

N-3 Pufa Enriched Emulsified Foods And Strategies For Their Stabilization

Jacobsen, Charlotte

Publication date: 2018

Document Version Publisher's PDF, also known as Version of record

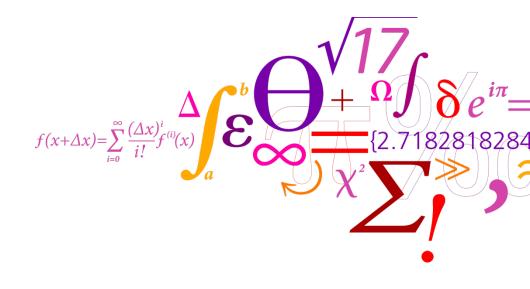
Link back to DTU Orbit

Citation (APA): Jacobsen, C. (Author). (2018). N-3 Pufa Enriched Emulsified Foods And Strategies For Their Stabilization. Sound/Visual production (digital), Technical University of Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.


- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

n-3 PUFA Enriched Emulsified Foods and Strategies for Their Stabilization

Charlotte Jacobsen Research group for Bioactives – Analysis and Application Division of Food Technology chja@food.dtu.dk

DTU Food National Food Institute

Outline

- Introduction
- Lipid oxidation
- Factors affecting oxidation in complex emulsified foods
- Effect of oil quality
- Effect of ingredients
- Optimization of production process
- Use of delivery systems
- Antioxidants in emulsified foods
- Conclusions
- Acknowledgements

Lipid Oxidation

Initiation :	RH	\rightarrow	R•
Propagation:	R• + O ₂ ROO• + RH ROOH RO• + ROOH RO• + RH •OH + RH	$ \begin{array}{c} \uparrow \\ \uparrow $	ROO• ROOH + R• RO• + OH ⁻ ROO• + ROH ROH + R• $H_2O + R•$
Termination:			

rennunon			
High O ₂	2 ROO•	\rightarrow	NRP (non radical products)
Low O ₂	R00• + R•	\rightarrow	NRP
	2 R•	\rightarrow	NRP

Oxidizability depends on number of abstractable hydrogen atoms, i.e. allylic hydrogen atoms

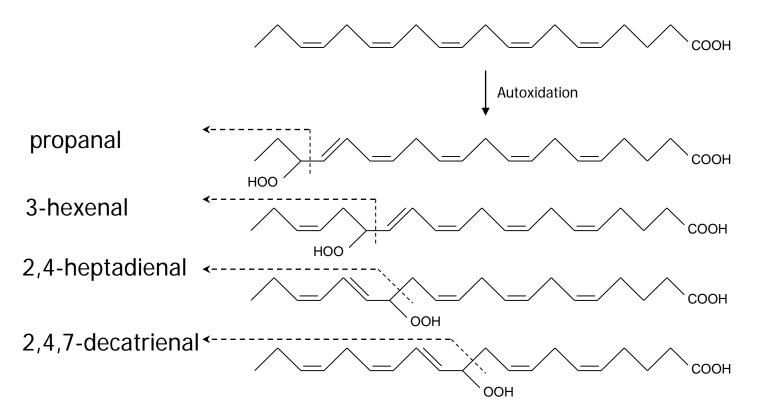
Oxidizability "index": H indicates doubly allylic hydrogens

PUFA	Symbol	Н	Oxidizability	
Linoleate	18:2 2 20		20	
Linolenate	enate 18:3		41	
Arachidonate	20:4	6	55	
DHA	22:6	10	102	
			Privan 1001	

Pryor 1994

Primary and secondary initiation: Metals play important role Radicals via electron transfer $M^{n+1} + RH \longrightarrow M^n + R \cdot + H^+$ direct H abstraction Radicals via peroxide decomposition $M^{n+} + ROOH \longrightarrow M^{(n+1)+} + RO + OH^{-}$ reaction 1 $M^{(n+1)+} + ROOH \longrightarrow M^{n+} + ROO + H^{+}$ reaction 2 Reaction 1: typically $Fe^{2+} \rightarrow Fe^{3+}$ or $Cu^+ \rightarrow Cu^{2+}$ Rate of reaction 1 >> Rate of reaction 2 Peroxides always present

