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BACKGROUND: The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to
chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership estab-
lished the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three work-
shops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization,
primarily for use in life cycle impact assessment (LCIA).

OBJECTIVES: The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will
impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops,
namely considering near-field exposures and improving dose–response modeling.

DISCUSSION: The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings
and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with exist-
ing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using
a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose–response, the task force
was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the
use of a (linear) dose–response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that
is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential.
CONCLUSIONS: Further research efforts are required based on our proposed set of recommendations for improving the characterization of human expo-
sure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871

Introduction

Toxicity Impacts: Seeking Harmonization and
Global Guidance
Life cycle assessment (LCA) is a standardized method to assess
and compare the various potential environmental impacts attribu-
table to chemical emissions and resources used along full product
and service life cycles (ISO 2006). LCA aims to comprehensively
address potentially adverse environmental outcomes using “charac-
terization factors,” including human toxicity impacts from exposure
to chemical substances over the entire product life cycles. By identi-
fying chemical emission and exposure hotspots along product life
cycles and the most efficient technologies to address these hotspots,
LCA also helps to achieve important targets of the United Nations’
Sustainable Development Goals (http://sustainabledevelopment.un.
org/sdgs). To analyze and compare trade-offs among different alter-
natives or scenarios, LCA works with representative situations,
using best estimates rather than conservative assumptions in model
and parameter selection (Fantke et al. 2018; Frischknecht and Jolliet
2016). In order to cover the full life cycle with information available
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from chemical emission inventories, LCAmust oftenworkwith spa-
tial and temporal averages (Hauschild et al. 2008).

Human health afffected by disease burden attributable to
chemical substances is an important area of protection in the life
cycle impact assessment (LCIA) phase of LCA, but it is also a
key component of other assessment frameworks, including risk
assessment, chemical alternatives assessment, and health impact
assessment (Fantke and Ernstoff 2018). The Life Cycle Initiative,
hosted by the United Nations Environment Programme, is expand-
ing its guidance on human toxicity impacts from exposure to chem-
ical substances, and it convened the Human Toxicity Task Force to
address this issue (Frischknecht et al. 2016; Jolliet et al. 2014,
2018; Verones et al. 2017). The task force includes leading experts
from academia, industry, and public health institutions who have
identified twomajor challenges—expanding exposure assessments
to address near-field exposures and improving dose–response
modeling. All authors of the present paper are members of the task
force, and all related statements (e.g., “we observe”; “our agree-
ment”) are those of the entire task force (and not only those of the
author list or a single set of workshop attendees).

Studies, such as different analyses of U.S. National Health
and Nutrition Examination Survey urine biomonitoring samples,
reveal the presence of exogenous chemicals (or their metabolites)
at detectable levels attributable to consumer products (e.g.,
Wambaugh et al. 2014). This observation has motivated a call to
adequately characterize the constituents of consumer products for
potential toxicity (Landrigan et al. 2018). Exposures to chemical
substances in consumer products can occur over the entire prod-
uct life cycle. This includes, for example, exposure to mining
wastes during raw material extraction (Hauschild et al. 2018;
Hendrickson et al. 2006); worker exposure during the manufac-
turing of plastics and other materials (Demou et al. 2009); expo-
sure during product use—from personal care products (PCPs),
building materials, toys, cleaning products, etc. (Fantke et al.
2016; Shin et al. 2017); and exposure from releases into the envi-
ronment at the end of product life (Hauschild et al. 2018).
Exposure pathways and magnitudes are not only substance but
also product specific. For example, dermal exposure varies as a
function of the duration of application of washed-off (e.g., sham-
poo) vs. leave-on PCPs. There have been recent proposals to
track cumulative exposures and health impacts for these products
(Fantke et al. 2015b; Zimmerman and Anastas 2015). To our
knowledge, there are currently no methods available to analyze
specific substance–product combinations over entire product life
cycles in order to identify trade-offs among exposures at different
life cycle stages and compare with other types of impacts, such
as ecosystem damage and climate change.

