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Abstract: Using the Van der Pol oscillator model as an example, we provide a tutorial
introduction to nonlinear model predictive control (NMPC) for systems governed by stochastic
differential equations (SDEs) that are observed at discrete times. Such systems are called
continuous-discrete systems and provides a natural representation of systems evolving in
continuous-time. Furthermore, this representation directly facilities construction of the state
estimator in the NMPC. We provide numerical details related to systematic model identification,
state estimation, and optimization of dynamical systems that are relevant to the NMPC.
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1. INTRODUCTION

This paper provides a tutorial of how to use the nonlinear
model predictive control (NMPC) principle to regulate
a stochastic system governed by stochastic differential
equations (SDEs). The systems considered in this paper
are continuous-discrete systems of the form (Jazwinski,
1970)

dx(t) = f(x(t), u(t); p) dt+ g(x(t), u(t); p) dω(t), (1a)

y(tk) = h(x(tk)) + vk, (1b)

where x, u and p are the states, inputs and time-invariant
parameters. vk ∼ Niid(0, Rk) is the measurement noise
and ω(t) is a standard Brownian motion. Brownian mo-
tion is defined by its independent increments which sat-
isfies that for each s, t ∈ R, ω(t) − ω(s) is normally
distributed with zero mean and covariance I(t − s); i.e.
dω(t) ∼ Niid(0, I dt). The SDE model representation (1a)
provides a natural way to represent physical systems as
they evolve in continuous-time. In contrast to discrete-
time models, a priori knowledge about the system can
be included and the estimated parameters do not depend
on the sampling time. The representation of noise in con-
tinuous time also allow for a parsimonious representation
that is independent of the sampling time. While these
advantages of the continuous-discrete model (1) are well-
known in the systems identification community (Garnier
and Young, 2012; Kristensen et al., 2004; Rao and Un-
behauen, 2006), most NMPC methods rely on either 1) a
deterministic discrete-time model, 2) a stochastic discrete-
time model, or 3) a deterministic continuous-time model
for which the noise terms in the estimators are added in
an ad hoc manner. The key insight is that the continuous-
discrete model (1) provides a systematic way to obtain
an estimation (filtering and prediction) algorithm that is
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used in the offline system identification, the online state-
and parameter-estimation, and the prediction of the dy-
namic optimization. The diffusion model, g(x(t), u(t); p),
represents a convenient and powerful way of representing
complex stochastic processes and model-plant mismatch
as needed for the filtering and prediction algorithm in
NMPC. Boiroux et al. (2016a,b,c, 2010) and Mahmoudi
et al. (2016a, 2017, 2016b) demonstrate systematic use of
the continuous-discrete model (1) for system identification,
nonlinear filtering and prediction, fault detection, and
NMPC in an artificial pancreas for people with type 1 di-
abetes. Mahmood and Mhaskar (2012) uses a continuous-
discrete model (1) and a Lyapunov-based NMPC to sta-
bilize a reaction model around an unstable equilibrium.
Buehler et al. (2016) uses a similar setup where a biore-
actor model is controlled according to a desired set-point
probability density. Jørgensen and Jørgensen (2007a,b) ap-
ply the continuous-discrete stochastic model (1) for linear
MPC using transfer function representations of the model.

