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Abstract

The continued development and renewal of railway infrastructure and technol-
ogy is necessary to enable railway operators to provide high quality services subject
to ever increasing demand. However, the execution of large infrastructure projects
causes disturbances in the network due to the occupation of infrastructure over ex-
tended periods of time. In this paper we propose a multiobjective project schedul-
ing optimization model for railway infrastructure projects that takes inconvenience
caused to users of the infrastructure into account. We illustrate how the model
can be used in an interactive way by planners based on their preferences, and we
show that Pareto optimal solutions can be found in reasonable time using instances
with realistic features. The result is a decision support model to aid infrastructure
project planners in ensuring that passenger and operator inconvenience are also
taken into account.

Keywords: Project scheduling, railway infrastructure, passenger perspective, multi-
objective optimization, integer programming

1 Introduction

In order for railways to remain an attractive and energy efficient alternative for the trans-
portation of passengers and freight, infrastructure managers have to ensure that enough
capacity is provided through the railway infrastructure. Significant increases in demand
over time often require significant changes to the current network, such as the replacement
of outdated technology or the construction of new lines, which result in large construc-
tion and renewal projects to be managed by the infrastructure manager. The current
projects for the Danish railways, for example, “reflect the vision to double the freight
and passenger traffic by year 2030” (Banedanmark, 2017a), and include the upgrade of
the signalling systems, the electrification of a large part of the Danish railway network,
and the construction of new high speed railway lines to increase rail connectivity between
Scandinavia and the rest of Europe. These are large, long-term projects with durations
of 1–5 years and budgets of 1–2 billion Euros (Banedanmark, 2017b).

Even though the ultimate aim of railway infrastructure projects is to increase capacity,
capacity is necessarily decreased during their execution, since the occupation of parts of
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infrastructure by construction work renders it unusable to train traffic. Infrastructure
works can therefore be highly disruptive to the normal traffic flow. Moreover, disturbances
caused by elements such as noise, vibrations or dust can be an inconvenience to people
living or working in areas adjacent to tracks where infrastructure work is being executed.
Disturbances caused by the execution of railway infrastructure projects may therefore
contribute to a negative reputation of the train operators, the infrastructure manager,
and the mode of transport itself — exactly the opposite of the ultimate intention behind
these projects. Thus, great care has to be taken by infrastructure managers to include
inconvenience caused as a factor in the strategic planning of infrastructure projects.

In this paper we propose different measures of the suitability of a long-term strategic
plan from the perspective of the infrastructure users (i.e. passengers and operators), and
we include these measures as objectives in a mixed-integer programming model for the
strategic planning of railway infrastructure projects. The measures are based on current
practice at Banedanmark, as well as on similar measures that have been taken into ac-
count before in the (tactical or operational) planning of routine maintenance of railway
infrastructure, where the problem is equally relevant. Moreover, as railway infrastructure
projects have significant financial implications, we consider the smoothing of the cost
profile over the long-term horizon as an additional objective. The problem we study can
therefore be seen as a classical resource levelling problem (Rieck and Zimmermann, 2015)
with additional constraints and objectives relating to the proposed measures.

As far as we are aware, an optimization model has not been proposed before for the
scheduling of large railway infrastructure projects from a strategic point of view. When
it comes to the tactical or operational scheduling of railway infrastructure maintenance,
on the other hand, various optimization models can be found in the literature (see Lidén
(2015) for an overview). In terms of taking inconvenience caused into account, the major
difference between strategic scheduling and tactical or operational scheduling is that in
the latter cases train timetables can usually be assumed to be available. The availability of
timetables allows for a more realistic measure of inconvenience caused, and this has been
taken into account in several papers from the literature. In some models (Higgins, 1998;
Lake et al., 2002; Van Zante-De Fokkert et al., 2007) disturbances are avoided altogether
by scheduling activities in “train-free slots” in the timetables, while other models (Higgins,
1998; Andrade and Teixeira, 2011; Albrecht et al., 2013) consider minimizing delays caused
to train traffic as a result of interference by maintenance activities. Even though the
timetable might not yet be available, it might be in the process of being constructed. In
this case disturbances can be avoided or minimized by scheduling trains and maintenance
activities simultaneously, as is considered in Albrecht et al. (2013), Forsgren et al. (2013)
and Lidén and Joborn (2017).

On a strategic level a planning horizon of several years or decades can be considered,
where we assume that timetables are not yet being constructed for periods so far in the
future. For this reason we restrict our focus to measures that can be used independently of
whether or not timetables are available. The contributions of this paper are summarized
as follows:

1. We survey different ways in which inconvenience caused by maintenance works have
been taken into account in scheduling models, and the ways in which it is taken
into account at Banedanmark in strategic planning, and we group these into three
general principles.

2. We show how these principles can be modelled by mixed integer programming (MIP)
techniques and include them in a standard MIP formulation for classical resource
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levelling.
3. Given that the problem contains multiple possibly conflicting objectives, we illus-

trate via an example how the MIP model can be used in an interactive approach in
cases where the preferences of the planners are not clear.

4. Through a computational study on randomly generated instances with realistic fea-
tures we show that the MIP model can be solved fast enough to facilitate an inter-
active approach.

2 Problem definition

In this paper we assume that a project portfolio has already been created, together with
estimates of project durations and costs, and that strategic decisions need to be made as
to when to execute these projects in the long term. The measures of inconvenience caused
we consider in this paper is presented below as three formal principles to be followed in the
scheduling of the infrastructure works in the project portfolio. Roughly stated, the three
principles are aimed at maximizing potential traffic throughput, minimizing disruption
durations, and maximizing durations of breaks inbetween disruptions, respectively.

Principle 1 Maximize potential flow through a critical set of infrastructure resources by
minimizing the number of resources occupied simultaneously at any point in time.

