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Abstract—We realize silicon carbide-on-insulator platform 

based on crystalline 4H SiC and demonstrate high confinement 

SiC resonators with sub-micron waveguide cross-sectional 

dimension. The obtained Q (57,000) is the highest Q reported for 

SiC microring resonators. 

Keywords—(230.0230)   Optical devices; (230.5750) Resonators; 

(190.4390) Nonlinear optics, integrated optics. 

I. INTRODUCTION  

Tremendous effort has been made in the last decade to develop 
integrated nonlinear platforms using different materials 
including silica [1], silicon [2], Si3N4 [3], Hydex [4], diamond 
[5], AlN [6], and AlGaAs [7]. Silicon Carbide (SiC) is also a 
promising material for nonlinear applications thanks to its high 
material nonlinearities. SiC has a refractive index of 2.6 around 
1550nm, a wide bandgap (2.4~3.2 eV [8]), and a broad 
transparent window (0.37~5.6 μm [9]). Its quadratic (χ

(2)
) 

nonlinearity is ~30 pm/V, which is comparable to that of 
LiNbO3 [10], while its Kerr (χ

(3)
) nonlinearity is on the order of 

10
-18 

m
2
W

-1 
[11], which is one order of magnitude larger than 

Si3N4 [3]. Moreover, point defects in SiC are being exploited 
for single-photon sources for quantum applications [12], [13]. 
SiC photonic devices including photonic crystal, microdisk, 
and microring resonators have been studied for many years, 
and different applications have been demonstrated like second 
harmonic generation [14], parametric frequency conversion 
[15], self-phase modulation [16], and single-photon generation 
[17]. For nonlinear applications, not only high quality factor (Q) 
resonators are critical components for efficient nonlinear 
applications due to an intra-cavity field enhancement, but high 
confinement waveguides are also desirable due to an effective 
nonlinearity enhancement. To realize integrated high-
confinement waveguides in SiC, a SiC thin film of high quality 
should be fabricated with a low-index cladding (e.g. air or 
glass). Among more than 200 polytypes of different crystalline 

SiC materials, 3C-, 4H- and 6H-SiC are the most common 
polytypes, which are commercially available. Such high 
confinement 3C-SiC photonic devices can be readily fabricated 
as 3C-SiC is available commercially in epitaxially grown films 
on silicon substrates. However, the growth-induced stacking 
defects result in a high material absorption loss. The highest Q 
demonstrated for 3C-SiC microring resonators is ~42,000 [18]. 
4H- and 6H-SiC offer a higher crystal quality but are only 
available in bulk crystalline wafers. Smart-cut, a mature 
technology for silicon-on-insulator wafer fabrications [19], can 
be utilized to fabricate silicon carbide-on-insulator (SiCOI) 
wafers [20]. However, large dimension waveguides have been 
used in previous demonstrations [16],[21] to mitigate the 
scattering loss from rough waveguide sidewalls at the price of 
reduced effective nonlinearities. In this paper, we fabricate 
high-confinement 4H-SiCOI microring resonators using 
optimized patterning processes and demonstrate the highest Q 
(~57,000) for SiC microring resonators. 
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Fig. 1.  (a) SiC and silicon carrier wafer. (b) H+ ion implantation into bulk 
crystaline SiC wafer and thermal oxidation of silicon carrier wafer. (c) Wafer 

bonding between thermal oxidized silicon wafer and ion implantated SiC 

wafer. (d) Bonded wafer. (e) Splitting of SiC wafer after high temperature 
annealing and (f) SiCOI wafer after SiC layer thinning down. 
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II. FABRICATION 

The fabrication process of the SiCOI wafer is shown in 
Figure 1. First, the 4H bulk SiC wafer was implanted with 
170 keV H

+
 species. H

+
 peak concentration was simulated to be 

at 1.1 μm under the wafer surface and micro-cavities (defects) 
are created along the peak concentration [22]. The silicon 
carrier wafer was thermally oxidized to grow a 2-μm thick 
silicon dioxide layer. After cleaning of both wafers, they were 
bonded together by using direct wafer bonding. The bonded 

wafers were then annealed at around 850℃ to split the thin SiC 

film from the bulk SiC wafer. The last step was thinning down 
of SiC layer. A common method is chemical mechanical 
polishing [23], which can remove defective SiC material and 
smooth the surface. Here, the SiC was thinned down from 
1.1 𝜇m to 500 nm. 
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Fig. 2. Scanning electron microscopy (SEM) picttures of a fabricated 

microring  resonator with a radius of 16.5 𝜇m (a) and its coupling region (b). 

(c) A 1004- 𝜇m long racetrack ring resonator. 

