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ABSTRACT

Quantum key distribution (QKD) is a promising technology that aims to solve the security problem arising from the advent of
quantum computers. While the main theoretical aspects are well developed today, limited performances, in terms of the
achievable link distance and the secret key rate, are preventing the deployment of this technology on a large scale. More recent
QKD protocols, which use multiple degrees of freedom for encoding of the quantum states, allow enhancement of the system
performances. Here, we present the experimental demonstration of the differential phase-time shifting protocol up to 170 km of
the fiber link. We compare its performance with the well-known coherent one-way and differential phase shifting protocols,
demonstrating a higher secret key rate up to 100 km. Moreover, we propagate a classical signal in the same fiber, proving the
compatibility of quantum and classical light.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5049659

The security of digital data is extremely important in our
society, due to the continuous exchange of sensitive information.
Classical cryptography is based on mathematical assumptions
which do not guarantee information-theoretic security,1 i.e., a
security that cannot be broken with unlimited computational
power. However, quantum key distribution (QKD), a branch of
quantum communication (QC), provides unconditional security
based on the laws of quantum physics.2,3 In the last 30years,
free-space, underwater, and fiber based experiments have dem-
onstrated the exploitation of different physical degrees of free-
dom for QC protocols.4–7 Among these, the differential phase
reference (DPR) schemes were proposed as a step towards easier
implementation of fiber transmission schemes. They make use of
the time of arrival of pulses, the phase difference between them,
or, more recently, both dimensions to encode secure key bits.8–11

Furthermore, several quantum networks have already been
implemented.12–15 During the last few decades, the efforts of the
scientific community were focused on enhancing the quantum
communication performance in terms of the key rate, the trans-
mission distance, and security aspects.8,16–24 Here, we present a
practical implementation of the differential phase-time shifting
(DPTS) protocol over 170km of a single mode fiber, proving a

higher secure key rate compared with other protocols of the
DPR family, such as coherent one-way (COW) and differential
phase shifting (DPS).8,10,11 Furthermore, we also prove that a clas-
sical signal at a different wavelength can coexist on the same
optical fiber up to 90km distance.

The DPTS protocol encodes the information in relative
properties of consecutive weak coherent pulses (WCPs).
However, as opposed to the other DPR protocols, the DPTS
exploits more than one degree of freedom at once, namely, the
position in time and the phase difference among consecutive
pulses. This allows the DPTS to improve the secret key rate in an
intra-city network scenario (in terms of reachable distances and
channel loss), while at the same time being more robust against
channel noise as shown in Fig. 1(a).8

In the DPTS protocol, the information is encoded in four
possible symbols in the alphabet 0; 1; 2; 3f g, which are

j0i ¼ j6aijvacij6aijvaci;
j1i ¼ j6aijvacij7aijvaci;
j2i ¼ jvacij6aijvacij6ai;
j3i ¼ jvacij6aijvacij7ai:

(1)
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The terms j6ai and jvaci in Eq. (1) represent a coherent state of
intensity a and a vacuum state, respectively. The 6 sign repre-
sents the phase of the state. When the two coherent states
have the same (opposite) sign, their phase difference is 0 (p),
see Fig. 1(a). When the transmitter, usually called Alice, has pre-
pared the quantum states, she sends them through a quantum
channel towards the receiver, called Bob. To measure them, Bob
uses a delay line interferometer (DLI), with a delay T¼ 2/� (� is
the repetition rate), to sort among the 0 or p phase difference.
At the same time, Bob measures on each output of the interfer-
ometer the time of arrival of the pulses. After the quantum com-
munication process, the sifting procedure takes place. Hence,
Alice and Bob share a sifted key, and the following steps in the
protocol are given by the classical error correction and privacy
amplification. The equations for the final achievable secret key
rate, under the assumption of beam splitting attacks, are
reported in the supplementary material.3,8 Figure 1(a) shows a
comparison of the achievable secret key rate using DPTS, DPS,
and COW from the DPR family and the secret key generated
with the standard BB84 protocol with a decoy state method. It is
to be noted that the BB84 protocol offers unconditional secu-
rity,25 i.e., it is secure against collective attacks (the most com-
prehensive kind of attacks), while the DPR protocols are secure
against collective beam splitting attacks. Even though a fair
comparison is not possible, it is also important to highlight that
the experimental implementation of the BB84 with decoy states
requires more equipment, a more advanced control unit to gen-
erate all the states in the mutually unbiased bases and also a
more complicated receiver.