Furthermore, though potentially well suited for addressing
chemical impacts of specific products, LCIA has, in practice, of-
ten omitted consumer exposure to chemical substances during
product use, instead focusing on emissions to the environment
during manufacturing and disposal (Fantke et al. 2016). LCIA
has also mostly excluded impacts on workers in the supply chain
(Demou et al. 2009; Kijko et al. 2015). Since the specific geo-
graphic locations of impacts related to different product life cycle
stages are often unknown, LCIA models typically have a low spa-
tial resolution (Fantke et al. 2018). There are fate and exposure
models available that provide a flexible spatial resolution in any
region of interest and that can be applied in LCIA (Wannaz et al.
2018a, 2018b). However, these models require specification of
emission locations across modeled chemicals and life cycle
stages, which is often not available. The challenge is to address
these gaps—for consumer and worker exposures—in an appro-
priate and consistent manner suitable for substance comparison
and prioritization. How well the LCIA assumptions represent

reality varies across substances and scenarios, leading to high
uncertainties in exposure and toxicity results.

The Human Toxicity Task Force works to improve LCIA
methods through evaluation of current practices, discussions with
key researchers and stakeholders in relevant areas, and by organ-
izing targeted workshops. An earlier LCIA flagship project pro-
vided guidance on assessing impacts from exposure to fine
particulate matter, global warming, land use, and water use
(Frischknecht and Jolliet 2016). In the context of ongoing task
force efforts, the purpose of the present paper is to reflect on the
state of the art in exposure and toxicity characterization in terms
of a) available approaches for application in LCIA and similar
comparative assessment frameworks and their domain coverage,
b) strengths of these approaches beyond which currently no
major progress has been made, c) limitations of these various
approaches and any progress made in exposure science and toxi-
cology across science and policy fields that is suitable for
addressing those limitations and for updating current assessment
methods, and d) recommendations for guiding further research to
operationalize the use of suitable approaches in exposure and tox-
icity characterization.

Among available LCIA methods that address health impacts
from exposure to toxic chemical substances (referred to as human
toxicity impacts), most rely on dose–response data extrapolated
from animal toxicity studies and chemical intake estimated from
multimedia fate and multipathway exposure models (e.g., using
intake fractions; see Figure 1).

Between 2003 and 2008, the Life Cycle Initiative provided
human toxicity guidance for substances emitted to the far-field
(i.e., outdoor) environment (Hauschild et al. 2008; Westh et al.
2015). This effort was informed by model comparisons and
expert elicitations (Jolliet et al. 2006; McKone et al. 2006), and
resulted in the first version of the scientific consensus model
USEtox® (Rosenbaum et al. 2008, 2011), which was updated in
2015 with the introduction of a generic indoor air compartment
(Rosenbaum et al. 2015). While USEtox® is meant to reflect
mature science, our experience reveals that the current toxicity
characterization framework in LCIA has limitations that call for
further improvement based on new scientific findings. Significant
among these improvements are a) addressing spatiotemporal and
population-level resolution challenges to estimate impact poten-
tial; b) addressing chemical substances in consumer products and
in occupational settings, and adding related human exposure path-
ways that are currently missing; c) extending the limited coverage
in available dose–response data and models; and d) improving the
coverage and quality in databases on substance physicochemical
properties and toxicity information. These limitations drive the
need for additional guidance to help practitioners go beyond far-
field and indoor emissions to the latest research on near-field (i.e.,
vicinity of consumers or workers) exposure assessment (e.g.,
Fantke et al. 2016; Jolliet et al. 2015) and dose–response and sever-
ity data (Forouzanfar et al. 2016; Salomon et al. 2015).

Key Questions for Advancing Exposure and Toxicity
Characterization
During its scoping phase, the task force enlisted eight leading
experts from academia, industry, and public health institutions to
develop a roadmap for advancing human toxicity characterization
in LCIA. The proposed roadmap included a set of specific ques-
tions addressing: a) approaches and data needed to determine
human toxicity effect indicators for chemical emissions, b) the va-
lidity andmaturity of such approaches and data needed to represent
human toxicity impacts for currently missing pathways, and c) the
relevance and feasibility of considering essentiality and long-term
changes in the human toxicity characterization of metal emissions.

Environmental Health Perspectives 125001-2 126(12) December 2018



As a follow-up to this initial effort, there were three workshops that
provided an opportunity to discuss these questions, exchange in-
formation on research advances among leading practitioners, and
consider initial recommendations for action.

