

Swarm ASC Star tracker In-flight status and performance

Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Herceg, Matija

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Jørgensen, J. L. (Author), Jørgensen, P. S. (Author), & Herceg, M. (Author). (2017). Swarm ASC Star tracker Inflight status and performance. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Swarm µASC Star tracker In-flight status and performance

By: John Leif Jørgensen Peter S. Jørgensen Matija Herceg

DTU Space National Space Institute

Star Tracker (STR) - µASC

- µASC (micro Advanced Stellar Compass) autonomously calculates attitude based on all bright stars in the Field of View (FOV)
- Running a single CHU, µASC can provide 22 true solutions per second, with absolute accuracy of < 1 arc second
- Three of the µASC, together with the VFM instrument, are mounted on the Swarm OB to provide correct orientation of the VFM and high accuracy of measured magnetic field components.
- objective of VFM is to measure the magnetic field vector

Swarm Optical Bench (OB)

- ultra-stable silicon carbide-carbon fiber compound structure installed on a deployable conical boom of square cross section
- main purpose is to transfer the precisely determined attitude using star trackers to the magnetometer field components
- several thermistors are mounted on different parts of Deployable Boom Assembly (DBA).

Star Tracker (STR): Availability

Data 2016/11/01 to 2017/04/30

Right Ascension and Declination for Swarm A, CHU C over time. Black attitudes indicate BBO flags.

Star Tracker (STR): Availability of 2 or 3 sensor solutions

A Star Tracker measurement accuracy is best across the boresight direction. The Swarm STR is using three sensors to eliminate the higher measurement error about the boresight by combining the measurement from 2 or 3 sensors.

- Inflight performance of the sensor baffle systems are better than designed
- Inflight performance towards a 50% Moon show full resilience

Demonstrating that 2 or 3 sensor solutions are granted, with excellent margins, for the planned mission profile.

Operations vs Moon:Position of 40-60% Moon inSwarm A CHU-B, Validattitudes, with BBO flag(red),184 days data (2015-121 ->304)Moon (50%)

Baffle performance vs Sun:

Position of Sun in Swarm A CHU-A, Valid attitudes, with BBO flag(red), 184 days data (2015-121 -> 304)

CHUA CHUCT

Baffle performance: Swarm Sun Exclusion cones

7th Swarm Data Quality Workshop

Swarm in orbit around Earth 24 - 27 October 2017

Swarm satellite

- CHU Camera Head Unit
- IBA Inter Boresight Angle
- Full accuracy achieved whenever two or three simultaneous valid CHU quaternions are available
- IBA is treated in CHU pairs: – Pair 1: A & B

 - Pair 2: A & C
 - Pair 3: B & C
- Ideally IBA is expected to be constant (after aberration correction)

STR Performance Status

Optical Bench and Standoff Thermo-Elastic Model

DTU Space National Space Institute

Swarm Optical Bench (OB)

Swarm A: IBA and temperatures

Investigating the temperature profiles

Temperature sensor locations:

- 1 sensor per CHU located at CCD
- 1 sensor at optical bench
- 1 sensor next to the SiC-Cube
- 1 sensor at on outer skin of lower boom support panel between NEA's

