimuthal field within
the core, columnar convection of the eastern part of the gyre is shown by iso-surfaces of
constant axial flow velocity, and magnetic field lines within the core in grey threads (the
thread thickness indicates their magnetic energy). The inner core is the back sphere in
the center. Extracted from Finlay et al. (2016a).

Figure 2.6 shows global maps of the CMB quasi-geostrophic (QG) flow averages (i.e.
a flow invariant along the rotation axis) from 2000-2010 along with the radial magnetic
field (left plot), and the patterns of the advective contribution to the axial dipole moment
(ADM) time change (right plot) which is computed based on the radial field and meridional
flow. In order to better test these ideas, improved models of the CMB radial field and
core surface flow (derived from the CMB SV) are required, especially for specific locations
such as the meridional limbs of the gyre

2.2 The Crustal Field

The upper layers of the Earth’s surface consists of magnetized rock giving rise to an asso-
ciated magnetic field called the crustal (or lithospheric field) field. Magnetization is due
to a net alignment of small elemental electrical currents inside matter, being classified
according to how their directional magnetization responds relative to an applied magnetic
field (Griffiths, 1999; Blakely, 1995). The crustal magnetic field is the sum of the contri-
butions from induced and remanent magnetization; the ambient magnetic field enforces a
temporary induced magnetization which is proportional in strength and direction to the
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Figure 2.6: Global maps of the CMB QG flow (Gillet et al., 2015a) together with the
radial magnetic field (left plot), and the advective contribution to the axial dipole moment
(ADM) change (right plot). Extracted from Finlay et al. (2016a).

applied field, whereas the remanent magnetization remain after the removal of an applied
field. Especially ferro magnetic materials retains their acquired magnetization if the ap-
plied magnetic field is removed, and are thought to be a major contributing source. It
is believed that induced magnetization dominates the large-scale structures of the field,
while remanent magnetization becomes important at smaller scales for instance at oceanic
regions (Purucker and Whaler, 2007; Olsen et al., 2010b).

Figure 2.7: The radial component of the crustal magnetic field at the Earth’s surface as
predicted by the LCS-1 model plotted for SH degrees 1-185 Olsen et al. (2017).

In the present context of investigating the core-generated field, the magnetic field aris-
ing from the crust matters, because it makes a significant contribution to the magnetic field
measured above the Earth’s surface via ground or satellite measurements (Olsen et al.,
2010b). At satellite altitudes the crustal field is less than 30nT in strength (Olsen and
Stolle, 2012). Figure 2.7 presents the crustal field plotted at the Earth’s surface for spher-
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ical harmonic degrees 1-185 as predicted by the LSC-1 model (Olsen et al., 2017). The
map of the crustal magnetic field reveals that it possesses complex and highly localized
features, reflecting the underground geology. This makes the field interesting with regard
to possible interpretations related to geological processes and for understanding the sub-
surface structure and its composition, geothermal heat flux determination, providing the
signature of seafloor spreading along with geodynamics at subduction zones (i.e. plate
tectonics) and resource exploration possibilities (Langel and Hinze, 1998; Maule et al.,
2005; Purucker and Whaler, 2007). The internal power spectrum at the Earth’s surface
becomes flat at around spherical harmonic degree 15, corresponding to a wavelength of
approximately 2500km, whereas the maximum degree in Figure 2.7 corresponds to wave-
lengths of ∼250km. The crustal magnetic field conceals the small-scale core field beyond
a wavelength of ∼2500km, thus blocking potentially important insights into this regime.

2.3 Magnetospheric and Ionospheric Fields

The interaction of the solar wind and the associated interplanetary or heliospheric magnetic
field (Owens and Forsyth, 2013; Balogh and Erdõs, 2013), with the internally generated
magnetic field of the Earth, manifests itself by a range of complex couplings (Baumjohann
and Nakamura, 2007; Lühr et al., 2017). Knowledge of the appearance and behaviour of
these external sources is of great importance, because their signature in magnetic field
measurements is the main limiting factor obscuring the internal field signal. Figure 2.8
presents a sketch of the near-Earth ionospheric and magnetospheric electrical current sys-
tems. Extensive reviews of the current systems in the ionosphere and magnetosphere are
provided in (e.g., Baumjohann and Nakamura, 2007; Lühr et al., 2017; Olsen and Stolle,
2012, 2017; Alken et al., 2017).

Firstly, the interaction with the solar wind deforms the Earth’s magnetic field, creating
a magnetosphere, the boundary of which to outer space is termed the magnetospause.
The interaction of the IMF and the Earth’s magnetic field leads to magnetic reconnection,
which is particularly pronounced during a southward oriented IMF. This brings solar
plasma particles into electrical current systems inside the magnetosphere, the movement
of which are determined by various drift forces, that results in the production of electrical
currents and therefore magnetic fields (e.g., De Pater and Lissauer, 2001; Baumjohann and
Nakamura, 2007). In the magnetosphere large-scale current systems includes the dayside
magnetopause Chapman-Ferraro currents, cross-tail currents, the nightside tail current
and the ring current (Lühr et al., 2017; Olsen and Stolle, 2017).

Secondly, the short-wavelength part of the solar illumination (the ultraviolet radiation)
controls the ionization of the upper atmosphere and drives the ionospheric dynamo, causing
complex electrical current patterns and phenomena to occur. At mid- and low latitudes
the main sources are: i) solar quiet (Sq) currents of the ionospheric E-region dynamo
generated by diurnal wind systems due to differentiated heating and cooling, having North
and South hemispheric vortices, and ii) interhemispheric field-aligned currents (IHFAC)
flowing between the two Sq vortices (Olsen and Stolle, 2012, 2017). Furthermore an intense
electrical current flows along an equatorial band in the E-region called the equatorial
electrojet (EEJ), being a dayside phenomena. At high latitudes the most important E-
region current system occurs in the auroral oval and is known as the polar electrojet
(PEJ). Considering the nightside, the E-region conductivity reduces significantly, however
the Sq field and in particular its induced counterpart may still persist during night times
(Olsen et al., 2005a). Ionospheric F-region systems include the diamagnetic effect of the
equatorial ionization anomaly (also called the Appleton anomaly), gravity driven currents
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Figure 2.8: Sketch showing the major external electrical current systems of the ionopshere
and magnetosphere. The right part shows the incoming solar wind interacting with the
Earth’s internal field to create the magnetospheric environment including the tail and ring
current systems. The left part shows a close-up of the Earth and the major ionospheric
electrical current systems including the EEJ (red), the Sq vortex (orange), auroral oval
where the bulge is the PEJ (green). Field-align coupling current are illustrated in yellow.
Extracted from Haagmans (2004).

at low latitudes and post-sunset equatorial plasma irregularities (also called Spread-F or
plasma bubbles) (Lühr et al., 2002; Maus and Lühr, 2006; Stolle et al., 2006; Olsen and
Stolle, 2012; Alken et al., 2017).

Thirdly, the solar induced electrical currents in the ionospheric regions are coupled to
the magnetospheric systems via field-align currents especially at high latitudes (Olsen and
Stolle, 2012, 2017). These F-region currents includes the mid latitude IHFACs from Sq
imbalances, meridional currents connected to the EEJ and FACs at polar latitudes which
follows the main field lines therefore only producing perpendicular magnetic fields. Lastly,
the field from all these near-Earth primary current systems induces electrical currents
within the Earth and Oceans, thereby producing secondary magnetic fields (e.g., Tyler
et al., 2003; Manoj et al., 2006).

2.4 Geomagnetic Field Activity Diagnostics

This section describes different diagnostic tools for monitoring the disturbance/activity
level of the geomagnetic field. Selecting magnetic field measurements which are completely
free of external field contamination is an impossible task, however dedicated selection and
processing of the measurements may significantly reduce such contamination. The goal
is to distinguish so-called geomagnetically quiet times when the signals from external
fields are much reduced, such that measurements will be less influenced by these fields.
In this regard, inferring the geomagnetic activity level via appropriate diagnostics is vital
(Kauristie et al., 2017). The dynamical coupling and behaviour of the magnetospheric and
ionospheric systems causes a vast variety of electric currents to arise, the signature of which
varies with location and time. Considering ionospheric currents at low and mid-latitudes,
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being a product of solar irradiation, a typical criteria is to used data where the sun is
below the horizon. A parade of magnetic activity indices exists, derived to monitor the
variability of certain complicated current systems (Menvielle et al., 2011). In particular,
the Kp index is used to monitor global field disturbance while the RC index targets the
magnetospheric ring current and its Earth induced effect. The variability of high-latitude
ionospheric currents, such as the auroral electrojet and polar cap currents, may be linked
to the Interplanetary Magnetic Field (IMF) and the merging electric field (MEF) which
depends on the solar wind (Kauristie et al., 2017). Furthermore, the F10.7 Solar Flux
index is described, since this is used as a scaling parameter to estimate ionospheric Sq
field predictions of the CM4 model, which was subtracted from the measurements used in
this thesis.

2.4.1 Kp Index

The planetary Kp index is derived by GeoForschung Zentrum (GFZ) Potsdam, Germany,
using the locally estimated K indices determined at 13 sub-auroral ground observatories
by a procedure described in (e.g., Menvielle et al., 2011; Kauristie et al., 2017). The Kp
index tries to quantify the global level of geomagnetic disturbances in 3-hour intervals con-
verted to a scale ordered as: 0o, 0+, 1−, 1o, 1+, 2−, 2o, 2+, 3−, 3o, 3+, ...9−, 9o. Comparing
geomagnetically quite and disturbed years, the most likely value of Kp can vary signifi-
cantly, for instance during the quiet year 1997 Kp < 2o occurred 70% of the time while
for the disturbed year 2003 it was only 25 % of the time (Kauristie et al., 2017). Thus,
selecting data using restricted Kp criteria might have a severe effect on the amount of
satellite data available for studying the core field.

Figure 2.9 presents a plot of the Kp index from 2000-2018, where the y-axis values
10, 20, ...90 corresponds to the Kp values 1o, 2o, 3o...9o. As can be observed in the plot,
the time around 2003 had higher activity level, while the time around 2009 had lower
activity level. It should be mentioned, that years of low solar activity coincide with a
low geomagnetic activity level, while a high solar activity is seen as a maximum in Kp
value approximately 2 years after the occurrence of solar maximum in the sunspot number
(Kauristie et al., 2017). Also it should be noted that the locations of the observatories
used to produce the Kp index are found mostly in the Northern hemisphere, having 11
stations in Western Europe and Northern America and just 2 stations in the Southern
hemisphere (Menvielle et al., 2011).
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Figure 2.9: Time series of the Kp index during the period 2000-2018.
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2.4.2 RC Index

The Ring Current (RC) index targets the equatorial magnetospheric ring current and its
secondary Earth induced variations, having a stable baseline http://www.spacecenter.

dk/files/magnetic-models/RC/. It was made with the specific intention to be used in
internal field modelling by Olsen et al. (2014), and is believed to be well suited for that
purpose (Lühr et al., 2017). To derive the index only night-side measurements were used
in order to minimize Sq contamination. The RC index consists of an external, ε, and
internal part ι, such that RC(t) = ε(t) + ι(t). For this separation a global 1-D electrical
conductivity model of the mantle of Grayver et al. (2017) was used. The primary field of
the ring current parametrized by a P 0

1 geometry in a 3-D conducting Earth, would cause
secondary contributions in all SH degrees and orders. However, assuming a 1-D conductiv-
ity model, has the consequence that each external SH coefficient induces only one internal
SH coefficient having the same SH degree n and order m Olsen et al. (2005b). The version
of the RC index used in this project was created on March 14th 2018, and was derived
using 14 low and mid-latitude ground observatories: Alice Spring (Australia), Boulder
(USA), Chambon la Foret (France), Fredericksburg (USA), Guam (Guam), Hermanus
(South Africa), Honolulu (USA), Kakioka (Japan), Kourou (French Guiana), Learmouth
(Australia), Mbour (Senegal), Niemegk (Germany), San Juan (Puerto Rico) and San Pablo
de los Montes (Spain).
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Figure 2.10: Time series of the external part ε (upper left), internal part ι (upper right),
superposition RC (lower left) and time derivative dRC/dt (lower right) during the period
2000-2018.

http://www.spacecenter.dk/files/magnetic-models/RC/
http://www.spacecenter.dk/files/magnetic-models/RC/
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Further details regarding the derivation of the RC index, see (Kauristie et al., 2017) and
http://www.spacecenter.dk/files/magnetic-models/RC/. It should be noted that
previous versions of the RC index may not have been derived from these specific sta-
tions. Figure 2.10 presents time series of the two components ε and ι, along with their
summation RC and the time change dRC/dt during the period 2000-2018. It is evident
that during the years 2000-2006, all the components saw large fluctuations.
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Figure 2.11: IMF and solar activity behaviour showing: the merging electric field at the
magnetopause (top left), the IMF By (top right), the IMF Bz (bottom left) and a three
month mean of the F10.7 solar flux index (bottom right) during the period 2000-2018.

2.4.3 Interplanetary Magnetic Field Behaviour

At high latitudes field-align (Birkeland) coupling currents of the magnetospheric-ionospheric
system and the associated ionospheric closure currents, i.e. the Petersen and Hall currents
and the PEJ, produces rapid fluctuations in the field; these also have an impact at mid- and
low latitudes (Vennerstrom et al., 2007; Friis-Christensen et al., 2017). The amplitude and
sign of these high latitude ionospheric electrical currents have been linked to the behaviour
and orientation of the By and Bz components of the interplanetary magnetic field (IMF), in
geocentric solar magnetospheric coordinates (GSM), and to the amplitude of the merging
electric field (MEF), Em, at the magnetospause (Friis-Christensen et al., 1985; Ritter et al.,
2004; Friis-Christensen et al., 2017; Kauristie et al., 2017). Therefore, some geomagnetic
field models where derived selecting data based on the IMF, including the POMME mod-

http://www.spacecenter.dk/files/magnetic-models/RC/
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els (Maus et al., 2010), the GRIMM models (Lesur et al., 2010) and the CHAOS models
(Finlay et al., 2016b). For example in CHAOS-6 it was required that IMF Bz > 0nT and
that Em ≤ 0.8mV/m (Finlay et al., 2017). In this thesis 1-min values of the IMF and solar
wind were extracted from the OMNI database http://omniweb.gsfc.nasa.gov, and 2
hourly mean values were computed. Figure 2.11 presents plots of the IMF By (upper
right) and Bz (lower left) components, and of the merging electric field Em (upper right)
during the period 2000-2018.

2.4.4 F10.7 Solar Flux Index

The solar activity level is known to influence the ionospheric field and various parameters
(for instance the sun spot number) may be used to track this activity. One such parameter
is the F10.7 solar flux index, which measures the solar radio emission intensity of frequency
2800 MHz or equivalently a (microwave) wavelength of 10.7cm (Tapping, 2013). It corre-
lates highly with the daily sunspot number. Since 1947 the National Research Council of
Canada has provided observations using a radio telescope. From 1991 and onwards this
was done at the Dominion Radio Astrophysical Observatory, Canada. The bottom right
plot in Figure 2.11, shows a three month mean of the solar flux index between 2000 and
2018. The solar flux index was used in the data processing of Chapter 3, to compute and
subtract the CM4 field model predictions the ionospheric field and its secondary Earth
induced counterpart. For more details on the CM4 model and its ionospheric estimates
see Section 2.6.

2.5 Mathematical Description of the Geomagnetic Field

This section is concerned with the mathematical aspects of describing the geomagnetic
field. The laws of classical electrodynamics govern electric and magnetic vector fields and
provides the basic formulations needed for further treatment and analysis. Assuming that
current sources are absent in the region of interest, a potential field description emerges
which makes up the backbone of modern day geomagnetic field description. However, the
actual geomagnetic field may be a non-potential, thus requiring other descriptions to be
considered such as the Mie-representation (Backus et al., 1996).

2.5.1 Classical Electrodynamics and Helmholtz’s Theorem

Classical electrodynamic theory is well known and has be thoroughly described in the
literature (e.g. Griffiths, 1999; Jackson, 2007), here the most important points related to
geomagnetism are summarized. The electric and magnetic fields are described as vector
fields, meaning that at each point in space (in R3) a vector can be assigned. Classical
electrodynamic theory states that the electric and magnetic fields are governed by the
Maxwell’s equations together and the Lorentz force law along with appropriate boundary
conditions (Griffiths, 1999). Maxwell’s equations in a vacuum may be written

∇ ·E = qc
ε0

(2.2)

∇×E = −∂B
∂t

(2.3)

∇ ·B = 0 (2.4)

∇×B = µ0J + µ0ε0
∂E
∂t

(2.5)

http://omniweb.gsfc.nasa.gov
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where ε0 is the permittivity of free space, µ0 is the permeability of free space, qc is the
electric charge density and J is the electric current density. E is the electric field vector and
B is the magnetic field vector. The electric current density is determined as J = Jb + Jf ,
where Jb represents bounded currents within and on the surface of a material due to a
given magnetization, and Jf are called free currents due to free charges. Equations (2.2)
and (2.3) are called Gauss’s law and Faraday’s law, respectively. Together they describe
that electric fields can be produced by either electric charges or by time changing magnetic
fields. Equations (2.4) and (2.5) describe how magnetic fields can be produced by either
electric currents or by time changing electric fields. In addition to this the magnetic
field is a solenoidal field as it is divergence free; in other words the net flux through any
closed surface equals zero and no net magnetic charges can exist (Griffiths, 1999). As the
Maxwell’s equations are stated above they fully described the magnetic field and thereby
also the geomagnetic field. However, important assumptions can be made which reduces
the complexity of the description. The last term in Ampere’s law, eq.(2.5), is called
displacement currents such that µ0ε0

∂E
∂t = Jd. It is possible to show that the displacement

currents are negligible in the Earth’s atmosphere, i.e. that µ0ε0
∂E
∂t � ∇×B provided that

the time scale T , involved is long compared to the time it takes light to travel a distance
of typical length scale L, i.e. L/T � c (e.g. Backus et al., 1996; Sabaka et al., 2010). Thus
Ampere’s law is then reduced to the so-called pre-Maxwell form

∇×B = µ0J (2.6)

All further description of the magnetic field is divided into whether or not the current J is
zero, leading to potential and non-potential fields, respectively. The former assumes that
no electrical currents are present in the region of interest where magnetic field measure-
ments are taken, i.e. a source free region like the neutral atmosphere. In other words,
the field is fully described using Maxwell’s equations with ∇ × B = 0 and ∇ · B = 0,
such that the field is a solenoidal irrotational field, and can be described by the negative
gradient of an associated scalar potential ψ, which fulfils the Laplace differential equation,
thereby being a Laplacian potential field. The latter case in which electrical currents are
present in the region of interest, is known as a non-potential field. Satellites making mag-
netic field measurements are typically flying above the ionospheric E-region, but within
the ionospheric F-region. Here electrical currents, such as for instance field-aligned cur-
rents, are present such that it is possible that ∇ × B 6= 0. Therefore the non-potential
description may be viewed as a generalization of the potential case, and it involves either
the Helmholtz or Mie representations.

2.5.2 Potential Field Description

Considering first the potential field assumption, in which the geomagnetic field is measured
in a source free region, the field observed is the summation of the contributions from various
sources, some of which are mentioned in Sections 2.1 to 2.3. Because electrical currents
are known to exist within the ionosphere, data have to be selected and processed in such
a way as to reduce contamination from these sources; this is the reason for some of the
selection criteria used in Section 3.3 (Sabaka et al., 2010). In a geocentric reference frame
described by the spherical polar coordinates (r, θ, φ), where r (r ≥ 0) denotes the radial
distance from the center of the Earth, θ (0 ≤ θ ≤ π) denotes the geocentric colatitude
and φ (0 ≤ φ ≤ 2π) denotes the eastern longitude, the magnetic vector field at any time t
is written B(r, t) = B(r, θ, φ, t). The magnetic field is the sum of the fields contributing,
and traditionally these are named according to their source location relative to some
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measurement region or shell (for instance the Earth’s surface) as being internal (int) or
external (ext), (Langel, 1987, e.g.)

B = Bint + Bext (2.7)

Because the geomagnetic field is fully described by the Maxwell’s equations reduced to
∇×B = 0 and ∇ ·B = 0, the field has an associated scalar magnetic potential, ψ, such
that

B = −∇ψ(r, θ, φ) (2.8)

which satisfies the Laplace’s equation

∇2ψ(r, θ, φ) = 0 (2.9)

thus termed a Laplacian Potential. Furthermore, this potential may be written as the
sum of its source potentials, i.e. ψ = ψint + ψext. In other words, the geomagnetic field
is a conserved vector field (being path independent when integrating) described such that
at every point in space a vector is assigned having an associated scalar quantity called
the magnetic potential. Therefore in the volume V (a, b), bounded by spheres of inner
and outer radius a and b such that 0 ≤ a < b ≤ ∞, this potential can be formulated
as ∇2ψ = 0, where ∇2 is the Laplacian linear partial differential operator. The physical
meaning underlying the Laplace equation, is that no sources nor sinks of the field can exist
in the region V (a, b), that is, no input or output of charges nor accumulation takes place;
therefore none of the two types of sources to the magnetic field, namely electrical currents
and alternating electric fields, may exist in V (a, b). Only at the regions boundaries, S(a)
and S(b), may the potential attain maximum or minimum values (Blakely, 1995). The
Laplacian magnetic potential is harmonic in the region V because it fulfils the Laplace
equation. This also means that any solution is given by harmonic functions; a function is
said to be harmonic in some region, if it fulfils the Laplace equation at every point of that
region. Harmonic functions have continuous single valued first and second derivatives,
fulfilling the maximum principle (Blakely, 1995).

Some very important results that will be used later in Chapter 5, are the three Green’s
identities (some times called theorems) which can be derived from the divergence theorem
applied to a vector field written as F = Φ∇Ψ. In particular, the second identity allows for
the magnetic field potential to be expressed via volume and surface integrals: let Ψ and
Φ be two scalar functions that are continuous and differentiable in the volume V bounded
by the surface S (e.g., Barton, 1989; Blakely, 1995; Riley et al., 2004)

Green’s second identity.∫
V

(Φ∇2Ψ−Ψ∇2Φ)dV =
∫
S

(Φ∇Ψ−Ψ∇Φ) · n̂dS (2.10)

where n̂ is the surface normal vector. This identity is essential for the developments
in Chapter 5, when seeking solutions of the Neumann boundary value problem in terms
of the Green’s functions.

Solutions of the Laplace equation may be formed by a number of representations provided
they are harmonic, including: spherical harmonics, harmonic splines, wavelets, Slepian
functions, dipole and point sources (Schott and Thébault, 2011). The most widely used
representation of the potential in spherical geometry is a series expansion in spherical
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harmonic functions originally devised by Carl Friedrich Gauss in 1839 (Malin and Barra-
clough, 1991; Stern, 2002; Langel, 1987; Glassmeier and Tsurutani, 2014).

As mentioned a range of alternative representations to spherical harmonics have been in-
vestigated for studying the internal field, for instance: models based on icosodedral grids
for the radial magnetic field at the CMB (Constable et al., 1993; O’Brien et al., 1997;
Jackson et al., 2007b). Modelling techniques including point sources (i.e. monopoles) by
(Hodder, 1982; O’Brien and Parker, 1994; Kother et al., 2015), harmonic splines intro-
duced by Shure et al. (1982) and Parker and Shure (1982), a wavelet approach developed
by Holschneider et al. (2003), and Slepian functions Plattner and Simons (2017) have been
explored. Recently, Holschneider et al. (2016) introduced a technique based on specifying
appropriate correlation functions for internal and external sources. This approach was
used by Lesur et al. (2017) in order to derive the Gauss coefficients for the SV using
ground observatory monthly means between 1957 and 2014.

The next section will be devoted to the spherical harmonic description of the geomag-
netic field. The coefficients of the expansion are termed Gauss coefficients in honour of its
inventor. Today most field models use this type of representation, and the IGRF/DGRF
model series published by the International Association of Geomagnetism and Aeronomy
(IAGA), are built from the Gauss coefficients of candidate field models. Section 2.6 de-
scribes some of the advanced geomagnetic field models produced. In particular, details
of the CHAOS and the CM model series will be provided, as these models were used
extensively in the data selection and processing (see Section 3.3) in this thesis.

Spherical Harmonic Representation

Here a description of the spherical harmonic representation is provided because this rep-
resentation type will be frequently referred to and since spherical harmonic models have
been built in this thesis. A description in spherical polar coordinates is natural, such that
the Laplace equation can be written (Langel, 1987; Riley et al., 2004)

∇2ψ = 1
r2

∂

∂r

(
r2∂ψ

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂ψ

∂θ

)
+ 1
r2 sin2 θ

∂2ψ

∂φ2 = 0 (2.11)

The solution of equation (2.11) at time t, can be written as an infinite summation of inter-
nal and external harmonic polynomials being spherical harmonics (Langel, 1987; Backus
et al., 1996; Sabaka et al., 2010)

ψ(r, θ, φ, t) = a
∞∑
n=1

n∑
m=0

(
a

r

)n+1[
gmn (t) cos(mφ) + hmn (t) sin(mφ)

]
Pmn (cos θ)

+ a
∞∑
n=1

n∑
m=0

(
r

a

)n[
qmn (t) cos(mφ) + smn (t) sin(mφ)

]
Pmn (cos θ) (2.12)

where a = 6371.2km is a reference radius determined as the mean radius of the Earth
(a enters as a scaling factor outside the summations to ensure the physical dimensions
of equation (2.12)), {gmn (t), hmn (t), qmn (t), smn (t)} are the time-dependent Gauss coefficients
measured in units nT of the internal and external contributions, and Pmn are the Schmidt
quasi-normalized associated Legendre functions of degree n and order m. Note that the
Laplace equation does not involve time, however as the field varies this would materialise in
time dependence of the coefficients. The Schmidt normalization is introduced such that the
magnitude of the surface harmonics being squared and averaged over a sphere becomes
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independent of their order (i.e. the Gauss coefficients reflects the relative importance
played by each degree term in the series expansion) (Blakely, 1995). The first summation
represents the internal expansion and the second summation is the external expansion
relative to the measurement shell. The Schmidt quasi-normalized Pmn (cos θ) are connected
to the Ferrers normalized Pn,m(cos θ) via (Blakely, 1995; Sabaka et al., 2010)

Pmn (cos θ) =

 Pnm(cos θ) if m = 0[
2 (n−m)!

(n+m)!

] 1
2
Pnm(cos θ) if m > 0

(2.13)

The angular part of the solution is made up of the normalized (surface) spherical harmonics
given as (Sabaka et al., 2010)

Y m
n,c(θ, φ) = Pmn (cos θ) cos(mφ) and Y m

n,s(θ, φ) = Pmn (cos θ) sin(mφ) (2.14)

The Schmidt normalized spherical harmonics eq. (2.14) satisfy the relations

〈Y m
n,c, Y

k
l,c〉 = 〈Y m

n,s, Y
k
l,s〉 = 1

2n+ 1δnlδmk (2.15)

〈Y m
n,c, Y

k
l,s〉 = 0 (2.16)

where 〈, 〉 denotes an inner product1 over the sphere S and δnl denotes the Kronecker delta
given as (e.g. Woan, 2000)

δnl =
{

1 if n = l

0 if n 6= l
(2.19)

Therefore equation (2.12) can be written

ψ(r, θ, φ, t) = a
∞∑
n=1

n∑
m=0

(
a

r

)n+1[
gmn (t)Y m

n,c(θ, φ) + hmn (t)Y m
n,s(θ, φ)

]
+ a

∞∑
n=1

n∑
m=0

(
r

a

)n[
qmn (t)Y m

n,c(θ, φ) + smn (t)Y m
n,s(θ, φ)

]
(2.20)

By using the potential representation, magnetic field measurements can be related to
the Gauss coefficients for each field component (e.g. Langel, 1987; Sabaka et al., 2010).
The internal Gauss coefficients {gmn (t), hmn (t)} may then be determined using the radial
field component only. However, in order to determine the internal and external Gauss
coefficients separately, the horizontal components must be included as well (Langel, 1987).

A set of orthogonality relations follow which can be used to express the expansion
coefficients as surface integrals given the value of the field on the surface of a sphere.
In theory this field should be known continuously over the surface, however in practice
field measurements are collected at discrete points. Thus compliance of the orthogonality

1The average value of a function f over the sphere S can be written (Backus et al., 1996)

〈f〉 = 1
4π

∮
f(r)dS (2.17)

An inner product of two functions f and g may be defined such that (Backus et al., 1996; Aster et al.,
2005)

〈f, g〉 = 1
4π

∮
f(r)∗g(r)dS (2.18)

where ∗ denotes the complex conjugated.
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properties rests on the actual measurements and whether or not the integral can be well
approximated (Langel, 1987; Blakely, 1995). The reference radius of the Gauss coefficients
is usually set to be the Earth’s surface; knowing the Gauss coefficients it is then possible to
perform a downward continuation of the field, for instance to the CMB. However, such a
transformation constitutes an un-smoothing process (contrary to an upward continuation)
in which noise may cause incorrect field features to blow up (Blakely, 1995).
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Figure 2.12: Lowes-Mauersberger spherical harmonic power spectrum plotted at the
Earth’s surface in 2016, as given by the CHAOS-6-x5 field model for SH degrees 1 to
120.

By using the spherical harmonic representation various analyses of the geomagnetic
signal can be carried out. One tool is the power spectra of both internal (termed the
Lowes–Mauersberger spectrum) and external origin, which can be computed (Lowes, 1966,
1974; Hulot et al., 2015) and used to study field amplitude as a function of wavelength.
The internal power spectrum at the surface S(r) with radius r is given by (Hulot et al.,
2015)

〈|Bint|2〉S(r) = Ri(r) =
∞∑
n=1

Rin (2.21)

where Rin(r) is given by

Rin(r) = (n+ 1)
(
a

r

)2n+4 n∑
m=0

[
(gmn )2 + (hmn )2

]
(2.22)

The external power spectrum at the surface S(r) with radius r is given by

〈|Bext|2〉S(r) = Re(r) =
∞∑
n=1

Ren (2.23)

where Ren(r) is given by

Ren(r) = n

(
r

a

)2n−2 n∑
m=0

[
(qmn )2 + (smn )2

]
(2.24)
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The internal spectrum plotted in a semi-logarithmic scale at the Earth’s surface exhibits
a distinct behaviour first investigated by Langel and Estes (1982); for SH degrees n . 14
there is a steep linear decline attributed to the core magnetic field after which the spec-
trum flattens out and is expected to fall eventually to zero beyond SH degree 200 which
is attributed to the crustal magnetic field. Figure 2.12 shows the internal spectrum as
predicted by the CHAOS-6-x5 field model up to SH degree 120. This behaviour means
that the long-wavelength segment of the crustal field is concealed by the core field, while
the small-wavelength part of the core field is conceals by the crustal field. The reason
why the spectrum shows this linear decrease for SH degrees n . 14, is that higher order
terms are geometrically attenuated. Plotting the spectrum at the CMB instead, the slope
becomes nearly zero for SH degrees n . 14 while it becomes positive for for SH degrees
n & 14 (e.g., Backus et al., 1996, p. 181).

The degree correlation, ρn, between two SH models, having the sets of coefficients {gmn , hmn }
and {gm′n , hm

′
n }, makes it possible to compare the phase of the model coefficients (e.g., Lan-

gel and Hinze, 1998, p. 81)

ρn =
∑n
m=0(gmn hmn + gm

′
n hm

′
n )√

[
∑n
m=0(gmn )2 + (hmn )2][

∑n
m=0(gm′n )2 + (hm′n )2]

(2.25)

= cos(ζn) (2.26)

where ζn is the angle in a 2n+1 dimensional space between sets of coefficients {gmn , hmn } and
{gm′n , hm

′
n }. The degree correlation therefore measures the directional accordance between

the vectors spanned by Gauss coefficients gmn and gm
′

n for a given SH degree n. In the
model degree space, an angle of ζn = 45◦ corresponds to ρn = 0.7. Correlated vectors
are determined as having ρn ≥ 0.7 (ζn ≤ 45◦), such that below this level coefficients are
regarded as being uncorrelated (e.g., Langel and Hinze, 1998; Sabaka and Olsen, 2006).

Another useful tool is the sensitivity matrix which can also be used to examine the
differences between the two sets of coefficients, for every coefficient plotted in a SH degree
versus order matrix. The differences are normalized by the mean spectral amplitude for a
given degree n, and the elements of the sensitivity matrix are given as (Sabaka and Olsen,
2006)

M(n,m) = 100 · gmn − gm
′

n√
1

2n+1
∑n
m=−n(gmn )2

(2.27)

The structure of the sensitivity matrix is illustrated in Figure 2.13, illustrating the coeffi-
cient patterns and their relation to the matrix; the zonal harmonics are situated along the
center axis, the sectorial harmonics along the sides and the tesseral harmonics making up
the body elements.

The Circle of Confusion

Looking at the power spectrum of the magnetic field plotted at the Earth’s surface in
Figure 2.12, the Gauss coefficients for the core-generated field may never be known beyond
a maximum level of SH degree L ' 13. Likewise the SV and SA spectra may only be
inferred to some level, see Section 2.6.1. Truncation of the spherical harmonic expansion,
means that there is a maximum level to which features can be resolved when trying to
infer the radial field at the CMB (Booker, 1969; Backus et al., 1996). The root of the
problem is this: what can be inferred of the radial field on the surface S, knowing the
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Figure 2.13: Sketch of the sensitivity matrix: a) the basic setup with coefficients gmn and
hmn on the right and left hand side, respectively, b) the sectorial harmonics having m = 0
place along the matrix center, c) the zonal harmonics having m = n place along the matrix
sides and d) the tesseral harmonics placed in the matrix body. Plots extracted from Olsen
(2009).

Gauss coefficients up to some truncated level, n ≤ L? The internal radial magnetic field
is determined as the gradient of the potential, equation (2.20), i.e.

Br(r, θ, φ) =
∞∑
n=1

n∑
m=0

(n+ 1)
(
a

r

)n+2[
gmn Y

m
n,c(θ, φ) + hmn Y

m
n,s(θ, φ)

]
(2.28)

(Backus et al., 1996, sec. 4.4.4) considers a truncated approximation for the potential,
such that the radial magnetic field, B̃L, is written

B̃L(r) =
L∑
n=0

n∑
m=0

(n+ 1)
(
a

r

)n+2[
gmn Y

m
n,c(θ, φ) + hmn Y

m
n,s(θ, φ)

]
wmn (2.29)

Notice here that the monopole term, i.e. n = 0 is included in the expansion; the Gauss
coefficients for n = 0 are zero and thus not relevant, however the n = 0 term matters as will
be clear below. The above approximating expansion includes some weighting constants
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wmn , and the aim is to select wmn such that B̃L become a good approximation of Br. Backus
et al. (1996) shows that this can be done in a rms sense by minimizing the average value
of the squared difference over a surface, i.e. 〈|Br − B̃L|2〉. If the solution does not need
to be regularized, which means the minimization of a global norm of some property of
the model (Parker, 1994), values of wmn = 1 gives the best approximation (Whaler et al.,
2016). What does this mean in terms of resolution of the truncated expansion?

Because the Gauss coefficients can be expressed as inner products of the radial field and
the spherical harmonics over the sphere (e.g. Langel, 1987; Blakely, 1995; Sabaka et al.,
2010), Backus et al. (1996) shows that the approximating expansion can be written in
terms of a so-called window function integrated with the field over the sphere, simplifying
the consideration such that the weights are independent of m (i.e. wmn = wn)

B̃L(r) =
∮
S
WL(r|r′)Br(r′)dS (2.30)

where WL is a weighting function called the averaging window, expressed as

WL(r|r′) =
L∑
n=0

wn
(2n+ 1)

4π Pl(µ) (2.31)

where µ = cosγ = cosθcosθ′ + sinθsinθ′cos(φ− φ′), γ being the angular distance. Backus
et al. (1996) shows that selecting w0

0 = w0 = 1 will cause the integrated averaging window
to be one, i.e. 〈WL(r|r′)〉 = 1. This averaging window or kernel is axissymmetric, and
if wn = 1 it is called the Dirichlet kernel which would provide the best fit in a least-
squares sense as seen above. In fact, this is exactly the same result obtained by Whaler
and Gubbins (1981) in their studies of SH analysis of the geomagnetic field assuming the
solution (i.e. the Gauss coefficients) is not regularized (i.e. wn = 1) and therefore the
resolution would be perfect (Whaler et al., 2016). Note here that Whaler and Gubbins
(1981) discusses this for the non-dipole part of the field, while Whaler et al. (2016) provides
an expression including the dipole term.
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Figure 2.14: Plot of the Dirichlet kernel WL=13.

The ideal window kernel would be the Dirac delta function, however in practise this
is not possible since δ(r− r′) contains all wavelengths in its spherical harmonic expansion
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(see equation (5.4) in Section 5.2.1) whereas the expansion in equation (2.29) is truncated.
Figure 2.14 shows a plot of the Dirichlet kernel setting the truncation at L = 13. As
can be observed the radius of the window kernel peak (taken to be the distance from
maximum amplitude to the point where the function first becomes zero) is around 16◦,
and oscillatory behaviour is evident in the window kernel. Decreasing L would lower the
amplitude and broaden the radius of the peak. Therefore, using un-regularized Gauss
coefficients up to some truncated degree, L, to plot the radial magnetic field at the CMB,
will yield a blurred impression of the field features; this was referred to as the ”circle
of confusion” by Backus et al. (1996), having a radius of approximately 16◦ if choosing
L = 13. Therefore: CMB field estimates at particular points, as determined via the
Gauss coefficients, are contaminated by the field values everywhere else on the CMB if
the expansion is truncated, and furthermore introducing regularization accentuates this
problem (Whaler et al., 2016).

The Geomagnetic Gradient Tensor

In the following the magnetic field gradient tensor for a potential field is described. Time
series of the tensor elements are estimated in the Virtual Observatory model as described
in Chapter 4, and comparisons with the CHAOS-6-x5 field model predictions for these
elements will be carried out. Furthermore, field models will be built from VO gradient
data in Chapter 4. In the description below, the formulation follows that developed in a
series of papers Olsen and Kotsiaros (2011); Kotsiaros (2012); Kotsiaros and Olsen (2012,
2014). The directional derivatives of each component of the geomagnetic vector field
specifies a gradient tensor. As described in Olsen and Kotsiaros (2011) the elements of
the gradient tensor may in general be written as the covariant derivative (i.e. the field
derivatives in a general coordinate transformation) Bp;q by

Bp;q = ∂Bp

∂yp
+ ΓpkqB

k (2.32)

where Bp specifies the magnetic field component and yp denotes the direction of differen-
tiation. The labels p, q, k are specified by the chosen coordinate system. The Christoffel
symbol is written as

Γpkq = ∂êk
∂yq

êp (2.33)

where ê denotes a unit vector. Choosing spherical coordinates the components are Bp =
(Br, Bθ, Bφ). The non-zero Christoffel symbols are given by

Γθrθ = Γφrφ = 1
r
, Γφθφ = cotθ

r

Γrθθ = Γrφφ = −1
r
, Γθφφ = −cotθ

r

The differential directions in the spherical coordinates are given by

∂

∂yr
= ∂

∂r
,

∂

∂yθ
= 1
r

∂

∂θ
,

∂

∂yφ
= 1
rsinθ

∂

∂φ
(2.34)

The 3× 3 magnetic gradient tensor for the internal field is thus given by

∇B =


∂Br
∂r

1
r
∂Br
∂θ −

1
rBθ

1
rsinθ

∂Br
∂φ −

1
rBφ

∂Bθ
∂r

1
r
∂Bθ
∂θ + 1

rBr
1

rsinθ
∂Bθ
∂φ −

cotθ
r Bφ

∂Bφ
∂r

1
r
∂Bφ
∂θ

1
rsinθ

∂Bφ
∂φ + 1

rBr + cotθ
r Bθ
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Importantly, because the magnetic field is a solenoidal vector field, the divergence is zero,
∇ · B = 0. This means that the trace of the gradient tensor is zero, i.e. tr(∇B) = 0,
reducing the number of independent elements from 9 to 8. Furthermore, assuming the
field is a Laplacian potential field, i.e. J = 0, the curl of the field vanishes (∇×B = 0),
thus reducing the number of independent tensor elements from 8 to 5; in other words, the
magnetic gradient tensor is symmetric (in the general case in-situ electrical current density
will cause non-symmetry of the tensor). It should be noted, that contributions from field
components enter in some of the tensor elements. When investigating the large-scale part
of the field for SH degrees below n = 13, these contributions need to be included and
cannot be neglected as may be the case when considering the lithospheric field.

In spherical coordinates the 3 × 3 magnetic gradient tensor expressed in terms of the
potential is

∇B =


−∂2Vr

∂r2 −1
r
∂2∂V
∂θ∂r + 1

r2
∂V
∂θ · · ·

−∂2Vθ
∂r∂θ + 1

r2
∂V
∂θ − 1

r2
∂2V
∂θ2 − 1

r
∂V
∂r · · ·

− 1
rsinθ

∂2V
∂r∂φ + 1

r2sinθ
∂V
∂φ − 1

r2sinθ
∂2V
∂θ∂φ + cosθ

r2sin2θ
∂V
∂φ · · ·

· · · − 1
rsinθ

∂2V
∂φ∂r + 1

r2sinθ
∂V
∂φ

· · · − 1
r2sinθ

∂2V
∂φ∂θ + cosθ

r2sin2θ
∂V
∂φ

· · · − 1
r2sin2θ

∂2V
∂φ2 − 1

r
∂V
∂r −

cosθ
r2sin2θ

∂V
∂θ

 (2.35)

The internal gradient tensor elements, [∇B]jk, where j, k = {r, θ, φ} may be expanded in
terms of spherical harmonics as shown in Kotsiaros (2012)

[∇B]jk = R
{

1
a

N∑
n=1

n∑
m=0

γmn (t)exp(imφ)
(
a

r

)n+3
Pmn,jk (cosθ)

}
(2.36)

where i is the imaginary number, γmn = gmn −ihmn contains the Gauss coefficients, exp(imφ) =
cosmφ+isinmφ, and R{· · · } denotes the real part. The functions Pmn,jk (cosθ) are expressed
as

Pmn,rr (cosθ) = −(n+ 1)(n+ 2)Pmn (cosθ)

Pmn,θθ (cosθ) = (n+ 1)Pmn (cosθ) + d2Pmn (cosθ)
dθ2

Pmn,φφ (cosθ) =
[
m2

sin2θ
+ (n+ 1)

]
Pmn (cosθ)− cotdP

m
n (cosθ)
dθ

Pmn,rθ (cosθ) = (n+ 2)dP
m
n (cosθ)
dθ

Pmn,rφ (cosθ) = m(n+ 2)
sinθ iPmn (cosθ)

Pmn,θφ (cosθ) = mcosθ
sin2θ

iPmn (cosθ)− m

sinθ i
dPmn (cosθ)

dθ

A Matlab script for construction of the design matrix of the gradient spherical harmonics
was kindly provided by Stavros Kotsiaros. This was used to produce gradient field models
in Chapter 4.

2.5.3 Non-Potential Field Description

The potential field description is the fundamental building block used in Chapters 4 and
5. This is also the case for many of the present day geomagnetic field models being built,
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see Section 2.6. However, the potential field assumption may break down because satellite
measurements are conducted in regions where electrical currents may not vanish, such
that the curl of the magnetic field is not zero. The situation is depicted in Figure 2.15:
the satellite magnetic measurements are assumed to be taken in a shell, S(r1, r3), situated
in the ionospheric F-region at altitudes where in-situ ionospheric electrical currents, Jsh,
could be present especially at high latitudes (Olsen, 1997; Sabaka et al., 2010; Olsen
et al., 2010b). Internal currents Ji and external currents Je are below and above the
measurements shell, respectively. Note also that satellites fly above the ionospheric E-
region and observes contributions from this region as internal along with those of the
crustal and core fields (on the contrary, ground observatory measurements only sees the
crustal and core field as internal).

Figure 2.15: Illustration of the electrical currents and their location in connection to
magnetic field observations. After Olsen (1997) and Sabaka et al. (2010).

Here it will be assumed that the electrical currents in the F-region mainly occurs as
coupling currents between the ionospheric E-region and magnetospheric systems, though
studies of satellite measurements have revealed greater complexity, see Section 2.3. There-
fore these electrical currents are typically assumed poloidal in nature (i.e. purely radial),
thus producing toroidal magnetic fields within the shell, and are found primarily at polar
latitudes associated with FACs and also in a narrow band at the dipole equator (as the
ionospheric systems tent to align with the morphology of the Earth’s magnetic field as
described in Section 2.3) associated with the coupling currents of the meridional Sq elec-
trical current system. Decomposing the magnetic field measurements into their poloidal
and toroidal parts, estimates of the in-situ electrical current density during evening and
morning time in the ionospheric F-region was determined using Magsat satellite measure-
ments (Magsat flew at altitudes between 350 to 550km above ground), also showing that
a meridional current component is part of the low latitude system by Olsen (1997); Engels
and Olsen (1998). This has also later been shown using CHAMP data (e.g., Maier, 2005).
Therefore, in the case where the electrical currents in the ionospheric F-region are not as-
sumed vanishing, a non-potential field formalism deviating from that of the usual potential
field description needs to be considered (Backus et al., 1996; Olsen, 1997; Sabaka et al.,
2010). Below a short description of the non-potential considerations is provided since, in
Chapter 4, an analysis of the virtual observatory time series along these lines is conducted,
looking into the contributions from internal, external and in-situ electric currents.
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The Helmholtz Representation

The starting point is some vector function B(r) specified such that ∇·B = D and ∇×B =
C, where D and C are some scalar functions which go to zero faster than 1/r2 as r →∞.
Then requiring that B(r)→ 0 as r →∞, unique solution to this function can be written
according to the Helmholtz theorem (Backus et al., 1996; Griffiths, 1999; Sabaka et al.,
2010)

B = −∇S +∇×A
= −∇S +∇× Tr +∇×∇× Pr (2.37)

where S, T, P and A are scalar and vector potentials, respectively. That is; if the field
goes to zero at infinity then this field is uniquely determined from its divergence and curl.
In fact another alternative Helmholtz representation can formulated (e.g. Sabaka et al.,
2010). If the field is also irrotational (i.e. curl-free) the usual potential formalism described
in Section 2.5.2 is applicable. If only the solenoidal constraint is placed on the field, an
expression in terms of only two scalar potentials can be obtained. This representation,
called the Mie representation or toroidal-poloidal decomposition, takes the form (Backus
et al., 1996; Griffiths, 1999; Sabaka et al., 2010)

B = ∇× Tr +∇×∇× Pr
= Btor + Bpol (2.38)

where Btor and Bpol are the toroidal and poloidal components, respectively. A require-
ment that the mean values of these scalar functions are zero when integrated on a sphere,
is needed in order for the representation to be unique. An important aspect of this is
that a toroidal magnetic field has no radial field component and is generated by a poloidal
electrical current, while the poloidal magnetic field is generated by toroidal electrical cur-
rents which has no radial component. The toroidal and poloidal scalar functions can be
expressed using a spherical harmonic expansion (e.g. Sabaka et al., 2010). There is a
subtle link between the formalism using the Gauss coefficients and the formalism of the
poloidal scalar function; the internal and external scalar potentials of equation (2.12), can
be written as (Sabaka et al., 2010)

ψint = − ∂

∂r

(
rP int

)
, ψext = − ∂

∂r

(
rP ext

)
(2.39)

where P int and P ext are the internal and external poloidal scalar functions.

The Mie Representation in a Thin Shell

Using the Mie-representation from above, allows for a description of the magnetic field in
the current carrying (sampling) shell S(r1, r3). The magnetic field at satellite altitude is
written as (Backus, 1986; Backus et al., 1996; Olsen, 1997; Sabaka et al., 2010)

B = Bi
pol + Be

pol + Bsh
pol + Bsh

tor (2.40)

where the superscripts i, e, sh denotes the internal, external and shell parts, respectively.
The subscripts pol and tor denotes the poloidal and toroidal parts, respectively. Bi

pol and

Be
pol denotes the internal and external poloidal fields, respectively, while Bsh

pol and Bsh
tor

denotes the non-potential fields due to currents in the shell. The situation is as illustrated
in Figure 2.15: the internal, Bi

pol, and external, Be
pol, magnetic fields are generated by
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internal, Jitor, and external, Jetor, toroidal currents. What about the poloidal currents and
their associated toroidal magnetic fields? Toroidal magnetic fields produced by poloidal
currents do not exists outside the region of the current. In fact this is also the situation
with the toroidal magnetic field of the outer core; it cannot be measured from outside the
core surface; therefore outside the source regions Bi

tor = 0 for r > a, and Be
tor = 0 for

r < r3. The terms Bsh
pol and Bsh

tor are the non-potential contributions to the field from
in-situ ionospheric electrical currents in the shell.

Following the derivations of Backus (1986); Backus et al. (1996); Olsen (1997); Sabaka
et al. (2010), the ionospheric F-region contribution is assumed to be that arising from
field-aligned currents. The poloidal field is usually neglected since field-aligned currents
have no toroidal component due to their assumed radial direction. Using the thin-shell
approximation, in which h/r2 → 0 where h = r3 − r1 is the thickness of the shell which is
considered thin as compared to the radius, r2 , the magnetic field can be written (Olsen
and Mandea, 2007)

B = Bi
pol + Be

pol + Bsh
tor (2.41)

It can be shown that these assumptions and knowledge of the field on the surface at r = r2,
allows for the determination of the expansion coefficients (i.e. the Gauss coefficients along
with the toroidal coefficients). Therefore, the magnetic field can be written is terms of
poloidal, {ψint, ψext} and toroidal, T sh, scalar potentials (Olsen and Mandea, 2007)

B = −∇ψint −∇ψext +∇× r̂T sh (2.42)

where the potentials determined up to some maximum SH degree N are written

ψint = a
N∑
n=1

n∑
m=0

[gmn (t)cosmφ+ hmn (t)sinmφ]
(
a

r

)n+1
Pmn (2.43)

ψext = a
N∑
n=1

n∑
m=0

[qmn (t)cosmφ+ smn (t)sinmφ]
(
r

a

)n
Pmn (2.44)

T sh = a
N∑
n=1

n∑
m=0

[tm,cn (t)cosmφ+ tm,sn (t)sinmφ]
(
r

a

)n
Pmn (2.45)

and {tm,cn , tm,sn } are the expansion coefficients associated with the toroidal scalar potential.
The above description was used in Section 4.5.5, trying to investigate the contributions
from the external and toroidal parts. The toroidal power spectrum at the surface S(r)
with radius r is given by (Hulot et al., 2015)

〈|Btor|2〉S(r) = Rt(r) =
∞∑
n=1

Rtn (2.46)

where Rtn(r) is given by

Rtn(r) =
(
n(n+ 1)
2n+ 1

) n∑
m=0

[
(tm,cn )2 + (tm,sn )2

]
(2.47)

2.6 Geomagnetic Field Models

Describing the Earth’s magnetic field at any given time and location via some model is
called geomagnetic field modelling (Olsen and Stolle, 2017). When producing a geomag-
netic field model a large number of magnetic field observations are effectively converted
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into a linear combination of elementary mathematical functions that best describes those
observations. The set of numerical coefficients best defining this linear combination is then
what one refers to as a geomagnetic field model; i.e the model parameters for that par-
ticular mathematical description (Sabaka et al., 2010). Traditionally, geomagnetic field
modelling has been carried out implementing a spherical harmonic expansion model of
the magnetic scalar potential and magnetic field, determining the expansion coefficients,
i.e. the so-called Gauss coefficients as described in Section 2.5.2. The SH representation
provides a way of distinguishing between the internal and external sources (relative to the
measurement radius) in the signal and furthermore allocates the core and crustal fields to
certain harmonic degrees, as mention in Section 2.5.2, such that the transition lies around
SH degree 14 (Backus et al., 1996; Lesur et al., 2011a; Hulot et al., 2015). Therefore, small
scale features of core field and large scale features of the crustal field are left undetermined
by this spectral overlapping. Overall there may be two strategies for building an internally
focused SH based field model: 1) using dedicated data selection and processing routines in
order to obtain reliable models co-estimating the internal and large-scale external fields,
and 2) simultaneously co-estimating the internal and external fields along with the toroidal
field. In the following, a short review of recently built geomagnetic field models is given, all
relying on the SH representation; specially the CHAOS and CM model series are in focus
as these are used in the data processing in this thesis. The predictions of other field models
are considered in Chapter 5, and therefore a brief discussion of these are also included here.

Internal field models vary with regard to the data type used and data selection schemes
and model parametrization for example: the MEME08 model (Thomson et al., 2010), the
GRIMM model series built from CHAMP measurements and HMV from ground observa-
tories (Lesur et al., 2008, 2010, 2011b; Mandea et al., 2012), the POMME model series
(Maus et al., 2006) see also http://geomag.org/models/index.html, the SIFM model se-
ries (Olsen et al., 2015, 2016) built entirely from Swarm data, and the CHAOS model series
(Olsen et al., 2006, 2009, 2010c, 2014; Finlay et al., 2015, 2016b). Especially the CHAOS
model series are of interest here, as the CHAOS external field estimates are removed from
the data used in this thesis, see Section 3.3. In the CHAOS model, the contributions
from the near-Earth magnetospheric electrical ring-current system and the remote-Earth
magnetotail and magnetopause systems are represented. Details of the specific data type
and selection criteria used will not be elaborated here; the reader is referred to the above
papers. Typically uncertainty estimates are not provided in these field models, the reason
being that such estimates are difficult to determine due to the imposed regularization and
the data uncertainty not being well known (Finlay et al., 2015). Therefore the models are
often assessed by comparison; quoted here is (Lesur et al., 2011a), section 11.4, p.292:

It is not clear how the different ways these fields are parameterized in MEME08, CHAOS
or GRIMM affect the resulting core field model. Overall, the main differences between the
three approaches remain the data selection techniques and these differences are particularly
apparent at high latitudes. However, the fact that data sets covering different magnetic ac-
tivity ranges, different local times and having such different noise levels, all lead to rather
similar core field models give us confidence in the accuracy of the derived models.

The comprehensive model approach differs from the models mentioned above, in that
these models try to co-estimate not only the internal and external parts of the SH ex-
pansion, but also non-potential contributions. The CM and CI model series rely on the
same parametrization; besides ground observatory data the CM series uses measurements

http://geomag.org/models/index.html
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from the Ørsted, SAC-C and CHAMP satellites (Sabaka et al., 2002, 2004, 2015), whereas
the CI models use Swarm measurements only (Sabaka et al., 2013, 2018). These models
are rather complex not only in their parametrization but also by the incorporation of the
Selective Infinite Variance Weighting (SIVW) weighting scheme in the later models. The
model parametrizations and their specific details are too numerous to be elaborate here,
however the source contributions which are modelled include: the core-generated field,
the crustal field, ionospheric E-region and large-scale magnetospheric fields along with
their associated Earth induced contributions, the oceanic M2 tidal field and the toroidal
ionospheric F-region field. Here special notice should be given to the ionospheric field and
its Earth induced counterpart, as their total predicted field from the CM4 model were
removed from the data used in this thesis, see Section 3.3. The modelled ionospheric
sources are the Sq electrical currents in the E-region assumed flowing in a shell at 110km
altitude, thus below satellite data acquisition altitudes. Because mid- and low latitude
ionospheric activity level is driven by the solar irradiation, a useful indicator to describe
this is the solar flux index (see Section 2.4.4), which is used as a scaling parameter for the
ionospheric fields in the CM models. The associated induced contributions are determined
via an Earth 1D conductivity model, i.e. only having a radial dependence (in the latest
CM5 and CIY4 models this was further refined to a 3D conductivity model). It should be
noted, that the CM and CI models may be classified as quiet-time models, in that like the
above mentioned SH models they rely on quiet-time data selection criteria.

Figure 2.16: CM4 model predictions of the ionospheric E-region radial magnetic field
component for 12 UT (left plots) and 00 LT (right plots), showing the primary part (top
plots) and the secondary induced part (bottom plots) following Olsen et al. (2005a). Field
predictions are shown for an example altitude above ground of 400km and a solar flux
index of 150× 10−22W/m2Hz.

