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Abstract: We obtained chirped gratings by performing hot water gradient thermal annealing 
of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg 
gratings (POFBGs). The proposed method’s simplicity is one of its main advantages because 
no special phase mask or additional etching are needed. It not only enables easy control 
tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible 
grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost 
chirped POFBG devices fabrication technique has been presented by using a single uniform 
phase mask. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Polymer optical fibers (POFs) bring new opportunities for fiber Bragg grating (FBG) devices 
due to a lower Young’s modulus and a larger range of applying strain [1]. Furthermore, POFs 
are ideal candidates for bio-sensing applications [2–5] due to their flexibility in bending, 
biocompatibility and non-brittle nature. Since the first polymer optical fiber Bragg grating 
(POFBG) was reported in 1999 [6], different polymer materials are used for FBG fabrication 
with specific purposes, such as low attenuation CYTOP [7], high temperature resistance and 
humidity insensitive Zeonex [8], polycarbonate [9], TOPAS [10], and mixtures thereof [11]. 
However, poly (methyl methacrylate) (PMMA) is the most common material for Bragg 
grating devices [1,6]. 

POFBGs are usually obtained using the phase mask technology, which is a simple and 
reliable method. However, the phase mask can only inscribe gratings with a given period, i.e., 
with a specific Bragg wavelength, whereas a Bragg grating centered at a different wavelength 
requires a new phase mask with another pitch value or using additional techniques, such as 
post-annealing [12], shown to provide a 230 nm tuning range [13], or straining the POF 
during FBG writing, shown to provide a 12 nm tuning range [14]. At the same time, non-
uniform devices, such as chirped FBGs (CFBG) are attractive for other applications, such as 
dispersion compensation [15] and biomedical sensing [16], where POF materials show huge 
advantages compared with silica fibers, such as a lower Young’s modulus, higher 
sensitivities, and biocompatibility and biodegradability [17]. In 2005, CFBGs in POF were 
proposed for the first time by Liu et al [18] based on taper technology. Recently, the first 
CFBG in POF was fabricated by using chirped phase mask technology [19], whereas tunable 
POF CFBGs have been obtained using taper technology [20] for a variety of applications, 
such as bio-medical thermal detection [21] or variable delay lines [22]. The use of a chirped 
phase mask is expensive and not flexible, whereas taper technology needs accurate tapering 
process and chirp characteristic changes with strain. 
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