Spacecraft thermistor temperatures

• Telemetered Temperatures from the optical bench

Courtesy of ESA

7th Swarm Data Quality Workshop

24 - 27 October 2017

Swarm IBA pairs

Swarm thermal correction model formulation

Swarm A model

Swarm A Fixed Frame Type=16

		CHU A				
Modelling period:	T029 T032	Constant T_CHU_A - T_CHU_A - T_CHU_A	alpha -4.67067e-01 3.58190e-03 -9.04363e-03 -1.04154e-01	beta 4.59718e-01 -3.52161e-03 8.89788e-03 1.02497e-01	gama 2.36543e-01 -7.31744e-01 4.50041e-01 -1.12265e+00	["] ["/°C] ["/°C] ["/°C]
16-Jun-2014 01:38:29 (2014-167)				CHU B		
~4000h to	T029	Constant T_CHU_B - T_CHU_B T_CHU_B	alpha -1.19000e+00 3.27044e-01 -2.10603e-01	beta 2.03750e+00 -4.03134e-01 4.04762e-02 6.57657c.02	gama 5.51564e+00 -3.12725e-02 -7.31304e-01 2.07894o+00	["] ["/°C] ["/°C] ["/°C]
03-Dec-2015 21:48:34 (2015-337) ~17000h	1052	- 1_010_5 1	2.401406-01	0.370376-02	2.070940100 1	[/ 0]
				CHU C		
	T029 T032	Constant T_CHU_C - T_CHU_C - T_CHU_C	alpha 4.08584e-02 1.36145e-02 1.57687e-02 8.06663e-03	beta 2.99157e-02 9.95873e-03 1.15304e-02 5.89875e-03	gama 1.17996e+01 -2.01007e-01 4.97267e-01 2.25162e+00	["] ["/°C] ["/°C] ["/°C]

Swarm B model

		Swalli D i kou i fallo i ypo i to			
			CHU A		
Modelling period:	T029 T032	alpha Constant 1.52156e+00 T_CHU_A -1.22241e-01 - T_CHU_A -9.88533e-03 - T_CHU_A -6.98540e-03	beta -1.51290e+00 1.21530e-01 9.83054e-03 6.93775e-03	gama 2.33865e+00 -1.82904e-01 7.01522e-02 -7.99214e-02	["] ["/°C] ["/°C] ["/°C]
12-Mav-2014 01:00:05 (2014-131)			CHU B		
~3000h to	T029	alpha Constant -5.15861e+00 T_CHU_B 5.28498e-01 - T_CHU_B -5.56507e-02 - T_CHU_B 4.83616e-01	beta -1.26225e+00 1.34662e-01 1.06394e-01 1.56951e-02	gama -2.48957e+00 3.97005e-01 -4.76603e-01 1.14448e+00	["] ["/°C] ["/°C]
03-Dec-2015 22:18:07 (2015-337) ~17000h	1002		CHU C	1.114406100	[/ 0]
		alpha	beta	gama	

	The second s			
Constant	-1.57776e+00	-1.10393e+00	-1.74405e+01	["]
T CHU C	1.40689e-01	9.83403e-02	1.03966e+00	["/°C]
- T CHU C	-1.98237e-02	-1.38350e-02	-9.67086e-01	["/°C]
- T_CHU_C	8.24705e-02	5.76762e-02	-1.41618e-02	["/°C]
	Constant T_CHU_C - T_CHU_C - T_CHU_C	Constant -1.57776e+00 T_CHU_C 1.40689e-01 - T_CHU_C -1.98237e-02 - T_CHU_C 8.24705e-02	Constant -1.57776e+00-1.10393e+00T_CHU_C 1.40689e-019.83403e-02- T_CHU_C -1.98237e-02-1.38350e-02- T_CHU_C 8.24705e-025.76762e-02	Constant -1.57776e+00-1.10393e+00-1.74405e+01 T_CHU_C 1.40689e-019.83403e-021.03966e+00 - T_CHU_C -1.98237e-02-1.38350e-02-9.67086e-01 - T_CHU_C 8.24705e-025.76762e-02-1.41618e-02

Swarm B Fived Frame Type=16

Swarm C model

Swarm C Fixed Frame Type=16

		CHU A			
Modelling period:	T029 T032	alpha Constant 5.97502e-01 T_CHU_A -5.37921e-02 - T_CHU_A -7.50021e-02 - T_CHU_A 4.28406e-02	beta -5.85954e-01 5.27412e-02 7.35446e-02 -4.20199e-02	gama -2.43077e+00 -4.39993e-02 5.29397e-01 -1.28559e+00	["] ["/°C] ["/°C] ["/°C]
16-Jun-2014 01:38:17 (2014-167)			CHU B		
~4000h to	T029	alpha Constant -1.10869e+01 T_CHU_B 9.87206e-01 - T_CHU_B -5.47234e-01 - T_CHU_B 1.10733e+00	beta 3.34004e+00 -3.09247e-01 1.68646e-02 -2.25563e-01	gama 3.39132e-02 -2.03671e-01 1.37838e+00 -2.05729e+00	["] ["/°C] ["/°C]
03-Dec-2015 21:48:27 (2015-337) ~17000h	1052	- 1_010_D 1.10733e100	CHU C	-2.03729e100 1	[/ C]
		alpha	beta	 crama	

		alpha	beta	gama		
	Constant	-1.09210e+00	-7.38447e-01	-2.43118e+00	1	["]
	T CHU C	7.86517e-02	5.31523e-02	6.91483e-01	1	["/°C]
T029	- T CHU C	5.69351e-02	3.84922e-02	-7.40293e-01	1	["/°C]
T032	- T CHU C	-6.45442e-02	-4.36648e-02	2.46625e+00		["/°C]