Figure 2.16 shows example predictions at satellite altitude of the ionospheric radial
magnetic field (top plots) and its associated secondary Earth induced counterpart (bot-
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Figure 2.17: CM4 model predictions of the ionospheric F-region toroidal magnetic field
for 12 UT (left plots) and 00 LT (right plots), showing the Bθ component (top plots) and
the Bφ component (bottom plots). Field predictions are shown for an example altitude
above ground of 400km and a solar flux index of 150× 10−22W/m2Hz.

tom plots), as predicted by the CM4 model. The left plots show predictions for 12 UT
when the primary Sq ionospheric field is clearly identified, and the right plots show the pre-
dicted fields for 00 LT (for all latitudes). The secondary induced field persists during night
times, i.e. when the primary field has vanished, as stressed by Olsen et al. (2005a). Fur-
thermore, high latitude electrical currents are always present. Another interesting feature
of the CM4 model is the estimation of the toroidal magnetic field. Figure 2.17 shows the
predictions of the horizontal field components at satellite altitude of the F-region toroidal
magnetic field. Predictions at 12 UT (left plots) and 00 LT (right plots) illustrates what
might also be expected from the discussions above, namely that, during day time these are
present at mid and low-latitudes and are especially strong in the polar regions, whereas
during night time they persist but are mostly confined to the polar regions. It should be
noted, that these plots were made using a high solar flux index of 150 × 10−22W/m2Hz
(see Figure 2.11 to compare). The intention here is to provide an idea of the spatial and
temporal nature of the contributions from the ionospheric sources.

The spectral behaviour of the field and a subsequent cut-off at SH degree 13, may dis-
tort the large-scale features observed in the SH based models when plotting CMB maps.
Therefore, dedicated attempts in constructing core field models have been made by mit-
igating the crustal contribution in the signal (Hulot et al., 2015). Such efforts include
the C3FM model series (Wardinski and Holme, 2006; Wardinski and Lesur, 2012) and
models constructed based on icosodedral grids at the core surface forced to satisfy nec-
essary conditions for frozen-flux and a magnetostrophic force balance implemented via
topology preservation constraints in the work of (Constable et al., 1993; Jackson, 2003;
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Jackson et al., 2007b; Gillet et al., 2007), and most recently used a correlation based
approach wherein internal and external correlation functions are specified (Holschneider
et al., 2016; Lesur et al., 2017).

2.6.1 Limitations of Present Modelling Approaches

The spherical harmonic representation is a very attractive method because it aligns with
the natural spherical geometry, allows internal/external field separation and provides a
global description of the field. Furthermore, knowing the Gauss coefficients allows down-
ward (and upward) continuation of the field to be performed, such that the CMB field can
be determined. In practice the infinite sum of the SH expansion is determined to some
maximum degree Nmax, having a total of Nmax(Nmax + 2) Gauss coefficients. The limit is
set by the data quality and modelling capabilities, beyond which noise dominates the sig-
nal. Therefore, in the conventional approach the potential is represented on a global scale
using a truncated SH expansion determined in a least-squares sense, perhaps also imposing
temporal regularization, thus removing solution non-uniqueness (Oldenburg, 1984; Finlay
et al., 2016b). Here regularization means minimizing a global norm of some property of
the model (Parker, 1994). Since the SH functions have global support, ideally requiring
evenly distributed data over the entire globe, they give equal weight to the entire data
set assigning isotropic resolution even though this may not reflect the data. For instance,
strict data selection could cause a sparse data coverage, and if data lacks an overall ho-
mogeneous distribution, the SH orthogonality properties will be disturbed (Backus et al.,
1996; Sabaka et al., 2010). Thus influenced both by data distributions and model regu-
larization, model uncertainties, which are likely biased due to the presence of unmodelled
sources, are usually not stated. Model validation thus typically relies on comparing models
constructed by different data schemes, external field parametrisation and regularization
(Finlay et al., 2015, e.g.). Furthermore, the time dependence of the field is often described
by regularized B-splines. However, the imposed regularization modifies the spline func-
tions in a non-uniform manner which influences higher SH degrees the most (Constable
and Parker, 1988; Olsen et al., 2009). Typically this means that the high degree part of
the SV and SA estimates are averaged over long time windows, say 10 years (Olsen et al.,
2009; Lesur et al., 2011a).

It is interesting to consider the behaviour of the spatial power spectra of the core field and
it’s time derivatives. Figure 2.18 shows the MF, SV and SA power spectra in 2016 at the
Earth’s surface (left plot) and at the CMB (right plot) as predicted by the CHAOS-6-x5
and CIY4 models. At the Earth’s surface the MF and SV spectra of the two models agree
well, whereas disagreement above SH degree 10 in the SA spectrum is evident. Looking at
the spectra at the CMB, the MF power spectrum around degree 13 begins to increase due
to non-core sources. Looking at the SV and SA spectra, their behaviour are blue which
means that the power increases with SH degree; in order words, small scales dominate over
the long scales. Furthermore, a situation arises in which the temporal behaviour of the
field is know to a higher degree than the field itself. Geomagnetic field models built differ-
ently capture the same large-scale field behaviour which is very encouraging. A particular
difficulty with the CMB power spectra of the SV and SA signals, is that truncation could
perturb global field maps. In spite of studies having shown coherence in field structures
in global maps, as the SH truncation degree of the SV and SA is increased (Holme et al.,
2011; Aubert, 2018), care is needed when interpreting the resulting fields at the CMB.

The temporal spectra of the Gauss coefficients are considered to scale with frequency
differently looking at the dipole and non-dipole terms separately. The non-dipole terms
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Figure 2.18: Lowes-Mauersberger spherical harmonic power spectra in 2016 as given by
the CHAOS-6-x5 and CIY4 field models showing: the main field (black and dotted grey),
secular variation (red and dotted red) and secular acceleration (blue and dotted blue)
plotted at the Earth’s surface (left plot) and the CMB (right plot).

are assumed to scale as f0 for long frequencies and as f−4 for intermediate frequencies
(De Santis et al., 2003; Gillet et al., 2013; Bouligand et al., 2016), where f is the frequency.
This means that the SV and SA spectra for intermediate frequencies would follow f−2

and f0 behaviours, respectively. It is expected that the temporal spectra will turn over,
eventually converging (Bouligand et al., 2016). Thus, with regard to the SA, this may
raise some concerns; it has been argued that the temporal spectra is such that higher
order time derivatives of the field may be formally undefined as the time window used to
estimate these goes towards zero (Gillet et al., 2013; Bouligand et al., 2016; Lesur et al.,
2017). In other words, an instantaneous SA may not be well defined due to lack of spectral
convergence. SH based field models thus provide band limited estimates; in particular,
the SA is truncated in the spectral domain and only determined from within a certain
frequency band of say a few years.

2.7 Summary

The geomagnetic field has many sources which vary with time and position. In this thesis
we are interested in the core-generated magnetic field and its time variations. In order to
extract the core field signal from satellite magnetic field measurements, a selection scheme
based on dark, geomagnetically quiet-times is needed. In addition to this, knowledge of
the IMF and MEF can be used as disturbance/activity diagnostics. In this thesis, the
large-scale magnetospheric fields and their Earth induced counterpart as estimated by the
CHAOS-6 model, are subtracted from the satellite data. Furthermore, because contribu-
tions from ionospheric and secondary Earth induced currents persists during dark time,
the CM4 model predictions of the magnetic field from such sources are subtracted.

Traditionally, the magnetic field is assumed to be measured in a source free region, thereby
allowing for a potential field description to be used. This potential is typically modelled
using a spherical harmonic representation. However, there are shortcomings to the SH
representation: 1) the noise is not the same at different latitudes due to the various field
sources (noise is locally larger in the poles), and because the SH are global functions, the
noise at higher latitudes can map into the all harmonics, 2) the SH expansion is truncated
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in the spectral domain which might disturb the harmonics coefficients, 3) the truncated
SH representation assigns isotropic spatial resolution which may not reflect the actual
situation globally, 4) the time-dependence of the SH models are usually represented by
B-splines using temporal regularization, which affects the higher SH degrees the most,
and 5) appraisal is not provided in the SH based field models (as data errors are not well
accounted for).

Based on the limitations mentioned above, we are motivated to seek and investigate new
methods of determining local estimates of the magnetic field. In this thesis two local
techniques are investigated. The first technique is the Virtual Observatory method which
provides time series of the field at specified locations using a local fit to the potential using
satellite data, and the second technique is a modified Backus-Gilbert inversion approach
where estimates of the field are determined as local spatial averages at the CMB, providing
appraisal consisting of spatial resolution and variance estimation.





Chapter 3

Measurements of the Magnetic
Field

3.1 Introduction

The objective of this chapter is to describe and present an initial exploratory analysis of the
satellite data used throughout this thesis. The data used consists of vector magnetic field
measurements from the CHAMP and Swarm low Earth orbiting (LEO) satellite missions,
and therefore these two satellite missions will be described in detail in Section 3.2. From
the satellite observations two data subsets were built using slightly different selection cri-
teria. These data sets are used in the virtual observatory (VO) and subtractive optimally
localized average (SOLA) methods described in Chapters 4 and 5, respectively. Section
3.3 describes the data selection criteria and processing steps used to produce the two data
sets. In Section 3.4 an exploratory data analysis is conducted for one of these data sub-
sets (as the datasets are rather similar), in particular, describing the spatial structure of
the data residuals for each field component computed as the differences with respect to
predictions of the CHAOS-6-x5 field model (Finlay et al., 2016b). A data error covariance
matrix derived from these residuals provides information on the statistical behaviour of
the data, giving a measure of the joint variability between elements in the data set, having
variance as diagonal elements. Often when doing geomagnetic field modelling data errors
are assumed to be spatially and temporally uncorrelated, thus associated covariance ma-
trices are diagonal. However, data errors are known to be correlated. Here an attempt
is made to build a simple data error covariance matrix accounting for along-track serial
error correlations based on an exponential correlation model. This is to be used with the
subtractive optimally localized average method in Chapter 5. Section 3.5 describes ground
observatory magnetic measurements as these will are used later for comparisons with the
virtual observatory time series produced in Chapter 4.

3.2 Satellite Magnetic Measurements

Magnetic measurements from space can be characterized as spatio-temporal data; the ob-
servations are made at particular positions in space over a period of time. The observations
in question are high precision absolute magnetic field measurements (Olsen et al., 2010a;
Olsen and Stolle, 2012). When LEO satellites are taking magnetic field measurements they
are travelling at velocities of around 8 km/s, which means that a magnetic field variation

39
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detected along the satellite track will be a combination of both temporal and geographical
changes in the field, and with a single satellite it is not possible to decipher whether such a
variation is due a spatial or temporal change (in contrast, at ground magnetic observatories
measurements are taken at one location, and therefore only temporal changes in the field
are observed). Moreover, the observations are made over a range of altitudes due to the
satellite orbit. In addition, the LEO satellites are flying within the ionospheric F-region
where electrical currents can flow, especially at polar latitudes and on the day side. This
means that the observed field may not strictly be a Laplacian potential as often assumed
(Olsen et al., 2010b; Olsen and Stolle, 2012). Also, because the LEO satellites fly above
the ionospheric E-region, electrical currents existing there produce magnetic fields that are
seen as internal contributions by the satellites. Clearly as the satellites orbit the Earth,
temporal correlations in the data will be present. Due to the satellite orbital inclination,
measurement gaps will occur around the geographic poles. The polar gaps will influence
spherical harmonic models, in particular affecting the near-zonal coefficients, i.e. m ≈ 0
(Olsen et al., 2010a).

Despite some of the above mentioned difficulties, the advantages of using satellite data
are numerous. Most importantly, sampling with the same instrument for long time peri-
ods providing good global spatial coverage (except for the polar gaps). This makes satellite
measurements ideal for studying the slowly changing internal magnetic field and its spa-
tial and temporal behaviour, for example if a spherical harmonic model is sought (Backus
et al., 1996). The satellites considered in this project, are flying at ≈ 400km altitude, and
thus their sensitivity towards finer spatial internal field structures is reduced, however this
also means that the crustal and Earth induced magnetic fields have less amplitude which
is advantageous in connection with internal field modelling focusing on the core-generated
field. The determination of the magnetic field is dependent on the field components mea-
sured; using only intensity measurements is not enough to remove non uniqueness of the
problem (Backus, 1970d; Backus et al., 1996; Sabaka et al., 2010).

A particular challenge when using satellite measurements is the spacecraft orientation
(attitude) and in-flight calibration. The CHAMP and Swarm satellites carry both scalar
and vector magnetometers; the intensity of the field is measured using absolute scalar mag-
netometers, whereas the vector magnetometers are non-absolute instruments and therefore
need to be calibrated and aligned (Olsen et al., 2003; Tøffner-Clausen et al., 2016). In a
process called calibration, the raw vector field magnetometer measurements are converted
into scaled magnetic field components having units of nT. This is done in-orbit using infor-
mation from the intensity readings. Afterwards the calibrated measurements are rotated
from the magnetometer frame into an Earth-Centered-Earth-Fixed (ECEF) coordinate
system in a process step called data alignment. This requires precise determination of
the rotations, the so-called Euler angles, between the magnetometer frame and the star
tracker frame (Olsen and Kotsiaros, 2011). It should be noted, that unmodelled toroidal
magnetic fields may disturb the determination of the Euler angles (Olsen and Stolle, 2017).
Anisotropic errors in attitude also influences the rotation (Holme and Bloxham, 1996), and
in field models, such as the CHAOS-6, information on this is included in a data error co-
variance matrix. In the CHAOS-6 field model these Euler angles are co-estimated (Finlay
et al., 2016b), and these Euler angles were used in this thesis when handling data.
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The CHAMP and Swarm Satellite Missions

The German CHAMP (CHAllenging Minisatellite Payloads) single satellite mission lasted
from its launch on the 15th of July 2000 to its re-entry in the atmosphere on the 19th of
September 2010. CHAMP was a geoscientific satellite, designed to perform gravity and
magnetic field observations. The satellite initially had an altitude of 454km which declined
to an altitude of 250km at the end of the mission, having an orbit inclination of 87.3◦.
CHAMP carried an Overhauser scalar magnetometer (OVM) measuring the field intensity
and two fluxgate vector magnetometers (FGM) measuring the direction and strength of
the field (Reigber et al., 2002; Yin and Lühr, 2011; Lühr et al., 2013). The instruments
were placed on a boom, such that contaminating effects from other onboard systems could
be minimized. Additionally CHAMP carried two star imager heads in order to reduce
attitude errors (Olsen and Kotsiaros, 2011). The top plot of Figure 3.1 shows a sketch of
the CHAMP and the instruments on board the satellite.

Figure 3.1: Illustrations of the CHAMP satellite (top) (Credit: GFZ, https://

directory.eoportal.org/web/eoportal/satellite-missions/c-missions/champ),
and Swarm satellites (bottom) (Credit: ESA/AOES Medialab, https://www.esa.

int/spaceinimages/Images/2012/11/Swarm_instruments_side_view), showing the
structure and instrumentation of the two spacecraft.

The three Swarm satellites Alpha, Bravo and Charlie were launched on the 22nd of
November 2013, in a mission led by the European Space Agency (ESA). The aim of
the Swarm mission is to provide the best ever survey of the geomagnetic field and its
temporal evolution, the mission scientific objectives are research into the sources of the
core-generated field, the crustal field, the ionospheric and magentospheric fields, and to
get a better characterization and understanding of these fields (Friis-Christensen et al.,
2006). An important aspect of the three satellite constellation is the orbital concept in

https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/champ
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/champ
https://www.esa.int/spaceinimages/Images/2012/11/Swarm_instruments_side_view
https://www.esa.int/spaceinimages/Images/2012/11/Swarm_instruments_side_view


42 CHAPTER 3. MEASUREMENTS OF THE MAGNETIC FIELD

which the Swarm Alpha and Charlie satellites are flying side-by-side allowing for east-
west measurement differences to be computed, that is the so-called gradient concept. The
Swarm Alpha and Charlie have an orbit inclination of 87.35◦, while Bravo has an inclina-
tion of 87.75◦, for further details see https://directory.eoportal.org/web/eoportal/

satellite-missions/s/swarm and https://earth.esa.int. The bottom plot of Figure
3.1 shows a sketch of one the Swarm satellite and the instruments on board.

The Swarm satellites all carry the same instrumentation on-board; an absolute scalar
magnetometer (ASM) taking measurements of the magnetic field intensity, a vector flux-
gate magnetometer (VFM) taking measurements of the directions and strength of the field
and a three-head star tracker (STR) providing satellite orientation (attitude) information
such that measurements can be rotated from the magnetometer frame to the geocentric
coordinate frame (Tøffner-Clausen et al., 2016). A specific aim with the ASM instrument
is to be able to calibrate the VFM. Scalar residuals between measurement readings of the
ASM and the modulus of the VFM, have shown that the vector field measurements were
contaminated by an initially unexpected and unknown source of peak to peak amplitude
of approximately 5nT. Investigations into these residuals, revealed disturbances related to
the incidence angles of the Sun on the satellites. This was named the Sun-driven distur-
bance field and investigations led to the determination and removal of an empirical model
such that the effect could be mitigated; this has been implemented from L1b magnetic
field data versions 0401 and onwards (Tøffner-Clausen et al., 2016).

The accuracy of the CHAMP and Swarm satellites vector field measurements are ∼ 0.3nT
(Lühr et al., 2013; Friis-Christensen et al., 2006). It should be noted that unmodelled ex-
ternal fields often dominate over the instrumental errors (Finlay et al., 2016b), and in data
error covariances used in field modelling as described in Section 3.4.2. Figure 3.2 shows
the mean altitude above the surface of the Earth of the CHAMP (left plot) and Swarm
Alpha and Bravo (right plot) satellites. The mean altitude during the current lifetime of
the CHAMP and Swarm satellites are approximately 370km and 490km, respectively.
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Figure 3.2: Mean altitude above ground of the CHAMP satellite (left plot) and the Swarm
Alpha (in red) and Bravo (in blue) satellites along with their mean altitude (in black) (right
plot).

https://directory.eoportal.org/web/eoportal/satellite-missions/s/swarm
https://directory.eoportal.org/web/eoportal/satellite-missions/s/swarm
https://earth.esa.int
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3.3 Satellite Data Selection Criteria

This section describes the data selection criteria and processing steps applied to the satel-
lite measurements to produce the two data subsets used in the VO and SOLA methods.
The art of selecting satellite measurements that are contaminated as little as possible
by external magnetic fields and their secondary Earth induced counterparts, and at the
same time have good spatial and temporal coverage is challenging, and it is the primary
limiting factor when modelling the internal geomagnetic field (Olsen et al., 2013; Finlay
et al., 2017). Various approaches have been investigated in order to minimize the external
contamination (Finlay et al., 2017; Kauristie et al., 2017; Lühr et al., 2017). This project
aims at using geomagnetic data having low activity levels, i.e. deemed quiet time, selected
such that the sun was below the horizon to minimize the magnetic signal from ionospheric
currents, i.e. deemed dark times. Furthermore, in order to reduce contamination from
polar cap electrical currents, restrictions on components of the IMF and MEF were used.
These criteria follow a commonly used philosophy when selecting data for implementation
in geomagnetic field models such as the CHAOS model series (Olsen et al., 2015; Finlay
et al., 2016b, 2017). As a final step estimates of the crustal field, the large-scale external
magnetospheric field and its Earth induced counterpart from the CHAOS-6-x5 model, and
of the Sq part of the ionospheric field and its Earth induced counterpart from the CM4
model, were subtracted from the measurements.

From the CHAMP and Swarm vector measurements a 15s subsampling of the low rate
(5Hz for CHAMP and 1Hz for Swarm) calibrated vector magnetic field data in the Vector
Field Magnetometer (FGM/VFM) frame (in units of nT) as provided by the CHAMP
MAG-L3 and Swarm Level 1b MAG-L (MAGX LR 1B) version 0503 data products were
extracted. Descriptions of the CHAMP and Swarm data products are given in http://

www-app2.gfz-potsdam.de/pb1/op/champ/more/docs_CHAMP.html and by Olsen et al.
(2013) and Nielsen (2017), respectively. CHAMP measurements were taken from 19th of
July 2000 to the 1st of September 2010 and Swarm measurements were taken from 1st
December 2013 up to 31th of December 2017. The FGM/VFM data were afterwards trans-
formed into an Earth-Centered Earth-Fixed (ECEF) local Cartesian North-East-Centre
(NEC) coordinate frame. This was done by data alignment such that the FGM/VFM
data were first rotated into the Common Reference Frame (CRF) of the star tracker. To
do this, the Euler rotation angles as determined by the CHAOS-6-x5 model were used.
Measurements from known disturbed days where satellite manoeuvres took place were
removed. Also gross data outliers for which the vector field components deviated more
than 500nT from predictions of the CHAOS-6-x5 field model for SH degrees n ∈ [1, 13]
were removed. Next, the following selection criteria and processing steps were employed:
(1) only dark region data requiring the sun to be at least 10◦ below horizon in order to
reduce ionospheric field contamination; (2) for quiet time conditions it was required that
the geomagnetic planetary activity index Kp was below either 2o or 3o (see Table 3.1);
(3) for the magnethospheric ring current and its Earth induced contribution given by the
RC disturbance index, the time derivative |dRC/dt| was required below either 2nT/hr or
3nT/hr (see Table 3.1) (Olsen et al., 2014); (4) restricting the merging electric field at the

magnetopause such that Em ≤ 0.8mV/m with Em = 0.33v4/3B
2/3
t sin(|$|/2) where v is

the solar wind speed, $ = arctan(By/Bz) is the IMF clock angle and Bt =
√
B2
y +B2

z is

the magnitude of the interplanetary magnetic field (IMF) having components in the geo-
centric solar magnetospheric (GSM) coordinate y-z plane (Newell et al., 2007), calculated
using 2 hourly means based on 1-min values of the IMF and solar wind extracted form the

http://www-app2.gfz-potsdam.de/pb1/op/champ/more/docs_CHAMP.html
http://www-app2.gfz-potsdam.de/pb1/op/champ/more/docs_CHAMP.html
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OMNI database http://omniweb.gsfc.nasa.gov; (5) requiring that IMF Bz > 0nT and
IMF |By| smaller than either 6nT or 10nT, in order to reduce sub-storm auroral electrojet
contamination originating from field-aligned currents (Ritter et al., 2004; Friis-Christensen
et al., 2017). Finally, CHAOS-6 model estimates of the crustal field for SH degrees 14-
1201 and the external magnetospheric (plus induced) field, together with the CM4 (Sabaka
et al., 2004) estimates of the ionospheric field and its induced counterpart scaled by the
F10.7 solar flux index were subtracted2. Table 3.1 summarises the data selection criteria
and processing steps used to built two data subsets, named Data Set 1 and Data Set 2, used
in Chapters 4 and 5, respectively. During the project many experiments with changing
the selection criteria were performed; for instance an asymmetric morning/evening linear
tapering using degrees relative to the horizon of [0◦, 10◦] and [−20◦,−10◦], respectively,
instead of a clear cut-off for the sun being 10◦ below horizon. However, in this document
it was decided to focus on the data subsets described in Table 3.1.

Data set 1 Data set 2

Used in VO models (Chapter 4) SOLA models (Chapter 5)
CHAMP data MAG-L3 MAG-L3
Swarm data Level 1b MAG-L, vs.0503 Level 1b MAG-L, vs.0503
Data type vector only vector only
Subsampling rate 15Hz 15Hz
Kp < 3o < 2o
|dRC/dt| < 3nT/h < 2nT/h
Em ≤ 0.8mV/m ≤ 0.8mV/m
IMF Bz > 0nT > 0nT
IMF |By| < 10nT < 6nT
Solar angle < −10◦ < −10◦
Outliers removed > 500nT from CHAOS > 500nT from CHAOS

CHAOS-6-x5 Crustal field for n ∈ [14, 120] subtracted
CHAOS-6-x5 Magnetospheric (plus induced) fields subtracted
CM4 Ionospheric (plus induced) fields subtracted
Weights applied SWA and SWC by a factor 1/2 —

Table 3.1: Data sets - data selection criteria and processing.

This thesis uses both vector field data and sums and differences of the magnetic field
components Bk = k̂ · B(r) in geographic spherical polar coordinates where (k = r, θ, φ),
such that ∆dk and Σdk are data differences and sums, respectively. The along-track
(AT) and east-west (EW) data differences are denoted by ∆dk = (∆dAT

k ,∆dEW
k ), and the

data sums constructed by Σdk = (ΣdAT
k ,ΣdEW

k ). Note that in some circumstances it is
necessary to consider data sums as well as differences to ensure sufficient information on
longer wavelengths (Sabaka et al., 2015). The along-track data differences are calculated

1In finalizing the thesis it was noted, that the time-dependent part of CHAOS-6-x5 for degrees 14-20
were removed in calculating the datasets. An improvement would be to instead remove only the static part
for one selected epoch, since this would not remove the SV signal above degree 14. Also the static crustal
field for CHAOS-6 should only be used up to SH degree 110.

2It should be noted that an updated version CIY4 has now been released; the induced secondary
field associated with the ionospheric primary field is now more advanced and reflects a 3-D conductivity
structure that consists of an ocean–continent contrast in the upper layer with a 1-D mantle underneath
(Sabaka et al., 2018). However this updated model was not used in this project.

http://omniweb.gsfc.nasa.gov
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using 15s differences ∆dAT
k = [Bk(r, t) − Bk(r + δr, t + 15s)]. With a satellite speed of

≈ 7.7km/s this corresponds to an along-track distance of 115km (Olsen et al., 2015). The
along-track summations were calculated as ΣdATk = [Bkr, t) +Bk(r + δr, t+ 15s)]/2. The
east-west differences were calculated as ∆dEW

k = [BSWA
k (r1, t1)−BSWC

k (r2, t2)] having an
East-West orbit separation between the Swarm Alpha (SWA) and Charlie (SWC) satellites
of ≈ 1.4◦ corresponding to 155km at the equator (Olsen et al., 2015). The east-west sums
were calculated as ΣdEW

k = [BSWA
k (r1, t1) + BSWC

k (r2, t2)]/2. For a particular orbit of
Swarm Alpha the corresponding Swarm Charlie data were selected to be the one closest
in colatitude with the condition that |∆t| = |t1 − t2| < 50s.

3.4 Analysis of Data Set 2

In this section a more detailed analysis of the Swarm and CHAMP data from Data Set
2 is presented in order to give insights into the satellite measurements and their content.
Because Data Set 1 and 2 are quite similar the analysis is presented for one of these sets.
In particular, Quasi-Dipole (QD) latitude dependent Huber weighted data uncertainties
are derived which are used to built the data error covariance matrices implemented in
the modelling described in Chapter 5. In addition to this, the off-diagonal elements of
the covariance matrix were modelled by an exponential correlation model in an effort to
account for along-track serial error correlation in the data.

3.4.1 Exploratory Data Analysis

The satellite data used in this project are a function of time and space. Data residuals
with respect to the CHAOS-6-x5 model field predictions are used here to construct a data
error covariance matrix. This is of course an incomplete approach; the CHAOS-6 is an
imperfect model. However, analysis of residuals to CHAOS-6 provides the means of deriv-
ing a data error covariance matrix with the assumption that the structure of these data
residuals is indicative of the amount of unmodelled field disturbance present in the data.

An analysis of these data residuals, computed as εi = (di − dmodel,i) for i = 1, ..., N
data, are presented below. Here di are either magnetic field observations or differences of
magnetic observations from Data Set 2, and dmodel,i are the predictions of the CHAOS-6-
x5 model for SH degrees n ∈ [1, 13] at the given data positions and times. Note here that
Data Set 2 differs from that used to construct the CHAOS-6-x5 model by data selection
and handling procedures; in particular, CHAOS-6-x5 uses both ground and satellite (in-
cluding Ørsted and SAC-C) based measurements. Furthermore, the ionospheric field and
its induced counterpart as estimated from the CM4 model were subtracted from Data Set
2, which is not the case for the data used in the CHAOS-6-x5 model. Some basic statis-
tics on the vector data residuals for the Swarm and CHAMP satellites are presented in
Tables 3.2; the number of vector measurements are approximately 1.6mio and 1.2mio for
the three Swarm and the CHAMP satellites, respectively. Ideally data residuals would be
random and normally distributed with a zero mean and they would be uncorrelated. This
is not the case in practise. The minimum and maximum values of the field components
are similar for all satellites (though a threshold of ±500nT has been implemented), as are
the means and standard deviations.

Figure 3.3 presents the spatial structure of the vector data residuals plotted against ge-
ographic colatitude for each field component. It is evident that large residuals are present
in the polar regions from geographic colatitudes 0◦ to 40◦ and 140◦ to 180◦. Even though
large residuals are found in all three vector components, the residual level in the radial
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Component No. data min [nT] max [nT] Mean [nT] Median [nT] std [nT]

Swarm
δBr 1616182 −119.41 115.62 −0.24 −0.18 4.96
δBθ 1616182 −447.71 495.58 −0.34 −0.37 12.69
δBφ 1616182 −416.66 441.19 0.13 0.17 15.05
CHAMP
δBr 1167303 −467.21 353.32 −0.27 −0.12 7.67
δBθ 1167303 −427.78 430.75 −0.09 −0.15 13.47
δBφ 1167303 −473.42 493.85 0.15 0.15 14.32

Table 3.2: Swarm and CHAMP vector data residual statistics.

Figure 3.3: Swarm data residuals vs. colatitude.

component is seen to be significantly lower than for the two horizontal components. Fur-
thermore, in the radial component some satellite tracks having higher residual amplitudes
can be seen outside the polar regions. Figures 3.4 and 3.5 present histograms of the data
and data difference residuals for the CHAMP and Swarm satellites, respectively, showing
the frequency of residual values (notice that the x-axis has been limited to ±50nT such
that large outliers are not visible). The plot shows the residuals for each field component
for the data (top plots) and data differences (bottom plots). Each of these histograms
also include the best fit of a normal distribution shown in red, stating the mean, µ, and
the standard deviation, σ. Notice here the behaviour of the standard deviation (i.e. the
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measure of distribution spread) becoming broader for the two horizontal components as
compared to the radial field component; that is, the variability differs between the com-
ponents.

Exploring further, Figures 3.6 and 3.7 present normal probability plots for each field
component for the CHAMP and Swarm satellites, respectively. As before plots are shown
for residuals of the data (top plots) and data differences (bottom plots). These plots
are used to examine whether residuals are normally distributed or not. The blue crosses
are the actual residuals distribution while the red stipulated line shows a fitted normal
distribution. For instance considering Swarm data; from these plots it can be seen that
more residuals than expected by a Gaussian distribution are negative; according to the
Gaussian pdf 1% of the vector data residuals should be less than -8nT,-10nT and -5nT
for the r-, θ- and φ components, respectively, however the blue curve indicates that the
real numbers are ≈3%, ≈5% and ≈8%. Considering the CHAMP data; according to the
Gaussian pdf 1% of the vector data residuals should be less than -8nT,-11nT and -7nT for
the r-, θ- and φ components, respectively, however the blue curve indicates that the real
numbers are ≈4%, ≈7% and ≈8%. Figure 3.8 presents global scatter plots of the Swarm
data residuals for each field component larger than 10nT in size. Looking at the plots it
should be noted that the scale in each plot is not the same.

By visual inspection of the normal probability plots and histograms, it appears that the
residuals are in fact not normally distributed; the residuals have a long tail. Testing
each component for normality, a one-sample Kolmogorov-Smirnov test, using the build-in
Matlab function kstest, was performed (other similar tests exist, for instance the Anderson-
Darling and Lilliefors tests) (Aster et al., 2005). The Kolmogorov-Smirnov method tests
the following null hypothesis: namely that the residuals originate from a standard normal
distribution (against that it does not). In all cases the hypothesis was rejected at a 5%
significance level (i.e. the typical chosen significance level, rejecting the null hypothesis if
there is less than 5% probability that it is true) (Barlow, 1989; Taylor, 1997).

Thus, from the above analysis data residuals do not follow a normal distribution; why
is this and what does it mean? There could be various causes (for instance insufficient
data), however the reason here is long tails in the distribution i.e. more high or low values
than expected that have an abnormal distance from other points, and thereby disturbing
the statistics (Barlow, 1989; Taylor, 1997). Here long tailed distributions are the cause of
the non-normality. The overall patterns show residuals concentrated at the polar regions
extending equatorward by approximately 30◦−40◦. The residual asymmetry, as compared
to the North-South axis around the polar region, indicates that quasi-dipole coordinates
would provide a suitable description. As can be observed, the radial magnetic field resid-
uals are smaller than the horizontal component residuals. Moreover, the θ-component
exhibits a pattern of residuals along the magnetic equator which may be attributed to re-
moval of the ionospheric field predictions of the CM4 model. The long tailed distribution
of the data errors needs to be handled in an appropriate manner and the following section
describes an approach of doing this.
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Figure 3.4: Histograms of CHAMP data (top) and data differences (bottom) residuals.

Figure 3.5: Histograms of Swarm data (top) and data differences (bottom) residuals.
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Figure 3.6: Normal plots of CHAMP data (top) and data differences (bottom) residuals.

Figure 3.7: Normal plots of Swarm data (top) and data differences (bottom) residuals.
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(a) Data residuals Br component. (b) Data residuals Bθ component.

(c) Data residuals Bφ component.

Figure 3.8: Global scatter plot of Swarm vector data residuals > 10nT in size.

3.4.2 Latitude-dependent Data Error Covariance Matrix

In this section a procedure for providing data variance estimates is described, which is
used to construct covariance matrices used in the SOLA model in Chapter 5. Knowledge
of data error estimates and possible error correlation, are encapsulated in a data error
covariance matrix, which can be written Eij = Cov(xi, xj), where i and j are elements of
the residuals (response variable) x. The diagonal elements of the covariance matrix are
the variances which are the squared standard deviation; these provide an estimate for the
data uncertainty. However, if the data errors are correlated this will result in non-zero
off-diagonal elements as well (e.g., Barlow, 1989; Crawley, 2015). Thus, a dense covariance
matrix can incorporate both uncertainty and correlation information on the data set.

The idea is as follows: 1) use all data from Data Set 2 to construct quasi-dipole (QD) lati-
tude (Richmond, 1995) dependent data uncertainty estimates, σ(QD), and robust weights,
w, in latitude bins for vector data and vector data sums and differences. The reason for
using the QD latitude and not the geographical latitude is that the QD system is a well-
suited coordinate system for describing unmodelled ionospheric signals (Sabaka et al.,
2002; Laundal and Richmond, 2017); 2) for Data Set 2, construct diagonal elements of the
data error covariance matrices based on these binned values:

Step 1) estimates of the QD latitude binned standard deviations were determined using
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all data as

σ(QD) =
√∑

iwi(xi − µw)2∑
iwi

(3.1)

where xi is the residual for a given field component determined as the difference to the
CHAOS-6-x5 field predictions for SH degrees 1-13, x = (d − dCHAOS). The weighted
residual mean is given by (e.g., Finlay et al., 2010b)

µw =
∑
iwixi∑
iwi

(3.2)

Different types of weight functions may be used, for instance Huber or Tukey’s biweight.
For a long tailed error distribution, Huber weights are appropriate determined as (Con-
stable, 1988; Olsen, 2002)

wi =
{

1 if εi ≤ cw
cw/εi if εi > cw

where the normalized residuals are εi = xi/σ and cw = 1.5 is the selected breakpoint for
the Huber distribution. Figure 3.9 presents the calculated data uncertainty estimates as
a function of QD latitude for CHAMP and Swarm vector data, and vector data differ-
ences and sums. It can be seen that large uncertainty estimates are confined to polar
latitudes (i.e. QD latitudes 60◦ to 90◦ and −60◦ to −90◦ for the northern and southern
polar regions, respectively). Furthermore, the estimates are larger for the horizontal field
components, and are seen to exhibit a noticeable asymmetry between the northern and
southern polar regions. Such behaviours have been observed in previous studies (Kotsiaros
et al., 2015; Kother et al., 2015).

Step 2) built a diagonal covariance matrix using σ2
w,i = σ2

i /wi. Here a covariance ma-
trix is built based on the data used, i.e. vector data or vector data sums and differences.
The matrix determined this way is purely diagonal. As described, the Huber weights,
are in addition to latitude-dependent uncertainties, used in order to handle a long-tailed
residual distribution. The Huber weights assign a value less than 1 to data lying in the
tail based on some predefined cut-off point which is here set to 1.5σ. Thus, the smaller the
Huber weight, the bigger the data error variance estimate will become. Below, the covari-
ance matrix, E, is illustrated for an example of using vector data sums and differences,
where ∆ and Σ denotes sums and differences, respectively

E =



[
E∆Br] [

EΣBr] [
E∆Bθ

] [
EΣBθ

] [
E∆Bφ

] [
EΣBφ

]


Figures 3.10 and 3.11 present Huber weights less than 1 and the obtained data error
covariances, for an example case of data sums and differences from March 2017. The
amount of Huber weights less than one are approximately 11%, 12%, 9% for residuals of
components Br, Bθ, Bφ, respectively. For main field estimates in the SOLA approach, see
Chapter 5, an additional weight factor of 1/sinθ, where θ is geographic co-latitude, was
implemented. This was done in order to account for there being more data close to the
poles and in order to simulate an equal-area distribution (on the sphere the differential
longitudinal element in spherical polar coordinates is given by rsinθdφ) (Olsen et al., 2014).
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Thus, closer to the polar regions, the data error variances are effectively enhanced by this
factor. For SOLA estimates of the SV, data were selected to obtain a good coverage in a
global regular grid, so this factor was not used; details are given in Chapter 5.
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Figure 3.9: Latitude-dependent Huber weighted standard deviations in 2◦ bands (Northern
hemisphere having positive QD) for CHAMP data (left figures) and Swarm data (right
figures). Top: using vector data, center using data sums and bottom using data differences.

3.4.3 Along-Track Serial Error Correlation

From the description of the geomagnetic field and its various contributing sources in Chap-
ter 2 together with the data residual analysis presented above, it is to be expected that
the obtained signal exhibits correlation in a least the following ways (Lowes and Olsen,
2004)
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Figure 3.10: Huber weights <1 for March 2017 data example case of each field component
for vector data sums (left) and difference (right).
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Figure 3.11: Data error variances for March 2017 data example case of each field compo-
nent for vector data sums (left) and difference (right). Units in [nT2].

i) along-track (approximately latitudinal) correlation due to unmodelled magnetospheric
signal

ii) orbital recurrence (latitudinal and longitudinal) correlation due to unmodelled mag-
netospheric noise, having an estimated correlation time of 3-6 hr

iii) leakage of unmodelled crustal and ionospheric (plus induced) fields

It is generally recognized that large-scale magnetospheric contamination will have asso-
ciated time scales of minutes to hours, i.e. longer than the sampling frequency for the
satellite observations. This means that noise in the measurements will not be independent
for adjacent data points, i.e. cases (i), and for measurements with orbital recurrence, i.e.
case (ii). For case (i) Lowes and Olsen (2004) estimated a serial correlation time of 5-10
min. At satellite altitudes the amplitude of the small scale crustal field remaining after
having subtracted the CHAOS-6-x5 model predictions, is thought to be very small (Lowes
and Olsen, 2004).

Reduction of the ionospheric contamination relies on night time data selection (i.e. the
sun below horizon). However, this is mostly the case at low and mid-latitudes; at polar
latitudes ionospheric contamination may still be present during night times. Furthermore,
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secondary Earth induction effects (i.e. induced currents in the conducting mantle and
oceans producing secondary magnetic fields) may still persist during night times, long af-
ter the primary inducing sources have seized to exist (Olsen et al., 2005a). The CM4 field
model predictions of the ionospheric and its Earth induced fields were therefore removed,
but it should be noted that this is only an approximation, and in particular the polar
ionospheric signal is not well accounted for.

Here an attempt was made to account for the serial correlation in case (i); an along-
track correlation having a correlation time of 10 min based on the findings of (Lowes and
Olsen, 2004). Various correlation models exists, for instance exponential and spherical
types. Here an exponential covariance model was attempted (e.g. Cressie, 1993)

Eij = Eii(1− γ), γ = 1− e−∆tij/τ (3.3)

= σ2
w,ie

−∆tij
τ (3.4)

where ∆tij = ti − tj is the time differences between each satellite observation, τ = 600s
is the correlation time (i.e. 10 min), and γ is called the variogram (Cressie, 1993). The
exponential correlation model was build using the Matlab tool Synthetic Variogram by T.
Mejer-Hansen http://mgstat.sourceforge.net/htmldoc/index.html.

Figure 3.12: ∆tij matrix example for March 2017 using data sums and differences.

Figure 3.12 shows the ∆tij matrix using the March 2017 data example case. The
∆tij describes the time lag, in seconds, between each observation for each of the Swarm
satellites; the upper left block is for Swarm Alpha data, the second block is for Swarm
Bravo (which for this month is slightly smaller than for the other satellites), the third is for
Swarm Charlie and the last is Alpha-Charlie data. From the ∆tij matrix the non-diagonal
elements of the covariance matrix can be determined by the exponential correlation model.
Notice that the obtained covariance matrix is required to be symmetric, i.e. Eij = Eji, and
positive definite, i.e. the eigenvalues of the covariance matrix should be greater than 0,
which can be investigated by performing a principal component analysis (PCA) obtaining
the eigenvalues. In order to invoke a simple check for the symmetric positive definite
criteria, a Cholesky decomposition on the covariance matrix was performed since only
matrices with these criteria have a unique Cholesky decomposition (Aster et al., 2005).

The left plot in Figure 3.13 presents the non-zero elements of the obtained covariance
matrix for the March 2017 data example, using a correlation time of 10min. The right

http://mgstat.sourceforge.net/htmldoc/index.html
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(a) Full covariance matrix having non-zero elements
shown in blue.

(b) Full covariance matrix: zoom at radial data sums
part, EΣBr having non-zero elements shown in blue.

Figure 3.13: Full covariance matrix example for March 2017 using data sums and differ-
ences including an exponential correlation model. For this example case approximately
1.9 mio out of 2600 mio elements of E are non zero (the size of E is 141 Mb).

plot of Figure 3.13 shows a zoom in on part of the covariance matrix, which illustrates
the non-diagonal behaviour of the obtained covariance matrix. Three big lumps along the
covariance matrix where the off-diagonal elements increases are due to the data sums for
each of the three components being placed here; the variances for the data sums are larger
which yields these slightly bigger lump structures.

3.5 Ground Observatory Data

Ground observatories (GO) provide absolute records the geomagnetic field as measured
by calibrated magnetometers. At the present time there are around 180 operating ground
observatories being part of the INTERMAGNET (International Real-time Magnetic Ob-
servatory Network.) Magnetic Observatory (IMO) network. Observatories part of IN-
TERMAGNET are required to fulfil certain standards regarding accuracy and resolution,
and Figure 3.14 shows a global map of the ground observatories (Mandea and Korte,
2010). As can be seen in the map, the ground observatories are unevenly distributed,
and there are many in Europe. Magnetic ground observatory measurements are of great
importance for several reasons: 1) they provide continuous temporal monitoring of the
magnetic field with high accuracy, 2) having monitored the magnetic field from the middle
of 19th century, they provide important insights into historic (Jackson et al., 2000; Gillet
et al., 2013, 2015a) and present day field variations (Finlay et al., 2016b), and 3) observa-
tory data products such as the Kp, Dst and RC indices are typically implemented in the
selection criteria of satellite measurements to identify geomagnetically quiet times, and 4)
they measure the field below the ionosphere.

Observatory data used in this thesis consists of annual differences of so-called revised
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monthly mean values of the north, east and vertical downward (NEC) field components,
which have been derived from hourly mean values (HMV) by a procedure described in
Olsen et al. (2014). The measurements covered the period 2000-2018 and the HMV
data was extracted from the BGS database ftp://ftp.nerc-murchison.ac.uk/geomag/

Swarm/AUX_OBS, version 0111. Quality control procedures of the observatory measure-
ments ensures inspection for data spikes, baseline jumps and other errors (Macmillan
and Olsen, 2013). The revised monthly mean values were computed as follows; 1) esti-
mates of the large-scale magnetospheric plus Earth induced fields from the CHAOS-6-x5
model predictions along with estimates of the ionospheric Sq plus Earth induced fields
from the CM4 model predictions were removed from the HMV. 2) Afterwards monthly
mean values were calculated using a robust method implementing Huber weights by an
iterative-reweighting scheme (Olsen et al., 2014; Finlay et al., 2015). From these revised
monthly mean values, the annual differences were computed at time t as SW(t)obsNEC =
B(t+0.5yr)NEC−B(t−0.5yr)NEC . Because the annual differences are used in this thesis
to represent SV, the bias from the unmodelled crustal field are not considered important.

Figure 3.14: Locations of magnetic ground observatories marked with red symbols using
a Hammer projection.

ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS
ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS


Chapter 4

Virtual Observatory Modelling

4.1 Introduction

The objective of this chapter is to describe, implement and advance on previous devel-
opments of a geomagnetic field data processing and modelling technique known as the
Virtual Observatory (VO). The intention of the VO technique is to create time series of
the field at pre-specified locations using satellite measurements by a local procedure in
which a mean core field over a chosen time window at satellite altitude is determined.

The purpose of the VO data is to capture genuine short-period variations of the inter-
nal signal, thus producing a high time resolution core field signal recovery. Figure 4.1
shows an illustration of the VO concept. Here advantage will be taken of the latest mea-
surements from the Swarm and CHAMP satellites in order to reconstruct VO time series
of the last 15 years. However, care must be taken since signals from external sources are
present in the measurements influencing the short-period core field signal; thus questions of
whether the obtained signals are truly of internal origin making appropriate data selection
and processing vital. This chapter presents investigations into a range of the possibilities,
presented by VO modelling. In particular various improvements in the method setup and
the computation of field gradients and their temporal behaviour will be explored. Note
that it is not a specific goal of this chapter to model the spatial and temporal variations
of the magnetic field on a global scale, but rather to produce good quality local VO’s.
Section 4.2 provides a summary of previous implementations and applications of the VO
method. Section 4.3 describes the VO method setup used in this project and Section 4.4
describes the VO solution outputs. Sections 4.5 and 4.6 present results of the field and
field gradient computations, respectively. Section 4.8 gives recommendations for future
VO modelling improvements based on the results of this thesis. Section 4.8 provides a
summary of the lessons learnt and conclusions of these investigations.

4.2 Prior use of the Virtual Observatory Model

The paper by Mandea and Olsen (2006) was the first to propose the modelling concept of
virtual observatories. The intention of the authors was to extract and investigate short-
period core field variations directly from satellite measurements. The idea was to produce
satellite monthly means at specified locations mimicking ground observatory monthly
means. The logic behind replicating ground observations using satellite data was the
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Figure 4.1: Illustration of the VO concept, satellite measurements from within a target
cylinder are used to infer time series at the VO location given by a red dot. Courtesy of
C. Finlay.

recognition of the excellent temporal coverage provided by the continuous field monitor-
ing offered at the ground observatories. The VO approach used measurements in the VO
target point vicinity from which an a-priori core field model evaluated at the time of the
measurements was subtracted. The residual field was assumed to be a Laplacian field be-
ing fitted by a local Cartesian quadratic potential. To obtain the main field an a priori core
field model prediction at the target VO location at a monthly mean time was added back
afterwards. The authors used CHAMP satellite measurements from 2000-2005 compar-
ing model results with ground observatory measurements at the observatories NGK, HER
and KAK (see Figure 4.5 for a map showing the location of these observatories). In order
to make processing of the satellite data similar to that of the ground data, the authors
used measurements from all local times having all geomagnetic activity conditions, thus
deviating from the data selection methodology usually implemented when using satellite
data that typically relies on dark geomagnetic quiet times e.g. (Thomson et al., 2010;
Finlay et al., 2015; Sabaka et al., 2015). The reasoning behind this were that short-period
external fields was assumed to have zero mean value over the period of a month. Mandea
and Olsen (2006) showed that the secular variation could indeed be usefully reproduced
from the VO approach yielding mean correlation coefficients between field change records
at ground and at the virtual observatories in the dX/dt, dZ/dt and dY/dt components of
0.65, 0.21, 0.73, respectively. Thus, the authors found that the dY/dt component gave no
significant correlation which they attributed to possible in-situ ionospheric currents.

A second paper by Olsen and Mandea (2007) used the virtual observatory approach to cap-
ture the global patterns of the secular variation on a regular grid of VO’s with special focus
on resolving abrupt changes in the secular variation termed geomagentic jerks. In addi-
tion to removal of the static field estimates, the authors also subtracted a time-dependent
model for SH degrees n ≤ 8. The authors used from all local time CHAMP measurements
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from 2001-2005 again with a mindset of constructing a model derived from data being
uniformly distributed in space and time. In agreement with the results of Mandea and
Olsen (2006), the authors found that the predictions of the virtual observatory approach
contained more short-period variations than those of the CHAOS temporally smoothed
model predictions. Considerable scatter about the monthly mean values was seen causing
the authors to separate the observed signal into internal and external field contributions
using spherical harmonic analysis in order to investigate if part of the short-period signal
could be explained by magnetospheric field variations.

The authors performed a spherical harmonic analysis describing the magnetic field as
the sum of poloidal and toroidal contributions; a Laplacian potential expansion into in-
ternal and external sources combined with a non-potential toroidal scalar expansion, see
Section 2.5.3. The external expansion was designed to capture magnetospheric contribu-
tions and most energy was found in the SH degree n = 1 coefficients (i.e. due to the
ring current). The toroidal expansion was added in recognition of the presence of in-situ
currents at satellite altitude; it was found that there were significant non-zero coefficients
for the SH degrees n = 1 and order m = 0 (the toroidal coefficients having m = 0 affect
only the Y field component, and are thought to be related to field-align currents). Note,
that ground observations cannot contain toroidal contributions, since measurements are
performed in the non-conducting lower atmosphere. The authors found strong variation in
the time derivatives of the external, ˙qmn , and toroidal, ˙tmn , coefficients and noticed that an
induced counterpart of ˙qmn might have significance. The authors found that short-period
variations were not fully described by the model even when including modelled external
and toroidal fields. In addition, the authors demonstrated application of the VO time se-
ries data in geomagnetic jerk investigations, determining the occurrence time of the 2003
jerk event in the northern and southern hemispheres, finding a simultaneous occurrence.

Beggan et al. (2009) attempted to find the best procedure for virtual observatory modelling
based on residuals obtained after fitting an outer core fluid flow model, considering various
data selection criteria, VO grid types and removal of the CM4 external and ionospheric
field predictions of the primary and secondary (induced) magnetospheric, ionospheric and
toroidal estimates. The authors considered both CHAMP and Østed satellite measure-
ments. Despite a sampling frequency of 1Hz for CHAMP measurements, lack of suitable
data during some months forced the authors to perform a spatial interpolation in order
to fill the VO time series. The SV data were inverted for toroidal and poloidal flow using
the linear relationship between SV and flow spherical harmonic coefficients. The authors’
aim was to do short-term forecasting by core flows. The authors found evidence for signif-
icant contamination by external fields in the obtained flow signal, especially pronounced
when using all time data, suggesting that the assumption of zero mean of the external
field is not correct. Using instead night-side data and removal of CM4 external magne-
tospheric and ionospheric field predictions improved the flow model. Furthermore, the
authors attributed enhanced residuals to satellite orbital drift and VO grid usage; that is,
i) because the CHAMP satellite precessed in local time of approximately 2.5 hours per
month, the data used to create monthly VO’s therefore did not sample all local times.
Thereby the VO’s generated month by month contained different local times which ex-
periences distinct external magnetic field environments that apparently mapped into the
VO time series. Thus when calculating annual differences, to obtain SV time series, an LT
effect might be present, ii) due to a global grid of equally spaced latitude and longitudes
overlaps in data bins could occur. Both of these effects were shown to result in sectorial
banding of the residuals, i.e. the SH coefficients m = n.
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Beggan and Whaler (2009), Beggan and Whaler (2010) and Whaler and Beggan (2015)
also used the virtual observatory approach in order to produce forecasting models of the
core field. Whaler and Beggan (2015) used two different sets of magnetic field measure-
ments covering the period 2000–2010 to generate SV and SA estimates. The first was
vector monthly mean values based on night-time data from up to 160 global magnetic ob-
servatories. Monthly field component time series from CHAMP vector measurements on
a grid of 648 points with equal latitude and longitude spacings of 10◦, from 5◦ to 175◦ in
colatitude and 0◦ to 350◦ in longitude. The authors used the CHAOS-3 model predictions
to remove an estimate of the main field before the inversion for the VO solution. The
authors found that the flow model fit to the GO and VO data were poorer for the SA
than the SV data, and for VO than ground observatory data. The authors further found
that spatial data residuals were severely biased, both for ground observatory and VO data,
regardless of whether two- or one-norm data misfit measures were used during the flow
inversion. The authors noted that Beggan et al. (2009) had identified spatial patterns in
the SV residuals which they attributed primarily to external field contamination referring
also to Shore (2013). They believed that external field contamination was the likely cause
of the large outliers observed near the polar regions, especially in the VO data time series.
The large-scale patterns in the residuals were common to both ground observatory and
VO data, suggesting that the ground data also had significant external field contamination.

Olsen et al. (2009) and Olsen et al. (2010c) used the virtual observatory technique to
assess the temporal resolution of the CHAOS-2 and CHAOS-3 field models, respectively.
Olsen et al. (2009) showed that time series of annual differences of monthly means in dZ/dt
of the CHAOS-2 model predictions were able to capture some of the short-period varia-
tions seen in the virtual observatory time series. Because the VO grid time series was built
using all time data, it was regarded an independent data set from that of the CHAOS-2
model. Olsen et al. (2010c) calculated virtual observatory monthly means determining
time series of the Gauss coefficients. In order to minimize effects of external currents that
depend on local time, the authors applied a 4-month running mean to the Gauss coeffi-
cients. This reduced the scatter of the coefficients seen in Olsen and Mandea (2007). They
found scatter in the individual monthly solutions to be largest in the lower-order zonal
harmonics, i.e. m = 0, indicating the influence of ionospheric field contributions in the
polar ionosphere. Furthermore, the authors saw the signature of semi-annual variations in
some SH degree n = 1 coefficients (e.g. h1

3, g
1
4) thought to be caused by contributions from

polar ionospheric currents. However, temporal changes in the higher degree sectorial har-
monics, i.e. m = n representing low latitude field changes, showed rapid field fluctuations
were not well described by the CHAOS-3 model predictions due to the applied temporal
regularization implemented. Hence, small scale low latitude rapid field fluctuations were
observed in the VO model which were not captured by the CHAOS-3 spline model.

Shore (2013) addressed a series of issues in VO modelling concluding that ”the tempo-
ral simplifications are by far the most damaging to the VOs”, i.e. that external fields are
not averaging to a zero-mean over the course of a month as originally assumed by Mandea
and Olsen (2006). The author tested different approaches of reducing the effects of exter-
nal sources and used these results to provide a more complete description of the external
field variations. The author found indications that contaminations were mainly due to the
symmetric ring current along with a mixture of contaminations related to patterns termed
UT and LT bias. The author ascribed the UT bias to variations in the temporal density
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within each VO, and found this could potentially cause the sectorial banding patterns.
Furthermore, as in Beggan et al. (2009) the assumption that each VO contains the same
LT sampling was found to be incorrect since various magnetic environments such as noon
and midnight might be sampled differently, thus causing a LT bias resulting in ”tiling”
patterns (also termed the LT effect). The author proposed suggestions to mitigate some
of the contamination in the VO approach; i) multiple satellite measurements providing an
improved coverage of temporal variations at different local times, ii) magnetospheric field
removal, iii) binning data for time windows of 4.5 months in order to ensure sampling of
all LT.

Saturnino (2015) modified the VO modelling procedure by using a so-called equivalent
source dipole (ESD) model representation. A grid of ESD’s were constructed for each
virtual observatory, inverting for the dipole magnetization and thus the corresponding
field at the VO. One advantage was that no a-priori field model had to be subtracted and
the possibility of downward (or upward) field continuation. The author applied Swarm
measurements for a series of individual observatories and for a global grid. The author
found good correlation between the Y and Z components. No data selection was applied
and no external field corrections were attempted; thus the obtained virtual observatory
time series were prone to contaminating signals.

In summary, previous investigations using the virtual observatory approach have shown it
to be a robust procedure for estimating high resolution time series of the secular variation.
In particular, Olsen and Mandea (2007) showed that the technique performs better than
global spherical harmonic field model in that respect; typical field models are based on
an analysis of globally distributed measurements whereas the virtual observatory model
is based on measurements extracted in the vicinity of a particular location. Moreover, SH
field models typically incorporate temporal regularization procedures in order to produce
stable solutions (for instance the CHAOS field model minimizes the second time derivative
of the squared magnetic field average over the Earth’s surface, thus observed field accel-
erations exceeds model predictions Olsen et al. (2010c)). However, as shown by Beggan
et al. (2009); Shore (2013); Olsen et al. (2010c) external field contamination is likely to
leak into the virtual observatory time series. It is a difficult matter to reduce the effect of
these external fields without affecting the VO approach; in particular using geomagneti-
cally quite dark time data selection criteria heavily reduces the number of data available
for inverting the local VO time series.