A critical set could, for example, be a railway corridor that represents a crucial link
in a network. Given a partition of such a corridor into sections of track, this principle
states that bottlenecks or capacity reductions (such as train speed restrictions) should
be imposed only on very few sections simultaneously along the corridor. Nemani et al.
(2010), for example, consider service corridors, each of which is associated with a number
of subdivisions. In their scheduling model a constraint is imposed that at most one
subdivision of each service corridor may be occupied by maintenance work during any
week, in order to ensure that the movement of high volumes of freight through the corridor
is not too severely affected. Similar constraints related to subdivision of the infrastructure
are also considered in a number of other papers, see for example Boğ et al. (2010), Peng
et al. (2011), Peng and Ouyang (2012) and Peng and Ouyang (2014). A critical set could
also represent a set of parallel track sections at a junction or in a railway yard, where
the occupation of fewer sections simultaneously allows more possibilities for the rerouting
of trains (Peng et al., 2011; Jenema, 2011). There is also some similarity to the work
of Boland et al. (2013, 2014), where maintenance activities are scheduled in such a way
that the total flow of trains through the network is maximized, given that some links are
occupied by maintenance tasks.

At Banedanmark the principle is imposed on high traffic regional lines that are subdi-
vided into line sections, and where any two infrastructure projects on the same regional
line, but on different line sections, should preferably not be scheduled in the same year.

Principle 2 Minimize the duration (or cost) of an occupation of an infrastructure re-
source by scheduling activities simultaneously.

This principle relates to the occupation of a single resource, e.g. a track section.
Scheduling activities simultaneously will allow for fewer time periods during which ca-
pacity is restricted by infrastructure activities and therefore fewer disruptions to train
operations. The assumption here is that the severity of the disruption caused, such as the
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closure of a track section, depends significantly more on the duration of the occupation
of the resource than on the amount of work done during the occupation. This principle
is not uncommon in practice. For example, one of the principles outlined by RailNet-
Europe (RNE) for planned temporary capacity restrictions on the European Rail Freight
Corridors (RFCs) is indeed that “[i]n case of total closure the aim should be to plan the
maximum amount of works simultaneously if technically possible” (RailNetEurope, 2015).
At Banedanmark, a set of coordination principles are imposed that aim to synchronize
infrastructure projects that are to be executed on the same route section in the network.

Lidén (2015) groups previous work that considers this principle under possession and
work coordination. In Budai et al. (2006), for example, the durations of possessions are
minimized (among other objectives) by synchronizing maintenance and renewal activities,
and similarly Caetano and Teixeira (2013) minimizes the track unavailability during the
maintenance period. More generally speaking, costs on the duration of the resource
occupation can also be imposed. Jenema (2011), for example, introduces a time-dependent
cost on the duration of so-called “Train-Free-Periods,” and possession costs are taken into
account by Zhao et al. (2009) and Pouryousef et al. (2010). As discussed by Zhao et al.
(2009), possession costs are sometimes also meant as compensation to train operators for
disrupting their services. Finally, a somewhat different approach is taken by Peng et al.
(2011) and Peng and Ouyang (2012), who consider the option of “splitting” projects, i.e.
assigning twice the amount of resources (maintenance teams in their case) to halve the
infrastructure occupation time.

Principle 3 Maximize the durations of breaks between consecutive non-overlapping occu-
pations of an infrastructure resource.

Due to conflicts among activities, it will not always be possible to schedule all activi-
ties that occupy a specific resource simultaneously. Often more than one occupation of a
resource is necessarily required. A difficulty that might arise is that, even though activ-
ities are synchronized in such a way that, for example, two non-overlapping occupations
have minimal durations, it might still be perceived by users of the system to be a single
occupation if they are scheduled close enough in time. This motivates the inclusion of
a break inbetween two occupations that is long enough to avoid them being perceived
as one occupation. A principle imposed by Banedanmark in the strategic planning of
infrastructure projects is therefore to avoid returning to a part of infrastructure too soon
(i.e. within 5–10 years) after a significant amount of work has been completed there.

3 Mixed integer programming formulation

In this section we present a formulation of a mixed integer program (MIP) with four
objectives, one for each principle introduced in the previous section, as well as a resource
levelling objective. Rieck et al. (2012) compares two formulations for classical resource
levelling, and as the basis of the MIP proposed in this paper we use the one found to be
dominating in their computational studies. Moreover, we will use scalarization techniques
(Ehrgott, 2006) (also known as criterion space search (Boland et al., 2015)), which are
methods that transform the problem into a single objective optimization problem which
is then solved by a black-box MIP solver. Different settings of the parameters of the
scalarization typically result in different solutions on the Pareto front.

Determining a single scaralization to be used to generate schedules is likely not a prac-
tically feasible approach, as it is difficult to make any assumptions about the preferences
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of the planners a priori. It would therefore be more appropriate to use interactive methods
(Miettinen et al., 2016), where the parameters of the scalarization are adjusted by the
planners each time after reviewing a generated schedule, until a satisfactory schedule is
produced. Preference modelling and the implementation of interactive methods are out-
side the scope of this paper, but we do illustrate the use of scalarizations of our model
using a small example. For this example we make some preference assumptions and we
develop a schedule step by step as the different objectives are introduced. The example
will be introduced in §3.1.

3.1 Project scheduling constraints

We assume that a set of activities A (e.g. infrastructure projects) has to be scheduled.
The scheduling horizon comprises a set of time periods T , where |T | gives the length of
the horizon. We define a schedule as a vector S that contains an integer variable Sa for
each activity a ∈ A, where Sa represents the start time period to be assigned to a. Each
activity a ∈ A is further associated with a fixed processing time of a certain number of
periods pa, and the feasible time periods in which activity a can start is given by Ta ⊆ T .
In what follows we define [S]a = [Sa, Sa + pa − 1], and an activity a is said to be active
during time period t in schedule S if t ∈ [S]a. We introduce a number of big-M constraints
in this section, and towards this end we define Mab = maxTa −minTb, and we note that
−Mba ≤ Sa − Sb ≤Mab is satisfied by any feasible schedule.