1.1 Components and software of the NMPC

Allgöwer et al. (1999), Johansen (2011), Grüne and Pan-
nek (2011), and Rawlings et al. (2017) describe state-of-
the-art NMPC technology. A system for NMPC consists
of an offline method for identification of the model as
well as an online part - where the online part consists
of a state- and parameter estimation algorithm and an
algorithm for dynamic optimization. Fig. 1 schematically
illustrates this structure. This tutorial fills a missing gap in
existing NMPC literature, by systematically formulating
all components in the NMPC software system based on
the continuous-discrete model (1). All components in the
NMPC, presented in this paper, use the same continuous-
discrete extended Kalman filter (CDEKF) for (1) in the
one-step prediction of the offline system identification, in
the online state- and parameter-estimation algorithm, and
in the prediction of the dynamic optimization algorithm.
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represents a convenient and powerful way of representing
complex stochastic processes and model-plant mismatch
as needed for the filtering and prediction algorithm in
NMPC. Boiroux et al. (2016a,b,c, 2010) and Mahmoudi
et al. (2016a, 2017, 2016b) demonstrate systematic use of
the continuous-discrete model (1) for system identification,
nonlinear filtering and prediction, fault detection, and
NMPC in an artificial pancreas for people with type 1 di-
abetes. Mahmood and Mhaskar (2012) uses a continuous-
discrete model (1) and a Lyapunov-based NMPC to sta-
bilize a reaction model around an unstable equilibrium.
Buehler et al. (2016) uses a similar setup where a biore-
actor model is controlled according to a desired set-point
probability density. Jørgensen and Jørgensen (2007a,b) ap-
ply the continuous-discrete stochastic model (1) for linear
MPC using transfer function representations of the model.

1.1 Components and software of the NMPC

Allgöwer et al. (1999), Johansen (2011), Grüne and Pan-
nek (2011), and Rawlings et al. (2017) describe state-of-
the-art NMPC technology. A system for NMPC consists
of an offline method for identification of the model as
well as an online part - where the online part consists
of a state- and parameter estimation algorithm and an
algorithm for dynamic optimization. Fig. 1 schematically
illustrates this structure. This tutorial fills a missing gap in
existing NMPC literature, by systematically formulating
all components in the NMPC software system based on
the continuous-discrete model (1). All components in the
NMPC, presented in this paper, use the same continuous-
discrete extended Kalman filter (CDEKF) for (1) in the
one-step prediction of the offline system identification, in
the online state- and parameter-estimation algorithm, and
in the prediction of the dynamic optimization algorithm.
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Fig. 1. Overview of the closed-loop control structure.

The rigorous solution to the filtering and prediction prob-
lem is obtained by solving the Fokker-Planck equations
(Jazwinski, 1970). However, for systems with more than
a couple of states, this solution is computationally in-
tractable. The CDEKF is a computationally tractable
alternative for filtering and prediction in (1). While other
filters such as the unscented Kalman filter (UKF), the
ensemble Kalman filter (EnKF), the particle filter (PF),
and the moving horizon estimator (MHE) can also be
used instead of the (CDEKF), the CDEKF represents
the best balance between performance and computational
tractability for many processes (Simon, 2006). This is
particularly true, when the maximum-likelihood method
is used for estimation of the parameters in the filter and
predictor. For good performance of the CDEKF, it is also
important to notice that we implement it using a differ-
ential equation solver with adaptive time step and using
the Joseph stabilization scheme (Schneider and Georgakis,
2013). By including a disturbance model as part of the
model, the CDEKF is used for online estimation of the
states as well as selected rapidly varying parameters.

The offline system identification is based on a maximum
likelihood (ML) formulation, where the conditional densi-
ties of the state equations are approximated by Gaussian
densities. Using this assumption, it is possible to derive an
optimization problem which uses the CDEKF to compute
the likelihood of the parameters, p, given a set of observa-
tions (Kristensen et al., 2004).

The dynamic optimization component of the NMPC con-
sists of the solution of a deterministic open-loop optimal
control problem. The optimal control problem considered
is a Bolza problem with input constraints, i.e.

min
x,u

∫ tk+T

tk

l(x(t), u(t)) dt + lf (x(tk + T )), (2a)

s.t. x(tk)= x̂k|k, (2b)

ẋ(t) = f(x(t), u(t); p), t ∈ [tk, tk + T ] , (2c)

u(t) ∈ U(t), t ∈ [tk, tk + T ] , (2d)

where x̂k|k denotes the filtered state estimates (from the
filter) and p is the parameter estimates (from the online- or
offline estimation method). T = Tc = Tp is the control and
prediction horizon. Several indirect and direct methods
exists for the numerical solution of this optimal control
problem (Binder et al., 2001). In this paper we use a direct
local collocation method (von Stryk, 1993).

We use a stochastic extension of the van der Pol oscillator
model to illustrate the components of the NMPC system.

The numerical methods for the simulation study are im-
plemented in python and the source code is available via
GitHub 1 .