Correction effects Swarm A IBAs

Correction effects Swarm B IBAs

Correction effects Swarm C IBAs

- Two heaters located around the optical bench (OB)
 - an operational heater (id 21) mounted on the radiator plate of the OB,
 - a powerful survival heater (id 01) located on the OB interface bracket.

Time	Heater	Set-point [°C]	Comment
2016-05-30 07:21:28	21	-15	Heater predominantly on.
2016-05-31 13:03:20	21	-10	Heater not powerful enough to reach the set-point, i.e. heater constantly on
2016-06-01 12:24:48	21	-33	Nominal setting
2016-06-02 13:17:52	01	-9/-7	Set-point temperature quickly reached (less than 10 minutes), i.e. heater only on occassionally
2016-06-03 06:22:02	01	-4/-2	
2016-06-03 14:12:23	01	-30/-28	Nominal setting

24 - 27 October 2017

7th Swarm Data Quality Workshop

24 - 27 October 2017

7th Swarm Data Quality Workshop

24 – 27 October 2017

Correction effects Swarm A IBAs

Conclusion

- µASC is performing as expected
- Inflight performance of the sensor baffle systems are better than designed
- After correction for the aberration effect, a small but still significant thermal signal remains in the IBA data
- The variation is found to correlate with temperatures and gradients measured at locations on the optical bench
- A model is computed for the correction of the thermo-elastic instabilities of the Swarm OB
- Corrected attitude data is very smooth and clean from any thermally induced phenomenon.
- Especially notable for the corrected data outside of the modelling period
- The technique shows an improvement in attitude determination that, after correction, meets the 2" requirements of Swarm satellite mission.
- Heater test: even though not tailored to this specific type of heat flow (where heat sources are heaters and not the Sun) behaves excellent and successfully removes the thermally induced OB instabilities

Backup slides

7th Swarm Data Quality Workshop

Star Tracker (STR): Availability

A Star Tracker must deliver valid updates when viewing nominal star fields, and exhibit graceful degradation when entering star fields with e.g. bright objects.

The Swarm STR system is designed to optimize attitude availability for the AOCS system also during times with the Sun and Moon entering the FoV of one of the sensors.

# Valid CHUs	Counts	Percent
0	0	0.0000%
1	1	0.0004%
2	80258	31.3822%
3	175485	68.6174%

# Valid CHUs	Counts	Percent
0	0	0.0000%
1	80	0.0423%
2	62567	33.0724%
3	126535	66.8853%

2-3 days of orbits showing a 50% phase Moon passage (left) and a 80% phase Moon passage (right). BBO flagged solutions are marked in black.

Effect of the moon phase on the SWARM ASC observation validity

Star Tracker (STR): Accuracy

Accuracy of the Swarm STR system is best evaluated by comparing the attitude measurement of one sensor to the combined attitude from the other two.

The sensor platform stability may thus be determined from the angles between the sensor boresight, and by observing these angles as a function of time and temperatures

Similarly the measurement noise and error spectrum may be derived from the deviation of a single sensor solution from the triple sensor solution.

Stability of optical cube: Deep anomaly investigation...

 Stability of optical cube diurnal: Right, 3-CHU Z-axis stability. Middle, IBA

 CHUA vs CHUB. Left IBA AB histogram.

 1,2,3 Euler

7th Swarm Data Quality Workshop

Star Tracker (STR): BBO flag

Sporadic triggering of BBO:

Swarm A, CHU A, 2013 13 Dec. 14:55:10 UT, BBO time line and acquired image

A Star Tracker attitude measurement may be disturbed, if a bright object enters the FoV.

Therefore, the Swarm STR has implemented a flag that alerts the user if an unexpected bright object enters the FoV, or has dubbed the Big Bright Object or BBO flag.