4.3 Virtual Observatory Model Formulation

The original approach devised by Mandea and Olsen (2006), for producing core field time
series, used satellite measurements on a monthly basis from within a target cylinder cen-
tred on a target point called a virtual observatory located close to the mean satellite
altitude.

Here the method produces a field ”mean” at the target point for each time window (not
necessarily in monthly windows); the procedure used in this thesis is as shown in the
flowchart Figure 4.2. In the following sections each step is explained in more detail.
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Satellite magnetic
measurements from
CHAMP or Swarm

Step 1

Data selection criteria are applied following the findings and
recommendations of Chapter 3. Field estimates of internal
and external origin are removed and a residual field
computed.

Step 3

The residual magnetic field is assumed to be a Laplacian
potential field; quadratic or cubic Cartesian potential
expressions are implemented.

Step 4

A fit to the residual data is performed estimating the potential
field parameters. A main field estimate at the VO target point
is then added back.

Step 2

The residual field is rotated into a local Cartesian coordinate
system with origin at the VO target point. Satellite
measurements from within a chosen cylindrical distance of
the VO target point are extracted.

The procedure is
repeated for
consecutive time
windows and
afterwards the secular
variation can be
calculated

Estimations of internal,
magnetospheric and
ionospheric fields from
a-priori models

Geomagnetic
disturbance indices

Figure 4.2: VO methodology flowchart illustrating the main steps.

4.3.1 Step 1. Data Selection and Residual Field Determination

The CHAMP and Swarm measurements, selection criteria and data processing applied
are described in details in Section 3.3, and are denoted Data Set 1. Contrary to the orig-
inal implementation, here the focus is on using dark time data, since the assumption of
external zero mean field might not be valid (Beggan et al., 2009; Shore, 2013). Within a
pre-specified time window for a given fixed VO target location, data from within a target
cylinder, having some specified horizontal dimension, surrounding that particular VO lo-
cation, are extracted. The VO position vector is given in spherical polar coordinates as
rV O = (r, θ, φ)V O, where r = ra +hV O such that hV O specifies the height above ground of
the VO. During the CHAMP and the Swarm periods hV O = 370km and hV O = 490km,
respectively such that the VO’s are located at approximately the mean orbital height of
the satellites (see Section 3.2). Depending on the type of investigation carried out, the
radius of the target cylinder, dV O, also termed data search range, may be adjusted to fit
the specific requirements of the investigations. Note that this may influence the truncation
of the potential field expansion as described in Step 3.

From the magnetic field measurements, Bsatellite, in the ECEF frame, field residuals are
obtained as

δB = Bsatellite −BMF −Bcrust −Bmag −Biono (4.1)

where BMF is taken as SH degrees n ∈ [1, 13] from the time-dependent part of the CHAOS-
6-x5 model. Bcrust is taken as the sum of the SH degrees n ∈ [14, 20] of the time-dependent
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part evaluated for each data time and the SH degrees n ∈ [21, 110] of the static part of the
CHAOS-6-x5 model. Note here that in contrast to the original approach an estimate of
the crustal field is subtracted, the reason being that VO main field time series may be need
in some applications such as core dynamics data assimilation (this has no implications for
the computation of the SV field determined as annual differences). The suggestions put
forward by Shore (2013) regarding the removal of external field estimates are here incor-
porated; Bmag is taken as CHAOS-6-x5 magnetospheric primary and secondary (induced)
field model predictions, and Biono is taken as CM4 ionospheric primary and secondary
(induced) field estimates, see Chapter 2 for more details. The computed residual field,
δB, is then assumed to be a potential field. In their first paper, Mandea and Olsen (2006)
did not remove a time-dependent core field, however, this they did in their second paper,
Olsen and Mandea (2007).

In the final step 4, CHAOS-6-x5 model estimates for SH degrees n ∈ [1, 16] are added
back to the residual field for the VO target times. The reason for choosing SH degrees up
to n = 16 is that these are thought to be stably estimated. The reason for subtracting the
time-dependent estimates of the CHAOS-6-x5 model from the data and afterwards adding
it back for the target times, is that this allows an effective pre-whitening of the data. Pre-
whitening in this context means some operation acting on the data time series equalizing
the amplitude of all frequencies in order for it to behave like white noise (in white noise all
frequencies have the same intensity thus yielding a constant power spectra) in a statistical
sense (”pre” here referring to the whitening prior to any other operation) (e.g. Kearey
et al., 2013). This procedure allows for Huber weights counteracting big outliers present
in the data to be effectively determined. Note here that considering a pre-specified VO
time window of say four months, the associated time dependence within the four months
will be lost. Using a time window of 4 months (i.e. 60 days around each epoch t) instead
of the 1 month windows used in the original approach, may be advantageous; firstly more
data is used minimizing data gaps and secondly a better LT coverage may be obtained
arguably minimizing the LT bias Shore (2013). In the following calculations have been
done using 4 month time windows. The same procedure applies to time series of magnetic
field gradients, see Section 4.6.

4.3.2 Step 2. Coordinate Transformations

The satellite data are given in the Earth-Centered-Earth-Fixed coordinate frame by their
spherical polar components, i.e. (r, θ, φ), after having performed appropriate transfor-
mations of the calibrated measurements, for more details see Section 3.3. In the virtual
observatory approach, the residual field and the associated positions are transformed from
the geocentric coordinate system into a local Cartesian coordinate system having origin at
the individual VO target points, i.e. (x0, y0, z0)V O = (0, 0, 0). The procedure is as follows:

1. Transform the residual field components and positions, as well as VO positions from
spherical polar to Cartesian coordinates in the ECEF frame, i.e. (r, θ, φ)ECEF to
(x, y, z)ECEF . The Cartesian and spherical polar position coordinates are connected
via (e.g. Riley et al., 2004)

r =

xy
z

 = r

sinθcosφ
sinθsinφ

cosθ

 (4.2)
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where r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The Cartesian unit vectors are connected
to the spherical unit vectors via (e.g. Riley et al., 2004)x̂ŷ

ẑ

 =

 sinθcosφ cosθcosφ −sinφ
sinθsinφ cosθsinφ cosφ

cosθ −sinθ 0


r̂θ̂
φ̂

 (4.3)

2. Transform the residual field components and positions from the ECEF frame to
a local topocentric Cartesian right-handed system where x points towards geo-
graphic south, y points towards east and z points upwards, here termed the SEU
(South,East,Up) VO target frame, i.e. from (x, y, z)ECEF to (x, y, z)SEU , centred
on the VO target point under consideration. Constructing an appropriate rotation
matrix transforming from the SEU to the ECEF frame can be done by considering
Figure 4.9: 1) rotate by angle β about the y-axis and 2) rotate by angle γ about the
z-axis. The rotation matrices about the y- and z axes are then (e.g., Seeber, 2003,
p. 11)

R
y
(β) =

 cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

 R
z
(γ) =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 (4.4)

Thus the complete rotation matrix is given by

RECEF
SEU

= R
z
(γ)R

y
(β) =

 cosγcosβ sinγ −cosγsinβ
−sinγsinβ cosγ sinγsinβ

sinβ 0 cosβ

 (4.5)

Note that rotation matrix does not change the length of the position vector and
multiplication is not commutative (i.e. R

z
(γ)R

y
(β) 6= R

y
(β)R

z
(γ)). Inserting the

relevant rotation angles for the VO application β = −θ and γ = −φ gives

RECEF
SEU

= R
z
(γ)R

y
(β) =

 cosφcosθ −sinφ cosφsinθ
sinφsinθ cosφ sinφsinθ
−sinθ 0 cosθ

 (4.6)

Transforming instead from the ECEF to the SEU frame requires the transpose (or
equivalently the inverse) of the rotation matrix (e.g., Seeber, 2003, p. 11), i.e.

RSEU
ECEF

=
(
RECEF
SEU

)T
=
(
RECEF
SEU

)−1
=

 cosφcosθ sinφsinθ −sinθ
−sinφ cosφ 0

cosφsinθ sinφsinθ cosθ

 (4.7)

Thus the coordinates are rotated asxy
z


SEU

=

 cosθcosφ cosθsinφ −sinφ
−sinφ cosφ 0

sinθcosφ sinθsinφ cosθ


xy
z


ECEF

(4.8)

Afterwards the radius of the VO target point is subtracted from the z coordinate,
to obtain the z position relative to the VO. The height, hV O, of the VO’s were here
chosen to be 370km and 490km during the CHAMP and Swarm periods, respectively.
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Figure 4.3: The ECEF geocentric (in black) and local SEU topocentric (in red) Cartesian
frames.

4.3.3 Step 3. Cartesian Potential Representation

The magnetic potential at a given VO can be represented as an expansion in terms of
Cartesian coordinates of an ECEF local topocentric coordinate system. Quadratic and
cubic potential expansions are described here; because the data search range may be
larger than in the original implementation a cubic expression might be needed for a more
accurate description. Especially in the polar regions lack of data might be an issue of
concern when using geomagnetically quiet dark time, selection criteria; this motivates the
use of a larger search radius.

Quadratic Potential Description

It is assumed that the residual magnetic field, δB, is a Laplacian potential field outside the
source region, i.e. fulfilling the quasi-stationary approximation and neglecting electrical
currents present at satellite altitude (J = 0). In a local topographic Cartesian coordinate
system, choosing the normal basis (x̂, ŷ, ẑ)SEU for R3, the Laplace equation of the magnetic
scalar potential, V , can be written (Blakely, 1995)

∇2V (x, y, z) = ∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0 (4.9)
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Harmonic polynomials satisfy the Laplace partial differential equation and in Cartesian
coordinates these can be written as the summation (Backus et al., 1996)

V (x, y, z) =
l∑

a+b+c=l
Ca,b,cx

aybzc

= C000 + C100x+ C010y + C001z + C200x
2 + C020y

2 + C002z
2

+ C110xy + C101xz + C011yz + C110yx+ C101zx+ C011zy

+ C300x
3 + C030y

3 + C003z
3 + · · · (4.10)

where Ca,b,c are the expansion coefficients, {a, b, c} ∈ N+, and l is the expansion order.
Hence, the solution is expressed as a sum of harmonic polynomials; harmonic because it
satisfies the Laplace’s equation and polynomial since the expression consists of variables
and coefficients involve only the operations of addition, subtraction, multiplication, having
non-negative integer exponents. The position vector is written r = xx̂ + yŷ + zẑ, and
because the variables are thought of as coordinates of a point, the polynomials are scalar
fields in R3. The first term in eq.4.10 is a constant and can be left out of the equation
when studying the magnetic field (the first term vanishes since the gradient is applied,
i.e. B = −∇V ). Olsen and Mandea (2007) expanded the potential to second order, i.e. a
quadratic description; writing here the expansion coefficients in the notation of Olsen and
Mandea (2007) the potential, equation (4.10), becomes

V (x, y, z) = νxx+ νyy + νzz + νxxx
2 + νyyy

2 + νzzz
2

+ νxyxy + νxzxz + νyzyz + νyxyx+ νzxzx+ νzyzy (4.11)

The scalar potential V (x, y, z) thus varies quadratically with the spatial coordinates and
is specified in terms of 12 parameters. The directional derivatives of the potential are

∂V

∂x
= νx + 2νxxx+ νxyy + νxzz + νyxy + νzxz

∂V

∂y
= νy + 2νyyy + νxyy + νyzz + νyxx+ νzyy

∂V

∂z
= νz + 2νzzz + νxzz + νyzy + νzxx+ νzyy

The geomagnetic field is a solenoidal irrotational vector field since it fulfills the two condi-
tions: 1) ∇×B = 0 (irrotational) and 2) ∇·B = 0 (solenoidal, i.e. no isolated monopoles)
(Blakely, 1995; Backus et al., 1996). Implementing these constraints reduces the number
of independent parameters of equation (4.11), thus simplifying the potential expression:

1. ∇×B = ∇×∇V = 0 The cross product is

∇×∇V =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∇Vx ∇Vy ∇Vz



∇×∇V = x̂

[
∂

∂y
∇Vz −

∂

∂z
∇Vy

]
− ŷ

[
∂

∂x
∇Vz −

∂

∂z
∇Vx

]
+ ẑ

[
∂

∂x
∇Vy −

∂

∂y
∇Vx

]
= x̂

[
(νyz + νzy)− (νyz + νzy)

]
− ŷ

[
(νxz + νzx)− (νxz + νzx)

]
+ ẑ

[
(νxy + νyx)− (νxy + νyx)

]
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For this to fulfil ∇×B = ∇×∇V = 0 requires each term in the brackets to be zero.
Thus

νxy = νyx νxz = νzx νyz = νzy

2. ∇ ·B = ∇ · ∇V = 0 Using the above the potential can be written

V (x, y, z) = νxx+ νyy + νzz + νxxx
2 + νyyy

2 + νzzz
2

+ 2νxyxy + 2νxzxz + 2νyzyz

Taking the derivative of the potential:

∂V

∂x
= νx + 2νxxx+ 2νxyy + 2νxZz

∂V

∂y
= νy + 2νyyy + 2νxyy + 2νyzz

∂V

∂z
= νz + 2νzzz + 2νxzz + 2νyzy (4.12)

Taking the second derivative:

∂2V

∂x2 = 2νxx
∂V 2

∂y2 = 2νyy
∂V 2

∂z2 = 2νzz

Because of the requirement ∇2V = 0 we get:

2νxx + 2νyy + 2νzz = 0⇒
νzz = −(νxx + νyy) (4.13)

Combining the outcome of conditions 1) and 2) yields a quadratic potential of the form

V (x, y, z) = νxx+ νyy + νzz + νxxx
2 + νyyy

2 − (νxx + νyy)z2

+ 2(νxyxy + νxzxz + νyzyz) (4.14)

Thus, assuming that the magnetic field is a potential field, the number of parameters
characterizing the potential is reduced from 12 to 8: (νx, νy, νz, νxx, νyy, νxy, νxz, νyz). This
should match the number of Gauss coefficients of the corresponding spherical harmonic
expansion being n(n + 2) for SH degree n, i.e. 2(2 + 2) = 8 for n = 2. The resid-
ual magnetic field can be determined as δB = −∇V and the directional derivatives are
those given by eq.4.12. For the measurements within the VO target search range this
potential is then used as the basis of the fit. At the given VO target point, having the
origin coordinates (x0, y0, z0) = (0, 0, 0), the residual magnetic field is simply determined
as δB = −∇V = −(νx, νy, νz), i.e. it depends only on three of the estimated parameters.

With the assumption of a spherical Earth, the solution obtained can then be transformed
into the usual geocentric ECEF spherical polar coordinate system or the NEC system from
the coefficients of the expansion as (Z,X, Y )NEC = (−Br,−Bθ, Bφ) = (−Z,−X,Y )SEU =
(νz, νx,−νy).



68 CHAPTER 4. VIRTUAL OBSERVATORY MODELLING

Cubic Potential Description

In case when the search range around the VO target point is larger the quadratic potential
fit (V ∝ x2, y2, z2;∇V ∝ x, y, z;∇2V ∝ constant) from above might need to be replaced
by a cubic fit (V ∝ x3, y3, z3;∇V ∝ x2, y2, z2;∇2V ∝ x, y, z). Expanding in the potential
solution as for the quadratic case, the potential is now first written using a total of 39
expansion coefficients. Arguing as before using the requirements ∇×B = 0 and ∇·B = 0
reduces this number to 15 parameters

V (x, y, z) = νxx+ νyy + νzz + νxxx
2 + νyyy

2 − (νxx + νyy)z2

+ 2νxyxy + 2νxzxz + 2νyzyz − (νxyy + νxzz)x3

+ 3νxxxx2y + 3νxxzx2z + 3νxyyxy2 + 3νxzzxz2 + 6νxyz
− (νxxy + νyzz)y3 + 3νyyzy2z + 3νyzzyz2 − (νxxz + νyyz)z3 (4.15)

and the required directional derivatives are

∂V

∂x
= νx + 2νxxx+ 2νxyy + 2νxzz + 6νxxyxy + 6νxxzxz

+ (3y2 − 3x2)νxyy + (3z2 − 3x2)νxzz
∂V

∂y
= νy + 2νyyy + 2νxyx+ 2νyzz + (3x2 − 3y2)νxxz + 6νxyyxy

+ 6νyyzyz + (3z2 − 3y2)νyzz
∂V

∂z
= νz − 2νxxz − 2νyyz + 2νxzx+ 2νyzy + (3x2 − 3z2)νxxz + 6νxzzxz

+ (3y2 − 3z2)νyyz + 6νyzzyz (4.16)

As for the quadratic case at the given VO target point, having the origin coordinates
(x0, y0, z0) = (0, 0, 0), the residual field is simply determined as δB = −∇V = −(νx, νy, νz).

Field Gradients

It is also possible to produce VO time series of magnetic field spatial gradients and their
temporal variation. Here a procedure is described for computing the 3 × 3 magnetic
gradient tensor using the VO models. Results of these computations are presented in
Section 4.6. As mentioned in Section 2.5.2 the elements of the gradient tensor serve as
filters providing information of the field structure in specific directions. The geomagnetic
field is irrotational, i.e.

∇×∇V = x̂

[
∂

∂y
∇Vz −

∂

∂z
∇Vy

]
− ŷ

[
∂

∂x
∇Vz −

∂

∂z
∇Vx

]
+ ẑ

[
∂

∂x
∇Vy −

∂

∂y
∇Vx

]
requiring each bracket to be zero. Thus, the potential assumption involves the restrictions

∂2V

∂y∂z
= ∂2V

∂z∂y
,

∂2V

∂x∂z
= ∂2V

∂z∂x
,

∂2V

∂x∂y
= ∂2V

∂y∂x

or equivalently
∂Bz
∂y

= ∂Bz
∂z

,
∂Bz
∂x

= ∂Bx
∂z

,
∂By
∂x

= ∂Bx
∂y

Adding to these the derivatives

∂Bx
∂x

,
∂By
∂y

,
∂Bz
∂z
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a total of five derivatives may be of interest. In the local Cartesian coordinate system the
magnetic gradient tensor is written

∇B =


∂Bz
∂z

∂Bz
∂x

∂Bz
∂y

∂Bx
∂z

∂Bx
∂x

∂Bx
∂y

∂By
∂z

∂By
∂x

∂By
∂y

 (4.17)

The field gradient tensor using the VO potential model fit is thus written

∇B =

 −2(νxx + νyy) 2νxz 2νyz
2νxz 2νxx 2νxy
2νyz 2νxy 2νyy

 (4.18)

Notice here that the tensor is symmetric and that tensor trace is zero, tr(∇B) = −2(νxx+
νyy) + 2νxx + 2νyy = 0.

4.3.4 Step 4. Model Estimation

Determining the magnetic scalar potential expansion coefficients amounts to estimating
model parameters m of a linear inverse problem

d = Gm (4.19)

where d is the data vector containing the residual field values in the SEU system, δB =
(δX, δY, δZ), and the design matrix G describes the mathematical formulation relating
the model and the data, and m contains the parameters of the potential, such that
m = (νx, νy, νz, νxx, ...)T . The inversion was carried out using the Matlab robust mul-
tilinear regression tool robustfit using an algorithm based on an iteratively reweighted
least squares solution incorporating a weighting function https://se.mathworks.com/

help/stats/robustfit.html, implementing a Huber weighting function having a tuning
constant of 1.5 (Constable, 1988; Sabaka et al., 2004). In order to produce a viable solution
a limit on the minimum number of data points required for the inversionNV O was specified.

Use of satellite vector data sums and differences instead of regular vector data was also im-
plemented in accordance with the procedure described by Kotsiaros et al. (2015) and Olsen
et al. (2015). The idea of using data differences was to try and remove any large-scale ex-
ternal signal from the measurements, however it was found during initial model runs that
data sums needs to be included as well in order to ensure sufficient information on longer
wavelengths of the field (see also Sabaka et al. (2004), Olsen et al. (2007) and Sabaka et al.
(2015). Data are defined as d = {∆dx,∆dy,∆dz,Σdx,Σdy,Σdz}, where ∆ and Σ denotes
differences and sums, respectively. The design matrix using sums and differences was con-
structed as G = {∆Gx; ∆Gy; ∆Gz; ΣGx; ΣGy; ΣGz)} where ∆Gk = [Gk(r1)−Gk(r2)] and
ΣGk = [Gk(r1) + Gk(r2)]/2 where k = (x, y, z) are the difference and sums data kernels,
respectively. Considering sums and differences of vector data in spherical coordinates, it
is important to note that the design matrix G contains all information regarding data
positions and how these are connected to the model m; this means, that when considering
differences, the ∆G’s are not formed by assuming averaging positions for the data nor by
assuming them to be at the same position.

Using a quadratic potential description, the estimation of 8 model parameters m =
(νx, νy, νz, νxx, νyy, νxy, νxz, νyz) from the field residuals was implemented using a design

https://se.mathworks.com/help/stats/robustfit.html
https://se.mathworks.com/help/stats/robustfit.html
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matrix linking the parameters and data, i.e. eq.4.12, such that the system of equations is
written

δX(r1)
δX(rn)

...
δY (r1)
δY (rn)

...
δZ(r1)
δZ(rn)

...



=



−1 0 0 −2x1 0 −2y1 −2z1 0
−1 0 0 −2xn 0 −2yn −2zn 0
...

...
...

...
...

...
...

...
0 −1 0 0 −2y1 −2x1 0 −2z1
0 −1 0 0 −2yn −2xn 0 −2zn
...

...
...

...
...

...
...

...
0 0 −1 2z1 2z1 0 −2x1 −2y1
0 0 −1 2zn 2zn 0 −2xn −2yn
...

...
...

...
...

...
...

...





νx
νy
νz
νxx
νyy
νxy
νxz
νyz


(4.20)

where δB = (δX, δY, δZ) is the data vector (i.e. the residual field) containing each of the
three vector field components at a given VO location and (j = 1, ..., n) is an index of the
observations.

In a similar manner as with the quadratic potential described above, the estimation of the
15 model parameters m = (νx, νy, νz, νxx, νyy, νxy, νxz, νyz, νxxy, νxxz, νxyy, νxzz, νyyz, νyzz, νxyz)
of the cubic potential description is written

δX(r1)
δX(rn)

...
δY (r1)
δY (rn)

...
δZ(r1)
δZ(rn)

...



=



−1 0 0 −2x1 0 −2y1 −2z1 0 −6x1y1 . . .
−1 0 0 −2xn 0 −2yn −2zn 0 −6xnyn . . .
...

...
...

...
...

...
...

...
... . . .

0 −1 0 0 −2y1 −2x1 0 −2z1 −3x2
1 − 3y2

1 . . .
0 −1 0 0 −2yn −2xn 0 −2zn −3x2

n − 3y2
n . . .

...
...

...
...

...
...

...
...

... . . .
0 0 −1 2z1 2z1 0 −2x1 −2y1 0 . . .
0 0 −1 2zn 2zn 0 −2xn −2yn 0 . . .
...

...
...

...
...

...
...

...
... . . .





−6x1z1 −3y2
1 − 3x2

1 −3z2
1 − 3x2

1 0 0 0
−6xnzn −3y2

n − 3x2
n −3z2

n − 3x2
n 0 0 0

...
...

...
...

...
...

0 −6x1y1 0 −6y1z1 −3z2
1 − 3y2

1 0
0 −6xnyn 0 −6ynzn −3z2

n − 3y2
n 0

...
...

...
...

...
...

−3x2
1 − 3z2

1 0 −6x1z1 −3y2
1 − 3z2

1 −6y1z1 0
−3x2

n − 3z2
n 0 −6xnzn −3y2

n − 3z2
n −6ynzn 0

...
...

...
...

...
...





νx
νy
νz
νxx
νyy
νxy
νxz
νyz
νxxy
νxxz
νxyy
νxzz
νyyz
νyzz
νxyz


where δB = (δX, δY, δZ) is the data vector, containing each of the three vector field com-
ponents at a given VO location and (j = 1, ..., n) is the number of observations.
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The final step is to add back the CHAOS-6-x5 model predictions, BMF
V O , for SH degrees

n ∈ [1, 16], to the mean residual field determined for the VO position and target time
under consideration, δBV O, obtaining a main field estimate

BV O(t) = δBV O(t) + BMF
V O (t) (4.21)

The procedure is then repeated for each time window to obtain time series. The secular
variation at a particular VO location for a given time window at epoch t, was computed
as the annual difference between the field component values at time t+ 6months and that
at time t− 6months (Mandea and Olsen, 2006)

SVV O(t) = BV O(t+ 0.5yr)−BV O(t− 0.5yr)

Estimates of the secular acceleration were likewise computed as annual differences of the
secular variation

SAV O(t) = SVV O(t+ 0.5yr)− SVV O(t− 0.5yr)

4.4 Virtual Observatory Model Computations

The VO modelling investigations reported here, comes in two categories:

1. VO’s located above existing ground observatories (GO), a procedure discussed in
Section 4.4.1. This allows for a clear comparison between annual differences of the
VO’s and GO’s enabling an assessment of the VO time series (the times series of the
GO annual differences are constructed based on revised monthly means as explained
in Section 3.5)

2. 2) VO’s located in a global grid, a procedure discussed in Section 4.4.3. This al-
lows for global VO time series to be used in various applications, e.g. spherical
harmonic analyses, field modelling, jerk analysis, data assimilation studies and core
flows studies.

The VO data files produced contain time series of the main magnetic field as well as
main field gradient components. The components are provided in a geocentric spherical
coordinate system (r, θ, φ), in units of [nT] and [nT/km], respectively. Output data files
named version 0105 were used for the results reported in this Chapter. These files were
build using Data Set 1 (see Section 3.3), using a cubic potential description having a search
range d0 = 700km and using 4 month time windows. Some examples of synthetic case
studies can be found in Appendix B. From these studies, it became clear that increasing
the search range would require an increase in potential description, i.e. going from a
quadratic to a cubic expansion, in order to obtain an adequate fit.

An important issue when using dark geomagnetically quiet time data selection criteria,
is that this reduces the amount of data significantly. This can cause gaps in the VO time
series, and thus one may wish to implement a bigger search range. Of course the data
subsampling rate could be changed, but these data are not necessarily independent sam-
ples of the field of interest due to correlation of noise along-track. The original approach
took data from all times with no data selection criteria and used a search range of 400km.
In this project a search range of 700km was used to generate dataset 0105, as this was
found to be reasonable based on the synthetic test studies and minimized overlap of data
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cylinders for grids of 300 equally distributed VO’s (see Section 4.4.3). To do the inver-
sion, a minimum limit of 30 data was here required, in order to secure enough data to do
the robust weighting. Table 4.1 lists the various elements of the VO data files version 0105.

Figure 4.4 provides an example of an output file version 0105 for a VO solution above
the German observatory Niemegk. The output files contain the information as described
in Table 4.1; the VO positions, times, main field and main field gradients, the number
of data along with statistics providing the mean and rms values of the residuals being
computed as the differences between the data and the VO model predictions.

The results of the VO computations for the chosen setup are given in: 1) Section
4.5 presenting secular variation and acceleration time series of the field above selected
ground observatories and an SH analysis of external field contributions, and 2) Section
4.6 presenting secular variation and acceleration time series of the field gradients above
selected ground observatories also testing the possibility of doing global field modelling
using the field gradient data. The output example includes the diagnostics listed in Table
4.1, in particular the example list statistics being rms and mean values of the residuals
between data and model fit.

Name column Symbol Units Content
theta 1 θ degrees Colatitude of VO target point
phi 2 φ degrees Longitude of VO target point
Year 3 Year of VO solution
Month 4 Center month of time window for VO solution
Time 5 t [days] Modified Julian date
r 6 r [km] Radius of VO target point
Br 7 Br [nT] Magnetic field r component
Bthe 8 Bθ [nT] Magnetic field θ component
Bp 9 Bφ [nT] Magnetic field φ component
dBrdr 10 ∇rBr [nT/km] Magnetic field r gradient of r component
dBthedthe 11 ∇θBθ [nT/km] Magnetic field θ gradient of θ component
dBpdp 12 ∇φBφ [nT/km] Magnetic field φ gradient of φ component
dBthedr 13 ∇θBr [nT/km] Magnetic field θ gradient of r component
dBpdr 14 ∇φBr [nT/km] Magnetic field φ gradient of r component
dBthedp 15 ∇θBφ [nT/km] Magnetic field θ gradient of φ component
N data 16 NVO Number of data used for solution
diff Mean 17-19 mean∆ [nT] Huber weighted mean of residuals between difference data and fit
diff root-mean-square 20-22 rms∆ [nT] Huber weighted rms of residuals between difference data and fit
sums Mean 23-25 meanΣ [nT] Huber weighted mean of residuals between sums data and fit
sums root-mean-square 26-28 rmsΣ [nT] Huber weighted rms of residuals between sums data and fit

Table 4.1: Output file description for VO dataset 0105.

4.4.1 VO Solutions at Ground Observatory Sites

The VO time series have been computed above the selected ground observatories marked
with blue dots in Figure 4.5 and listed in Table 4.2. Table 4.3 presents an example case
of output statistics for a VO above the German Niemegk observatory. Listed are the
mean and rms misfit between the VO model dmodel, predictions Gm and the contributing
satellite data dobs = δB (an estimation measure of the imperfection of the model fit to the
data) in [nT]. The mean and rms are a mean over all epoch stating the (Huber) weighted
values computed from the residuals e = dobs − dmodel using the VO model described in
Section 4.3.4. During the Swarm time, no distinction was made between data from the
three satellites. The mean values are all very close to zero. The rms values for the sums
are seen to be slightly larger during CHAMP time than Swarm time, however most values
are below 2nT. For the differences the rms misfits are approximately 0.5nT.
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Figure 4.4: VO model output example for solution above German Niemegk observatory.

Figure 4.5: Plot of selected ground observatories used in the VO comparison analysis
using a Hammer projection. All ground observatories are marked with red symbols and
emphasized with blue symbols are the selected ground observatories used for time series
comparisons.
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Observatory name IAGA code Colatitude East longitude

Ascension Island ASC 97.95◦ 345.62◦
Alice Springs ASP 113.77◦ 133.88◦
Chambon la Foret CLF 41.98◦ 2.27◦
College CMO 25.13◦ 212.14◦
Gan GAN 89.3054◦ 73.1537◦
Guam GUA 76.41◦ 144.87◦
Hermanus HER 124.43◦ 19.23◦
Honolulu HON 68.68◦ 202.0◦
Kakioka KAK 53.77◦ 140.18◦
Kourou KOU 84.79◦ 307.27◦
Learmonth LRM 112.22◦ 114.1◦
Mbour MBO 75.62◦ 343.03◦
Niemegk NGK 37.93◦ 12.68◦
Novosibirsk NSV 35.15◦ 83.23◦
San Juan SJG 71.89◦ 293.85◦
Tristan da Cunha TDC 127.067◦ 347.685◦

Table 4.2: List of selected ground observatories in alphabetic order. Source http://www.

intermagnet.org/.

CHAMP Swarm

Component Mean [nT] rms [nT] Mean [nT] rms [nT]∑
Br 0.00 2.20 0.00 1.59∑
Bθ 0.00 1.66 0.00 1.55∑
Bφ 0.00 1.29 0.00 0.95

∆Br 0.01 0.68 0.05 0.43
∆Bθ -0.02 0.52 -0.05 0.52
∆Bφ -0.03 0.54 -0.01 0.58

Table 4.3: VO model misfit statistics example case for NGK station during CHAMP and
Swarm periods.

4.4.2 On the Main Field Pre-Whitening

In this section the VO method is tested subtracting only the static field using CHAOS-6-x5
for SH degrees 14-120, but without subtracting or adding back any main field model. Thus
a main field pre-whitening has not been performed. Figure 4.6 presents VO example cases
computed at selected ground observatories. The plots show the revised monthly mean of
the GO’s (black dots), and both VO’s without the MF pre-whitening (blue dots) and with
a CHAOS-6-x5 model pre-whitening (red dots), and the CHAOS-6-x5 model predictions
(green) for SH degrees n ∈ [1, 13] at the VO altitudes of 370km and 490km during the
CHAMP and Swarm eras, respectively. From these plots it is evident, that there are con-
siderable scatter in the VO’s without the main field pre-whitening. As stated in Section
4.3.1, the pre-whitening allows for Huber weights to be used counteracting outliers. This
leads to the conclusion that a pre-whitening using the main field is needed in order to
computed the VO’s robustly.

http://www.intermagnet.org/
http://www.intermagnet.org/
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Next, investigations into the VO dependence on the chosen field model used to perform the
pre-whitening, are presented. Figure 4.7 presents examples of VO time series computed
by subtracting the static field using CHAOS-6-x5 for SH degrees 14-120 (here the static
part for n=14-20 was computed for 2010), as well as subtracting and adding back two
different main field models. In these computations the IGRF-12 (Thébault et al., 2015)
and CHAOS-6-x5 (Finlay et al., 2016b) models were used for SH degrees n=1-13. The
plots show the IGRF-12 (blue dots) and CHAOS-6-x5 (red dots) MF pre-whitening based
VO’s, the GO’s (black dots), and the CHAOS-6-x5 (green) and IGRF-12 (magenta) model
predictions.

Investigating further into this, Tables 4.4 and 4.6 presents the rms misfit between the VO
SV time series as determined using the IGRF-12 and CHAOS-6-x5 model pre-whitening,
respectively, and four month averages of the ground observatory data. This is given for
each vector component and shown separately for the CHAMP and Swarm satellites. Tables
4.5 and 4.7 presents the correlation degree between the VO SV time series as determined
using the IGRF-12 and CHAOS-6-x5 model pre-whitening, respectively, and four month
averages of the ground observatory data. The correlation coefficient provides a measure in
the interval [−1, 1] of the linear dependence between two random variables, such that +1
and -1 corresponds to a strong and no coherence, respectively (e.g., Barlow, 1989; Taylor,
1997; Aster et al., 2005). Again this is shown separately for the CHAMP and Swarm
satellites. Here the Pearson correlation coefficient between the two random variables X
and Y has been used, defined as (e.g., Aster et al., 2005, p. 259)

ρ(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

(4.22)

where Var(X) and Var(Y ) are the variances, and Cov(X,Y ) is the covariance of X and Y .
It should be noticed that due to the short time series during Swarm time, these correla-
tions may not be well determined. From these numbers it can be seen that the correlation
between the ground observatory and VO SV data are very good. The correlation coeffi-
cients using IGRF-12 and CHAOS-6-x5 pre-whitening are nearly identical, as are the rms
levels. From the plots and the tables, it can be seen that the differences between VO’s
computed based on the IGRF-12 and CHAOS-6-x5 models are very small; therefore it is
concluded that the computed VO’s are independent on which field model is used for the
pre-whitening. In the following computations, the CHAOS-6-x5 field model has been used
for the pre-whitening.
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Figure 4.6: Time series of SV showing VO’s using 4 month data windows at satellite
altitudes with (red dots) and without (blue dots) CHAOS-6-x5 MF corrections, GO’s
(black dots) and CHAOS-6-x5 model predictions (green) using SH degrees up to n = 13.



4.4. VIRTUAL OBSERVATORY MODEL COMPUTATIONS 77

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
60

80

100

120

140

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
15

20

25

30

35

40

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
20

30

40

50

60

70

80

Year

dB
φ/d

t [
nT

/y
r]

 

 

GO

VO CHAOS−6

VO IGRF

CHAOS−6−x5

IGRF

  Secular variation at location:  ASC0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−80

−60

−40

−20

0

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−10

0

10

20

30

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−25

−20

−15

−10

−5

0

5

Year

dB
φ/d

t [
nT

/y
r]

 

 
GO
VO CHAOS−6
VO IGRF
CHAOS−6−x5
IGRF

  Secular variation at location:  HER0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−60

−40

−20

0

20

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−10

−5

0

5

10

15

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−40

−30

−20

−10

0

10

Year

dB
φ/d

t [
nT

/y
r]

 

 
GO
VO CHAOS−6
VO IGRF
CHAOS−6−x5
IGRF

  Secular variation at location:  KAK0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−50

−40

−30

−20

−10

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−15

−10

−5

0

5

10

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
20

30

40

50

60

Year

dB
φ/d

t [
nT

/y
r]

 

 
GO

VO CHAOS−6

VO IGRF

CHAOS−6−x5

IGRF

  Secular variation at location:  NGK0

Figure 4.7: Time series of SV showing VO’s using 4 month data windows at satellite
altitudes with IGRF (blue dots) and CHAOS-6-x5 (red dots) MF corrections, GO’s (black
dots), CHAOS-6-x5 and IGRF model predictions (green and magenta) using SH degrees
up to n = 13.
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CHAMP Swarm

Observatory rmsr rmsθ rmsφ rmsr rmsθ rmsφ
ASC 3.26 1.95 3.97 2.55 2.10 1.61
ASP 2.27 2.78 2.28 0.88 2.25 1.39
CLF 1.69 2.26 1.28 1.16 2.34 1.79
CMO 4.08 7.72 5.36 2.74 9.31 9.12
GAN - - - 0.93 2.10 1.96
GUA 1.45 2.49 2.49 1.40 2.47 1.68
HER 2.71 2.26 1.97 1.29 1.97 1.96
HON 2.05 2.44 2.41 3.15 1.80 1.70
KAK 2.72 1.75 1.58 1.32 2.51 1.15
KOU 4.17 2.33 2.65 3.36 1.72 1.78
LRM 3.26 3.07 2.56 2.37 2.46 2.00
MBO 2.24 1.94 3.34 1.23 1.49 1.59
NGK 2.06 3.13 2.23 1.87 1.35 1.42
NSV 1.55 3.01 2.76 3.64 1.96 1.15
SJG 1.75 2.75 3.01 2.08 2.08 1.62
TDC - - - 1.30 1.62 2.65

Table 4.4: VO time series based on IGRF-12 pre-whitening misfit statistics during CHAMP
and Swarm periods. Units are in [nT].

CHAMP Swarm

Observatory ρr ρθ ρφ ρr ρθ ρφ

ASC 0.97 0.74 0.96 0.98 0.45 0.98
ASP 0.76 0.81 0.96 0.82 0.51 0.94
CLF 0.87 0.73 0.96 0.94 -0.45 0.93
CMO 0.81 0.45 0.73 0.97 0.71 0.12
GAN - - - 0.98 0.98 0.97
GUA 0.74 0.90 0.95 0.88 0.73 0.07
HER 0.93 0.94 0.96 0.96 0.94 -0.65
HON 0.91 0.46 0.64 0.96 0.86 0.50
KAK 0.98 0.55 0.97 0.89 0.42 0.89
KOU 0.97 0.91 0.90 0.93 0.83 0.81
LRM 0.96 0.93 0.98 0.96 0.44 0.77
MBO 0.93 0.86 0.96 0.87 0.71 0.98
NGK 0.91 0.50 0.88 0.92 0.62 0.96
NSV 0.96 0.92 0.81 0.96 0.86 0.95
SJG 0.96 0.93 0.85 0.93 0.55 0.11
TDC - - - 0.79 0.90 0.86

Table 4.5: VO time series based on IGRF-12 pre-whitening correlation coefficients during
CHAMP and Swarm periods.
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CHAMP Swarm

Observatory rmsr rmsθ rmsφ rmsr rmsθ rmsφ
ASC 3.68 1.93 4.32 3.08 2.27 2.18
ASP 2.14 2.68 2.13 0.75 2.39 1.50
CLF 1.64 2.28 1.35 1.16 2.00 1.65
CMO 4.02 7.72 5.20 3.08 7.26 7.15
GAN - - - 1.22 2.48 2.29
GUA 1.46 2.57 2.34 1.35 1.74 1.55
HER 2.81 2.39 2.21 1.48 2.11 2.05
HON 1.96 2.45 2.50 3.36 1.98 1.22
KAK 2.68 1.77 1.64 1.19 2.18 0.82
KOU 4.67 2.51 2.76 3.87 1.39 1.51
LRM 3.00 2.85 2.45 2.35 2.29 1.72
MBO 2.30 2.00 3.57 1.08 1.26 2.42
NGK 2.20 3.10 2.16 1.64 1.01 1.43
NSV 1.61 2.90 2.90 3.36 1.69 1.18
SJG 1.85 2.91 3.30 2.17 1.67 1.60
TDC - - - 0.60 1.53 2.71

Table 4.6: VO time series based on CHAOS-6-x5 pre-whitening misfit statistics during
CHAMP and Swarm periods. Units are in [nT].

CHAMP Swarm

Observatory ρr ρθ ρφ ρr ρθ ρφ

ASC 0.96 0.75 0.95 0.98 0.26 0.96
ASP 0.76 0.82 0.97 0.92 0.44 0.95
CLF 0.88 0.72 0.96 0.96 -0.24 0.95
CMO 0.80 0.45 0.75 0.96 0.72 0.25
GAN - - - 0.92 0.97 0.96
GUA 0.74 0.89 0.96 0.92 0.85 0.19
HER 0.92 0.93 0.95 0.98 0.95 -0.64
HON 0.92 0.46 0.62 0.97 0.80 0.55
KAK 0.98 0.54 0.97 0.93 0.53 0.94
KOU 0.97 0.90 0.89 0.93 0.89 0.85
LRM 0.97 0.94 0.98 0.97 0.53 0.85
MBO 0.93 0.85 0.95 0.91 0.78 0.98
NGK 0.89 0.50 0.89 0.96 0.80 0.97
NSV 0.95 0.93 0.80 0.98 0.89 0.96
SJG 0.95 0.93 0.81 0.92 0.78 -0.04
TDC - - - 0.95 0.92 0.90

Table 4.7: VO time series based on CHAOS-6-x5 pre-whitening correlation coefficients
during CHAMP and Swarm periods.
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4.4.3 Global Grids of VO Solutions

A global grid of VO time series provides an excellent opportunity for studies of the core field
in particular regions as shown by Olsen and Mandea (2007); field models, geomagnetic
jerks studies and inference of outer core fluid flow can be investigated by such a VO
grid arrangement. Beggan et al. (2009) investigated both regular and equal area grid
arrangements, and found that a regular grid partly enhanced sectorial banding and large
residuals were found in the polar regions (orbital drift was also believed to be responsible).
This project also applies two different grid arrangements: 1) a regular 5◦ colatitude and
longitude spaced grid similar to the one used by Olsen and Mandea (2007), in which
(θ = 0◦, 5◦, ..., 180◦;φ = 0◦, 5◦, ...350◦). The sole purpose of using this grid was to perform
a SHA to investigate the behaviour of the expansion coefficients of the internal, and in
particular of external and toroidal fields. A problem of this type of grid is the overlap
of VO target cylinders causing data to be binned into multiple VOs. 2) an equal area
grid based on the equal area (EQ) sphere partitioning algorithm of Leopardi (2006) has
also been used to setup a VO grid of a given size. This partition, EQ(d,N), of the unit
sphere into N regions, termed recursive zonal equal area sphere partitioning, is defined
by the sphere dimensions, here being a positive integer, d ∈ N+ and number of regions
of equal area N ∈ N+. The VO grid locations used are then the center point of each
region. The EQ partition allows for any number of sphere partitions to be specified,
making it very usable for this particular implementation. Figure 4.8 a) illustrates the EQ
sphere partitioning for N = 300, and b) the associated locations of the PV O = 300 EQ
globally distributed VO’s. The minimum spherical distance between any two points of the
N = 300 EQ grid is ≈ 1400km (corresponding roughly to SH degree n = 16). The Matlab
Recursive Zonal Equal Area Sphere Partitioning Toolbox implements the algorithm for
this grid, http://eqsp.sourceforge.net/.

(a) EQ sphere partitioning EQ(2, 300) of Leopardi
(2006). Red dots are center points.

(b) EQ grid having 300 globally distributed VOs il-
lustrated by red dots, using a Hammer projection.

Figure 4.8: Equal area grid construction.

Table 4.8 presents the VO model misfit statistics similar to Table 4.3 but now for
the global grid, split into polar and non-polar location of the VO’s, again being a mean
over all the epochs. As can be seen from the table, the polar rms values for both sums

http://eqsp.sourceforge.net/
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and differences are higher than the non-polar, and the CHAMP values are slightly higher
than the Swarm values. Presumably, these high numbers are due to unmodelled field
contributions. However, at non-polar regions the rms values are all below 2nT.

CHAMP Swarm

Component Mean [nT] rms [nT] Mean [nT] rms [nT]

Polar
∑
Br 0.00 6.68 0.00 5.04∑
Bθ 0.00 6.59 0.00 5.40∑
Bφ 0.00 3.30 0.00 2.48

∆Br 0.00 4.33 0.05 2.93
∆Bθ 0.00 5.23 0.00 3.45
∆Bφ -0.01 10.16 -0.02 6.80

Non-polar
∑
Br 0.00 1.87 0.00 1.45∑
Bθ 0.00 1.49 0.00 1.18∑
Bφ 0.00 1.35 0.00 0.94

∆Br -0.01 0.51 0.02 0.34
∆Bθ 0.00 0.58 0.00 0.44
∆Bφ 0.00 0.64 0.00 0.50

Table 4.8: VO model misfit statistics - example case for a global grid of 300 VO’s during
CHAMP and Swarm periods.

4.5 VO Model Results I: Field Computations

This section presents the main results obtained for the magnetic field and its temporal
variations using the VO method applied to Data Set 1 and producing VO model version
0105. Section 4.5.1 presents examples of VO time series of annual differences of the main
field and secular variation computed at the selected ground observatory sites listed in
Section 4.4.1. An example of correlation analysis applied to the model parameters is pro-
vided in Section 4.5.2. Sections 4.5.3 and 4.5.4 present results of VO application to an EQ
global grid, looking into data error estimates. Section 4.5.5 provides a spherical harmonic
analysis performed for a regular grid of globally distributed VO’s with the intention of
investigating the amplitude of the external and toroidal contributions in the time series.

4.5.1 Time Series at Ground Observatory Sites

Figures 4.9 to 4.16 present time series of annual differences of the main field (i.e. the SV)
and of the secular variation (i.e. the SA) at the selected ground observatories listed in
Table 4.2. The figures are listed in alphabetic ordering of the observatories; shown with
black dots are the revised monthly mean of the GOs, in red dots the VO estimates and
with the green curves the CHAOS-6-x5 model predictions at the ground for SH degrees
n ∈ [1, 16]. For each station the left (top or bottom) plots show the SV estimates while
the right (top or bottom) plots show the SA estimates of the three field components. The
VO’s have been relocated to the ground in order to ease the GO and VO comparison.
This was done by subtracting the field difference determined by the CHAOS-6-x5 model
between ground and the VO altitudes. In Appendix C the same plots as those presented
in the following are provided without this relocation of the VO’s, such that the VO’s are
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plotted at altitudes 370km and 490km during CHAMP and Swarm times, respectively.

A number of interesting observations can be made from these plots. Firstly, compar-
ing the VO’s and GO’s there seems to be remarkably good agreement of the temporal
field behaviour at most stations as also indicated by the correlation degree in Table 4.7.
Secondly, the VO’s provide insight into places were GO data are lacking for instance at the
GAN or TDC stations. Thirdly, it can be seen that the CHAOS-6-x5 model predictions
overall are in a remarkably good agreement with most of the variations seen in the VO
time series; as the VO approach is very different from that of the CHAOS-6-x5 model, the
VO time series may be used as an assessment of field models and their temporal resolution
(Olsen et al., 2009). Such well agreement are seen at e.g. the Ascension Island (ASC),
Kakioka (KAK) and Learmonth (LRM) observatories. However it seems as though there is
a slight difference between the CHAMP and Swarm periods, which is also to be expected
based on the rms values listed in Table 4.6. However, CHAOS-6-x5 may not capture
all variations equally well; for instance at Honolulu (HON) observatory there is a clear
dip in the dBφ/dt component around 2007 that is seen in the VO’s but not in CHAOS-6-x5.

The VO time series capture important rapid temporal features, i.e geomagnetic jerks
here being interpreted as a sign change in the acceleration, seen as ”V” or ”Λ” shape fea-
tures in the SV signal and as step changes ”/” or ”\” shape features centred on zero in the
SA signal (Mandea et al., 2010; Brown et al., 2016). For example the 2007 jerk, having
about 3 years on either side of the event, is clearly seen in the VO time series at the
Ascension Island (ASC), Hermanus (HER), Mbour (MBO) and Tristan da Cunha (TDC)
observatories, were the above mentioned behaviour is observed. In the VO time series at
Honolulu (HON) observatory a steep change in the SA can be observed around 2017; this
may be the first signs of a jerk happening. Also in the VO time series at Kourou (KOU)
observatory, a ”V” shape feature in the θ components of the SV can be seen at 2016, with
an associated steep change in the SA which could indicate jerk happening. Hence, the
satellite based VO’s are shown to provide the same important temporal insight as the
ground observatories. However, because the particular VO series plotted here are based
on 4 month time windows some temporal resolution is lost.



4.5. VO MODEL RESULTS I: FIELD COMPUTATIONS 83

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
80

90

100

110

120

130

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
20

25

30

35

40

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
20

40

60

80

100

Year

dB
φ/d

t [
nT

/y
r]

 

 

CHAOS−6−x5

GO

VO

  Secular variation at location:  ASC0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−20

−10

0

10

20

30

40

Year

d2 B
r/d

t2  [n
T

/y
r2 ]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−20

−10

0

10

20

Year

d2 B
θ/d

t2  [n
T

/y
r2 ]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−30

−20

−10

0

10

20

30

Year

d2 B
φ/d

t2  [n
T

/y
r2 ]

 

 
CHAOS−6−x5

GO

VO

  Secular acceleration at location:  ASC0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−60

−50

−40

−30

−20

−10

0

Year

dB
r/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−30

−20

−10

0

10

Year

dB
θ/d

t [
nT

/y
r]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−40

−30

−20

−10

0

10

Year

dB
φ/d

t [
nT

/y
r]

 

 
CHAOS−6−x5
GO
VO

  Secular variation at location:  ASP0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−20

−10

0

10

20

Year

d2 B
r/d

t2  [n
T

/y
r2 ]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−15

−10

−5

0

5

10

15

Year

d2 B
θ/d

t2  [n
T

/y
r2 ]

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
−15

−10

−5

0

5

10

Year

d2 B
φ/d

t2  [n
T

/y
r2 ]

 

 

CHAOS−6−x5

GO

VO

  Secular acceleration at location:  ASP0

Figure 4.9: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.10: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.11: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.12: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.13: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.14: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.15: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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Figure 4.16: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows re-plotted at ground, GO’s (black dots) and CHAOS-6-x5 model predictions
(green) using SH degrees up to n = 16.
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4.5.2 Model Covariance and Correlation Matrices

It is possible to investigate the uncertainty associated with the model parameters when
using the cubic potential description. The covariance of the random variables, X and Y
can be written (e.g., Aster et al., 2005, p. 257)

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] (4.23)

where E[X], E[Y ] is the expectation value of the variables, being a sum of the variables
weighted by their probability density function. The variance is defined by Var(X) =
E[X2] − E[X]2, such that Cov(X,X) = Var(X). A useful tool measuring the relation
between variables is the correlation matrix, being a normalized scaled version of the co-
variance matrix written (e.g., Aster et al., 2005, p. 259)

ρ(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

(4.24)

where −1 ≥ ρ ≤ 1. The correlation matrix is dimensionless and symmetric under inter-
changing X and Y . If ρ(X,Y ) = 0 the variables are uncorrelated, if ρ = 1 (or ρ = −1)
the variables are completely (inversely) correlated (e.g., Barlow, 1989; Taylor, 1997).

Figures 4.17 and 4.18 present example model correlation matrices, ρr, ρθ, ρφ, computed for
each field component, for a VO solution above the Niemegk ground observatory. Figure
4.17 a) and b) show correlations using regular vector data for time windows January-April
and May-August during 2017, respectively. Overall the correlation matrix exhibits the
same patterns in a) and b) for the three components, though the first three parameters
used to generated the VO model field series are not correlated to each other in any case.
It is seen that the correlation appears to be enhanced slightly for the May-August time
window. Figure 4.17 c) and d) show correlations using data sums and difference for time
windows January-April and May-August during 2017, respectively. These plot look very
similar to a) and b) which is to be expected since the data sums, which are rather similar
to the data itself, are included. Figure 4.18 presents correlations using data differences
only for for time window January-April (left) and May-August (right). As also stated
in Section 4.3.4, it should be notated that using the differences alone turned out not to
constrain the first three model parameters, and thus the data sums are needed as well.

These correlations suggests that some model parameters could be constraint considering
only certain data components and potentially using differences alone for some parameters,
in a similar manner as discussed in (Olsen et al., 2007, 2010b; Kotsiaros and Olsen, 2014)
(in the case of optimal gradient observation combination). That is, identification of data
subsets being suitable for determining particular model parameters, a procedure know as
Selectetive Infinite-Variance Weighting (SIVW) method(Olsen et al., 2007; Sabaka et al.,
2013, 2015). However, such possibilities have not been pursued further in this thesis.

4.5.3 Time Series for the Global Grids

This section briefly summarises the availability of reliable, global VO time series, version
0105, using an EQ grid of 300 VO’s. Figure 4.19 shows the number of available VO data
points of the EQ grid during CHAMP and Swarm periods (having a possible maximum of
300). It is evident that the intervals 2004-2010 and 2014-2018 are well covered. The major
dip at 2003 is related to the solar activity level peaking around this time, see Section
2.4.4. Despite the dark geomagnetic quite time selection criteria used, stable VO time
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  Location: NGK − regular vector data − cubic potential: year: 2017, months: jan−apr

(a) Using regular vector data: year 2017,
months jan-apr.
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  Location: NGK − regular vector data − cubic potential: year: 2017, months: maj−aug

(b) Using regular vector data: year 2017,
months may-aug.
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  Location: NGK − Along and Cross track − differences and sums − cubic potential: year: 2017, months: jan−apr

(c) Using sums and differences data:
year 2017, months jan-apr.
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  Location: NGK − Along and Cross track − differences and sums − cubic potential: year: 2017, months: maj−aug

(d) Using sums and differences data:
year 2017, months may-aug.

Figure 4.17: Model correlation matrix for location NGK.
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  Location: NGK − Along and Cross track − differences − cubic potential: year: 2017, months: jan−apr

(a) Using differences data: year 2017,
months jan-apr.
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  Location: NGK − Along and Cross track − differences − cubic potential: year: 2017, months: maj−aug

(b) Using differences data: year 2017,
months may-aug.

Figure 4.18: Model correlation matrix for location NGK.

series of good global coverage can be obtained, particular during the operation of the
Swarm mission.
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Figure 4.19: Number of acceptable VO’s.
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4.5.4 Data Error Covariance Matrices

Derivation of uncertainty estimates for the MF and SV time series is of importance when
the VO’s are used in various studies, for example core flow inversion and data assimilation.
Uncertainty estimates for each field component were determined as the square root of the
diagonal (variance) elements of the covariance matrix. Diagonal entities of the covariance
matrices for the VO time series of the MF and SV were computed as devised by C. Finlay
in a manner similar to the computation for ground observatory revised monthly means
(Olsen et al., 2014; Barrois et al., 2018). The data errors were assumed to be independent
time, though different errors are attributed to CHAMP and Swarm periods. For each VO
time series, the difference to the CHAOS-6-x5 model predictions, δB, was detrended using
the Matlab build-in function detrend which has an algorithm removing the linear trend,
δ̂B, as estimated through a least-squares fit https://se.mathworks.com/help/matlab/

ref/detrend.html. For instance in the case of SV, the detrended signal, xi, is written

xi = δBi
dt
− δ̂Bi

dt
(4.25)

where i denotes the time instance. The function mcdcov from the LIBRA (Library for Ro-
bust Analysis) tool box, developed at ROBUST@Leuven, was used to compute the covari-
ance matrices for the three field components https://wis.kuleuven.be/stat/robust/

LIBRA. This function uses a minimum covariance determinant (MCD) estimator which
takes a subset of the data and seeks a covariance matrix with the smallest determi-
nant (Verboven and Hubert, 2005). In the MF and SV cases the covariance matrix,
Ce = cov(xi, xj), has dimension 3P × 3P = 900 × 900 since there are 300 VO’s having
three components. The square root of the diagonal covariance elements was the used.

It should be noted that the errors between the VO time series and their components
are expected to be correlated (e.g., Finlay, 2017). Properly dealing with this requires the
determination of a full covariance matrix including off-diagonal elements. This is difficult
due to the short length of the time series. This perspective has therefore not been pursued
in this project, but may be important for future applications.

