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“A journey of a thousand miles begins with a single step.” 

                                                                                                – Lao Tzu  
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Abstract 

This thesis focuses on the fabrication of a hybrid fluorescent silicon carbide (f-

SiC) based warm white light-emitting diode (LED). This type of white LED 

employs a near-ultraviolet (NUV) LED as the excitation source and a donor-

acceptor-pair (DAP) co-doped f-SiC substrate as the wavelength-conversion 

material. In comparison with the commonly used wavelength-conversion 

material like phosphors, the f-SiC based white LED does not contain any rare-

earth element and has a longer material lifetime.  

This work starts with the fabrication of the NUV LED device which functions 

as the excitation source in the f-SiC based white LED. Then, to enhance the 

electroluminescence (EL) output of the NUV LED, the work of performance 

optimization on aluminum-doped zinc oxide (AZO) as a current spreading 

layer (CSL) is demonstrated. In the end, to produce a hybrid f-SiC based 

warm white LED, a bonding method for combination of the NUV LED and a 

nitrogen (N)-boron (B) co-doped f-SiC epi-layer is presented. 

To make a NUV LED device, standard post-growth fabrication process 

including the formation of mesas, CSLs and pads is carried out on NUV LED 

epi-wafers. In addition, to obtain strong output light of the NUV LED, it is 

critical to employ a proper CSL with both good conductivity and high 

transparency in the NUV wavelength region. Therefore, transparent 

conductive oxide AZO is studied and optimizations are carried out on the 



 

x 

 

AZO based CSLs. It turns out in the end that a graphene interlayer can 

improve the performance of the AZO based CSL by decreasing the Schottky 

barrier height between the CSL and the semiconductor. 

On the other hand, to fabricate a hybrid f-SiC based warm white LED by 

combining the NUV LED and the f-SiC epi-layer, an adhesive bonding 

approach is employed. Hydrogen silsesquioxane (HSQ) is used as the bonding 

material due to its high transparency in the NUV wavelength region. By using 

this method, a NUV LED grown on a 4H-SiC substrate is successfully bonded 

to a free-standing B-N co-doped f-SiC epi-layer. EL emission from the NUV 

LED on the top excites the bottom f-SiC epi-layer to generate light finally 

presenting a warm white emission. 
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Abstrakt 

Denne afhandling fokuserer på fremstilling af en hybrid varm-hvid lysdiode 

(LED) baseret på fluorescerende silicium karbid (f-SiC). Denne type LED 

bruger en nær ultraviolet (NUV) LED som excitationskilde og et donor-

acceptor par doteret f-SiC substrat som bølgelængekonverteringsmateriale. I 

sammenligning med almindeligt brugte bølgelængekonverteringsmaterialer 

som fosforescerende materialer (fosforer), indeholder f-SiC baserede hvide 

LED’er ikke sjældne jordarter og har længere materialelevetider.  

Dette projekt starter med fremstillingen af en NUV LED enhed, der fungerer 

som excitationskilde i den f-SiC baserede hvide LED. Derefter præsenteres 

arbejde angående forbedring af elektroluminescence (EL) outputtet af NUV 

LED enheden. Det består i at indføre og optimere et aluminium doteret 

zinkoxid (AZO) lag, der virker som et strømspredelag (Current Spreading 

Layer (CSL)). Til sidste præsenteres en bondemetode, som er brugt til at 

bonde NUV LED’en og det nitrogen og bor doterede f-SiC epi lag sammen til 

en hybrid f-SiC baseret varm hvid LED. 

Til fremstillingen af NUV LED enheden gennemføres en standard 

fabrikationsproces, som inkluderer dannelsen af mesa’er, CLS og pad’s på 

NUV LED epi wafere. Udover at forhøje output lysintensiteten af NUV LED 

enheden er det kritisk at anvende et godt CSL med god ledningsevne og høj 

transparens. Derfor studeres den transparente elektrisk ledende oxid AZO, og 
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der optimeres på det AZO-baserede CSL for at reducere Schottky 

barrierehøjden mellem CSL’et og halvlederen.   

Til fremstillingen af den hybride f-SiC baserede varmhvide LED kombineres 

en NUV LED og et f-SiC epi-lag ved hjælp af en bondemetode. Hydrogen 

silsesquioxan (HSQ) bruges som bondemateriale pga. dets høje transparens i 

NUV bølgelængdeområdet. Ved hjælp af denne metode kan en NUV LED, 

som er groet på et 4H-SiC substrat, bondes til et B-N doteret f-SiC epi-lag. 

Derved kan EL emission fra NUV LED’en på toppen excitere det nederste f-

SiC epi-lag, som så kan generere og udsende varmt hvidt lys.  
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 Introduction Chapter 1

Light-emitting diode (LED) light sources possess advantages such as energy 

saving, robustness, and long lifetime in comparison with the conventional 

incandescent lamps and fluorescent tubes therefore being expected to become 

the future market leader [1]. Particularly, white LEDs have attracted extensive 

attention over the past decades as promising devices and are increasingly 

popular in many applications of not only general lighting equipment but also 

backlight source of liquid crystal flat display panels and the headlights of 

automobiles [2].  

Nowadays, the most common commercialized white LED is made by 

combining a gallium nitride (GaN) based blue LED chip with a coating of 

yellow phosphor such as cerium-doped yttrium aluminum garnets (YAG) [1-

6]. However, the yellow phosphor degrades faster than the blue LED, which 

turns the white light to be bluish over time hence decreasing the light quality 

[1]. Also, for this type of white LED, the color rendering index (CRI) is 

limited by a lack of the red component in the spectrum [3-5]. To obtain an 

increased CRI, another type of white LED is developed by combining an 

ultraviolet (UV) LED and phosphors of three colors, which however decreases 

the emission efficiency by the low efficiency of red phosphors [2-4]. 

Furthermore, most of the white LEDs described above contain rare-earth 
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elements [1, 4]. Hence, the utility of these white LEDs is limited by the 

phosphor performance and the decreased abundance of rare-earth elements. 

 

Figure 1.1 Schematic illustration of a novel monolithic f-SiC based white LED 

As a promising alternative method, a novel monolithic fluorescent silicon 

carbide (f-SiC) based white LED is invented by Kamiyama [2-4]. The f-SiC 

possesses advantages such as high thermal conductivity and ability to cover 

the entire visible spectral range. In addition, the f-SiC based white LED is 

rare-earth element free and contains no decaying phosphors.  

A schematic illustration of this type of LED is shown in Figure 1.1. As shown, 

a near-ultraviolet (NUV) LED stack is grown on f-SiC epi-layers. The NUV 

LED on the top functions as an excitation source while the f-SiC epi-layers 

work as wavelength convertors. By post-growth processing including mesa 
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and contact fabrication on the NUV LED, a highly reflective current spreading 

layer (CSL) is produced on the top, which can reflect most of the NUV 

photons generated in the active multiple quantum wells (MQWs) and make 

the reflected photons propagate to the f-SiC epi-layers. Due to the large 

optical bandgap of SiC, its emission wavelength can be designed and altered 

within the entire visible spectrum by introducing different dopants. One of the 

f-SiC epi-layers is co-doped by Nitrogen (N) and Boron (B) while the other 

one is co-doped by N and Aluminum (Al). Through excitation of NUV 

photons from the LED on top, a warm white light with a peak wavelength at 

around 580 nm is generated from the N-B co-doped f-SiC epi-layer due to its 

donor-acceptor-pair (DAP) luminescence [1-4]. Simultaneously, a blue-green 

emission with a peak wavelength at around 485 nm is generated from the N-

Al co-doped f-SiC epi-layer. Combination of the warm white and blue-green 

emissions can result in a pure white light. For this new type of white LED, a 

device lifespan around 300,000 hours can be expected, which is much longer 

than that of the typical phosphor-based white LED (50,000 hours) [5]. In 

addition, its value of color rendering index (CRI) could exceed 90 [5, 7]. The 

luminous efficacy could reach as high as 130 lm/W which is higher than that 

of incandescent lamps (approximately 10 lm/W) and fluorescent lamps 

(typically 80 lm/W) [5, 8]. 

Except for the monolithic method, there is another way, i. e. the hybrid 

method, to realize the f-SiC based white LED. The focus of this thesis is on 

the fabrication of a hybrid f-SiC based warm white LED. A schematic 

diagram of technical steps to realize the f-SiC based white LEDs is shown in 

Figure 1.2. There are primarily four steps.  

In Step 1, epi-layers of warm white emission B and N co-doped f-SiC and 

blue emission Al and N co-doped f-SiC are grown [1, 2]. The idea is to first 

grow 200 µm B-N co-doped f-SiC epi-layer on a 6H-SiC substrate by a fast 

sublimation growth process followed by the growth of a 50  µm Al-N co-

doped f-SiC epi-layer on top. After growth, the 6H-SiC substrate is polished 

away to produce the f-SiC substrate. Intense warm white emission from B and 

N co-doped 6H-SiC has been demonstrated by the joint effort of DTU Fotonik, 
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Linköping University, and University of Erlangen-Nürnberg through the 

NORLED project [1, 9]. The f-SiC epi-layers with B and N dopants can be 

grown on 6H-SiC (0001) substrates with 1.4 degree off-orientation in the 

[1120] direction under a growth temperature of 1725℃ [9, 10]. Intense DAP 

band emission can be obtained by B and N concentrations larger than 10
18

 

cm
−3

 with a peak wavelength at 587 nm and a full width at half maximum 

(FWHM) of 120 nm [9, 10]. Growth of N and Al co-doped 6H-SiC using 

liquid solution phase epitaxial technology and fast sublimation growth process 

is still under research. 

In Step 2, GaN based high-efficiency NUV LED epi-layers are grown through 

metalorganic chemical vapor deposition (MOCVD) on commercial sapphire 

and SiC substrates by Institute of Semiconductors, Chinese Academy of 

Science. After growth, these epi-wafers are used for experiments described in 

Step 3 and Step 4. 

The work of this thesis is involved in Step 3 and Step 4.  

In Step 3, there are two main focuses. Firstly, post-growth fabrication process 

is carried out on NUV LED epi-wafers and it includes the formation of mesas, 

CSLs and pads. The purpose is to fabricate standard NUV LED devices as a 

starting point. After the fabrication of standard NUV LED devices, 

characterizations regarding the optical and electrical performance are carried 

out before the further optimization.  

Secondly, in Step 3, performance optimization on the NUV LED device by 

employing a transparent conductive oxide material instead of the conventional 

CSL is carried out.  To enhance the output light of the NUV LED device, it is 

critical to employ a proper CSL with both good conductivity and high 

transmittance. In this work, efforts are made to find an alternative candidate 

with high transmittance in the NUV wavelength region to replace the 

conventional absorbing CSL. Also, improvement on the I-V and 

electroluminescence (EL) performance of the NUV LED with the transparent 

conductive oxide CSL is carried out. 
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Figure 1.2 Schematic diagram of technical steps to realize hybrid f-SiC based white LEDs  

(The work of this thesis is involved in Step 3 and Step 4) 
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In Step 4, the objective is to fabricate a hybrid f-SiC based LED. In this work, 

an NUV LED epi-wafer and an f-SiC epi-layer are combined through a 

bonding process. Afterwards, characterizations are carried out regarding 

bonding quality and EL performance of the hybrid f-SiC based LED. In the 

future, after bonding, LED devices can be fabricated on the bonded sample by 

the standard fabrication processes of mesas, CSLs and pads.  

In summary, to realize the fabrication of a hybrid f-SiC based warm white 

LED, the work includes post-growth processing of NUV LED devices 

followed by performance optimization of the transparent conductive 

aluminum-doped zinc oxide (AZO)-based CSLs and finally the bonding of the 

hybrid f-SiC based LED. The structure of the thesis is briefly explained below. 

Chapter 2 demonstrates a standard fabrication process of NUV LED devices, 

which primarily consists of mesa fabrication, CSL fabrication and pad 

fabrication. Section 2.1 starts with the history and the development of GaN-

based NUV LEDs followed by a brief introduction of its MOCVD growth as 

well as the state-of-the-art of NUV LEDs. In section 2.2, a standard 

fabrication process of NUV LED devices is presented in detail followed by 

optimizations on the adhesion of the metal n-pads. Section 2.3 demonstrates 

characterization results of the fabricated NUV LED device with the 

conventional Ni/Au CSL regarding I-V characteristics, EL, transfer line 

method (TLM) test as well as transmittance. Section 2.4 discusses some of the 

challenges that can affect the NUV LED performance followed by a summary 

of this chapter in section 2.5.  

Chapter 3 studies a transparent conductive CSL material AZO as CSLs on 

NUV LED devices.  In section 3.1, the NUV LED device with the commonly 

used transparent conductive indium tin oxide (ITO) CSL is fabricated 

followed by characterizations and comparisons with the AZO CSL. In section 

3.2, NUV LED devices with different AZO-based CSLs are fabricated and 

compared regarding I-V characteristics, EL and CSL transmittance. Section 

3.3 proposes an approach to further improve the performance of the AZO-

based CSL by employment of a graphene interlayer. Relevant characterization 
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results are demonstrated and discussed. Conclusions of this chapter are drawn 

in section 3.4. 

Chapter 4 demonstrates an approach of bonding an NUV LED to a B-N co-

doped f-SiC epi-layer. By doing so, a hybrid f-SiC based LED can be obtained. 

In section 4.1, fundamental information regarding adhesive bonding including 

basic mechanisms and advantages is introduced. Section 4.2 presents the 

method of hydrogen silsesquioxane (HSQ) adhesive bonding including tests 

on Si and SiC samples followed by the bonding of an NUV LED to a B-N co-

doped f-SiC epi-layer. Afterwards, characterization results regarding HSQ 

transparency, bonding quality and EL of the hybrid LED are demonstrated and 

discussed in section 4.3. At the end, section 4.4 summarizes the results of this 

chapter. 

Chapter 5 summarizes the work in this thesis, mainly regarding the standard 

post-growth processing on NUV LED epi-wafers, transparent conductive 

AZO-based CSLs and bonding of the NUV LED and the f-SiC epi-layer. At 

the end an outlook on future research work is presented. 
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 Fabrication of gallium Chapter 2

nitride based near-ultraviolet light-

emitting diodes 

In this chapter, basics regarding GaN based NUV LEDs and its standard 

fabrication process are demonstrated. Afterwards, characterizations on the 

fabricated NUV LEDs are carried out followed by discussion on challenges 

that can affect the NUV LED performance. 