Among some activities coordination may be required, e.g. because they form part of a
larger common project, and we denote by P ⊆ A×A the set of all pairs of activities that
need to be coordinated. By that we mean that δab ≤ Sa − Sb ≤ δ̄ab should be satisfied
for some predefined parameters δab, δ̄ab for all (a, b) ∈ P . Such constraints are known as
generalized precedence constraints in project scheduling (Elmaghraby and Kamburowski,
1992). On the other hand, pairs of activities may be in conflict due to technical aspects of
their execution, and we denote by Q ⊆ A×A the set of all activities that are in conflict.
In this case the constraint [S]a ∩ [S]b = ∅ should be satisfied for all (a, b) ∈ Q.

Constraints (1) and (2) ensure that activities are coordinated while Constraints (3)
and (4) ensure, by means of a binary variable ξab, that conflicts between activities are
avoided.

Sa − Sb ≤ δ̄ab (a, b) ∈ P (1)

Sa − Sb ≥ δab (a, b) ∈ P (2)

Sa − Sb ≥ pb − (Mba + pb)ξab (a, b) ∈ Q (3)

Sb − Sa ≥ pa − (Mab + pa)(1− ξab) (a, b) ∈ Q (4)

ξab ∈ {0, 1} (a, b) ∈ Q (5)

The activities also share a set of resources R (e.g. manpower, equipment, budgets),
where each resource k ∈ R has a limited availability uk. Each activity a consumes an
amount rak of resource k during each time period a is active, and the total consumption
of resource k during time period t is given by

ρk(S, t) =
∑

a∈A:t∈[S]a

rak

for schedule S. The step function ρk(S, ·) is known as the resource profile of resource k for
schedule S. In general two different approaches to dealing with shared resources can be
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considered. The first and most common is resource constrained project scheduling, where
a constraint ρk(S, t) ≤ uk is imposed for all k ∈ R and t ∈ T . The second approach is time
constrained project scheduling, where uk = ∞ is assumed and instead a function related
to the resource profile is to be minimized. In resource levelling, the classical objective
function (to be minimized) is ∑

k∈R

λk
∑
t∈T

ρk(S, t)2,

which is equivalent to minimizing a weighted sum of the variances of the |R| resource
profiles. This could model, for example, a requirement for a smooth cost profile (as
considered in this paper) or for a balanced workload over the scheduling horizon (as
considered in Van Zante-De Fokkert et al. (2007), for example).

In this paper we consider resource levelling of a single resource k, and we therefore
simplify notation by defining ra = rak. Let xta be a binary variable that indicates whether
or not activity a ∈ A starts in time period t ∈ Ta, and let rt be a continuous variable that
denotes the total consumption of the resource in time period t ∈ T . The total resource
consumption of the resource during each time period is calculated as a function of the
schedule vector S by Constraints (6)–(10). Note that Constraint (7) also ensures that
each activity is only assigned one of its feasible start time periods.∑

t∈Ta

txta = Sa a ∈ A (6)∑
t∈Ta

xta = 1 a ∈ A (7)∑
a∈A

ra
∑
t′∈Ta:

t−pa+1≤t′≤t

xt
′

a ≤ rt t ∈ T (8)

xta ∈ {0, 1} a ∈ A, t ∈ Ta (9)

rt ≥ 0 t ∈ T (10)

The objective is to minimize

zRL =
∑
t∈T

r2t , (11)

which can be modelled by linear constraints as described in Rieck et al. (2012).
As promised, we illustrate the use of our model by means of a small example. The

example is shown in Figure 1, and it consists of 17 activities of durations between 1
and 2 periods, 3 distinct parts of infrastructure (sections), and a planning horizon of 15
periods. The light-gray activities are to be coordinated in that they all have to start
and end within 6 consecutive time periods, and conflicts exist between light-gray and
dark-gray activities if they are on the same section. A single resource is considered, where
the consumption of the resource by each activity is given by the number given inside the
block representing the activity. The schedule shown in Figure 1 minimizes (11) subject
to (1)–(9); in particular, in each period 8 units of the resource are consumed, except for
periods 0, 10 and 14, during which 7 units of the resource are consumed.

In the next section we discuss the first principle. Recalling this principle, and assuming
that the three sections in the example either form a busy corridor or parallel lines in a
junction or railway yard, we can see that the schedule shown in Figure 1 scores badly
on this principle. This can be concluded since in all but periods 0, 8 and 14 two out
of the three sections are occupied simultaneously, while in period 12 all three sections
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Figure 1: Example consisting of 17 activities, 3 sections and 15 time periods. Light-gray
activities all have to start and end within 6 consecutive time periods, while light-gray and
dark-gray activities on the same section may not overlap. The resource consumption of
each activity is given inside the block representing the activity, and the resource profile
is shown above the schedule.

are occupied simultaneously. In the next section we incorporate the first principle in the
model in order to remedy this situation.

3.2 Principle 1

We assume that the activities are associated with a set of infrastructure resources I (e.g.
track sections), where each activity a ∈ A occupies an infrastructure resource ia ∈ I
during its execution. For any infrastructure resource i ∈ I, let Ai = {a ∈ A : i = ia}
denote the set of activities associated with i, and let Ai(S, t) = {a ∈ Ai : t ∈ [S]a} denote
the set of activities associated with i that are active during time period t in schedule S.
We say that an infrastructure resource i ∈ I is occupied during time period t in schedule
S if Ai(S, t) 6= ∅; otherwise we say that the infrastructure resource is free during that
period. Let yti be a binary variable that indicates whether or not infrastructure resource i
is occupied during time period t. Constraints (12)–(13) link these variables to the existing
model. ∑

t′∈Ta:
t−pa+1≤t′≤t

xt
′

a ≤ yti i ∈ I, a ∈ Ai, t ∈ T (12)

yti ∈ {0, 1} i ∈ I, t ∈ T (13)

For the first principle we define a collection of critical sets C (e.g. corridors, junctions),
where each critical set C ∈ C is a subset of infrastructure resources. We introduce an
integer variable σt

C denoting the number of infrastructure resources in C ∈ C in addition
to one that are occupied during time period t, which is calculated by Constraint (14).∑

i∈C

yti ≤ σt
C + 1 C ∈ C, t ∈ T (14)

7



The objective in this case is to keep σt
C small for all values of t and C, and so we minimize

zP1 =
∑
C∈C

λC
∑
t∈T

(σt
C)2, (15)

where λC ≥ 0 is an input parameter that represents the relative importance of critical set
C. We use the same linearization technique as for (11).