The first workshop was the Utrecht Framing Workshop, held
at the International Society of Exposure Science (ISES) annual
meeting in Utrecht, Netherlands, in October 2016, with 40 expo-
sure and toxicity experts attending from nine countries, who iden-
tified and discussed the main scientific questions and challenges.
The subsequent Metal Workshop was organized at the Society of
Environmental Toxicology and Chemistry annual meeting in
Brussels in May 2017. Here, nine researchers associated with the
USEtox International Center and 15 experts and representatives
from different metal industry associations focused on making use
of recent data developed by the metals industry relating to human
toxicity characterization of metals and the set of findings from
the Eurometaux meeting in 2014 (Eurometaux 2014). Finally, the
Research Triangle Park (RTP) GuidanceWorkshop was organized
at the ISES annual meeting in RTP, North Carolina, in October
2017, where 20 toxicity/exposure science experts from industry,
government agencies, and academia confronted approaches and
data needed to establish improved dose–response and disease se-
verity factors for a large number of hazardous substances. Figure 2
summarizes the key questions addressed during these three

scoping-phase workshops, with additional details provided in
Table S1. The related outcomes are discussed in detail in the fol-
lowing sections.

Discussion

Extending the General Assessment Framework
Participants at allworkshops considered the consensus-based frame-
work of Rosenbaum et al. (2008) as a suitable starting point for
assessing human toxicity impacts in LCIA within task force recom-
mendations. In this framework, toxicity-related impacts on human
health are described by a matrixCF 2 Rh× c of characterization fac-
tors (disability-adjusted life years, DALY/d per kgemitted=d) express-
ing impacts on humans via health end points h for emissions into
environmental compartments c:

CF=SFDRFXFFF

iF
z}|{

(1)

where diagonal matrixSF 2 Rh× h contains in its main diagonal the
severity factors (DALY/d per case/d) for health effects hwith zeros
elsewhere, and multiplies matrix DRF 2 Rh× e of dose–response
slope factors (cases/d per kgintake=d) for health effects h via exposure

Figure 1. Generalized illustrative representation of the existing life cycle human toxicity source-to-damage characterization framework. Units of metrics and
impact pathways considered may differ between methods.
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pathways e. This matrix multiplies the product of matrix XF 2
Re× c of exposure factors (kgintake=d per kgin compartment) from receiv-
ing compartments c via exposure pathways e and square matrix
FF 2 Rc× c of fate factors (kgin compartment per kgemitted=d) from
emission to receiving compartments c. The product ofFF andXF is
interpreted as matrix iF 2 Re× c of intake fractions expressing the
fraction of emissions to compartment c that enters the human popu-
lation by exposure pathway e. Emissions are expressed as daily
equivalent release, based on emission data from other measurement
durations (week, month, year) converted to equivalent annual
release rates. This approach is considered appropriate for many
emission inventories, but has not yet been adapted to releases with a
strong temporal character, which requires additional efforts. These
emission inventories include those that give rise to acute health
effects from localized pulse releases or very long-term releases,
such as transfers and discharges to aquifers, both of which may not
be readily approximated by long-term steady-state equivalents.

Based on these considerations, we observe the need to extend
the existing characterization framework using an approach simi-
lar to efforts on expanding health impacts from exposure to fine
particulate matter indoors and outdoors (Fantke et al. 2015a,
2017; Hodas et al. 2016; Humbert et al. 2011), and building on
recent efforts focusing on coupling near-field consumer and
indoor exposures with exposures due to environmental far-field
emissions (Fantke et al. 2016; Rosenbaum et al. 2015; Shin et al.
2015).

Extending the Exposure Assessment Framework
Because chemical substances in consumer products can contrib-
ute to exposures in the near field (consumer and occupational
environments) and far field (outdoor environment), our workshop
and task force efforts concentrated on methods to extend expo-
sure assessments to capture both. To address human exposures
during and after product use, exposure of bystanders, and occupa-
tional exposure pathways, we selected consistent mass–balance
models to link near-field environments to human receptors fol-
lowing the approach of Fantke et al. (2016). This approach com-
bines near-field with far-field exposures into a metric that
incorporates the interactions of humans with both environments
via dermal, mouthing, inhalation, and oral exposure pathways
and potential feedback via, e.g., exhalation. We note that the
product intake fraction (PiF) concept developed by Jolliet et al.

(2015) provides the metric for consistently linking human intake
via all exposure routes to substance mass in products. Figure 3
illustrates how, in contrast to the receptor-oriented perspective
followed in risk- and other health-based assessments, the PiF-
based framework primarily takes an emitter or product-oriented
perspective. This product-oriented approach is not intended to
assure safety but provides a basis for product comparisons. Such
comparisons provide quantitative estimates with reliability lim-
ited by uncertainties that can vary among substances. In contrast
to risk and safety assessments, LCIA does not use default uncer-
tainty factors to introduce additional safety levels.