1.2 Paper organization

The paper is organised as follows. Section 2 presents the
CDEKF, while Section 3 derives the use of the CDEKF for
online and offline parameter estimation. Section 4 presents
the local collocation method for numerical optimal control.
Section 5 illustrates these components of the NMPC using
the stochastic van der Pol oscillator model. Finally, Section
6 contains a short summary.

2. THE EXTENDED KALMAN FILTER

We present the CDEKF used in the NMPC as well as
for the offline system identification. x̂k|k and P̂k|k denote
the filtered state- and covariance estimates. x̂k|k−1 and

P̂k|k−1 denote the predicted (one-step predictions) state-
and covariance values.

2.1 The prediction scheme

Given the initial conditions

x̂k−1(tk−1) = x̂k−1|k−1, P̂k−1(tk−1) = P̂k−1|k−1, (3)

the state- and covariance are predicted by solving the
system of ordinary differential equations (ODEs) given by

˙̂xk−1(t) = f(x̂k−1(t), u(t); p), (4a)

˙̂
Pk−1(t) = A(t)P̂k−1(t) + P̂k−1(t)A(t)

′ +G(t)G(t)′, (4b)

where

A(t) =
∂f

∂x
(x̂k−1(t), u(t); p), G(t) = g(x̂k−1(t), u(t); p).

The one-step predictions of the mean and covariance of
the states are obtained as the solution of (3)-(4) at the
new sample point, tk. Consequently, the predictions of the
state- and covariance are

x̂k|k−1 = x̂k−1(tk), P̂k|k−1 = P̂k−1(tk). (5)

2.2 The updating scheme

The literature contains many methods for the updating
scheme of extended Kalman filter algorithms. They all
compute the innovation by

ek = yk − h(x̂k|k−1), (6)

the Kalman filter gain, Kk, by

Ck =
∂h

∂x
(x̂k|k−1), (7a)

Rk|k−1 = CkP̂k|k−1C
′
k +Rk, (7b)

Kk = P̂k|k−1C
′
kR

−1
k|k−1, (7c)

and the filtered state estimate, x̂k|k, by

x̂k|k = x̂k|k−1 +Kkek. (8)

The key difference is how they compute the filtered co-
variance, Pk|k. Two standard updating schemes for the
covariance are

P̂k|k = (I −KkCk) P̂k|k−1 (9a)

= P̂k|k−1 −KkRk|k−1K
′
k. (9b)

1 https://github.com/niclasbrok/nmpc vdp.git
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The rigorous solution to the filtering and prediction prob-
lem is obtained by solving the Fokker-Planck equations
(Jazwinski, 1970). However, for systems with more than
a couple of states, this solution is computationally in-
tractable. The CDEKF is a computationally tractable
alternative for filtering and prediction in (1). While other
filters such as the unscented Kalman filter (UKF), the
ensemble Kalman filter (EnKF), the particle filter (PF),
and the moving horizon estimator (MHE) can also be
used instead of the (CDEKF), the CDEKF represents
the best balance between performance and computational
tractability for many processes (Simon, 2006). This is
particularly true, when the maximum-likelihood method
is used for estimation of the parameters in the filter and
predictor. For good performance of the CDEKF, it is also
important to notice that we implement it using a differ-
ential equation solver with adaptive time step and using
the Joseph stabilization scheme (Schneider and Georgakis,
2013). By including a disturbance model as part of the
model, the CDEKF is used for online estimation of the
states as well as selected rapidly varying parameters.

The offline system identification is based on a maximum
likelihood (ML) formulation, where the conditional densi-
ties of the state equations are approximated by Gaussian
densities. Using this assumption, it is possible to derive an
optimization problem which uses the CDEKF to compute
the likelihood of the parameters, p, given a set of observa-
tions (Kristensen et al., 2004).