The experimental setup used in the current experiment is
shown in Fig. 1(b). To prepare the train of time-encoded WCPs,
Alice carves with an intensity modulator a continuous wave laser

at 1550nm. The obtained signal has an average block length of
N¼6 pulse/block (in a block, there are only symbols with the
same time encoding8). The optical signal is then sent through a
phase modulator, which imprints the required phase difference
among consecutive WCPs. Hence, Alice uses an optical variable
attenuator to reach the quantum regime of jaj2 ¼ l
� 0:26photon=pulse. With this value, the secret key generation
rate of the DPTS is maximized.8 The WCPs are then sent to Bob
through a single mode fiber link of variable length, from 10km to
170km. The loss per unit distance of the fiber is 0.22dB/km. At
the receiver side, Bob uses a free-space delay line interferome-
ter with an overall insertion loss of approximately lint � 8dB and
visibilityV�0.98 to infer the quantum states. A phase difference
of 0 is routed towards one output of the interferometer, while a
phase difference of p constructively interferes on the other
output. The two outputs are then linked to two IDQ230 InGaAs
single photon detectors (SPDs), which have the following param-
eters: efficiency gdet ¼ 20%, dark count rate rdc � 100Hz, dead
time td ¼ 20 ls, and jitter tj � 300 ps. Both detectors are con-
nected to a time tagging unit. The electrical control at Alice’s
side is given by a field programmable gate array (FPGA) board
whose three electrical outputs are for the intensity modulator,
the phase modulator, and the synchronization signal. The repe-
tition frequency is � ¼ 1.19GHz, the electrical pulse width is of
approximately 100 ps, whereas the obtained optical pulse width
is around 150 ps. The synchronization signal is either sent elec-
trically to Bob’s time-tagger unit directly from the FPGA or con-
verted into a classical optical signal which co-propagates with
the quantum channel. More details are reported in the supple-
mentary material. To implement the DPS and COW protocols,
the setup is easily adapted. We changed the delay of the optical
interferometer in order to have a fair comparison between the
protocols, i.e., all the protocols are implemented at the same
transmitter speed. Moreover, for the COW protocol, at Bob’s
side, an unbalanced beam splitter is required so that most of the
time the pulses are directly received using one single photon
detector but sometimes, with a low probability, they are used to
check coherence and are therefore sent to the delay line inter-
ferometer. For both protocols, the optimalmean photon number
per pulse is used in the implementation.8,26

Figure 2 shows the performance comparison of the three
protocols in terms of the quantum bit error rate (QBER) and the
secret key rate under the condition of beam splitting attacks
(when the synchronization signal is electrically sent to Bob). The
triangles represent data collected for each protocol when the
link between Alice and Bob is made by fiber spools (with distan-
ces ranging from 10 to 170km with steps of 40km), whereas the
squares are measurements taken when an optical attenuator
constitutes the channel, thus emulating only the fiber loss (from
5 to 40dB losses with steps of 5dB). Solid curves represent sim-
ulations taking setup imperfections into account. An intrinsic
error of et ¼ 1.5% is estimated in the time domain, due to the
finite extinction ratio of the intensity modulator during the
carving procedure (for COWand DPTS protocols), and an intrin-
sic error of ep¼ 0.5% affects the phase domain, due to an imper-
fect modulation in the phase modulator (for DPTS and DPS
protocols). Note that the bounds used in this work to compute