2.1 Near-ultraviolet light-emitting diodes 

UV LEDs are LEDs that can generate emissions with wavelengths shorter 

than 400 nm. They are promising alternatives for UV lamps and they are also 

attractive candidates in various applications including lighting and displays, 

microscopy, lithography technology, resin curing, medicine, biotechnology 

and environmental monitoring [11-17]. According to the spectral ranges of 

emission, they can be divided into NUV LEDs (300–400 nm) and deep 

ultraviolet (DUV) LEDs (200–300 nm) [17]. In this work, NUV LEDs, which 

can be used as the excitation source in the f-SiC based LED, are studied. 
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2.1.1 History and development 

The development of semiconductor emitters began from the 20th century 

when there had been several reports on EL from some materials including SiC 

[18]. In the 1960s, the first blue LED made from SiC was fabricated and it 

became commercially available in the 1990s although it was not viable and 

had a low efficiency of around 0.03% [19, 20]. Meanwhile, in the late 1950s, 

researchers were making visible LEDs using III-V compounds and in 1964, 

the green GaP LED was produced with an efficiency of 0.6% [21]. The 

indirect bandgaps of SiC and GaP limit their efficiencies, since a phonon 

needs to get involved in the hole-electron recombination process due to 

momentum conservation [18].  

Figure 2.1 displays bandgaps and lattice constants of semiconductors. The 

connecting lines stand for their ternary compounds, with different ratios of the 

relevant binary materials. As shown in the figure, nitride materials with 

wurtzite structures possess direct bandgaps ranging from 0.8 to 6.3 eV, which 

makes themselves capable of emissions covering a wide spectrum hence 

becoming attractive in optoelectronic applications as semiconductor emitters.  

In the 1960s, the growth of single crystal films of GaN had become a 

promising technology and it succeeded in 1968 [22]. At that time, infrared, red, 

and green LEDs had been successfully made except for the LEDs emitting 

shorter wavelengths. The wide bandgap of GaN makes itself an attractive 

material in the application of short wavelength emission, including the blue 

emission which can make flat panel televisions possible and end the era of the 

venerable cathode ray tube [18].  
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Figure 2.1 Energy gap of the III-V as a function of lattice parameter [23] 

In the beginning, the grown GaN films had always been n-type until 1971 

when the Zn-doped p-GaN emerged hence allowing the production of the first 

GaN LED [18, 24]. In the next two years, GaN LEDs with Mg-doped p-GaN 

emitting blue/violet light were successfully made [25, 26]. However, it was 

always difficult to obtain efficient emissions from a GaN active layer at room 

temperature [27]. Fortunately, group-III nitrides composed of GaN and its 

alloys InN or AlN have revolutionized the solid-state lighting market due to 

their ability to realize efficient emissions in a wide visible spectral range 

including NUV [27, 28]. Growth of high-quality InGaN films first succeeded 

in 1992 [29]. The addition of small amounts of indium to GaN enables strong 

band-to-band emission at room temperature. By altering the indium 

composition in InGaN, band-to-band emission ranging from green to UV can 

be obtained [27]. Soon, Nakamura et al. fabricated the first InGaN/GaN 

double-heterostructure LED in 1993 followed by the growth of InGaN MQW 

structure [30]. In 1995, Nakamura et al. developed the first blue/green InGaN 

single quantum well (SQW) structure LEDs [31]. Afterwards, the UV LED 

using the InGaN active layer was also produced [32, 33].   
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2.1.2 MOCVD epitaxial growth 

In 1984, Kawabata et al. at Matsushita reported the first blue GaN LED grown 

by MOCVD [18]. Nowadays, MOCVD has become an extensively employed 

technique in the manufacture of optoelectronics including GaN-based LEDs 

[35-39].  

 

Figure 2.2 Fundamental elements of a light- emitting diode 

As shown in Figure 2.2, fundamentally, the structure of a NUV LED contains 

an n-GaN layer, MQWs and a p-GaN layer as the main elements. By injection 

of holes and carriers through p-GaN and n-GaN, respectively, radiative carrier 

recombination and photon generation processes take place in the active 

MQWs. The active layer in MQWs can be either AlxGa1-xN or InxGa1-xN. 

Usually, AlxGa1-xN is employed for emission of wavelengths smaller than 380 

nm while InxGa1-xN can cover the entire visible range through tuning the 

content of indium. For GaN, InGaN, and AlGaN epitaxial growth, precursors 

of Ga, N, In and Al are normally trimethylgallium (TMG), Ammonia (NH3), 

trimethylindium (TMIn) and trimethylaluminum (TMA), respectively [38, 39]. 

When growing the MQWs, the mismatch of lattice constants between the GaN 

barrier and the InxGa1-xN or AlxGa1-xN well can result in an internal strain. The 
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strain in different material layers induces piezoelectric fields which can affect 

the internal quantum efficiency (IQE) of the LED.  

Generally, in n- and p-GaN layers, atoms of Si are used as the n-type dopants 

while Mg as the p-type dopants, respectively. Normally, Monosilane (SiH4) is 

used for n-type doping by Si and bis-cyclopentadienyl magnesium (Cp2Mg) is 

used for p-type doping by Mg. The standardly used doping concentration of 

Mg has to be sufficiently high in order to produce a reasonable conductivity 

since Mg has a relatively high activation energy (around 150 meV) therefore 

limiting the doping efficiency [40, 41].  

The substrates used for MOCVD growth can also affect the quality of the epi-

layers grown on the top. Generally, sapphire and SiC have been widely 

employed for the epitaxial growth of III-V nitrides. GaN-based light-emitting 

diodes grown on sapphire substrates, assisted with a thin buffer layer of AlN 

or GaN, can present a good luminescence capacity. However, sapphire also 

possesses some disadvantages including a lattice mismatch of 14% between 

GaN and itself [42], which can result in a dense threading dislocation in the 

grown films. Also, its large thermal expansion coefficient and low thermal 

conductivity could degrade the quality of GaN films [43]. As for the SiC 

substrate, although its MOCVD growth technology of NUV LED epi-layers is 

not as mature as that of the sapphire substrate, it has also become increasingly 

attractive due to its advantages. In comparison with the sapphire substrate, the 

SiC substrate possesses a smaller lattice mismatch (4%) hence allowing fewer 

dislocations generated during GaN growth [42]. Furthermore, more than 10 

times better thermal conductivity of SiC [43] than that of the sapphire makes 

SiC a promising material in high power related applications. Generally 

speaking, both sapphire and SiC substrates have their merits and the specific 

needs of an application determine which kind of substrate to employ. 
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2.1.3 State-of-the-art 

The performance of LEDs can be evaluated by IQE (the ratio of photons 

internally emitted from the MQWs divided by the carriers injected into the 

LED), light extraction efficiency (LEE) (the ratio of photons externally 

emitted from the device divided by the photons internally emitted from the 

MQWs) and external quantum efficiency (EQE) which is defined as the 

product of the IQE and the LEE (the ratio of photons externally emitted from 

the device divided by the carriers injected into the LED). Therefore, to obtain 

a high EQE, both the IQE and LEE should be optimized [44]. 

To have a high IQE, the amount of hole-electron nonradiative recombination 

happening at defects and nonradiative Auger recombination should be 

minimized. It can be improved by modifying the crystal quality and reducing 

the defect density during growth. Currently the highest IQE is 80% for blue 

LEDs at a current density smaller than 30 A/cm
2
) [44]. However, the IQE of 

NUV LEDs is much lower than those of green and blue LEDs. This can be 

explained by the low indium content in the composited wells and barriers of a 

NUV LED, which leads to a small band-offset. So it is easy for the injected 

carriers to escape from the active region hence resulting in a limited IQE [45, 

46]. For example, the IQE of the NUV LED epi-wafers employed in this work 

is around 25%. 

The refractive index difference exists at the LED/air interface makes a 

considerable fraction of generated photons in the device easily get trapped due 

to total internal reflection consequently limiting the LEE [44]. To improve the 

LEE, surface roughening technologies have been extensively studied [47]. The 

mechanism of surface roughening technologies is to increase the sidewall 

surface hence providing more pathways and more chances for photons to hit 

the interface in an almost perpendicular direction therefore minimizing the 

total internal reflections. In addition, by the employment of photonic crystals 

[48], patterning of substrates [49] et al. [50, 51], the LEE of the LED can also 

be increased.  
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Although there has been a great development in the NUV LED industry, 

further optimizations are still in need. In this chapter, basics regarding the 

NUV LED fabrication and the characterizations are introduced first followed 

by the performance improvement in the next chapter. In the following section 

2.2 and 2.3, a standard fabrication process is demonstrated in detail including 

formations of mesas, CSLs and pads. Afterwards, characterizations on I-V 

characteristics, EL, ohmic property and transmittance are carried out and the 

results are demonstrated. In the end, challenges that can affect the 

performance of an NUV LED are discussed. 

2.2 Fabrication process 

 

Figure 2.3 Fundamental fabrication steps of NUV LED devices 

As shown in Figure 2.3, there are mainly three steps in the standard 

fabrication process of a NUV LED device. The fundamental structure of an 

NUV LED epi-wafer includes an n-GaN layer normally with a thickness 
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around 2-3 µm covered by several periods (normally 8-10 periods) of MQWs 

(InGaN/GaN MQWs) as the active layer which generates photons. A p-GaN 

layer is on top of the MQWs with a thickness generally around 100-150 nm. 

During the fabrication, firstly, GaN mesas are produced on the NUV epi-wafer 

in order to expose the n-GaN layer. Secondly, current spreading layers are 

produced on the p-GaN surface to avoid current crowding due to the resistive 

p-GaN so as to spread out the electric current uniformly. In the end, n- and p-

pads are added to the n-GaN and p-GaN surfaces, respectively, for electric 

current injection. A more detailed fabrication process is introduced in the 

following section. 

2.2.1 Fabrication of mesas 

The purpose of making mesas is to expose the n-GaN for the subsequent 

formation of the n-pad so that the holes and electrons can be injected through 

the p-GaN and the n-GaN, respectively. The basic structure of the NUV epi-

wafer employed in this work, which is grown by the MOCVD CRUIS I 

(AIXTRON, Herzogenrath, Germany), includes a 2.5 µm n-GaN layer (doping 

concentration of 1.5×10
19

cm
-3

) covered by 9 periods of InGaN/GaN MQWs 

and a 130 nm p-GaN layer (doping concentration of 2×10
19

cm
-3

) on the top. 

On the p-GaN, there is a highly Mg doped p
+
-GaN layer with a thickness of 15 

nm and a doping concentration of 2×10
20

cm
-3

. The standard fabrication steps 

of GaN mesas are shown in Figure 2.4.  

Figure 2.4 (a)-(d) demonstrate the fabrication steps of resist mesas. During the 

fabrication, firstly, a layer of 300 nm SiO2 is deposited on the NUV LED 

sample by plasma-enhanced chemical vapor deposition (PECVD). Then, 1.6 

µm positive AZ5214E photoresist is spun on the top of the sample followed 

by baking on a hotplate at 90 ℃ for 90 seconds to drive out the solvent. 

Afterwards, the AZ5214E photoresist is exposed by UV light through a mask 

with mesa patterns at an intensity of 13 mW/cm
2
 for 10 seconds. During the 

exposure, chain-scission happens in the exposed areas of AZ5214E and makes 

the exposed AZ5214E become soluble in the developer. After development in 
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AZ 726 MIF (2.38% TMAH in water) for 30 seconds, the exposed AZ5214E 

is resolved hence producing resist mesas on the SiO2 layer.  

 

Figure 2.4 Standard fabrication steps of GaN mesas 
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Figure 2.4 (e) and (f) demonstrate the fabrication steps of SiO2 mesas. After 

the formation of the resist mesas, the sample is immersed in buffered oxide 

etch (BOE), which consists of NH4F : HF = 87.5% :12.5%, for 2 minutes to 

etch the exposed SiO2 in order to transfer the mesa structures from the resist 

layer to the SiO2 layer. After SiO2 etch, the AZ5214E resist is removed using 

oxygen plasma at a power of 100 W for 20 minutes leaving only SiO2 mesas 

on the p-GaN. The SiO2 mesas function as masks in the following dry etch of 

the GaN mesas.  

Figure 2.4 (g) and (h) demonstrate the fabrication steps of GaN mesas. The 

dry etch of GaN is carried out by inductively coupled plasma (ICP) etching 

using Cl2 and BCl3. An etch depth of 1.4 µm is achieved to expose the n-GaN 

layer. Then, the SiO2 is removed by immersion in 5% hydrofluoric acid (HF) 

for 10 minutes leaving only GaN mesas on the NUV LED sample. In the end, 

the LED sample with mesas is annealed by a RTA process in N2 at 500 ℃ for 

10 minutes followed by passivation in 37% hydrogen chloride (HCl) for 1 

hour [52].  

2.2.2 Fabrication of current spreading layers and pads 

The standard fabrication steps of CSLs and pads on the NUV LED sample 

with GaN mesas are demonstrated in Figure 2.5. CSLs can help the LED 

avoid the current crowding effect so as to obtain a more uniform carrier 

distribution when holes are injected into p-GaN layer. In this section, a 

standard Ni/Au CSL is employed. The Ni/Au is a conventional CSL and has 

been widely used in the LED application due to its excellent electrical 

properties [53].  
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Figure 2.5 Standard fabrication steps of CSLs and pads 
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Figure 2.5 (a)-(d) demonstrate the fabrication steps of standard Ni/Au CSLs. 

Firstly a layer of 2 µm negative N-LOF 2020 photoresist is spun on the LED 

sample followed by baking on a hotplate at 110 ℃ for 1 minute to drive out 

the solvent. Afterwards, the N-LOF 2020 is exposed by UV light through a 

mask with CSL patterns at an intensity of 13 mW/cm
2
 for 10 seconds followed 

by baking at 110 ℃ for 1 minute. Cross-linking happens in the exposed areas 

of N-LOF 2020 hence becoming insoluble in the developer. Then the sample 

is developed in AZ 726 MIF for 30 seconds to resolve the unexposed N-LOF 

2020 hence leaving openings for the following deposition of CSL materials. 

Afterwards, 10 nm Ni and 40 nm Au layers are e-beam evaporated. Then, lift-

off in MICROPOSIT Remover 1165 is carried out for 15 minutes assisted 

with ultrasonic to remove the resist together with the CSL materials on the top. 