The dynamic optimization component of the NMPC con-
sists of the solution of a deterministic open-loop optimal
control problem. The optimal control problem considered
is a Bolza problem with input constraints, i.e.

min
x,u

∫ tk+T

tk

l(x(t), u(t)) dt + lf (x(tk + T )), (2a)

s.t. x(tk)= x̂k|k, (2b)

ẋ(t) = f(x(t), u(t); p), t ∈ [tk, tk + T ] , (2c)

u(t) ∈ U(t), t ∈ [tk, tk + T ] , (2d)

where x̂k|k denotes the filtered state estimates (from the
filter) and p is the parameter estimates (from the online- or
offline estimation method). T = Tc = Tp is the control and
prediction horizon. Several indirect and direct methods
exists for the numerical solution of this optimal control
problem (Binder et al., 2001). In this paper we use a direct
local collocation method (von Stryk, 1993).

We use a stochastic extension of the van der Pol oscillator
model to illustrate the components of the NMPC system.

The numerical methods for the simulation study are im-
plemented in python and the source code is available via
GitHub 1 .

1.2 Paper organization

The paper is organised as follows. Section 2 presents the
CDEKF, while Section 3 derives the use of the CDEKF for
online and offline parameter estimation. Section 4 presents
the local collocation method for numerical optimal control.
Section 5 illustrates these components of the NMPC using
the stochastic van der Pol oscillator model. Finally, Section
6 contains a short summary.

2. THE EXTENDED KALMAN FILTER

We present the CDEKF used in the NMPC as well as
for the offline system identification. x̂k|k and P̂k|k denote
the filtered state- and covariance estimates. x̂k|k−1 and

P̂k|k−1 denote the predicted (one-step predictions) state-
and covariance values.

2.1 The prediction scheme

Given the initial conditions

x̂k−1(tk−1) = x̂k−1|k−1, P̂k−1(tk−1) = P̂k−1|k−1, (3)

the state- and covariance are predicted by solving the
system of ordinary differential equations (ODEs) given by

˙̂xk−1(t) = f(x̂k−1(t), u(t); p), (4a)

˙̂
Pk−1(t) = A(t)P̂k−1(t) + P̂k−1(t)A(t)′ +G(t)G(t)′, (4b)

where

A(t) =
∂f

∂x
(x̂k−1(t), u(t); p), G(t) = g(x̂k−1(t), u(t); p).

The one-step predictions of the mean and covariance of
the states are obtained as the solution of (3)-(4) at the
new sample point, tk. Consequently, the predictions of the
state- and covariance are

x̂k|k−1 = x̂k−1(tk), P̂k|k−1 = P̂k−1(tk). (5)

2.2 The updating scheme

The literature contains many methods for the updating
scheme of extended Kalman filter algorithms. They all
compute the innovation by

ek = yk − h(x̂k|k−1), (6)

the Kalman filter gain, Kk, by

Ck =
∂h

∂x
(x̂k|k−1), (7a)

Rk|k−1 = CkP̂k|k−1C
′
k +Rk, (7b)

Kk = P̂k|k−1C
′
kR

−1
k|k−1, (7c)

and the filtered state estimate, x̂k|k, by

x̂k|k = x̂k|k−1 +Kkek. (8)

The key difference is how they compute the filtered co-
variance, Pk|k. Two standard updating schemes for the
covariance are

P̂k|k = (I −KkCk) P̂k|k−1 (9a)

= P̂k|k−1 −KkRk|k−1K
′
k. (9b)

1 https://github.com/niclasbrok/nmpc vdp.git

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

527



432 Niclas Laursen Brok  et al. / IFAC PapersOnLine 51-20 (2018) 430–435

Numerical implementations based on either (9a) or (9b)
may give rise to bad performance and even divergence, as
the numerically computed values are not guaranteed to be
both positive (semi-)definite and symmetric. The Joseph
stabilization form

P̂k|k =(I −KkCk) P̂k|k−1 (I −KkCk)
′
+KkRkK

′
k. (10)

for updating the filtered covariance estimate guarantees
that the numerical value of Pk|k is symmetric posi-
tive (semi-)definite. The CDEKF is implemented using
(10) rather than (9) for reasons of numerical stability
and robustness (Schneider and Georgakis, 2013). Numer-
ically stable alternatives based on array- and squareroot-
algorithms also exist (Boiroux et al., 2016c), but are less
straightforward to implemenet compared to (10).