Figures 4.20 and 4.21 presents the estimated variances for each component of the main
field (in units of [nT2]) and secular variation (in units of [(nT/yr)2]) during CHAMP and
Swarm periods. It is observed that the horizontal components of both the MF and SV
variances contain larger estimates moving towards polar latitudes, possibly related to en-
hanced contamination due to presence of e.g. field-align currents (which would not disturb
the radial as much as the horizontal components) and the polar electrojet currents.

https://se.mathworks.com/help/matlab/ref/detrend.html
https://se.mathworks.com/help/matlab/ref/detrend.html
https://wis.kuleuven.be/stat/robust/LIBRA
https://wis.kuleuven.be/stat/robust/LIBRA


4.5. VO MODEL RESULTS I: FIELD COMPUTATIONS 95

 

 

 nT2 
0

1

2

3

4

5

(a) Br variance estimates.
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(c) Bθ variance estimates.

 

 

 nT2 
0

1

2

3

4

5

(d) Bθ variance estimates.
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(e) Bφ variance estimates.
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(f) Bφ variance estimates.

Figure 4.20: MF variance estimates during the CHAMP (left column) and Swarm (right
column) eras.

4.5.5 SHA of Global Grid VO Model Time series

In this section a SH model, using B-spline representation of the time-dependence, built
from VO MF data provided on a regular global grid, is described. The main objective
here was to estimate the amplitude and behaviour of the external and toroidal model co-
efficients as described by the potential, equation (2.42), using equations (2.43) to (2.45)
for the expansions, given in Section 2.5.3. Olsen and Mandea (2007) also performed such
a SH analysis, investigating whether some parts of the short-period VO signal could be
explained by these external and toroidal coefficients. Indeed the authors found strong
variations in the external term dq0

1/dt and toroidal term dt0,c1 /dt, exceeding the internal
coefficients in amplitude. It should be stressed that Olsen and Mandea (2007) intentionally
did not employ data selection criteria and did not remove estimated external field contri-
butions, contrary to this study, since they implicitly assumed external fields average to
zero on a monthly basis. Here a similar investigation was performed conducting a spherical
harmonic transform analysis on the quiet-time, dark, VO data set 0105, determining the
expansion coefficients.
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(b) dBr/dt variance estimates.
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(c) dBθ/dt variance estimates.
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(d) dBθ/dt variance estimates.
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(a) dBφ/dt variance estimates.
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(b) dBφ/dt variance estimates.

Figure 4.21: SV variance estimates during the CHAMP (left column) and Swarm (right
column) eras.

The analysis was carried out for both CHAMP and Swarm data periods using VO model
version 0105. The procedure was as follows: for each time in the 4 month VO MF data
series, an inversion for the expansion coefficients was performed truncated to SH degree
n = 20. The spherical harmonic transform Olsen and Mandea (2007) of the equally
spaced VO data determining the internal and external coefficients along with toroidal co-
efficients, as described in Section 2.5.3, was performed using the DTU in-house algorithm
SH analysis.m supplied by N. Olsen.

When trying to approximate a function (in this case the time-dependence of the Gauss
coefficients) polynomials are useful; one example is the well-known Taylor series. However,
considering a long time window, piecewise polynomials termed splines may be more a
appropriate method. In this case the time window is subdivided into smaller sections
defined by a knot sequence, such that a polynomial belonging to that section approximates
the function while requiring the assembled solution to have continuous derivatives. This
means that locally the splines minimize the influence from the entire data set, since they
are collections of piecewise polynomials linked together. Here the time-dependence of the
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internal {gmn (t), hmn (t)}, external {qmn (t), smn (t)} and toroidal {tm,cn (t), tm,sn (t)} coefficients
was approximated by fourth-order (cubic) B-splines during the CHAMP and Swarm time
intervals such that for instance gmn are described as

gmn (t) =
L∑
l=1

gmn,lMl(t) (4.26)

where Ml(t) are the B-spline functions having L basis functions (Green and Silverman,
1993; De Boor, 2001). Changing the spline order or the number of knots the correspond-
ing fit will change accordingly; to low order will not capture enough structure while to
many knot points may result in over fitting. Spline representation have often be employed
in present day field modelling (e.g. Constable and Parker, 1988; Finlay et al., 2016b).
Here cubic splines were used for the the internal, external and toroidal coefficients ob-
tained during the CHAMP and Swarm data intervals, i.e. they were built having two
continuous derivatives, a temporal knot space every 6 months and using four-folded knots
at the end points, an approach mimicking that described in Olsen et al. (2009); during
CHAMP time the end points were t = 2002.4 and t = 2010.4 yielding 15 interior knots at
{2002.9, ..., 2009.9} and 4 exterior knots at each end point given a total of 19 basic B-spline
functions. Since the internal coefficients were determined for n ∈ [1, 20] this resulted in
8360 internal coefficients. VO data prior to 2002.4 had significant gaps and were therefore
excluded, also VO gaps during the selected time interval were filled by CHAOS-6-x5 model
estimates; during Swarm time end points were t = 2014.5 and t = 2018.0 yielding 6 inte-
rior knots at {2015.0, ..., 2017.5} and 4 exterior knots at each end point given a total of 10
basic B-spline functions. Since the internal coefficients were determined for n ∈ [1, 20] this
yielded 4400 coefficients. The spline fit approach used here was conducted using various
Matlab tools, see https://se.mathworks.com/help/curvefit/types-of-splines-ppform-and-b-
form.html and https://se.mathworks.com/help/curvefit/constructing-and-working-with-b-
form-splines.html and https://se.mathworks.com/help/curvefit/spcol.html : augknt was used
to generate the knot sequences as well as providing boundary knots, the B-spline colloca-
tion matrix was build using the spcol function. A piecewise polynomial form was formed
using fn2fm applying spmak to put together the spline in B-form. The expansion coeffi-
cients was then determined using the Matlab function fnval on the piecewise polynomial
form. To solve the problem a damped least squares solution was implemented

min||Gm− d||22 + α2||Lm||22 (4.27)

where G is the spline design matrix, m is the model vector, d is the data vector (i.e. the
estimated coefficients at the given epochs) and L approximates the first derivative of the
spline design matrix (note that other constraints could be implemented such as the third
derivative). Thus the solution is written

m = (GTW G + α2LTL−1)GTWd (4.28)

were W is a weighting matrix containing Huber weights (a data covariance matrix was not
implemented). The model parameters were estimated using a regularized iteratively re-
weighted least squares procedure using Huber weights with elements refined each iteration
(Olsen, 2002; Olsen et al., 2009). A series of α values were investigated with a solution
converging after about 10 iterations. The value of α was selected based on visual inspec-
tions of the power spectrum and global field maps. The Huber weights were determined
from the residuals eki between the ith data, dobsi , and model dmodel,ki element, for the kth
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iteration as eki = dobsi − d
model,k
i . Normalized residuals εki were determined as

εi,k = |e
k
i |
σi

(4.29)

where σk is the estimated standard deviation computed by the weighted root mean square
of the data. For the kth iteration the weights were determined as wi,k = max(cw/εi,k, 1)
or equivalently

wi,k =
{

1 ,if |εi,k| < cw
cw
εi,k

,if |εi,k| ≥ cw (4.30)

The Huber tuning constant was selected to be cw = 1.5. An initial setup was required
allowing for the iterative calculations to be performed, selected as a model vector of zeros.
The weighted residual means and root mean square deviations were determined as Olsen
et al. (2009)

mean =
∑
iwiei∑
iwi

(4.31)

rms =
√∑

iwie
2
i∑

iwi
(4.32)

Cubic spline fits to the external and toroidal parts were performed as well, using the
same value for α as for the internal part. The resulting field model produced was called
VO vect SH.01. Figures 4.22 and 4.23 present time series of the first time derivatives of
the internal Gauss coefficients of the spline model (in green), {dgmn /dt, dhmn /dt}, for SH
degrees n ∈ [1, 7] in units of [nT/yr]. Also shown are 12-month running mean of the first
differences (i.e. a moving average (boxcar) filter having a filter length of 12 months) in blue
dots and the CHAOS-6-x5 predictions (in red). Figure 4.24 a) and b) presents the external
coefficients {dqmn /dt, dsmn /dt} and toroidal coefficients {dtm,cn /dt, dtm,sn /dt} of the spline
models, respectively, for SH degrees n ∈ [1, 2] in units of [nT/yr]. Importantly, considering
these external and toroidal coefficients no strong variation was found, demonstrating that
the adopted strategy of data selection and processing along with VO model setup has
successfully reduced, but not completely removed, the major contaminating contributions
in the signal. Looking at the external and toroidal parts and comparing with those of
Olsen and Mandea (2007), it is clear that a significant reduction of these terms has taken
place. This is probably a result of removing the model estimates of the external field, and
using dark, quiet time data.

Figure 4.25 presents the power spectra of the secular variation (in blue) and acceleration
(in red) of the VO field model (stipulated lines) and CHAOS-6-x5 models plotted at the
core surface in year 2016. Figure 4.26 a) and b) presents the SV and SA degree correlations
and SV coefficient differences between the VO and CHAOS-6-x5 models. From these
figures it is evident, that the SV and SA coefficients show coherence with the CHAOS-
6-x5 model up to SH degrees n = 12 and n = 7. Maps of the VO vect SH.01 model
radial SV and SA fields up to SH degrees n = 12 and n = 7, respectively, are presented
in Figure 4.27. Also shown for comparison are maps of the predictions of the CHAOS-6-
x5 model up to the same degrees. Clearly, both SV and SA patches observed in the VO
model agree with those present in the CHAOS-6-x5 model. However, it is also evident that
contamination in the polar regions has leaked into the VO model SV and SA estimates.
The reason for the distinct SA field patches around Antarctica may be due to lack of data
at the South Pole. It should be noted that the CHAOS-6-x5 model is based on scalar data
in the polar regions, whereas the model VO vect SH.01 is based on all three field vector
components.
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Figure 4.22: The first time derivatives of the internal Gauss coefficients, {dgmn /dt, dhmn /dt}
in [nT/yr]. The blue symbols are 12-month running mean of the first differences and the
CHAOS-6-x5 model predictions are in red. The green curve is the model VO vect SH.01
using cubic B-spline with 6-month knot spacing fit to the 4-monthly values.
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Figure 4.23: Continuation of Figure 4.22.

The VO concept is especially well suited for investigating global patterns of sharp
changes in the first time derivative of the field. Following figure 2 of Olsen and Mandea
(2007), Figures 4.28, 4.29 and 4.30 present global VO times series of the field components
dZ/dt, dX/dt and dY/dt, respectively. These are shown at VO altitudes for segments of
10◦× 20◦ from the 5◦× 5◦ regular grid during the CHAMP (plots a) and Swarm (plots b)
eras. The left and right end points of each curve corresponds to epochs 2002 and 2010.5
for CHAMP and epochs 2014.5 and 2018 for Swarm, respectively. The locations of the
VO’s are marked by black dots, the blue curves are the 12-month running mean of the first
differences of the internal field (as estimated through the SHA), while in red and green are
the internal field predictions from the CHAOS-6-x5 and VO models, respectively. These
plots demonstrates the usefulness of the VO method to globally consider both the short
and longer period variations of the field; i) the polar regions are seen to exhibit noticeable
variations related to contamination, ii) both the VO vect SH.01 and the CHAOS-6-x5
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(a) First time derivatives of the external coefficients {dqmn /dt, dsmn /dt}.
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(b) First time derivatives of the toroidal coefficients {dtm,cn /dt, dtm,sn /dt}.

Figure 4.24: First time derivatives of a) external, {dqmn /dt, dsmn /dt}, and b) toroidal,
{dtm,cn /dt, dtm,sn /dt}, coefficients in (nT/yr). The blue symbols are 12-month running
mean of first differences of the external and toroidal fields as estimated through the SHA.
Note the scale as compared to the internal Gauss coefficients in Figures 4.22 and 4.23.
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Figure 4.25: Core surface power spectra for secular variation and acceleration in 2016.
The SV and SA of the VO vect SH.01 (dotted) and CHAOS-6-x5 models are showing in
blue and red, respectively.
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Figure 4.26: Radial SV and SA degree correlation (left) and SV sensitivity matrix (right)
between VO vect SH.01 and CHAOS-6-x5 models in 2016.

(a) VO vect SH.01 model SV radial field up to SH
degree n = 12 at CMB in 2016.0.

(b) CHAOS-6-x5 model SV radial field up to SH
degree n = 12 at CMB in 2016.0.

(c) VO vect SH.01 model SA radial field up to SH
degree n = 7 at CMB in 2016.0.

(d) CHAOS-6-x5 model SA radial field up to SH
degree n = 7 at CMB in 2016.0.

Figure 4.27: Global radial SV (top) and SA (bottom) fields at the CMB in 2016.0, com-
paring the VO vect SH.01 (left figures) and CHAOS-6-x5 (right figures) models.
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models generally reproduce the data seen although some short time variations are not
captured, iii) jerk events such as the 2007 jerk seen as a strong ”V” dip in the dZ/dt and
”Λ” in the dY/dt VO curves in the region around the South Atlantic ocean during CHAMP
time, may easily be identified in such plots. Interestingly, the VO vect SH.01 model gives
indication of a jerk-like ”V” change in the dZ/dt and possibly in the dY/dt slope of the
VO time series in the Pacific region around 2016, and also changes around South America
may be observed in dZ/dt. In order to properly asses these changes, longer time series are
needed. Interestingly, global maps of the radial SA in Figure 4.27, show activity in the
Pacific and South American regions around 2016.
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(b) dZ/dt during Swarm period from 2014-2017 at 490km altitude.

Figure 4.28: Global time series of dZ/dt for CHAMP (top) and Swarm (bottom) periods
in a regular grid. Blue symbols are the 12-month running mean of the first differences of
the internal field (as estimated through the SHA), in red and green are the internal field
predictions from the CHAOS-6-x5 and VO vect SH.01 models.
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(a) dX/dt during CHAMP period from 2002-2010 at 370km altitude.
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(b) dX/dt during Swarm period from 2014-2017 at 490km altitude.

Figure 4.29: Global time series of dX/dt for CHAMP (top) and Swarm (bottom) periods
in a regular grid. Blue symbols are the 12-month running mean of the first differences of
the internal field (as estimated through the SHA), in red and green are the internal field
predictions from the CHAOS-6-x5 and VO vect SH.01 models.
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(a) dY/dt during CHAMP period from 2002-2010 at 370km altitude.
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(b) dY/dt during Swarm period from 2014-2017 at 490km altitude.

Figure 4.30: Global time series of dY/dt for CHAMP (top) and Swarm (bottom) periods
in a regular grid. Blue symbols are the 12-month running mean of the first differences of
the internal field (as estimated through the SHA), in red and green are the internal field
predictions from the CHAOS-6-x5 and VO vect SH.01 models.
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4.6 VO Model Results II: Field Gradient Computations

This section presents results of gradient computations obtained for the magnetic field and
its temporal variations using the VO method. Section 4.6.1 presents examples of VO time
series of annual differences of the main and secular variation gradient fields computed
at some of the selected ground observatory sites listed in Section 4.4.1. Section 4.6.2
presents results of VO application to an EQ global grid, determining data error covariance
estimates obtained for the field gradients. Section 4.6.3 presents a spherical harmonic
analysis performed for an EQ grid of globally distributed VO’s with the specific intention
to investigate the construction of field models based on field gradients. The field gradients
were constructed as described in Section 4.3.3, by the VO model parameters.

4.6.1 Time Series at Ground Observatory Sites

Figures 4.31 to 4.35 presents VO time series of annual differences of the gradient field, i.e.
the SV of the gradients, and the SA of the gradients computed from annual differences of
the SV of the gradients, at the selected ground observatories. Shown with red dots are
the VO estimates and with the blue curves the CHAOS-6-x5 model predictions at the VO
altitudes during CHAMP and Swarm periods for SH degrees n ∈ [1, 16]. The plots are
organized such that they show the upper right structure of the gradient tensor (in order
to make a visual pleasing presentation of the tensor content, the lower left triangle of the
tensor is not shown, since the tensor is symmetric).

For each station the top plots show the SV gradient estimates while the bottom plots
show the SA gradient estimates; here six field gradient components are shown. As with
the field cases the VO model results and the CHAOS-6-x5 model predictions overall show
good agreement. Interestingly, the VO gradient time series are able to track rapid tem-
poral changes seen as ”V” or ”Λ” shape features in the SV gradient components and as
step changes ”/” or ”\” shape features centred on zero in the SA gradient components.
Considering the 2007 jerk, this is easily identified at the VO time series above the As-
cension Island (ASC), Hermanus (HER), Mbour (MBO) and Tristan da Cunha (TDC)
observatories, via the above mentioned behaviour. It appears that jerks are most easily
identified in the components d(∂Br/dr)/dt, d(∂Bθ/dr)/dt and d(∂Bφ/dr)/dt. Further-
more, another interesting feature is observed at the VO time series at the Gan (GAN)
observatory located in the Indian Ocean, seen as changing behaviour of the d(∂Bφ/dθ)/dt
and associated d2(∂Bφ/dθ)/dt2 components.

From the uncertainty estimates, presented in the next section, it is expected that these
are higher during the CHAMP than the Swarm era, and pronounced in the d(∂Br/dr)/dt
SV component, and the d2(∂Br/dr)/dt2, d2(∂Bφ/r)/dt2 and d2(∂Bφ/φ)/dt2 SA gradient
components.
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Figure 4.31: SV (top) and SA (bottom) field gradients at selected observatories showing
VO (red dots) and CHAOS-6-x5 (blue curve) estimates. CHAOS-6-x5 estimates were
computed using SH degrees up to n = 16. Because the gradient tensor is symmetric the
three lower left components have been omitted for clarity.
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Figure 4.32: SV (top) and SA (bottom) field gradients at selected observatories showing
VO (red dots) and CHAOS-6-x5 (blue curve) estimates. CHAOS-6-x5 estimates were
computed using SH degrees up to n = 16. Because the gradient tensor is symmetric the
three lower left components have been omitted for clarity.
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Figure 4.33: SV (top) and SA (bottom) field gradients at selected observatories showing
VO (red dots) and CHAOS-6-x5 (blue curve) estimates. CHAOS-6-x5 estimates were
computed using SH degrees up to n = 16. Because the gradient tensor is symmetric the
three lower left components have been omitted for clarity.
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Figure 4.34: SV (top) and SA (bottom) field gradients at selected observatories showing
VO (red dots) and CHAOS-6-x5 (blue curve) estimates. CHAOS-6-x5 estimates were
computed using SH degrees up to n = 16. Because the gradient tensor is symmetric the
three lower left components have been omitted for clarity.
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Figure 4.35: SV (top) and SA (bottom) field gradients at selected observatories showing
VO (red dots) and CHAOS-6-x5 (blue curve) estimates. CHAOS-6-x5 estimates were
computed using SH degrees up to n = 16. Because the gradient tensor is symmetric the
three lower left components have been omitted for clarity.
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4.6.2 Data Error Covariance Matrices

Similar to the approach of Section 4.5.4, diagonal covariance matrices for the VO gradient
time series of the MF and SV gradients have been computed using a similar procedure to
that adopted for the MF and SV field cases. However, the size of the covariance matrices
are now 6P × 6P = 1800 × 1800 since there are 300 VOs having six components. The
derivation follows the same procedure described previously in Section 4.5.4. Again it
should be noted that the errors are expected to be correlated which in principle should
be described by a full covariance matrix having off-diagonal elements. Figures 4.36 and
4.38 presents the variances for each component of the main field gradients, in units of
[(pT/km)2] during Swarm and CHAMP times, respectively. Figures 4.37 and 4.39 present
the variances for each component of the SV gradients, in units of [(pT/kmyr−1)2], during
Swarm and CHAMP time, respectively. It appears that the horizontal gradients of the
radial field may be less disturbed at polar regions which may be beneficial for internal field
modelling. For the SV gradient components during Swarm time there seems to be smaller
deviations from CHAOS predictions at mid and low latitudes, compared to the CHAMP
era when there were larger uncertainty estimates.
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(f) ∇θBφ variance estimates.

Figure 4.36: MF gradient variance estimates during Swarm time.
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(f) d∇θBφ/dt variance estimates.

Figure 4.37: SV gradient variance estimates during Swarm time.
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(f) ∇θBφ variance estimates.

Figure 4.38: MF gradient variance estimates during CHAMP time.
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Figure 4.39: SV gradient variance estimates during CHAMP time.

4.6.3 SH Field Model from VO Gradient Data

In this section results using a purely internal SH field model are reported, with a B-spline-
representation of the time-dependence, built from Swarm VO gradient data, from version
0105, provided in an EQ grid having 300 VO’s. The main purpose here is to demonstrate
that field models can indeed be constructed from VO gradients and to investigate whether
these might offer improved insight into field structures. The procedure for computing the
gradient models follow that of Section 4.5.5; that is, for each epoch in the VO data series
an inversion for the expansion coefficients was performed truncating the expansion at SH
degree n = 20. However, in this particular case, SV rather than MF (which was used in
Section 4.5.5) VO time series was used. The three vector components, {Ḃr, Ḃθ, Ḃφ}, along
with the six gradient components, {∇rḂr,∇θḂθ,∇φḂφ,∇rḂθ,∇rḂφ,∇θḂφ}, were used to
invert for the internal expansion coefficients. As the VO data was given in an EQ grid the
model coefficients were estimated using a least squares solution (instead of using the SH
transform algorithm as used in Section 4.5.5). Here a Matlab script for constructing the
gradient design matrices was kindly provided by Stavros Kotsiaros. Afterwards an order
five spline approximation was used to describe the time-dependence using 6 month knot
spacing and five-folded knots at the end points t = 2014.5 and t = 2017.5, thus yielding
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5 interior knots at (2015,2015.5,...,2017.0) and five exterior knots at each end point given
a total of 10 B-spline basis functions. Since the internal coefficients were determined for
n ∈ [1, 20], this gave a total of 4400 model coefficients. The resulting field models produced
were: the VO vect SH.02 model using vector data only, the VO grad SH.02 model using
gradient data only, and the VO vectgrad SH.02 model using both vector and gradient
data.
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Figure 4.40: Core surface power spectra for secular variation (blue curves) and acceleration
(red curves) in 2016. Spectra are shown for models VO vect SH.02 (curve with circle),
VO grad SH.02 (curve with stars) and VO vectgrad SH.02 (dashed curve). Also shown is
the CHAOS-6-x5 model.

Figure 4.40 presents the power spectra of the secular variation (in blue) and acceler-
ation (in red) of the VO (dashed lines) and CHAOS-6-x5 models evaluated at the core
surface in 2016.0. The spectra are shown for models build using vector data only, field
gradient data only and a combination of vector and field gradient data. Figure 4.41 a) and
b) presents the SV and SA degree correlations and SV coefficient differences between the
VO and CHAOS-6-x5 models, respectively. The figures compare models based on vector
data only, gradient data only and a combination of vector and gradient data. For the SV
case it seems that including the gradients indeed improves the model reconstruction for SH
degrees 1 to 6. However, in the SA case a gradient only model appears to have lower cor-
relation seemingly due to slightly increased power. The near zonal coefficients for higher
degrees are apparently worse. This could be related to polar gaps of the VO distribution.
From these figures the SV and SA coefficients show coherence with the CHAOS-6-x5 model
up to SH degrees n = 11 and n = 6, respectively.

Figures 4.42 and 4.43 presents time series of the first time derivatives of the internal Gauss
coefficients, {dgmn /dt, dhmn /dt}, for SH degrees n ∈ [1, 7] in units of [nT/yr]. Shown with
blue dots are the inverted coefficient values along with the VO (in green) and CHAOS-6-
x5 (in red) model predictions. These are plotted for a model based on both vector and
gradient field data. Using the VO vectgrad SH.02 model, built using both vector and
gradient data, CMB maps of the radial SV field up to SH degrees n = 11 and radial SA
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field up to SH degrees n = 6 and n = 7 in 2016.0, are presented in Figure 4.44. Also
shown for comparison are maps of the predictions of the CHAOS-6-x5 model up to the
same degrees. SV field patches observed in the VO model agree well with those of the
CHAOS-6-x5 model. However, contamination in the polar regions is clearly present. The
reason for this could be the differences in data used between the two models; CHAOS-6-x5
used only scalar data in the polar regions. Looking at the SA map for SH degrees up to
n = 6 shows good agreement with the field features appearing in CHAOS-6-x5, though
the SA has slightly less power. Pushing towards SH degree n = 7 the SA patches at mid
and low latitudes still exhibits agreements with CHAOS-6-x5 though it seems that patches
become slightly different and noise becomes prominent in the polar regions.
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(a) Sensitivity matrix in units (nT/yr), showing
VO vect SH.02 and CHAOS-6-x5 model differences
for SV coefficients n = 1− 12 for 2016.0.
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(b) Sensitivity matrix in units (nT/yr), showing
VO grad SH.02 and CHAOS-6-x5 model differences
for SV coefficients n = 1− 12 for 2016.0.
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(c) Sensitivity matrix in units (nT/yr), showing
VO vectgrad SH.02 and CHAOS-6-x5 model differ-
ences for SV coefficients n = 1− 12 for 2016.0.
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Figure 4.41: SV sensitivity matrix between VO and CHAOS-6-x5 models: using vector
data only (top left), field gradient data only (top right) and vector and field gradient data
(bottom left). Bottom right plot shows SV degree correlation between VO and CHAOS-
6-x5.
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Figure 4.42: The first time derivatives of the internal Gauss coefficients, {dgmn /dt, dhmn /dt}
in [nT/yr] of the VO vectgrad SH.02 model. The blue symbols are inverted coefficient
values while the VO vectgrad SH.02 and the CHAOS-6-x5 model predictions are in green
and red, respectively.
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Figure 4.43: Continuation of Figure 4.43.
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(a) VO vectgrad SH.02 radial SV radial up to SH
degree n = 11 at CMB in 2016.0.

(b) CHAOS-6-x5 model radial SV up to SH degree
n = 11 at CMB in 2016.0.

(c) VO vectgrad SH.02 radial SA up to SH degree
n = 6 at CMB in 2016.0.

(d) CHAOS-6-x5 model radial SA up to SH degree
n = 6 at CMB in 2016.0.

(e) VO vectgrad SH.02 radial SA up to SH degree
n = 7 at CMB in 2016.0.

(f) CHAOS-6-x5 model radial SA up to SH degree
n = 7 at CMB in 2016.0.

Figure 4.44: Global maps of the SV (top) and SA (center and bottom) radial fields at
the CMB in 2016.0, of the VO vectgrad SH.02 (left plots) and CHAOS-6-x5 (right plots)
models.

4.7 Recommendations

This section collections the recommendations for future VO modelling, these are:

• Data selection: it is recommended to select data using dark (i.e. the sun 10◦ below
horizon) quiet-time criteria in order to reduce the contamination of external fields.

• Data processing: it is recommended to use the ESA L2 product, CI inversion esti-
mates of the ionospheric fields along with the induced counterparts (Sabaka et al.,



122 CHAPTER 4. VIRTUAL OBSERVATORY MODELLING

2018). The latest version CIY4 incorporates Earth induced fields using a 3D conduc-
tivity model. It is also recommended to investigate whether the CIY4 oceanic lunar
semi-diurnal magnetic signal could be beneficial to remove (at satellite altitudes this
is a signal of 2.5nT prominent in the Indian Ocean, the sea around Antarctica and in
the North Atlantic Ocean). It is recommended to use the CHAOS model estimates
of the magnetospheric field and its induced counterpart.

• Data processing: as a technical recommendation, the removal of the internal field
from the measurements should be done as follows: i) subtract the time-dependent
internal field for SH degrees 1-14, ii) subtract the static internal field for epoch 2010
(where the CHAMP satellite was at it lowest) for SH degrees 15-20, and iii) subtract
the internal static field for SH degrees 21-110.

• Data processing: the VO modelling was found to be independent on which field model
was used to perform the pre-whitening. It is recommended to use a geomagnetic field
model, that is considered the most optimal at reproducing the observations on which
it is built; in case a standardized procedure is required, the IGRF model should be
considered.

• VO model setup: the VO’s should be placed at mean satellite altitudes; in this
project this were 370km and 490km altitude above ground during the CHAMP and
Swarm eras, respectively. It is recommended to investigated whether the VO’s should
be computed separately for the Swarm Alpha and Charlie satellites and the Bravo
satellite.

• VO model setup: it is recommended to use a cubic potential expansion.

• VO model setup: if the VO’s are to be used in applications of inferring the core flow
or in data assimilation, equal area global grids having at least 300 VO’s should be
used in order to obtain sufficiently spatial resolution. For such a grid, the search
radius should be no more than 700km in order to avoid VO data overlap.

• VO model setup: it is recommended to use a 4 month time window from which data
are binned into the VO epochs.

• Error estimates: it is recommended to investigate computing off-diagonal elements
of the covariance matrices of the VO time series, which could be important for future
application studies.

• Model correlation matrices: it is recommended to further explore the possible to
improve on the VO modelling by taking advantage of a Selectetive Infinite-Variance
Weighting (SIVW) approach by applying a weight matrix. That is, trying to use an
optimal combination of observation components which may be suitable to constrain
certain model parameters (Olsen et al., 2007; Sabaka et al., 2015; Kotsiaros and
Olsen, 2014).

• Field gradients: it is recommended to further explore the prospects of field gradient
computations and their time derivatives, and to investigate possible applications in
regards to core flow studies and jerk investigations.

• Internal/external field separation: it is recommended to investigate whether an in-
ternal/external separation modelling could be performed, and if ionospheric field
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parametrization could be incorporated in order to mitigate such signals. Further-
more, considerations on how to mitigate the in-situ ionospheric tororidal field is
suggested.

4.8 Summary

In this Chapter the local modelling technique called the Virtual Observatory method has
been described, implemented and new initiatives trying to improve on previous results have
been undertaken, including: 1) optimization of the data selection and modelling procedure
based on previous experience, such as subtracting crustal and external field estimations,
2) improved the VO method setup using a cubic potential description and using longer
data time windows, 3) extending the method to compute field gradients and their time
derivatives, 4) providing uncertainty estimates for field and gradient outputs.

The main results and findings of the work conducted in this thesis are:

• VO’s computed with improved data selection criteria and processing, and modelling
set up, agree well with the ground observatory measurements and field model predic-
tions. Comparing SV estimates computed from 4 month averages of GO’s with those
of the VO’s, results in rms misfit of a few nano Tesla and correlation coefficients for
the radial components not below 0.74 and 0.91 during the CHAMP and Swarm eras,
respectively. The correlation coefficients for the horizontal field components show
equally high numbers thus confirming the high coherence of the VO time series with
those of the GO’s.

• It is concluded that an internal field model is required in other to perform a pre-
whitening of the data. It was found that the VO time series are independent on
which field model is chosen for this purpose.

• External and toroidal field contributions are much reduced but still present especially
at polar latitudes.

• VO time series above the Honolulu observatory, shows a steep change in the SA
observed around 2017. This is also seen in the dZ/dt component in global VO time
series; this may be the first signs of a jerk in the Pacific region in the Swarm era.
Global maps of the SV and in particular the SA may support this suspicion showing
increased activity.

• VO time series above the Kourou (KOU) observatory, shows a ”V” shape feature in
the θ components of the SV seen around 2016, with an associated steep change in
the SA which could indicate a jerk in the Swarm era. This is also seen in the dX/dt
component in global VO time series.

• Field gradients can be computed using the VO’s. Using the gradient field data,
it has been demonstrated that spherical harmonic based field models can be built,
which may add additional information on the field structures compared to vector
only based field models. The VO time series may be used to produce dedicated time
dependent models of the core field. The 2007 jerk is clearly identified in the gradient
SV and SA time series, confirming the usability of gradients in studies of jerks.

The potential applications of the VO time series are significant as has already been
shown in previous studies (e.g. Olsen and Mandea, 2007; Beggan et al., 2009; Beggan and
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Whaler, 2009, 2010; Whaler and Beggan, 2015; Olsen et al., 2009, 2010c). During this
project various collaborations involving the usage of an EQ grid of globally distributed
VO time series, has been carried out. Among these studies, the VO data was used in
the assimilation study of (Barrois et al., 2018) trying to infer both core surface magnetic
and velocity fields. The associated article Assimilation of ground and satellite magnetic
measurements: inference of core surface magnetic and velocity field changes can be found
in Appendix A. Also the VO data produced in this project was used in studying the time-
dependent core flow at low latitudes between 2000 and 2017 (Kloss and Finlay, 2018), and
in core flow studies (Whaler, 2017).

Several of the issues concerning VO field reconstruction are shared by all conventional
SH field reconstructions. These arguments should not prevent a pragmatic approach to
estimating VO time series. Major disturbing signals due to ionospheric and magneto-
spheric sources might be subtracted to some extent by applying improved data selection
from the CHAMP and Swarm satellites (e.g., Finlay et al., 2017; Friis-Christensen et al.,
2017), removal of modelled external field predictions (e.g., Laundal et al., 2018), or usage
of gradient data for determining particular model parameters (e.g., Kotsiaros and Olsen,
2014; Sabaka et al., 2015).



Chapter 5

Optimal Localized Field
Estimation

5.1 Introduction

The objective of this chapter is to introduce, describe and implement a technique for
obtaining localized spatial average estimates of the radial magnetic field and its time
derivatives at the core-mantle boundary (CMB). An important perspective offered by the
technique described here is formal appraisal of the spatial resolution and variance of the
estimated field averages. The formalism proposed offers a powerful alternative to con-
ventional core field modelling, which is typically based on global spherical harmonic basis
functions, where noise in the polar regions maps into all harmonics, and which requires
model regularization and spectral truncation, making inference of resolution and variance
troublesome.

The central idea is that Green’s second identity allows solutions to the Laplace equa-
tion to be formulated by imposing inhomogeneous boundary conditions of the Neumann
type. This provides a mathematical relationship between vector magnetic field measure-
ments and the radial magnetic field at the CMB. The Green’s function method under the
Neumann boundary conditions allows both internal and external sources to be described.
Investigating the field at the CMB from satellite measurements constitutes an inverse
problem, which can be solved using a modified Backus-Gilbert approach. The Backus-
Gilbert approach is an optimally localized averaging (OLA) method; a field estimate is
constructed as a linear combination of the data providing a unique spatial average value.
In this project a specific extension building on the Subtractive Optimally Localized Av-
erages (SOLA) method developed in helioseismology has been used; this involves seeking
averaging kernels as close as possible to a specified spatial target kernel. The formalism
presented here is able to account for both internal and external field sources, and it can
incorporate data error covariance information such as along-track serial error correlation
as described in Section 3.4.2.

Section 5.2 presents the background theory of the Neumann boundary value problem
(NBVP), and derivations of the exterior and interior Green’s functions. Section 5.3 de-
scribes the optimal localized averaging method, and in particular presents the SOLA
method. Two different approaches to implement the SOLA method in the time-dependent
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geomagnetic problem are here described: 1) Section 5.4 derives a formalism wherein the
time dependence of the field is approximated by a Taylor series expansion, 2) Section
5.5 derives an alternative formalism where the temporal function, relating data and the
source field in time, is approximated by a local polynomial. Applications to the method are
presented using magnetic field observations collected by the low-Earth-orbiting CHAMP
and Swarm satellites missions based on the Data Set 2 described in Sections 3.3 and 3.4.
Studies of the SA at the CMB are reported in Section 5.4.5. These shed fresh light on
rapid field changes in the equatorial region and jerks at the CMB. A summary is given in
Section 5.6.

5.2 The Laplace Equation - The Neumann Problem

Here, the fundamental theory of potential fields is presented following closely the treat-
ments by Barton (1989), Jackson (2007) and Riley et al. (2004). The fundamental equation
that describe and governs the geomagnetic potential is the second order partial differential
Laplace equation, see Section 2.5. The Laplace equation is a special case of a more general
equation but may be written (e.g., Riley et al., 2004, p. 686)

Lψ(r) = ∇2ψ(r) = −ρ(r) (5.1)

where L represents the partial differential operator, ψ is the potential function and ρ
is some source function (for instance in electrostatics ρ would be the charge density).
Choosing here the Laplace operator L = ∇2, the Poisson’s equation (5.1) appears, which
is classified as being of elliptic type. This problem is well-posed in the Hadamard sense
if it satisfies: i) existence of a solution, ii) uniqueness of the solution found, iii) stability
of solution (Barton, 1989). We wish to find a well-posed solution, ψ(r), within some
region, V , to the Poisson’s equation in the homogeneous case for which ρ(r) = 0; in this
case it reduces to the Laplace equation. The volume, V , is bounded by the surface, S,
which here consists of two disconnected parts, S1 and S2, such that S = S1 + S2 and∫
S dS =

∫
S1
dS1 +

∫
S2
dS2. In the three dimensional space considered here, S1 and S2 are

concentric spheres with V in the gap between as shown in Figure 5.1. It is important to
note that some parts or all of S, are allowed to be at infinity; e.g. considering the case of an
infinite volume, the radius of the surface S2 goes to infinity. The normal vector is denoted n̂
and points out of V (Barton, 1989; Riley et al., 2004). The elliptic classification specifies
under which conditions well-posed problems are given; for the elliptic case appropriate
conditions are inhomogeneous (i.e. 6= 0) boundary conditions of either the Dirichlet (DBC)
type specifying the potential ψ on S, also termed the first boundary value problem, or
the Neumann boundary conditions (NBC) type specifying the normal derivatives ∂nψ
on S, also termed the secondary boundary value problem on a closed surface (such as
a sphere), allowing for parts of S to be at infinity. Cauchy boundary conditions, which
are a combination of the Dirichlet and Neumann boundary conditions, overdetermine the
problem (Kellogg, 1954; Barton, 1989; Jackson, 2007; Riley et al., 2004). The uniqueness
theorem below is especially important, since it states that a solution satisfying the Laplace
equation using the boundary conditions is the correct and only one regardless of how it is
found (e.g., Riley et al., 2004, p. 639)

Uniqueness theorem. If ψ is real and its first and second partial derivatives are contin-
uous in a region V and on its boundary S, and ∇2ψ = −ρ in V , and either ψ = g (DBC)
or ∂ψ/∂n = f (NBC) on S, where ρ, f and g are prescribed functions, then ψ is unique
(at least to within an additive constant).
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The problem considered here, i.e. the geomagnetic case, is inhomogeneous with NBC
prescribed on the surface S, i.e. the normal derivative of the potential (i.e. the radial
field) ∂ψ/∂n. A homogeneous problems requires both ρ = 0 and all boundary conditions
to be zero; in fact a homogeneous problem with the NBC does not exist as will be shown
in Section 5.2.2.

Figure 5.1: Illustration of volume V and surface S = S1 + S2.

5.2.1 The Concept and Properties of Green’s Functions

The method of Green’s functions provides a suitable procedure for solving the Laplace
equation. The fundamental concept is to assume that a certain function, called the Green’s
function, N(r|r′), exists and fulfils (Barton, 1989; Riley et al., 2004)

−∇2N(r|r′) = δ(r− r′) (5.2)

where both r and r′ lies within V , and δ(r− r′) is the singularity Dirac delta function in
three dimensions. The 3D Dirac delta function can be written (e.g., Barton, 1989, p. 32)

δ(r− r′) = 1
r′2
δ(r − r′)δ(φ− φ′)δ(θ − θ′) = 1

r′2
δ(r − r′)δ(Ω− Ω′) (5.3)

where δ(Ω−Ω′) represents the angular part which can be expanded in terms of spherical
harmonics

δ(Ω− Ω′) =
∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ) = 1
4π

∞∑
l=0

(2l + 1)Pl(µ) (5.4)

where Ylm are the complex surface spherical harmonics being functions of the angular part
only determined as (Barton, 1989)

Ylm(θ, φ) = (−1)mNlmPl,m(cos θ)expimφ for l ≥ 0 and −l ≤ m ≤ 1 (5.5)

where Pl,m are the associated Legendre functions satisfying the Ferrers normalization,
µ = cosγ = cosθcosθ′ + sinθcosθ′sin(φ− φ′), the asterisk denotes complex conjugation,
and where the pre-factor

Nlm =
√

(2l + 1)
4π

(l −m)!
(l +m)! (5.6)

such that the inner product of the complex surface spherical harmonics is written

〈Ylm, Yn,k〉 ≡
∫ 2π

0

∫ π

0
Y ∗lmYnkdS = δlnδmk (5.7)
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In the above l and m are the degree and order, respectively. Note here that some definitions
includes a factor 1/4π in front of this integral (Sabaka et al., 2010) and correspondingly
not in the Nlm expression of equation (5.6). However this only slightly modifies the
computations, such as the spherical harmonic addition theorem equation (5.8); it does not
influence the end result. In the above the spherical harmonic addition theorem has been
used to re-write the expansion (e.g., Barton, 1989, p. 32)

l∑
m=−1

Y ∗lm(θ′, φ′)Ylm(θ, φ) = 2l + 1
4π Pl(µ) (5.8)

Properties of the Dirac delta function include (e.g., Woan, 2000, p. 50)

δ(r− r′) = 0, if r 6= r′ (5.9)∫
V
δ(r− r′)dV = 1 (5.10)

f(r)δ(r− r′) = f(r′)δ(r− r′) (5.11)∫
V
f(r)δ(r− r′)dV = f(r′) (5.12)

where f(r) is some arbitrary continuous function. It is important to be clear about the
notation used: i) r denotes the position in V of the sought-after potential solution, ψ(r),
and is termed the field point, ii) r′ denotes the position in V or on the boundary S where
for instance boundary conditions are given, and is termed the source point (Barton, 1989).
Furthermore, it should be stressed that the differentiation, ∇′, along with the volume and
surface integrals

∫
V dV

′ and
∫
S dS

′, respectively, are carried out with respect to r′.

The Green’s function, also termed the response or influence function, may be consid-
ered as the response of a system to a δ-point source or unit impulse (represented by the
Dirac delta function) at the position r = r′. Considering Green’s second theorem, see
equation (2.10), Section 2.5, and writing the source potential Φ = ψ(r′) and the Green’s
function Ψ = N(r′|r), yields∫

V

[
ψ(r′)∇′2N(r′|r)−N(r′|r)∇′2ψ(r′)

]
dV (r′) =∫

S

[
ψ(r′)∂N(r′|r)

∂n
−N(r′|r)∂ψ(r′)

∂n

]
dS(r′) (5.13)

where the notation ∇ψ(r′) · n̂dS = (∂ψ(r′)/∂n)dS has been used, i.e. the rate of change
of ψ(r′) in the normal direction. Inserting equations 5.1 and 5.2, and using equation 5.12
allows for equation 5.13 to be re-written as

ψ(r) = −
∫
V
N(r′|r)ρ(r′)dV (r′)−

∫
S

[
ψ(r′)∂N(r′|r)

∂n
−N(r′|r)∂ψ(r′)

∂n

]
dS(r′) (5.14)

Equation 5.14 provides an expression of the potential at r described in terms of the Green’s
function which is comprised of an integration over the volume source ρ(r′) where r′ ∈ V
and two surface integrations containing boundary conditions for which r′ ∈ S. Note that
calling equation 5.14 a solution would be misleading, since the expression contains both
the potential and its derivative on the surface (Jackson, 2007). Restrictions regarding
the continuity of the Green’s function and discontinuity of its first derivative need to be
considered when constructing appropriate expressions for N(r′|r). Equation 5.2 means
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that ∇2N(r|r′) ought to match the behaviour of the Dirac delta function at r = r′;
for instance, the Dirac delta is a singularity class function of which integration yields the
Heaviside step function, which is piecewise continuous (e.g., Barton, 1989, p. 18). Thus the
derivative ∂N(r|r′)/∂r should be discontinuous and N(r|r′) continuous, fulfilling the jump
and continuity conditions (e.g., Barton, 1989, p. 46). Considering the radial dependence,
these are stated below, where the jump condition is found by integrating equation (5.2)
on both sides from r′ − η1 to r′ + η2, letting η1, η2 → 0, i.e.∫ r′+η2

r′−η1
∇2N(r|r′)dr =

∫ r′+η2

r′−η1
− 1
r′2
δ(r − r′)dr

∂N(r|r′)
∂r

∣∣∣∣∣
r=r′+η2

− ∂N(r|r′)
∂r

∣∣∣∣∣
r=r′−η1

= − 1
r′2

for η1, η2 → 0 jump condition (5.15)

N(r′+η2|r′)−N(r′−η1|r′) = 0 for η1, η2 → 0 continuity condition (5.16)

5.2.2 Neumann Problem Considerations

Before deriving the expressions for the Green’s functions, some important considerations
regarding the Neumann problem must be addressed. The Neumann Green’s function
should fulfil the symmetry N(r|r′) = N(r′|r). This requirement means that the positions
r and r′ are interchangeable such that the potential at r due to a source at r′ is equivalent
to the potential at r′ due to a source at r. Applying the divergence theorem (also known
as Gauss’s theorem) to equation 5.1 yields∫

V
∇2ψdV = −

∫
V
ρdV =

∫
S
∇ψ · n̂dS =

∫
S
fdS (5.17)

where ∂ψ/∂n = f is some prescribed value on S. Equation 5.17 is a consistency condi-
tions that must be fulfilled. However, this means that the Green’s function cannot fulfil
homogeneous NBCs (as is the case for DBCs). This can be seen by considering∫

V
∇2N(r|r′)dV =

∫
S
∇N(r|r′) · n̂dS =

∫
S

∂N(r|r′)
∂n

dS = −1 (5.18)

which is not possible if ∂N(r|r′)/∂n = 0 (Barton, 1989; Riley et al., 2004). There are
two ways of fixing this: either i) to change equation 5.2 by adding some appropriate
term defining a pseudo Green’s function or ii) to change the boundary condition for the
Green’s function making it inhomogeneous. Proceeding with option ii) a suitable boundary
condition is (Barton, 1989; Riley et al., 2004)

∂N(r|r′)
∂n

= − 1
A

for r on S (5.19)

where A is the area of the surface. To summaries four important properties of the Green’s
functions under the NBC are

• The requirement ∇2N(r|r′) = δ(r− r′)

• Inhomogeneous boundary conditions ∂N(r|r′)
∂n = − 1

A

• Symmetry N(r|r′) = N(r′|r)

• Fulfils jump and continuity conditions
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Furthermore, symmetry allows for swapping r and r′. The solution to the Laplace equation
under the NBCs, having set ρ = 0 and ∂N(r|r′)/∂n = −1/A, can be written

ψ(r) = 1
A

∫
S
ψ(r′)dS(r′) +

∫
S
N(r′|r)∂ψ(r′)

∂n
dS(r′)

=
〈
ψ(r′)

〉
S +

∫
S
N(r′|r)∂ψ(r′)

∂n
dS(r′) (5.20)

where 〈ψ(r′)〉S means the ψ average over the surface, which is a constant to which
the potential can be determined using the Green’s function. For the exterior problem,
described shortly, A becomes infinite because V is bounded by S2 at infinity, such that
1/A = 0 and ∂N(r|r′)/∂n = 0 vanishes on the total surface S. This is however not the
case for the interior problem. The presence of a constant is not important for application
since we are interested in the magnetic field which is the gradient of the potential.

The following two sections are concerned with the detailed derivations of closed form
expressions for the Green’s functions for the exterior and interior problems under the
Neumann boundary value condition (NBC) in a spherical geometry. The motivation for
including these derivations here is that they are not easily available in the literature and
may seem abstruse to deduce. The notation and formulation adopted here follows that of
Barton (1989) and Jackson (2007). Even though the exterior and interior problems are
treated separately here, a joint formulation exists (Jackson, 2007; Kim and Jackson, 1993).
It can be shown that this expression reduces the exterior/interior Green’s functions under
appropriate considerations. Here, instead treating the problem as two separate cases (i.e.
the exterior/interior), closed-form expressions were obtained; adding the two expressions
is possible since the total field (and thus the total potential) is just a superposition of the
fields produced by the two sources under consideration.

(a) Exterior problem. (b) Interior problem.

Figure 5.2: Illustration of Neumann boundary value problem. After Barton (1989) Figures
5.3 and 5.4.

The form of the Green’s functions can be derived through various approaches (e.g.,
Barton, 1989; Jackson, 2007; Constable et al., 1993). Here an expansion of spherical
harmonics will be used from which closed-form expressions can be obtained. The exterior
and interior cases are illustrated in Figure 5.2: a) the exterior problem for a sphere, seeking
the Green’s function Next(r|r′) in V bounded by the (source) sphere S1 with radius a and
S2 at infinity, requiring that ψ(r) → 0 as r → ∞ and b) the interior problem for a
sphere, seeking the Green’s function Nint(r|r′) in V bounded by the (source) sphere S,
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applying Neumann boundary conditions to both. However, the derivation of Next(r|r′)
and Nint(r|r′) differs significantly due to the fact that exterior problem has one surface
at infinity. Looking at the geometric setup in Figure 5.2 a) and b) for the exterior and
interior cases, respectively, the following notations are used: the origin C is at the center
of a sphere of radius a (which should not be confused with the notation for the Earth’s
surface in Chapter 2), r is the field point, r′ is the source point, the angular distance, γ,
between these two positions is µ = cosγ = cosθcosθ′ + sinθcosθ′sin(φ− φ′). The vector
distance is R = r − r′, such that R = |r − r′| =

√
r2 + r′2 − 2rr′µ. Note that in general

the distances r and r′ are not fixed, thus requiring the two case r > r′ and r < r′ to be
investigated separately. Table 5.1 summaries the some basic geometric considerations.

Exterior problem Interior problem

Radius r > a, r′ ≥ a r < b, r′ ≤ b
NBC on Green’s function ∂Next

∂r = 0 for r = a, r →∞ ∂Nint
∂r = 1

4πb2 for r = b

NBC on potential ∂ψ(r)
∂n = Br(r) ∂ψ(r)

∂n = −Br(r)
Behaviour ψ(r)→ 0 as |r| → ∞ ψ(r)→ 0 as |r| → 0

Table 5.1: 3D Neumann boundary value problem for a sphere.

The Neumann Green’s function, N(r|r′) = N(r, θ, φ|r′, θ′, φ′) = N(r,Ω|r′,Ω′), is de-
rived using a complete orthogonal set of functions over the interval 0 ≤ θ ≤ π (i.e.
−1 ≤ µ ≤ 1); a spherical harmonic expansion in which the radial and angular depen-
dences are assumed separable (e.g., Barton, 1989; Jackson, 2007)

N(r|r′) =
∞∑
l=0

l∑
m=−l

gl(r|r′)Y ∗lm(θ′, φ′)Ylm(θ, φ) = 1
4π

∞∑
l=0

gl(r|r′)(2l + 1)Pl(µ) (5.21)

where Ylm are the surface spherical harmonics and Pl are the Legendre polynomials. The
spherical harmonic addition theorem, equation (5.8), has been used to re-write the ex-
pansion. The gl(r|r′) is a function expressing the radial dependence and the spherical
harmonics express the angular dependence. Because the Green’s function exhibits axial
symmetry, such that m = 0, the angular part can be expressed by the Legendre poly-
nomials. For each case (i.e. exterior/interior) expressions for gl are sought and inserted
into equation 5.21 for further inference. Expressing the operator ∇2 in spherical polar
coordinates (see (e.g. Woan, 2000)) and substituting for equations (5.21), (5.3) and (5.4)
into equation 5.2 yields

1
4π

∞∑
l=0

[(2l + 1)Pl(µ)
r2

d

dr

(
r2dgl
dr

)
+ gl
r2sinθ

d

dθ

(
sinθdPl(µ)

dθ

)]
=

− 1
4π

1
r′2
δ(r − r′)

∞∑
l=0

(2l + 1)Pl(µ) (5.22)

The angular part on the left-hand side, having m = 0, satisfies the differential equation
(e.g., Riley et al., 2004, p. 666)

1
sinθ

d

dθ

(
sinθdPl(µ)

dθ

)
= −l(l + 1)Pl(µ) (5.23)
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which can be inserted into equation 5.22, giving

1
4π

∞∑
l=0

[ 1
r2

d

dr

(
r2dgl
dr

)
− l(l + 1)gl

r2

]
(2l + 1)Pl(µ) =

− 1
4π

1
r′2
δ(r − r′)

∞∑
l=0

(2l + 1)Pl(µ) (5.24)

For each value of l, equating the left and right hand side of equation 5.24 provides an
ordinary differential equation such that

1
r2

d

dr

(
r2dgl
dr

)
− l(l + 1)gl

r2 = − 1
r′2
δ(r − r′)⇒

−d
2gl
dr2 −

2
r

dgl
dr

+ l(l + 1)gl
r2 = 1

r′2
δ(r − r′) (5.25)

This means that gl is a solution to the homogeneous equation 5.25 except at r = r′.
Considering the cases r < r′ and r > r′, the structure of gl is split into the form

gl(r) =
{
Alr

l +Dl/r
l+1 for r < r′

Blr
l + Cl/r

l+1 for r > r′
(5.26)

In the next two sections derivations of the exterior and interior Green’s functions are
provided based on the preliminary formulations given above; i.e. the structure of the gl
term, imposing boundary conditions along with the jump and continuity conditions, is the
first step, the next step is to derive closed-form expressions of the Green’s functions.

5.2.3 Exterior Neumann Green’s Function for a Sphere

The intention is to solve for the potential in V outside the surface S1 bounded by the
surface S2 at infinity, i.e the volume becomes infinite, as illustrated in the geometric
setup seen in Figure 5.2 a). As stated by equation 5.26, the cases r < r′ and r > r′

are considered separately; outside the sphere S1 for r > r′ the solution is bounded as
r →∞, thus requiring Bl = 0 for all values of l since otherwise the term rl would blow up.
Recall that 1/A of the total surface is zero since S2 is infinity, thus imposing the boundary
condition ∂N/∂r = 0 at r = a.

1. Case l = 0 The boundary condition imposes that ∂N(r|r′)/∂r = 0 such that differ-
entiating equation 5.21 gives

∂

∂r

([
A0 +D0

1
r

]
Y 2

00

) ∣∣∣∣∣
r=a

= 0 ⇒ thus, D0 = 0 (5.27)

where Y00 = 1/
√

4π. Hence, for l = 0 , the solution is

g0(r|r′) = H(r′ − r)A0 +H(r − r′)C0
r

(5.28)

where H is the Heaviside function such that H(r′ − r) and H(r − r′) picks out the
solutions for cases r′ > r and r > r′, respectively. Furthermore H(r′−r)+H(r−r′) =
1. Because the Green’s function is continuous at r = r′ the continuity conditions
requires

g0(r′ + η2|r′) = g0(r′ − η1|r′) ⇒ thus, A0 = C0
r′

(5.29)
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Hence, inserting this it is possible to write

g0(r|r′) = H(r′ − r)C0
r′

+H(r − r′)C0
r

= C0
[
H(r′ − r) +H(r − r′)

]
+ H(r′ − r)

r′
+ H(r − r′)

r

= C0 + H(r′ − r)
r′

+ H(r − r′)
r

(5.30)

The constant C0 is an arbitrary additive constant, left undetermined by the boundary
conditions, appearing in any Neumann problem.

2. Case l ≥ 1 The boundary condition imposes that ∂gl(r|r′)/∂r = 0 at r = a such that

∂

∂r

(
Alr

l +Dl/r
l+1
) ∣∣∣∣∣

r=a

= 0 ⇒ thus, Dl = Al
l

l + 1a
2l+1 (5.31)

The solution may therefore be written

gl(r|r′) = H(r′ − r)
(
Alr

l +Dl
1
rl+1

)
+H(r − r′)Cl

1
rl+1

= H(r′ − r)Al

[
rl + l

l + 1
a2l+1

rl+1

]
+H(r − r′)Cl

1
rl+1 (5.32)

Using equation 5.32, the continuity condition requires

Cl = Al

[
r′2l+1 + l

l + 1a
2l+1

]
(5.33)

Inserting this into equation 5.32 gives

gl(r|r′) = H(r′ − r)Al

[
rl + l

l + 1
a2l+1

rl+1

]

+H(r − r′)Al
[
r′2l+1 + l

l + 1a
2l+1

] 1
rl+1 (5.34)

The derivative ∂gl/∂r fulfils the jump condition by integrating equation 5.25 with
respect to r from r′ − η1 to r′ + η2 (e.g., Barton, 1989, p. 47)

∫ r′+η2

r′−η1

[
−d

2gl
dr2 −

2
r

dgl
dr

+ l(l + 1)gl
r2

]
dr =

∫ r′+η2

r′−η1

1
r′2
δ(r − r′)dr ⇒

dgl(r′ + η2|r′)
dr

− dgl(r′ − η1|r′)
dr

= − 1
r′2

(5.35)

This jump condition is used to solve for the coefficient Al

dgl(r′ + η2|r′)
dr

= −Al

[
(l + 1)r

′2l+1

rl+2 +
(

l

l + 1

)
(l + 1)a

2l+1

rl+2

]
dgl(r′ − η1|r′)

dr
= Al

[
lrl−1 −

(
l

l + 1

)
(l + 1)a

2l+1

rl+2

]
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subtracting the two expressions, finding

dgl(r′ + η2|r′)
dr

− dgl(r′ − η1|r′)
dr

= −Alr′l−1(2l + 1) = − 1
r′2
⇒

Al =
( 1

2l + 1

) 1
r′l+1 (5.36)

Inserting this into equation 5.34 gives

gl(r|r′) = H(r′ − r)
( 1

2l + 1

) rl

r′l+1 + 1
a

(
1− 1

l + 1

)(
a2

r′r

)l+1


+H(r − r′)
( 1

2l + 1

) r′l

rl+1 + 1
a

(
1− 1

l + 1

)(
a2

r′r

)l+1


=
( 1

2l + 1

)1
a

(
1− 1

l + 1

)(
a2

r′r

)l+1
+

( 1
2l + 1

)[
H(r′ − r) rl

r′l+1 +H(r − r′) r′l

rl+1

]
(5.37)

Recall that in the above expressions, the Heaviside function H(r′− r) and H(r− r′)
picks out the r′ > r and r > r′ cases, respectively.