Finally, 10 nm Ni/ 40 nm Au CSLs are formed on the p-GaN surfaces of the 

GaN mesas.  

Figure 2.5 (e)-(h) show the fabrication steps of the p- and n-pads. The 

materials of the p- and n-pads are identical and the process is similar to the 

one of CSLs but with two differences. One of the differences is that the mask 

employed for exposure is with patterns of pads. In addition, the evaporated 

materials are 30 nm (Titanium) Ti and 200 nm Au, which are also standard 

materials used as pads in the LED application [54]. After lift-off, the 30 nm 

Ti/ 200 nm Au p- and n-pads are formed on the p-GaN and the n-GaN 

surfaces, respectively. 

Figure 2.6 shows a scanning electron microscope (SEM) image of an NUV 

LED device after the standard fabrication process and the dimensions of the 

device are also shown in micrometer scale. The SEM images in this work are 

inspected by a Supra 40 VP SEM (Zeiss, Oberkochen, Germany) at 5 kV. The 

previously described standard fabrication process of the LED device is widely 

used in both the LED scientific research as well as the LED industry [55]. 

More details of the fabrication process are demonstrated in Appendix A. 
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Figure 2.6 SEM image of a fabricated NUV LED device 

2.2.3 Optimization of the fabrication process 

Before the process described in Figure 2.4, the fabrication of the SiO2 mesas is 

carried out using a RIE process instead of the BOE one. However, with the 

employment of the RIE process of SiO2, severe peeling-off of n-pads can 

happen during the liftoff. The peeling-off of the n-pads significantly 

deteriorates the yield of the LED devices. In the following section, the 

explanation and the optimization regarding this issue are demonstrated. 

Figure 2.7 and Figure 2.8 show SEM images taken from the fabricated NUV 

LED devices assisted with a RIE process of SiO2 instead of a BOE one. As 

shown in Figure 2.7, some of the n-pads are damaged while some are 

completely missing leaving only the marks on the LED sample. This happens 

during the lift-off of the p- and n-pads. Figure 2.8 shows the surface of the n-

GaN where an n-pad is deposited and then flakes off during the lift-off. It 

shows many undesired small structures with heights around 100-500 nm on 

the n-GaN. The heights of the small structures are comparable to the 230 nm 

thick pads and therefore could probably affect the adhesion of the n-pads to 

the n-GaN.  
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Figure 2.7 SEM image showing peeling off of n-pads after liftoff 

 

Figure 2.8 SEM image showing undesired structures on the n-GaN 

The formation of the undesired small structures on the n-GaN surface is 

schematically illustrated in Figure 2.9 (a)-(c). During the RIE dry etch of the 

SiO2, the areas of mesas are protected by AZ5214E. The AZ5214E can also be 

sputtered by the plasma hence leaving undesired resist on the exposed SiO2 

surface to be etched. This induces a micro-masking effect leaving undesired 
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SiO2 structures on the GaN surface to be etched after removal of the 

AZ5214E. Afterwards, the ICP etch of GaN transfers the SiO2 structures to the 

n-GaN layer hence producing the undesired small GaN structures.  

An approach to avoid the micro-masking effect resulting from the sputtering 

of the AZ5214E during RIE is to employ a wet SiO2 etching process instead of 

the RIE dry etch, as described in the fabrication process shown in Figure 2.4. 

With the optimization on the etch method of SiO2, the yield of the n-pads is 

significantly increased. As shown in Figure 2.10, all of the n-pads survive 

after the lift-off.  

 

Figure 2.9 Schematic illustration of the formation of undesired structures on n-GaN  

 

Figure 2.10 SEM image showing the fabricated NUV LED devices with a higher yield 
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2.3 Characterizations 

After fabrication, optical and electrical properties of the fabricated NUV LED 

device are characterized. The results are demonstrated as below. 

EL of the NUV LED device 

 

Figure 2.11 (a) Photograph of the NUV LED device fabricated emitting NUV light; (b) EL 

curve of the NUV LED device  

Figure 2.11 (a) shows a photograph of the NUV LED device emitting strong 

NUV light. The emission is collected by a large-core optical fiber coupled to 

the CAS 140-B optical spectrometer. The electric current injection to the NUV 

LED is carried out by a Model 2450 Interactive SourceMeter instrument 

system (Keithley, Solon, Ohio, USA). EL of the NUV LED device is 

successfully obtained under an electric current at 20 mA. Figure 2.11 (b) 

shows the EL spectrum of the device. The EL peak wavelength of the device 

is 388 nm at the current of 20 mA.  

I-V characteristics of the NUV LED device 

I-V measurements are carried out using the Model 2450 Interactive 

SourceMeter instrument system. Figure 2.12 shows the I-V curves of the NUV 

LED device. It shows a turn-on voltage at around 3 V which is comparable to 

the reported values [56, 57]. The series resistance can be estimated by linear 
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fitting to the curve after turn-on, which is around 27.8 Ohm, which is also 

comparable to the reported results [56, 57]. 

 

Figure 2.12 I-V curve of the NUV LED device  

TLM measurement of the conventional Ni/Au CSL 

To test the ohmic property of the Ni/Au CSL, TLM pattern is employed. The 

sample used for TLM measurement is schematically demonstrated in Figure 

2.13. As shown in the figure, identical Ni/Au bars (yellow rectangles in the 

figure) spaced by different distances are deposited on a GaN mesa. The 

function of the GaN mesa is to constraint the electric current direction when 

carrying out the I-V measurements on neighboring Ni/Au bars.  

 

Figure 2.13 Schematic illustration of the pattern for TLM measurement 
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I-V curves are obtained from measurements on each neighboring bars and all 

the I-V curves are shown in Figure 2.14. These linear I-V curves indicate the 

Ni/Au CSL is an ohmic contact. The resistance of each I-V curve can be 

extracted from the slope through 
1

slope
. Table 2.1 lists the slopes and the 

corresponding resistances of all the I-V curves.  

 

 

Figure 2.14 I-V curves of neighboring bars with different spacing (measured on Ni/Au) 

Table 2.1 Series resistances extracted from I-V curves (measured on Ni/Au) 
 

Bar spacing (𝛍𝐦) Slope Resistance (Ω) 

34 0.21500 4.651 

68 0.12000 8.333 

102 0.08100 12.346 

136 0.06197 16.137 

According to the data listed in Table 2.1, a linear curve y =  0.109 x +

 0.975 can be drawn as shown in Figure 2.15. The curve is fitting to the points 

with the calculated resistance as the y-axis value and the corresponding bar 
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spacing as the x-axis value. Afterwards, the contact resistivity of Ni/Au CSL 

can be calculated by combining the three formulas demonstrated below [58]. 

 

Figure 2.15 Curve of resistance dependence on bar distance (measured on Ni/Au) 

The Contact resistivity = Contact resistance × Transfer length × bar width 

Contact resistance =  
intercept of y − axis

2
 

Transfer length =  −
intercept of x − axis

2
 

The width of the Ni/Au bar is 386 µm and it can be extracted from Figure 2.15 

that the intercept of y-axis is 0.975 while -8.945 is the intercept of x-axis. 

According to the formulas listed above, the contact resistivity of Ni/Au CSL is 

8.4 × 10
 -6 Ω ∙ cm

2
 which is comparable to the most reported values [59-62]. 

According to the characterization results, Ni/Au is a CSL with excellent 

electrical properties as reported [59-62].  
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Transmittance of the conventional Ni/Au CSL 

 

Figure 2.16 Optical transmittance spectrum of Ni/Au CSL 

The transmittance of the Ni/Au CSL on the sapphire substrate is measured 

using an OL 700-71 6-inch diameter integrating sphere system (Gooch & 

Housego, Ilminster, UK) assisted with a Xenon lamp and a CAS 140 B optical 

spectrometer (Instrument Systems, Munich, Germany). The transmittance 

spectrum of the 10 nm Ni/40 nm Au CSL is shown in Figure 2.16. In the 

wavelength range of the most interest (380-390 nm), the transmittance is 

measured to be 15-16%, which is comparable to the reported value [60].  

2.4 Challenges regarding the NUV LED performance 

In this section, some of the challenges that can limit the performance of the 

NUV LED are demonstrated and discussed.  

Light extraction efficiency 

For the generated photons in MQWs, the refractive index difference at the 

GaN (n=2.54)/air (n=1) interface or the SiC (n=2.65)/air interface can make 

the light easily get trapped inside the LED due to total internal reflection thus 

resulting in a limited LEE. For example, for GaN, the refractive index 
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difference between GaN and air leads to a small escape cone of 23º for the 

photons traveling from GaN to air [63, 64]. One approach to improve the LEE 

of the LED is to apply nanostructures at the LED/air interface. The 

nanostructures with large sidewall surface offer more pathways for the 

generated photons to escape hence increasing the LEE [65, 66]. Various 

nanopatterning methods, which include self-assembled Ni nanoparticles [65], 

nanosphere masking layer [66] and so on, can be employed to enhance the 

output light intensity of the LEDs.  

 

Figure 2.17 Fabrication process of nanostructures on p-GaN  

In this work, a method using self-assembled Au nanoparticles is employed to 

fabricate nanostructures on the p-GaN and the fabrication process is shown in 

Figure 2.17 (a)-(f). The used NUV-LED epi-wafer is identical as the samples 

used previously with a 130 nm p-GaN layer on top. Firstly, a 120 nm SiO2 

layer is deposited on the p-GaN by PECVD. Afterwards, 10 nm Au film is 

formed on the top of SiO2 by electron-beam evaporation. Then a RTA process 

is applied to produce self-assembled Au nanoparticles (3 minutes in N2 at 650 

℃ ). By a RIE process, the Au pattern is transferred to the SiO2 layer. 

Thereafter, an ICP GaN etching process transfers the SiO2 nanopattern to the 

epi-wafer thereby forming nanostructures. Finally, the SiO2 is removed using 
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5% HF. In the end, GaN nanostructures with heights of around 70 nm, 105 nm, 

and 155 nm are fabricated, respectively, by controlling the GaN etch time. 

 

Figure 2.18 SEM images showing (a) the cross section of the 105 nm nanostructures and 

(b) the top view of the 105 nm nanostructures 

 

Figure 2.19 Diameter distribution of 105 nm nanostructures 

As an example, Figure 2.18 (a) and (b) show the cross section and the top 

view of the fabricated nanostructures with heights of 105 nm. The 

corresponding average lateral dimension of the nanostructures is around 120-

130 nm as shown in Figure 2.19. 

After the fabrication of nanostructures, PL measurement is carried out on the 

LEDs through excitation by a 375 nm laser. During PL measurement, the 

NUV LED is excited from the backside (the substrate side) and detected from 

the front side (the p-GaN side). According to the measurement, the PL 
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intensity is improved by 65%, 74% and 38% using nanostructures with heights 

of 70 nm, 105 nm, and 155 nm, respectively, in comparison with the 

corresponding LEDs before nanostructure fabrication. The highest PL 

enhancement of 74% by the 105 nm nanostructures shown in Figure 2.20 is 

28 % higher than the reported 58% PL enhancement using silica nanospheres 

[66]. The improved PL could be attributed to the optimized structure height in 

this work. The result indicates that higher nanostructures have better ability to 

extract light out of LEDs when comparing nanostructures with heights of 70 

nm and 105 nm. However, too deep GaN etch could harm the MQWs and 

introduce damage to the active region resulting in a decrease of radiative 

recombination rate, which is the case of 155 nm nanostructures.  

 

Figure 2.20 PL enhancement of NUV LEDs (a) by 105 nm nanostructures and (b) by 

nanostructures of different heights 

The nanostructures fabricated by this method can also be applied to the SiC 

substrates of LEDs. For example, for the f-SiC based white LED shown in 

Figure 1.1, the nanostructures can be fabricated on the f-SiC substrate to 

enhance the LEE hence increasing the output light.  

Internal quantum efficiency 

The radiative carrier recombination and photon generation processes take 

place in the active MQWs. By altering the indium composition in InGaN/GaN 

MQWs, the bandgap can be tuned from near ultraviolet to the entire visible 
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spectrum. A NUV LED usually contains low indium composited wells leading 

to a small band-offset, which makes it relatively easy for the injected carriers 

to escape from the active region hence resulting in a limited IQE [46]. LEDs 

emitting longer wavelengths , e.g. green LEDs, usually have a high indium 

content in the InGaN/GaN MQWs. Exposing the MQWs of green LEDs by 

fabricating nanopillar structures on top, the internal strain, which results from 

the large lattice mismatch existing at the heterointerface, can be released [67, 

68]. By this way, nanopillar structures improve the radiative recombination 

rate and thus enhance the IQE of the LEDs. However, for the NUV LEDs, this 

method cannot effectively improve the IQE due to the low indium content in 

the MQWs leading to an already small lattice mismatch in InGaN/GaN 

MQWs. The lattice mismatch in InGaN/GaN MQWs can be estimated for 

NUV and green LEDs, respectively, as shown below. 

For Green LEDs (λ = 555 nm) with InGaN/GaN QWs, it can be read from 

Figure 2.1 that the bandgap energy is EInGaN = 2.234 eV. In addition EGaN = 

3.42 eV and EInN = 0.7 eV. The standard equation of the bandgap energy 

depending on indium composition at room temperature is shown below. 

EInGaN(x) = (1 − x)EGaN + xEInN − bx(1 − x) [69] 

EInGaN(x) represents the bandgap energy of InxGa1−xN and b=1.4 eV is the 

bowing parameter. Then, it can be obtained that x=0.323. 

The Vegard’s law regarding the lattice constant is shown below. 

aA(1−x)Bx
= (1 − x)aA + xaB 

The below equation can be obtained for InxGa1−xN. 

aInxGa(1−x)N =  (1 −  x)aGaN  +  xaInN  

The above equation can also be written as below. 

aIn0.323Ga0.677N =  (1 –  0.323)aGaN  +  0.323aInN 
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It can be read from Figure 2.1 that, for GaN barrier with EGaN = 3.42 eV, the 

lattice constant aGaN=3.19 Å. For InN with EInN = 0.7 eV, a=3.545 Å. In the 

end, the lattice Constant of green In0.323Ga0.677N  can be calculated to be 

aIn0.323Ga0.677N = 3.31. 