At this point we have two objectives, namely to minimize zRL and zP1, respectively.
Minimizing zP1 subject to (1)–(15) for our example gives a solution with an optimal
objective function value of 0 — that is, no two sections are ever occupied simultaneously
in this schedule. Figure 2 (left) shows a schedule that minimizes zRL subject to (1)–(15)
and the additional constraint zP1 = 0. In other words, among all solutions that are optimal
with respect to the first principle, this schedule optimizes the resource profile. This is
known as lexicographical optimization, and imposes a strict priority of one objective over
another.

More generally one can minimize zRL subject to (1)–(15) and the additional constraint
zP1 ≤ ε for some ε ≥ 0, which is known as an ε-constraint method. By solving the MIP
four times for ε = 1, 2, 3, 4 (note that for this example zP1 will necessarily be integer) we
find that ε = 4 is the smallest value such that the optimal resource profile is attained, as
shown in Figure 2 (right). This is therefore also a schedule that is an optimal solution to
the lexicographical optimization problem where resource levelling has strict priority over
the first principle. In-between the two solutions shown in Figure 2, that is for ε = 1, 2, 3,
alternative nondominated schedules can be generated with different tradeoffs between the
two objectives. The final decision of which of these schedules to accept depends on the
preferences of the planners.
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Figure 2: Two lexicographically optimal schedules, where in one case (left) Principle 1
has higher priority than resource levelling, while in the other (right) the reverse is true.

3.3 Principles 2 & 3

An occupation window on a section is defined as a maximal set of consecutive time periods
during which the section is occupied, while a break contains all time periods between one
occupation and the next. For example, in the schedule shown in Figure 2 (left) there are
two occupation windows on Section 2, one with a duration of three time periods and one
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with a duration of two time periods. Moreover, there is one break starting in time period
3 and ending in time period 7.

In order to enforce the second principle, we define Θ as the duration of the longest
occupation window in the schedule and define the second objective to be to minimize

zP2 = Θ. (16)

For the third principle, we define ∆ as the shortest break in the schedule and define the
third objective to be to maximize

zP3 = ∆. (17)

Before showing how these objectives can be linked to the scheduling variables, we first
consider the example. Assume that the planners agree that a value zP1 ≤ 2 for the first
principle is acceptable, i.e. during at most two time periods across the scheduling horizon
may at most two out of three sections be occupied. Minimizing zP2 we find a schedule
where no occupation window is longer than two time periods, which attains the trivial
dual bound maxa∈A pa = 2. Figure 3 shows a schedule that minimizes zRL subject to the
additional ε-constraints zP1 ≤ 2 and zP2 ≤ 2.
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Figure 3: A schedule that minimizes zRL subject to zP1 ≤ 2 and zP2 ≤ 2.

Note that even though the occupation windows are as short as they can be for this
example, some of them are fairly close to each other in time. For example, the first and
second occupation windows of Section 2 are only one time period apart. We therefore
next maximize zP3, and find zP3 = 8 to be optimal. Figure 4 (left) shows a schedule
that minimizes zRL subject the additional ε-constraints zP1 ≤ 2, zP2 ≤ 2 and zP3 ≥ 8.
As can be seen this results in a resource profile that is not very well balanced. Assume
that the planners agree to relax zP3 ≥ 8 to zP3 ≥ 3, i.e. that breaks of duration 3
would be acceptable, but not less. Figure 4 (right) shows the resulting schedule after this
relaxation, which has a more balanced resource profile. Moreover, this schedule now takes
into account all objectives at acceptable levels to the planners, and can therefore be seen
as a candidate solution.
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Figure 4: A schedule (left) that minimizes zRL subject to zP1 ≤ 2, zP2 ≤ 2 and zP3 ≥ 8,
and a schedule (right) that minimizes zRL subject to zP1 ≤ 2, zP2 ≤ 2 and zP3 ≥ 3.

Note that this example is only for illustrative purposes, and that in general such
an interactive approach will be case dependent, and in particular it will depend on the
preferences of the planners. The MIP model introduced above, together with the many
possibilities that scalarization offers (note that theoretically any nondominated schedule
can be generated by some scalarization (Ehrgott, 2006)), results in an optimization frame-
work that is able to facilitate such an interactive approach. An important question that
remains unanswered is the computational performance on the MIP model introduced, as
an interactive approach is most effective when the computation times are not too large.
This question is answered in §4.

It remains to be discussed how the variables Θ and ∆ can be linked to the rest of
the model. In what follows we present two different ways of linking Θ to the scheduling
variables, which we respectively refer to as the discrete model and the disjunctive model. In
the discrete model the variables Θ and ∆ are defined in terms of the binary time variables
xta and O(|T |2) additional binary variables are introduced for each infrastructure resource.
In the disjunctive model, on the other hand, the variables Θ and ∆ are defined in terms
of the integer time variables Sa (using big-M constraints) and O(|Ai|2) additional binary
variables are introduced for each infrastructure resource i ∈ I.