Based on the consensus developed at the three task force work-
shops, we found the combined near-field and far-field exposure
assessment framework a viable and operational starting point for
extending the capability of LCIA exposure assessments. In moving
this approach forward, our consensus findings identified further
research to: a) distinguish exposure via initial product use from
indirect exposure after initial use; b) capture physiological and
functional differences (particularly for children) that can be impor-
tant for linking exposure to variation of susceptibility; c) explore
information needs on substance composition of products, exposure
duration, and product application; and d) assess the availability of
emission data and the suitability of emission estimates. We agreed
that defining a limited number of exposure archetypes can thereby
serve as a valuable starting point. Additional work should address
exposure through inhalation of suspended particles (McClellan
et al. 2016) and hand-to-mouth exposure for toddlers and young
children (Xue et al. 2007). For estimating emissions, especially in
the consumer and worker environment, there exist approaches
using substance flow analysis (Li and Wania 2016; Li et al. 2018)
or rapid screening methods (Breivik et al. 2012; McLachlan et al.
2014; Tao et al. 2018). We determined that these tools should be
further improved and adapted for providing life cycle emission
inventories for exposure modeling in a comparative context fol-
lowing the process described byHuang et al. (2017).

Consumer and occupational exposure. Our workshop delib-
erations found that the combined near-field and far-field frame-
work proposed by Fantke et al. (2016), which was originally
designed for consumer exposure, constitutes a viable starting point
to generally assess product-oriented exposures. This approach has
already been vetted through case studies (Csiszar et al. 2017;
Ernstoff et al. 2016) and model evaluations (Huang et al. 2017;
Shin et al. 2017), and can be integrated into multiple frameworks,

General assessment 
framework 

Fate and exposure assessment Dose-response assessment and effect severity Emission-to-effect 
modeling for metals 

� Evaluate existing 
frameworks for 
assessing health 
impacts from exposure 
to chemical substances 

� Identify missing compartments, 
transfer processes, and exposure 
pathways 

� Compare exposure metrics and 
evaluate relevance of 
spatiotemporal aspects 

� Evaluate how consumer and 
occupational exposure can be 
addressed 

� Discuss the relevance of food 
processing, chemical 
transformation and degradation 
products, and the role of 
biomarker data 

� Evaluate the relevance of non-linearity in dose-response 
relationships, also in relation to exposure heterogeneity 

� Identify options for defining the shape and relevant 
working point on the dose-response curve and a 
meaningful point of departure 

� Identify suitable chronic toxicity data and possible 
extrapolation from acute data 

� Explore suitable metrics relating disease incidence to 
population intake dose, the role of in-vitro to in-vivo 
extrapolation, and linking intake dose to internal dose 

� Evaluate uncertainties related to extrapolating from 
animal and predicted data 

� Identify relevant disability weights and related 
uncertainties 

� Address essentiality of 
selected substances 

� Evaluate the relevance 
of speciation of metals 
for human exposure 

� Include dynamic fate 
aspects for metals in 
human toxicity 
characterization

Figure 2. Key points for advancing current exposure and toxicity characterization in life cycle impact assessment (LCIA) and similar comparative assessment
frameworks. These key questions were addressed during the scoping phase workshops—the Utrecht Guidance Workshop in October 2016, the Brussels Metals
Workshop in May 2017, and the Research Triangle Park (RTP) Guidance Workshop in October 2017.
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such as the stochastic human exposure and dose simulation model,
SHEDS-HT (Isaacs et al. 2014) or MERLIN-Expo (Ciffroy et al.
2016).

Although currently excluded from LCIA, occupational chemi-
cal exposures during product manufacturing can impose higher
risks to workers via exposure at the workplace than to the general
population via emissions to the environment.Many countries man-
date workplace exposure monitoring, control, and enforcement by
governmental agencies, with regional differences. A recently pro-
posed framework to assess impacts on workers exposed along the
entire supply chain provides a database to track sector-specific,
empirically observed personal airborne chemical concentrations
along with associated sector-specific labor hours (Kijko et al.
2015, 2016). Another approach uses reported illnesses for indoor
industrial emissions (Scanlon et al. 2014). Our workshop delibera-
tions supported the finding that both approaches provide useful
starting points for extending the existing framework for LCIA but
require the following additional occupational considerations: a)
regionally varying occupational illnesses, accidental injuries, and
indirect exposure of worker families to substances originating in
the working environment (e.g., mining or farming workers); b)
the additional uncertainty in exposure estimates that arise from
occupational exposure pathways; and c) potential benefits of
employment (e.g., access to health care and income). Health end-
points assessed for occupational injuries in the Global Burden of

Disease (GBD) study (Forouzanfar et al. 2016) can provide input
for these issues.