In the end, the lattice mismatch between InGaN and GaN for green LEDs can 

be calculated as 

aIn0.323Ga0.677N − aGaN

aGaN
=

3.31 − 3.19

3.19
= 3.8% 

Similarly, for NUV LED (λ = 390 nm) with InGaN/GaN QWs, it can be read 

from Figure 2.1 that the bandgap energy is EInGaN = 3.263 eV. Besides, EGaN 

= 3.42 eV and EInN = 0.7 eV.  

According to the equation below, it can be obtained that x=0.038. 

EInGaN(x) = (1 − x)EGaN + xEInN − bx(1 − x) 

According to Vegard’s law, the following equation can be obtained. 

aIn0.038Ga0.962N =  (1 –  0.038)aGaN  +  0.038aInN 

In the end, the lattice Constant of NUV In0.038Ga0.962N can be calculated to 

be aIn0.038Ga0.962N = 3.2. 

The lattice mismatch between InGaN and GaN for NUV LEDs can be 

calculated as below. 

aIn0.038Ga0.962N − aGaN

aGaN
=

3.2 − 3.19

3.19
= 0.3% 

According to the calculation, the lattice mismatch of Green LEDs in 

InGaN/GaN MQWs is around 12 times larger than that of NUV LEDs. 

Therefore, the approach of nanopillars is not suitable for IQE optimization of 

the NUV LEDs. 
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Current Spreading Layers  

CSLs on LEDs allow a more uniform carrier distribution avoiding the current 

crowding effect [70, 71].  

The conduction mechanism for the CSL on the GaN includes thermionic 

emission and field emission. In thermionic emission, carriers need to transport 

over the potential barrier at the GaN/CSL interface. In field emission, carriers 

can tunnel through the potential barrier at the GaN/CSL interface, which takes 

place when the doping concentration is sufficiently high hence narrowing the 

barrier width. Therefore, to have a CSL with good conductivity, a low barrier 

height at the GaN/CSL interface (to enhance the thermionic emission) and a 

high doping concentration of the GaN (to enhance the field emission) are 

necessary. 

Regarding the doping concentration of the GaN at the p-GaN/CSL interface, 

the epi-wafer used in this work contains a highly Mg doped p
+
-GaN layer on 

top, which has a thickness of 15 nm and a doping concentration of 2×10
20 

cm
-3

.  

In terms of the barrier height at the GaN/CSL interface, however, it is difficult 

to find a CSL material having a sufficiently high work function for p-GaN, 

thus leading to a large Schottky barrier height (SBH) at the p-GaN/CSL 

interface [71-73]. The SBH depends on the work function of the CSL material 

in contact and is determined by the difference between the sum of the electron 

affinity (4.1 eV) and the bandgap Eg (3.4 eV) of the p-GaN (7.5 eV in total), 

and the work function Φc of the CSL material, as shown in Figure 2.21 [74-

77]. In order to maximize the drive current and minimize the leakage current 

under a certain voltage, the work function of the CSL material is desired to be 

greater than the sum of 7.5 eV for p-GaN. Table 2.2 lists metals with 

relatively high work functions but still, all of them are smaller than 7.5 eV. 

Due to the difficulties of finding a conductive material with a work function 

larger than 7.5 eV, another option is to reduce the SBH by decreasing the 

difference through the employment of a material with a sufficiently high work 

function [74-77]. The reduction of the SBH can result in a lower contact 
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resistance and it has been reported that the contact resistance at the p-

GaN/CSL interface decreases exponentially with increased work functions of 

CSL materials [72].  

Table 2.2 Work functions of several metals 

Metals Work functions (eV) 

Pt 5.12 – 5.93 

Au 5.10 – 5.47 

Ag 4.26 – 4.74 

Ti 4.33 

Al 4.06 – 4.26 

 

Figure 2.21 Band diagram of p-GaN and contacting material 

In addition, in the application of NUV LEDs, it is also important for the CSLs 

to have a high transmittance in the NUV wavelength region. As shown in the 

previous sections, the conventional Ni/Au CSL presents excellent electrical 

performance, but its low transmittance in the NUV wavelength region hinders 
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its use in NUV LEDs [56]. Hence, it is necessary to find a conductive CSL 

with also a high NUV transmittance. 

2.5 Summary 

The NUV LED device with the conventional Ni/Au CSL is successfully 

fabricated by a standard fabrication process. During the fabrication, the 

problem of n-pad peeling-off is studied and solved by minimizing the 

undesired structures produced on the n-GaN during the GaN etch process. 

This improvement is achieved by employing a BOE wet etch process in the 

SiO2 mesa fabrication instead of the RIE dry etch process of SiO2.  

After device fabrication, the NUV LED is characterized on the electrical and 

optical properties. NUV EL of the device is obtained and a peak wavelength 

of around 388 nm is achieved under a current of 20 mA. According to the I-V 

measurement, the device presents a turn-on voltage around 3 V and a series 

resistance around 27.8 Ohm. In addition, TLM measurement is carried out to 

test the ohmic property of the conventional Ni/Au CSL. Linear I-V curves are 

obtained from the Ni/Au CSL in the TLM measurement indicating the ohmic 

behavior and a contact resistivity around 8.4 × 10
 -6 Ω ∙ cm

2
 is obtained from 

the calculation. Although the Ni/Au CLS possesses good electrical 

performance, its transmittance smaller than 20% in the NUV wavelength 

range can limit the performance of the NUV LED. This indicates the 

requirement of a CSL with not only good electrical properties but also high 

transmittance in the NUV LED application. 

Challenges that can limit the NUV LED performance are discussed in the end 

of this chapter. Firstly, to minimize the number of photons trapped inside the 

LED by total internal reflection, a method of surface roughening assisted with 

self-assembled Au nanoparticles is studied. In the end, the nanostructures with 

heights around 105 nm give the highest PL enhancement due to the increased 

LEE. Secondly, because of the low indium composited wells in the NUV LED, 

the injected carriers can escape more easily therefore leading to a limited IQE 

when compared to the LEDs emitting longer wavelengths. The lattice 

mismatch in InGaN/GaN MQWs of Green LEDs is calculated to be around 12 
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times larger than that of NUV LEDs. Hence the commonly used approach of 

nanopillars is not an efficient way to improve the IQE of the NUV LED. Last 

but not the least, since it is difficult to find a CSL material with a work 

function larger than 7.5 eV for the GaN-based NUV LED, a large SBH at the 

p-GaN/CSL interface can be formed. So it is important to employ a CSL 

material with a sufficiently high work function to reduce the SBH. In addition, 

a high transmittance in the NUV wavelength region is also important for the 

CSL in the NUV LED application. 
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 Transparent conductive Chapter 3

current spreading layer materials  

In this chapter, transparent conductive material AZO is studied as a promising 

CSL material on a NUV LED. Characterizations and Comparisons are made 

between different AZO based CSLs.  

3.1 Aluminum-doped zinc oxide and comparison with indium tin 

oxide 

A CSL is a critical component in a GaN based LED. It is well known that 

without a CSL, non-uniformity distribution of carriers induced by the highly 

resistive p-GaN (inherently low hole concentration of the p-GaN) can lead to 

current crowding [78-80]. A CSL on p-GaN can effectively constraint the 

current crowding effect by uniformly spreading out the electric carriers over 

the lateral direction. As shown in the previous chapter, conventional Ni/Au 

CSL on p-GaN has a good electrical performance, but its low transparency in 

the NUV wavelength region hinders its use in NUV LEDs [60, 81, 82]. 

Therefore, a conductive CSL with high transmittance in the NUV region is 

extremely desired to further improve the performance of NUV LEDs.  

Transparent conductive oxide (TCO) materials possess superior optical and 

electrical properties hence attracting extensive attentions in electronic and 
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optoelectronic applications [83-87]. Currently, ITO with superior conductivity 

and transparency has been widely used as a CSL material in NUV LEDs [88-

89]. However, the cost of ITO can grow high in the future due to the 

scarceness of indium while its thermal stability is not satisfactory [80, 90]. 

Hence, it becomes necessary to look for alternative transparent conductive 

materials in the application of NUV LEDs. 

ZnO is a popular TCO semiconductor, which is famous for its wide direct 

band gap (3.37 eV), high transparence in visible region, good conductivity and 

high thermal stability [91, 92]. Thanks to these advantages, it has been a 

promising material in various applications including UV light emitters, 

transparent high-power electronics, surface acoustic wave devices, and 

chemical gas sensing [91]. Recently, lots of research efforts have been 

devoted to the technology of ZnO doping since its structural, electrical and 

optical properties can be improved by doping with various impurities like ions 

and alkali metals [93, 94]. It has been reported that, Sb-, Ga-, In-, and Al-

doped ZnO thin films are promising TCO materials in the LED industry [93-

96]. Especially, Al is one of the most promising dopants for mass production 

and the AZO thin film has been treated as a potential candidate for the 

alternative to ITO [97]. It is because the AZO material possesses similar 

electrical and optical properties in comparison with ITO. Meanwhile, as an 

indium-free material, it is low-cost, nontoxic and more stable at high 

temperatures, which offers substantial attractions in the LED industry [97].  

There have been various techniques for producing AZO films, such as 

chemical vapor deposition (CVD), molecular beam epitaxy (MBE), pulse laser 

deposition, atomic layer deposition (ALD), e-beam evaporation and sputtering 

[98-104]. Among these, the method of sputtering deposition is one of the most 

popular ways since it is low-cost, high-efficiency and can produce AZO films 

with satisfactory quality like good uniformity, smooth surface as well as good 

adhesion to substrates.  



Transparent conductive current spreading layer materials 

41 

 

In this section, NUV LED devices with two types of CSLs, which are the 

AZO CSL and the ITO CSL, are fabricated and investigated on the optical and 

electrical properties, respectively, followed by comparisons. 

3.1.1 Fabrication process  

 

Figure 3.1 Fabrication steps of the ITO CSL on the GaN mesa 

Figure 3.1 (a)-(d) shows the fabrication process of the ITO CSL on the GaN 

mesa. After mesa fabrication shown in Figure 2.4, the CSL lithography is 

carried out on the GaN mesa by spin coating of 2 µm negative photoresist N-

LOF 2020 followed by exposure and liftoff just like the process demonstrated 

in Figure 2.5. Afterwards, 250 nm ITO is e-beam evaporated on the mesa 

using an III-V Dielectric Evaporator. The employed ITO target consists of 

90% In2O3 and 10% SnO2. The deposition is carried out using a power of 5 W 

under O2 ambient with a pressure of 10
-5

 mBar. After ITO liftoff in 

MICROPOSIT Remover 1165 assisted with ultrasonic followed by annealing 

in N2 at 550℃ for 30 minutes, the ITO CSL is produced on the GaN mesa. In 

the end the Ti/Au pad is added to the p- and n-GaN, respectively. The step of 

pad fabrication is the same as the process introduced in Figure 2.5.  
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The LED device with 250 nm AZO CSL is fabricated using the same process 

except that the AZO deposition is carried out using a sputtering cathode 

TORUS with a ZnO target containing 2% Al2O3. During the sputtering, a 

power of 75 W under Ar ambient with a pressure of 5 mTorr is used. 

In the end, two types of NUV LED devices with a 250 nm ITO CSL and a 250 

nm AZO CSL are made for the following characterizations. 

3.1.2 Characterizations  

After fabrication of NUV LED devices with ITO and AZO CSLs, optical and 

electrical properties of the LED devices are characterized. The results are 

demonstrated and analyzed as below. 

Transmittance of ITO and AZO CSLs 

Transmittance spectra of the ITO and AZO CSLs on sapphire substrates are 

measured in the wavelength region of 380-430 nm using an integrating sphere 

system. As shown in Figure 3.2, the transmittances of the ITO and AZO CSLs 

are both around 70%. At the 391 nm peak wavelength of the devices, which is 

shown in Figure 3.3, the transmittance of the ITO CSL is around 72%, while 

68% for the AZO CSL, indicating a difference of 4%.  

EL of NUV LED devices with ITO and AZO CSLs 

EL spectra are obtained by measuring on NUV LED devices with different 

CSLs. Figure 3.3 shows that both NUV EL spectra are successfully obtained 

for devices with ITO and AZO CSLs by injecting an electric current of 50 mA. 

The peak wavelengths of the devices are both at around 391 nm. In addition, 

the NUV LED device with the ITO CSL shows a 5.5 times EL enhancement at 

the peak wavelength. 
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Figure 3.2 Optical transmittance spectra of ITO and AZO CSLs 

 

Figure 3.3 EL spectra of NUV LED devices with ITO and AZO CSLs 
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I-V characteristics of NUV LED devices with ITO and AZO CSLs 

Figure 3.10 shows the I-V curves of the fabricated NUV LED devices with 

ITO and AZO CSLs. The turn-on voltage of around 3.5 V is obtained for the 

LED device with the ITO CSL while the device with the AZO CSL has a 

larger turn-on voltage. At a forward voltage of 6 V, the electric currents are 53 

mA and 2 mA for the devices with the ITO CSL and the AZO CSL, 

respectively. This shows a much smaller series resistance of the device with 

the ITO CSL. The series resistances, which can be estimated by linear fitting 

to the part after turn-on of the curve, are 31.18 Ohm and 895.10 Ohm for the 

devices with the ITO CSL and the AZO CSL, respectively.  

 

Figure 3.4 I-V curves of NUV LED devices with ITO and AZO CSLs 

Ohmic test of ITO and AZO CSLs 

To test the ohmic property of ITO and AZO CSLs, the TLM pattern is 

employed. The structure and the sizes of the sample used for TLM test is 

identical as the one shown in Figure 2.13. As shown in Figure 2.13, identical 

ITO or AZO bars spaced by different lengths are deposited on a GaN mesa.  
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Figure 3.5 I-V curves of neighboring bars with different spacing (measured 

on ITO) 

I-V curves are obtained from measurements on each neighboring bars. Unlike 

the I-V curves of the ITO bars, the I-V curves measured on the AZO bars are 

completely nonlinear. As shown in Figure 3.5, the I-V curves of the ITO bars 

are almost linear. The resistance of each I-V curve can be extracted from the 

curve slope through 
1

slope
. Table 3.1 lists the slopes and the corresponding 

resistances of all the I-V curves.  