Taking the r > r′ part, the complete expression for the Green’s function for l ≥ 0
equation 5.21, a closed-form expression can be derived

N(r|r′) = 1
4π

∞∑
l=0

gl(r|r′)(2l + 1)Pl(µ)

= 1
4π

(C0 + 1
r

)
P0(µ) +

∞∑
l=1

Pl(µ)

( r′l

rl+1

)
+ 1
a

(
1− 1

l + 1

)(
a2

r′r

)l+1


= 1
4π

 ∞∑
l=0

Pl(µ)
(
r′l

rl+1

)
+ 1
a

∞∑
l=0

Pl(µ)
(
a2

r′r

)l+1

− 1
a

∞∑
l=0

Pl(µ)
( 1
l + 1

)(
a2

r′r

)l+1
+ C0

4π

= 1
4π

[ 1
R

+ a

r′R̃
− 1
a
F1

]
+ C0

4π (5.38)

where the following useful substitutions have been used

1
R

=
∞∑
l=0

Pl(µ)
(
r′l

rl+1

)
,

1
R̃

= 1
r

∞∑
l=0

Pl(µ)
(
a2

r′r

)l
, F1 = −

∞∑
l=0

Pl(µ)
( 1
l + 1

)(
a2

r′r

)l+1

For the last expression the substitution ζ = a2/(r′r) can be used such that

F1(ζ) = −
∞∑
l=0

Pl(µ)
( 1
l + 1

)
ζ l+1 (5.39)

such that the derivative may be calculated

∂F1(ζ)
∂ζ

= −
∞∑
l=0

Pl(µ)ζ l = − 1
[1 + ζ2 − 2ζµ]1/2

(5.40)
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This is a well known generating function for the polynomials Pl(µ) (Barton, 1989). Inte-
grating allows for F1 to be re-written to a closed-form∫ ζ1=ζ

ζ1=0
F1(ζ)dζ = −

∫ ζ1=ζ

ζ1=0

1
[1 + ζ2 − 2ζµ]1/2

dζ ⇒

F1(ζ) = −ln
[
2
[
1 + ζ2 − 2ζµ

]1/2
+ 2ζ − 2µ

] ∣∣∣∣∣
ζ2=ζ

ζ1=0

= ln
[

1− µ
[1 + ζ2 − ζµ]1/2 + ζ − µ

]

= ln
[

r′r(1− µ)/a2

1 + r′R̃/a2 − r′rµ/a2

]
(5.41)

Having used F1(ζ = 0) = 0. Inserting equation 5.41 into equation 5.38 leads to

N(r|r′) = 1
4π

[
1
R

+ a

r′R̃
+ 1
a

ln
[

r′r(1− µ)/a2

1 + r′R̃/a2 − r′rµ/a2

]]
+ C0

4π (5.42)

where for completeness the arbitrary constant C0 for the l = 0 case has been included.
However, since this only adds a constant term to the potential in equation 5.20 and the
interest is for the derivative of the potential, it will be omitted from the exterior Neumann
Green’s function below. Setting the source radius r′ = a means that R̃ = R and that

N(r|r′)
∣∣∣
r′=a

= 1
4π

[ 2
R

+ 1
a

ln
[

r(1− µ)/a
1 +R/a− rµ/a

]]
(5.43)

The exterior Green’s function times the radius squared, where r′ = a, can be written after
some rearrangement (e.g., Barton, 1989, p. 423)

r′2N(r|r′)
∣∣∣
r′=a

= a2

4π

[ 2
R

+ 1
a
ln

[ 1− µ
R/r + a/r − µ

]]
(5.44)

The multiplication with a factor r′2, comes from the surface integration of equation 5.20
for which the differential surface element perpendicular to n̂ is written dS = r′2sinθ′dθ′dφ′.
This Green’s function is identical to the one given by (Gubbins and Roberts, 1983) except
for a minus sign due to potential sign conventions (they use B = ∇ψ).

5.2.4 Interior Neumann Green’s Function for a Sphere

The intention here is to solve for the potential in V outside the surface S1 having radius
a→ 0 bounded by the surface S2 at b, i.e the volume does not become infinite as for the
exterior case, as illustrated in the geometric setup seen in Figure 5.2 b). The derivation
follows the same logic as for the exterior case by equation 5.26, studying cases r < r′ and
r > r′; the solution is bounded as r → 0, requiring Dl = 0 for all cases of l since the term
1/rl+1 would blow up. Recall here the boundary condition ∂N/∂r = 1/4πb2 at r = b. As
before, terms with l = 0 and l ≥ 0 are considered separately.

1. Case l = 0 The boundary condition means that ∂N/∂r = 1/4πb2 such that differen-
tiating equation 5.21 gives

∂

∂r

([
B0 + C0

1
r

]
Y 2

00

) ∣∣∣∣∣
r=b

= 1
4πb2 = C0

4πb2 ⇒ thus, C0 = 1 (5.45)
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where Y00 = 1/
√

4π. Hence, for the l = 0 solution

g0(r|r′) = H(r′ − r)A0 +H(r − r′)
(
B0 + 1

r′

)
(5.46)

As before the Green’s function is continuous at r = r′ such that the continuity
conditions require

g0(r′ + η2|r′) = g0(r′ − η1|r′) ⇒ thus, A0 = B0 + 1
r′

(5.47)

The jump condition is found by integrating equation 5.25 with respect to r, i.e.
equation 5.35

dgl(r′ + η2|r′)
dr

− dgl(r′ − η1|r′)
dr

= − 1
r′2

(5.48)

The g0 term is thus written

g0(r′ + η2|r′) = H(r′ − r)
(
B0 + 1

r′

)
+H(r − r′)

(
B0 + 1

r

)
= B0

(
H(r′ − r) +H(r − r′)

)
+H(r′ − r) 1

r′
+H(r − r′)1

r
(5.49)

As before the constant B0 is an arbitrary additive constant, left undetermined by
the boundary conditions, appearing in any Neumann problem.

2. Case l ≥ 1 The boundary condition imposes that ∂N/∂r = 1/4πb2 where

∂N/∂r = ∂

∂r

 ∞∑
l=0

l∑
m=−1

gl(r|r′)Y ∗lm(θ′, φ′)Ylm(θ, φ)− 1
4πr

 ∣∣∣∣∣
r=b

= ∂

∂r

 ∞∑
l=0

l∑
m=−1

[
Blr

l + Cl
1
rl+1

]
Y ∗lm(θ′, φ′)Ylm(θ, φ)− 1

4πr

 ∣∣∣∣∣
r=b

=

 ∞∑
l=0

l∑
m=−1

[
Bllr

l − Cl(l + 1) 1
rl+2

]
Y ∗lm(θ′, φ′)Ylm(θ, φ) + 1

4πr2

 ∣∣∣∣∣
r=b

= 1
4π

( ∞∑
l=0

[
Bllr

l − Cl(l + 1) 1
rl+2

]
(2l + 1)Pl(µ)

)
+ 1

4πr2

∣∣∣∣∣
r=b

and the last term is the monopole l = 0 term. For this to be true ∂gl(r = b|r′)/∂r = 0,
i.e.

Bllr
l − Cl(l + 1) 1

rl+2 = 0 ⇒ thus, Cl = Bl
l

l + 1b
2l+1 (5.50)

and the solution may be written

gl(r|r′) = H(r′ − r)Alrl +H(r − r′)
(
Blr

l + Cl
1
rl+1

)
= H(r′ − r)Alrl +H(r − r′)Bl

(
rl + l

l + 1
b2l+1

rl+1

)
(5.51)

Using equation 5.51, the continuity condition requires

Al = Bl

[
1 + l

l + 1

(
b

r′

)2l+1]
(5.52)
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Inserting this into equation 5.51 gives

gl(r|r′) = H(r′ − r)Bl

[
1 + l

l + 1

(
b

r′

)2l+1]
rl +H(r − r′)Bl

(
rl + l

l + 1
b2l+1

rl+1

)
(5.53)

The jump condition is thus used to solve for the coefficient Bl

dgl(r′ + η2|r′)
dr

= lrl−1Bl

[
1 +

((2l + 1)l
l + 1

)
b2l+1

r′2l+2

]
dgl(r′ − η1|r′)

dr
= Bl

[
lrl−1 − l(l + 1)

l + 1
b2l+1

r′l+2

]
subtracting the two expressions gives

dgl(r′ + η2|r′)
dr

− dgl(r′ − η1|r′)
dr

= − 1
r′2
⇒

Bl = (l + 1)
l(2l + 1)

r′l

bbl+1 (5.54)

Inserting this into equation 5.51 gives

gl(r|r′) = H(r′ − r)
( 1

2l + 1

)[(
1 + 1

l

)(
rr′

b2

)l 1
b

+ rl

r′l+1

]

+H(r − r′)
( 1

2l + 1

)[(
1 + 1

l

)(
rr′

b2

)l 1
b

+ r′l

rl+1

]

=
( 1

2l + 1

)[(
1 + 1

l

)(
rr′

b2

)l 1
b

+ rl<
rl+1
>

]
(5.55)

where the notation r< = min(r, r′) and r> = max(r, r′) has been used.

Putting together the l = 0 (equation 5.49) and l ≥ 1 (equation 5.55) solutions , taking
the r < r′ part, and placing in the complete expression for the Green’s function for l ≥ 0
equation 5.21 becomes

N(r|r′) = 1
4π

∞∑
l=0

gl(r|r′)(2l + 1)Pl(µ)

= 1
4π

[(
B0 + 1

r′

)
+
∞∑
l=1

Pl(µ)
[(

rl

r′l+1

)
+
(

1 + 1
l + 1

) 1
b

(
rr′

b2

)l]]

= 1
4π

[
B0 + 1

R
+ 1
b

∞∑
l=1

Pl(µ)
(

1 + 1
l + 1

)(
rr′

b2

)l]

= 1
4π

[
B0 + 1

R
+ b

r′R̃
− 1
b

+ 1
b
F2

]
(5.56)

where the following useful substitutions have been used

1
R

=
∞∑
l=0

Pl(µ)
(

rl

r′l+1

)
= 1
r′

+
∞∑
l=1

Pl(µ)
(

rl

r′l+1

)
, F2 =

∞∑
l=1

Pl(µ)1
l

(
rr′

b2

)l
b

4πr′R̃
= 1

4πb

∞∑
l=0

Pl(µ)
(
rr′

b2

)l
= b

4πb

[
1 +

∞∑
l=1

Pl(µ)
(
rr′

b2

)l]
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An expression for F2 is obtained using the substitution ξ = (rr′)/b2 such that

F2(ξ) =
∞∑
l=1

Pl(µ)
(1
l

)
ξl (5.57)

taking the derivative multiplied by ξ gives

ξ
∂F2(ξ)
∂ξ

=
∞∑
l=1

Pl(µ)ξl =
∞∑
l=0

Pl(µ)ξl − 1

= 1
[1 + ξ2 − 2ξµ]1/2

− 1 (5.58)

This is a generating function for the polynomials Pl(µ) minus the l = 0 term. Next dividing
by ξ and integrating allows for F2 to be re-written to a closed-form∫ ξ1=ξ

ξ1=0
F2(ξ)dξ = −

∫ ξ1=ξ

ξ1=0

[
1

ξ [1 + ξ2 − 2ξµ]1/2
− 1
ξ

]
dξ ⇒

F2(ξ) =
[
−ln

[
2
[
1 + ξ2 − 2ξµ

]
ξ

+ 2
ξ
− 2µ

]
− lnξ

] ∣∣∣∣∣
ξ2=ξ

ξ1=0

= ln
[

2
[1 + ξ2 − 2ξµ]1/2 + 1− ξµ

]

= ln
[

2
r′R̃/b2 + 1− rr′µ/b2

]
(5.59)

where F2(ξ = 0) = 0. Inserting equation 5.59 into equation 5.56 gives

N(r|r′) = 1
4π

[
B0 + 1

R
+ b

r′R̃
− 1
b

+ 1
b

ln
[

2
r′R̃/b2 + 1− rr′µ/b2

]]
(5.60)

As for the exterior case the constant B0 is omitted since we are interested in the magnetic
field. Setting the source radius r′ = b means that R̃ = R such that

N(r|r′)
∣∣∣
r′=b

= 1
4π

[ 2
R
− 1
b

+ 1
b

ln
[ 2
R/b+ 1− rµ/b

]]
(5.61)

Finally, as for the exterior case, this is multiplied by a factor r′2 such that (e.g., Barton,
1989, p. 421)

r′2N(r|r′)
∣∣∣
r′=b

= b2

4π

[ 2
R
− 1
b

+ 1
b

ln
[ 2
R/b+ 1− rµ/b

]]
(5.62)

Here similar expressions have been used before in geomagnetism, referred to as the
interior Poisson’s kernel (Holschneider et al., 2016).

5.2.5 Geomagnetic Field Modelling using Green’s Functions

The satellite magnetic measurements are made at geocentric radius r in the volume V
of a spherical shell bounded by rc ≤ r ≤ rm. The volume V is bounded by a surface S
having the disconnected parts SC and SM ; SC is closed and finite at radius rc and SM is
closed and finite at radius rm. The region is assumed to contain no magnetization and no
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electric nor displacement currents, thus being described by a potential field, see Section
2.5. Thus the magnetic vector field B in the volume can be represented by the gradient of a
scalar potential, B = −∇ψ, which fulfils the Laplace equation∇2ψ = 0 (e.g., Backus et al.,
1996). The Laplace equation subject to prescribed values of the outward normal derivative
on the surface SC/SM constitutes the exterior/interior Neumann boundary value problem
described in Section 5.2. Thus two surfaces are considered here as being the origin of two
distinct magnetic field sources; one of internal nature producing a core field, BC , and one
of external nature producing a large-scale magnetospheric field, BM . Caution is needed for
geomagnetists regarding the notation; the ’exterior’ problem involves fields produced by
internal sources while the ’interior’ problem involves fields produced by external sources.
Maxwell’s equations are linear with respect to these sources, and thus the total field is
a superposition of the magnetic fields, i.e. B = BC + BM = −∇ψC − ∇ψM , where
ψC here describes the internal (core) sources and ψM describes the external (large-scale
magnetospheric) sources. As shown in Section 5.2 the potential for each of these sources
can be described by the integral 5.20 involving the appropriate Green’s functions and the
radial field at the source surface. The potential is thus written

ψ(r, t) = ψC + ψM

=
∮
SC

NC(r|r′)Br(r′, t)r2
cdSC +

∮
SM

NM (r|r′)Br(r′, t)r2
mdSM (5.63)

where dSC , dSM = sinθ′dθ′dφ′. Note that the squared radius rc/rm has deliberately been
placed outside dSC/dSM (as explained in Sections 5.2.3 and 5.2.4), redefining the Green’s
functions; in the exterior case defined by equation 5.44 where a = rc and in the interior
case defined by equation 5.62 where b = rm. Therefore in the ECEF geographic spherical
polar coordinate system the magnetic field components, (k = r, θ, φ), at some observation
location, r, are linked to the radial field at surfaces SC and SM having positions vector,
r′, taken here to be the CMB (r′ = rc = 3480km) and the magnetosphere (r′ = rm = 4ra)
(where ra = 6371.2km is the mean Earth reference radius), respectively, using the gradient
of the potential equation 5.63

Bk(r, t) = −
∮
SC

∇kNC(r|r′)Br(r′, t)r2
cdSC −

∮
SM

∇kNM (r|r′)Br(r′, t)r2
mdSM

=
∮
SC

GC,k(r|r′)Br(r′, t)dSC +
∮
SM

GM,k(r|r′)Br(r′, t)dSM (5.64)

where (k = r, θ, φ), and NC(r|r′), having absorbed the term r2
c , is the exterior Neumann

Green’s function and NM (r|r′), having absorbed the term r2
m, is the interior Neumann

Green’s function. Equation 5.64 consists of two homogeneous Fredholm integral equations
of the first kind for the unknown radial fields at the CMB and the magnetosphere. Inte-
gral equations have the unknown and desired function, i.e. the radial field at the source
surfaces in this case, under the integral sign and the functions of positions, GC,k(r|r′) and
GM,k(r|r′), being the directional derivatives of the Green’s functions with respect to r, are
referred to here as the data kernels. The Fredholm class of equations consists of definite
integrals having fixed integration limits (e.g., Parker, 1977; Riley et al., 2004; Press et al.,
2006). The kernels can be derived using the chain rule (Gubbins and Roberts, 1983). The
exterior data kernels (associated with internal sources) are given by
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GC,r = −∂NC

∂r
= 1

4π
h2(1− h2)

f3 (5.65)

GC,θ = −1
r

∂NC

∂θ
= −1

r

∂NC

∂µ

∂µ

∂θ
= −1

r

∂NC

∂µ
[cosθsinθ′cos(φ− φ′)− sinθcosθ′]

(5.66)

GC,φ = − 1
rsinθ

∂NC

∂φ
= − 1

rsinθ
∂NC

∂µ

∂µ

∂φ
= 1
r

∂NC

∂µ
[sinθ′sin(φ− φ′)] (5.67)

where the derivative with respect to µ is

1
r

∂NC

∂µ
= h

4π

[
1− 2hµ+ 3h2

f3 + µ

f(f + h− µ) −
1

1− µ

]
(5.68)

The corresponding interior data kernels (associated with external sources) are given
by

GM,r = −∂NM

∂r
= 1

4π

[
h+ h2(1− h)

f3

]
(5.69)

GM,θ = −1
r

∂NM

∂θ
= −1

r

∂NM

∂µ

∂µ

∂θ
= −1

r

∂NM

∂µ
[cosθsinθ′cos(φ− φ′)− sinθcosθ′]

(5.70)

GM,φ = − 1
rsinθ

∂NM

∂φ
= − 1

rsinθ
∂NM

∂µ

∂µ

∂φ
= 1
r

∂NM

∂µ
[sinθ′sin(φ− φ′)] (5.71)

where the derivative with respect to µ is

1
r

∂NM

∂µ
= − h

4π

[
2h2

f3 + r′/f

r′ − µr + rf)

]
(5.72)

where in the above expressions h = r′/r, f = R/r, R =
√
r2 + r′2 − 2rr′µ and

µ = cosγ = cosθcosθ′ + sinθsinθ′cos(φ− φ′), γ being the angular distance. Similar ex-
pressions for the exterior data kernels has been given by Gubbins and Roberts (1983);
Constable et al. (1993). However, it should be noted that in Gubbins and Roberts (1983)
these expressions include the monopole term that was removed by Constable et al. (1993).
However, here it proves useful to retain the monopole term when building Backus-Gilbert
averaging kernels (Whaler, 1984).

As described in Section 3.3 both vector field data and sums and differences of the mag-
netic field components Bk = k̂ · B(r) in geographic spherical polar coordinates where
(k = r, θ, φ), are used in this thesis. The notation is as follows: ∆dk and Σdk denotes the
data differences and sums, respectively, which are constructed as ∆dk = (∆dAT

k ,∆dEW
k ),

and the data sums constructed by Σdk = (ΣdAT
k ,ΣdEW

k ) for the along-track (AT) and
East-West (EW) data. Using vector data, the data kernels are denoted {GC,k;GM,k},
while using data sums the notation is {

∑
GC,k;

∑
GM,k} and using data differences the

notation is {∆GC,k; ∆GM,k}; these are computed as ∆GC,k = [GC,k(r1|r′) − GC,k(r2|r′)]
and

∑
GC,k = [GC,k(r1|r′) + GC,k(r2|r′)]/2. Figure 5.3 presents specific examples of the

exterior and interior data kernels using an observation altitude above ground of 400km.
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The data and the data sums kernels are effectively the same when considering the individ-
ual field components, i.e. GC,r and

∑
GC,r gives the same kernel behaviour in the plots.

Therefore, the left plots collects the data and data sums kernels, while the right plots col-
lect the data difference kernels. The top plots show the exterior kernels while the bottom
plots show the interior kernels. These plots illustrate how a measurement samples part of
the model; for instance the radial magnetic data dr samples the radial core field, via the
kernel GC,r, most strongly directly below the observation site while the radial data differ-
ences ∆dr samples the radial core field, via the kernel ∆GC,r = [GC,r(r1|r′)−GC,r(r2|r′)],
with highest amplitude at an angular distance of approximately 20◦ having no sensitivity
directly beneath the observation site.
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Figure 5.3: Sampling of satellite measurements of the CMB field versus angular distance
from target point as determined by data kernels using an observation altitude of robs =
ra + 400km. Top: exterior data kernels plotted using a source radius r′ = rc. Bottom:
interior data kernels plotted using a source radius r′ = 4ra.

5.3 Optimal Localized Averaging

In this section we move on to describe an approach for estimating localized averages, as
determined by appropriate averaging kernels, of the radial magnetic field and its time
derivatives at the core-mantle boundary. This approach offers interesting perspectives
regarding the appraisal of the data resolving power; that is, the evaluation of resolution
and uncertainty of the field estimate through the averaging kernels. In order to shed
light on this technique, pointing out its applicability regarding investigations of the core
generated magnetic field, a short introduction to inverse problems and their resolution is
given below before proceeding to the actual implementation.
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5.3.1 Inverse Problems and Studies of Resolution

Trying to determine the radial CMB field from magnetic data using equation 5.64 is a
continuous linear inverse problem. A series of issues needs to be addressed in the Hadamard
sense. Considering the (linear) problem of finite measurements, a discretized form of
equation 5.64 can be written as a system of equations (e.g., Aster et al., 2005, p. 2)

d = Gm (5.73)

where d ∈ Y is a vector of measurements i.e. vector data or data sums and differences,
m ∈ X is the desired model strived for and G is the design matrix mapping G : X → Y ,
where Y and X are data and model (Hilbert) spaces, respectively. For instance, having n
measurements, the general data space would here be Y = Rn (Mueller and Siltanen, 2012;
Schuster, 2007). The Hadamard criteria for a well-posed problem reads (e.g., Mueller and
Siltanen, 2012, p. 36)

• Existence of a solution. There should be at least one solution

• Uniqueness of the solution. There should be at most one solution

• Stability of solution. The solution must depend continuously on the data

For a well-posed problemG−1 exists and the straight forward solution would be m = G−1d,
such that G−1G = I where I is the identity matrix. Contrary to this is (the more common

case) of the ill-posed problem in which G is not invertible and usually a G†, termed the

generalized inverse, is calculated such that a model estimate is given by m̂ = G†d (Nolet,
2008; Voronin and Zaroli, 2018).

The Fredholm integral equation of the first kind encountered here in the geomagnetic
problem is usually being very ill-conditioned (e.g., Parker, 1977; Riley et al., 2004; Press
et al., 2006). Furthermore, instability is accentuated due to the availability of insufficient
and erroneous data, and because the kernel function decays with depth, such that the
possibility to decipher the field at greater depths decreases (Oldenburg, 1984). The lin-
ear inverse problem can be investigated in three ways: 1) model construction in which a
model is sought that fits the data, 2) appraisal in which an unique average of the model
is written as a linear combination of the data and 3) inference in which data are used to
predict values of some linear functional of the model (Oldenburg, 1984). For instance, the
usual approach applied in geomagnetic field modelling is the construction; the magnetic
potential is represented on a global scale using a truncated spherical harmonic expansion
determined in a least-squares sense imposing temporal regularization (e.g., Olsen et al.,
2006; Finlay et al., 2016b), see Section 2.6.

Following Nolet (2008) and Voronin and Zaroli (2018), considering for a moment an error-
free setup such that d = Gmtrue where mtrue denotes the true model, the solution estimate,
m̂, may be written

m̂ = G−1Gmtrue = Rmtrue (5.74)

The matrix R is called the (model) resolution matrix, and represents the lens trough which
the true model is observed. Thus, the resolution matrix describes to what level the true
model is blurred by the generalized inverse when estimating the model. The estimate, m̂,
is called unbiased if each row in R sums to one, i.e R = I. If for instance an estimate is

constructed using a truncated singular value decomposition such that G−1 = V
k
Λ−1
k
UT
k

,
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the truncation may cause the resolution matrix to become biased such that R = V
k
V T
k
6= I

resulting in row sums being less than one, i.e.
∑
j=1Rij < 1. Likewise, applying (sub-

jective) regularization results in damped model estimates that may also introduce a bias,
making obtained resolution difficult to interpret.

By considering model resolution in this way one tries to estimate to what level the ob-
tained model reconstruction is trustworthy; the resolution length denotes the critical scale
to which field structures may be inferred. Thus, consideration of resolution provides valu-
able insight revealing the capabilities of estimated models. There may be two approaches
for estimating the resolution length: 1) using the construction approach from which smooth
models may be obtained such that a qualitative appreciation can be gained, though of-
ten biased due to the applied regularization, and 2) using the Backus-Gilbert appraisal
approach from which quantitative statements may be made (Backus and Gilbert, 1970;
Oldenburg, 1984; Parker, 1994). Considering the conventional SH approach to field mod-
elling, assessments of resolution suffer from what Backus et al. (1996) deemed the ”circle
of confusion”, see Section 2.5.

In the following, we pursue a formalism based on the appraisal approach mentioned above.
The geomagnetic inverse problem is explored by the Backus-Gilbert method of appraisal
which provides the only unique information directly obtainable from the data, thus en-
abling investigation into whether all models constructed contain certain spatial (magnetic
field) features of interest. In the case of accurate data, any specific linear data combina-
tion will provide a unique value of the model (i.e. the magnetic field); this can be shown
to be equivalent to an unique spatial average value, determined by the inner product of
an averaging kernel with the true model (field) around some particular target location of
interest (Oldenburg, 1984; Pujol, 2013). In the case of inaccurate data, a variance is as-
signed to the averaged estimate computed such that a trade-off between spatial resolution
and the variance of the estimated average arises. Any model determined, for instance in
the regularized least-squares sense, which reproduces the data must attain this estimated
average. To emphasise: an important difference between the construction and appraisal
approaches should be understood; whereas the regularized least-squares solution refers to
a damped version of the true model, the Backus-Gilbert estimates refers to averages of the
actual true (undamped) model. Because the regularized least-squares solution is related to
a damped version of the true model, interpretation of its resolution is not straightforward;
a bias is effectively introduced in the resolution as discussed above (Nolet, 2008; Zaroli,
2016). It should be noted that the average values obtained in the appraisal approach
are not designed to fit the original data. The Backus-Gilbert estimate can however in
some circumstances be closer to the true value than least-squares solutions, provided the
quantity being estimated is sufficiently smooth (Parker, 1977; Pujol, 2013).

5.3.2 Outline of the Optimal Localized Averaging (OLA)

The appraisal philosophy has been implemented in a class of methods called optimally
localized averaging (OLA). The OLA theory was referred to as quelling by its authors and
is also termed approximate inverse or mollifying method in the mathematical literature
and named Backus-Gilbert theory in the geophysical literature (Backus and Gilbert, 1970;
Schuster, 2007; Nolet, 2008). An important modification of the original Backus-Gilbert
formalism has been developed independently by Louis and Maass (1990) and Pijpers and
Thompson (1992), being termed Subtractive Optimally Localized Averages (SOLA) by
the latter. The SOLA approach estimates the coefficients of linear data combinations by
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minimizing a norm measuring the squared distance between the averaging kernel (i.e. the
resolution) and some a prior chosen target averaging kernel; this turns out to significantly
reduce the computationally burden of the method when making a large number of esti-
mates from a given data set. The Backus-Gilbert technique has been applied to a wide
range of geophysical topics (e.g., Tanimoto, 1985, 1986; Masters, 1979; Masters and Gub-
bins, 2003; Parker, 1994; Pujol, 2013; Zaroli, 2016; Zaroli et al., 2017). In geomagnetism,
Whaler and Gubbins (1981) used the Backus-Gilbert method to invert for an average ver-
tical field component which was then downward continued to the CMB, using the Gauss
coefficients derived from 80 ground observatories as data. Later Whaler (1984) used the
Backus-Gilbert theory to estimate null-flux patch integrals of the radial SV component at
the CMB.

Similar to the classical 1D case, we here construct model averages as linear combina-
tions of the data, which can be shown to be equivalent to unique spatial average values at
some target point r0 (Backus and Gilbert, 1968, 1970; Nolet, 2008)

m̂k(r0) =
N∑
n

q(k)
n (r0)dn (5.75)

where here k ∈ [1, ...,M ] are some target node points in case multiple points are considered,

i.e. r1
0, r2

0, ...rM0 , q
(k)
n (r0) are some weighting coefficients to be determined and dn are the

data for (n = 1, ..., N) expressed by the data kernels, G, and model, m, i.e.

dn =
∫
S
Gn(r)m(r)dS (5.76)

where dS denotes a surface integral. Inserting equation 5.76 into equation 5.75 gives

m̂k =
N∑
n

q(k)
n

∫
S
Gn(r)m(r)dS =

∫
S
Kk(r|r0)m(r)dS (5.77)

The function Kk is termed an averaging or resolution kernel and this define the resolution
of the estimate, given by

Kk(r|r0) =
N∑
n

q(k)
n (r0)Gn = Rk (5.78)

This means that for a given target node point, k, the resolution is determined from the
coefficients, qkn, of length data. Varying the coefficients results in changing the estimate
and the associated averages which is always required to sum up to 1, i.e.

∑
Rk = 1, to

ensure that an unbiased estimate of the resolution is obtained.

The generalized formulation of the Backus-Gilbert method involves determining the co-
efficients, qkn, by minimizing some suitable measure of the averaging kernel (Pijpers and
Thompson, 1992; Pujol, 2013)∮

S
J (r0)[Kk(r0|r′)− T k(r0|r′)]2dS (5.79)

where J is a weight function and T is some a priori target function. Selecting (J =
12(r − r0)2; T = 0) corresponds to the original Backus-Gilbert approach of minimizing
a product of a weight function and averaging kernel (the factor of 12 is dependent on
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the dimensionality of the problem), this approach is also known as Multiplicative OLA
(MOLA). MOLA is the traditional approach by which the coefficients are sought such that
the target averaging kernel is the Dirac delta function, i.e. peaking at the target point rk0 .

The alternative Subtractive OLA (SOLA) approach, pioneered and publicized in a se-
ries of papers by Pijpers and Thompson (1992, 1994), instead uses a norm measuring the
squared distance between the averaging kernel, Kk, and some appropriate target function,
T 6= 0, taking J = 1. The advantage of using SOLA over the MOLA, is that signifi-
cant computational time can be gained when performing calculation of multiple estimates.
Coefficients are determined in the SOLA approach by minimizing the above objective
function, eq. (5.79), with the possibility to include data error covariance information, E,
subject to the constraint that the averaging kernel integrates to 1, i.e.

min
∮
S

[Kk(r0|r′)− T k(r0|r′)]2dS + λ2
kE

subject to 1.

∫
Kk(r|r0)dS = 1 (5.80)

Here the first term may be regarded as a misfit of the averaging kernel and the target
kernel, however, by construction the averaging kernel is always unbiased. A range of
well-characterized solutions can be obtained by varying the averaging kernel width via the
trade-off parameter λ; here it is desirable to have a low averaging kernel width while at the
same time having a sufficiently low uncertainty estimate for the determined field averages.
The variance, σ̂2(r0), of the estimate propagated from the data error covariance matrix is
determined as1

σ̂2(r0) =
N∑
l,n

qlqnEln = qTEq (5.81)

The SOLA approach offers an additional flexibility, in that the target form T can take
different forms i.e. Gaussian or boxcar types (Masters and Gubbins, 2003). Additionally
the target kernel could be subject to the constraint of integrating to 1 and/or to 0, the
latter case will be explored in an application example in Section 5.4.4 where multiple target
kernels are in involved. The left plot in Figure 5.4 shows a sketch of the averaging kernel
centred on some target location r0, and how the kernel width was determined.

5.3.3 Appraisal - Averaging Kernel Diagnostics

The main concern of the SOLA method is appraisal of the solution, that is to obtain infor-
mation regarding the resolvability offered by the available geomagnetic field observations.
A crucial insight is that the estimated average field is the only unique information offered
by the data; that is, the average estimate along with the averaging kernel constitutes our
knowledge of the magnetic field in the vicinity of the target location in question (Olden-
burg, 1984; Parker, 1994). Appraisal here therefore consists of computing the field average
averaging kernel and determining its width together with a measure of the uncertainty
(variance) of the estimate. The original Backus-Gilbert method defined the width as the
full width at half maximum (FWHM). In this project the width of the kernel was deter-
mined as the meridional distance between points at which the averaging kernel reaches
zero amplitude moving away from its maximum value.

1Note that contamination from averaging kernel side lobs and from leakage of co-estimating fields have
not been included in the variance estimates described in this project.
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Figure 5.4: Illustration of the Backus-Gilbert appreciation of the inverse problem. The
left plot shows a sketch of the averaging kernel and the right plot illustrates a trade-off
curve showing estimated variance versus kernel width.

A family of solution estimates with different levels of trade-off between fitting the
target function and giving an estimate with low variance, are obtained, as illustrated in
the right plot in Figure 5.4. A small λ corresponds to fitting only the target function which
decreases the width of the averaging kernel, increasing the spatial resolution, but at the
expense of the statistical reliability and solution stability, on the other hand increasing λ
broadens the averaging kernel lowering the spatial resolution, but allows a more reliable
estimate having smaller variance.

5.3.4 A Preliminary Synthetic Test

This section describes a synthetic case study of the SOLA approach, testing its application
to estimates of the radial main field at the CMB where the answer is known. In particular,
the behaviour of the averaging kernel width and the variance estimates as a function
of the number of satellite data are investigated. Experiments with varying number of
data for satellite altitudes of 300km and 500km were conducted. Synthetic vector data
were generated on an approximately equal area grid using the equal area (EQ) sphere
partitioning algorithm of Leopardi (2006), described in Section 4.4.3. The magnetic field
at the grid was generated using a synthetic dynamo model of the magnetic field (Aubert
et al., 2017) for SH degrees n ≤ 30. The top left plot of Figure 5.5 shows the input model
of Aubert et al. (2017) for SH degrees n ≤ 30. Using the terminology of Section 5.3.2,
the SOLA estimates, m̂, are here estimates of the radial magnetic field at the CMB, and
the data kernels are expressed by the exterior data kernels of Section 5.2.5 (i.e. equations
(5.65) to (5.67)), and as a target, T (r0|r′), a Fisher function on a sphere having the width
parameter κ was used, see Section 5.4 for further details regarding the Fisher function. In
these studies κ = 200 and λ = 10−4nT−1 were used. In studies with the real data in Section
5.4, further investigations into the behaviour of the averaging kernel width and variance
estimates as a function of κ were carried out. Details of the numerical implementation
used for this test are given in Section 5.4.1.

Figure 5.6 present the key results of the SOLA method applied to synthetic data at
300km and 500km altitudes for various number of approximately equal area distributed
data, 1000, 2000, ..., 40000. The plot shows the averaging kernels for an example location
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(a) Radial CMB field from the model of Aubert et al.
(2017) for SH degrees n ≤ 30.

(b) Radial CMB field from the model of Aubert et al.
(2017) for SH degrees n ≤ 13.

(c) Radial CMB field from SOLA using 1000 data. (d) Radial CMB field from SOLA using 40000 data.

Figure 5.5: Radial core field at the CMB: a) and b) show predictions from the model of
Aubert et al. (2017) truncated at SH degrees 30 and 13, respectively. c) and d) show the
collected global estimates from the SOLA method having κ = 200 using 1000 and 40000
data points, respectively. Units in [µT].

at latitude 0◦ and longitude −168◦. The blue curve shows the kernel using only 1000 data
and the red curve shows the kernel using 40000 data, while the black kernels are shown
for intermediate steps of 3000 data. The left plot in Figure 5.7 presents the width of the
averaging kernels (see Figure 5.4) as a function of the number of data, showing in blue data
at for 300km altitude and red data for 500km altitude. The right plot in Figure 5.7 presents
the behaviour of the uncertainty estimate as a function of the number of data. Random
noise was added to the synthetic data, and a diagonal covariance matrix was used having
variances of 1nT2. The averaging kernels obtained using the two altitudes did behave very
similarly. As can be seen, the kernel amplitude increases and the width decreases slightly
when increasing the number of data. The variance is also seen to decrease as the number
of data increases. It is also seen that both the kernel width and uncertainty estimates
appear to be converging, so little improvements is gained by adding further data beyond
30.000. Notice also that the FWHM of the averaging does not change significantly for all
the data sets used. It thus seems as there is a limit of approximately 27◦, beyond which
no further increase in spatial resolution may be gained by adding more data. Looking
at global collections of SOLA field estimates at the CMB in Figure 5.5, plots c) and d)
built using 1000 and 40000 data for an altitude of 300km, respectively, the same overall
field structures are seen. However, looking carefully there are some small differences in
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amplitude and resolution between the two. This is expected based on Figures 5.6 and
5.7. A kernel width of approximately 27◦ would correspond roughly to SH degree 13.
Comparing with the core field at the CMB from the model of Aubert et al. (2017) for
SH degrees n ≤ 13 and the two maps computed using the SOLA method, it is clear that
our SOLA approach succeeds in reproducing the field features observed in the model of
Aubert et al. (2017).
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Figure 5.6: SOLA averaging kernel behaviour for the synthetic data test, based on κ = 200
and for increasing numbers of data at altitudes of 300km (left) and 500km (right). The
kernels are shown using 1000 data points (blue kernel) increasing to 40000 (red kernel) in
steps of 3000.
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Figure 5.7: SOLA averaging kernel widths (left) and estimate uncertainty (right) for the
synthetic data test, based on κ = 200, as a function of the number of data, for altitudes
of 300km (blue) and 500km (red).

In the following sections the SOLA technique is implemented using real satellite data
such that at specified locations on the CMB, local spatial averages of the radial magnetic
field are computed and appraisal is carried out. The CMB magnetic field is related to
the observations via the Green’s functions described in Section 5.2. Section 5.4 presents
a general formalism where the potential is described by both internal and external source
contributions. The time dependence of the field is handle by a Taylor series expansion in
time. Section 5.5 presents a treatment of the time dependence using kernel polynomial
approximation.
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5.4 Estimation of Time-dependent CMB Field: A Taylor Expansion
Approach

In this section the SOLA method described in Section 5.3.2 is applied to the geomagnetic
problem of inferring the time-dependent radial magnetic field and its time derivatives at
the CMB. Here a Taylor series expansion is used to parametrize the time dependence of the
field. The numerical implementation of the theory is described in Section 5.4.1 and 5.4.2.
Applications of the SOLA method to estimates of the radial MF field using Swarm data,
and to the radial SV field using Swarm and CHAMP data, are presented in Sections 5.4.3
and 5.4.4, respectively. The accumulated radial SA was computed as SV epoch differences
and results of this are presented in Section 5.4.5.

Using the SOLA method outlined in Section 5.3.2 to the linear system, described by
equation (5.64), an estimate of the radial field, B̂r, is determined as a spatial average
optimally localized at a particular location and time of interest (r0, t0) = (rc, θ0, φ0, t0).
Following Backus and Gilbert (1970) the estimate can be written as an inner product of
the radial field of interest with some averaging kernel, determined as a linear combination
of the data; equation (5.75) in this application becomes

B̂r(r0, t0) =
N∑
n

qn(r0, t0)dn(r, t) (5.82)

where (n = 1, ..., N) are the data from a specified time window and qn are weighting
coefficients to be determined. Using equation (5.64), the data dn at a particular position
rn and time tn for the field component k, are given as the vector data or data sums and
differences (see Section 5.2.5), and are related to the radial magnetic field, Br(r′, t), at
the source regions; here taken to be the CMB and the magnetosphere. In this section, we
allow the field at the CMB to be time-dependent, adopting a first order Taylor expansion
assumed to be valid close to a reference time t0, i.e.

dk,n(r, t) =
∮
SC

G∗C,k(rn|r′)Br(r′, tn)dSC +
∮
SM

G∗M,k(rn|r′)Br(r′, tn)dSM

≈
∮
SC

G∗C,k(rn|r′)
[
Br(r′, t0) + Ḃr(r′, t0)∆tn

]
dSC

+
∮
SM

G∗M,k(rn|r′)Br(r′, tn)dSM (5.83)

A difference here compared to equation (5.64) is the notation G∗; because the actual data
kernels which are used in the computations are either related to the vector data, or to the
data sums and differences, a more general notation including a ∗ will be used to describe
any given data kernel, and not the complex conjugate. Therefore, G∗k(rn|r′) are the appro-
priate data kernels for the vector field components or the sums and differences of vector
field components, see Section 5.2.5. Here the time differences are with respect to some
reference time, tref , such that as ∆tn = tn − tref . In general the reference time and the
target time need not to be the same; however for simplicity it was decided to select the
reference time to be the target time, i.e. tref = t0.

Inserting equation (5.83), via the chosen data (i.e. vector field or vector field sums and
differences), into equation (5.82), the field estimate at the target time t0 is then given by
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B̂r(r0, t0) =
∮
SC

N∑
n

qn(r0, t0)G∗C,k(rn|r′)Br(r′, t0)dSC

+
∮
SC

N∑
n

qn(r0, t0)G∗C,k(rn|r′)Ḃr(r′, t0)∆tndSC

+
∮
SM

N∑
n

qn(r0, t0)G∗M,k(rn|r′)Br(r′, tn)dSM (5.84)

The weighting coefficients, qn, define spatial averaging kernels that are linear combi-
nations of the data kernels, i.e.

KC(r0, t0|r′, t0) =
N∑
n

qn(r0, t0)G∗C(rn|r′) (5.85)

KĊ(r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗C(rn|r′)∆tn (5.86)

KM (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗M (rn|r′) (5.87)

Here the notation KĊ include the time difference ∆tn from the Taylor expansion to the
data kernel defining G∗

Ċ
= G∗C∆tn. Therefore the estimated radial field consists of spatial

integrals over the source spheres of the true field convolved with the averaging kernels, i.e.

B̂r(r0, t0) =
∮
SC

KC(r0, t0|r′, t)Br(r′, t0)dSC +
∮
SC

KĊ(r0, t0|r′, t)Ḃr(r′, t0)dSC

+
∮
SM

KM (r0, t0|r′, t)Br(r′, t)dSM (5.88)

The SOLA field estimates then consist of integrals of the true model weighted by spatial
averaging kernels such that the kernel width expresses the area over which the true model
has been averaged; varying the coefficients, qn, changes the shape of the averaging kernels
accordingly. Incorporating the time differences in the averaging kernel may be thought
of as assigning temporal weights to that kernel. The desired weights may act in such a
way as to produce SOLA estimates of the SV field; for instance, selecting data from a
time window of two years centred on the reference time will assign equal weights having
opposite signs for data equal times such that field differences are effectively computed. In
order for the estimate to be a meaningful physical average and to avoid a biased result, a
normalization of the averaging kernels was implemented requiring a unimodular constraint
to be fulfilled, that is∮

SC

KC(r0, t0|r′, t)dSC +
∮
SC

KĊ(r0, t0|r′, t)dSC +
∮
SM

KM (r0, t0|r′, t)dSM = 1 (5.89)

In practice, the target term of interest (the CMB field, the CMB SV or the magnetospheric
field) should integrate to one and the other terms should integrate to zero. Note here that
the monopole term was retained in equations (5.65) to (5.71); this was necessary in order
to prevent the averaging kernels from integrating to zero in violation of the unimodular
constraint (Whaler, 1984).
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Following the SOLA approach as outlined in Section 5.3.2, in order to determine the
coefficients, an objective function is defined which is minimized

Θ =
∮
SC

[KC(r0|r′)− TC(r0|r′)]2dSC +
∮
SC

[KĊ(r0|r′)− TĊ(r0|r′)]2dSC

+
∮
SM

[KM (r0|r′)− TM (r0|r′)]2dSM + λ2qTEq (5.90)

where λ (units of [nT−1]) is a trade-off parameter and E is the data error covariance matrix
because data contains noise. Regarding the spatial target kernel, T , different possibilities
exists; for instance a Fisher function or a disc box car function could be used. The Fisher
function on a sphere using the angular distance Ψ(r0|r′) was here chosen

T (Ψ) = κ

4πsinhκe
κcosΨ (5.91)

where κ is the width of the Fisher function (Fisher, 1953). Here cosΨ = cosθ0cosθ′ +
sinθ0sinθ′cos(φ0 − φ′), Ψ being the angular distance between points r0 and r′ on the sphere.
The target kernels were the same for all targets, i.e. TC , TĊ , TM = T . Furthermore, it was
enforced that T (Ψ) should integrate to one for the term of interest in equation (5.85) and
zero for the remaining terms. Which terms to include in the objective function depends
on the desired field estimate; for instance estimating the radial field over a time window
short enough, such that field time-dependence could be ignored, means that the second
term was not included. On the other hand estimation of the radial SV field involved
retaining the second term as well while setting the target kernels TC , TM to zero. The
diagonal elements of the data error covariance matrix, E, were constructed using latitude-
dependent data error estimates, σn, and the Huber weights, wn accounting for a long-tailed
error distribution (see Section 3.4.2 for more details)

σ2
w,n = σ2

n

wn
(5.92)

In experiments when only MF was estimated, satellite data simply sampled at 15sec in-
tervals from one month was used, and it was assumed that there was no time variation of
the field. As described in Section 3.4.3, satellite data are expected to have an along-track
(latitudinal) correlation due to noise from unmodelled currents, with an estimated corre-
lation time of 5-10 min based on the findings of Lowes and Olsen (2004). Therefore an
exponential data error covariance model was used in this case, having a correlation time
of 10 min such that the data error covariance matrix was written as equation 3.4.2 (see
Section 3.4.3 for further details), i.e.

Eln = σ2
w,ne

−∆tln
τ (5.93)

where ∆tln = tl− tn are the time differences and τ = 600s is the assumed correlation time,
i.e. 10min. As stated in Section 3.4.3, the covariance matrix is required to be symmetric
(i.e. Eln = Enl) and positive definite (i.e. its eigenvalues must be greater than 0). When
estimating the main field, see Section 5.4.3, a weight by a factor sinθ was included, where
θ is the geographic co-latitude to account for there being more data (when sampled in
regular intervals along-track) close to the poles and in order to approximate an equal-area
distribution (e.g., Olsen et al., 2014). When estimating the radial SV, see Section 5.4.4,
data were selected such as to obtain a good global coverage and not sampled at regular
intervals along-track, since data in this case were not temporally continuous, the temporal
data error correlation could be neglected.
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5.4.1 Method for Numerical Implementation

The minimization of the objective function equation (5.90) was performed by taking the
derivative with respect to qn, such that ∂Θ/∂qn = 0, i.e.

d

dqn

(∮
SC

[K2
C + T 2

C − 2KCTC ]dSC +
∮
SC

[K2
Ċ

+ T 2
Ċ
− 2KĊTĊ ]dSC

+
∮
SM

[K2
M + T 2

M − 2KMTM ]dSM + λ2qTEq
)

= 0⇒

d

dqn

(∮
SC

[(∑
qnGn

)2
+ T 2

C + 2
∑

qnGnTC

]
dSC +

∮
SC

[(∑
qnGn

)2
+ T 2

Ċ
+

+2
∑

qnGnTĊ

]
dSC +

∮
SM

[(∑
qnGn

)2
+ T 2

M + 2
∑

qnGnTM

]
dSM + λ2∑ q2

nσ
2
)

= 0

Following Larsen and Hansen (1997) the resulting set of equations subject to the constraint
equation (5.89) may be written in matrix-vector form as

[
K
C

W KT
C

+ K
Ċ

W KT
Ċ

+ K
M

W KT
M

+ λ2E
]

q(r0)

= K
C

WtC(r0) + K
Ċ

WtĊ(r0) + K
M

WtM (r0)

subject to
[
eTp W KT

C
+ eTp W KT

Ċ
+ eTp W KT

M

]
q(r0) = 1 (5.94)

Here the K matrices having size N ×M , are defined such that

(K)np =
[
G∗C,n(rp), G∗Ċ,n(rp), G∗M,n(rp)

]
, n = 1, ..., N p = 1, ...,M (5.95)

and W is a diagonal matrix of size M ×M where M is the number of integration points
on the sphere

(W)pp = lp, p = 1, ...,M (5.96)

and three vectors have been introduced: ep = (1, ..., 1)T , t(r0) having elements related
to the targets (t(r0))p = T (r0|rp) and k(r0) having elements (k(r0))p = K(r0|rp) for
p = 1, ...,M . The discretized averaging kernel was calculated as k(r0) = KTq(r0). The
required angular integrations over the CMB and magnetosphere were performed numer-
ically using Lebedev angular quadrature (Lebedev and Laikov, 1999), see Section 5.4.2,
such that ∫

S
F (r′)dS ≈

M∑
p=1

lpF (rp) (5.97)

It was found that using M = 1730 Lebedev points, corresponding to SH degree and order
71, were sufficient to perform the integrations to the required accuracy. The normal equa-
tions for the coefficients, q = (q1, ..., qN ), were finally solved using a Lagrange multiplier
µ as proposed by (Pijpers and Thompson, 1994)

(
K
C

W KT
C

+ K
Ċ

W KT
Ċ

+ K
M

W KT
M

+ λ2E K
C

Wep + K
Ċ

Wep + K
M

Wep
eTp W KT

C
+ eTp W KT

Ċ
+ eTp W KT

M
0

)
(

q(r0)
µ

)
=
(

K
C

WtC(r0) + K
Ċ

WtĊ(r0) + K
M

WtM (r0)
1

)
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The first matrix term on the left hand side is independent of estimate position r0. This
is important because it needs only to be computed once which significantly reduces the
amount of computations required (under the original Backus-Gilbert settings this would
have to be computed for every target location). The linear system was solved for the vector
containing (q1, ..., qN , µ) such that averaging kernels and uncertainty estimates could be
re-computed. It should be noted that an alternative LSQR solution schemes could also
have been implemented to solve the problem (Larsen and Hansen, 1997; Zaroli, 2016) but
we did not find it necessary. When estimating the radial MF at a given location, data
from within a month were used, such that the term involving K

Ċ
was neglected and the

target kernel terms tĊ(r0), tM (r0) were set to zero. When estimating the radial SV the
target kernel terms tC(r0), tM (r0) were set to zero.

5.4.2 Lebedev Quadrature for Integration Over a Sphere

The numerical integrations over the source spheres were performed numerically using Lebe-
dev angular quadrature weights (Lebedev and Laikov, 1999). The fundamental issue of
quadrature is to evaluate a definite integral, here being a surface integration over the
three-dimensional sphere having surface S

I[F ] =
∫
S
F (r′)dS =

∫ 2π

0

∫ π

0
F (r′, θ′, φ′)sinθdθdφ (5.98)

Lebedev introduced a quadrature that approximates the surface integral defined by a fixed
set of weights, lp, and base points, Mp (Lebedev, 1975, 1976, 1977). The Lebedev angular
quadrature on a grid rp = (rp, θp, φp) is here written

SMp [F ] =
Mp∑
p=1

lpF (rp) (5.99)

that is, a weighted sum of the function at given points. Note here that no distinction
between the base points were made, e.g. vertices, center of faces etc. in contrast to the
complete description (Lebedev, 1976). The grid weights and positions were computed
from the condition that the quadrature exactly integrates all spherical harmonics up to a
given degree. Furthermore, a requirement is that the points are invariant with respect to
the octahedron rotation group (Lebedev, 1976). Lebedev and Laikov extended the rules
to Lmax = 131 (Lebedev and Laikov, 1999). A Matlab tool getLebedevSphere https://

se.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere was used
to derived the Lebedev rules, specifying the rules Mp = {6 ,14, 26, 38, 50, 74, 86, 110, 146,
170, 194, 230, 266, 302, 350, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074,
3470, 3890, 4334, 4802, 5294, 5810} with corresponding SH degree Lmax = {3, 5, 7, 9, 11,
13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113,
119, 125, 131} (Lebedev and Laikov, 1999; Parrish, 2010). Using getLebedevSphere each
set can integrate a spherical harmonic up to degree Lmax to an accuracy of 10−14. There
may be 6, 8, 12, 24 or 48 equivalent positions included in the grid (i.e. a minimum grid has
Mp = 6) assigned the same weights. Figure 5.8 presents a plot showing the distribution
of 1730 Lebedev points used for the calculations of Sections 5.4.3 and 5.4.4.

https://se.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
https://se.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
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Figure 5.8: 1730 globally distributed Lebedev quadrature points.

5.4.3 Application to Estimation of the Main Field at the CMB

As a first application with the real data, the SOLA method is illustrated here by computing
radial field estimates at a sequence of target locations at the CMB using along-track
and east-west sums and differences of Swarm field measurements taken from March 2017
of Data Set 2, see Section 3.3. Using the sums and differences of the vector field, the
data vector was given as d = {∆dr,Σdr,∆dθ,Σdθ,∆dφ,Σdφ}. The data kernels were
constructed as

G∗ = {∆GC,r; ΣGC,r; ∆GC,θ; ΣGC,θ; ∆GC,φ; ΣGC,φ}

where ∆GC,k = [GC,k(r1|r′) −GC,k(r2|r′)] and ΣGC,k = [GC,k(r1|r′) + GC,k(r2|r′)]/2, for
the component (k = r, θ, φ), are the data kernels for the differences and sums, respec-
tively. Because the focus was on estimating the radial component of the CMB field itself,
the second term was omitted from the objective function equation (5.90) and the con-
straint equation (5.89). The exponential data error covariance model was included along
with an equal area weighting factor as described in Section 5.4. Sections 3.4.2 and 3.4.3
provide more detail on the data also explaining the construction of the data error covari-
ance matrix, E, and the data error correlation model used, including plots for the March
2017 data used here.

In Figure 5.9 the behaviour of the MF averaging kernel, KC , is investigated as a func-
tion of the target kernel width parameter κ, and the trade-off parameter λ, by considering
a series of example averaging kernels at QD latitude 0◦ and longitude −168◦. The plots
include the error estimate for the field average (see equation (5.81)) and the approximate
kernel width in degrees (see Figure 5.4). Increasing κ (i.e. going from left to right in the
plot columns) will cause the kernel to become narrower while increasing the amplitude
of the estimate, but also its variance. However, increasing κ also induces more side-lobe
oscillations in the kernel structure around the target location. Increasing λ (i.e. going
from top to bottom in the plot rows) will decrease the kernel amplitude and increase its
width, reducing the side lobe oscillations. In order to obtain a good resolution it is desir-
able to select a narrow, high amplitude, kernel, while at the same time trying to keep the
side lobe oscillations to a minimum. Figure 5.10 presents the behaviour of the external
averaging kernel, KM , for the corresponding computations presented in Figure 5.9, i.e. the
target is the internal field and the external kernels show the level on contamination. The
MF averaging kernels are all well behaved showing only minor side lobes compared to the
kernel maximum amplitudes; this motivates us to push towards a high κ value.
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Figure 5.9: Main field application using data from March 2017 shown at target location QD
latitude 0◦: behaviour of the averaging kernel as a function of Fisher function width κ and
trade-off parameter λ. The value of κ increases from the left column where κ = 100 to the
right column where κ = 600. The value of λ increases from the top row of λ = 10−6nT−1

to the bottom row having λ = 10−3nT−1. In each plot the estimated uncertainty σ̂ and
kernel width in degrees are stated.
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Figure 5.10: Main field application using data from March 2017 shown at target location
QD latitude 0◦: behaviour of the external averaging kernel as a function of Fisher function
width κ and trade-off parameter λ. The value of κ increase from left column having κ = 100
to right column having κ = 600. The value of λ increases from top row of λ = 10−6nT−1

to bottom row having λ = 10−3nT−1. In each plot the estimated uncertainty σ̂ and kernel
width in degrees are stated.
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Next an investigation into how the SOLA method performs at four different QD lat-
itudes was conducted: (0◦, 35◦, 70◦, 85◦). The reason for choosing these specific QD lat-
itudes was to look at the behaviour of the SOLA method in regions of unmodelled field
disturbance with different amplitudes, and with different data coverage, investigating their
influence on the uncertainty and kernel width; in the Arctic region QD latitudes 70◦ and
85◦ are located approximately within and poleward of the auroral oval, respectively, while
QD 35◦ represents mid-latitudes and QD 0◦ represents low-latitudes. The left plot in Fig-
ure 5.11 presents the local error estimate versus the trade-off parameter λ. Interestingly
this plot shows that the error estimates are of the same size independent of the QD latitude
for the various trade-off parameters. Therefore this plot may be used to pinpoint a suitable
λ which yields more or less uniform error estimates for regional or global collections of
target points.