Additional fate- and exposure-related components. Our
assessment of workshop outcomes identified several additional
components currently absent from characterizing human toxicity in
the current LCIA framework (Figure 1) that require consideration
for future inclusion. Key among these is the need for more spatial
and temporal disaggregation—the current method uses nested
generic archetypes (indoor, urban, continental rural, global) and par-
ameterized archetypes for continental and subcontinental regions
(Kounina et al. 2014). This limitation excludes differentiation of
pulse emissions relevant for, e.g., the application of agricultural pes-
ticides (Fantke et al. 2013) or long-term emissions relevant for, e.g.,
emissions from landfills (Bakas et al. 2015). Other issues are proc-
essing of food (e.g., Kaushik et al. 2009) and treatment of drinking
water. A final issue is the need to account for transformation and
degradation products of hazardous organic substances in the fate
modeling.

We identified through workshop consensus an improvement
for spatial variability that can be applied in the short term, which
is increasing the set of considered archetypes to, e.g., represent
individual urban areas or indoor environments, an approach now
used for assessing exposure to fine particulate matter (Fantke et al.
2017). More specificity in urban and indoor environments can
address variability of consumer and occupational exposures. We

Figure 3. Proposal for an integrated near-field/far-field human exposure assessment framework, which builds on the intake fraction (iF) linking population-
level chemical mass intake (mtaken in) to chemical mass emitted (memitted) to the environment (Bennett et al. 2002) covered in the existing framework for general
population exposure settings, and on the product intake fraction (PiF) linking population intake to chemical mass in products (min product) for consumer and
occupational exposure settings (Jolliet et al. 2015). Arrows connecting boxes denote chemical mass transfer fractions derived from fate and exposure processes,
as fully described in Fantke et al. (2016).
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also found that to better capture temporal release patterns requires
parameters for pulse emissions and an integration scheme for
long-term emissions. The impact on exposure pathways from
food processing is relevant but limited by data on food processing
activities at different food product life cycle stages, including
farm level (e.g., washing), manufacturing (e.g., sterilizing), or
during home use (e.g., cooking).

Transformation products are relevant to a number of exposure
pathways, especially during food processing, where acrylamide
and polycyclic aromatic compounds can be formed (Jägerstad and
Skog 2005), but the LCA context for this issue needs to be better
defined. Without further research and data to track transformation
product generation and when transformation products are toxico-
logically relevant, focus will continue to be primarily on parent
compounds. Biomarkers help to track exposure patterns (Koch
et al. 2014; Shin et al. 2013), but the literature on biomarker-based
intake fraction calculations is currently still limited.

From Exposure to Dose–Response and Health Effects
AsLCA expands to address the large number of substances found in
consumer products, there will be a corresponding need for a broader
set of dose–response relationships. Workshop presentations identi-
fied ongoing research in high-throughput toxicity screening that will
be an important tool for addressing this need. Currently, human tox-
icity impacts for about 3,000 substances in LCIA are derived pri-
marily from chronic or extrapolated acute animal toxicity studies
(Rosenbaum et al. 2011). This includes the extrapolation of human
cancer risk factors from a few human studies and from roughly 600
animal studies. Noncancer effects are derived from chronic animal
studies, where available, and chronic benchmarks estimated from
acute studies in other cases. The current starting point for LCIA
dose–response modeling is the intake dose, which can eventually be
related to human internal dose based on the approach of Wetmore
and Thomas (2013), using high-throughput chemical toxicity
screening data to define equivalent toxic human intakes. Methods
such as this reverse dosimetry approach, may also be applied as a
forward dosimetry (i.e., blood concentrations predicted from exter-
nal doses). We considered other efforts to broaden dose–response
relationships (e.g., nonlinear, nonsteady state, etc.), but they require
simplifying assumptions, which raised concerns about error and
uncertainty around the resulting predictions.