FIG. 1. (a) Theoretical secret key rates Rsk as a function of channel loss. DPTS
(blue), DPS (orange), and COW (yellow) secret key rates under the condition of
beam splitting attack and BB84 with a decoy state method (dotted violet) secret key
rate against collective attacks. Parameters: �¼ 1.19 GHz, rdc¼ 100 Hz, g¼ 20%,
td¼ 20 ls, lDPTS¼ 0.26, lDPS¼ 0.13, lCOW¼ 0.52, lBB84¼ 0.25 (signal),
�BB84¼ 0.08 and xBB84¼ 10�10 (decoy) photon/pulse; V¼ 0.98 and lint¼ 8 dB
(DPTS, DPS, and BB84); probability of the decoy sequence pd¼ 0.1 (DPTS and
COW); N¼ 6 pulses/block (DPTS). The inset shows the encoding symbols in DPR
protocols: filled pulses are WCPs, dotted pulses are vacuum states. (b) Schematics
of the experimental setup. FPGA: field programmable gate array board; continuous
wave lasers: 1550 nm for the quantum signal (C-band) and 1610 nm for the classi-
cal signal (L-band); IM: intensity modulator; PM: phase modulator; VOA: variable
optical attenuator; BS: beam splitter; PWM: power meter; WDM: wavelength divi-
sion multiplexer filter; APD: avalanche photodiode; DLI: delay line interferometer;
SPD: single photon detector.
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the achievable secret key rate are valid in the long distance
regime,8,26 which is ensured after approximately 5dB of channel
loss (corresponding to �23km link). This is also shown in Fig.
2(b), where the simulation curves are dashed before reaching
this regime. Finally, as a preliminary demonstration of our sys-
tem used in real communication networks, we co-propagate a
classical channel, carrying the optical synchronization used for
the QKD system, with the DPTS signal. This is obtained by mod-
ulating a CW laser at 1610nm. At the receiver side, a wavelength
division multiplexing filter (extinction ratio, 60dB) separates the
two signals directing the synchronization to a photodetector.
The quantum channel is further filtered with a narrow band-
pass filter with a 3-dB bandwidth of 0.8nm around 1550nm and
an extinction ratio of 40dB. The second filtering step is needed
to further reduce the leakage from the classical channel into the
quantum channel. The results are reported in Figs. 2(a) and 2(b)
with green triangle markers. The input power of the classical
channel was set to �27dBm, minimizing the impact on the
quantum channel, but ensuring enough power for successful
detection with the photodiode.

The comparison of the three protocols shows that for
short-range links, i.e., up to 21dB channel loss, the achievable
secret key rate is indeed higher when using the DPTS compared
to DPS and COWperformances. Note that the experimental val-
ues up to 5dB attenuation, for the DPTS and the DPS protocol,
exhibit a higher QBER than expected. This is mainly due to the
detectors’ saturation regime. For the COW protocol, which does
not rely on an interferometer with insertion loss at Bob’s side,
the detectors saturate up to 11dB (50km) of channel loss. An
interesting channel distance to consider is thus 50km, where
the bound conditions are valid. Here, the DPTS reaches a secure
rate of 34kb/s with a system that is stable for over 1 h, as
reported in Fig. 3. The DPS protocol is able to produce 25kb/s of
the secret key rate and the COW protocol produces only 2.7 kb/
s in the experimental implementation, while the simulation
curve reaches up to 7.8 kb/s (saturation regime). The DPTS pro-
tocol indeed shows an improved performance in the secret key
rate and a better robustness against noise for applications in an
intra-city scenario. On the other hand, on longer distances, the
secret key rate drops more rapidly than the other protocols,
even though a positive secret key rate can still be experimentally

obtained for a distance of 170km. An intuitive explanation to this
is given by the fact that any error can affect both the time and
phase domains: when the random dark count clicks are compa-
rable in number to the actual photon clicks, then this effect
starts having a more severe impact on the protocol perfor-
mance. In the case of co-propagation of classical and quantum
signals, the higher QBER and the respective decrease in the
secret key rate result from leakage from the classical channel
and the detectability of the classical channel itself. Indeed, the
information the classical signal is carrying is crucially needed for
synchronizing the quantum channel. The maximum distance we
could achieve was 90km with a secret key rate of 7.3 kb/s. To
increase the transmission distance, it appears necessary to
introduce a more sophisticated filtering scheme, which would
allow higher classical input power, and/or amplification
schemes for the classical channel.

In this paper, we demonstrated the DPTS protocol over
170km of single mode fiber and compared its performance with
other DPR protocols. We showed that in an intra-city network
scenario, the DPTS outperforms the other protocols for up to
21dB channel loss (about 100km) under the assumption of beam
splitting attacks.We also demonstrated that our scheme can co-
exist on the same fiber with classical light, necessary for com-
plete deployment of QKD systems.

See supplementary material for secret key rate formulas
and further details on the experimental setup and the electronic
design.

This work was supported by the Centre of Excellence,
SPOC (Silicon Photonics for Optical Communications) (ref
DNRF123) and by the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA Grant Agreement No. 609405
(COFUNDPostdocDTU).

FIG. 2. (a) Measured QBER and (b) experimental secret key rate. The color
scheme used is DPTS without a co-propagating classical channel (blue), DPTS
with optical classical synchronization (green), DPS (orange), and COW (yellow).
Triangles report data collected using fiber spools as the channel link and squares
show data obtained emulating channel loss with a VOA. Solid lines show the simu-
lated results taking into account setup imperfections as intrinsic errors.

FIG. 3. Stability of the DPTS protocol. Experimental QBER of the DPTS protocol at
50 km distance for over 1 h of continuous measurements. The inset shows the
QBER distribution.
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