The right plot in Figure 5.11 presents the local error estimate versus the averaging ker-
nel width in degrees, which shows a characteristic L-curve shape as described in Section
5.3.3 (the curves for latitudes 0◦ and 35◦ coincide making them difficult to see). A dis-
tinct right-shift of the L-curves can be observed as the QD latitude increases. At low and
mid-latitudes the kernel widths are seen to be significantly smaller than those in the polar
regions and there are polar gaps in the data coverage. This behaviour may be expected
since the date error estimates are larger in the polar regions; this means that in order
to obtain the same model variance the averaging kernel needs to become broader. Based
on the information contained in Figures 5.9 and 5.11 it was decided to proceed using a
Fisher parameter κ = 600 and regularization parameter λ = 1×10−4nT−1 in the following
calculations of the CMB main field using the SOLA method.

Figure 5.12 presents the SOLA method applied to a global grid of target points at the CMB
having 1◦ spacing in latitude and longitude. As stated above κ = 600 and λ = 1×10−4nT−1

was used for an application of March 2017 data from Data Set 2, using sums and differ-
ences of all three vector field components. The top left plot shows a global collection of
radial magnetic field estimates. Associated plots show the error estimates (top right), the
kernel widths (bottom left) and the spatial distribution of the data under consideration
(bottom right). It is observed that the morphology of the radial field patches and their
amplitudes are very similar to those seen in the CHAOS-6-x5 field model predictions for
SH degrees 1 to 13.

Among the interesting field structures seen, are three distinct field lobs resolved at
high latitudes in the Northern Hemisphere, and a strong field patch in the Indian Ocean,
west of Australia. The error estimates remain homogeneous as is expected from Figure
5.11 being approximately 10µT which corresponds to about 5% of the mean CMB field
amplitude. This is a rigorous error estimate for these particular spatial averages given
the chosen data error model. Such error estimates are not easy to obtain for regularized
or truncated SH field models. The kernel widths are seen to be more or less uniform at
non-polar latitudes and are seen to exhibit coherence with the data distribution. Distinct
behaviour of the kernels are found in the polar regions; in particular, a striking region
of increased kernel width coinciding with the auroral oval (where the applied data error
estimates are also larger) can be observed.

On the CMB, at radius rc, the wavelength λn associated with a particular SH degree
n is λn = (2πrc)/n (1◦ ≈ 61km). Averaging kernels having widths of ≈ 30◦ correspond
roughly to SH degree 12; therefore the spatial resolution obtained in our localized SOLA
estimates is comparable to that of standard field models truncated to avoid crustal effects.
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Figure 5.11: SOLA MF application using Swarm data from March 2017 at target locations
of QD latitudes 0◦, 35◦, 70◦ and 85◦. Left: error estimates σ̂(r0) versus trade-off parameter
λ. Right: error estimates σ̂(r0) versus averaging kernel width in degrees.

(a) Map collecting local estimates of CMB radial field
derived from Swarm data using the SOLA approach

B̂r(r0, t0) in [µT].

(b) Map collecting local error estimates σ̂(r0, t0) in [µT].

(c) Map collecting widths of averaging kernel KC(r0|r′)
for local estimates in [deg].

(d) Location of observations used in March 2017 example.

Figure 5.12: SOLA application to CMB field estimation using March 2017 sums and
differences for the Swarm data with κ = 600 and λ = 10−4nT−1 showing: (a) radial MF
estimates for a global 1◦ spaced collection of target locations, (b) uncertainty estimates
for each target point, (c) averaging kernel widths for each target location and (d) Swarm
data distribution.
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5.4.4 Application to Estimation of the Secular Variation at the CMB

In this section an application of the SOLA method to the radial magnetic field secular
variation at the CMB is investigated. Initially a data time window of two years of Swarm
vector field data from 2015.0 to 2017.0 was considered. Here only the radial magnetic
field component of the data was considered in order to reduce external field contamination
at high latitudes and in an effort to maximize the data coverage for a given number of
data points. Using the vector field, the data vector was given as d = {dr}, and the data
kernels were constructed as G∗ = {GC,r}. Using 2 month time windows starting from
year 2015.0 a regularly 3.5◦× 4◦ latitude/longitude spaced global distribution of data was
constructed by randomly selecting data in time from within the two month window for
a given spatial cell. The total data set covering the period 2015.0 to 2017.0 was then
generated by accumulating these 2 month globally distributed data sets from the entire
two years, resulting in a total of 43540 data points. In these computations serial data
error correlation was not accounted for as data were selected randomly from within the 2
months.

The behaviour of the SV averaging kernel, KĊ , is first reported in Figure 5.13 as a
function of the target kernel width parameter κ and the trade-off parameter λ by consid-
ering a series of example averaging kernels at QD latitude 0◦ and longitude −168◦ stating
the error estimate and the approximate kernel width in degrees. As in the MF case all the
kernels were well behaved showing only minor oscillations.
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Figure 5.13: Application of SOLA to SV radial field estimates using 2 years of Swarm
radial field observations between 2015.0− 2017.0 shown at target location QD latitude 0◦:
behaviour of the SV averaging kernel as a function of Fisher function width κ and trade-off
parameter λ. The value of κ increases from the left column having κ = 100 to the right
column having κ = 600. The value of λ increases from the top row of λ = 10−6nT−1 to the
bottom row having λ = 10−3nT−1. In each plot the estimated uncertainty σ̂ and kernel
width in degrees are stated.

Next the L-curve behaviour for the same QD positions investigated in the MF case
in Section 5.4.3 is conducted, Figure 5.14 presents the error estimate versus the trade-off
parameter λ (left plot) and versus the averaging kernel width in degrees (right plot). As
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in the MF case the error estimates are seen to be independent of location for a given λ
value; for a given value of λ a corresponding σ̂(r0) is fixed. Furthermore, in both plots
blue, red and green dots marked selected λ values which are chosen for further study in
Figures 5.15 and 5.16. Here we considered in detail three different λ values in order to
explore the resolvability of the SV with different choices of average kernel.
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Figure 5.14: Application of SOLA to SV radial field estimates using 2 years of Swarm data
between 2015.0 − 2017.0 with κ = 600. Plots showing σ̂(r0) trade-off curves at various
target locations for QD latitudes 0◦, 35◦, 70◦ and 85◦ as a function of λ (left) and kernel
width (right).

Figure 5.15 presents global collections of the radial SV field estimates at the CMB
having a 1◦ spacing (left plots) and associated error estimates (right plots) obtained using
λ = 2.5× 10−4nT−1 (the blue dot in Figure 5.14) in the top plots, λ = 5× 10−4nT−1 (the
red dot in Figure 5.14) in the center plots and λ = 5× 10−3nT−1 (the green dot in Figure
5.14) in the bottom plots. Figure 5.16 presents the associated kernel widths along with
example plots of averaging kernels at QD latitude 0◦ and longitude −168◦ having widths of
≈ 30◦, 33◦ and 42◦; comparing the three kernels it is clear that using λ = 2.5× 10−4nT−1

results in higher amplitudes and a narrower averaging kernel. The effect of increasing λ,
and thus broadening the averaging kernel, is clearly seen in the these plots; the field struc-
tures become smeared out as the kernel width is increased, i.e. going from the top plots
to the bottom plots, decreasing the kernel amplitude while a decrease in the associated
error estimates is also observed. The kernel widths increase noticeably towards the polar
regions, resembling the results in the MF case study, peaking at areas matching those of
the auroral oval where data error estimates are larger.

Remembering that the SOLA method involves no direct regularization of higher spa-
tial frequencies of the signal nor truncation in the spectral domain, it is interesting to
compare the global SV estimates to the radial SV field predictions of the CHAOS-6-x5
model. Figure 5.17 shows the 2016 radial SV predictions of the CHAOS-6-x5 model for
SH degrees 1-10 (left) and 1-16 (right). The left plot corresponds roughly to the SOLA
SV field estimates using λ = 5 × 10−3nT−1 (i.e. plot e of Figure 5.15). Although the
data used and the data selection criteria and processing are not the same, similar SV
structures can clearly be identified and the amplitude is alike; in particular these include
high amplitude features appearing at low latitudes stretching in the longitudinal band of
±90◦, lower activity in the pacific region (at least for the broader averaging kernels) and
a sequence of high latitude patches encircling the north pole.

Looking at results for a decreasing kernel width, remembering that noise may become
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more influential in the average field estimates, in particular at mid-latitudes and polar
regions, a clear change in the eastern pacific region and around South America is evident
for λ = 2.5×10−4nT−1. This is interesting as recent spherical harmonic based field models
find distinct SA features in these regions (Chulliat et al., 2015; Finlay et al., 2016b). When
probing smaller spatial scales, high SV amplitudes are found at eastern longitudes under
Asia, Indonesia and west of Australia, and in the Atlantic Ocean west of Africa.

It is stressed that no spectral truncation nor regularization are embedded in the SOLA
estimates as in the case for the CHAOS-6-x5 model; this is particularly interesting due
to the blue nature of the SV power spectrum because the SH truncation in the field
model removes higher harmonics which are expected to be significant, while in contrast
the SOLA approach averages over these features, and they may not necessarily locally
average to zero. Interpretation of maps from regularized field models such as CHAOS-6-
x5, is complicated by the fact that the applied regularization implicitly averages higher
SH degrees over longer times (e.g., Olsen et al., 2009). The SOLA SV estimates all refer
to averages over the specified time window (e.g. 2 years).
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(a) Local estimates of CMB radial SV for λ = 2.5 ×
10−4nT−1. σ̂ ≈ 5µT/yr.

(b) SOLA model error estimates.

(c) Local estimates of CMB radial SV for λ = 5 ×
10−4nT−1. σ̂ ≈ 2.5µT/yr.

(d) SOLA model error estimates.

(e) Local estimates of CMB radial SV for λ = 5 ×
10−3nT−1. σ̂ ≈ 0.25µT/yr.

(f) SOLA model error estimates.

Figure 5.15: Application of the SOLA method to radial SV field estimation from 2 years of
Swarm data between 2015.0−2017.0 using a global 1◦ spaced collection of target locations
having κ = 600. The plots show the radial SV estimates (left plots) and associated error
estimates (right plots). Results shown are: (a-b) using λ = 2.5 × 10−4nT−1, (c-d) using
λ = 5 × 10−4nT−1 and (e-f) using λ = 5 × 10−3nT−1. Notice that the scale is not the
same in the plots.
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(a) Width of averaging kernel using λ = 2.5×10−4nT−1. (b) SV averaging kernel for λ = 2.5× 10−4nT−1. Kernel
width ≈ 30◦.

(c) Width of averaging kernel using λ = 5× 10−4nT−1. (d) SV averaging kernel using λ = 5×10−4nT−1. Kernel
width ≈ 33◦.

(e) Width of averaging kernel using λ = 5× 10−3nT−1. (f) SV averaging kernel using λ = 5× 10−3nT−1. Kernel
width ≈ 42◦.

Figure 5.16: Application of the SOLA method to radial SV field estimation from 2 years
of Swarm data between 2015.0 − 2017.0 using a global 1◦ spaced collection of target
locations and with κ = 600. The plots show the width of the averaging kernels (left plots)
and example kernels at QD latitude 0◦ and longitude −168◦ (right plots). Results shown
are: (a-b) using λ = 2.5 × 10−4nT−1, (c-d) using λ = 5 × 10−4nT−1 and (e-f) using
λ = 5× 10−3nT−1.
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Figure 5.17: Global maps of the radial SV field at the CMB in 2016 from the CHAOS-6-x5
model based on SH degrees 1-10 (left) and 1-16 (right).

5.4.5 The Secular Acceleration at the CMB

In this section the accumulated radial SA magnetic field, computed as the change in the
radial SV field between different epochs are presented. The calculations are presented
for 1yr and 2yr differences of the SOLA radial SV estimates, which have been computed
from 2yr and 1yr data time windows, discussed in Section 5.4.4. The SA error estimate,
σ̂(r0, t)SA, at time t, is here computed as the square root of the squared sums of the SV
error estimates (assuming these are independent) for the epochs being differenced (Barlow,
1989; Taylor, 1997), i.e.

σ̂(r0, t)SA =
√
σ̂(r0, t1)2

SV + σ̂(r0, t2)2
SV (5.100)

Figure 5.18 presents global collections of the radial SA field computed as the accumulated
change in the radial SV between years 2015 and 2017. In order to determine this, the radial
SV in 2017.0 was computed from two years of data using λ = 1× 10−3nT−1 shown in the
top plots, λ = 3× 10−3nT−1, shown in the center plots, and λ = 5× 10−3nT−1, shown in
the bottom plots (i.e. in the bottom plot seeking SA maps based on the detail level as given
in the bottom plot of Figure 5.15). Next the averaging kernels obtained using these values
of λ, were used as the target kernels for the SV in 2015.0 in order to ensure the quantities
being differenced had been averaged in the same fashion. Associated error estimates are
given in the right plots. Even though the λ = 1 × 10−3nT−1 result may contain some
genuine features, noise is prominent and the error level is high. The λ = 3 × 10−3nT−1

and λ = 5× 10−3nT−1 results are very alike, though the λ = 3× 10−3nT−1 has stronger
field amplitudes.

Figure 5.19 presents similar radial SA field predictions from the CHAOS-6-x5 (left
plot) and CIY4 (right plot) models for SH degrees 1 to 10 in 2016.0. Looking at these
plots the SOLA maps using λ = 3× 10−3nT−1 and λ = 5× 10−3nT−1 agrees remarkably
well with the SH models capturing many of the same features. Even small scale SA field
features can be found in between the models, though the high latitude SA signal is perhaps
not as prominent in the SOLA maps. Thus the SA predictions of regularized SH based
models up to SH degree 10 are essentially reproduced by the SOLA approach which does
not involve any regularization nor truncation at all.

Figure 5.20 shows the MF, SV and SA power spectra plotted at the CMB of the
CHAOS-6-x5 and CYI4 field models in 2016. Also shown are the SOLA power spectra
computed from the global collections of the local SOLA estimates for various values of the
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(a) SOLA model based on λ = 1× 10−3nT−1. (b) SOLA model error estimates.

(c) SOLA model based on λ = 3× 10−3nT−1. (d) SOLA model error estimates.

(e) SOLA model based on λ = 5× 10−3nT−1. (f) SOLA model error estimates.

Figure 5.18: Global maps of the radial SA field (left plots) computed as accumulated
change in radial SV at the CMB of SOLA SV estimates from years 2015.0 to 2017.0, also
showing the associated error estimates (right plots).
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(a) CHAOS-6-x5 model predictions. (b) CIY4 model predictions.

Figure 5.19: Global maps of the radial SA at the CMB in 2016.0 from predictions of the
CHAOS-6-x5 (left plot) and CIY4 (right plot) models based on SH degrees 1-10.

trade-off parameter λ. The spectra shows that it is possible to produced SH models from
the SOLA estimates that fully matches those of conventional SH based field models, and
that varying the spatial averaging kernel width of the local estimates by changing λ, will
change the spectral appearance accordingly. Therefore, using the global diagnostics of the
SH power spectrum, shows the full strength of our localized SOLA technology.
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Figure 5.20: Lowes-Mauersberger power spectra in 2016 plotted at the CMB showing the
main field (black and dotted grey), secular variation (red and dotted red) and secular
acceleration (blue and dotted blue) as given by the CHAOS-6-x5 and CIY4 field models
and the SOLA method for various values of the trade-off parameter λ.

Next the SA was computed centred on the years 2008 and 2006 for λ = 5× 10−3nT−1

and compared with other field models. The same procedure was used here as above; the
averaging kernels for 2017 were used as target kernels for the years 2005 to 2007 and
2005 to 2007. Figure 5.21 and 5.22 presents the results for the 2yr accumulated radial
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SA for windows centred on 2008 and 2006, respectively. In both figures the SOLA based
SA estimates (plot a) and the associated error estimates (plot b) are shown, along with
the SA predictions for SH degrees 1 to 10 of CHAOS-6-x5 (Finlay et al., 2016b) (plot c),
the GRIMM (Lesur et al., 2008, 2010, 2011b) (plot d) and the POMME10 (Maus et al.,
2006) and http://geomag.org/models/pomme10.html (plot e) field models. As in the
previous example, the SOLA based SA estimates are in remarkable agreement with the
other models up to SH degree 10.

Figure 5.23 presents line plots centred on the years 2006 (plot a and b), 2008 (plot c and
d) and 2016 (plot e and f) along the geographic equator for the SOLA based SA estimates
using 2 year SV epoch differences based on 2yr data windows having the global data grids
refiled every 2 month (right plots), and from 1 year SV epoch differences based on 1yr data
windows having 1 month data refilling (left plots). SOLA estimates for λ = 5× 10−3nT−1

(blue curve) and λ = 3×10−3nT−1 (green curve) are shown along with the associated error
estimates. Also shown are the predictions of the CHAOS-6-x5 model for SH degrees 1 to 10
(red curve) and 1 to 16 (dark red curve). In particular it seems that the 2yr SOLA based
SA estimates correlate well with the CHAOS-6-x5 model predictions for SH degrees 1 to 10.

Next, the evolution of the radial SA at the CMB along the geographic equator is in-
vestigated by looking at time-longitude plots. SOLA based SA estimates were computed
from 2 year SV epoch differences constructed from 1 year time windows moved in steps
of 2 months, and also from 1 year SV epoch differences constructed from 1 year time
windows moved in 1 month steps. Figure 5.24 shows a segment of the averaging kernels
along the equator for selected years, obtained for the case of 2 year SV differences. As
can be seen, all the kernels obtained appear very similar throughout making the differ-
encing meaningful. The percentage error of the kernel differences has been computed as

100×
√

(K1 −K2)2/K2
1. Figure 5.25 presents the mean of the percentage errors computed

for kernels along the geographical equator, calculated for both 2yr and 1yr SV differences,
and for both λ = 5×10−3nT−1 and λ = 3×10−3nT−1. It can be seen that in all cases, the
mean percentage error is below 1%. The differences are seen to be slightly larger during
the early CHAMP period, which is properly related to the amount of data determining
the kernels.

Figures 5.26 and 5.27 present time-longitude plots along the geographic equator based
on differencing SV SOLA estimates looking at and 2yr and 1yr SV differences, respectively.
The 2yr and 1yr SV estimates were built using 2 and 1 month sliding data windows, re-
spectively. The figures show the evolution of the SA field (left plots) for λ = 5×10−3nT−1

(top plot) and λ = 3×10−3nT−1 (bottom plots), and the associated error estimates (right
plots). The reason for not showing results prior to 2004 in Figure 5.27 is that using a
1 month sliding time window there is a severe lack of data during this time under the
chosen data dark, quiet time selection criteria. Note that the scales are not the same in
the two figures. Comparing plots (a) and (c) many coherent SA evolution structures can
be identified. This is important as it illustrates the ability of the SOLA based SA to track
temporal changes, and as can be seen, much higher temporal resolution is gained in (c)
using 1 year SV differences. The uncertainty estimates increase in 2004 and 2005, which
is probably related to there being less data at these times. Striped looking patterns in the
error estimates are also be observed, which is probably related to the regular gridding of
the data used in the dataset for estimating the SV. This behaviour could be reduced in
the future by seeking a different data setup.

http://geomag.org/models/pomme10.html
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(a) SOLA model based on λ = 5× 10−3nT−1. (b) SOLA model error estimates.

(c) CHAOS-6-x5 model predictions. (d) GRIMM model predictions.

(e) POMME10 model predictions.

Figure 5.21: Global maps of the radial SA at the CMB in 2008.0 showing: the SOLA
based estimates using the SA accumulated over a 2yr window centred on 2008.0 (a) and
associated error estimates (b) along with the radial SA field predictions of the CHAOS-6-x5
(c), the GRIMM (d) and the POMME10 (e) models based on SH degrees 1-10.
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(a) SOLA model based on λ = 5× 10−3nT−1. (b) SOLA model error estimates.

(c) CHAOS-6-x5 model predictions. (d) GRIMM model predictions.

(e) POMME10 model predictions.

Figure 5.22: Global maps of the radial SA at the CMB in 2006.0 showing: the SOLA
based estimates using the SA accumulated over a 2yr window centred on 2006.0 (a) and
associated error estimates (b) along with the radial SA field predictions of the CHAOS-6-x5
(c), the GRIMM (d) and the POMME10 (e) models based on SH degrees 1-10.
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(a) SA in 2006 from 1yr ∆SV.
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(b) SA in 2006 from 2yr ∆SV.
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(c) SA in 2008 from 1yr ∆SV.
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(d) SA in 2008 from 2yr ∆SV.
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(e) SA in 2016 from 1yr ∆SV.
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(f) SA in 2016 from 2yr ∆SV.

Figure 5.23: Line plots along the geographic equator at the CMB showing the radial SA
field based on 1yr (left column) and 2yr (right column) SV differences including error
estimates (shaded regions). The plots show estimates based on λ = 5 × 10−3nT−1 (blue
curves) and λ = 3×10−3nT−1 (green curves), as well as the CHAOS-6-x5 model predictions
for SH degrees 1 to 10 (in red) and 1 to 16 (in dark red).
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Figure 5.24: A segment of the averaging kernels along the geographic equator for selected
years for the SV over 2yr windows.
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(a) 2yr ∆SV using λ = 5× 10−3nT−1.
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(b) 1yr ∆SV error estimates, λ = 5× 10−3nT−1.
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(c) 2yr ∆SV using λ = 3× 10−3nT−1.
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(d) 1yr ∆SV error estimates, λ = 3× 10−3nT−1.

Figure 5.25: Averaging kernel mean percentages errors along the geographical equator.
Results are shown for λ = 5× 10−3nT−1 (left plots) and λ = 3× 10−3nT−1 (right plots).
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Figure 5.28 presents time-longitude plots along the geographic equator from CHAOS-
6-x5 model predictions for SH degrees 1 to 10 (left plot) and 1 to 16 (right plot). The SA
patterns observed in Figures 5.26 and 5.27 plots (a) and (c), correspond qualitatively to
those found in the CHAOS-6 model and also in previous studies by Chulliat et al. (2015);
in particular, the prominent features appearing between 2005 and 2009 in the longitude
band from −100◦ to 20◦. At 25◦W in mid 2007, a distinctive SA ’cross-over’ event may
be observed, having strong, oppositely signed and adjacent, SA features rapidly changing
sign within a year. The SA rapidly going trough zero is the characteristic feature of a
geomagnetic jerk; here we are seeing the localized signature of such an event at the CMB.
Furthermore, we see evidence of SA activity in the Pacific region in 2016.

(a) 2yr accumulated SA using λ = 5× 10−3nT−1. (b) 2yr accumulated SA error estimates, λ = 5 ×
10−3nT−1.

(c) 2yr accumulated SA using λ = 3× 10−3nT−1. (d) 2yr accumulated SA error estimates, λ = 3 ×
10−3nT−1.

Figure 5.26: Time-longitude plots along the geographical equator at the CMB showing
the accumulated radial SA (left plots) and associated error estimates (right plots) as
determined from 2yr differences of SV based on 2yr time windows, moved in 2 month
steps. Results shown for λ = 5× 10−3nT−1 (top) and λ = 3× 10−3nT−1 (bottom).
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(a) 1yr accumulated SA using λ = 5× 10−3nT−1. (b) 1yr accumulated SA error estimates, λ = 5 ×
10−3nT−1.

(c) 1yr accumulated SA using λ = 3× 10−3nT−1. (d) 1yr accumulated SA error estimates, λ = 3 ×
10−3nT−1.

Figure 5.27: Time-longitude plots along the geographical equator at the CMB showing
the accumulated radial SA (left plots) and associated error estimates (right plots) as
determined from 1yr differences of SV based on 1yr time windows, moved in 1 month
steps. Results shown for λ = 5× 10−3nT−1 (top) and λ = 3× 10−3nT−1 (bottom).

Figure 5.28: Time-longitude plots of the CHAOS-6-x5 model predictions for SH degrees 1
to 10 (left) and 1 to 16 (right).
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5.5 Estimation of Time-dependent CMB Field: A Kernel Polynomial
Approach

In this section we briefly report experiments with an alternative approach to the one given
Section 5.4, regarding the time-dependence of the field. Here the data are related to the
source field via both spatial and temporal kernels, and we attempt to localize in both space
and time. The spatial (data) kernel is as before consisting of the Green’s functions, while
the temporal kernel is represented using local polynomials. A formalism is derived such
that not just the MF and SV signals, but also the SA signal may be computed directly.
Ignoring the spatial dependence, a simple synthetic case study was performed using a time
series from one location in order to illustrate the method. Studies using geomagnetic real
data turned out to be very unstable; it was possible to localize the spatial and temporal
kernels, but only at the expense of stability. Therefore, the setup and numerical considera-
tion regarding the real case study will be presented, but detailed results will not be shown.

It is assumed that the magnetic data, dn = d(rn, tn), where n = 1, ..., N , may be ex-
pressed by the convolution

dn =
∫ ∮

SC

G(r|r′)H(t|t′)Br(r′, t′)dSCdt (5.101)

Thus, the spatial and temporal kernels are separated, with G(r|r′) being the exterior spa-
tial data kernels connecting positions of the data at r to the field at position r′ and H(t|t′)
being the smooth temporal kernel function connecting data at time t to the source field
at time t′. Equation 5.101 resembles the internal part of equation (5.83) stated in Section
5.4, where the temporal kernel H(t|t′) implicit was taken to be a Taylor series expansion
over a short time window. That is; if data were to be extracted from a short period of
time, for instance a month, H(t|t′) ≈ 1, and thus the time dependence could be neglected
in the similar case of the MF estimation in Section 5.4.3.

Next, consider some scattered observations, {(t1, d1), ..., (tn, dn)}, at one location and the
source at that same location, i.e. G(rn|r′) = 1, such that using the explanatory variable,
t, it is possible to write (Ledolter, 2013)

dn = m(tn) + εn (5.102)

where m() is some function and εn are independent errors having zero mean. The method
of non-parametric regression tries to estimate the unknown functionm (Hastie et al., 1993).
The idea is as follows; without making any assumptions regarding the functional form of
m(·), an estimate at some specified time, t0, is sought by using polynomial smoothing
within some window centred on t0. The function m(·) is unknown and the method of
(local) polynomial smoothing is based on approximating m(t) (locally) by a pth order
polynomial in t− t0 (Hastie et al., 1993; Gutierrez et al., 2003), i.e.

m̂(t) ≈ m(t0) +m1(t1)(t− t0) + · · ·+ mp(t0)
p! (t− t0)p

= β0 + β1(t− t0) + · · ·+ βp(t− t0)p (5.103)

where β = (β0, β1, ..., βp) are the model coefficients for the polynomial description of order
p ∈ [0, p]. The least squares solution (i.e. the model coefficients) is found by

β̂ = (KTK)−1KTd (5.104)
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Here K is a matrix formed by the polynomial description such that

K =

1 (t1 − ttar) · · · (t1 − ttar)p
...

...
...

1 (tn − ttar) · · · (tn − ttar)p

 (5.105)

A weighting matrix could be included assigning the largest weights close to t0 to make
a local regression (for instance a Gaussian kernel) (Hastie et al., 1993), but this was not
explicitly done here. In forward problem the predicted data dpre may then be written as

dpre = m(tpre) = Kpreβ̂ = Kpre(KTK)−1KTd (5.106)

That is, the data, d, may be regarded as the ”model” and Kpre(KTK)−1KT forms a kernel
matrix linking the observed data in time; i.e. this is the kernel H. The first and second
derivatives can be directly computed, and are only shown here for comparison, as

ḋpre = K̇
pre
β̂ = K̇

pre(KTK)−1KTd
d̈pre = K̈

pre
β̂ = K̈

pre(KTK)−1KTd (5.107)

where the derivatives matrices are given by

K̇
pre = p(t− ttar)p−1

K̈
pre = p(p− 1)(t− ttar)p−2 (5.108)

Discretizing the problem, the matrix K is determined by the data times and order of the
polynomial having dimensionsN×P , i.e. the number of data times order of the polynomial.
The matrix Kpre is determined by the numerical integration having dimensions Nint ×P ,
i.e. integration points times the order of the polynomial. Therefore the H matrix is built
as

H = Kpre(KTK)−1KT (5.109)

having dimensions N × Nint. In the next sections computations of the MF, SV and SA
fields are considered separately in order to clarify this type of approach also incorporating
the spatial kernel. However the important point to remember is that in each case H(t|t′)
is the same and it can be represented within the above formulation. The only thing that
changes in each field case, is the temporal target kernel and the constraints applied to it
(i.e. the formulations in equations 5.108 are not used to make the SOLA estimates).

5.5.1 Main Field Case

Using the SOLA formulation, the main field estimate is written as the linear combination
of the data

B̂r(r0, t0) =
N∑
n

qndn (5.110)

where qn are the weight coefficients and the summation runs over the data being magnetic
field measurements and t0 denotes the target time of interest. The data may be expressed
by the convolution, equation 5.101, above. Thus, an estimate at time t0 and position r0
is given such that

B̂r(r0, t0) =
N∑
n

qndn =
N∑
n

qn(r0, t0)
∫ ∮

SC

G(r|r′)H(t|t′)Br(r′, t′)dSCdt

=
∫ ∮

SC

AMF (r0, t0|r′, t′)Br(r′, t′)dSCdt (5.111)
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A spatial-temporal averaging kernel may thus be written as

AMF (r0, t0|r′, t′) =
N∑
n

qn(r0, t0)G(rn|r′)H(tn|t′) (5.112)

That is, the weights, qn, are assigned to the data determining the shape of the main field
averaging kernel, AMF , which thus acts as a filter or a weighted average in space and
time. The coefficients, qn, can be estimated by minimization of an objective function as
in Section 5.3.2

Θ =
∫ ∮

SC

[AMF − TMF ]2dSCdt+ +λ2qTEq (5.113)

where TMF is some specified target function and E is the covariance matrix. It is as-
sumed that the target function may be written as a joint target function TMF (Ψ, t) =
TSpace(Ψ)TT ime(t), where TSpace and TT ime are the space and time domain target func-
tions, respectively. In the space domain a Fisher type target kernel as in Section 5.3.2
could be used, i.e.

TFisher(Ψ) = κ

4πsinhκeκcosΨ (5.114)

where κ is the Fisher target width. Here cosΨ = cosθ0cosθ′ + sinθ0sinθ′cos(φ0 − φ′), Ψ
being the angular distance between points r0 and r′ on the sphere. In the time domain a
Gaussian type target kernel could be used, i.e.

TGaussian(t0|t) = 1√
2πτ2

e−
(t−t0)2

2τ2 (5.115)

where τ is some specified width of the function. The coefficients may then be found by
using the requirement that dΘ/dq = 0, i.e.

d

dq

(∫ ∮
SC

[A2
MF + T 2

MF − 2AMFTMF ]dSCdt+ λ2qTEq
)

= 0

d

dq

(∫ ∮
SC

[(∑
qnGnHn

)2
+ T 2

MF + 2
∑

qnGnHnTFTG

]
dSCdt+ λ2∑ q2

nσ
2
)

= 0

thus ∫ ∮
SC

2
∑

cnG
2
nH

2
ndSCdt−

∫ ∮
SC

2GnHnTFTGdSCdt+ 2λ2∑ qnσ
2 = 0↔∫ ∮

SC

∑
qnG

2
nH

2
ndSCdt+ λ2∑ qnσ

2 =
∫ ∮

SC

GnHnTFTGdSCdt

Here TF = TFisher and TG = TGaussian. It is possible to imposed individually (unimodular)
constraints in space and time to the spacial-temporal averaging kernel as∮

SC

AMFdSC = 1 (5.116)∫
AMFdt = 1 (5.117)

The resulting set of equations subject to the constraints can be written[
G W GTK W KT + λ2E

]
q(r0) = G WtF (r0)K WtG(t0) (5.118)

subject to 1. eTW GTq(r0, t0)H(t, t0) = 1 (5.119)
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subject to 2. eTW KTq(r0, t0)G(r, r0) = 1 (5.120)

where H and G are vectors having length (1, ..., N), relating individual data times and
positions to the target time and position, respectively. The coefficients of the solution are
determined using the Lagrange multipliers {µ1, µ2} G WGTK WKT + λ2E G We G We

eTW GT 0 0
eTW KT 0 0


 q(r0)

µ1
µ2

 =

 G WtG(r0)K WtG(t0)
1
1


where tG and tF are vectors relating the target position and time to the integration points,
respectively. In order to try and improve stability of the calculations, additional Lagrange
constrains were added, requiring a symmetry constraint on the MF temporal averaging
kernel about the target time. In the numerical studies, the temporal integration was done
using Trapezoidal quadrature (Riley et al., 2004) and the spatial integration was performed
using Lebedev quadrature, see Section 5.4.2.

5.5.2 Secular Variation Field Case

The secular variation may be estimated in a similar approach as above, by a linear com-
bination of the data ̂̇Br(r0, t0) =

N∑
n

q′ndn (5.121)

where q′n are the (SV) weight coefficients and the summation runs over the data n =
1, ..., N . As for the MF case data may be expressed by equation 5.101, such that

̂̇Br(r0, t0) =
N∑
n

q′ndn =
N∑
n

q′n(r0, t0)
∫ ∮

SC

G(r|r′)H(t|t′)Br(r′, t′)dSCdt

=
∫ ∮

SC

ASV (r0, t0|r′, t′)Br(r′, t′)dSCdt (5.122)

A spatial-temporal SV averaging kernel may thus be written as

ASV (r0, t0|r′, t′) =
N∑
n

q′n(r0, t0)G(rn|r′)H(tn|t′) (5.123)

where the weights, q′n, determines the shape of the SV averaging kernel that acts as a
filter in time and an average in space. Here H is computed using equation (5.109). The
coefficients are again estimated by minimization of an objective function here written

Θ =
∫ ∮

SC

[ASV − TSV ]2dSCdt+ +λ2q′TEq′ (5.124)

where TSV is a target function written as the product TSV = TSpace(dTT ime/dt), where
TSpace and (dTTime/dt) are the space and time domain target functions, respectively. The
required time derivative of the Gaussian target kernel, equation 5.115, is

d

dt
TGaussian = d

dt

(
1√

2πτ2
exp−

(t−t0)2

2τ2

)

= −2
√

2(t− τ)
4
√
πτ3 exp−

(t−t0)2

2τ2 (5.125)
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The solution scheme follows that of the main field with the exception that the integral of
the temporal averaging kernel is enforced to equal zero. Furthermore, Lagrange constrains
are such that the SV temporal averaging kernel should be anti symmetric about the target
time.

5.5.3 Secular Acceleration Field Case

The secular acceleration may also be estimated in a similar approach, i.e. by a linear
combination of the data ̂̈Br(r0, t0) =

N∑
n

q′′ndn (5.126)

where q′′n are the (SA) weight coefficients and the summation runs over the data n =
1, ..., N . As for the MF case data may be expressed by equation 5.101, such that

̂̈Br(r0, t0) =
N∑
n

q′ndn =
N∑
n

q′′n(r0, t0)
∫ ∮

SC

G(r|r′)H(t|t′)Br(r′, t′)dSCdt

=
∫ ∮

SC

ASA(r0, t0|r′, t′)Br(r′, t′)dSCdt (5.127)

A spatial-temporal SA averaging kernel may thus be written as

ASA(r0, t0|r′, t′) =
N∑
n

q′′n(r0, t0)G(rn|r′)H(tn|t′) (5.128)

where the weights, q′′n, determines the shape of the SA averaging kernel acting as a filter in
time and an average in space just as in the MF ans SV cases. Here H is computed using
equation (5.109). The coefficients are estimated by minimization of the objective function

Θ =
∫ ∮

SC

[ASA − TSA]2dSCdt+ +λ2q′′TEq′′ (5.129)

where TSA is a target function written as the product TSA = TSpace(d2TT ime/dt
2), where

TSpace and (d2TT ime/dt
2) are the space and time domain target functions, respectively.

The second time derivative of the Gaussian target kernel, equation 5.115, is

d2

dt2
TGaussian = d2

dt2

(
1√

2πτ2
exp−

(t−t0)2

2τ2

)

= 1
4τ4

[
exp−

(t−t0)2

2τ2 (2t− 2t0)2
]
− 1
τ2 exp−

(t−t0)2

2τ2 (5.130)

The solution scheme follows that of the MF and SV also requiring that the integration of
the SA averaging kernel should equal zero. Furthermore, Lagrange constrains are applied
such that the SA temporal averaging kernel should be symmetric about the target time.

5.5.4 Synthetic Test Studies

In this section a synthetic test is described using the above formulations for the MF, SV
and SA. For this study it was assumed that the data and source locations were the same,
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i.e. G(ri|r′) = 1. This means that the temporal averaging kernels can be written

AMF (t0|t′) =
N∑
n

qn(r0, t0)H(tn|t′) = qTH (5.131)

ASV (t0|t′) =
N∑
n

q′n(r0, t0)H(tn|t′) = q′TH (5.132)

ASA(t0|t′) =
N∑
n

q′′n(r0, t0)H(tn|t′) = q′′TH (5.133)

Thus the spatial target and averaging kernels drop out, simplifying the problem. Synthetic
time series were generated such that each month there was a data point mimicking a real
case scenario. Figure 5.29 presents plots of synthetic data of the generated MF, SV and
SA fields; in this case study the SA was constant at 211 nT/yr2. Figure 5.30 presents the
least-squares solutions, i.e. equations (5.106) and (5.107), which are seen to match the
data in all three cases. In this example case the order of the polynomial description was
P = 14 and the temporal integration was done using Trapezoidal quadrature (Riley et al.,
2004) having a total number of integration points Nint = 8001, to ensure high numerical
accuracy.
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Figure 5.29: Synthetic studies showing the MF (left), the SV (center) and SA (right) data.
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Figure 5.30: Least squares solution of the MF (left), SV (center) and SA (right) fields.

Figure 5.31 presents the temporal target kernels for the MF, SV and SA (left plot), the
obtained averaging kernels (center plot) and their differences (right plot). In this example
the covariance matrix had a diagonal of values 0.5nT2 (the value here is not vital as the
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solution just scales with λ), the width of the temporal kernels were taken as τ = 0.55yr
and λ = 10−9. The obtained averaging kernels all looked close to their target kernels,
however their differences, though symmetric about the target time, indicate a small bias
most notably in the SA kernel. In Table 5.2 results obtained from a run using the above
mentioned values are presented. It can be seen that the reconstructions of the MF, SV
and SA fields are reasonable. However, it was found that the SV and SA determination
was very dependent on even slight disturbances in the associated kernel structures, the
reason being that a slight shift in these kernels will have a big impact on the estimates. For
this reason, it was concluded that additional constraints are needed to get an appropriate
robust SA determination by this method.
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Figure 5.31: Synthetic studies showing the target kernels (left), the obtained averaging
kernels (center), and their differences (right). The black cross shows the target time. Note
the change of scale in the right plot.

Field Truth SOLA estimate Error [%]

Main field [nT] 50000 50031.79 0.06
Secular variation field [nT/yr] 700 696.41 0.51
Secular acceleration field [nT/yr2] 211 197.27 6.51

Table 5.2: Example results from a synthetic test run.

5.5.5 Problems with Instability

Experiments using real data revealed that the solutions obtained using the above scheme
were very unstable. In order to obtain estimates, a large trade-off parameter for the
covariance was required at the expense of an associated high variance and solution stability.
Part of the explanation for this is perhaps the strong requirements that the SV and SA
kernels should be anti-symmetric and symmetric around the target time and unbiased.
As can be seen from the synthetic case studies, there are small differences (asymmetries
and biases) between the targets and obtained kernels. Because the main field is so large
compared to the SV and SA signals, even a small off-set in the kernels applied to the
observed data have a large impact on the SV and SA estimates; for instance a difference in
amplitude of say 0.001 in the SA kernel would correspond to 500nT, assuming a background
main field of 50000nT. It may be that additional constraints on the kernel behaviour,
besides those investigated, could mitigate such issues. Further studies into the effect of



180 CHAPTER 5. OPTIMAL LOCALIZED FIELD ESTIMATION

data gaps or uneven data distribution in time could be made to better understand the
kernel behaviour.

5.6 Summary

This chapter has been devoted to the development and implementation of a modified
Backus-Gilbert method called SOLA, to the geomagnetic problem of estimating the radial
magnetic field and its time evolution at the core-mantle boundary. The SOLA method
is a subclass belonging to the OLA methods, which aims at determining localized aver-
age estimates, and was originally developed in helioseimology in order to overcome the
computational expensive burden of the original Backus-Gilbert method. In this thesis
the SOLA formalism was implemented with the aim of determining local averages of the
core-generated magnetic field at the CMB along with its time derivatives. Under the set-
tings of the Neumann boundary value problem, exterior and interior Green’s functions
have been formulated relating both internal and external source to the magnetic measure-
ments. Furthermore, data error covariance matrices were incorporated in the formulation,
which allowed latitude dependent data errors and along-track serial error correlation to be
accounted for.

Two different approaches to handling the field time dependence have been described:
1) a Taylor series expansion of the field at the CMB, and 2) a polynomial approximation
of the temporal kernel relating measurement and source field times. The latter approach
turned out to be very unstable using real data, and thus only synthetic case studies have
been presented here. The former approach turned out to be more successful providing
stable results, and applications to estimates of the radial MF and the radial SV have
been presented as global collections of estimates at the CMB. These global collections of
both the MF and SV SOLA estimates showed good coherence with the results from more
conventional spherical harmonic based field models. Also the accumulated radial SA field
was determined using 1 and 2 year epoch differences between SV estimates. Maps of col-
lected estimates were in good agreement with field morphology seen in maps of the radial
SA fields as predicted by models such as the CHAOS-6-x5, CIY4, GRIMM and POMME.
The SOLA estimates however involves no spectral truncation and no applied regularization
(neither in space or time) which heavily influences the SA above SH degree 9 in models
such as CHAOS-6-x5 (Finlay et al., 2016b). Time-longitude plots of the SA field at the
CMB along the geographical equator have been studied. Coherence of the SA signal in
these plots for different SV time windows was evident, and they were found to be useful
for tracking the evolution of the SA field. As an example, a rapid change (cross-over) in
oppositely signed SA features was observed in 2007 at longitude 25◦W. Such a sign change
is characteristic of a geomagnetic jerk event which has here been imaged locally at the
CMB.



Chapter 6

Conclusions

In this section the main results and findings from the work carried out and presented in
this thesis are collected. In this thesis two different methods of locally estimating the
core-generated magnetic field have been described and implemented. The first method
considered is the Virtual Observatory (VO) method, providing a way of using satellite
measurements to make time series of the field and its time derivatives at pre-specified
locations mimicking the time series from ground observatories. The second method con-
sidered in this thesis builds on a modified Backus-Gilbert inversion approach called Sub-
tractive Optimally Localized Averages (SOLA). The SOLA method enables estimates of
local averages of the field and its first time derivative directly at the core-mantle boundary
from satellite measurements. The work carried out in this thesis used dark geomagnetic,
quiet-time, measurements from the CHAMP and Swarm satellite missions.

The VO Technique

Chapter 4 described, implemented and advanced on previous developments of the VO mod-
elling technique. Using a cubic potential expansion, VO time series at epochs of 4 month
spacing were produced, resulting in high correlation levels with the time series at ground
observatories in all three vector field components. In addition to this, a simple procedure
for estimating uncertainties of the VO time series has been devised. The VO technique
involves a pre-whitening step where the internal part of a geomagnetic field model is re-
moved. We found that results for the VO time series were independent of which field
model is used for this pre-whitening. VO time series of field gradients and their first and
second time derivatives VO’s were also produced. We found that these gradient time series
show promising results, and found that geomagnetic jerk events can be clearly identified
in such time series. This offers new possibilities for tracking and uncovering the short time
changes of the core-generated field locally. Furthermore, we have shown that internal field
models can be built using VO gradient time series. Although unmodelled contamination
has been reduced via optimization of data selection and handling procedures, further mit-
igation of external and in-situ measured toroidal field contamination should be explored
further as these constitute the major limits on the method.

Scientific findings using the VO time series include; i) a change in the SV signal mostly
seen in the X-component in South America, observed around 2016 having an associated
steep change in the SA signal which could indicate a geomagnetic jerk taking place during

181



182 CHAPTER 6. CONCLUSIONS

the Swarm from 2014-2018, ii) a change in the SV signal and a steep change in the radial
SA around 2017 can be observed in the Pacific region, which may be the first signs of a
geomagnetic jerk taking place, iii) using the internal field models built from VO field and
field gradient time series, global maps of the radial SV and SA fields supports evidence
of changing field activity in the Pacific region. Recent studies have indicated that jerks
have taken place in the Swarm era (Brown and Macmillan, 2018). The properties of such
field changes are of great interest; are these local or global events and over how long time
intervals do they occur, and what is the time between events? We conclude that the VO
modelling technique is a flexible and highly versatile tool, which can be tailored to meet
the specific requirements of particular researchers whether conducting local or global field
analysis. The VOs have also proven useful for core flow inversions and data assimilations
(Whaler, 2017; Barrois et al., 2018). As satellite magnetic field measurements continu-
ously accumulate with time, the VO method may eventually help shed light on some of
the outstanding scientific questions regarding the core field.

Future Possibilities using the VO Technique

The VO time series could be used for several future applications and investigations, in
particular:

• As the Swarm satellite constellation mission progresses, rapid field change events
can be studied in great detail using the VO approach. Events such as geomagnetic
jerks are clearly seen in the annual differences of both the field and gradient time
series.

• Measurements from other satellites such as the DMSP (Alken et al., 2014) or Cryosat
missions, may prove useful when trying to fill the gap between the CHAMP and
Swarm eras. Using these measurements and applying the VO method could prove
beneficial when investigating the core field evolution during the CHAMP/Swarm
satellite data void.

• The VO field time series have already been used for core flow inversions and in data
assimilation studies, inferring both the the core magnetic field and fluid flow. Using
VO field gradient time series could prove very useful in such studies as well.

• The VO technique could prove useful in both core field modelling, and perhaps in
external field modelling on month to year time-scales as well. Such studies may be
further explored in the future as more satellite data are collected.

The SOLA Technique

Chapter 5 introduced, described and implemented the SOLA technique for computing lo-
calized spatial average estimates of the radial magnetic field and its first time derivative
at the core-mantle boundary. A key point in using this approach is formal appraisal of
the spatial resolution and the variance of the field estimates.

The field time dependence was investigated by two different approaches; 1) a Taylor se-
ries expansion of the field at the CMB, and 2) a local polynomial approximation of the
temporal kernel relating measurement times and source field times. When using real data,
the second approach turned out to be unstable for estimating field derivatives and there-
fore only synthetic case studies are presented in this thesis. The first approach proved
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successful at providing stable results when applied to real data, and results from this are
discussed below.

Initial synthetic studies revealed that the spatial averaging kernel width only changed
slightly even with a dramatic increase in the amount of satellite data, apparently reaching
an upper limit of the resolvability offered by data collected at a given distance from
the source region. From synthetic test results it was shown that 1000 data points were
enough to obtain useful SOLA estimates at the CMB. The SOLA technique was formulated
accounting for both internal and external field sources. Furthermore, we showed how one
could incorporate information from data error covariance matrices such as along-track
serial correlation.

We presented results for an example of a global collection of SOLA estimates for the
radial main field (MF), having widths of the spatial resolution kernel varying between
∼18◦ and ∼54◦ depending on latitude, with a standard deviation of ∼10µT. We also
presented global collections of SOLA estimates for the radial secular variation (SV) at the
CMB, with widths of the spatial resolution kernel of ∼42◦, ∼33◦ and ∼30◦ at the equator,
with corresponding standard deviations of ∼0.25µT/yr, ∼2.5µT/yr and ∼5µT/yr. We
found that the morphology of the MF and SV maps agrees well with results from spherical
harmonic based field models, however our method does not involve any direct spectral
truncation or temporal regularization. By regularization we mean minimizing a global
norm of the model (Parker, 1994). Changing the averaging kernel widths, a clear coherence
in field morphology was observed as would be expected for well resolved features (Holme
et al., 2011; Aubert, 2018). The Backus-Gilbert approach was originally not intended to
be used for such global estimate collections. However, the union of a collection of point
estimates has been considered by some authors to constitute a sensible approach (Parker,
1994; Nolet, 2008; Zaroli, 2016). In principle, such a union would require studies of trade-off
curves for each target location. However, the findings of this thesis showed that the same
trade-off parameter can be used for all target points provided the data error budget is set
appropriately. This in turn causes the variances of the estimates and the averaging kernel
widths to vary with position, thus reflecting uneven data distribution and/or enhanced
data errors in certain regions. Surprisingly, it was discovered that the variances changed
very little with position when performing such global estimates. Averaging kernel widths
stated may give only a crude summary of the actual averaging scale, since the kernels can
be prone to oscillatory behaviour especially for small values of the trade-off parameter
(Parker, 1994). However, we found that the averaging kernels generally behaved very well
showing no significant side lobes, and that the kernel widths gave a very useful diagnostic
of the resolution.

We computed the local accumulated secular acceleration (SA) by subtracting the SV
SOLA estimates, based on two year data time windows, from epochs 2 years apart. These
had averaging kernel widths of ∼42◦ degrees at the equator and a standard deviation of
∼0.2T/yr2. Comparisons with SH based field models CHAOS-6-x5, CIY4, GRIMM and
POMME, showed remarkably good agreements in terms of the field morphology, with the
SOLA based SA. Also the power spectra of the MF, SV and SA as determined from global
collections of the local SOLA estimates, matched well those of conventional SH based field
models. Using a global diagnostics such as the SH power spectrum, however misses the key
strength of our localized SOLA technology. The direct control of the spatial averaging ker-
nel and the time window length, enables investigations into the robustness of the inferred
SA field as a function of length-scale and time-scale. Investigating the time evolution of
the radial SA along the geographical equator and pushing towards higher temporal resolu-
tion, we computed both 2 and 1 year SV epoch differences constructed using two and one
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year time windows, respectively. We were able to track coherent structures of the radial
SA and their evolution in time-longitude plots. These findings of rapid field acceleration
changes were achieved down to an averaging width of ∼30◦ degrees at the CMB. One par-
ticular finding observed at 25◦W around mid 2007, was a distinctive SA ’cross-over’ event
having adjacent and strong oppositely signed SA features rapidly changing sign within
a year. Such features may have important implications for understanding the origin of
geomagnetic jerks. Using shorter time windows makes such possible SA cross-over events
more easily seen, thereby confirming hints of its presence in field models like the CHAOS-6
(Chulliat et al., 2015). The origin of such SA field features, likely involves rapid change
in sign of the azimuthal core flow acceleration (Gillet et al., 2015a; Finlay et al., 2016b;
Kloss and Finlay, 2018). Recently, studies have suggested that geomagnetic jerks might
be explained by rapid hydromagnetic Alfven waves emerging at the core surface, which
are caused by sudden buoyancy releases inside the outer core (Aubert and Finlay, 2018).
In addition to this, possible correlation between the SA and gravity anomalies measured
by the GRACE satellite have been reported (Mandea et al., 2012). In revealing such new
aspects of the core dynamics, it is very important that the SA behaviour and its temporal
characteristics are robustly estimated. Interestingly, both the SV and SA SOLA based
global maps from 2016 indicate field activity in the Pacific region; this agrees well with
the findings made using the VO method as described above. The SOLA technique proves
to be well suited for robust studies of the localized radial SA and its time evolution, while
at the same time providing the appraisal needed, and may pave the way into further in-
vestigations that may allow insights into geophysical processes happening at even shorter
time scales.

We stress that the SOLA method does not involve the traditional form of regular-
ization applied in field model construction (neither in space or time) which is known to
heavily influence the SA above SH degree 9 (Finlay et al., 2016b). Furthermore, we have
full control over the time window length and spatial averaging kernel. Returning to the
issue of determining the SA signal as discussed in Section 2.6.1, recall that a SH based
model gives a band-limited SA via the spectral domain truncation and temporal frequency
band considered. Likewise, what is provided in Chapter 5 of this thesis are SA estimates
that are spatial averaged (also effectively band limited, since spatial averaging may be
considered a smoothing operation in which small scales are attenuated) and temporally
averaged over a given time window. Although the SOLA results presented in this these
have been global collections of localized field estimates, the technique works equally well
for regional or local collections (e.g. local time series, time-longitude plots, regional field
evolution).

In summary, the SOLA technique presented in this thesis offers a useful alternative for es-
timating the geomagnetic field as compared to conventional geomagnetic field modelling;
instead of relying on a regularized truncated spherical harmonics representation being
downward continued to the CMB, the SOLA approach performs spatial averages of the
field over a given time window directly at the CMB. The most important advantage of the
SOLA method is that it automatically provides the associated spatial averaging kernels
and variance estimates thereby allowing for a detailed appraisal of the field averages; a
major strength of this is that an unbiased resolution estimate can be obtained (which is
not the case when regularization is applied). In contrast, it is difficult to interpret vari-
ances for point estimates derived from regularized SH models, and workers rarely compute
the associated spatial averaging kernels. A wide range of well-characterized estimates can
be realized by varying the kernel width via the trade-off parameter λ, thus providing full
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control over the solution; it is desirable to have a low kernel width while at the same time
having a sufficiently low uncertainty estimates for the field averages. Another advantage
offered by the SOLA method, is the possibility to pre-specify other types of target kernels
in order to devise a particular form of the spatial averaging; in this thesis a Fisher function
was used, however other possibilities exists such as for example a disc boxcar averaging
function (Masters and Gubbins, 2003) depending on the desired application. It should
be noted, that the SOLA estimate may under some circumstances be closer to the true
value than the least-squares solution, provided the quantity being estimated is sufficiently
smooth (Parker, 1977; Pujol, 2013).

One shortcoming of the SOLA technique is that the number of solution coefficients equals
the number of data, i.e. it requires the solution of a linear system of size (number of
data x number of data), which becomes challenging when considering very large datasets.
Considering satellite measurements, a large amount of data becomes available especially
if one wishes to use data sums and differences for each vector field component, and even
more so getting data from multiple satellites. In the results presented here, the problem
was not insurmountable, and it was mitigated by computing field estimates from within a
short time window (i.e. as done in the MF case) and/or to perform strong data decimation
in order to obtain a data set with good spatial and temporal coverage (i.e. as done in the
SV case).

The most severe source of error in the determination of the core-generated field is proba-
bly the incomplete separation of the crustal field and contamination from magnetospheric
and ionospheric E-region fields and in-situ measured toroidal fields. The SOLA technique
presented in this thesis relies on a potential field formulation allowing for internal and
external field separation, however it is unable to perform a core/crust/ionosphere separa-
tion with satellite data alone. This means that bias from incompletely separated non-core
field sources cannot be excluded in the maps presented throughout this thesis, and its
effects are difficult to quantify. Including measurements from several altitudes may help
mitigate this issue, as will experiments carried out for different external field selection cri-
teria. Considering magnetosphere-ionospheric coupling (in-situ) currents in the F-region
that produce toroidal fields, it may be possible to modify the SOLA formalism to a non-
potential description by adding a toroidal field term.

Future Possibilities using the SOLA Technique

The SOLA technique described may be used in a number of promising applications and
investigations in future studies, in particular:

• As the Swarm satellite mission progresses, rapid field evolution can be studied ro-
bustly and in great detail in specific locations of interest using this method. In such
studies the ability to estimate the field and its time derivatives locally providing as-
sociated appraisal becomes very important, in particular in the quest to understand
the underlying dynamics behind the features observed in the SA field.

• Measurements from other satellites including the DMSP (Alken et al., 2014) or
Cryosat missions, may prove useful when trying to fill the gap between the CHAMP
and Swarm eras. Using these measurements and applying the SOLA method could
prove beneficial when investigating the core field during the CHAMP/Swarm satel-
lite data void.
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• The SOLA technique could be applied to estimation at locations other than the
CMB. For instance on a grid at mean satellite altitude, being an alternative means
of producing the virtual observatories. As such the estimates obtained having asso-
ciated averaging and variance information may be well suited for data assimilation
applications

• The SOLA technique allows for other types of magnetic observations to be used, for
instance ground observatory measurements. The SOLA technique is a local method
and does not need not to produce global results (as the SH method). Therefore,
the SOLA technique may be particularly useful in certain regions such as Europe,
North America and Australia where there are excellent coverage with ground-based
measurements. This could provide an opportunity to study the local field evolution
under Europe at high resolution, providing important means of validating results
obtained with satellite data.