3.3.1 Discrete model

We introduce a binary variable αi
tt′ that indicates whether or not the time interval [t, t′] lies

inside an occupation window on resource i, or equivalently whether or not infrastructure
resource i is occupied during each period in [t, t′]. We will denote the length of the interval
[t, t′] by dtt′ = t′ − t + 1. Constraints (18) and (19) use this variable to link the binary
time variables (through the binary occupation variables) with the duration of the longest
occupation window.

t′∑
s=t

ysi ≤ dtt′ − 1 + αi
tt′ i ∈ I, t, t′ ∈ T, t ≤ t′ (18)

αi
tt′dtt′ ≤ Θ i ∈ I, t, t′ ∈ T, t ≤ t′ (19)
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Constraint (18) ensures that if the infrastructure resource is occupied during each period
in [t, t′], then αi

tt′ is forced to assume a value of 1, and (19) ensures that Θ is equal to the
length of the longest continuous occupation of the infrastructure resource.

Moreover, we introduce a binary variable βi
tt′ that indicates whether or not the interval

[t, t′] corresponds to a break on resource i. In other words, βi
tt′ = 1 if resource i is free

during all time periods in [t, t′] but occupied during time periods t− 1 and t′ + 1 (where

we assume that y−1i = 0 = y
|T |
i ). Constraints (20) and (21) use this variable to link the

binary time variables with the duration of the shortest break.

yt−1i + yt
′+1
i −

t′∑
s=t

ysi ≤ 1 + βi
tt′ i ∈ I, t, t′ ∈ T, t ≤ t′ (20)

|T |(1− βi
tt′) + βi

tt′dtt′ ≥ ∆ i ∈ I, t, t′ ∈ T, t ≤ t′ (21)

Note that the intervals [minT, t] and [t,maxT ] cannot be breaks for any t ∈ T ac-
cording to this definition. Moreover, if there are no breaks on the section (i.e. if there is
only one occupation window) then, since it is technically undefined, ∆ is set equal to the
trivial upper bound |T |.

3.3.2 Disjunctive model

For each infrastructure resource i ∈ I we introduce a binary variable ψab that indicates
whether or not two activities a, b ∈ Ai, are in the same occupation window, and a binary
variable φab that indicates the order in which the two activities are scheduled. In order to
determine whether or not two activities are in the same occupation window it is useful to
consider, for each infrastructure resource i and a schedule S, a graph Gi(S) with vertex
set Ai for which an edge (a, b) exists if either Sa ≤ Sb ≤ Sa + pa or Sb ≤ Sa ≤ Sb + pb.
Each connected component of this graph therefore corresponds to an occupation window,
and two activities are in the same occupation window if there exists a path between the
two corresponding vertices in the graph. Equivalently, two activities are in the same
occupation window if they are adjacent in the transitive closure of Gi(S).

The scheduled order of two activities is determined by Constraints (22) and (23), and
whether or not they are adjacent in Gi(S) or connected by a path through transitivity is
determined by Constraints (24)–(26). Note that no specific order between the elements
a and b is assumed, and therefore we add the substitutions ψab = ψba and φab = φba and
assume all duplicate constraints are removed from the model.

Sa − Sb ≤Mab(1− φab) i ∈ I, a, b ∈ Ai (22)

Sb − Sa ≤Mbaφab i ∈ I, a, b ∈ Ai (23)

Sb − Sa ≥ (pa + 1)(1− ψab)− (Mab + pa + 1)(1− φab) i ∈ I, a, b ∈ Ai (24)

Sa − Sb ≥ (pb + 1)(1− ψab)− (Mba + pb + 1)φab i ∈ I, a, b ∈ Ai (25)

ψac + ψbc ≤ 1 + ψab i ∈ I, a, b, c ∈ Ai (26)

Note that if a and b are scheduled such that Sa < Sb, then φab = 1 and Sb − Sa ≥
(pa + 1)(1 − ψab) is imposed by (24). This forces ψab = 1 if Sb ≤ Sa + pa holds, and
otherwise imposes no constraint on ψab (in order to allow it to still attain 1 through
transitivity). The same idea holds for (25), whereas (26) imposes transitivity.

In order to impose the value of Θ with respect to a schedule, we compare activities
pairwise in order to check whether they are in the same occupation window. If they are,
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the timespan from the start of the earlier one to the finish of the later one must be at
most the duration of the longest occupation window. This is determined by Constraints
(27) and (28). We also have to account for the fact that an occupation window can span a
single activity. For this it is sufficient that the duration of the longest occupation window
must be at least the duration of the longest activity, as imposed by (29).

Sa + pa − Sb ≤ Θ + (Mab + pa)(1− ψab) i ∈ I, a, b ∈ Ai (27)

Sb + pb − Sa ≤ Θ + (Mba + pb)(1− ψab) i ∈ I, a, b ∈ Ai (28)

max
a∈Ai

pa ≤ Θ i ∈ I (29)

In order to impose the value of ∆ with respect to a schedule, we again compare
activities pairwise in order to check whether they are in the same occupation window.
If they are not, the timespan from the end of the earlier one to the start of the later
one must be at least the length of the shortest break. This is determined by Constraints
(30) and (31). We also have to account for the fact that a section may have only one
occupation window and no breaks, in which case ∆ is equal to the upper bound |T | as
imposed by (32).

Sb − (Sa + pa) ≥ ∆− (|T |+Mab + pa)(1− φab + ψab) i ∈ I, a, b ∈ Ai (30)

Sa − (Sb + pb) ≥ ∆− (|T |+Mba + pb)(φab + ψab) i ∈ I, a, b ∈ Ai (31)

|T | ≥ ∆ i ∈ I (32)

Note that a further implication of Constraints (24)–(26) is that no restriction is im-
posed on ψab if a and b are not in the same occupation window in some schedule. It is thus
feasible to have ψab = 1 even though a and b are not in the same occupation window. This
is not a problem in case (16) is used as the objective function, since there is an indirect
cost associated with setting ψab = 1 in this case. If (17) is used as an objective, on the
other hand, then having ψab = 1 even though a and b are not in the same occupation
window avoids the break in-between the occupation windows of a and b, respectively.

This is, however, a very rare occurrence in our case, which is due to the fact that when
maximizing the minimum break duration we follow a lexicographical approach where a
tight upper bound on the durations of occupation windows is imposed at the same time.
Since such an infeasibility only rarely occurs, we check feasibility in a postprocessing
phase. If an infeasibility is detected, a feasibility cut is included in the model and it is
solved again.