3. PARAMETER ESTIMATION

In this section, we outline the application of the CDEKF
for online and offline parameter estimation.

3.1 Online identification using the CDEKF

Using a disturbance model, the CDEKF can be used for
parameter estimation in addition to state estimation. One
way to do this is by augmenting the SDE by as many states
as parameters undergoing the estimation

dp = Σdωp, (11)

where p = (p1, ...,pNp
)� are the parameters to be esti-

mated and Σ = diag(σ1, ..., σNp
). Success of this approach

depends on detectability of the augmented system. Defin-
ing z = (x,p), the augmented SDE has the form

dz(t) = fz(z(t), u(t); p̃) dt+ gz(x(t), u(t); p̃) dω, (12)

where

fz(z, u; p̃) =

(
f(x, u; p, p̃)

0

)
, gz(x, u; p̃) =

(
g(x, u; p̃) 0

0 Σ

)
.

p̃ denotes the remaining parameters that are not esti-
mated. Using this approach, the parameters are repre-
sented as disturbance states of the system since the ob-
servation equation is still given by

y(tk) = hz(z(tk)) + vk = h(x(tk)) + vk. (14)

The online parameter estimates are given by the fil-
tered values from the augmented state vector, i.e. ẑk|k =
(x̂k|k; p̂k|k). This augmentation method may be used for
parameter estimation as well as disturbance estimation in
offset free control (Morari and Maeder, 2012).

3.2 Offline identification using an ML formulation

Another use of the CDEKF is to estimate the parameters
for a batch of data (Kristensen et al., 2004) in an offline
optimization. The parameter estimates are the parameter
set that maximizes the likelihood of the one-step predic-
tion errors.

Let {yj}Nj=1 denote N observations relating to the sample

points {tj}Nj=1 in (1b). Define the information accumulated

up until the k-th sample point as Yk = {yj}kj=1. Then the
likelihood function, L, can be defined as

L (p | YN ) ∝ φ (YN | p) , (15)

where φ is the joint density function of the observations,
YN . Using the definition of conditional probabilities, the
right hand side can be rewritten into

φ (YN | p) =
N∏

k=1

φ (yk | Yk−1, p) , (16)

such that the log-likelihood function can be expressed by

log (L (p | YN )) =

N∑
k=1

log (φ (yk | Yk−1, p)) . (17)

Consequently, the ML parameter estimates, pML, is given
by

pML = argmax
p∈RNp

log (L(p | YN )) (18a)

= argmax
p∈RNp

N∑
k=1

log(φ(yk | Yk−1, p)). (18b)

Since the SDE in (1a) is driven by a Brownian motion and
since the increments of a Brownian motion are Gaussian
it is reasonable to assume, under some regularity condi-
tions, that the conditional densities in (16) can be well
approximated by Gaussian densities

φ(yk | Yk−1, p) =

exp

(
−1

2
e′kR

−1
k|k−1ek

)

√
det(Rk|k−1)(2π)ny

, (19)

where ny is the number of output variables.

4. NUMERICAL OPTIMAL CONTROL

In this section, we briefly present the algorithm for op-
timization of (2) used by the NMPC considered in this
tutorial paper. The algorithm is based on a direct local
collocation method presented by von Stryk (1993).

For simplicity, we let the Mayer term of (2) be zero,
i.e. lf (x(tk + T )) = 0, and only consider optimal control
problems with a Lagrange term. We consider only bounds
on the inputs. This implies that U(t) denotes these bound
constraints, i.e.

U(t) = [umin, umax] . (20)

4.1 A local collocation method

When formulating a direct solution method, the first step
is to introduce a parametrization of the manipulated vari-
able, u(t). The simplest parametrization is to approximate
u(t) as a piecewise constant function. For reasons of simlic-
ity, we adopt this parametrization method in the following.
Hence, u(t) is parametrized via the values {qk}Nk=1 and
time points {τk}Nk=0 such that

u =

N∑
k=1

qkχ[τk−1,τk[, (21)

where χI denotes the characteristic function associated
with the set I. The time points that define the sub-
intervals of u(t) also constitute the global collocation
points (GCPs) of the collocation method. Fig. 2 provides
a schematic overview of the GCPs in relation to the local
collocation points (LCPs), {γj}Mj=0. The collocation points
satisfy the relations

tk = τ0 < τ1 < · · · < τN = tk + T, (22a)

0 = γ0 < γ1 < · · · < γM = 1. (22b)
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Fig. 2. Schematic overview of the collocation points.