Since launch, the STR systems on all three Swarm satellites have experienced unexpected triggering of the BBO flags at certain times.

Images acquired at these times have revealed unexpected objects orbiting close to the Swarm constellation. **Central Moon passage:** Swarm A, CHU C, 2013 14 Dec. 89% Moon

7th Swarm Data Quality Workshop

Star Tracker (STR): BBO flag

	Month	Count	Month	Count
	2013 - Dec	4	2015 - Nov	0
	2014 - Jan	1	2015 - Dec	0
	2014 - Feb	0	2016 - Jan	0
	2014 - Mar	0	2016 - Feb	0
	2014 - Apr	1	2016 - Mar	0
	2014 - May	1	2016 - Apr	0
	2014 - June	0	2016 – May	0
	2014 - July	0	2016 – Jun	0
	2014 - Aug	0	2016 – Jul	0
	2014 - Sep	0	2016 – Aug	0
	2014 - Oct	0	2016 – Sep	0
	2014 - Nov	1	2016 - Oct	0
	2014 - Dec	0	2016 – Nov	0
	2015 - Jan	0	2016 – Dec	0
	2015 - Feb	0	2017 – Jan	0
	2015 - Mar	0	2017 – Feb	0
	2015 - Apr	0	2017 – Mar	0
	2015 - May	0	2017 – Apr	0
	2015 - Jun	0		
7	2015 - July	1		

UFOs Observed on Swarm/STR Images

DTU

 Ξ

Star Tracker (STR): Thermal stability

Star Trackers thermal stability is a significant parameter for performance, and thorough thermal design in form of Optical bench, heat pipes, radiator and baffle finished has been implemented.

Plots to the right show the CCD temperature evolution for the three CHUs:

- In-orbital variation
- Long term temperature stability
- Long term temperature gradient between CHus

UTC Time ending at

01-May-2017

Star Tracker (STR): Instrument Aging

- The only relevant instrument aging effect is hotspot accumulation on the CCD.
- In order to keep track of this effect, uncompressed images are downloaded from each of the CHUs at monthly basis.
- The hotspot count is defined as the number of image hotspots with intensities peaking above 20 digital levels relative to the image background.
- The instrument performance will start degrading when more than 5000 such hotspots are present within one image frame.
- Due to the very low operational temperature of the Swarm CHUs, only a negligible hotspot accumulation is foreseen over the mission lifetime.

Example of downloaded image (contrast increased to emphasize details)

Spacecraft	СНИ	Timestamp of Acquisition [s]	Number of hotspots	Status
SwA	CHU-A (SW-C001-C2)	514041010	<10	Healthy
514044010	CHU-B (SW-C001-C3)	514050010	<5	Healthy
SwB	CHU-A (SW-C001-C8)	514038010	<10	Healthy
514043410 514050010				

Images for aging study are captured April 15, 2016

Star Tracker (STR): IBA Anomaly on 2016-093 to 094

During approximately 6 hours between 2016-093 and 094 and unexpected variation in the IBA for CHU pairs A-C and B-C is observed for Swarm A. Pair A-B is not affected.

The effect occurs while CHU C is centrally blinded by the Sun

24 - 27 October 2017

Star Tracker (STR): IBA Anomaly on 2016-093 to 094

DTU

Expressing the full inter CHU orientation as 2-1-3 euler angles from CHU-C to the other CHU (A, B):

Effect corresponds to a rotation of CHU-C about its Y axis by $\sim +88''$

^{//} Οπαιτη Βατα γματική ποικοπορ

^{24 - 27} ULIUDEI 2017

Backup slide: CHU LOS 2016-093

• Shown is also Sun and Moon

24 - 27 October 2017

Swarm thermal correction model: An overview

Swarm A CHU A Euler angles rotations to Flxed frame type 16 ["] Mean=-90° 16000 18000 ["] =-45.4595° 16000 18000 ["] =-89.5554° 16000 18000 ent model and T032 Measured E Model fit 16000 ent model and T032 ["] .0001067 Measured Model fit 16000 ent model and T032)55018° Measured Ξ Model fit Meg ō 2000 4000 6000 8000 10000 12000 14000 16000 Time [hours] since 2014-01-01 00:00:00 UTC