Assume that in a solution it is found that ψab = 1 while a and b are not in the same
occupation window. Assume further w.l.o.g. that Sb − (Sa + pa) = d̄ in this solution. To
avoid this infeasibility, and infeasibilities similar to it, we add the Constraints (33).

ψab + xta + xt
′

b ≤ 2 +

max(t,t′)−1∑
s=min(t+pa,t′+pb)+1

ysi
(t, t′) ∈ Ta × Tb :

max(t, t′)−min(t+ pa, t
′ + pb) = d̄

(33)

Note that this is in total 2(|T | − pa − pb − d̄) additional constraints. We found in our
computational study that of the 700 instances we considered, for only 3 of them such
feasibility cuts were needed. In these three cases one, two and four iterations were needed,
respectively, to resolve the infeasibilities.

12



3.4 Possible extensions of the model

We conclude this section with a short note on the flexibility of the modelling approaches
with respect to possible problem extensions.

Note that the way in which the discrete model was formulated for Principle 3 can
also be used in the formulation of Principle 2. In this case we enforce that αi

tt′ indicates
whether or not [t, t′] is exactly an occupation window, instead of merely a subset of one
as previously defined. In other words, αi

tt′ = 1 if resource i is occupied during all time
periods in [t, t′] but free during time periods t− 1 and t′+ 1 (where we again assume that

y−1i = 0 = y
|T |
i ). This can be ensured by using Constraint (34) instead of Constraint (18).

t′∑
s=t

ysi − yt−1i − yt′+1
i ≤ dtt′ − 1 + αi

tt′ i ∈ I, t, t′ ∈ T, t ≤ t′ (34)

However, this results in additional symmetry, since if [t, t′] is not an occupation window
the variable αi

tt′ is free to take either value, whereas if [t, t′] is a subset of an occupation
window αi

tt′ is forced take a value of 1 when using (18). Moreover, this is a weaker
formulation as (18) implies (34).

Nonetheless, modelling occupation windows in this way allows us to model an arbitrary
function fi(t, d) that maps to a cost of occupying resource i for d time periods starting in
time period t. In this case the objective is to minimize∑

i∈I

λi
∑

t,t′∈T,t≤t′
fi(t, dtt′)α

i
tt′ .

This function may assume any form, as long as its value can be calculated for all i, t
and d. For example, it could represent compensation paid to operators, or a quantitative
measure (found through simulation for example) of the severity of the disruption to train
traffic given that a part of infrastructure is occupied for a certain period in time.

The same can also be done for Principle 3, where a function gi(t, d) can be used to
model the incentive of allowing a break in infrastructure works for d time periods on a
specific resource i starting in time period t. In this case the objective is to maximize∑

i∈I

λi
∑

t,t′∈T,t≤t′
gi(t, dtt′)β

i
tt′ .

4 Computational study

In our computational study we address two main questions. Firstly, what can be expected
in terms of required computation time when solving realistic instances of the problem to
(Pareto) optimality using the models proposed in this paper? Secondly, how do the perfor-
mances of the discrete and disjunctive models compare, and when is it appropriate to use
which one? We consider seven instance classes, each of which consists of 100 randomly gen-
erated instances available online at http://www.ms.man.dtu.dk/research/instances.
The first class, Base, is used to answer the first question, while the remaining six classes
is used to answer the second question. In the following three sections we discuss the
features of these classes, the scalarizations of the models used, and the computational
results, respectively.
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∀C ∈ C ∀a ∈ A ∀(a, b) ∈ P
|T | |A| |I| |P | |Q| pa |C| ra δab δ̄ab
20 50 6 25 12 [1, 3] [2, 4] [1, 10] −pa pb

Table 1: Features of the class Base.

4.1 Instance features and classes

The features of the class Base are given in Table 1. Except for the resource consumption,
all features are based on what we observed in the current project portfolio of Banedanmark
when looking at the problem from a regional point of view. Since we consider planning at
a strategic level, the railway infrastructure, the time dimension and the project portfolio is
defined at a highly aggregated level of detail. For the Banedanmark case, for example, the
railway infrastructure is partitioned into line sections of length roughly between 10 and 100
kilometres. This results in only a limited number of line sections within certain designated
regions of the country. Project durations can be aggregated into integer multiples of
semesters or years, and the planning horizon can be between 10 and 20 years. Since
projects are for the most part independent, the number of coordinated and conflicting
activities is relatively small. In all instances each activity is coordinated with one other
activity on average, while on average half of the activities are in conflict with one other
activity.

Critical sets, which in the Banedanmark case correspond to regional corridors, contain
between two and four infrastructure resources. To generate critical sets, we sequentially
sample integers uniformly from the range [2, 4] until the cumulative sum of these integers
exceeds |I|, at which point the last number generated is discarded. The infrastructure
resources are then randomly inserted into these positions in the critical sets. For the
resource consumption of each activity a ∈ A we generate ra uniformly in the standard
integer range ra ∈ [1, 10] ∩ Z that is used for instances in the project scheduling problem
library PSPLIB (Kolisch and Sprecher, 1997). For coordinated activities, generalized
precedence constraints are generated in such a way that the two activities are forced to
overlap. Finally, we consider complete flexibility within the horizon as to when projects
can be scheduled, i.e. Ta = {t ∈ T : t+ pa − 1 ∈ T}.

We define the density of an instance to be |A|−2|I||A|−2 , which assumes a value of 0 if there
is only one activity associated with each infrastructure resource and a value of 1 if all
activities are associated with a single infrastructure resource. Recall that the number of
additional variables and constraints per infrastructure resource i ∈ I for modelling Prin-
ciples 2 & 3 is O(|T |2) for the discrete model and O(|Ai|2) for the disjunctive model. The
expectation is therefore that the discrete model outperforms the disjunctive model on in-
stances with high density and few time periods, while the reverse is true for instances with
low density and many time periods. In order to explore this hypothesis, a distinction is
made in the remaining instance classes between sparse and dense instances, and instances
with a planning horizon of either 10, 15 or 20 time periods. The features of these classes
that are different from those of the class Base are given in Table 2.