A local collocation method approximates the ODEs on
the smaller subintervals and apply a quadrature rule to
impose a finite dimensional approximation. The ODEs on
the interval [τk−1, τk] can be formulated as an integral
equation of the form

x(τk)− x(τk−1) =

∫ τk

τk−1

f(x(t), qk; p) dt. (23)

Using the forward Euler scheme, the right hand side can
be approximated via the LCPs by∫ τk

τk−1

f(x(t), qk; p) dt (24a)

=

M∑
j=1

∫ τk−1+γj∆τk

τk−1+γj−1∆τk

f(x(t), qk; p) dt (24b)

≈ ∆τk

M∑
j=1

∆γjf(x(τk−1 + γj−1∆τk), qk; p), (24c)

where ∆τk = τk − τk−1 and ∆γj = γj − γj−1. Next,
introduce the discrete state vector as

sk,j = x(τk−1 + γj∆τk). (25)

Using this notation, the local collocation scheme can be
formulated as

sk−1,M − sk−1,0 =

M∑
j=1

∆tk,jf(sk−1,j−1, qk; p), (26)

where ∆tk,j = ∆τk∆γj . (26) solves the ODEs on the
local intervals - to obtain a meaningful ODE solution, a
continuity condition must be imposed, together with an
initial value constraint

s0,0 = x0 and sk−1,M = sk,0. (27)

Finally, the objective function is also approximated using
the forward Euler method with the collocation points
defined in (22)

∫ tk+T

tk

l(x(t), u(t)) dt ≈
N∑

k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk).

(28)

Thus, the finite dimensional NLP for numerical solution
of the optimal control problem (2) can be defined as

min
s,q

N∑
k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk) (29a)

s.t. s0,0 = x0 (29b)

sk−1,M = sk,0 (29c)

sk−1,M − sk−1,0=

M∑
j=1

∆tk,jf(sk−1,j−1, qk) (29d)

qk∈ U(τk). (29e)

We solve (29) using ipopt and python. The numerical
implementation in python uses the pyipopt package to

interface to ipopt (Wächter and Biegler, 2006). Using
ipopt it is possible to exploit the sparse structure that
appears in the Jacobian of the constraint function of (29).

5. NUMERICAL CASE STUDY

To illustrate the methodology presented in this paper, we
use the stochastic van der Pol oscillator model that is
defined as

dx(t) = f(x(t), u(t);λ) dt+ g(x(t), u(t);σ) dω(t), (30a)

where

f(x, u;λ) =

(
x2

−x1 + λ(1− x2
1)x2 + u

)
, (30b)

g(x, u;σ) =

(
0 0
0 σ

)
. (30c)

λ > 0 is a parameter governing the stiffness of the system
and σ > 0 is a parameter related to model deficiency.The
SDE model (30) is used as a model for simulating the plant
as well as in the CDEKF of the NMPC. Fig. 3 provides
a comparison between three realizations of the SDE (30)
and the corresponding ODE. The effect of the added noise
to x2 is clearly visible.

5.1 Set-point tracking using online parameter estimation

The set-point trajectory, x1(t), for x1(t) is defined as the
step function

x1(t) =



0, t ≤ 15

1, 15 ≤ t ≤ 30

0, 30 ≤ t

, (31)

and the corresponding integrand of the control objective,
l, is defined as

l(x(t), u(t)) = (1− α)(x1(t)− x1(t))
2 + αu(t)2, (32)

where α = 1/1000 is regularization parameter. The noise
parameters are defined as

Rk = σ2
εI, σε = 1/100, σ = 1/5. (33)

It is assumed that both states are directly observable, i.e.
h(x(t)) = x(t). The NLP has been constructed with an
equidistant mesh such that

∆τk = 1/(N − 1), ∆γk = 1/(M − 1), (34)

where N = 51 and M = 21. The control and prediction
horizon of the optimal control problem (2) is T = Tc =
Tp = 20. It is assumed that observations occur equidis-
tantly with Ts = tk − tk−1 = 0.4. The control signals are
constrained by the sets, U(τk) = [−1, 1].