24 - 27 October 2017

Swarm A Model

Fixed frame construction Swarm A Swarm A, IBA of CHU A & B 10 ["] Mean=90.6405° 5 0 -5 -10 Z_A 2000 4000 6000 8000 10000 12000 14000 16000 Swarm A, IBA of CHU A & C 10 ["] Mean=90.4457° 5 0 -5 Z_c Swarm A eaChu vs Temp averaged over orbit -10 L 10 2000 4000 6000 8000 10000 12000 14000 16000 +0.29"/°C +0.06"/°C +0.45"/00 10 0 σ HN-9 -10 0 -10 CHN-Y b [..] 0 [..]↓V -10 -20 Swarm A, IBA of CHU B & C 10 ["] Mean=90.0683° -30 ∟ -60 5 -20 ⊾ -60 -20 -20 -40 -20 -20 -40 0 -40 0 0 0 30 10 20 +0.01"/ºC +0.36"/°C +0.27"/ºC -5 [_] 20 10 0HOHD 0 10-9 0HO-20 10 J 0 J 10-10 -10 0 2000 6000 4000 8000 10000 12000 16000 14000 Time [hours] since 2014-01-01 00:00:00 UTC -10 └ -60 -30 ∟ -60 -20 ∟ -60 -40 -20 -40 -20 -40 -20 0 0 0 20 20 -0.00"/ºC +0.18"/ºC 10 α O-NHO -10 20 []] 10 CHN-C []] 0 0, 10 10-CHU-C 10-10 -20 ∟ -60 -20 --60 -10 └ -60

7th Swarm Data Quality Workshop

-40

-20

0

-40

-20

0

-40

-20

0

Swarm correction application: Fixed frame construction

$$Z_F = \frac{Z_A \times Z_C}{|Z_A \times Z_C|}$$

$$X_F = \frac{Z_A + Z_C}{|Z_A + Z_C|}$$

$$Y_F = \frac{Z_F \times X_F}{|Z_F \times X_F|}$$

Swarm correction application: **Fixed frame construction Swarm B**

-1.87"/°C

-20

0

-20

€ 200 V 150 V 150 100

250

€ 200

0-150 100 100

50 ⊾ -40

-20

0

0

0

-40

-20

-20

+0.09"/°C

24 - 27 Oct

Swarm correction application: Fixed frame construction Swarm C

CHU-B α ["]

150

[_] 100 50 0 CHN-C α

-20

0

-100 └─ -40

0

-20

+0.22"/⁰C

24 - 27 Octc

- Using CHU (A, B and C) temperatures and Optical Bench (T_{029} and T_{032}) temperature
- Omitting days where house keeping or optical bench data is missing
- Concatenate a day before and after for interpolation and smoothing

$\begin{bmatrix} T_{chuA(day-1)} \end{bmatrix}$	$\begin{bmatrix} T_{029(day-1)} \end{bmatrix}$	$\left[T_{032(day-1)}\right]$
$T_{chuA(day)}$	$T_{029(day)}$	$T_{032(day)}$
$\left[T_{chuA(day+1)}\right]$	$\left[T_{029A(day+1)}\right]$	$\left[T_{032(day+1)}\right]$

- Remove outliers in House Keeping Temperatures (T<-35)
- Smooth temperatures with moving average filter of 400 sec width
- Interpolate temperature on attitude times (Extrapolation: Assign last value for points outside the domain)

Correction effects RMS (smooth 200sec)

IBA 1	Swarm A	Swarm B	Swarm C
Original	17.1274	17.2359	17.8612
Abr. Corr.	3.6793	3.6951	6.4938
Temp. Corr	2.0658	2.6369	2.5738

IBA 2	Swarm A	Swarm B	Swarm C
Original	16.9776	17.6000	17.2446
Abr. Corr.	2.1078	3.5595	2.9496
Temp. Corr	2.0246	2.3968	2.2766

IBA 3	Swarm A	Swarm B	Swarm C
Original	14.3597	14.7681	14.4139
Abr. Corr.	2.5340	4.3181	2.5876
Temp. Corr	2.2595	2.6406	2.1923

7th Swarm Data Quality Workshop

24 - 27 October 2017