• Investigating the longer term evolution of the geomagnetic field, the SOLA tech-
nique could perhaps also be applied in archeomagnetism and paleomagnetism where
the data coverage is more sparse, and appraisal information would certainly be very
valuable. For instance the method could be used to investigate what is happening at
the CMB during archeomagnetic spike events (Ben-Yosef et al., 2009; Shaar et al.,
2016; Korte and Constable, 2018). Performing such studies would demand lineariza-
tion approaches in order to handle nonlinear intensity and directional data (Snieder,
1991).

• Finally, there is the exciting possibility that the SOLA technique may be applied
to local core flow studies. This would require a formulation of the local core flow
in SOLA terms, but this could prove very beneficial for confirming the observations
made by present day global core flow inversion.
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Thébault, E. (2010b). Evaluation of candidate geomagnetic field models for IGRF-11.
Earth, planets and space, 62(10):8.

Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Tøffner-Clausen, L. (2016b). Recent
geomagnetic secular variation from Swarm and ground observatories as estimated in the
CHAOS-6 geomagnetic field model. Earth, Planets and Space, 68(1):1–18.

Finlay, C. C., Olsen, N., and Tøffner-Clausen, L. (2015). DTU candidate field models
for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth, Planets and Space,
67(1):1–17.



BIBLIOGRAPHY 191

Fisher, N. I., Lewis, T., and Embleton, B. J. (1987). Statistical analysis of spherical data.
Cambridge university press.

Fisher, R. (1953). Dispersion on a sphere. In Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, volume 217.1130, pages 295–305.
The Royal Society.

Friis-Christensen, E., Finlay, C. C., Hesse, M., and Laundal, K. M. (2017). Magnetic
field perturbations from currents in the dark polar regions during quiet geomagnetic
conditions. Space Science Reviews, 206(1-4):281–297.

Friis-Christensen, E., Kamide, Y., Richmond, A. D., and Matsushita, S. (1985). Inter-
planetary magnetic field control of high-latitude electric fields and currents determined
from greenland magnetometer data. Journal of Geophysical Research: Space Physics,
90(A2):1325–1338.
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Recent changes of the Earth’s core derived from satellite observations of magnetic and
gravity fields. Proceedings of the National Academy of Sciences, 109(47):19129–19133.

Mandea, M. and Purucker, M. (2018). The varying core magnetic field from a space
weather perspective. Space Science Reviews, 214(1):11.

Manoj, C., Kuvshinov, A., Maus, S., and Lühr, H. (2006). Ocean circulation generated
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S U M M A R Y
We introduce a formalism for estimating local spatial averages of the core–mantle boundary
(CMB) radial magnetic field and its time derivatives, based on magnetic field observations
collected by low-Earth-orbit satellites. This provides a useful alternative to conventional core
field modelling based on global spherical harmonic basis functions, where noise in the polar
regions maps into all harmonics, and model regularization and spectral truncation are required.
A powerful perspective offered by the proposed technique is formal appraisal of the spatial
resolution and variance of the resulting field averages. We use the Green’s functions for the
Neumann boundary value problem to link the satellite observations to the radial magnetic
field on the CMB and estimate field averages using a modified Backus–Gilbert inversion
approach. Our approach builds on the Subtractive Optimally Localized Averages (SOLA)
method developed in helioseismology, that seeks averaging kernels as close as possible to a
chosen target kernel. We are able to account for both internal and external field sources and
can incorporate data error covariance information, for example describing along-track serial
error correlation. As a proof of concept we present a global map collecting local estimates
of the radial main field (MF) constructed on a grid at the CMB with one degree spacing in
latitude and longitude, derived from 1 month of three component vector magnetic field data
collected by the Swarm satellite trio, using data from dark and geomagnetically quiet times.
Using sums and differences of the field components taken along track and in the east–west
direction we obtain estimates with spatial resolution kernel widths varying between 18◦ and
54◦ depending on the latitude, and a standard deviation of approximately 10 μT (i.e. 5 per cent
of the mean CMB field amplitude). The morphology of our CMB radial field map agrees well
with results from conventional spherical harmonic field models. In a second application, we
determine local estimates of the average rate of change, or secular variation (SV), of the radial
field at the CMB, initially considering 2-yr time windows, and performing the analysis on data
collected by either the Swarm or CHAMP satellites. We obtain stable local estimates of the
SV at the CMB, and present maps of estimates with averaging kernel widths of approximately
42◦, 33◦ and 30◦ on the equator, with corresponding standard derivations of 0.25, 2.5 and 5
μT yr–1. By subtracting SV estimates constructed at different epochs we are able to calculate
the local aggregated secular acceleration (SA) and to study its time changes. Differencing
SV estimates 2 yr apart, and considering an averaging kernel width of 42◦ on the equator,
we obtain SA maps similar to those found in the CHAOS-6-x7 field model truncated at SH
degree 10. Using our approach we are able to directly control the width of the spatial averaging
kernel and the length of the time window, enabling us to directly study the robustness of the
inferred SA. Pushing to higher resolution in time, considering 1 yr differences of SV estimates
constructed using 1 yr windows, we are able to track the evolution of coherent SA structures in
time-longitude plots at the equator. At 25◦W in mid 2007 we find a distinctive SA ’cross-over’
event, with strong, oppositely signed and adjacent, SA features rapidly changing sign within
a year. Our method is well suited for studying such spatio-temporally localized SA events at
high resolution; there will be further opportunities for such investigations as the time-series
of data provided by the Swarm mission lengthens.

Key words: Rapid time variations; Satellite magnetics; Inverse theory.
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1 I N T RO D U C T I O N

The ability to construct reliable estimates of the core-generated magnetic field, tracking its morphology and time evolution, is essential in
efforts to improve our knowledge of core dynamics. With the advent of the low-Earth-orbit CHAMP and Swarm satellite missions collecting
magnetic measurements over multiple years, it has become possible to image small scale features of the core field that exhibit rapid temporal
variations (Lesur et al. 2008; Olsen & Mandea 2008; Finlay et al. 2016). The first and second time derivative of the main field undergoes
subdecadal changes that may be probed down to a period of about 1 yr (Chulliat et al. 2015). New techniques have been developed that
use spatial differences of the magnetic field observations in order to to enhance the recovery of small scale field features, since compared
to using vector data, they are less sensitive to unmodelled large-scale external field contamination (Kotsiaros et al. 2015; Olsen et al. 2015;
Finlay et al. 2016). Spherical harmonic (SH) models derived using Swarm observations have shown that the first time derivative of the field,
or secular variation (SV), can be obtained up to approximately SH degree 11 from 1 yr of measurements (Olsen et al. 2015, 2016). Studies
of geodynamo simulations have also recently suggested that the second time derivative of the field, or secular acceleration (SA), might be
expected to exhibit distinctive equatorial localization (Aubert 2018). Moreover, considering 3-yr data time windows, pulse like features in
the radial SA at the core–mantle boundary (CMB) concentrated along the geographical equator, have recently been observed (Chulliat &
Maus 2014; Chulliat et al. 2015) possibly indicative of a wave propagating or arriving at the core surface. The basic structure of the SA at
short length and timescales, and the details of the responsible core dynamics are however still unclear and further investigations are urgently
needed.

Assuming the region between the CMB and the observation site is an insulator, the magnetic field can be described by the gradient of
a scalar magnetic potential. In the conventional, so-called construction, approach to field modelling the potential is represented on a global
scale using a truncated SH expansion determined using a least-squares solution (Langel 1987; Parker 1994) that is often also regularized in
order to obtain stable solutions at the CMB (Bloxham et al. 1989). Here we use the term regularization to denote the modification of the
least-squares solution to the inverse problem such that a global norm of the model parameters is added to the data misfit norm in the cost
function being minimized. Since the SH functions are of global support, assuming equal data errors, they give equal weight to the entire data
set assigning isotropic resolution. Regularized B-splines are often used to describe the model time dependence; the temporal regularization
modifies the spline functions in a non-uniform manner influencing higher SH degrees the most (Constable & Parker 1988; Olsen et al. 2009).
Moreover, model uncertainties are usually not provided and validation typically relies on comparing models constructed using different data
selection schemes, external field parametrizations and regularizations.

Various alternatives to SH modelling have been investigated for studying the CMB magnetic field, for instance constructing models
based on icosodedral grids for the radial field at the core surface that can be forced to satisfy necessary conditions for frozen-flux and a
magnetostrophic force balance implemented via topology preservation constraints (Constable et al. 1993; Jackson et al. 2007). Techniques
such as harmonic splines introduced by Shure et al. (1982) and Parker & Shure (1982), a wavelet approach developed by Holschneider et al.
(2003), and Slepian functions (Plattner & Simons 2017) have also been explored. Most recently, Holschneider et al. (2016) have introduced
an attractive new technique, based on specifying appropriate correlation functions for internal and external sources, that has been used by
Lesur et al. (2017) to determine the Gauss coefficients for the SV from ground observatory monthly means between 1957 and 2014.

A difficulty with core field studies is that the CMB spectra of the SV and SA signals are blue (i.e. power increases with
SH degree). Although studies have shown encouraging coherence in field maps as SH truncation degree is increased (Holme et al.
2011; Aubert 2018) care is needed when interpreting the resulting fields. Furthermore, it has been argued that the temporal spec-
tra of the core field is such that higher order time derivatives of the field, in particular the SA, may be formally undefined as the
time window used to estimate them goes towards zero (Gillet et al. 2013; Bouligand et al. 2016; Lesur et al. 2017). Pushing to-
wards signal recovery on smaller length scales and shorter timescales, careful appraisal, comprising of resolution analysis and vari-
ance estimation, is required in order to assess limitations of the data and to establish the validity of features of interest in field
reconstruction.

Here we propose another approach to the above problems. We adopt a formalism for estimating the CMB radial field which is not
founded on spherical harmonics, thus is free of signal truncation in the spectral domain, relying instead on spatial averaging of the field.
We investigate the inverse problem using the Backus–Gilbert philosophy of appraisal (Backus and Gilbert, 1968; Backus and Gilbert, 1970;
Parker, 1977; Oldenburg, 1984), which provides the only unique information directly obtainable from the data, thereby enabling us to explore
whether all constructed models contain certain spatial field features of interest. In the case of accurate data, any linear data combination will
give a uniquely specified value of the magnetic field; this is equivalent to an unique spatial average value, determined by the inner product
of an averaging kernel with the true model around some location of interest (Oldenburg 1984; Pujol 2013). In the case of inaccurate data,
a variance is assigned to the estimated average and a trade-off arises between spatial resolution and variance. It should be stressed that the
obtained average will in general not fit the original data, nor is it directly supposed to. Any model obtained (e.g. in the least-squares sense)
which reproduces the data must attain this estimated average. It is relevant to note here that regularized least-square solutions are biased
towards a background model that is often assumed to be zero. A result of this is that rows of the model resolution matrix can sum to less
than 1 (see e.g. Nolet 2008, pp. 277–281). Another undesirable effect of regularization is to produce model covariance estimates that can
be unrealistically small. In contrast Backus–Gilbert estimates are unbiased (the averaging kernels integrate to 1) and the variances of the
estimated averages are meaningful. The Backus–Gilbert philosophy is thus fundamentally different from that of the conventional regularized
inversion construction approach, and it has been applied to a wide range of geophysical topics (e.g. Tanimoto 1985; Masters & Gubbins
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2003; Pujol 2013). In geomagnetism, Whaler & Gubbins (1981) used the Backus–Gilbert formalism to invert for an average vertical field
component at the CMB, taking Gauss coefficients derived from 80 ground observatories as data. Later Whaler (1984) used Backus–Gilbert
theory to estimate null-flux patch integrals of the radial SV component. Modifications to the original Backus–Gilbert method (referred to as
quelling by its authors and mollifying in mathematical literature), resembling the so-called Dirichlet deltaness criterion, have been developed
independently by Louis & Maass (1990) and Pijpers & Thompson (1992) in helioseismology, and termed Subtractive Optimally Localized
Averages (SOLA) by the latter. The SOLA approach estimates the coefficients of linear data combinations by minimizing a norm measuring
the squared distance between the averaging kernel and some chosen target kernel.

Here, we implement the SOLA technique such that at specified locations on the CMB, local spatial averages of the radial field are
calculated, that then allow for appraisal to be carried out. To do this we represent the magnetic potential, which satisfies the Neumann
boundary value problem for the Laplace equation, using the Green’s function method so that the CMB field is related to the observations
via appropriate Green’s functions (e.g. Gubbins & Roberts 1983). A general formalism is presented where the potential is described by
both internal and external source contributions. Section 2 provides a description of the selection criteria and processing procedures for
the data used in our chosen applications. Section 3.1 describes the potential field formulation relating the radial magnetic field at the
source regions to the satellite magnetic data. In Section 3.2, aspects of the SOLA approach to the inverse problem are described, allow-
ing for estimates of the field to be determined as localized spatial averages. Section 3.3 considers our numerical implementation of the
theory and Section 3.4 describes in detail how appraisal of the results can be carried out. Section 4 contains results from applications
based on (i) using Swarm data to estimate the field at the CMB and (ii) using Swarm and CHAMP data to estimate the secular vari-
ation, and the accumulated secular acceleration over chosen time windows, also at the CMB. Discussions and conclusions are given in
Section 5.

2 DATA

We take CHAMP vector magnetometer measurements from 2000 July 19 to 2010 September 1 and Swarm vector magnetometer measurements,
from all three satellites (Alpha, Bravo, Charlie), from 2013 December 1 up to the end of August 2018. We extract samples every 15 s
from low rate (5 Hz for CHAMP and 1 Hz for Swarm) calibrated magnetic field data in the Vector Field Magnetometer (VFM) frame
(in units of nT) provided by the CHAMP MAG-L3 and Swarm Level 1b MAG-L version 0505 data products. The VFM data are then
transformed into an Earth-Centred Earth-Fixed (ECEF) local Cartesian North-East-Centre (NEC) coordinate frame. This is done by data
alignment in which the VFM data are rotated into the Common Reference Frame (CRF) of the star tracker using the Euler rotation angles
as determined by the CHAOS-6-x7 model (an extension of the CHAOS-6 model using Swarm data and ground observation data up until
the end of August 2018, http://www.spacecenter.dk/f iles /magnetic-models/CHAOS-6/). We reject measurements for known disturbed days
where satellite manoeuvres took place and remove gross data outliers for which the vector field components deviate more than 500 nT
from CHAOS-6-x7 field predictions. Based on previous experience (e.g. Olsen et al. 2015; Finlay et al. 2016) we adopt the following
selection criteria: (1) only dark region data requiring the sun to be at least 10◦ below horizon in order to reduced ionospheric field
contamination; (2) for quiet time conditions we require the geomagnetic planetary activity index Kp < 2o; (3) for the magnethospheric
ring current and its Earth induced contribution the RC disturbance index is required to have |dRC/dt| < 2 nT hr–1 (Olsen et al. 2014)
and (4) restricting the merging electric field at the magnetopause such that Em ≤ 0.8 mV m–1 with Em = 0.33v4/3 B2/3

t sin(|�|/2) where

v is the solar wind speed, � = arctan(By/Bz) and Bt =
√

B2
y + B2

z is the magnitude of the interplanetary magnetic field (IMF) having

components in the geocentric solar magnetospheric (GSM) coordinate y–z plane, calculated using 2 hourly means based on 1-min values
of the IMF and solar wind extracted form the OMNI database (http://omniweb.gsfc.nasa.gov); (5) requiring that IMF BZ > 0nT and IMF
|BY| < 6nT in order to reduce substorm auroral electrojet contamination originating from field-aligned currents (Ritter et al. 2004). Finally,
CHAOS-6-x7 model estimates of the crustal field for SH degrees 14–120 and the external magnetospheric (plus induced) field together
with the CM4 (Sabaka et al. 2004) estimates of the ionospheric field and its induced counterpart scaled by the F10.7 solar flux index are
subtracted.

We work with magnetic vector field data as well as with sums and differences of the magnetic field components Bk = k̂ · B(r) in
geographic spherical polar coordinates where (k = r, θ , φ), such that �dk and �dk are data differences and sums, respectively. We construct
along-track (AT) and east–west (EW) differences �dk = (�dAT

k ,�dEW
k ), and data sums �dk = (�dAT

k , �dEW
k ). Note that it is necessary to

consider data sums as well as differences to ensure sufficient information on longer wavelengths. The along-track differences are calculated
using 15 s differences �dAT

k = [Bk(r, t) − Bk(r + δr, t + 15s)]. With a satellite speed of ≈7.7 km s–1 this corresponds to an along-track
distance of 115 km (Olsen et al. 2015). The along-track summations are calculated as �d AT

k = [Bk(r, t) + Bk(r + δr, t + 15s)]/2. The
EW differences are calculated as �dEW

k = [BSWA
k (r1, t1) − BSWC

k (r2, t2)] having an EW orbit separation between the Swarm Alpha (SWA)
and Charlie (SWC) satellites of ≈1.4◦ (corresponding to 155 km) at the equator (Olsen et al. 2015). The EW summation is calculated as
�dEW

k = [BSWA
k (r1, t1) + BSWC

k (r2, t2)]/2. For a particular orbit of Alpha we select the corresponding Charlie data to be the one closest in
colatitude such that |�t| = |t1 − t2| < 50 s.

We adopt error estimates that depend on quasi-dipole (QD) latitude (Richmond 1995) and make use of robust (Huber) weights appropriate
for a long tailed error distribution (Constable 1988). First, using all available data di within bins of 2◦ QD latitude, we determine separately
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Figure 1. Latitude-dependent Huber weighted standard deviations in 2◦ bands (Northern hemisphere having positive QD) for CHAMP data (left-hand figures)
and Swarm data (right-hand figures). Top panels: using vector data, centre using data sums and bottom panels using data differences.

for each field component and their sums and differences for each satellite standard deviations, σ (θQD) according to

σ (θQ D) =
√∑

i wi (εi − μ)2∑
wi

, (1)

where (i = 1, ..., D) denotes the data elements within the bin, εi are the residuals to the CHAOS-6-x7 field predictions for SH degrees 1–13, μ
is the weighted mean residual and wi are the weights wi = min(cw/εi, 1) with a selected breakpoint cw = 1.5 (e.g. Constable 1988). Considering
separately each field component and their sums and differences for each satellite, weighted data error variances for data element n, where
(n = 1, ..., N), were specified as σ 2

w,n(θQ D) = σ 2(θQ D)/wn , where σ (�Q D) is the standard deviation for the QD latitude, data element and
satellite in question from (1), and wn is the Huber weight for data element n. Fig. 1 presents these latitude-dependent, Huber weighted, error
estimates as a function of QD latitude for CHAMP and Swarm vector data as well as data differences and sums. Large data error estimates are
confined to polar region latitudes (i.e. QD latitudes 60◦ to 90◦ and −60◦ to −90◦ for the northern and southern polar regions, respectively).
Data error estimates are larger for the horizontal components exhibiting a noticeable asymmetry between the northern and southern polar
regions, a feature also observed in previous studies (Kotsiaros et al. 2015).
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3 M E T H O D O L O G Y

3.1 Potential field formulation

Measurements of the magnetic field are made at geocentric radius r in the volume V of a spherical shell bounded as rc ≤ r ≤ rm, that is
assumed to contain no magnetization and no electric nor displacement currents. That is, V is bounded by a surface S having the disconnected
parts SC and SM; SC is closed and finite at radius rc and SM is closed and finite at radius rm. In the ECEF frame the magnetic vector field
B of this volume can be then represented by the gradient of a scalar potential function, B = −∇ψ , which fulfils the Laplace equation
∇2ψ = 0 (e.g. Backus et al. 1996). The Laplace equation subject to prescribed values of the outward normal derivative on SC/SM is
known, respectively, as the exterior/interior Neumann boundary value problem. Care is needed for geomagnetists with the notation here; the
’exterior’ problem involves fields produced by internal sources while the ’interior’ problem involves fields produced by external sources.
Because Maxwell’s equations are linear with respect to the sources, the total field is a superposition of fields produced by the two sources,
that is B = BC + BM = −∇ψC − ∇ψM , where ψC here describes the internal (core) sources and ψM describes the external (large-scale
magnetospheric) sources. From the Laplace equation, Green’s identities can be derived from which Green’s second identity allows a solution
for the potential to be formulated. The uniqueness theorem then assures that the solution found is unique up to an additive constant (e.g.
Barton 1989).

In the ECEF geographic spherical polar coordinate system the magnetic field components (k = r, θ , φ) at some observation location, r,
are linked to the radial field at surfaces SC and SM having position vector, r′, which we take to be at the CMB (r′ = rc = 3480 km) and at the
magnetosphere (r′ = rm = 4ra) (where ra = 6371.2 km is the mean Earth reference radius), respectively, by the gradient of the potential

Bk(r, t) = −
∮

SC

∇k NC (r|r′)Br (r′, t)r 2
c dS′

C −
∮

SM

∇k NM (r|r′)Br (r′, t)r 2
mdS′

M

=
∮

SC

GC,k(r|r′)Br (r′, t)dS′
C +

∮
SM

G M,k(r|r′)Br (r′, t)dS′
M , (2)

where dS′
C , dS′

M = sinθ ′dθ ′dφ′. Eq. (2) is a linear system which consists of a sum of two homogeneous Fredholm integral equations of the
first kind, for the unknown radial fields at the CMB and the magnetosphere. NC (r|r′), having absorbed the term r 2

c , is the exterior Neumann
Green’s function and NM (r|r′), having absorbed the term r 2

m , is the interior Neumann Green’s function (Barton 1989, p. 412). The directional
derivatives of the Green’s functions (with respect to r), GC,k(r|r′) and G M,k(r|r′), are known as the data kernels and can be derived using the
chain rule (Gubbins & Roberts 1983). The exterior data kernels (associated with internal sources) are given by

GC,r = −∂ NC

∂r
= 1

4π

h2(1 − h2)

f 3
(3)

GC,θ = −1

r

∂ NC

∂θ
= −1

r

∂ NC

∂μ

∂μ

∂θ
= −1

r

∂ NC

∂μ
[cosθsinθ ′cos(φ − φ′) − sinθcosθ ′] (4)

GC,φ = − 1

rsinθ

∂ NC

∂φ
= − 1

rsinθ

∂ NC

∂μ

∂μ

∂φ
= 1

r

∂ NC

∂μ
[sinθ ′sin(φ − φ′)], (5)

where the derivative with respect to μ is

1

r

∂ NC

∂μ
= h

4π

[
1 − 2hμ + 3h2

f 3
+ μ

f ( f + h − μ)
− 1

1 − μ

]
. (6)

The corresponding interior data kernels (associated with external sources) are given by

G M,r = −∂ NM

∂r
= 1

4π

[
h + h2(1 − h)

f 3

]
(7)

G M,θ = −1

r

∂ NM

∂θ
= −1

r

∂ NM

∂μ

∂μ

∂θ
= −1

r

∂ NM

∂μ
[cosθsinθ ′cos(φ − φ′) − sinθcosθ ′] (8)

G M,φ = − 1

rsinθ

∂ NM

∂φ
= − 1

rsinθ

∂ NM

∂μ

∂μ

∂φ
= 1

r

∂ NM

∂μ
[sinθ ′sin(φ − φ′)], (9)

where the derivative with respect to μ is

1

r

∂ NM

∂μ
= − h

4π

[
2h2

f 3
+ r ′/ f

r ′ − μr + r f )

]
. (10)

In the above expressions we have used h = r′/r, f = R/r, R =
√

r 2 + r ′2 − 2rr ′μ and μ = cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′), γ

being the angular distance. Note that in Gubbins & Roberts (1983) these expressions include the monopole term that was removed by Constable
et al. (1993) but we retain this terms as it proves useful when constructing localised Backus–Gilbert averaging kernels (see Section 3.2).
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1906 M.D. Hammer and C.C. Finlay

Figure 2. Sensitivity of satellite measurements to the CMB field versus angular distance from target point as determined by data kernels using an observation
altitude of robs = ra + 400 km. Top panel: exterior data kernels plotted using a source radius r′ = rc. Bottom panel: interior data kernels plotted using a source
radius r′ = 4ra.

3.2 Modified Backus–Gilbert method

Applying the Backus–Gilbert formalism to the linear system (2), we determine an estimate, B̂r , of the radial field as a spatial average that is
optimally localized around a particular location and time of interest (r0, t0) = (rc, θ0, φ0, t0). The estimate is an inner product of the field of
interest and some averaging kernel, and can be written as a linear combination of the data (Backus & Gilbert 1968, Backus & Gilbert 1970)

B̂r (r0, t0|rn, tn) =
N∑
n

qn(r0, t0)dn(r, t), (11)

where (n = 1, ..., N) is the total number of data used over the specified time span. Data dn for a particular position rn at times tn and field
component k, are related to the radial field Br (r′, t) at the CMB and the magnetosphere as in (2), but we also allow the field at the core surface
to be time-dependent by adopting a first order Taylor expansion assumed valid close to a reference time t0

dk(rn, tn) =
∮

SC

G∗
C,k(rn|r′)Br (r′, tn)dS′

C +
∮

SM

G∗
M,k(rn|r′)Br (r′, tn)dS′

M

≈
∮

SC

G∗
C,k(rn|r′)

[
Br (r′, t0) + Ḃr (r′, t0)�tn

]
dS′

C +
∮

SM

G∗
M,k(rn|r′)Br (r′, tn)dS′

M , (12)

where G∗
k (rn|r′) are the appropriate data kernels for the vector field components or their sums and differences. The time difference to some

given reference time tref is �tn = tn − tref. Here we select the reference time to be the target time, that is tref = t0. The first order Taylor expansion
adopted is sufficient given the short time windows considered here, more complex time parametrizations are also in principle possible. Fig. 2
presents examples of the exterior and interior data kernels for vector data denoted {GC, k; GM, k}, data sums denoted {∑

GC, k;
∑

GM, k} and data
differences denoted {�GC, k; �GM, k}, using an observation altitude above ground of 400 km. The plots illustrate how a given measurement
samples the CMB and the magnetosphere ; for instance the radial data dr samples the radial core field, via GC, r, most strongly directly below
the observation site while the radial difference �dr samples the radial core field, via �GC,r = [GC,r (r1|r′) − GC,r (r2|r′)], most strongly at
an angular distance of approximately 20◦ having no sensitivity directly beneath the observation site.
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Local averages of the CMB magnetic field 1907

Inserting (12), via the chosen data, into (11), the estimate at target time t0 can be written as

B̂r (r0, t0|rn, tn) =
∮

SC

N∑
n

qn G∗
C,k(rn |r′)Br (r′, t0)dS′

C +
∮

SC

N∑
n

qn G∗
C,k(rn |r′)Ḃr (r′, t0)�tndS′

C

+
∮

SM

N∑
n

qn G∗
M,k(rn|r′)Br (r′, tn)dS′

M . (13)

The weighting coefficients, qn, define spatial averaging kernels that are linear combinations of the data kernels

KC (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
C (rn|r′) (14)

KĊ (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
C (rn|r′)�tn (15)

KM (r0, t0|r′, t) =
N∑
n

qn(r0, t0)G∗
M (rn|r′), (16)

where the notation KĊ highlights the inclusion of the time difference �tn from the Taylor expansion to the data kernel defining G∗
Ċ

= G∗
C�tn .

Thus the estimated radial field consists of spatial integrals over the source spheres of the true field convolved with averaging kernels

B̂r (r0, t0|rn, tn) =
∮

SC

KC (r0, t0|r′, t)Br (r′, t0)dS′
C +

∮
SC

KĊ (r0, t0|r′, t)Ḃr (r′, t0)dS′
C

+
∮

SM

KM (r0, t0|r′, t)Br (r′, t)dS′
M . (17)

Varying the coefficients, qn, changes the shape of the averaging kernels. Incorporating the time differences in the averaging kernel may be
thought of as assigning temporal weights to that kernel. These weights may act in such a way as to produce SV field estimates; for instance,
selecting data from a time window of 2 yr centred on the reference time will assign equal weights having opposite signs relative to t0 such
that field differences are computed. In order for the estimate to represent a meaningful physical average and to avoid a biased result, a
normalization of the averaging kernels is implemented requiring a unimodular constraint to be fulfilled∮

SC

KC (r0, t0|r′, t)dS′
C +

∮
SC

KĊ (r0, t0|r′, t)dS′
C +

∮
SM

KM (r0, t0|r′, t)dS′
M = 1. (18)

In practice, we want the term of interest to integrate to one and the other terms to be zero. Seeking the radial main field, data from narrow time
windows are used such that the second term is neglected and the third term should integrate to zeros. Seeking an estimate of the temporal
radial field change during a selected time window, the first and last terms should integrate to zero while the second term should integrate
to one. It should be noted that the monopole term was retained in (3–10). This is necessary in order to prevent the averaging kernel from
integrating to zero in violation of the unimodular constraint (Whaler 1984).

A generalized formulation of the Backus–Gilbert method, known as Optimally Localized Averages (OLA) involves minimizing some
suitable measure of the averaging kernel (Pijpers & Thompson 1992; Pujol 2013)∮

S
J (r0)[K(r0|r′) − T (r0|r′)]2dS′, (19)

where J is a weight function and T is a target function. Selecting (J = 12(r − r0)2; T = 0) corresponds to the original Backus–Gilbert
approach of minimizing a product of the weight function and averaging kernel, also known as Multiplicative OLA (MOLA). The Subtractive
OLA (SOLA) approach, pioneered and publicized in a series of papers by Pijpers & Thompson (1992, 1994), instead uses a norm measuring
the squared distance between the averaging kernel, K, and some chosen target function, T 	= 0, taking J = 1. The advantage of using SOLA
over the MOLA, is that significant computational time can be saved when performing calculation of multiple estimates, see Section 3.3 for
more details. For the target kernel, T , we choose a Fisher function on a sphere using the angular distance �(r0|r′)

T (�) = κ

4πsinhκ
eκcos�, (20)

where κ is the width of the distribution (Fisher 1953). Here cos � = cos θ0 cos θ ′ + sin0 θ sin θ ′ cos(φ0 − φ′), � being the angular distance
between points r0 and r′ on the sphere. We enforce that T (�) integrates to one for the term of interest in (18) and zero for the remaining
terms. Following the SOLA approach, we define an objective function to be minimized, which comprises terms involved in the determination
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1908 M.D. Hammer and C.C. Finlay

of the estimate

� =
∮

SC

[KC (r0|r′) − TC (r0|r′)]2dS′
C +

∮
SC

[KĊ (r0|r′) − TĊ (r0|r′)]2dS′
C

+
∮

SM

[KM (r0|r′) − TM (r0|r′)]2dS′
M + λ2qT Eq, (21)

where λ (units of [nT−1]) is a trade-off parameter and E is the data error covariance matrix that is necessary because the real geophysical
problem involves noisy data. Which terms to include in the objective function depends on what we seek to estimate; for instance estimating
the radial field over a time window short enough that field time-dependence can be ignored, means that the second term is not included. On
the other hand estimation of the SV involves retaining the second term as well while setting the target kernels TC , TM to zero. The diagonal
elements of the data error covariance matrix are constructed from a combination of the QD latitude-dependent data error estimates, and Huber
weights, wn appropriate for a long-tailed error distribution (see Section 2)

σ 2
w,n(θQ D) = σ 2(θQ D)

wn
(22)

Eln = σ 2
w,ne

−�tln
τ , (23)

where the indices (l, n = 1, ..., N), �tln = tl − tn are data time differences and τ is the serial error correlation time set to 600 s based on the
findings of Lowes and Olsen (2004). We note that the covariance matrix is symmetric (i.e. Eln = Enl) and positive definite. When deriving main
field estimates using data taking along the satellite tracks at a sampling rate of 15 s, see Section 4.1, we multiply variances by a factor sinθ ,
where θ is geographic co-latitude, to account for there being more data close to the poles and in order to simulate an equal-area distribution
(Olsen et al. 2014). For estimates of the SV, see Section 4.2, data are selected such that a good global coverage is obtained overthe chosen
time window; in this case the differences in the data time are much longer than the correlation time and we are able to neglect the temporal
correlation.

3.3 Numerical implementation

The minimization of the objective function (21) is performed by taking the derivative with respect to qn,and requiring that ∂�/∂qn = 0.
Discretizing the integrals using a quadrature rule, the resulting set of equations subject to the constraint (17) may be written in the following
form (Larsen & Hansen 1997)[

K
C

W KT

C
+ K

Ċ
W KT

Ċ
+ K

M
W KT

M
+ λ2E

]
q(r0) = K

C
WtC (r0) + K

Ċ
WtĊ (r0) + K

M
WtM (r0) (24)

subject to
[
eT

p W KT

C
+ eT

p W KT

Ċ
+ eT

p W KT

M

]
q(r0) = 1. (25)

Here we define K matrices of size N × M, where M is the size of the quadrature grid, such that

(K)np =
[
G∗

C,n(rp), G∗
Ċ,n(rp), G∗

M,n(rp)
]
, n = 1, ..., N p = 1, ..., M (26)

and W is a diagonal matrix of the integration points of size M × M

(W)pp = l p, p = 1, ..., M (27)

and we have introduced the three vectors: ep = (1, ..., 1)T , t(r0) having elements (t(r0))p = T (r0|rp) and k(r0) having elements (k(r0))p =
K(r0|rp) for p = 1, ..., M. The discretized averaging kernel is calculated as k(r0) = KT q(r0). The required angular integrations over the CMB
and magnetosphere are performed numerically using Lebedev angular quadrature weights lp on a grid rp = (rc, θp, φp) (Lebedev & Laikov
1999; Parrish 2010) that allow efficient calculation of integrals on a sphere∫

S
F(r′)dS′ ≈

M∑
p=1

l p F(rp). (28)

We found that using M = 1730 Lebedev points, corresponding to SH degree and order 71, were sufficient to perform the integrations to the
required accuracy. We solve the normal equations for the coefficients, q = (q1, ..., qN ), using a Lagrange multiplier ν as proposed by Pijpers
& Thompson (1994)(

K
C

W KT
C

+ K
Ċ

W KT
Ċ

+ K
M

W KT
M

+ λ2E K
C

Wep + K
Ċ

Wep + K
M

Wep

eT
p W KT

C
+ eT

p W KT
Ċ

+ eT
p W KT

M
0

) (
q(r0)

ν

)
=

(
K

C
WtC (r0) + K

Ċ
WtĊ (r0) + K

M
WtM (r0)

1

)
.
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Local averages of the CMB magnetic field 1909

The first matrix term on the left-hand side is independent of estimate position r0. It therefore only needs to be computed once, significantly
reducing the amount of computation required for producing a number of estimates at different locations. The linear system is solved for the
vector containing (q1, ..., qN, ν), then the averages, the averaging kernels and the uncertainty estimates (variances) are computed. We note
that alternative LSQR solution schemes could also be used to solve such systems (Larsen & Hansen 1997; Zaroli 2016). When estimating
the radial MF at a given location, data from within a month is used, such that the term involving K

Ċ
is neglected and the target kernel terms

tĊ (r0), tM (r0) are set to zero. When estimating the radial SV the target kernel terms tC (r0), tM (r0) are set to zero.

3.4 Appraisal of the constructed averages

A primary concern of the Backus–Gilbert method is the appraisal of solutions, that is to attain information regarding the resolvability offered
by the magnetic field observations. A crucial insight is that the estimated average field is the only unique information offered by the data;
that is, the estimated average along with the averaging kernel constitutes our knowledge of the field in the vicinity of the target location
(Oldenburg 1984; Parker 1994). Appraisal typically consists of obtaining the averaging kernel, often described in terms of its width, together
with the uncertainty of the average. Here, we define the kernel width to be the angular distance between points at which the averaging kernel
reaches zero amplitude moving away from its maximum value (note that in contrast the original Backus–Gilbert method used the width as
the full width at half maximum). We calculate the variance, σ̂ 2(r0, t0), of the estimate of the radial field at location (r0, t0) propagated from
the data error covariance matrix by

σ̂ 2(r0, t0) =
N∑

l,n

ql Elnqn = qT Eq. (29)

A family of solutions with different levels of trade-off between fitting the target function and obtaining an estimate with low variance is
obtained; a small λ corresponds to fitting only the target function which decreases the width of the averaging kernel increasing the spatial
resolution but at the expense of the statistical reliability (i.e. yielding a large variance and error magnification), while increasing λ broadens
the averaging kernel lowering the spatial resolution, but produces a more reliable estimate (smaller variance). Note that contamination from
averaging kernel side lobs and from leakage of co-estimated fields have not been included in the variance estimates described here.

4 R E S U LT S

Here we demonstrate our geomagnetic SOLA method in two applications: estimation of the radial component of the core field (Section 4.1)
and estimation of the radial component of the secular variation (Section 4.2) at the CMB. Furthermore, we present computations of the change
in the radial secular variation (i.e. the accumulated SA) from differences in SV estimates.

4.1 Application to the main field

We begin by illustrating the SOLA method by determining estimates of the radial core field at a sequence of target locations at the CMB
using sums and differences of Swarm field measurements taken from March 2017 using data with a 15 sec sampling rate. Working with sums
and differences of the vector field, the data vector is d = {�dr , �dr ,�dθ , �dθ , �dφ,�dφ}. The data kernels are then constructed as

G∗ = {
�GC,r , �GC,r , �GC,θ , �GC,θ , �GC,φ, �GC,φ

}
,

where �GC,k = [GC,k(r1|r′) − GC,k(r2|r′)] and �GC,k = [GC,k(r1|r′) + GC,k(r2|r′)]/2 are data kernels for the differences and sums, respec-
tively with (k = r, θ , φ). Focusing solely on estimating the radial component of the core field and ignoring time-dependency, the second term
is omitted from the objective function (21) and the constraint (18). Note that in this application, using magnetic data sampled every 15 sec,
we have included an exponential serial data error covariance model and the equal area weighting factor as described in Section 3.2. In Fig. 3
we investigate the behaviour of the averaging kernel, KC , as a function of the target kernel width parameter κ and the trade-off parameter
λ by considering a series of example averaging kernels at QD latitude 0◦ and longitude −168◦. The plots provide the error estimate σ̂ for
the field average and the kernel width in degrees. Increasing κ (i.e. going from left to right in the plot columns) causes the kernel to become
narrower while increasing its amplitude and the variance. However, increasing κ induces more oscillations in the kernel structure around the
target location. Increasing λ (i.e. going from top to bottom in the plot rows) decreases the kernel amplitude and increases its width, reducing
the side lobe oscillations. In order to obtain a good resolution it is desirable to select a narrow, high amplitude, kernel, while at the same time
trying to keep the side lobe oscillations to a minimum. The kernels are all well behaved showing only minor side lobes compared to the kernel
amplitudes, hence we are motivated to push towards a high κ value. In general, we found that increasing the amount of data tends to decrease
the width of the averaging kernel and lower the variance.

Next we consider how the SOLA method performs at four different QD latitudes: (0◦, 35◦, 70◦, 85◦). The reason for choosing these
QD latitudes is to investigate the performance of the SOLA method in regions of external field disturbance with different amplitudes and
different data coverage; in the Arctic region QD latitudes 70◦ and 85◦ are located approximately within and poleward of the auroral oval,
respectively, while QD 35◦ represents mid-latitudes and QD 0◦ represents low-latitudes. The left-hand plot in Fig. 4 presents the local error
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1910 M.D. Hammer and C.C. Finlay

Figure 3. Main field application using data from March 2017 shown at target location with QD latitude 0◦: behaviour of the averaging kernel as a function of
Fisher function width κ and trade-off parameter λ. The value of κ increases from the left column having κ = 100 to the right column having κ = 600. The
value of λ increases from the top row of λ = 10−6 nT−1 to the bottom row having λ = 10−3 nT−1. In each plot the estimated uncertainty on the average, σ̂

,and kernel width in degrees are stated.

Figure 4. Main field application to the minimization problem eq. (21) using data from March 2017 for various target locations at QD latitudes 0◦, 35◦, 70◦
and 85◦. Left-hand panel: local average error estimate σ̂ (r0) versus trade-off parameter λ. Right-hand panel: local average error estimate σ̂ (r0) versus main
field averaging kernel width in degrees.

estimate versus the trade-off parameter λ.We find the size of the error estimates are of similar independent of the QD latitude for the various
trade-off parameters. Hence, we may use the left-hand plot in Fig. 4 to pinpoint a suitable λ that yields more or less uniform error estimates
for regional or global collections of point estimates. The right-hand plot in Fig. 4 presents the local error estimate versus the averaging kernel
width in degrees, and shows a characteristic L-curve shape (the curves for latitudes 0◦ and 35◦ are coinciding). Here we note a right-shift
of the L-curves as the QD latitude increases; for each curve the plot clearly illustrates how a low error estimate is associated with a large
averaging kernel width and vice versa. The low and mid-latitude kernel widths are seen to be significantly smaller than in the auroral regions.
This behaviour is expected since the data error estimates are larger in the auroral regions; hence to obtain the same variance the averaging
kernel needs to become broader. Based on the information contained in Figs 3 and 4 we have chosen to use a Fisher’s parameter κ = 600 and
trade-off parameter λ = 1 × 10−4 nT−1 in the following calculations of the main field.

The top left plot in Fig. 5 presents a global collection of such radial field estimates at the CMB with a 1◦ spacing. Associated plots
present the related error estimates (top right), the kernel widths (bottom left) and the data distribution under consideration (bottom right). We
observe that the radial field patches and their amplitudes are very similar to those seen in the CHAOS-6-x7 field model predictions for SH
degrees 1–13. Error estimates remain homogeneous as expected from Fig. 4. Kernel widths are seen to be more or less uniform at non-polar
latitudes showing coherence with the data distribution, while distinct behaviour of the kernels is found in the polar regions; in particular, a
striking region of increased kernel width coinciding with the auroral oval is observed as expected given the data error estimates shown in

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1901/5238726 by D

TU
 Library - Technical Inform

ation C
enter of D

enm
ark user on 09 January 2019

215



Local averages of the CMB magnetic field 1911

Figure 5. Main field application using March 2017 Swarm data sums and differences using κ = 600 and λ = 10−4 nT−1 showing: (a) radial MF estimates at
the CMB for a global 1◦ spaced collection of target locations, (b) uncertainty estimates for each target point, (c) averaging kernel widths for each target point
and (d) Swarm data distribution.

Fig. 1. On the CMB, at radius rc, the wavelength λn associated with a particular SH degree n is λn = (2πrc)/n (1◦ ≈ 61 km). Averaging
kernels having widths of ≈30◦ correspond approximately to SH degree 12. Hence, the resolution we obtain for the core field is comparable
to that provided by conventional core field models, but note that each local estimate is the result of an individual inversion.

4.2 Application to the secular variation and accumulated secular acceleration

Next we illustrate an application of the SOLA method to the radial field secular variation at the CMB using a time window of 2 yr of Swarm
vector field data from 2015.0 to 2017.0. Here we use only the radial field component of the satellite data in order to reduce external field
contamination at high latitudes and in an effort to maximize the data coverage for a given number of data, such that the data vector is here
d = {dr }, and the data kernels are G∗ = {GC, r} . For 2 month time windows starting from 2015.0, we constructed a regularly spaced global
distribution by randomly selecting data in time (within the 2 month window) on an equal area grid. A data set covering the period 2015.0
to 2017.0 was then generated by accumulating these 2 month data sets from the entire 2 yr, resulting in a total of 43 540 radial field data
points. Here, serial error correlation in the data was not accounted for as data were selected randomly from within the 2 months. We start by
considering the L-curve behaviour for the same QD positions investigated in the MF case. Fig. 6 presents the local error estimate versus the
trade-off parameter λ (left-hand plot) and versus the averaging kernel width in degrees (right-hand plot). As in the MF case the error estimates
are seen to be independent of location for a given λ value; for a given value of λ a corresponding σ̂ (r0) is fixed and we may read off the value
of the kernel width at a given QD latitude. Furthermore, in both plots we mark blue, red and green dots for selected λ values studied in more
detail in Figs 7 and 8. Here, we consider in detail three different λ values in order to investigate the resolvability of the SV with different
choices of the average kernel. Fig. 7 shows examples of the averaging kernels obtained using λ = 2.5 × 10−4 nT−1 (the blue dot in Fig. 6)
top left-hand plot, λ = 5 × 10−4 nT−1 (the red dot in Fig. 6) top right-hand plot and λ = 5 × 10−3 nT−1 (the green dot in Fig. 6) bottom plot,
having widths of ≈30◦, 33◦ and 42◦; comparing the three kernels it is clear that using λ = 2.5 × 10−4 nT−1 results in higher amplitudes and
a narrower averaging kernel. Fig. 8 presents a global collection of radial field SV estimates at the CMB having a 1◦ spacing on the left and
associated kernel widths on the right, here shown for λ = 2.5 × 10−4 nT−1 in the top plots, λ = 5 × 10−4 nT−1 in the centre plots and λ = 5
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1912 M.D. Hammer and C.C. Finlay

Figure 6. SV radial field application to the minimization problem eq. (21) using 2 yr of Swarm data between 2015.0 and 2017.0 having κ = 600. Plots showing
σ̂ (r0) trade-off curves at various target locations for QD latitudes 0◦, 35◦, 70◦ and 85◦ as a function of λ (left-hand panel) and kernel width (right-hand panel).

Figure 7. SV radial field application using 2 yr of Swarm data between 2015.0 and 2017.0 having κ = 600. Plots show example kernels at target location QD
latitude 0◦ for : (a) λ = 2.5 × 10−4 nT−1, (b) λ = 5 × 10−4 nT−1 and (c) λ = 5 × 10−3 nT−1 marked with blue, green and red dots in Fig. 6, respectively.
The green dot in the map locates the kernel centre. Contour interval is 2.0. Negative contours are dashed.

× 10−4 nT−1 in the bottom plots. The effect of changing λ, and thus the averaging kernel, is clearly seen in the these plots: the field structures
become smeared out as the kernel width is increased (i.e. going from top plots to bottom plots), decreasing the amplitude while a decrease in
the associated error estimates is also observed. The kernel width increases towards the polar regions resembling the results in the MF case
study, peaking at areas matching those of the auroral oval.

Remembering that our method involves no explicit spectral regularization of higher spatial frequencies of the signal, it is interesting to
compare our global SV estimates to SV field predictions of the CHAOS-6-x7 model. Though the method, as well as the data and the data
selection criteria, are not the same in the two approaches, similar SV structures can clearly be identified; in particular high amplitude features
appearing at low latitudes stretching over a longitudinal band of ±90◦, lower activity in the pacific region (at least for the broader averaging
kernels) and a sequence of high latitude patches encircling the north pole. Though decreasing kernel width may cause noise to become more
influential in the average estimate, in particular at mid-latitudes and polar regions, a clear change in the eastern pacific region is evident for λ
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Figure 8. SV radial field application using 2 yr of Swarm data between 2015.0 and 2017.0 showing a global collection of target points (1◦ spacing) having κ

= 600. Results shown are: (a and b) using λ = 2.5 × 10−4 nT−1, (c and d) using λ = 5 × 10−4 nT−1 and (e and f) using λ = 5 × 10−3 nT−1.

= 2.5 × 10−4 nT−1, which is interesting as recent SH based field models find distinct SA features in this region (Chulliat et al. 2015; Finlay
et al. 2016).

Fig. 9 reports the radial SA computed as the accumulated change in the radial SV between years 2015 to 2017, 2007 to 2009 and 2005
to 2007. To determine this, the SV in 2017.0 was computed from 2 yr of data (as above) using λ = 5 × 10−3 nT−1; that is, seeking SV maps
having detail levels as given in Fig. 8(e). In a second step, the averaging kernels determined using this value of λ, were used as the target
kernels for the SV in 2005, 2007 and 2015.0 in order to ensure the quantities to be differenced have been averaged in the same fashion. Finally
the accumulated SA was computed as the difference in SV between 2005 and 2007, respectively 2015 and 2017. Comparing such maps of the
accumlated SA with the SA predictions of the CHAOS-6-x7 model up to SH degree 10, the SOLA maps agree well with the CHAOS-6 model
predictions. Even small scale field features can be found in both models, though the high latitude SA signal is perhaps not as prominent in
the SOLA maps. Thus the SA predictions of regularized SH based models up to SH degree 10 are essentially reproduced by our approach.
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Figure 9. SA computed as accumulated change in radial SV at the CMB from: (a) years 2015−2017, (c) years 2007–2009 and years 2005–2007 using λ =
5 × 10−3 nT−1. Plots (b), (d) and (f) show the CHAOS-6-x7 model SA predictions truncated at SH degree 10 for years 2016, 2008 and 2006 at the CMB,
respectively.

The evolution of the radial SA at the CMB is shown in Fig. 10, presenting time-longitude plots along the geographic equator as
determined using our approach. Here we have experimented by looking at 1 and 2 yr SV differences derived from data windows sliding in
steps of 1 and 2 month s, respectively. The reason for not showing results prior to 2004 in plots (c) and (d) is that using a 1 month sliding
time window causes a severe lack of data during this time with our data selection criteria. The left-hand plots show the SA evolution at the
equator while the right-hand plots show corresponding error estimates. From plots (a) and (c) coherent evolving structures are observed. This
is important as it illustrates the ability of our method to track temporal changes. As can be seen, much higher temporal resolution is gained
in (c) using 1 yr SV differences. Associated uncertainty estimates show an increase in amplitude between 2004 and 2005, which is likely
related to there being less data at this time. Striped looking patterns in the error estimates can be seen, which are probably related to the
regular spatial grid of the selected data . This behaviour may be reduced by seeking a different data grid setup. The SA patterns observed in
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Figure 10. Time-longitude plot of the accumulated SA along the geographical equator at the CMB. Showing (a) Difference of SV estimates 2 yr apart, each
derived over a 2 yr window, windows moving in 2 month steps, and derived using λ = 5 × 10−3 nT−1, (b) uncertainty estimates for plot (a), (c) Difference of
SV estimates 1 yr apart, each derived over a 1 yr window, windows moving in 1 month steps, again using λ = 5 × 10−3 nT−1, (d) uncertainty estimates for
plot (c).

plots (a) and (c), correspond qualitatively to those found in the CHAOS-6 model and in previous studies (Chulliat et al. 2015); in particular
the prominent features appearing between 2005 and 2009 in the longitude band from −100◦ to 20◦.

5 D I S C U S S I O N A N D C O N C LU S I O N

We have presented an application of the modified Backus-Gilbert formalism called SOLA, originally developed in helioseismology, to
determine local average estimates of the core-generated magnetic field and its time derivatives. These estimates are in good agreement with
maps of the CMB radial MF, SV and SA derived using conventional spherical harmonic modelling techniques.

The Backus–Gilbert formalism offers a useful alternative approach to retrieving information on the geomagnetic field in comparison to
conventional field modelling; instead of relying on a truncated and regularized spherical harmonic representation being downward continued
to the CMB, we average over the field directly at the CMB and thus obtain unbiased estimates. An important advantage of our method is that
it automatically provides the spatial averaging kernels and variances associated with the estimates thus allowing for a detailed appraisal of
the field averages; a range of well-characterized solutions can be realized by varying the target kernel width via the trade-off parameter λ; it
is desirable to have a low target width while at the same time having a sufficiently low uncertainty estimate for the field averages. In contrast
it is not straight-forward to provide variances for point estimates at the CMB field derived from truncated and regularized SH models, and
workers rarely compute the associated spatial averaging kernels. An advantage of SOLA compared to regularized least-squares inversion is
that the variance estimates are not artificially suppressed. The Backus–Gilbert estimate can in some circumstances be closer to the true value
than the least-squares solution, provided the quantity being estimated (in our case the radial field at the CMB, Br (r′, t)) is sufficiently smooth
(Parker 1977; Pujol 2013). Although the Backus–Gilbert approach was not originally intended for global model construction, the union of a
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collection of point estimates has been considered by some authors to constitute a sensible approach (e.g. Parker 1994; Nolet 2008). In principle
a trade-off curve could be calculated for each location under consideration. We have instead selected one value for the trade-off parameter for
all locations, so the variances of the estimates and the kernel widths can vary with position reflecting for example uneven data distribution
or enhanced data errors in regions such as the auroral zone. Although the kernel width provides only a very crude summary of the actual
averaging scale (Parker 1994), for the satellite data considered here with their good global coverage, it is found to be a useful diagnostic. Our
averaging kernels are generally well behaved when using the same trade-off parameter for all locations, having averaging kernels without
significant side lobes (amplitudes are less than 10 per cent of the kernel peak amplitude). The possibility also exists of pre-specifying other
target kernels in order to estimate a particular form of spatial average; here we have chosen for simplicity to focus on a Fisher distribution
but other possibilities including for example a disc boxcar averaging function are possible depending on the desired application.

We obtained stable and spatially coherent local estimates of both the MF and SV at the CMB. Using 2 yr of data it is possible to make
stable SV maps at the CMB with averaging widths as small as 30◦, a wavelength similar to a SH representation up to degree 12. The SV is
thus known at this wavelength without regularization. Motivated by this we went a step further and determined the accumulated SA between
two epochs by differencing the SV estimates for the epochs. The resulting maps of radial SA at the CMB were found to be in good agreement
with the CHAOS-6-x7 field model truncated at degree 10. By varying the width of the spatial averaging kernel, and observing the change in
the resulting maps and their variance estimates, we can directly appraise how well the accumulated SA is known, something that has up to now
been difficult to assess in regularized field models. We carry out our SA estimates locally, so we are able to find the optimal spatial averaging
width for a specific location and time window of interest, without worrying that the inversion might be unstable due to high amplitude noise
in some other region. This enables us to study in detail rapid field changes in particular locations. Looking at time-longitude plots of the
accumulated SA at the equator, we have explored the coherence of the accumulated SA as the width of the averaging kernel is decreased, and
the time window is shortened. We find encouraging coherence at the equator down to an averaging width of 30◦, and for accumulated SA
within 1 yr based on 1 yr time windows for the SV. This may be a sign that we are unveiling a coherent underlying signal, albeit one that has
more power on shorter wavelengths (see also Holme et al. 2011; Aubert 2018). Note that since no spectral truncation is carried out, higher
spatial frequencies in our estimates may have a different appearance than that found in SH based models such as CHAOS-6 where temporal
regularization is known to heavily influence the SA above SH degree 9so the SA is often analysed by truncating or filtering above this degree
(e.g. Chulliat et al. 2015; Finlay et al. 2016). As an example, considering the accumulated SA at the equator derived from 1 yr differences
in the SV estimates, we find a distinctive ’cross-over’ feature in mid 2007 at 25◦ West. This involves two adjacent and oppositely directed
radial SA features that change sign within a year. Estimates of the accumulated SV made using longer time windows show a more gradual
evolution, and perhaps westward motions, as a result of smearing between patches on either side of the cross over. The SA cross-over is more
clearly seen for shorter time windows, confirming hints at its presence in models such as CHAOS-6 (Chulliat et al. 2015). The origin of such
features, that may involve a rapid change in sign of the azimuthal core flow acceleration (Gillet et al. 2015) may reveal new aspects of core
dynamics, so it is important that their characteristics are robustly determined. The method presented here is well suited to such investigations.

One shortcoming of the SOLA method at present is that it requires the solution of a linear system of size (number of data x number of
data). For large numbers of data locations, as are available from satellite missions, this can becomes prohibitive, especially if one wishes to
consider single satellite and inter-satellite sums and differences for each vector field component at each location. As the results presented
here show, the problem is not insurmountable, particularly if one is only interested in field estimates within a short time window, or is willing
to perform data decimation in order to obtain a data set with good spatial and temporal coverage. If we wish to push towards higher local
resolution in space and time, it is clear that using data sets that are as large as possible can be an advantage. Despite this, the major source
of error in the present determination of the core field is probably the incomplete separation of crustal and ionospheric signals. Since our
method is based on a potential field formulation, it is unable to perform such a separation with data from satellite altitude alone; bias from
incompletely separated non-core field sources cannot be excluded in the maps we have presented and is difficult to quantify. Including data
from several altitudes will help, as will experiments carried out for different external field selection criteria.