Fig. 4 shows a closed-loop simulation. For this simulation,
the controller has to estimate λ. Fig. 5 shows the true
value of λ as well as the online parameter estimate,

λ̂k|k. Fig. 5 also shows how the online estimation method
performs when an unmodelled disturbance is introduced.
The unmodelled disturbance is introduced at t = 45 where
the true value of λ is changed from λ = 1 to λ = 3.

Fig. 6 shows the offline parameter estimates and the cor-
responding log-likelihood functions based on 100 observa-
tions of the plant. The offline estimation is tested in two
cases; a case where λ = 1 and a case where λ = 10. The

parameters are estimated to be λ̂ = 1.017 and λ̂ = 9.953,
respectively.
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A local collocation method approximates the ODEs on
the smaller subintervals and apply a quadrature rule to
impose a finite dimensional approximation. The ODEs on
the interval [τk−1, τk] can be formulated as an integral
equation of the form

x(τk)− x(τk−1) =

∫ τk

τk−1

f(x(t), qk; p) dt. (23)

Using the forward Euler scheme, the right hand side can
be approximated via the LCPs by∫ τk

τk−1

f(x(t), qk; p) dt (24a)

=

M∑
j=1

∫ τk−1+γj∆τk

τk−1+γj−1∆τk

f(x(t), qk; p) dt (24b)

≈ ∆τk

M∑
j=1

∆γjf(x(τk−1 + γj−1∆τk), qk; p), (24c)

where ∆τk = τk − τk−1 and ∆γj = γj − γj−1. Next,
introduce the discrete state vector as

sk,j = x(τk−1 + γj∆τk). (25)

Using this notation, the local collocation scheme can be
formulated as

sk−1,M − sk−1,0 =

M∑
j=1

∆tk,jf(sk−1,j−1, qk; p), (26)

where ∆tk,j = ∆τk∆γj . (26) solves the ODEs on the
local intervals - to obtain a meaningful ODE solution, a
continuity condition must be imposed, together with an
initial value constraint

s0,0 = x0 and sk−1,M = sk,0. (27)

Finally, the objective function is also approximated using
the forward Euler method with the collocation points
defined in (22)

∫ tk+T

tk

l(x(t), u(t)) dt ≈
N∑

k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk).

(28)

Thus, the finite dimensional NLP for numerical solution
of the optimal control problem (2) can be defined as

min
s,q

N∑
k=1

M∑
j=1

∆tk,j l(sk−1,j−1, qk) (29a)

s.t. s0,0 = x0 (29b)

sk−1,M = sk,0 (29c)

sk−1,M − sk−1,0=

M∑
j=1

∆tk,jf(sk−1,j−1, qk) (29d)

qk∈ U(τk). (29e)

We solve (29) using ipopt and python. The numerical
implementation in python uses the pyipopt package to

interface to ipopt (Wächter and Biegler, 2006). Using
ipopt it is possible to exploit the sparse structure that
appears in the Jacobian of the constraint function of (29).

5. NUMERICAL CASE STUDY

To illustrate the methodology presented in this paper, we
use the stochastic van der Pol oscillator model that is
defined as

dx(t) = f(x(t), u(t);λ) dt+ g(x(t), u(t);σ) dω(t), (30a)

where

f(x, u;λ) =

(
x2

−x1 + λ(1− x2
1)x2 + u

)
, (30b)

g(x, u;σ) =

(
0 0
0 σ

)
. (30c)

λ > 0 is a parameter governing the stiffness of the system
and σ > 0 is a parameter related to model deficiency.The
SDE model (30) is used as a model for simulating the plant
as well as in the CDEKF of the NMPC. Fig. 3 provides
a comparison between three realizations of the SDE (30)
and the corresponding ODE. The effect of the added noise
to x2 is clearly visible.