Table 3.1 Series resistances extracted from I-V curves (measured on ITO) 

Bar spacing (𝝁𝒎) Slope Resistance (Ω) 

34 0.01864 53.648 

68 0.00959 104.275 

102 0.00638 156.740 

136 0.00490 204.082 
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Figure 3.6 shows a linear curve y =  1.482 x +  3.745 drawn by fitting to the 

measured resistance as the y-axis and the corresponding bar spacing as the x-

axis. The contact resistivity of ITO CSL can be calculated as below. 

 

Figure 3.6 Curve of resistance dependence on bar distance (measured on ITO) 
 

The Contact resistivity can be calculated by the formula below. 

Contact resistivity = Contact resistance ×  Transfer length ×  bar width 

The contact resistance and the transfer length can be calculated by the 

formulas below. 

Contact resistance =  
intercept of y − axis

2
 

Transfer length =  −
intercept of x − axis

2
 

It is known that bar width = 386 µm and it can be extracted from Figure 3.6 

that the intercept of y-axis is 3.745 while -5.054 is the intercept of x-axis. 

According to the formulas listed before, the contact resistivity of the ITO CSL 

is 1.8 × 10
 -5 Ω ∙ cm

2
.  
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3.1.3 Conclusion 

Two types of NUV LED devices with different CSLs which are the ITO CSL 

and the AZO CSL are successfully fabricated. The transmittances of the ITO 

and AZO CSLs are both around 70%. The LED device with the ITO CSL 

shows a 5.5 times stronger EL than that of the AZO CSL at the peak 

wavelength. The series resistances are estimated to be 31.18 Ohm and 895.10 

Ohm for the devices with the ITO CSL and the AZO CSL, respectively. 

According to the TLM test, the contact resistivity of the ITO CSL is 1.8 × 10
 -

5 Ω ∙  cm
2
. The results show that, although AZO is a low-cost indium-free 

material, its performance still needs to be further improved in order to replace 

the ITO as a CSL on the NUV LED. 

3.2 Nickel interlayer for Aluminum-doped zinc oxide 

There have been several reports on significant improvement on electrical 

properties of AZO CSLs by insertion of a Ni based interlayer between the 

AZO film and the p-GaN [105-107]. This is due to the formation of Ga 

vacancies near the surface of p-GaN leading to a decreased contact resistivity 

[108-109]. In this section, NUV LED devices with two types of AZO based 

CSLs, which are Ni/AZO CSLs and AZO CSLs, are fabricated and 

investigated on the optical and electrical properties, respectively, followed by 

comparisons. 

3.2.1 Fabrication process  

Figure 3.7 (a)-(h) shows the steps for Ni/AZO CSL fabrication. After mesa 

fabrication shown in Figure 2.4, the first CSL lithography is carried out on the 

GaN mesas by spin coating of 2 µm negative photoresist N-LOF 2020 

followed by exposure and liftoff just like the fabrication process demonstrated 

in Figure 2.5. Afterwards, a layer of 2 nm Ni is e-beam evaporated on the 

patterned N-LOF 2020 resist layer. After Ni liftoff in MICROPOSIT Remover 

1165 assisted with ultrasonic, Ni CSLs are formed on the mesas. Then, the Ni 

CSLs go through rapid thermal annealing in air at 525 °C for 5 minutes.  
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Figure 3.7 Fabrication steps of AZO based CSLs on GaN mesas 

Subsequently, the second CSL lithography, which employs identical 

photoresist, parameters and mask design as the first lithography, is carried out 
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followed by sputtering deposition of 250 nm AZO. After AZO liftoff in 

MICROPOSIT Remover 1165 assisted with ultrasonic, the Ni/AZO CSLs are 

produced on GaN mesas. In the end the Ti/Au pads are added to the p- and n-

GaN respectively to make a device. The step of the metal pad fabrication is 

the same as the process introduced in Figure 2.5. 

In addition to the NUV LED devices with Ni/AZO CSLs, the devices with 250 

nm AZO CSLs are also fabricated for comparison.  

3.2.2 Characterizations  

After fabrication of NUV LED devices with different AZO based CSLs, 

optical and electrical properties of the devices with the Ni/AZO CSL and the 

AZO CSL are characterized. The characterization results are demonstrated and 

analyzed as below. 

Transmittance of AZO based CSLs 

Transmittance spectra of the AZO based CSLs on sapphire substrates are 

measured in the wavelength region of 380-430 nm using an integrating sphere 

system. As shown in Figure 3.8, the transmittance of the AZO CSL is higher 

than that of the Ni/AZO CSL due to the absorption of NUV photons by the Ni 

interlayer. At the 386 nm peak wavelength of the devices, the transmittance of 

the AZO CSL is around 70%, while 67% for the Ni/AZO CSL, indicating a 

decrease of 3% by adding the Ni interlayer. However, the transmittances of 

the AZO based CSLs are much higher than that of the conventional Ni/Au 

CSLs (13-14% in the wavelength region of 380-390 nm). In comparison with 

the conventional Ni/Au CSL, a 5 times and a 4.8 times higher transmittances 

are achieved by the AZO CSL and the Ni/AZO CSL, respectively. 
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Figure 3.8 Optical transmittance spectra of AZO based CSLs 

EL of NUV LED devices with AZO based CSLs 

 

Figure 3.9 EL spectra of NUV LED devices with AZO based CSLs 
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EL spectra are obtained by measuring on NUV LED devices with different 

AZO based CSLs. Figure 3.9 shows that both NUV EL spectra are 

successfully obtained for devices with AZO based CSLs by injecting an 

electric current of 50 mA. The peak wavelengths of the devices are both at 

around 386 nm which are within the expectation. In addition, the NUV LED 

device with the Ni/AZO CSL shows a 1.33 times stronger EL at the peak 

wavelength of 386 nm by adding the Ni interlayer under the AZO layer.  This 

confirms the better electrical performance of the Ni/AZO CSL in comparison 

with that of the AZO CSL. 

I-V characteristics of NUV LED devices with AZO based CSLs 

 

Figure 3.10 I-V curves of NUV LED devices with AZO based CSLs 

Figure 3.10 shows the I-V curves of the fabricated NUV LED devices with 

AZO based CSLs. Turn-on voltages of around 3.5 V and 3.7 V are obtained 

for the devices with the Ni/AZO CSL and the AZO CSL, respectively. At a 

current of 1 mA, the operation voltages are 4.7 V and 5.5 V for the devices 

with the Ni/AZO CSL and the AZO CSL, respectively. This shows a reduced 

series resistance of the device by using a Ni interlayer in the Ni/AZO CSL. 
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The series resistances, which can be estimated by linear fitting to the part after 

turn-on of the curve, are 350.88 Ohm and 890.47 Ohm for the devices with the 

Ni/AZO CSL and the AZO CSL, respectively. The device with the AZO CSL 

shows a 2.54 times larger series resistance than that of the device with the 

Ni/AZO CSL. The smaller series resistance by using the Ni/AZO CSL can be 

attributed to the formation of Ga vacancies near the p-GaN surface. 

I-V measurements on Ni/AZO CSLs with TLM patterns 

The Ni/AZO bars, which are identical as the TLM patterns employed in 

Figure 2.13, are measured for the test of ohmic property. All the I-V curves of 

the Ni/AZO bars are nonlinear indicating that they do not possess ohmic 

behavior.  

3.2.3 Conclusion 

NUV LED devices with two types of transparent conductive CSLs, which are 

a Ni/AZO CSL and an AZO CSL, respectively, are successfully fabricated. 

After the fabrication, the devices with different AZO based CSLs are 

characterized and compared. NUV EL emissions of the devices of both types 

are obtained by injecting electric currents and peak wavelengths at around 386 

nm are achieved under an injection current of 50 mA. In addition, the device 

with the Ni/AZO CSL shows a 1.33 times stronger EL at the peak wavelength 

of 386 nm by adding a Ni interlayer in comparison with the device with the 

AZO CSL.  Furthermore, in I-V measurements of the devices, the one with the 

AZO CSL shows a 2.54 times larger series resistance than that of the one with 

the Ni/AZO CSL. In the transmittance measurements, both CSLs show high 

transmittance in the NUV wavelength region. At the peak wavelength of 386 

nm, the transmittance of the AZO CSL is around 70%, while 67% for the 

Ni/AZO CSL, indicating a 5 times and a 4.8 times higher transmittance, 

respectively, in comparison with the conventional Ni/Au CSL. These 

experiments indicate that the AZO based CSLs present a high transmittance in 

the NUV wavelength region and the Ni interlayer can improve the electrical 

performance of the AZO CSL. However, the electrical properties of the AZO 
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based CSLs are not as good as that of the ITO CSL and still need further 

optimization.  

3.3 Graphene interlayer for aluminum-doped zinc oxide 

As shown previously, Ni/Au CSLs have better electrical performance than that 

of transparent AZO based CSLs. To further improve the performance of AZO 

based CSLs, one way is to lower the SBH at the contacting interface between 

the CSL and the semiconductor. As mentioned before, for GaN based NUV 

LEDs, it is difficult to find an appropriate CSL material having a sufficiently 

high work function (larger than 7.5 eV) for p-GaN, which leads to a large 

SBH at the p-GaN/CSL interface. Through employment of a material with a 

sufficiently high work function, the SBH at the interface can be reduced by 

decreasing the difference [74-77]. Here, the idea is to use a single layer 

graphene (SLG) interlayer to improve the performance of AZO based CSLs in 

NUV LED related applications.  

SLG is a two-dimensional carbon material consisting of a hexagonal array of 

carbon atoms, which is known for possessing outstanding properties including 

high carrier mobility, good thermal conductivity and mechanical stability 

[110-112]. Moreover, the high transparency in a wide spectral range including 

NUV makes itself a promising transparent CSL material in NUV LED related 

applications [113, 114]. Furthermore, in terms of the work function, graphene 

is more superior when compared to the reported work function of AZO [115-

119]. This indicates a potential of being an effective interlayer to improve the 

performance of AZO based CSLs by modifying the SBH.  

There has been work focused on combining graphene and AZO nanorods for 

improvement of LED device performance [120-122]. However, few research 

results have been reported on the combination of SLG and AZO as plain CSLs 

in the application of NUV LEDs. In this work, the effect of adding a SLG film 

to an AZO based CSL for a NUV LED is investigated. AZO based CSLs with 

and without a SLG interlayer are fabricated on both sapphire samples and 

NUV epi-wafers. After the fabrication, optical properties of the CSLs on 
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sapphire samples and electrical properties on NUV epi-wafers are measured 

and compared.  

3.3.1 Fabrication process  

Transferring graphene sheets to substrates  

 

Figure 3.11 Schematic illustration of the standard process of graphene transfer 

Pieces of 2"×4" SLG grown by CVD on Cu foil (GRAPHENE 

SUPERMARKET, Reading, Massachusetts, USA) are employed in the 

experiment. The SLG sheet is transferred to an NUV epi-wafer or a sapphire 

sample by a standard transfer process as shown in Figure 3.11: at the 

beginning, a layer of 2 µm photoresist AZ5214E is spin-coated onto the SLG 

and the AZ5214E/SLG stack is then released by etching the Cu foil in a 

Fe(NO3)3 solution (17 wt%) at room temperature. The AZ5214E/SLG stack 
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floating in the solution is then washed by deionized (DI) water and transferred 

to the target substrate followed by drying at room temperature for 24 hours. 

Finally, the AZ5214E on the SLG is dissolved in acetone at room temperature.  

Fabrication of the current spreading layers 

Two types of CSLs, which are SLG/2 nm Ni/250 nm AZO (CSL A) and 2 nm 

Ni/250 nm AZO (CSL B), are fabricated on both NUV epi-wafers and 

sapphire samples for measurements of electrical properties and transmittance, 

respectively. The InGaN/GaN NUV LED epi-wafers are grown on a c-plane 

(0 0 0 1) sapphire by MOCVD CRUIS I. The grown LED epi-layer consists of 

a sequence of a 3.5 µm thick GaN buffer layer, a 2µm thick Si-doped n-GaN 

layer, nine periods of InGaN/GaN multiple quantum wells (MQWs), and 

finally a 130 nm thick Mg-doped p-GaN layer. In the fabrication process, first, 

a layer of 2 nm Ni is deposited by electron beam evaporation on the top of a 

NUV epi-wafer with a transferred 6x6 mm
2
 SLG sheet. Afterwards, the Ni 

layer is treated by rapid thermal annealing in air at 525 ℃ for 5 minutes to 

increase its transparency. Subsequently, a layer of 250 nm AZO with a sheet 

resistance of 70 Ω/sq is deposited by a sputtering cathode TORUS using a 

ZnO target containing 2% Al2O3 [123]. Identical fabrication steps are also 

applied on the NUV epi-wafer without the SLG and also on sapphire samples 

with and without a SLG. Consequently, two types of CSLs are fabricated on 

both the NUV epi-wafers and the sapphire samples. In the end, for the NUV 

epi-wafer with the CSL A (sample A) and for the NUV epi-wafer with the 

CSL B (sample B), a diamond pen is used to expose the n-GaN layer and 

indium spheres are added to their p-GaN and n-GaN surfaces for current 

injection, respectively, as shown in Figure 3.12. In addition, Si samples with 

the surface partially covered by gold (Au) and partially covered by SLG, AZO 

or Ni are fabricated assisted with standard photolithography and lift-off 

processes for work function measurements. 
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Figure 3.12 Schematic illustration of the structure of the NUV epi-wafer (left) and the 

fabricated sample A with the CSL A of SLG/Ni/AZO and the sample B with the CSL B of 

Ni/AZO (right) both using indium spheres for carrier injection 

Characterization 

The transmittance of the CSLs on the sapphire substrates is measured using an 

OL 700-71 6-inch diameter integrating sphere system assisted with a Xenon 

lamp and a CAS 140-B optical spectrometer. The thickness of the transferred 

SLG sheet is characterized by Raman spectroscopy, using a DXRxi Raman 

imaging microscope (Thermo Scientific, Waltham, Massachusetts, USA). The 

Raman spectrum of the graphene is recorded with an integration time of 25 

seconds, using a 633 nm laser with a power of 8 mW. The EL spectra are 

obtained using a fiber-coupled optical spectrometer. The I-V curves from the 

LEDs are obtained using a Model 2450 Interactive SourceMeter instrument 

system. The work function measurements are carried out using PeakForce 

Kelvin probe force microscopy of a Dimension Icon atomic force microscope 

(AFM) (Bruker, Billerica, Massachusetts, USA). 
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3.3.2 Characterizations 

 

Figure 3.13 Optical transmittance spectra of a SLG/Ni/AZO CSL (CSL A) and a Ni/AZO 

CSL (CLS B) on sapphire samples in a wavelength range of 380-430 nm 

The transmittance for the two types of CSLs deposited on sapphire samples is 

measured in the wavelength range of 380-430 nm, as shown in Figure 3.13. 