4.2 Scalarizations

We consider two scalarization techniques applied to our model, one based on lexico-
graphical optimization and one using ε-constraints, and we denote them by LEX and
EPS(zP1, zP2, z̄P3), respectively. Both scalarizations eventually minimizes zRL subject to
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Class |T | |A| |I| |P | |Q| pa
Sparse10 10 20 7 10 5 [1, 2]
Sparse15 15 20 7 10 5 [1, 2]
Sparse20 20 20 7 10 5 [1, 2]
Dense10 10 20 4 10 5 [1, 2]
Dense15 15 20 4 10 5 [1, 2]
Dense20 20 20 4 10 5 [1, 2]

Table 2: Features of the instance classes used to compare the discrete model with the
disjunctive model. The remaining instances features not shown here have the same values
as in Table 1.

zP1 ≤ zP1, zP2 ≤ zP2, zP3 ≥ z̄P3, and all other necessary constraints (depending on
whether the discrete or disjunctive model is used). However, the scalarizations differ on
how the bounds for the principles are defined. In the case of LEX, the bounds are defined
by solving the three scalarizations

zP1 = min zP1,
zP2 = min zP2 : zP1 ≤ zP1, and
z̄P3 = max zP3 : zP1 ≤ zP1, zP2 ≤ zP2,

whereas in the case of EPS(zP1, zP2, z̄P3) they are predefined.
The case of LEX corresponds to a case where the planners might initially be uncertain

as to what bounds for the principles are realistic. The specific lexicographical ordering was
chosen based on the following four observations obtained through initial experimentation:
• Optimizing zP3 with no upper bound on zP2 typically results in single occupations

with long durations in order to avoid the necessity of having any breaks at all,
leaving no flexibility for reducing the value of zP2.
• Optimizing zP2 and zP3 (in that order) with no upper bound on zP1 tends to cluster

activities at the start and end of the planning horizon, leaving no flexibility for
reducing the value of zP1.
• Even if zP1 = 0 (its best case), it was found to not be exceedingly prohibitive to

finding good solutions for zP2 and zP3 (see Figure 4 (right), for example).
• Even if zP2 = maxa∈A pa (its best case), it was found to not be exceedingly pro-

hibitive to finding good solutions for zP3.
Finally, zRL is considered to be the least important objective, as the focus of this paper
is on the three principles.

The case of EPS(zP1, zP2, z̄P3), on the other hand, corresponds to a case where the
planners have an idea of what are realistic bounds for the principles and would like to
refine the solution by specifying specific bounds. In our study we consider EPS(0, 3, 7) for
the class Base, as this corresponds to current practice at Banedanmark. In particular,
the first two principles are imposed as efficiently as possible. For the remaining classes
we use EPS(0, 2, 3), EPS(0, 2, 5) and EPS(0, 2, 7). Once again the first two principles are
imposed as efficiently as possible, while we study a wider range of minimum break lengths
for these instances.

4.3 Results

Scalarizations of the models were solved using CPLEX 12.6 with default settings on a
computer with two Intel R© Xeon R© X5550 processors. In order to compare the perfor-
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Figure 5: Box plots of computation times for the 100 instances in the class Base.

mances of the two models proposed in this paper, we use performance profiles, introduced
by Dolan and Moré (2002) as a way of comparing methods w.r.t. relative performance
as opposed to absolute performance. After solving a particular instance using both the
discrete and disjunctive models and observing computation times of µ1 and µ2, respec-
tively, the performance ratios of the models are defined as µm/min(µ1, µ2) for m = 1, 2.
The performance profile of a method is then the cumulative distribution function of the
performance ratio over all instances, and since a smaller performance ratio means bet-
ter performance, the faster a performance profile converges to 1, the better the relative
performance of the method.

Figure 5 shows a box plot of the computation times for each model/scalarization pair
over all 100 instances in the class Base. Outliers are defined as computation times of
more than three times the interquartile range, and are not shown in Figure 5 but instead
given in Table 3. Using the scalarization EPS(0, 3, 7) resulted in no outliers. Looking at all
points within the 3rd quartile, it can be seen that around 75% of all instances are solved
within 2 minutes using the scalarization LEX and within 1 minute using the scalarization
EPS(0, 3, 7). Moreover, most instances are solved within ten minutes, whereas the longest
computation time observed is around 26 minutes.

The performance profiles of the models for the instance class Base are given in Figure 6.
Overall the discrete model shows better performance compared to the disjunctive model,
with the improvement being more significant for the scalarization LEX than for EPS(0, 3, 7).
The discrete model had the shortest computation time (i.e. a performance ratio of 1) in
roughly 70% of the cases for the scalarization LEX and in roughly 60% of the cases for the
scalarization EPS(0, 3, 7).

The slightly better performance of the discrete model observed for the class Base is
likely due to the fact that the instances in this class have a relatively high density of 0.79,
whereas the time horizon of 20 time periods is not very long. As mentioned before, the
discrete model is indeed expected to outperform the disjunctive model on dense instances
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LEX

Discrete Disjunctive
14:58.89 10:18.50
16:27.25 12:40.58

13:6.36
17:35.26
18:42.63
18:49.35
24:30.26
25:10.63
26:6.17

Table 3: Outliers beyond three times the interquartile range corresponding to the box
plot given in Figure 5.
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Figure 6: Performance profiles for the class Base.

with few time periods. This hypothesis is further supported by comparing the performance
of the models on the instance classes given in Table 2. The performance profiles of the
models for these instances are shown in Figure 7. Note that the classes designated here
as “sparse” have a density of 1

3
while those designated as “dense” have a density of

2
3
. Furthermore, for each class the performance profiles were computed using the four

scalarizations LEX, EPS(0, 2, 3), EPS(0, 2, 5) and EPS(0, 2, 7) for each instance, resulting in
a total of 400 comparisons of the two models for each of the six classes.