Dose–response shape for human toxicity effects assessment.
Current practice in LCIA toxicity assessment assumes linearity
for all dose–response models and additivity of impacts (Fantke
et al. 2018; Rosenbaum et al. 2008). The basis for this approach
is the typical need for a marginal (rather than absolute) impact
estimate in LCA. While likely acceptable for cancer effects that
exhibit linearity at population scale, linearity can be questionable
for other health endpoints. Recent efforts for fine particulate mat-
ter provide an example for addressing nonlinearity by calculating
a marginal slope of the dose–response “at a working point,”
which is the exposure that the population experiences before an
addition or reduction is imposed (Frischknecht and Jolliet 2016).
This approach makes the response more site specific, depending
on the population vulnerability due to existing exposures.

LCIA currently builds dose–response relationships by extrapo-
lating data from observations of adverse effects over a range of
high doses, e.g., administered to rats in standardized tests, to doses
in humans at lower, real-world levels (Rosenbaum et al. 2008). For
some substances, such as endocrine disruptors, the rate of increase
of disease with dose is steeper at low doses and subsides at higher
doses (Fagin 2012). Many LCIA practitioners have expressed con-
cern about the current LCA dose–response approach that is based
on population intake instead of individual intake and uses a (linear)
dose–response extrapolation to zero.

Based on input from the three workshops, it was proposed that
the simplest solution to these concerns that could be implemented
within the matrix-based consensus framework of Rosenbaum et al.
(2008) is to add amodifier to the current linear dose–response slope
factor to address potential nonlinearity. This modifier is a dimen-
sionless term fPR,x,e that multiplies any exposure pathway x (e.g.,
food ingestion) and health effect e (e.g., cancer) dose–response
slope DRF�x,e to arrive at corrected slope factors DRFx,e as input to
matrixDRF in Equation 1.

There are multiple potential methods for deriving the dose–
response modifier. One method proposed at the workshops is
based on the assumption that a population exposure threshold
exists below which there is no response. In such case, the multi-
plier consists of the fraction of the exposed population that is
above the population exposure threshold (and therefore “at risk”),
as illustrated in Figure 4:

DRFx,e = fPR,x,e ×DRF�x,e (2)

with fPR,x,e =1 as a default (no evidence of an exposure thresh-
old) and 0≤ fPR,x,e <1, where evidence of a population-level ex-
posure threshold is available. In principle, this modifier is the
same for pathways that belong to the same exposure route (e.g.,
fish and drinking water ingestion are both “ingestion”).

Population exposure thresholds reflect levels below which
there is de minimis risk to any individual. Among many options,
Kroes et al. (2005) proposed setting the exposure threshold at a ref-
erence dose, a dose corresponding to a 10−6 cancer risk, or a thresh-
old of toxicological concern. However, because such a population
exposure threshold could be potentially derived in additional ways
(e.g., essentiality level for certain metals), a significant challenge is
that the size of this population can usually not be estimated. An
additional concern arises from the use of different metrics as start-
ing points for estimating population exposure thresholds for differ-
ent substances, resulting in a lack of assurance that effect estimates
are consistent. Another challenge is accounting for cumulative ex-
posure to multiple chemical and other stressors that contribute to a
given effect. Current approaches for deriving population exposure
thresholds cannot actually predict a complete absence of risk with
100% confidence.

Another approach for deriving a dose–response modifier is
based on a recent comprehensive framework from the World
Health Organization/International Programme on Chemical
Safety (WHO/IPCS) (Chiu and Slob 2015; WHO/IPCS 2014).
This framework formally addresses uncertainty and variability
using different shapes of dose–response and computes the distri-
bution of the slope at any point. As shown in Figure 5, this
approach assumes lognormal sensitivity to provide a dose–
response DRx,e for exposure pathway x and health effect e as a
“threshold distribution”:

DRx,e Xð Þ=U z Xð Þ½ � with z Xð Þ= ln Xð Þ−lH
rH

(3)

where X is the working point exposure level (i.e., the exposure
level at which we want to evaluate the slope); U is the standard
normal cumulative distribution; z is the effective z-score of X; lH
is the natural log exposure level affecting 50% of the population
(estimated by scaling from experimental animal data); and r2

H is
the variance of population sensitivity (estimated either from his-
torical human data across chemicals or chemical-specific data).
The slope, DRFx,e, which is an element of matrix DRF in
Equation 1, is then given by the derivative of the cumulative dis-
tribution with respect to X with u as standard normal probability
density:
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DRFx,e =DR0
x,e Xð Þ= u z Xð Þ½ �

X ×rH
(4)

The key question in this approach is defining the working
point exposure. Because LCA is focused on cumulative expo-
sures and aggregate health impacts, a logical evaluation point of
X is the background exposure level to which the new exposure is
added. This approach can incorporate susceptible populations by
increasing or decreasing the variance (shape) of the population
dose–response curve (Zeise et al. 2013). One limitation is the
increasing uncertainty about the accuracy of the lognormality of
sensitivity in cases of low background exposure levels and corre-
spondingly small incidence values (Crump et al. 2010; Pennington
et al. 2002). Alternatively, one could set the working point via an
“effective” background exposure at the equivalent background
incidence rate (Huijbregts et al. 2005).