5.1 Set-point tracking using online parameter estimation

The set-point trajectory, x1(t), for x1(t) is defined as the
step function

x1(t) =



0, t ≤ 15

1, 15 ≤ t ≤ 30

0, 30 ≤ t

, (31)

and the corresponding integrand of the control objective,
l, is defined as

l(x(t), u(t)) = (1− α)(x1(t)− x1(t))
2 + αu(t)2, (32)

where α = 1/1000 is regularization parameter. The noise
parameters are defined as

Rk = σ2
εI, σε = 1/100, σ = 1/5. (33)

It is assumed that both states are directly observable, i.e.
h(x(t)) = x(t). The NLP has been constructed with an
equidistant mesh such that

∆τk = 1/(N − 1), ∆γk = 1/(M − 1), (34)

where N = 51 and M = 21. The control and prediction
horizon of the optimal control problem (2) is T = Tc =
Tp = 20. It is assumed that observations occur equidis-
tantly with Ts = tk − tk−1 = 0.4. The control signals are
constrained by the sets, U(τk) = [−1, 1].

Fig. 4 shows a closed-loop simulation. For this simulation,
the controller has to estimate λ. Fig. 5 shows the true
value of λ as well as the online parameter estimate,

λ̂k|k. Fig. 5 also shows how the online estimation method
performs when an unmodelled disturbance is introduced.
The unmodelled disturbance is introduced at t = 45 where
the true value of λ is changed from λ = 1 to λ = 3.

Fig. 6 shows the offline parameter estimates and the cor-
responding log-likelihood functions based on 100 observa-
tions of the plant. The offline estimation is tested in two
cases; a case where λ = 1 and a case where λ = 10. The

parameters are estimated to be λ̂ = 1.017 and λ̂ = 9.953,
respectively.
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Fig. 3. The difference between an ODE realization (deterministic) and three different realizations of the SDE (stohcastic).
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Fig. 4. A closed-loop simulation where x1 has to track the set-point trajetory given in (31). The top-left plot shows
the true state values of x1 together with the set-point trajectory. The bottom-left plot shows the manipulated
variables, u(t), computed by the NMPC. The phase plot to the right illustrates the path the NMPC chooses when
a set-point change is imposed.

The results presented in Fig. 4 and Fig. 5 show that the
NMPC is able to simultaneously control the system to the
desired set-point trajectory (31) and accurately estimate
the unknown parameter, λ. However, from Fig. 5 it is seen
that the parameter estimate is sensitive to the set-point
change. For the estimates around t ∈ {15, 30} in Fig. 5,
the EKF estimates significant parameter changes despite
of the fact that the true value is kept constant at λ = 1.
The results from Fig. 4 also show that the resulting control
signal, u(t), is active around (and on) the upper bound
when x1(t) = 1. This is a result of the fact that (1, 0) is
not an equilibrium for (30). Hence, the controller has to
actively change x2 to keep x1 close to x1.

6. SUMMARY

We provide a tutorial overview of how to construct an
NMPC to regulate a stochastic system governed by SDEs.
Based on the CDEKF, an online and an offline method
for parameter estimation are presented. The dynamic op-
timization module is based on a local collocation scheme,
where the forward Euler method has been used as dis-

0 10 20 30 40 50 60 70 80
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ

λ λ̂k|k

Online Parameter Estimation - Observation Updates

Fig. 5. The online parameter estimates of λ, where at
t = 45 an un-modelled disturbance is introduced (λ
shifts from 1 to 3).

cretization method for the dynamical equations. The per-
formance of the closed-loop controller is investigated for a
stochastic extension to the van der Pol oscillator model.
The source code for the tutorial is available via GitHub.
The key contribution and insight is to use the continuous-
discrete model (1) and the same associated CDEKF in all
components of the NMPC.
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Fig. 6. Examples of offline parameter estimation of λ.
Two cases are shown; the top plot shows an offline
estimation problem where the true value is λ = 1 and
the bottom plot shows an offline estimation problem
where the true value is λ = 10. Both problems are
based on 100 observations with the noise parameters
given in (33).
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