From Figure 7 it is observed that for the class Dense10, which contains dense instances
with few time periods, the discrete model once again outperforms the disjunctive model.
However, considering the classes Dense15 and Dense20 where the number of time periods
are increased while the density remains fixed, the relative performance of the discrete
model decreases, as expected. In fact, for the class Dense20 no model clearly dominates
the other.

On the other hand, for the class Sparse20, which contains sparse instances with more
time periods, it is observed that the disjunctive model now shows the best performance,
as expected. Considering the classes Sparse15 and Sparse10 where the number of time
periods are decreased while the density remains fixed, the relative performance of the
discrete model increases, and for the class Sparse10 again no model clearly dominates
the other.

Finally, we consider the effect of the minimum break length on the performance of the
models, in particular with regards to feasibility and computation time. Table 4 shows, for
different horizon lengths |T |, the percentage of instances belonging to the classes given in
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Figure 7: Performance profiles for the instances classes given in Table 2.

Table 2 that had no feasible solution given the minimum break lengths z̄P3 considered.
Moreover, Figure 8 shows box-plots of the computation times (of both models) for the
same categories of instances, here denoted by the ratio z̄P3/|T |. It can be observed that,
as the minimum break length increases, the number of infeasible instance increases while
the computation time decreases. This is to be expected, as a decrease in the size of the
search space due to tighter constraints typically leads to lower computation times together
with a higher probability of infeasibility.

4.4 Discussion

Since we propose an optimization framework that is intended to be used in an interactive
way, it is important that the computation times expected in practice are not prohibitively
large. The results indeed show that in most cases a nondominated solution can be found
within only a few minutes using a modest computational resource.

Moreover, we show that different modelling approaches could be used depending on
the specific case. A discrete-time approach to modelling Principles 1 and 2 is promising
since it allows one to include arbitrary cost functions on the lengths of occupation windows
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z̄P3 = 3 z̄P3 = 5 z̄P3 = 7
|T | = 10 28% 44% 64%
|T | = 15 21% 28% 31%
|T | = 20 25% 34% 35%

Table 4: Percentage of instances with a specific horizon length that become infeasible
when imposing a specific lower bound for the minimum break length.
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Figure 8: Box plots of computation times (for both models) for different configurations,
denoted by z̄P3/|T |, i.e. the ratio of the minimum break length to the length of the time
horizon (outliers of more than 10 minutes not shown).

and incentive functions on the lengths of breaks. However, its performance is restricted
by the granularity of the discretization used. In cases where many time periods are
considered, an approach based on the pairwise coordination of activities (occupying the
same infrastructure resource) is a viable alternative, as it does not require a discretization
of the time horizon. The performance of this approach, on the other hand, is sensitive to
the number of activities occupying a single resource.

Finally, it is advisable for the planners to initiate an interactive approach with a very
ambitious minimum break length. The results show that, even though infeasibility is more
likely, it can be detected quickly by the models. The minimum break length can then be
relaxed slightly, and the process continued until a feasible solution is found.

5 Conclusion

In this paper we propose three general principles to be taken into account in the strategic
planning of railway infrastructure projects in order to reduce the disruptive effects these
projects can have on the infrastructure users. By modelling these principles as objectives
in addition to a resource levelling objective, we propose two models based on mixed
integer programming and techniques from multiobjective optimization that can be used
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in an interactive way by planners as decision support. Our results show that the models
are capable of finding optimal (i.e. nondominated) solutions in short computation times,
and that the two models have complimentary strengths based on specific features of the
instances.
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D. E. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

M. Ehrgott. A discussion of scalarization techniques for multiple objective integer pro-
gramming. Annals of Operations Research, 147(1):343–360, 2006.

S. E. Elmaghraby and J. Kamburowski. The analysis of activity networks under general-
ized precedence relations (GPRs). Management Science, 38(9):1245–1263, 1992.

20

http://uk.bane.dk/db/filarkiv/11981/Banedanmark_UK_net.pdf
http://uk.bane.dk/db/filarkiv/11981/Banedanmark_UK_net.pdf
http://uk.bane.dk/visArtikel_eng.asp?artikelID=907
http://uk.bane.dk/visArtikel_eng.asp?artikelID=907


M. Forsgren, M. Aronsson, and S. Gestrelius. Maintaining tracks and traffic flow at the
same time. Journal of Rail Transport Planning and Management, 3(3):111–123, 2013.

A. Higgins. Scheduling of railway track maintenance activities and crews. Journal of the
Operational Research Society, 49(10):1026–1033, 1998.

A. R. Jenema. An optimization model for a Train-Free-Period planning for ProRail based
on the maintenance needs of the Dutch railway infrastructure. Master thesis, Delft
University of Technology, 2011.

R. Kolisch and A. Sprecher. PSPLIB — A project scheduling problem library. European
Journal of Operational Research, 96(1):205–216, 1997.

M. R. Lake, L. Ferreira, and E. Kozan. Heuristic techniques for scheduling railway track
maintenance. In E. Kozan and A. Ohuchi, editors, Operations Research/Management
Science at Work, pages 177–187. Springer US, Boston, MA, 2002.

T. Lidén. Railway infrastructure maintenance - a survey of planning problems and con-
ducted research. Transportation Research Procedia, 10:574–583, 2015.

T. Lidén and M. Joborn. An optimization model for integrated planning of railway traffic
and network maintenance. Transportation Research Part C: Emerging Technologies,
74:327–347, 2017.

K. Miettinen, J. Hakanen, and D. Podkopaev. Interactive nonlinear multiobjective op-
timization methods. In S. Greco, M. Ehrgott, and J. R. Figueira, editors, Multiple
Criteria Decision Analysis: State of the Art Surveys, pages 927–976. Springer, 2016.
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