For the CSL B on sapphire, the transmittance is 66% at 386 nm while the CSL 

A on sapphire only suffers a small transmittance loss at 386 nm by adding the 

SLG interlayer and confirming the high transparency of SLG in the NUV 

wavelength region.  

Figure 3.14 shows the Raman spectrum obtained by measuring the SLG 

transferred onto sample A. There are two dominant peaks which are the G 

peak at ~1580 cm
1

 and the 2D peak at ~2700 cm
1

 in the Raman spectrum of 

the SLG confirming the existence of the transferred SLG. The G to 2D peak 

intensity ratio identifies the thickness of the graphene layer. In our case, the 

value of IG/I2D is smaller than one (IG/I2D =0.67) with a full width at half 

maximum of ~60 cm
1

  indicating the graphene layer is a SLG [124, 125].  
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Figure 3.14 Raman spectrum of the transferred SLG on sample A collected using a 633 nm 

laser with a power of 8 mW 

The EL emissions are obtained for both sample A and sample B. During the 

measurement, probes are pressed against the indium spheres on the p-GaN and 

the n-GaN layers for carrier injection. Figure 3.15 (a) shows a photograph of 

sample A during light emission under an injection current of 50 mA. Figure 

3.15 (b) shows the EL spectra of sample A and sample B. The EL spectra are 

collected from the backside of the samples at a drive current of 50 mA and the 

peak emission is measured to be at around 386 nm. The emission intensity of 

sample A is 95% stronger than that of sample B at the peak wavelength.  
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Figure 3.15 (a) Photograph of sample A during light emission at an injection current of 50 

mA; (b) EL spectra of sample A (with SLG) and B (without SLG) at an injection current of 

50 mA 

In addition, Figure 3.16 shows a 0.5% reflectance difference at 386 nm 

between CSL A (15.5%) and CSL B (15%) on sapphire samples and this 

indicates that the 95% EL enhancement is not dominantly induced by the 

reflectance difference.  

 

Figure 3.16 Optical reflectance spectra of a SLG/Ni/AZO CSL (CSL A) and a Ni/AZO 

CSL (CLS B) on sapphire samples in a wavelength range of 370-410 nm 
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Figure 3.17 I-V curves of sample A (with SLG) and B (without SLG) for an input voltage 

range of 0-10 V 

Furthermore, the I-V characteristics of sample A and sample B are measured 

and the results are shown in Figure 3.17. The current is measured by applying 

a voltage range of 0-10 V and the NUV emission starts at around 4 V for both 

samples. The forward voltage at an injection current of 50 mA is 4.6 V for 

sample A and 5.8 V for sample B. By fitting to the I-V curves after the turn-

on, around 40% larger series resistance of sample B (37 Ω) than that of sample 

A (26 Ω) is shown due to the absence of a SLG interlayer in sample B.  

To study the physics behind the EL enhancement by applying the SLG 

interlayer, work function measurements are carried out and the results are 

shown in Figure 3.18. As indicated in the graph, SLG (4.85 eV) has a higher 

work function than Ni (4.48 eV) and AZO (4.74 eV). The Ni layer deposited 

for work function measurement is also treated by rapid thermal annealing in 

air at 525 ℃ for 5 minutes. The higher work function of SLG than that of Ni 

or AZO causes a reduction of the SBH at the interface of the contacting layer 

and the p-GaN consequently allowing an easier carrier injection process 

through the p-GaN layer [71-73]. A simplified performance comparison as a 

contact layer on p-GaN between SLG and AZO can be made. According to the 
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reported curve in [72] demonstrating the relationship between work functions 

and contact resistances, the work function difference of 0.11 eV between AZO 

and SLG leads to a 1.5 times larger contact resistance of AZO on p-GaN. This 

can be estimated that, in contrast with AZO, the current through the SLG 

interlayer can be increased by 50% under an identical voltage when the other 

relevant resistances are kept identical. This estimated result is comparable to 

the 40% increase for the current measured on sample A at 8 V shown in 

Figure 3.17. The comparison is made to AZO instead of Ni because in this 

work the employed 2 nm thin thickness and the 525 ℃ annealing temperature 

for Ni can lead to self-organization of Ni into nanoscale islands hence letting 

AZO in contact with p-GaN [126]. 

 

Figure 3.18 Work functions of SLG, AZO and Ni (left region) in comparison with that of 

Au (right region) 

3.3.3 Conclusion 

In conclusion, two types of CSLs which are SLG/Ni/AZO and Ni/AZO are 

successfully fabricated. This is done by using a standard graphene transfer 

process followed by deposition of Ni and AZO on both the p-GaN layer of the 

InGaN/GaN-based NUV-LED epi-wafers and the sapphire substrates. The 
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graphene sheet is identified by micro-Raman spectroscopy confirming its type 

of SLG. A 95% EL enhancement is achieved for the epi-wafer with the SLG 

interlayer. Then, the I-V curves show that the LED without the SLG interlayer 

can possess a 40% larger series resistance. Furthermore, the transmittance of 

the SLG is measured and it shows a low transmittance reduction at a 

wavelength of 386 nm indicating its high transparency in the NUV range. The 

results show that SLG interlayers can be employed to improve the 

performance of the AZO based CSLs on the GaN based NUV LEDs. 

3.4 Summary 

In this chapter, in order to find a CSL with a higher transmittance in the NUV 

wavelength region than that of the Ni/Au CSL, a promising transparent 

conductive material AZO is investigated as a CSL on the NUV LED device. 

In the beginning, the AZO CSL is compared with the ITO CSL, which is one 

of the most popular transparent conductive materials in the LED application, 

regarding both the optical and electrical properties. The transmittances of the 

ITO and AZO CSLs are both around 70%. However, the ITO CSL shows 

better electrical properties including the EL, the series resistance and the 

contact resistivity than those of the AZO CSL. Therefore, although AZO is a 

low-cost indium-free material, its electrical performance as a CSL on the 

NUV LED still requires optimizations in order to replace the ITO CSL. 

To improve the performance of the AZO, three types of AZO based CSLs, 

which are the AZO CSL, the Ni/AZO CSL and the SLG/Ni/AZO CSL, are 

fabricated for optical and electrical characterizations, respectively. According 

to the measurements, all the AZO based CSLs present high transparency in the 

NUV wavelength region and NUV EL emissions are obtained for all the three 

types of LEDs. 

The comparison between LEDs with the AZO CSL and the Ni/AZO CSL 

shows that the Ni interlayer can improve the electrical performance of AZO. 

The LED with the Ni/AZO CSL presents both an enhanced EL and also a 

reduced series resistance relative to the LED with the AZO CSL. 
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Performance comparisons are also made between LEDs with the Ni/AZO CSL 

and the SLG/Ni/AZO CSL. The characterization results indicate that, by the 

employment of the transparent conductive SLG interlayer, the series resistance 

and the EL of the LED are further improved in comparison with that of the 

LED with the Ni/AZO CSL. The further improved electrical performance can 

be explained by the higher work function of SLG than that of AZO. Based on 

the optical and electrical characterizations, it can be concluded that the SLG 

interlayer can improve the performance of the NUV LED with the AZO based 

CSL. 
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 Adhesive bonding for Chapter 4

hybrid warm white light-emitting 

diodes 

In this chapter, a bonding method to combine an NUV LED and an f-SiC epi-

layer is demonstrated in order to fabricate a hybrid f-SiC based warm white 

LED. After bonding and adding contacts, characterizations followed by 

discussions on the hybrid LED are carried out regarding both the bonding 

quality and the EL emission.  

4.1 Adhesive bonding 

The novel concept of f-SiC based white LED is introduced in chapter 1. It 

consists of an NUV LED and a donor and acceptor co-doped f-SiC substrate, 

which serve as the excitation source and the wavelength-conversion material, 

respectively. One fabrication approach to realize this f-SiC based white LED 

is to combine the NUV LED and the f-SiC substrate through adhesive bonding.  

The adhesive bonding is one of the most widely used bonding techniques for 

combining two surfaces together. It employs intermediate adhesive layers 

between opposing surfaces. In a standard process of adhesive bonding, at least 

one of the surfaces to be bonded will be covered by an adhesive layer. 
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Subsequently, the two surfaces will be brought into close contact under a 

certain pressure. Then, the adhesive layer turns from a liquid or viscoelastic 

state into a solid state through treatment with heat or exposure by UV light 

[127]. By this way, the surfaces are bonded together. 

The advantages of the adhesive bonding include low bonding temperatures, 

insensitivity to surface topography, resilience to stress and mechanical 

vibrations and uniform load distribution over a wide area, which makes itself 

extremely attractive in applications such as three-dimensional integrated 

circuits, advanced packaging, microfluidics and fiber–optic assemblies [127-

132]. In comparison, for fusion bonding techniques, two opposing surfaces are 

required to be in sufficiently close contact in order to form covalent- or van 

der Waals bonds, which are the most important bonding mechanisms. 

Generally, the distance between atoms from two surfaces to be bonded should 

be less than 0.5 nm, which makes it difficult to fusion bond surfaces with a 

large roughness, as shown in Figure 4.1 (a) [127]. In this case, as shown in 

Figure 4.1 (b), flowable adhesives can be applied in between the surfaces to 

pave the roughness hence bringing the atoms of adjacent surfaces into 

sufficient vicinity to generate the van der Waals bond, which is the basic 

mechanism in adhesive bonding [127-129].  

 

Figure 4.1 Schematic illustration of (a) fusion bonding and (b) adhesive bonding of rough 

samples 

4.2 Adhesive bonding using hydrogen silsesquioxane 

Although the adhesive bonding is straightforward to operate and less critical 

on surface roughness, high transparency of the adhesive material in the NUV 
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wavelength region is indispensable for the application of hybrid f-SiC based 

white LED. An adhesive material with high transparency can maximize the 

NUV light propagating to the f-SiC epi-layers for excitation.  

The high transmittance (above 90%) of HSQ in the NUV range makes itself 

an attractive bonding material in NUV LED related applications. Compared to 

the reported transmittance of the widely used BCB or SU-8 in adhesive 

bonding, HSQ appears more advantageous in the NUV wavelength region 

with higher and more uniform transmittance [133-136]. Therefore, adhesive 

bonding by HSQ is a promising candidate for the fabrication approach of f-

SiC based white LEDs.  

HSQ, which belongs to the inorganic compounds, is commercially available in 

a carrier solvent of methyl isobutyl ketone (MIBK) as Fox (flowable oxide). It 

is widely used in micro- and nano-engineering applications, e.g., as a high-

resolution negative electron beam resist [137], as molding material in 

nanoimprint lithography [138] or as mask in dry etching processes [139]. 

Furthermore, it is also employed as an intermediate material in bonding 

processes. Successful cases have been carried out for materials including Si, 

GaN and AlGaN [140-145]. In these bonding cases, HSQ is employed to bring 

atoms of opposing surfaces into vicinity to form van der Waals bonds. Under a 

certain heating temperature, the HSQ layer will be converted into solid SiOx 

and become competent in bearing the force to combine the opposing surfaces 

[140]. In the following sections, the work regarding adhesive bonding using 

HSQ will be demonstrated in detail. 

4.2.1 Bonding tests 

The plan of bonding tests is briefly described below. Tests of adhesive 

bonding using HSQ are carried out on Si samples first. After the bonding tests 

using Si samples, bonding tests on Si and SiC samples followed by SiC and 

SiC samples are done. Then, bonding between SiC and f-SiC is tested and, 

finally, the bonding of the NUV LED and the f-SiC samples is completed.  
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One of the reasons why Si is employed as the test material is due to its lower 

price relative to that of SiC. Also, for HSQ bonding of Si, reported successful 

cases can be found. Therefore, it is applicable to use Si to test the bonding 

parameters including temperature, pressure and time. Furthermore, the thermal 

expansion coefficient (TEC) difference between Si and SiC is acceptable. The 

TEC of a material can affect the bonding process, e.g., large TEC difference 

of two surfaces can lead to bad bonding quality or even a failure [146]. Table 

4.1 shows the TEC of several materials at 20 ℃  [147]. There has been a 

successful case of HSQ bonding of Si and GaN, proving that HSQ can work 

with both Si and GaN surfaces with a TEC difference [140]. The TEC 

difference between Si (2.56 10
-6

K
-1

) and GaN (3.1 10
-6

K
-1

) is 20.1% while the 

TEC difference between Si (2.56 10
-6

K
-1

) and SiC (2.77 10
-6

K
-1

) is only 8.2% 

indicating that using Si samples for HSQ tests can be feasible.  

Table 4.1 Linear thermal expansion coefficient of materials at 20℃ [147] 

Material Si SiC GaN 

Thermal expansion coefficient (10-6K-1) 2.56 2.77 3.1 

Difference relative to Si 0% 8.2% 20.1% 

 

Figure 4.2 HSQ thickness dependence on spin speeds 
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The thickness dependence of HSQ (XR-1541-06 from Dow Corning 

Corporation) on spin speeds is tested and shown in Figure 4.2. The thickness 

changes from 185 nm to 230 nm when the spin speed alters from 8000 

revolutions per minute (rpm) to 1000 rpm. A HSQ layer with the largest 

thickness around 230 nm, formed by a spin speed of 1000 rpm, is employed to 

pave the surface roughness. By spin-coating, HSQ is applied on the font side 

of a Si sample and the Si sample is then placed beneath another Si sample 

with front sides in contact, as shown in Figure 4.3 (a), followed by the 

bonding process.  

 

Figure 4.3 Schematic illustration of the bonding process of Si samples assisted with a HSQ 

layer spun on one of the Si surfaces 

During bonding, the stack is placed on a carrier wafer to prevent resist from 

flowing and staying in the bonder chamber, as shown in Figure 4.3 (b). A 

glass pad is employed to fix the samples to be bonded assisted with clips. The 

bonding is carried out under vacuum. A pressing force is applied to make a 

close contact between atoms. The chamber temperature is heated up to make 

the resist convert into solid SiOx. The force and the temperature last for a 

certain time before the bonding ends. A more detailed process will be 

introduced in the following introduction of bonding between NUV LED and f-

SiC samples. 
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Figure 4.4 Unsuccessful bonding using one layer of HSQ 

 

Figure 4.5 Successful bonding using two layers of HSQ 

After the successful Si-Si bonding, Si-SiC bonding and SiC-SiC bonding also 

work well. The test SiC samples are from commercial 4H-SiC wafers. 