The field of toxicology is currently undergoing a dramatic
change with the introduction of high-throughput computational in
vitromechanistic analyses (e.g.,Wambaugh et al. 2015) with asso-
ciated adverse outcome pathways (Ankley et al. 2010). These
approaches provide a useful long-term opportunity for more bio-
logically based derivations of appropriate, possibly nonlinear,
modifiers to the current dose–response slope.

Opinions differ about the continued use of linear dose–response
relationships in impact assessments. There is evidence that due to
population-scale distribution in exposure, potential nonlinearity in
dose–response cancels out making linear dose–response applicable
to population-level responses (NRC 2009). There is also evidence
that a linear dose–response for some carcinogens is likely realistic
and sufficient in most cases (NRC 2009). However, for many health
endpoints, current slope derivations do not reflect the sigmoidal na-
ture of the exposure–response relationships observed for many

substances. Providing dose–response relationships for LCIA toxic-
ity characterization is an important area of continuing research to
improve existing LCA practice. The WHO/IPCS framework (Chiu
and Slob 2015) is a useful starting point for additional research.

Toxicity-related health effects and endpoints. LCIA toxicity
characterization currently provides two aggregated human health
outcomes, cancer and noncancer effects (Rosenbaum et al. 2008),
with generic severity factors for both effect types based on global
health statistics (Huijbregts et al. 2005). Disaggregating further
among different types of health effects within these two categories
would provide greater accuracy in the toxicity assessment, but
would require additional health endpoint–specific data. Workshop
participants recognized this need for greater health endpoint reso-
lution, noting particular interest in cardiovascular diseases, neuro-
toxicity, reproductive diseases, and endocrine diseases, while also
acknowledging that additional work is needed to prioritize end-
points. The current preference for DALY as the severity metric is
consistent with the GBD study series (Forouzanfar et al. 2016;
Lim et al. 2012), but requires relevant severity weights for the
population disease incidence (Verones et al. 2017). There is a
need to explore the relevance and availability of data to include
additional endpoints and more refined severity weights, for
which the GBD and other international health assessment
efforts can serve as a useful starting point.

Emission-to-Effect Modeling for Metals
In our workshop discussions on toxicity characterization for met-
als, we noted that current LCIA practice does not consider ess-
entiality of specific substances to human health or human defi-
ciency in or vulnerability to those substances. Some metal species
that play a role in the natural metabolism of humans are essential
but may become toxic above a toxicity threshold. This U-shaped

Figure 4. Hypothetical population effect response level as function of population exposure dose indicating that a certain fraction of the exposed population is
above a defined threshold for a given exposure distribution. Units of exposure probability density are the inverse of whatever exposure level units are used on
the x-axis (e.g., if exposure is in parts per million, exposure probability density has unit 1/ppm).
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dose–response, with deficiency at low dose and toxicity at high
dose (e.g., for manganese, see Milton et al. 2017), poses a chal-
lenge for LCIA. Populations in several regions are deficient in
certain essential metals including zinc, calcium, and iron
(Forouzanfar et al. 2016; Lim et al. 2012), whereas workshop
participants reported on several LCA studies that have overall
toxicity scores dominated by zinc. From these deliberations, we
determined that our final recommendations include further inves-
tigation of essentiality.

In current LCA, practitioners typically report toxicity (and other)
characterization results for different time horizons, e.g., for infinity
(steady state) and after 100 years, but current models only allow for
steady-state (i.e., time-integrated) calculations (Rosenbaum et al.
2008). This can pose a considerable problem for metals and very
persistent organic substances. A lack of temporal flexibility can be
addressed with a dynamic multimedia modeling approach as
recently proposed by Shimako et al. (2017). This approach, how-
ever, is currently not compatible with the existing steady-state ma-
trix framework for LCIA toxicity characterization. This creates the
need for an approach that is based on and fully consistent with the
current modeling but capable of addressing a dynamic time horizon
of 100 y.