The device fabrication on the SiCOI wafer started from 
electron beam lithography. A 600-nm thick electron-beam 
resist layer (hydrogen silsesquioxane) was spun on SiCOI 
wafer as the etching mask. The device pattern was transferred 
to the SiC layer in an inductively coupled plasma reactive ion 
etching machine using fluorine-based gases (SF6). Figure 2(a) 
shows a 16.5-μm radius (1THz) microring resonator and 
figure 2(b) shows the coupling region of the microring 
resonator with a coupling gap of 300 nm. Figure 2(c) is a 1004-
μm long raceteack ring resonator. 
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Fig. 3. Simulated mode profile for the fundamental TE (a) and TM (b) modes 

with effective areas of 0.32𝜇𝑚2 and 0.30𝜇𝑚2. 

The fabricated SiC waveguides are 500 nm high and 
680 nm wide, and the mode profiles for fundamental transverse 
electric (TE) and transverse magnetic (TM) modes are shown 
in figure 3(a) and 3(b), respectively. Since the effective 
nonlinearity γ is highly dependent on the effective mode area 
Aeff as expressed by the equation γ=2πn2/λAeff , where n2 is the 
nonlinear refractive index of SiC [11] and λ is the operating 

wavelength. Thanks to the strong light confinement in such a 
sub-micron dimension waveguide, a large effective nonlinearity 
at the order of 10 W

-1
m

-1 
can be expected.  

 

III. CHARACTERIZATION 

To characterize the performance of SiCOI devices, we 
fabricated straight waveguides with different lengths and 
microring resonators including 16.5−μm radius microring 
resonators and 1004−μm long racetrack resonators. Figure 4 
shows the measured insertion losses of waveguides with 
different lengths for fundamental TE and TM modes. The 
estimated linear losses for straight waveguides are 10 dB/cm 
and 9.3 dB/cm for TE and TM modes, respectively.  
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Fig. 4. Measured insertion loss of SiCOI waveguides with different lengths 

for the fundamental TE (a) and TM mode (b). 

    Figure5 shows the normalized transmission spectra of 
16.5− 𝜇 m radius microring resonator (figure 5(a,b,e,f)) and 
1004−𝜇m long racetrack ring resonator (figure 5(c,d,g,h)).The 
resonances were fitted with Lorentzian curve. As those tested 
devices work in under-coupling region, the intrinsic Q factor 

can be calculated as 𝑄𝑖𝑛𝑡 = 2𝑄𝑙𝑜𝑎𝑑/(1 + √𝑇)  [25], where 
𝑄𝑙𝑜𝑎𝑑 is the loaded Q and T is the transmission normalized to 
the maximum value of fittig curve. The free spectrum range 
(FSR) was measured as 1.008 THz and 0.956 THz for 
fundamental TE and TM modes in 16.5-μm radius microring 
resonators, respectively. 103.8 GHz and 98.8 GHz FSR were 
measured for TE and TM modes in 1004−𝜇m long racetrack 
ring resonators, respectively. We achieve intrinsic Q factor of 
50,000 and 51,000 for fundamental TE modes in 16.5-𝜇 m 
radius microring resonator and 1004−𝜇m long racetrack ring 
resonator, respectively. Q factor of 48,000 and 57,000 are 
obtained for fundamental TM modes in 16.5− 𝜇 m radius 
microring resonator and 1004−𝜇m long racetrack ring resonator, 
respetively. The achieved 57,000 is the highest Q factor 
reported in crystalline SiC microring resonators. Since the 
1004−𝜇m long racetrack ring resonator  consists of 16.5-𝜇m 
radius curved waveguide and 900 𝜇m straight waveguide, we 
also extract the linear loss of straight waveguide part for TE 
and TM modes and 9.8 dB/cm and 9 dB/cm were obtained, 
respectively. The extracted linear loss for straight waveguides 
matches quite well with measured straight waveguide loss, 
which confirms the measurement results of straight waveguides. 

IV. CONCLUSION 

High confinement waveguides with sub-micron cross-
sectional dimensions (500×680 nm

2
) and microring resonators 

in the SiCOI platform was demonstrated. a high Q of 57,000 
for a 1004-𝜇m racetrack resonator was obtained, which is the 
highest reported Q for crystalline SiC microring resonators. 



The demonstrated high Q, high confinement microresonators 
are promising in nonlinear applications, such as frequency 
comb generation. To improve the performance of SiCOI 
devices, the dry-etching process can be optimized to reduce 
sidewall roughness-induced scattering. Furthermore, the 
crystalline quality of SiC thin fiim can be improved by H

+
  

implantation at elevated temperature [25]or post annealing at 
high temperature . 
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Fig. 5. Measured (normalized) transmission spectra for 16.5−μm radius 

microring resonators (a, b, e, f) and 1004-𝜇m long racetrack resonators (c, d, g, 
h) for the fundamental TE mode (a-d) and TM mode (e-h). 
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