However, the bonding between SiC and f-SiC is not working at the beginning. 

This is because of the larger roughness of f-SiC than that of commercial SiC 

and Si samples. The roughness (arithmetic mean height) of the Si sample front 

side is measured by vertical scanning interferometry (VSI) on a PLU NEOX 

3D Optical Profiler (Sensofar, Terrassa, Spain). It turns out to be around 3 nm 

for Si samples and around 10 nm for the 4H-SiC samples, respectively. But 

the roughness is around 100 nm for the backside (the polished side to be 

bonded) of the free-standing f-SiC epi-layer. As shown in Figure 4.4, the 

employed HSQ layer is not thick enough to completely cover the roughness of 

the f-SiC surface. Consequently, atoms from the two opposite surfaces cannot 

be brought into sufficient vicinity resulting in a failure. To overcome this issue, 

the HSQ resist thickness is adjusted. As shown in Figure 4.5, to have the f-SiC 

surface roughness completely covered, both the SiC surface and the f-SiC 

surface are spun on a layer of 230 nm HSQ. This enables the atoms at the 
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opposing surfaces to be in sufficiently close contact allowing the van der 

Waals bonding to happen. 

4.2.2 Bonding of the NUV LED and the f-SiC samples 

 

Figure 4.6 Schematic illustration of the bonding process of a NUV LED to a free-standing 

B-N co-doped f-SiC epi-layer assisted with HSQ layers spun on both SiC surfaces 

After the tests, the bonding of an NUV LED and an f-SiC epi-layer is carried 

out. The NUV LED epi-layers are grown on a 2-inch (0001) 4H-SiC substrate 

by MOCVD (Cruis I, Aixtron, Germany). The grown LED epi-layer consists 

of a 3.6 µm thick AlGaN (5% Al) buffer layer, a 2 µm thick Si-doped n-

AlGaN (7% Al) layer, nine periods of InGaN (3% In)/AlGaN (5% Al) MQWs, 

and finally a 85 nm thick Mg-doped p-AlGaN (2%) layer and a 32 nm thick 

Mg-doped p-GaN layer. The free-standing 200 µm B-N co-doped 6H-SiC (f-
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SiC) epi-layer is grown on a 6H-SiC (0001) substrate with 1.4 degree off-axis 

by a fast sublimation growth process [1, 10]. After growth, the 6H-SiC 

substrate is polished away. As mentioned previously, the roughness is around 

100 nm for the polished side of the free-standing f-SiC epi-layer and it is 

around 10 nm for the 4H-SiC substrate of the NUV LED. 

The bonding process of the NUV LED and the f-SiC epi-layer is shown in 

Figure 4.6 (a)-(c). Both samples are cleaned by immersion in acetone for 10 

min. Next, HSQ layers with a thickness of around 230 nm are spun on both 

the 4H-SiC substrate of the NUV LED and the polished backside of the free-

standing f-SiC epi-layer. Then, the samples are placed on hotplates for baking 

at 150℃ for 1 minute followed by another baking at 200℃  for 1 minute to 

drive out the solvent. Afterwards, the NUV LED and the f-SiC epi-layer are 

placed on a holder with the surfaces covered by the HSQ layers in contact.  

During the bonding in a Süss SB6 wafer bonder, firstly, vacuum pumping is 

carried out after the sample surfaces are in contact. Thereafter, the temperature 

is heated up to 400℃ under vacuum (10
-4

 mbar) with a ramping rate of 15℃

/minute. Then, at 400℃, a force is applied to the samples by a piston for 1 

hour. The effective bonding pressure acting on the bond interface is around 

250 N/cm
2
. In the end, the sample is cooled down with a ramping rate of 10℃

/minute After successful bonding, a diamond pen is used to expose the n-

AlGaN layer of the NUV epi-wafers and indium spheres are added to the p-

type and n-type surfaces, respectively, for electric current injection.  

4.3 Characterizations  

After fabrication, bonding quality and EL performance of the hybrid LED are 

characterized. The characterization results are demonstrated below. 

Transmittance of the HSQ intermediate layers  

Characterizations on the hybrid f-SiC based LED sample after bonding are 

carried out. The transmittance of the HSQ layer is measured by a 6-inch 

integrating sphere system assisted with a Xenon lamp and a CAS 140-B 
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optical spectrometer. The measurement is carried out on a test sample where 

HSQ is spun on top of a pure sapphire substrate.  

Figure 4.7 shows the transmittance spectrum of a 230 nm HSQ layer after 

normalization of the 86% transmittance of the sapphire substrate. Unlike the 

sharp transmittance drop of SU-8 in NUV wavelength region [135], the 

transmittance of HSQ appears quite uniform in the measured wavelength 

range from 370 nm to 420 nm. At 390 nm, which is the peak wavelength of 

the employed NUV LED, the transmittance is 98% for the 230 nm HSQ layer. 

Then the transmittance of a 460 nm HSQ layer can be estimated to be around 

96% resulting from 98%×98%. The 96% transmittance at 390 nm is 

comparable to the HSQ transmittance shown in [134]. It confirms the 

possibility of using HSQ as the adhesive bonding material in the NUV LED-

related application due to its high transparency. 

 

Figure 4.7 Optical transmittance spectrum of a 230 nm HSQ layer after normalization of 

the sapphire substrate in a wavelength range of 370-420 nm 
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Bonding quality of the hybrid LED  

The cross section of the bonded SiC samples with the HSQ interlayer is 

inspected by a Supra 40 VP SEM at 5 kV. Figure 4.8 shows the cross-section 

of the cleaved interface between the NUV LED and the f-SiC epi-layer 

inspected by SEM. As shown in the figure, two layers of 230 nm HSQ, which 

results in a total thickness of 460 nm, are in contact with the upper f-SiC epi-

layer and the lower 4H-SiC substrate of the NUV LED. The HSQ and the SiC 

surfaces are intimately combined without delamination, which suggests a good 

adhesion of the 460 nm HSQ interlayer to both the 4H-SiC surface and the 

surface of the free-standing f-SiC epi-layer. No voids and defects at the 

HSQ/SiC or HSQ/HSQ interfaces are observed indicating good bonding 

quality by the HSQ bonding approach.  

 

Figure 4.8 SEM inspection of the cross section of the bonded stack using 460 nm HSQ in 

between showing no voids 
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Figure 4.9 shows a photograph of the hybrid LED fabricated by HSQ bonding, 

i. e., with the HSQ intermediate layer embedded in it. In the figure, the indium 

spheres are added to the NUV LED upper surface as metal contacts for 

electric current injection and the free-standing f-SiC epi-layer is beneath the 

NUV LED chip. No voids and defects are observed by shining white light 

through the hybrid LED demonstrating again the good bonding quality by 

HSQ. Letters in the background indicate the white light transparency of the 

hybrid LED which confirms the feasibility of using white light to visualize the 

defects.  

 

Figure 4.9 Photograph of the hybrid LED with the HSQ intermediate layer embedded in it 

EL of the hybrid LED  

Figure 4.10 shows a schematic illustration of the hybrid LED fabricated by 

bonding after exposing the n-AlGaN of the NUV LED on the top by a 

diamond pen. Then, electric current can be injected by pressing probes against 

the indium spheres added on the surfaces. 
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Figure 4.10 Schematic illustration of the hybrid LED with indium spheres on the NUV 

LED for electric current injection through probes 

The EL emission is successfully obtained for the hybrid LED as shown in 

Figure 4.11. Figure 4.11 shows a photograph with electric current injection 

under natural ambient illumination, which is taken from the backside of the 

hybrid LED (the f-SiC epi-layer side). The hybrid LED is placed on a 

transparent glass slide in contact with the f-SiC epi-layer while the NUV LED 

on the top is connected to the probes. Indium spheres added on the top of the 

hybrid LED can be observed through the bonded NUV LED and f-SiC epi-

layer. One probe is connected to the indium sphere on the n-type surface while 

the other one is connected to the indium sphere on the p-type surface. An 

electric current injected into the hybrid LED at 30 mA produces NUV 

emission which excites B-N co-doped f-SiC epi-layer. Finally, a warm white 

emission, which can be seen in the photograph of Figure 4.11, is obtained.  
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Figure 4.11 Photograph of the lighting hybrid LED from backside with an electric current 

injection at 30 mA 

Figure 4.12 shows the EL spectra of the NUV LED solely before bonding (the 

upper curve) and the hybrid LED after bonding (the bottom curve) measured 

from the backside at 30 mA (the f-SiC epi-layer side for the hybrid LED). The 

emission is collected by a large-core optical fiber coupled to the CAS 140-B 

optical spectrometer. The electric current injection to the NUV LED is carried 

out by a Model 2450 Interactive SourceMeter instrument system.  

The NUV LED before bonding presents a peak wavelength around 390 nm. 

After bonding, the emission of the f-SiC epi-layer by the excitation of the 

NUV photons can be clearly observed for the hybrid LED showing a peak 

emission wavelength around 550 nm, which is consistent with the expectation 

[2, 10].  

Besides, Figure 4.12 also shows that, in comparison with the 390 nm peak 

wavelength of the NUV LED before bonding, the NUV peak wavelength 

shifts to around 405 nm after passing through hybrid LED. This can be 

explained by the inter-band absorption of the 6H-SiC, which absorbs photons 

possessing wavelengths shorter than around 408 nm [148, 149]. Hence, the 

long-wavelength photons (blue photons) can pass through the B-N co-doped 

6H-SiC epi-layer leading to red-shift of the peak wavelength in the EL of the 
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hybrid LED. In the end, the blue photons combined with the 550 nm-centered 

emission from the f-SiC epi-layer result in a warm white light as observed in 

Figure 4.11.   

In the future, the performance of the hybrid LED can be further optimized. 

The 400 µm thick 4H-SiC substrate has a strong absorption in a wavelength 

range up to 387 nm according to its 3.2 eV optical bandgap. The NUV light 

generated by LED epi-layers on top has an emission wavelength of 390 nm, 

which will be partially absorbed by the 4H-SiC substrate. By employment of a 

thinner or more transparent SiC substrate and a NUV LED with longer 

emission wavelength, a hybrid LED with stronger EL intensity can be 

expected. 

 

Figure 4.12 The EL spectra of the NUV LED before bonding and the hybrid LED 

measured from the backside at 30 mA 
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Efficiency of the hybrid LED 

 

Figure 4.13 Relative intensity measured on the NUV LED and the hybrid LED 

The efficiency of the hybrid LED can be expressed as below. 

E =
 Pout (W)

Pin(W)
 

In the above formula, E,  Pout and Pin stand for efficiency, output power and 

input power, respectively. 

Pin can be calculated as below. 

Pin (W) = I (A) × V (V) 

In the above formula, I and V stand for input current and input voltage, 

respectively. In this work, at 30 mA, the corresponding voltage is 22 V 

resulting in 0.66 mW as Pin. 

Pout can be calculated as below. 

Pout (W) = F (Wm−2) × A (m−2) 
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In the above formula, F and A stand for radiant flux density and emitting area, 

respectively. In this work the emitting area is around 1 mm2. 

Figure 4.13 shows the curve of monochromatic intensity measured on the 

hybrid LED and the NUV LED. The monochromatic intensity Iλ at a single 

wavelength is defined as the radiant flux density F per unit arc of solid angle 

and per unit wavelength (Wm−2sr−1µm−1).  

 

The intensity (or radiance) I (Wm−2Sr−1)   of the hybrid LED can be 

calculated by integration of the Iλ of the hybrid LED over the emission range 

resulting in the yellow area in Figure 4.13. 

I = ∫ Iλdλ
700

450
= Area B (Wm−2Sr−1) 

Then, F can be obtained from the intensity I by integration over a hemisphere. 

Then the Pout can be obtained using the 1 mm2 emitting area to calculate the 

efficiency. 

To estimate the conversion efficiency between the NUV emission and the f-

SiC emission, the ratio between the intensity measured on the NUV LED 

(Area A) and the hybrid LED (Area B) can be calculated and an efficiency of 

around 21% is obtained in the end as shown below. 

 Poutf−SiC

 PinNUV

≈
 Ioutf−SiC

 

 IinNUV
 

=
Area B

Area A
≈ 21% 

In the above formula,  Poutf−SiC
 and  PinNUV

 stand for the output power from the 

f-SiC and the input power from the NUV LED to the f-SiC, respectively. 

4.4 Summary 

In summary, the idea of this work is to fabricate a hybrid warm white f-SiC 

based LED through HSQ bonding. To start with, HSQ bonding tests are 

carried out on Si and SiC samples. After successful bonding tests, the adhesive 

bonding approach using HSQ is employed to successfully bond a NUV LED 

grown on a 4H-SiC substrate to a free-standing B-N co-doped f-SiC epi-layer. 

No voids are observed at the HSQ/SiC or HSQ/HSQ interfaces indicating a 
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good bonding quality by this method. Strong EL emission of the hybrid LED 

is obtained by electric current injection at 30 mA. The NUV emission centered 

at 390 nm from the NUV LED on the top excites the bottom f-SiC epi-layer to 

generate a DAP emission centered at the wavelength of 550 nm finally 

presenting a warm white emission. In the future, the white light quality can be 

improved by employing an extra Al-N co-doped blue-emitting f-SiC epi-layer. 

From the results, it can be concluded that, HSQ bonding could be an effective 

approach in the SiC-based LED applications including the future fabrication 

of white LEDs based on B-N and Al-N co-doped f-SiC epi-layers.  
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 Conclusion and future Chapter 5

perspective 

A new type fluorescent silicon carbide (f-SiC) based white light-emitting 

diode (LED), which does not contain any rare-earth element or decaying 

phosphor, is introduced in the beginning of this thesis. This white LED can be 

realized by the combination of a near-ultraviolet (NUV) LED and an f-SiC 

substrate. In its structure, two adjacent f-SiC epi-layers, one doped by nitrogen 

(N) and boron (B) and the other one doped by N and Aluminum (Al), are 

employed as the wavelength-conversion materials while the NUV LED is used 

as the excitation source.  