Conclusions
In deliberations both during and after the workshops, the task force
discussed and evaluated questions addressing key points summar-
ized in Figure 2, with the goal of advancing exposure and toxicity
characterization in LCIA and similar comparative assessment
frameworks. Task force members developed these questions to
focus future research on improving the current toxicity characteri-
zation framework in LCIA based on revised practice and the adap-
tation of models and data from other assessment fields. Workshop
discussions, together with subsequent task force evaluations, sup-
port both general and specific recommendations. One general rec-
ommendation is to develop guidance on the presentation and
interpretation of human toxicity characterization results, including
a summary of important assumptions and sensitivity of outcome to
these assumptions, transparent descriptions of uncertainty and its
implications, and consideration of variability among populations
and regions. Another general recommendation is informed applica-
tion, for example, the reality check of comparing for a specific
region the cumulative disease burden quantified in LCIA from

multiple substances to GBD results. In addition to these general
points, there are twelve specific recommendations that are sum-
marized as follows:

1. The existing Rosenbaum et al. (2008) framework is a suita-
ble starting point for further advancing and harmonizing the
assessment of toxicity-related impacts in LCIA.

2. The combined near-field and far-field framework of
Fantke et al. (2016) provides a useful operational founda-
tion for addressing additional consumer and occupational
exposure settings but requires additional research to
address issues such as exposure through inhalation of sus-
pended particles and hand-to-mouth exposure.

3. A limited number of archetypes can be used to distin-
guish exposure for different human receptor groups.

4. Similar to recent efforts for fine particulate matter, spatial
archetypes can be used to increase geographic detail for
chemical substances in a form fully compatible with
existing LCIA approaches.

5. The current assumption of additivity of human toxicolog-
ical effects remains an effective way to handle mixture
toxicity when the time and location of emissions is not
specified; however, when it is not appropriate to assume
additivity, additional research is needed to address mix-
ture toxicity and coexposure effects.

6. Effects with a strong temporal character, such as acute
effects of localized pulse emissions, require further
research efforts before they can be operationally included
into the existing LCIA framework.

7. Metal species and very persistent organic substances
require dynamic fate factors that can define appropriate
time horizons for characterizing related human toxicity.

8. Food processing can significantly alter exposure and
requires additional characterization efforts before incor-
poration in LCIA.

9. Because there are no operational approaches or data cur-
rently available to fully track transformation products
across substances, transformation products, where signifi-
cant, should currently be characterized as separate chemi-
cal substances.

10. To explore whether and how potential nonlinearity in the
dose–response relationships can be addressed in LCIA,
two concepts need additional evaluation: a) introducing a

Figure 5. Lognormal threshold distribution–based population effect response level as function of population exposure dose level (based on WHO/IPCS 2014),
indicating the exposure dose–response slope as a function of the exposure working point X. U is the standard normal cumulative distribution, u is the standard
normal probability density, lH is the natural log exposure at which 50% of the population is affected, and r2

H is the variance of the population sensitivity distri-
bution. The exposure working point could be estimated directly for the chemical of interest, or alternatively, as suggested by Huijbregts et al. (2005), defined
as an “effective” background corresponding to the background incidence rate of the effect of interest.
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modifier for the dose–response relationship based on an
assumed population threshold, and b) using recently
developed WHO guidance (WHO/IPCS 2014) on popula-
tion variability, extrapolation, and uncertainty in dose–
response relationships and on informing the selection of
population threshold distributions.

11. The current LCIA approach allows for considering addi-
tional endpoints of interest, such as endocrine-disrupting
compounds, but there are no specific recommendations at
this time.

12. For substances with a U-shaped dose–response relation-
ship, benefits from essential metals and essentiality of
nontoxic substances should be assessed.

We captured these summary recommendations from the task
force process to propose guidance for efforts to develop a glob-
ally harmonized framework and characterization factors for
incorporating human toxicity impacts. To ensure that human tox-
icity impacts are consistently integrated into LCIA, we recom-
mend that the calculation methods and results be harmonized
with other LCIA guidance efforts. These efforts include ecosys-
tem toxicity characterization (e.g., the selection of benchmark
doses, such as hazardous concentrations), human health impacts
from exposure to fine particulate matter (e.g., the selection of
considered fate processes), other chemical and nonchemical stres-
sors (e.g., radiation, heat, noise, and accidents), and nutritional
status and impacts. We presented and revised the harmonized
characterization framework, its related results, and corresponding
global guidance at a Pellston expert workshop in summer 2018.
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