Having established here the utility of the SOLA approach in geomagnetism, there are now a number of interesting possibilities for future
applications. First, as the time-series collected by the Swarm mission lengthens, there will be more and more rapid field evolution events
that can be studied in detail. The ability to appraise inferred core field features will be especially important as we seek to study the temporal
evolution of small scale SA signals on shorter and shorter timescales, in an effort to understand the underlying geophysical processes. Moving
further back in time, the method could be applied to data from other satellite missions such as DMSP (Alken et al. 2014) or Cryosat to try to
fill the gap between the CHAMP and Swarm era. The method could be also be applied to ground observatory magnetic data; this would be of
particular interest in regions such as Europe, North America and Australia where there is excellent coverage with ground-based observatories.
This would provide an opportunity to study the local field evolution at high resolution and provide an important means of validating results
obtained with satellite data. The method could also be applied to produce local estimates at locations other than the CMB, for example
on a grid at mean satellite altitudes, as an alternative method of producing so-called virtual observatories (Mandea & Olsen 2006). Field
estimates on regular grids with suitable averaging and variance information would certainly be well suited for data assimilation applications.
Looking further afield, it may also be possible to apply the method in archeomagnetism and palaeomagnetism where the data coverage is
even more sparse, and appraisal information would again be valuable. As an example, perhaps the SOLA method could be used to study what
is happening at the CMB during archeomagnetic intensity spike events (Ben-Yosef et al. 2009; Shaar et al. 2016; Korte & Constable 2018),
although this would require linearization approaches in order to deal with non-linear intensity and directional data (e.g. Snieder 1991). The
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ability to study core field features directly from observations, independent of regularized spherical harmonic field models or other a priori
constraints, seems to be attractive for a broad range of applications.
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S U M M A R Y
We jointly invert for magnetic and velocity fields at the core surface over the period 1997–2017,
directly using ground-based observatory time-series and measurements from the CHAMP
and Swarm satellites. Satellite data are reduced to the form of virtual observatory time-
series distributed on a regular grid in space. Such a sequential storage helps incorporate
voluminous modern magnetic data into a stochastic Kalman filter, whereby spatial constraints
are incorporated based on a norm derived from statistics of a numerical geodynamo model.
Our algorithm produces consistent solutions both in terms of the misfit to the data and the
estimated posterior model uncertainties. We retrieve core flow features previously documented
from the analysis of spherical harmonic field models, such as the eccentric anticyclonic gyre.
We find enhanced diffusion patterns under both Indonesia and Africa. In contrast to a steady
flow that is strong under the Atlantic hemisphere but very weak below the Pacific, interannual
motions appear evenly distributed over the two hemispheres. Recovered interannual to decadal
flow changes are predominantly symmetrical with respect to the equator outside the tangent
cylinder. In contrast, under the Northern Pacific we find an intensification of a high latitude
jet, but see no evidence for a corresponding feature in the Southern hemisphere. The largest
flow accelerations that we isolate over the studied era are associated with meanders, attached
to the equatorward meridional branch of the planetary gyre in the Eastern hemisphere, that are
linked to the appearance of an eastward equatorial jet below the Western Pacific.

Key words: Core; Magnetic field variations through time; Inverse theory; Probabilistic fore-
casting.

1 I N T RO D U C T I O N

Inferring information on the motions of the liquid outer core of
the Earth requires properly separating the numerous sources of
observed magnetic fields (geodynamo, crustal magnetization, iono-
spheric and magnetospheric currents and their Earth induced coun-
terparts). To circumvent some of the leakage issues, magnetic field
models are often built using regularizations, to ensure spectral con-
vergence of the core field and its time variations. This prevents
a proper assessment of a posteriori errors on model coefficients.
When these are used as data in reconstructions of the core dynam-
ics, it can lead to biased estimates. Furthermore, by proceeding in
successive steps (to a field model and then on to the core flow), one
loses information.

From the early 1990s alternative avenues of research arose,
through which field models were built under topological constraints
derived from physical insights. Constable et al. (1993) and O’Brien
et al. (1997) proposed algorithms to apply, on single epoch pairs of
models, magnetic flux conservation conditions at the core–mantle

boundary (CMB) that are appropriate assuming that magnetic diffu-
sion is negligible. Along the same lines, Jackson et al. (2007) added
a constraint on the radial vorticity. They showed that it was possible
for a magnetic model to satisfy both these topological conditions,
and the constraint from magnetic observations, from the late 19th
century onwards.

Conversely, Chulliat & Olsen (2010) tested the validity of
the frozen flux hypothesis using data from Magsat, Oersted and
CHAMP satellite missions. They found an increase of the data
misfit in some areas, potentially suggesting local failures of the
constraint. Such studies motivated the coestimation, from magnetic
observations, of both the field and the flow, imposing with a weak
formalism the frozen flux radial induction equation at the CMB
(Lesur et al. 2010; Wardinski & Lesur 2012). They concluded that
the frozen flux constraint remained compatible with ground-based
and satellite magnetic records. Pursuing an alternative approach,
Beggan & Whaler (2009) and Whaler & Beggan (2015) obtained
piecewise constant or linear flow models directly from magnetic
data (see also Whaler et al. 2016).
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One limitation though of such approaches is related to the uncer-
tainties associated with the large-scale induction equation itself (and
associated null-flux curves), assuming models truncated at spher-
ical harmonic degree n � 13 (Gillet et al. 2009). Subgrid-scale
effects arising due to the nonlinear induction process (e.g. Eymin
& Hulot 2005; Pais & Jault 2008; Gillet et al. 2009; Baerenzung
et al. 2016) turn out to be the main source of uncertainty in the
recovery of core surface flows from modern geomagnetic records.
Barrois et al. (2017)—hereafter referred as BGA17—illustrate how
ignoring their impact leads to severely biased flow models (see also
Baerenzung et al. 2017, on the reliability of core flow reconstruc-
tions).

BGA17 furthermore show from the analysis of geodynamo sim-
ulations that magnetic diffusion at the core surface, enslaved to
poloidal flow below the CMB, affects the recorded field changes
at all timescales including rapid changes. This may seem at odds
with the often used assumption of negligible magnetic diffusion
that follows the argument of a high magnetic Reynolds number for
large-scale motions in the core (see Holme 2015).

In the present work we invert, from magnetic field observations
collected at and above the Earth’s surface, for both the magnetic
and velocity fields at the core surface, taking into account both
magnetic diffusion and subgrid induction. We merge spatial infor-
mation provided by numerical simulations, specifically from the
Coupled Earth dynamo (CED) model (Aubert et al. 2013) and tem-
poral constraints coming from a restriction of the field evolution
to a chosen class of stochastic process. The sequential algorithm
of BGA17, which considers as input data time-series of spherical
harmonic coefficients of the main field, is extended to account for
both virtual observatory (Mandea & Olsen 2006) and ground obser-
vatory time-series that cover the period 1997–2017. Our approach
has similarities with the previous works of Gillet et al. (2015a) and
Baerenzung et al. (2016), which favoured flat flow spatial spectra
at the CMB, since the spatial dynamo norm employed here departs
from the norms often employed to ensure spectral convergence. In
addition, our stochastic framework allows us to discuss posterior
model errors for both the flow and the magnetic field.

The paper is organized as follows. In Section2 we describe the
ground-based observatory data and satellite-based virtual observa-
tory data, and the methodology we follow to recover magnetic and
velocity fields at the CMB. In Section3.1, we present our result-
ing geomagnetic model and its associated uncertainties, before we
analyse in Section 3.2 our core flow solutions. Finally, implications
for our understanding of the core dynamics and possible further
improvements for the algorithm are given in Section4.

2 M E T H O D O L O G Y

2.1 Ground-based and virtual observatory data

2.1.1 Ground observatory data

We use magnetic measurements made at 186 ground observatories
(GOs) covering the period 1997–2017. Hourly mean values are
taken from the BGS database1, version 0111, using Intermagnet
and WDC Edinburgh data as available in May 2017. The data have
been checked and corrected for known baseline jumps (Macmillan
& Olsen 2013). ‘Revised monthly means’ were then derived from
these hourly means, following the procedure described by Olsen

1ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX OBS

et al. (2014). Briefly, predictions of the large-scale magnetospheric
field (and the associated induced field) from the CHAOS-6 field
model, as well as predictions for the ionospheric Sq field (and the
associated induced field) from the CM4 model (Sabaka et al. 2004)
are subtracted from the hourly mean values, and then robust (Huber-
weighted) monthly mean values are computed using an iterative-
reweighting procedure. Annual differences of such revised monthly
means are routinely used in deriving the CHAOS series of field
models and in order to study high resolution secular variation since,
compared with simple monthly means, they are less contaminated
by external field effects. Here, since we also wish to use the field
itself for model construction, the median difference between each
series and CHAOS-6 predictions was removed, in order to account
in a simple way for the bias due to unmodelled crustal fields. In
order to obtain the same sampling rate as that adopted for the virtual
observatory series described below, the revised monthly mean series
were finally averaged over 4 months windows to obtain the GO series
used in our data assimilation scheme.

2.1.2 Virtual observatory data

In addition to GO data, we make use of satellite measurements from
the CHAMP and Swarm missions covering respectively 2000–2010
and 2014–2017, through so-called virtual observatory (VO) data
(Mandea & Olsen 2006; Olsen & Mandea 2007). These provide a
regular spatial and temporal sampling of the global field, convenient
for our Kalman filter algorithm (detailed in Section 2.2) and involve
estimates from an easily manageable number of locations, which has
computational advantages.

VO data were computed using measurements collected by the
CHAMP vector field magnetometer between July 2000 and Septem-
ber 2010 and from the Swarm vector field magnetometers, onboard
all three satellites (Alpha, Bravo, Charlie), between January 2014
and April 2017. Starting from the CHAMP MAG-L3 and Swarm
Level 1b MAG-L, version 0501, data products, we subsampled at 15
s intervals the data in the vector field magnetometer (VFM) frame.
Using the Euler rotation angles as given by the CHAOS-6-x3 model
(which was based on Swarm and ground observation data up un-
til April 20172), we rotated the VFM data into an Earth-Centered
Earth-Fixed (ECEF) coordinate frame.

Measurements from known problematic days were removed, for
instance where satellite manoeuvres happened. Furthermore, gross
data outliers with deviations more than 500 nT from CHAOS-6-x3
field model predictions were rejected. Based on previous studies
of VO estimates (e.g. Beggan et al. 2009), we then employed data
selection criteria retaining only data for which:

(1) the sun was at maximum 10◦ above horizon;
(2) geomagnetic activity index Kp < 3◦;
(3) the RC disturbance index (Olsen et al. 2014) had |dRC/dt| <

3 nT hr−1;
(4) merging electric field at the magnetopause Em ≤ 0.8 mV

m−1, with Em = 0.33v4/3 B2/3
t sin(|�|/2). v is the solar wind speed,

� = arctan(By/Bz) and Bt =
√

B2
y + B2

z . By and Bz are components

of the interplanetary magnetic field (IMF) in the geocentric so-
lar magnetospheric (GSM) coordinate system, calculated using 2

2http://www.spacecenter.dk/files/magnetic-models/CHAOS-6

/
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hourly means of 1 min values of the IMF and solar wind extracted
from the OMNI database3;

(5) IMF Bz > 0 nT and IMF |By| < 10 nT, again based on 2
hourly mean of 1 min values.

Following this data selection, estimates of the fields due to various
unmodelled sources were next removed from the data:

(1) the magnetospheric and its induced fields as given by the
CHAOS-6-x3 model;

(2) the ionospheric and its induced fields as given by the CM4
model (Sabaka et al. 2004);

(3) the static internal field for spherical harmonic degrees n >

20 given by the CHAOS-6-x3 model.

Although imperfect, in our opinion it is more consistent to remove
such estimates rather to ignore known field sources.

Based on this data we then carried robust inversions for time-
averaged point estimates (i.e. VOs) using data windows of 4 months
width (60 d each side of an epoch tj). In order to aid the robust inver-
sion procedure in identifying and downweighting outliers, following
Olsen & Mandea (2007) as a pre-processing step, we also removed
a time-dependent internal field, here taken from the CHAOS-6-x3
model (Finlay et al. 2016b), for spherical harmonic degrees 1 to 20,
within each four month window. The CHAOS-6x-3 prediction at the
target point and time was then added back at the end of the analysis.
Note that this does not prevent our 4-monthly VO series, and the
derived SV series from departing from CHAOS-6x-3; information
about the time-dependence within each 4 month window is however
lost.

We assume that the residual field B̃, after the removal of the time-
dependent internal field from the CHAOS-6-x3, can be represented
as the gradient of a scalar potential V, that is,

B̃ = −∇V . (1)

The residual field and associated positions are transformed into
a local Cartesian coordinate system with origin at the VO points
of interest, with x pointing towards geographic south, y pointing
towards east and z pointing upwards. We use an expansion of the
local potential up to cubic terms. Because the geomagnetic field
is irrotational (∇ × B̃ = 0) and solenoidal (∇ · B̃ = 0), this local
potential is entirely determined by 15 independent parameters:

V (x, y, z) = vx x + vy y + vz z + vxx x2 + vyy y2 − (vxx + vyy)z2

+2vxy xy + 2vxz xz + 2vyz yz − (vxyy + vxzz)x
3

+3vxxy x2 y + 3vxxz x2z + 3vxyy xy2 + 3vxzz xz2

+6vxyz xyz − (vxxy − vyzz)y3 + 3vyyz y2z

+3vyzz yz2 − (vxxz + vyyz)z
3. (2)

For each VO position vector rk = (θ k, φk, rk) and at epoch tj,
all data positioned within a cylinder of radius 850km (≈7.5◦) of
the VO target rk, and within 60 days either side of tj were used to
build a local data vector dk, j. These data are then related to the 15
parameters defining the VO potential model mk, j

vo at that site and
epoch via dk, j = gk, j mk, j

vo , where the elements of the matrix gk, j are

determined from eqs (1) and (2).
Rather than working directly with dk, j in deriving mk, j

vo we make
use of along-track (AT) and east–west (using Swarm Alpha and

3http://omniweb.gsfc.nasa.gov

Charlie only) sums and differences of the magnetic field compo-
nents. An advantage of using field differences is that these have a re-
duced sensitivity to large-scale external signals, although data sums
also need to be included in order to ensure sufficient information
on the longer wavelengths core field. Using sums and differences
has been found advantageous in a number of other field modelling
efforts (Olsen et al. 2015; Sabaka et al. 2015). We calculate AT
sums (�) and differences (�) as{

�dAT
i = [B̃i (r, t) + B̃i (r + δr, t + 15 s)]/2

�dAT
i = [B̃i (r, t) − B̃i (r + δr, t + 15 s)]

. (3)

B̃i = 1i · B̃(r) are the residual magnetic field components in spher-
ical polar coordinates (where i = r, θ or φ, and 1i are unit vectors).
The east–west cross-track (CT) sums and differences between are
calculated as{

�dCT
i = [B̃Alpha

i (r1, t1) + B̃Charlie
i (r2, t2)]/2

�dCT
i = [B̃Alpha

i (r1, t1) − B̃Charlie
i (r2, t2)]

. (4)

Here, for a given orbit of Alpha we select the corresponding Charlie
data to be the one closest in colatitude such that |δt| = |t1 − t2| <

50 s. Crucially, in order to relate these sums and differences to the
VO model parameters, we also take sums and differences of the
elements of the design matrices gk, j associated with the predictions

of the VO model for the field components at the individual data
locations. This results in a design matrix

Gk, j =
[

�gk, j

�gk, j

]
(5)

associated with the data vector Dk, j = [
�dk, j �dk, j

]T
. In this way

we fully account for the change in the unit vectors associated with
the two locations contributing to the sums and differences when
deriving the parameters mk, j

vo . The inversion for each mk, j
vo is carried

out via a robust Huber weighted least-squares fit

mk, j
vo =

[
(Gk, j )T WGk, j

]−1
(Gk, j )T Dk, j (6)

where W is a diagonal vector of Huber weights that ensure a robust
solution (Olsen 2002; Sabaka et al. 2004) and are iteratively updated
until convergence. Once mk, j

vo is determined, the three field compo-
nents at the site and epoch of interest, B̃k(rk, t j ) = −∇Vk(rk, t j ),
are computed and added back on to the CHAOS-6-x3 prediction for
the internal field (for degrees 1–14 only, to avoid as far as possible
the lithospheric field) at the target location.

We constructed VO estimates at PVO = 200 locations, with a
spacing of about 1600 km (≈14◦, see dots in Fig. 1), located in an
approximately equal area grid based on the spherical surface parti-
tion algorithm of Leopardi (2006). The altitude of the VOs are 300
and 500 km during the CHAMP and Swarm periods, respectively.
Using predictions of the three components (Br, Bθ , Bφ) of the mag-
netic field at PVO locations, we finally obtain 3PVO time-series (i.e.
one point every 4 months during CHAMP and Swarm times, 48
epochs in all), stored in a vector yVO(t). The SV was computed as
annual differences of the 4 month time-series.

2.1.3 Uncertainty estimates for the GO and VO series

In order to obtain as much information as possible from the GO and
VO data, while at the same time seeking to avoid overfitting them, it
is important that appropriate uncertainty estimates are specified for
each time-series. We define CGO and CVO to be the measurement
error cross-covariance matrices for GO and VO data at each epoch,
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Figure 1. SV observation error estimates (colour scale in nT yr−1) at all location where GOs (hexagons) and VOs (circles) are used in this study, for the three
components Ḃr , Ḃθ and Ḃφ (from top to bottom). The size of the markers is proportional to the magnitude of the a priori error estimates.
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of sizes respectively 3PGO × 3PGO and 3PVO × 3PVO. Data errors
are supposed to be independent of time. Different data uncertain-
ties are assigned for the VO’s derived from CHAMP and Swarm
respectively.

Regarding the GO time-series described above, we follow a sim-
ilar approach to that used in CHAOS field model series (Olsen et al.
2014; Finlay et al. 2016b) and derive uncertainty estimates as fol-
lows. A 3 × 3 covariance matrix was computed for each observatory
location from the time-series of the three components, after remov-
ing the predictions of the CHAOS-6 field model and detrending. The
square roots of the diagonal elements of these covariance matrices
were taken to be the uncertainty estimates for each component at
each observatory. The same procedure was applied to both the MF
and SV series.

For consistency, a very similar procedure was also applied to the
VO series in order to obtain their uncertainty estimates. For each VO
location, covariances were calculated between the time-series of the
three components (after removing from each series the predictions
of the CHAOS-6 model and de-trending), in order to obtain a 3
× 3 covariance matrix. A robust procedure for calculating the co-
variances (using the Minimum Covariance Determinant estimator,
Verboven & Hubert 2005) was employed. However, only the square
roots of the diagonal elements of the covariance matrices were taken
to be the uncertainty estimates for each series, with similar proce-
dures applied to both MF and SV series. To illustrate the range of
the adopted uncertainty estimates, we show in Fig.1 the r.m.s. SV
uncertainty estimates for all locations where data (GO or VO) are
used in this study.

Note that by using only the diagonal elements of CGO and CVO

we effectively consider the errors on each GO and VO series to be
uncorrelated with the errors on other series. In reality errors between
components and between series will be correlated. This can be taken
into account using full (i.e. dense) covariance matrices. It is however
challenging to estimate cross-covariances for matrices of size larger
than the length of the contributing times series (consisting of one
sample every 4 months). We therefore postpone this step to future
studies. Instead, by restricting to only 200 VO locations and ensuring
that there was little overlap between the VO search radii we reduce
as far as possible the correlations between distinct VO series.

Finally, we concatenate the above GO and VO main field data
vectors for each epoch into yo(t) = [yT

VO yT
GO]T . The associated ob-

servation errors covariance matrix Ryy, of rank P = 3PVO + 3PGO, is
thus derived from the diagonals of CVO and CGO. In the next section
we will consider both main field and secular variation data. SV data
ẏo(t) are computed as annual differences of the four monthly (GO
or VO) series. We follow the same approach as above to estimate
the SV data errors variances (shown in Fig. 1) that are stored in a
diagonal matrix Rẏ ẏ of rank P.

2.2 Reanalysis of GO and VO data ground and satellite
magnetic observations

The assimilation algorithm used in this study is essentially the one
derived by BGA17 (see their table 2 for a summary). It is a sequential
tool, consisting of a succession of forecast and analysis steps. The
main modifications concern the direct integration of observations
at and above the Earth’s surface, while BGA17 considered data
in the form of MF and SV spherical harmonic coefficients. We
begin by recalling the main points of our stochastic forecast model,
before we go on to describe the changes implemented in the present

study regarding the analysis step. These essentially concern the
observation operator linking the state variables to the observations.

2.2.1 Stochastic forecast model

We forecast the evolution of the radial magnetic field, Br, at the
CMB using the radial component of the induction equation, written
as

∂ Br

∂t
= −∇h · (

uH Br

) + er + dr (uH , Br ) , (7)

where overlines mean the projection onto large length-scales. er

stands for the subgrid induction processes arising due to the unre-
solved magnetic field at small length-scales, uH is the horizontal
flow, and dr, enslaved to Br and uH , approximates the radial compo-
nent of the diffusion operator (see below). The evolutions of er and
uH are governed by order one autoregressive stochastic processes,

der

dt
+ er

τe
= ζe , (8)

duH

dt
+ (uH − ûH )

τu
= ζu , (9)

with ζ e and ζ u white noise processes, and ûH the background flow
model (obtained as the time-averaged flow from the CED model).
These processes come from the same family of process as employed
by Baerenzung et al. (2017). For each process, an effective restoring
force is implemented via single time scales that we respectively fix
as τ e = 10 yr and τ u = 30 yr. Spatial cross-covariances of the two
above fields are derived from statistics of a free run of the CED
(Aubert et al. 2013).

The advected fields er, uH , Br and dr are represented through
spherical harmonics, whose coefficients are stored in vectors e(t),
u(t), b(t) and d(t), respectively. Diffusion in eq. (7), and its de-
pendence on er and uH, is also an expression of cross-covariances
extracted from the CED (involving the radial magnetic field below
the CMB). The projection onto large length-scales is processed in
the spectral domain, restricting the induction equation (and thus the
expansion of the fields er, Br and dr) to spherical harmonic degrees
n ≤ nb = 14, while the velocity field is truncated at nu = 18. We
write as ḃ(t) the vector of SV spherical harmonic coefficients.

2.2.2 Integrating ground and satellite data in the assimilation tool

We write as M the operator that links the vector b(t) to the three
components main field observations y(t) in the spatial domain (e.g.
Olsen et al. 2010):

y(t) = Mb(t). (10)

At each epoch it is of size no × nb(nb + 2), with no = 3(PVO + PGO)
the size of the observation vector. The matrix M is composed of
submatrices Mr, Mθ and Mφ , depending on the considered compo-
nent of the magnetic field. In practice, elements of the matrix are,
for a column j corresponding to a coefficient g

m j
n j , and a line i to an

observation at a coordinate ri = (ri, θ i, φi),

Mri, j = (n j + 1)

(
a⊕

ri

)n j +2

Pm
n (θi ) cos(m jφi ) , (11)

Mθ i, j =
(

a⊕

ri

)n j +2 dPm
n (θi )

dθ
cos(m jφi ) , (12)
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Figure 2. Time evolution of the number of SV data points (VOs in red, GOs in blue).

Mφi, j =
(

a⊕

ri

)n j +2 m jPm
n (θi )

sin(θi )
(−1) sin(m jφi ). (13)

For a line j corresponding to a coefficient h
m j
n j , the function sin

replaces cos in eqs (11) and (12), and cos replaces ( − 1)sin in
(13). a⊕ = 6371.2 km is the Earth’s spherical reference radius and
Pm

n are the Legendre polynomials.
The analysis in the Kalman filter algorithm employed by BGA17

consists of two steps: first an analysis of the vector b containing
MF spherical harmonic coefficients from MF spherical harmonic
coefficients data, and second an analysis of the vector z (that con-
catenates u and e) from SV spherical harmonic coefficients data.
Writing as P f

bb the forecast model covariance matrix for b, the first
analysis (eq. 19 of BGA17) is replaced here by

∀k ∈ [1, Nm], bka(ta) = bk f (ta) + P f
bbMT

[
MP f

bbMT + Ryy

]−1

(
yko(ta) − Mbk f (ta)

)
, (14)

with ta the analysis epoch and the superscript k referring to the
kth realization within an ensemble chosen to be of size Nm = 50.
Writing as P f

zz the forecast model covariance matrix for z, the second
analysis (eq. 20 of BGA17) is replaced here by

∀k ∈ [1, Nm], zka(ta) = zk f (ta) + P f
zzG

kT
[
GkP f

zzG
kT + Rẏ ẏ

]−1(
δẏko(ta) − Gkzk f (ta)

)
, (15)

where the new observation operator is Gk = MH(bka), with H as
defined in BGA17. Here δẏko(ta) = ẏko(ta) − Mdk f (ta) are the di-
rect SV observations corrected by the forecast contribution from
diffusion to the radial induction equation. This latter is sought iter-
atively at each analysis step, as in BGA17. Note that we consider an
ensemble of observations yo and ẏo, which are perturbed by random
noise according to respectively Ryy and Rẏ ẏ . We recall that we con-
sider in eqs (14) and (15) forecast covariance matrices Pzz and P f

bb

that are frozen throughout the reanalysis period. These are derived
directly from the CED cross-covariances on b, u and e spherical
harmonic coefficients, involving scaling pre-factors obtained ana-
lytically from the stochastic model presented in Section2.2.1 (see
BGA17 for details). For comparison, Baerenzung et al. (2017) em-
ploy a full implementation of the Ensemble Kalman filter (Evensen
2003), that is, they update the cross-covariances at each analysis
step, requiring many more realizations to obtain well-conditioned
matrices.

Finally, an extra complexity arises because the number of ob-
servation sites changes over time. Indeed, because of the selection
criteria, the number of satellite data available may not always be
sufficient to make a reliable VO estimate. Under these conditions
the VO data point is considered to be absent: the associated elements
of the data vector yo(t) at a given time t are removed, together with
the corresponding lines and columns of Ryy, and the corresponding
lines of the matrix M (and thus G). This procedure is performed
during each analysis. Thus, the size P of the data vector changes
through time, reflecting the changing number of available satellite
observations through time (see Fig. 2).

To summarize, in this study we work with predictions made by
spherical harmonic coefficients that are projected in physical space,
where they are adjusted during the analysis step according to the
observations and the covariance matrices. As such, our algorithm is
still based almost entirely on the spectral domain; only the analysis
steps are performed in physical space, in order to match the ob-
served magnetic field data. Note that we corrected for two mistakes
in the implementation of the algorithm by BGA17: a sign error in
the background flow û, and off-diagonal elements of the covariance
matrix for e were non-intentionally ignored. Performing compar-
isons between reanalyses before and after correction, we found two
consequences: a reduction of the dispersion within the ensemble of
realizations, and a (almost stationary) shift in the analysed diffusion
for some coefficients (including the axial dipole, see Section3.1.2).
This latter is almost entirely compensated by a shift in the anal-
ysed er, with minor impact on the recovered flow. Otherwise, the
qualitative conclusions of BGA17 remain unaltered.

2.3 Posterior diagnostics

We now define several diagnostics used to evaluate the quality and
the consistency of our results. We shall compare a quantity x (MF,
SV, subgrid error, diffusion... in the spatial or spectral domain) with
observations xo (when available), or with the same quantities xc

from the CHAOS-6 geomagnetic model (Finlay et al. 2016b). We
define its time average

x̂ = 1

t f − ti

∫ t f

ti

x(t)dt , (16)
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Figure 3. SV time-series for the three components (dBr/dt, dBθ /dt, dBφ /dt), at one VO location {r = 6671 km, θ = 90◦, φ = 88, 8◦} (top), and at Chambon-
la-forêt {r = 6366 km, θ = 42◦, φ = 2◦} (bottom). SV observations are shown in black, CHAOS-6 predictions in green and predictions from our analysis in
red. The shaded area correspond to ±σḃ , see eq. (18).

with ti and tf the initial and final epochs, its ensemble mean

〈x(t)〉 = 1

Nm

Nm∑
k=1

xk(t) , (17)

the dispersion within the ensemble

σ x (t) =
√√√√ 1

Nm − 1

Nm∑
k=1

(xk(t) − 〈x(t)〉)2
, (18)

and finally the bias between our ensemble mean model and the
reference xc,

δx (t) = xc − 〈x(t)〉 . (19)

We also define spatial power spectra of any magnetic trajectory
b(t) as

Rb(n, t) = (n + 1)

(
a⊕

c

)2n+4 n∑
m=0

[
gm

n (t)2 + hm
n (t)2]

, (20)
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Figure 4. Top: histograms of MF prediction errors δMF (eq. 19), accumulated over all analysis epochs, normalized to the observation errors, for the components
Br (left), Bθ (middle) and Bφ (right). Superimposed in black are the Gaussian distribution fits obtained with the mean μ and the variance σ 2 for each of the
three distributions. Bottom: same histograms for the SV prediction errors δSV.

Figure 5. Top: CMB maps of the ensemble average radial magnetic field 〈b〉 (eq. 17) in 2017 (left: MF in mT; right: SV in μT yr−1), as estimated with our
algorithm. Bottom: MF (left) and SV (right) maps of the difference of our ensemble average field with CHAOS-6 (truncated at degree 14) at the CMB (with
the same colour scales).

with similar notations for ḃ(t), d(t) and e(t). c = 3485 km is the
Earth’s core radius, and gm

n and hm
n are Schmidt semi-normalized

spherical harmonic coefficients for the magnetic field at the Earth’s
surface. Finally, the spatial power spectrum for core flow trajectories
u writes

S(n, t) = n(n + 1)

2n + 1

n∑
m=0

[
tc

m
n (t)2 + ts

m
n (t)2 + sc

m
n (t)2 + ss

m
n (t)2]

,

(21)

with tc,s
m
n and sc,s

m
n Schmidt semi-normalized spherical harmonic

coefficients for the toroidal and poloidal components of the flow.

We also define the flow norm

N =
nu∑

n=1

n(n + 1)

2n + 1

n∑
m=0

[
tc

m
n

2 + ts
m
n

2 + sc
m
n

2 + ss
m
n

2]
. (22)

The above power spectra can be considered for the ensemble
mean or the dispersion within the ensemble, in which case they
are respectively noted R<x>(n, t) and Rδx (n, t). Additionally, all
those quantities may be averaged in time and/or computed only
at analysis periods. For example, the time-averaged spatial power
spectrum of the dispersion of magnetic field solutions at analysis
epochs is R̂a

δb(n). The same convention as above holds for core flow
spectra.
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Figure 6. SV spherical harmonic coefficient time-series for ġ0
1 (left) and ḣ6

6 (right). Predictions from our ensemble average model are shown in dark red (±2σḃ
in red) and CHAOS-6 in black. Contributions from subgrid errors and diffusion extracted from our ensemble of realizations are superimposed in respectively
blue and yellow (with dispersions ±1σ diff and ±1σ er in the corresponding colours).

3 R E S U LT S

We apply our algorithm to VO and GO magnetic field observations
over a period spanning from ti = 1996.92 to tf = 2016.92. We
recall that since we use satellite measurements from CHAMP and
Swarm missions, VOs are available only over the periods 2000–
2010 and 2014–2017, whereas GOs are available over the whole
time span. Analysis are performed every �ta = 4 months. The
sequences of analyses and forecasts between 1997 and 2001 are
used to warm up the filter (see fig. 7 in BGA17), avoiding an
increase in the ensemble spread over the first years of the targeted
satellite era. This warm-up period is not considered below when
interpreting the ensemble of inverted magnetic field and flow. We
first describe predictions from our reanalysis for observations in
the physical domain (Section3.1.1), before we present the resulting
magnetic model (Section 3.1.2), and insights on core flows over
various timescales (Section3.2).

3.1 Geomagnetic field models

3.1.1 Predictions for GO and VO series

We compare in Fig. 3 our series of SV forecasts and analysis with
two examples of observation series (one VO and one GO), and with
the predictions from CHAOS-6. The large spread of the SV fore-
casts is to be expected given the large uncertainties associated with
subgrid errors and the large-scale flow (see BGA17). At both sites,
the dispersion within the ensemble of SV trajectories encompasses
most of the time the observations. Moreover the predictions from
CHAOS-6 and from our ensemble of SV models are generally con-
sistent. Our algorithm thus seems able to provide a coherent estimate
of the SV probability density function (PDF) at the Earth’s surface
and at satellite altitude. In addition, we highlight that even during
the period 2010-2014 where no VO data are available, the trajectory
of SV model, controlled by the stochastic prior and GO data only,
remains reasonable, with a slight increase in the ensemble spread
that always contains CHAOS-6. Note that our algorithm tends to
drive the system toward low SV values (see the saw-tooth patterns
in Fig. 3). This feature is to be expected given our choice of the
stochastic models for uH and er, which control the evolution of the
SV. In the absence of data constraints, the process will drift back
the ensemble average trajectories for uH and er towards the aver-
age dynamo state, which by construction is responsible for a weak

SV. This is not a major drawback as soon as we analyse frequently
enough, though it does limit the prediction capabilities of our tool
(as discussed in BGA17).

We check in Fig. 4 the accuracy with which our model fits MF and
SV observations, with the histograms of the prediction errors (over
all analyses) normalized to the observation errors, for the three com-
ponents of the magnetic field. Concerning the MF, prediction errors
are only weakly biased, excepted for Bθ (normalized biases on the
three components are μr = −0.02, μθ = −0.23 and μφ = 0.0). The
histograms of prediction errors are reasonably close to Gaussian
for the three components with observation errors that appear to be
under-estimated on average, in particular on Br (normalized r.m.s.
errors on the three components are σ r = 2.18, σ θ = 1.55 and σφ

= 1.63). The SV predictions errors are remarkably consistent with
the a priori errors with small biases and standard deviation close
to unity for the three components (μr = −0.06, σ r = 1.01; μθ =
−0.09, σ θ = 1.11 and μφ = 0.03, σφ = 1.14), even though the dis-
tributions appears more peaked than a Gaussian. The Kalman filter
employed here implicitly assumes Gaussian distributed data errors.
However, the above remark suggests that alternative treatments of
data residuals may be worth considering in future studies (e.g. L1
or Huber norms, see Constable 1988; Farquharson & Oldenburg
1998).

3.1.2 Field models, and contributions to the SV

We now describe in more detail our MF and SV models. We present
in Fig. 5 MF and SV maps for our ensemble average model at the
CMB truncated at spherical harmonic degree n = 14. Comparing
it to a more traditional field model CHAOS-6, which is temporally
regularized, the overall agreement is very good, indicating that our
tool is indeed capable of producing reasonable field models. MF
discrepancies to CHAOS-6 are relatively small, with peak to peak
values less than 10% of the total amplitude for a field truncated at
degree 14. They are dominated by isotropically distributed, small
length-scale patterns. As well as being dominated by small length-
scales, the disagreements are larger for the SV, with peak to peak
differences about 30% of the total amplitude, which is to be expected
given the blue SV spectrum at the CMB, meaning that small length
scales dominate. Interestingly, the largest differences are localized
under South America and the Indian Ocean, where the planetary
gyre respectively detaches from and joins the equatorial belt (Pais
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Figure 7. Top: time averaged spatial power spectra at the Earth surface of the magnetic field of CHAOS-6 (R̂a
bc , eq. 20, in green), our estimate (R̂a

〈b〉, in

red), the difference between the two (R̂a
δb , red thin line) and the dispersion within our ensemble of analyses (R̂a

σb
, dotted line). Bottom: idem for the SV,

superimposed with the spectra of the contributions from subgrid errors (blue) and from diffusion (yellow).

& Jault 2008) and where rapid time-dependence is observed (Finlay
et al. 2016a).

In Fig. 6 we show the various contributions in our model to two
SV spherical harmonic coefficient series. The dispersion within
the ensemble of models is large enough to include time changes
as estimated by CHAOS-6, with some exceptions during the high
solar activity era, for example, in 2002 for h6

6, and at the very end
of the CHAOS-6 era (this latter possibly in link with the damping
of SA towards end-points in the regularized field model). We note a
larger spread of the analysis for the axial dipole than for non-zonal
coefficients of intermediate length-scale such as h6

6. This may be
a consequence of the weaker constraint on zonal coefficients from
surface observations (e.g. Kotsiaros & Olsen 2012), although we
only note such behaviour for g0

1 . An enhancement of the dispersion
is notable between 2010 and 2014, displaying in the spectral domain

the impact of the decreasing number of data during this era when no
vector satellite data were available. Over 2001–2006, the ensemble
average h6

6 trajectory shows distinctive square shaped variations,
probably partly related to variations in the number of data satisfying
selection criteria during this interval of enhanced solar activity when
only CHAMP data were available.

Spatial spectra shown in Fig. 7 summarize the characteristics
of our model in the spectral domain. We find excellent agreement
with CHAOS-6 for the main field and its secular variation, except
at the small length scales of the SV (n > 10), which are more
likely to be affected by the different data set chosen and by the
different temporal kernel used (short time windows in our case
against whole time span for CHAOS-6). The ensemble spread gives
a good approximation of the characteristic distance between our
model and CHAOS-6. Diffusion and subgrid errors in the SV have
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Figure 8. Magnetic diffusion at the CMB (top, colour scale in μT y−1),
and horizontal divergence ∇h · uh (bottom, colour scale in 10−3 yr−1)
superimposed with passive tracers trajectories (black, tracer size scale in km
yr−1), for the ensemble average model in 2017. Core flow visualizations are
performed using the tools provided at https://geodyn.univ-grenoble
-alpes.fr/. The size of the tracers is proportional to the velocity field (see
the legend). The initial positions of the tracers is random; each trajectory is
advected by the velocity field for a fixed time; along each trajectory, the late
(early) positions are darker (lighter).

Figure 9. Core flow norm N for all flow constituents that enter eq. (23).
The norm N for the linear flow acceleration is obtained by integrating the
linear trend over the 16 yr.

approximately the same amplitude except for the dipole. The power
stored in these two SV sources represents about 10 to 20% of the
total SV energy at all scales.

Even though the dispersion within the model predictions is large
enough to encompass most of the MF and SV observations, the
dispersion within the ensemble of realizations is lower, by a factor
about 2.5, than the distance between the ensemble average model
and CHAOS-6 for both the MF (at all length-scales) and the SV

(towards small length-scales only). A complete account of SV errors
from all subgrid interactions (see Baerenzung et al. 2017) may
help reduce the above under-estimation. Our current estimate is
nevertheless larger than that obtained for the COV-OBS.x1 model
Gillet et al. (see fig. 4 in 2015a, the error spectrum in 2010). We
suspect that the accumulation of data (assumed independent) during
the construction of this latter field model involved too strong a
decrease of the posterior error within the COV-OBS framework.
The more consistent approach to error propagation developed here
and presented in Fig. 7 favours larger uncertainties on spherical
harmonic coefficients during the satellite era.

Overall, we are generally able to retrieve earlier well-established
results. For instance the contribution from advection dominates
(over diffusion) the axial dipole decay (Finlay et al. 2016b; Bar-
rois et al. 2017) and its fluctuations—even though our estimate
for the contribution from diffusion to dg0

1/dt , shifted upward by a
couple of nT yr−1 in comparison with the results of BGA17 (see
Section 2.2.2), amounts to a relatively larger fraction over the latest
years where the dipole decay tends to be weaker. The ensemble
average SV originating from diffusion is presented in Fig. 8 for
2017: the most significant contributions appear below Africa and
Indonesia. The strongest diffusion appears linked to intense patches
of up-/downwellings in the equatorial belt at the CMB (see Fig.8)
and/or where strong gradient of B occur. This is a direct consequence
of our estimation of diffusion through cross-covariances involving
core surface velocity and magnetic fields (see BGA17 and Amit &
Christensen 2008). In the framework of our modelling, such diffu-
sion patterns seem to be required by magnetic observations rather
by the imposed prior cross-covariances (or if it is the case, it does
not show up in the background state).

3.2 Core flow solutions

Next, we study with more details the temporal information con-
tained in our core flow solutions. The idea is to extract an average
signal and a linear acceleration, together with the flow at different
periods, to check if we witness any preferential frequency, or if the
characteristics of the flow change with the period. To do so, we
apply a least-squares regression to our core flow solution with a
function of the form

u(t) = Â + AL (t − t0) +
11∑

k=1[
As

k sin

(
2π (t − t0)

k

T

)
+ Ac

k cos

(
2π (t − t0)

k

T

)]
, (23)

with t0 = (ti + tf)/2 = 2008.92 and T = tf − ti = 16 yr. Vectors Â,
AL, Ac

k and As
k store respectively the spherical harmonic coefficients

of the time average velocity, time average flow acceleration, and
cosines and sines from periods 16 yr (for k = 1) to 1.45 yr (for k
= 11) – of course the longer periods are not well constrained given
the short time span considered here.

We show in Fig. 9 the norm (22) of all flow constituents for the
ensemble average solution. The flow is dominated by long periods,
translating onto core surface motions the red SV temporal spectrum
(see Gillet et al. 2015a; Lesur et al. 2017). In comparison with a
r.m.s. time average flow of 11.1 km yr−1, the linear acceleration AL

corresponds, integrated over 16 yr, to a r.m.s. flow increment of
6.6 km yr−1.
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Figure 10. Intensity maps at the CMB of the flow constituents Â (in km yr−1) for the ensemble average flow solution, superimposed with passive tracers
trajectories (black). Top: Aitoff projection. Middle: north (right) and south (left) polar projections. Bottom: Aitoff projection for equatorially symmetric (left)
and antisymmetric (right) components. The colour scale and tracer size scale are the same for all subfigures.

3.2.1 Stationary motions, and flow model uncertainties

We show in Fig. 10 core surface maps of the flow intensity and
tracers trajectories for the ensemble average flow constituents Â.
We retrieve on the map for the time average flow classical fea-
tures, such as the westward gyre offset towards the Atlantic Ocean
found in many studies (e.g. Pais & Jault 2008; Aubert 2014;; Gillet
et al. 2015b Baerenzung et al. 2017), with a Pacific hemisphere
that is on average much less energetic. The most energetic flow
features are associated with (i) azimuthal motions in the equatorial
belt below Africa, (ii) high latitudes azimuthal jets in the Pacific

hemisphere and (iii) meridional circulations, poleward (resp. equa-
torward) around 90◦W (resp. 90◦E).

Our solution is dominated by equatorially symmetric features
(see Fig. 10, bottom), as expected outside the tangent cylinder (or
TC, the cylinder tangent to the inner core, whose axis coincides with
the rotation axis) when rotation forces dominates the momentum
balance (e.g. Pais & Jault 2008). Nevertheless, the symmetry may
be locally broken. The most striking examples of this are anticy-
clonic circulations within the TC, retrieved in both the Northern
and Southern hemispheres (Fig.10, middle). In contrast with polar
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Figure 11. Time averaged spatial power spectra for ensemble average core flows (Ŝa
〈u〉, red thick line) and the spectra for the ensemble average of each

realization (
〈
Ŝa

uk

〉
, yellow thick dotted line, eq.21), obtained from the reanalysis of VO and GO data. Spectra for the corresponding dispersion within the

ensembles of models are displayed in dotted lines. In green is shown the averaged spectrum for the prior CED.

vortices previously inferred from geomagnetic observations (Olson
& Aurnou 1999; Amit & Olson 2006), features we isolate here are
offset to one side of the polar caps (i.e. they contain an important m
= 1 contribution). This is a common configuration for polar vortices
found in the most up to date numerical simulations (Schaeffer et al.
2017), which show much variability through epochs.

We show in Fig. 11 the time-average spatial power spectra for
the ensemble average solution and for the dispersion within the
ensemble of models. The former is comparable with the spectrum
of the prior CED. The latter indicates that uncertainties, as mea-
sured by the ensemble spread, constitute a large fraction of the flow
magnitude for degrees n ≥ 10. The oscillation in the power seen
between odd and even degrees might be magnified by possibly too
low subgrid error budget (see Section 3.1.2).

3.2.2 On transient core surface motions

We now explore transient flow motions. We particularly focus on the
amount of equatorial symmetry of our solutions inside and outside
the TC, in order to detect if our model is sensitive to the specific
geometry of the Earth’s core (does it hold a signature of the TC?).
As for the time-average flow, the linear acceleration over the past 16
yr is primarily symmetric with respect to the equator (see Fig.12).
The largest contributions consist of accelerating circulations around
the meridional, Eastern branch of the gyre. Associated with these
time-changing eddies around the equatorward branch of the plane-
tary gyre, an Eastward equatorial jet intensifies under the Western
Pacific. This suggests an underlying dynamics more complex than
a simple longitudinal shift of the planetary gyre.

Interestingly, our average solution does not show a major inten-
sification of equatorially symmetric azimuthal jets at high latitudes
in the Pacific hemisphere, as inferred by Livermore et al. (2017).
Indeed, we see an increase of the Northern jet only, by about 67%

in average (the one σ dispersion within the ensemble of flow re-
alizations allowing for an increase up to 100%). Although still an
appreciable acceleration, it is significantly less than the factor of
3 found by Livermore et al. The disagreement is likely due to our
global inversion (in opposition to their local model). The difference
seems to be related with antisymmetric circulations within the TC.
One should keep in mind that in these high and low latitude areas,
gradients of Br are much larger in the Northern Hemisphere, mean-
ing that the signature of any motions near the TC below the Southern
Pacific are significantly weaker. As for the stationary constituent,
the equatorial symmetry is not perfectly respected, and we retrieve
the largest antisymmetrical features within the TC, associated with
polar jets.

We give in Fig. 13 an example of one interannual flow constituent
at the CMB for a period of 5.3 yr. In this case, the most energetic
flows are concentrated into non-axisymmetric azimuthal jets near
the equator (already highlighted by Gillet et al. 2015b; Finlay et al.
2016b), and into localized circulations at mid and high latitudes.
These are not confined to the Atlantic hemisphere: despite being
less energetic on average, the Pacific hemisphere shows interesting
interannual flow variations. At these sub-decadal periods, we have
not detected any obvious propagation of non-zonal flow patterns,
which might be interpreted as the signature of azimuthally propa-
gating waves (as advocated for by Chulliat & Maus 2014; Chulliat
et al. 2015). The other periods display globally the same kind of
features and no particular behaviour is found at any period. At these
timescales also show up less intense antisymmetric features; the
most significant shows up in the equatorial area (for instance un-
der the Atlantic ocean and the Western Pacific), and towards high
latitudes on the edge of the TC.

Fig. 14 summarizes the amount of equatorial symmetry found
in regions inside and outside the TC, for our core flow solutions
at all periods. It appears almost independent of the considered pe-
riod: outside the TC, it is within 90 to 95% of the surface energy
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Figure 12. Same as Fig. 10 for the flow constituent AL (in km yr−2).

for all flow constituents of eq. (23). The partition of energy be-
tween symmetric and antisymmetric flow components is more bal-
anced inside the TC where, depending on the considered timescale,
≈55 ± 15% of the energy is contained in equatorially symmet-
ric flows. This latter observation could be expected because the
presence of the inner core is intended to partially break the equa-
torial symmetry However, it is remarkable that the algorithm ap-
pears accurate enough to detect a specific behaviour within the
tiny areas covered by polar caps. Moreover, although our ensem-
ble average model and the CED show very similar amounts of
equatorial symmetry outside the TC (the value for the CED model
is 95% of symmetrical flows inside and outside TC), they differ

significantly inside the TC (it is much less in the inverted flows).
As a consequence, the larger proportion of equatorial antisym-
metry inside the TC is driven by observations (against the prior
information).

4 S U M M A RY A N D D I S C U S S I O N

Following earlier strategies for geomagnetic field model reconstruc-
tion (e.g. Jackson et al. 2007; Lesur et al. 2010), and moving to-
wards geomagnetic data assimilation (Aubert 2015; Gillet et al.
2015a; Baerenzung et al. 2017), we continue the work initiated in
BGA17. We retain their idea of combining spatial information from
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Figure 13. Same as Fig. 10 for the flow constituent Ac
3 (in km yr−1).

numerical simulations of the geodynamo with temporal information
implemented through stochastic equations, chosen to replicate the
frequency spectrum of ground-based geomagnetic series. However,
instead of considering spherical harmonic coefficients of the main
field as data, here we have inverted observations (GOs and VOs) di-
rectly, at and above the Earth’s surface. In this respect we follow the
studies by Beggan & Whaler (2009) and Whaler & Beggan (2015),
although we account for subgrid processes (of great importance,
as shown by BGA17 or Baerenzung et al. 2016) and for surface
magnetic diffusion. This avenue allows us to propose PDFs for the
main field and its secular variation, as well as for the recovered core
motions.

4.1 Geophysical insights

The MF models presented here are consistent both with observations
and with the imposed dynamical prior. The model uncertainties, as
suggested by the ensemble spread, are slightly less than the distance
of the average model to CHAOS-6. We recover in our core flow solu-
tions a westward gyre that circulates around the TC at high latitudes
in the Pacific hemisphere, and flows closer to the equator in the
Atlantic hemisphere. The largest contributions from magnetic dif-
fusion are associated with up-/downwellings where the gyre meets
the equatorial region (under Indonesia) and in the equatorial region
below Africa. At all timescales, the flow is predominantly sym-
metric with respect to the equator, except inside the TC where the
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Figure 14. Fraction of energy contained into the equatorial symmetric part of the flow, inside (blue line) and outside (yellow line) of the tangent cylinder (TC),
for each of the flow constituent that enters eq. (23). The total symmetric part of the flow is also displayed in green. The value for the CED dynamo used as a
prior is 0.95 both inside and outside the TC.

situation is more balanced (contrary to our dynamo prior that is
mostly symmetric everywhere).

The most intense time-average flow acceleration over the past
16 yr is linked with evolving meanders around the equatorward
branch of the gyre in the Eastern hemisphere, also associated with
the appearance of an Eastward equatorial jet under the Western
Pacific. We do find a decadal intensification of jets near the TC,
although the magnitude of the acceleration we infer is lower than
that estimated by Livermore et al. (2017) with their reduced model.
In our study, it is furthermore confined to the Northern Hemisphere.
This equatorial asymmetry may be interpreted as the signature of
an ageostrophic acceleration, keeping in mind that main field gradi-
ents are weak in the Southern Pacific, implying a weaker constraint
on flow motions there (see fig. 7 in Baerenzung et al. 2016). How-
ever, because our prior does not show any particular bias in those
areas, it is likely that those features are mostly driven by the data.
On interannual periods, we find relatively energetic flow changes in
both the Atlantic and the Pacific hemispheres, with both non-zonal
equatorial jets and time-dependent mid-to-high latitudes eddies
evident.

4.2 Future work

We currently lack a physical understanding for the features de-
scribed above, whether it be through quasi-geostrophic flows (e.g.
Labbé et al. 2015), motions within a stratified layer (e.g. Buffett
& Knezek 2017), or any other interpretation through a reduced
model. We also lack suitable long coverage by high quality satellite
records to perform spectral analyses with a refined sampling in the
frequency domain, which would allow us to isolate possible waves
at interannual periods. Development of such reduced models, and
their coupling with stochastic processes for modelling unresolved
processes, will be an important next step in our ability to understand
and predict geomagnetic field changes.

Meanwhile, our stochastic model itself could be improved; in
particular it is desirable to avoid driving back the average trajectory
towards an average dynamo simulation. This is indeed an unlikely
state for the current era (say over decadal to centennial timescales),
which might be better represented by a reanalysis of for instance

centennial motions from historical records (Jonkers et al. 2003).
Furthermore, because of the short time span covered today by satel-
lite data, we found it challenging to derive well-conditioned matrices
for VO uncertainties. This is a key-point for such data assimilation
studies, which calls for further developments, for example, through
projections onto reduced basis in the data space. Alternatively, we
may wish to coestimate, together with the core state, time-dependent
external fields. Although possible, this calls for a severe re-encoding
of both the forecast and analysis steps, in order to integrate satellite
measurements along the tracks.

The general philosophy of our work is to retrieve information on
the state of the Earth’s core, and to provide realistic uncertainties
on all state variables in a simple way. The encouraging magnetic
models obtained with this approach render our algorithm suitable
for deriving candidates to the International Geomagnetic Reference
Field (Thébault et al. 2015). Remaining in a stochastic framework,
modifications of the forward model parametrization—such as ac-
counting for a background state closer to the flow responsible for
the magnetic field over the past decades—may extend the predic-
tion capability of our algorithm. However, targeting accurate field
predictions one will have to resort to deterministic (i.e. dynamically
based) equations for the core state.
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Appendix B

Virtual Observatory Model -
Synthetic Data

This appendix is concerned with the validation and documentation of the implemented
VO modelling approach described in Chapter 4. A series of synthetic data test have been
performed in order to validate the VO model using both regular vector and gradient data.
Herein a few of these investigations are presented. Synthetic data was generated at satel-
lite observation locations from Data Set 1, using the CHAOS-6-x5 model predictions to SH
degrees n ∈ [1, 20] multiplied by a factor of 1.01 on the Gauss coefficients. The CHAOS-
6-x5 field model predictions for SH degree n ∈ [1, 20] was subtracted at each location and
then added back for the target point location. The figures shown here are for one example
case study being a VO above the Niemegk ground observatory.

Figure B.1 presents comparisons between quadratic and cubic potential descriptions for
search radii d0 = 500km (fig. a and c) and d0 = 1000km (fig. b and d). The figure shows
the difference in the main field components at the VO target point, between the VO model
approach and the CHAOS-6-x5 predictions using regular vector data binned in 4 month
time windows. Red and blue dots are for CHAMP and Swarm periods, respectively. Note
here, that because the synthetic data are build using Data Set 1, having geomagnetic quiet
dark time selection criteria, the number of data points are small especially for d0 = 500km,
emphasising the possible advantage of increasing the search radius when using those type
of data selection criteria. Visual inspection reveals that the quadratic fit is not performing
well for a large search radius of d0 = 1000km as indicated by the size of the difference and
their scatter (notice here the scale in this particular plot). The cubic description using
both a 500km and a 1000km search radius provides an acceptable fit.

Figure B.2 presents comparisons using a cubic description for NV O = 30 for various search
radii of 500, 700 800 and 1000km using using data sums and differences. During the syn-
thetic runs it was realized that using data differences alone was not enough to constrain
the first three coefficients of the potential description, thus requiring the data sums to
be added. Increasing the search radius from 500km to 700km increases the number of
VOs in the times series dramatically. Furthermore, having a large search radius the cubic
description is suitable obtaining differences < 0.2nT. Notice here the apparent slope in the
radial field component during the CHAMP period in the radial component for the large
search range d0 = 1000km; this may be ascribed to the steady decrease of the CHAMP
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satellite during its lift time not being properly captured due to a fixed VO altitude during
the entire time series. Figure B.3 presents the number of available data for the various
search radii. From this it is evident that choosing a large search radius is highly beneficial,
especially during CHAMP time. Due to the poor performance of the quadratic description
using search ranges >500km, no further results using the quadratic potential are provided.
Figure B.4 presents the retrieved main field and SV obtained from a VO model in red dots
using a search range of d0 = 700km. This is also the preferred VO setup used in the
subsequent computations for the field and field gradient time series presented in Sections
4.5 and 4.6, respectively.
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(a) Quadratic - {d0, NV O} = {500km, 30}.
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(b) Quadratic - {d0, NV O} = {1000km, 30}.
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(c) Cubic - {d0, NV O} = {500km, 30}.
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(d) Cubic - {d0, NV O} = {1000km, 30}.

Figure B.1: Synthetic vector data: quadratic (top) and cubic (bottom) descriptions.
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(a) Cubic - {d0, NV O} = {500km, 30}.
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(b) Cubic - {d0, NV O} = {700km, 30}.
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(c) Cubic - {d0, NV O} = {800km, 30}.
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(d) Cubic - {d0, NV O} = {1000km, 30}.

Figure B.2: Synthetic data sums and differences: search range.
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(b) Cubic - {d0, NV O} = {700km, 30}.
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(c) Cubic - {d0, NV O} = {800km, 30}.
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(d) Cubic - {d0, NV O} = {1000km, 30}.

Figure B.3: Synthetic data sums and differences: number of available data.
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Figure B.4: Synthetic data sums and differences: MF (left column) and SV (right column).





Appendix C

Virtual Observatory Model -
Field Computations

This appendix contains VO time series of annual differences of the main field (i.e. the
SV) and of the secular variation (i.e. the SA) at the selected ground observatories listed
in Table 4.2. The figures are listed in alphabetic ordering of the observatories; shown
with black dots are the revised monthly mean of the GO’s, in red dots the VO estimates
and with the green curves the CHAOS-6-x5 model predictions at the VO altitudes during
CHAMP and Swarm periods for SH degrees n ∈ [1, 16]. For each station the left (top or
bottom) plots show the SV estimates while the right (top or bottom) plots show the SA
estimates of the three field components. The VO’s are plotted at altitudes 370km and
490km during CHAMP and Swarm times, respectively.
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Figure C.1: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.2: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.3: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.4: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.5: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.6: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.7: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.
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Figure C.8: Time series of SV (left) and SA (right) showing VO’s (red dots) using 4 month
data windows, GO’s (black dots) and CHAOS-6-x5 model predictions (green) using SH
degrees up to n = 16. For SV and SA fields the CHAOS-6-x5 estimates are plotted at VO
altitudes (i.e. 370km and 490km) and at Earth’s surface, respectively.