The main goal of this thesis is to realize the f-SiC based warm white LED. To 

achieve this purpose, the main focuses of the work include both the 

performance of the NUV LED and also the approach to combine the NUV 

LED and the f-SiC epi-layer. To be more specific, the relevant works include 

(1) LED post-growth processing on the NUV epi-wafer to fabricate NUV 

LED devices which can generate NUV light to excite the f-SiC epi-layer; (2) 

Performance optimization of transparent conductive material aluminum-doped 

zinc oxide (AZO) as the current spreading layer (CSL) of the NUV LED to 

enhance the NUV light to excite the f-SiC epi-layer; (3) Combination of the 
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NUV LED and the N-B co-doped f-SiC epi-layer through bonding in order to 

fabricate a hybrid LED emitting warm white light. 

The NUV LED device with the conventional Ni/Au CSL is fabricated by a 

standard process followed by characterizations. In the fabrication, undesired 

small structures can be produced on n-GaN during the inductively coupled 

plasma (ICP) etch process and these structures can lead to severe pealing-off 

of n-pads resulting in an extremely low yield. In order to eliminate the 

undesired small structures, SiO2 wet etch is employed for SiO2 mesa 

fabrication instead of the reactive-ion etching (RIE) dry etch. By using the 

SiO2 wet etch, the adhesion of the n-pads is increased. In the characterization, 

EL emission of the NUV LED device with a peak wavelength around 388 nm 

is obtained under an injection current of 20 mA. The LED device gives a turn-

on voltage at around 3 V and a series resistance of around 27.8 Ohm. All these 

results confirm the good electrical properties of the Ni/Au CSL. However, a 

transmittance below 20% in the NUV wavelength region is obtained from the 

transmittance measurement on the Ni/Au CSL, which indicates the need for 

CSL with not only good electrical properties but also high transmittance in the 

NUV wavelength region.  

As a promising indium-free transparent conductive material, AZO is 

investigated as a CSL on the NUV LED. First, comparisons are made between 

the AZO CSL and the ITO CSL. The results show that although the 

transmittances of the ITO and AZO CSLs are both much higher than that of 

the Ni/Au CSL, the ITO CSL shows much better electrical performance than 

the AZO CSL. This indicates the necessity of optimizations on the AZO CSL. 

To demonstrate that a Ni interlayer can improve the performance of the AZO 

CSL, NUV LED devices with two types of AZO based CSLs, which are the 

AZO CSL and the Ni/AZO CSL, are fabricated for comparisons. 

Transmittance measurements show that both of the AZO based CSLs present 

high transmittance in the NUV wavelength region. At the 386 nm peak 

wavelength, the transmittance of the AZO CSL is measured to be around 70%, 

while 67% for the Ni/AZO CSL. According to the I-V measurements, the 

device with the AZO CSL shows a 2.54 times larger series resistance than that 
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of the device with the Ni/AZO CSL. Furthermore, NUV EL emissions are 

obtained under an injection current of 50 mA with peak wavelengths at around 

386 nm for devices of both types. The device with the Ni/AZO CSL shows a 

1.33 times stronger EL intensity at 386 nm when compared to the one with the 

AZO CSL. The characterization results indicate that the AZO based CSLs 

present high transmittance in the NUV wavelength region. However, although 

the Ni interlayer can improve the electrical performance of the AZO, it is still 

not as good as the ITO CSL. Therefore, methods for further improvement are 

required to obtain better performance of the AZO based CSLs. 

To further improve the performance of the AZO-based CSLs, one approach is 

to lower the Schottky barrier height (SBH) at the contacting interface. This 

can be achieved through the employment of a material with a sufficiently high 

work function. Although it is difficult to find an appropriate CSL material 

having a sufficiently high work function (larger than 7.5 eV) for p-GaN, the 

SBH at the interface can be reduced by decreasing the difference. In this work, 

a single layer graphene (SLG) interlayer between the CSL and the p-GaN is 

used to further improve the performance of the AZO-based CSL in the 

application of NUV LEDs. Two types of CSLs which are Ni/AZO and 

SLG/Ni/AZO are fabricated for comparisons. The transmittance of the SLG is 

measured and it shows a low transmittance reduction at the LED peak 

wavelength of 386 nm indicating its high transmittance in the NUV 

wavelength region. In I-V characterization, it is shown that the LED without 

the SLG interlayer can possess a 40% larger series resistance. Furthermore, a 

95% EL enhancement is achieved for the sample with the SLG interlayer at an 

electric current of 50 mA. The improvement of EL and I-V performance can 

be explained by the high work function of SLG. According to the optical and 

electrical characterizations, it can be concluded that SLG interlayers can 

improve the performance of NUV LEDs with AZO based CSLs. 

To combine the NUV LED and the f-SiC epi-layer in order to produce the f-

SiC based warm white LED, an approach of adhesive bonding is employed. 

Hydrogen silsesquioxane (HSQ) is used as the intermediate adhesive layer due 

to its high transmittance in the NUV wavelength region. Through the bonding 
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assisted with HSQ, a NUV LED grown on a 4H-SiC substrate is successfully 

bonded to a free-standing B-N co-doped f-SiC epi-layer. By scanning electron 

microscopy (SEM), no voids are observed at the HSQ/SiC or HSQ/HSQ 

interfaces indicating a good bonding quality by this method. Strong EL 

emission of the hybrid LED is obtained by an injection electric current at 30 

mA. The NUV emission centered at 390 nm from the NUV LED on the top 

excites the bottom f-SiC epi-layer to generate emission centered at the 

wavelength of 550 nm finally presenting a warm white emission. From the 

presented results, it shows that HSQ bonding could be an effective approach 

in the SiC-based LED applications including the future fabrication of white 

LEDs based on B-N and Al-N co-doped f-SiC epi-layers. 

The above results show a bright prospect of the hybrid f-SiC based white LED 

as a potential alternative to the commercially popular white LED containing 

phosphors.  

In the future research, to obtain better performance of the NUV LED as the 

excitation source, work on the transparent conductive CSL is needed to make 

a CSL with high NUV transmittance and good conductivity. Also, a reflector 

(such as Al or Ag) on the CSL is required to work together as a reflective CSL.  

The reflective CSL can reflect the NUV light, which is emitted by the NUV 

LED on top, all the way to the bottom f-SiC epi-layer hence providing a 

strong excitation. 

In addition, more research efforts need to be devoted to maximize the NUV 

light from the NUV LED propagating to the f-SiC epi-layer through 

minimizing the NUV absorption by the SiC substrate. This can be achieved by 

growing the NUV epi-layers on a more transparent SiC substrate or producing 

a thinner SiC substrate by, for example, polishing.  

Furthermore, to further improve the light quality of the hybrid f-SiC based 

white LED, combination of B-N and Al-N co-doped f-SiC epi-layers either by 

bonding or growth is necessary.  
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Figure 5.1 Schematic illustration of the fabrication of hybrid f-SiC based white LED 

devices 
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Last but not the least, in the future, f-SiC based white LED devices can be 

fabricated as shown in Figure 5.1 (a)-(f). The fabrication of the f-SiC based 

white LED devices can be realized by combining the standard fabrication 

process of the LED devices and the bonding of an NUV LED and an f-SiC 

substrate. Firstly, mesas are fabricated on the top of an NUV LED with a SiC 

substrate by a standard process. Afterwards, the NUV LED with mesas is 

bonded to a free-standing f-SiC substrate through HSQ adhesive bonding. 

Then, assisted with standard photolithography processes, reflective CSLs are 

deposited on the mesas of the LED followed by the formation of pads on the 

p- and n-type surfaces.  

With the optimizations described above, a hybrid f-SiC based white LED with 

better performance can be expected in the soon future. 
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Acronyms 

ALD Atomic layer deposition 

AlGaN Aluminum gallium nitride 

AZO Aluminum-doped zinc oxide 

CRI Color rendering index 

CSL Current spreading layer 

DAP Donor-acceptor-pair 

DI Deionized 

DUV Deep ultraviolet 

EL Electroluminescence 

EQE External  quantum efficiency 

f-SiC Fluorescent silicon carbide 

FWHM Full width at half maximum 

GaN Gallium nitride 

HCl Hydrogen chloride 

HF Hydrofluoric acid 

HSQ Hydrogen silsesquioxane 

ICP Inductively coupled plasma 

InGaN Indium gallium nitride 

https://www.americanelements.com/aluminum-doped-zinc-oxide-azo-37275-76-6
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IQE Internal quantum efficiency 

ITO Indium tin oxide 

LED Light emitting diode 

LEE Light extraction  efficiency 

MIBK Methyl isobutyl ketone 

MOCVD Metalorganic chemical vapor deposition 

MQW Multiple quantum well 

NUV Near ultraviolet 

PECVD Plasma-enhanced chemical vapor deposition 

RIE Reactive-ion etching 

SBH 

SEM 

Schottky barrier height 

Scanning electron microscopy 

SiC Silicon carbide 

SLG Single layer graphene 

SQW Single quantum well 

TCO Transparent conductive oxide 

TLM Transfer line method 

TMA Trimethylaluminum 

TMG Trimethylgallium 

TMIn Trimethylindium 

UV Ultraviolet 

VSI Vertical scanning interferometry 

YAG Yttrium aluminum garnet 

ZnO Zinc oxide 
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Appendix A. Standard fabrication 

of GaN based LEDs 

Step Equipment Procedure 

1 Preparation 

1.1 Wafer cutting Diamond pen  

1.2 Wafer  

cleaning 

Bench Step 1: 5 min in Acetone 

Step 2: 1 min in IPA 

Step 3: Rinse by DI water 

Step 4: Blow dry by N2 gun 

2 Lithography – Mesas 

2.1 SiO2 deposition PECVD 4 Aim: 300 nm SiO2 

Recipe: LF SiO2 with wafer clean 

Rate: 78 nm/min 

Gases: 

N2O 1420 sccm 

SiH4 12 sccm 

N2 392 sccm 

Power: 60 W 

Pressure: 550 Throttle 

Substrate temperature: 300℃ 

2.2 Surface treatment Oven: HMDS-2 Step 1: 5 min prebake time  

Step 2: 5 min HMDS prime time  

2.3 Coat wafers Spin Coater: 

Labspin 02 
Aim: 1.6 µm AZ5214E 

Step 1: 400 rpm, 1000 rpm/sec, 5 sec 

Step 2: 4000 rpm, 1000 rpm/sec, 30 sec 

Step 3: Bake at 90 ℃ for 90 sec 

2.4 Exposure Aligner MA 6-2 Mode: Vacuum contact  

Exposure time: 10 sec 
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Intensity: 13 mW/cm
2 

Mask: Mesas
 

2.5 Develop Developer: 

TMAH Manual 

Chemical: TMAH 

Time: 30 sec 

Recipe name: SP 30s 

2.6 Residual removal III-V Plasma 

Asher 

Recipe: O2 plasma 

Time: 2 min 

Power: 40 W 

2.7 SiO2 wet etch SiOetch Aim: Etch of 300 nm exposed SiO2 

Time: 2 min  

2.8 Resist removal III-V Plasma 

Asher 

Step 1: 5 min Acetone clean  

Step 2: Rinse by DI-water 

Step 3: 20 min O2 plasma at 100 W  

2.9 GaN etch III-V ICP Gases: 

Cl2 27 sccm 

BCl3 3 sccm 

Ar 3 sccm 

Coil power: 400 W 

Platen power: 75 W 

Pressure: 4 mTorr 

GaN etch rate: 345 nm/min 

SiO2 etch rate: 44 nm/min  

Time: 245 sec (for around 1400  nm) 

2.10 SiO2 Removal 5% HF 

 

Time: 10 min 

Rate: 190 nm/min 

2.11 Post-etch surface 

treatment 

Furnace of  

Rapid Thermal 

Annealing 

Step 1:  

Temperature: 500 ℃ 

Ramping time: 1 min 

Annealing time: 10 min 

Gas: N2 150 sccm 

Recipe: llin500N2 

Step 2: 

37%-38% HCl: immersion of 60 min  

3. Lithography – Current Spreading Layers 

3.1 Coat wafers Spin Coater: 

Manual All Resist 
Aim: 2 µm N-LOF 2020 

Step 1: 3800 rpm, 2000 rpm/sec, 30 sec  

Step 2: Bake at 110 °C for 1 min 

3.2 Exposure Aligner MA 6-2 Mode: Vacuum contact  

Exposure time: 10 sec 

Intensity: 13 mW/cm
2 

Mask: Current spreading layers  

3.3 Post-exposure bake Hotplate Bake at 110 °C for 1 min 

3.4 Develop Developer: 

TMAH Manual 

Chemical: AZ 726 MIF (2.38% TMAH) 

Time: 30 sec 

Recipe name: SP 30s 
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3.5 Metal deposition Physimeca 

(E-beam 

Evaporation) 

 

Materials: 

Step 1: 10 nm Ni with a rate of 5Å/s 

Step 2: 40 nm Au with a rate of 10Å/s 

Pressure: 1.0×10
-6

 mbar 

3.6 Lift-off Fumehood Chemical: Remover 1165 

Time of ultrasonic bath: 15 min  

Rinse by DI-water  

3.7 Thermal annealing Furnace of  

Rapid Thermal 

Annealing 

Temperature: 525 ℃ 

Ramping time: 1 min 

Annealing time: 5 min 

Gas: air 

Recipe: llin525air 

4 Lithography – Pads 

4.1 Coat wafers Spin Coater: 

Manual All Resist  
Aim: 2 µm N-LOF 2020 

Step 1: 3800 rpm, 2000 rpm/sec, 30 sec  

Step 2: Bake at 110 °C for 1 min 

4.2 Exposure Aligner MA 6-2 Mode: Vacuum contact  

Exposure time: 10 sec 

Intensity: 13 mW/cm
2 

Mask: Pads 

4.3 Post-exposure bake Hotplate Bake at 110 °C for 1 min 

4.4 Develop Developer: 

TMAH Manual 

Chemical: AZ 726 MIF (2.38% TMAH) 

Time: 30 sec 

Recipe name: SP 30s 

4.5 Metal deposition Physimeca 

(E-beam 

Evaporation)  

 

Materials: 

Step 1: 30 nm Ti with a rate of 5Å/s 

Step 2: 200 nm Au with a rate of 10Å/s 

Pressure: 1.0×10
-6

 mbar  

4.6 Lift-off Fumehood Chemical: Remover 1165 

Time of ultrasonic bath: 15 min  

Rinse by DI-water 

 