 \rightarrow Homolytic ROOH scission important initiation mechanism

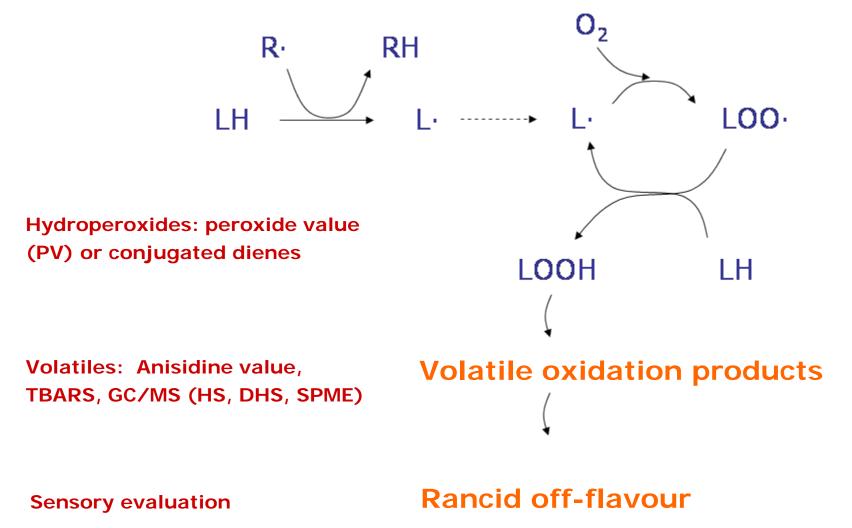

Further peroxide decomposition

Metal ions catalyzes this reaction

β-cleavage of alkoxyl radicals after homolytic scission: $R_2 \rightarrow -CH(O \rightarrow -R_1 \rightarrow Aldehydes + other volatiles$ Off flavors B = A R_2 -CH=CH-CH-CH₂-(CH₂)_n-R₁ R₂-CH=CH-CHO R₁-(CH₂)₂-CH₂-CHO + R_1 -(CH_2)_n- CH_2 • + R₂-CH=CH[•] H^{\bullet} H^{\bullet $R_1^{-}(CH_2)_n^{-}CH_3$ Aldehydes Alkyl radicals R₁-(CH₂)₂-CH₂-OOH Olefin radicals R₁-(CH₀),-CHO R₂-CH₂-CHO + R_{1} -(CH₂)_{n-1}-CH₂ + HCHO Frankel 1998 v of Oils and Fats and Their Applications

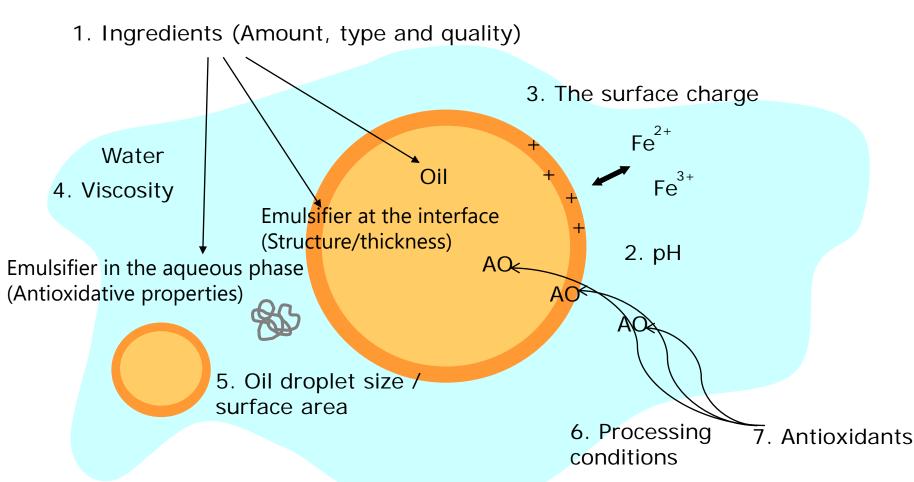
Oxidative decomposition of EPA

Flavour thresholds


TABLE 3 Threshold Values of Compounds Formed from Oxidized Oils

Compounds	Threshold (ppm)		
Hydrocarbons	90-2150		
Substituted furans	2-27		
Vinyl alcohols	0.5-3		
1-Alkenes	0.02-9		
2-Alkenals	0.04-2.5		
Alkanals	0.04-1.0		
trans, trans-2, 4-Alkadienals	0.04-0.3		
Isolated alkadienals	0.002-0.3		
Isolated cis-alkenals	0.0003-0.1		
trans.cis-Alkadienals	0.002-0.006		
Vinyl ketones	0.00002-0.007		

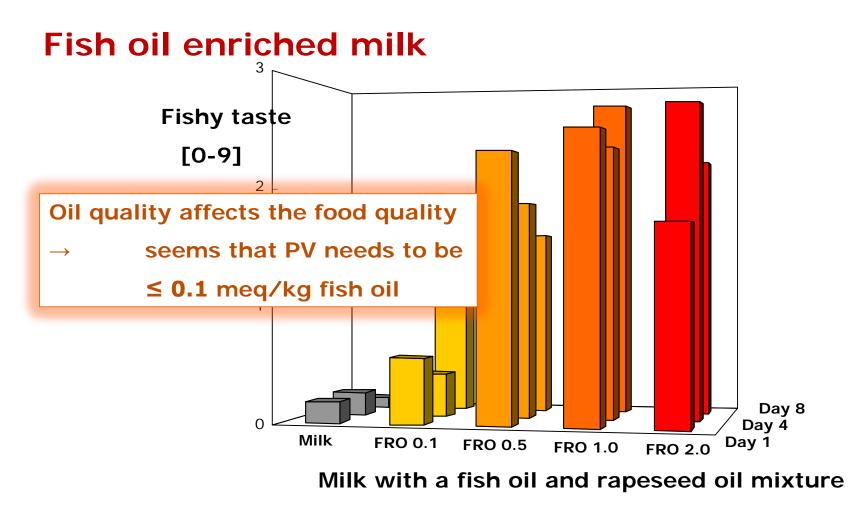
Source: Akoh and Min, Food Lipids, Marcel Dekker, 1998



Oxidation and analysis of oxidation

DTU

Factors that can affect lipid oxidation in emulsified foods:



Effect of oil quality

Let et al., 2005. Int. Dairy J. 15:173-182

Effect of food composition

Comparing Milk and Drinking yoghurt: Effect of Ingredients in Yoghurt

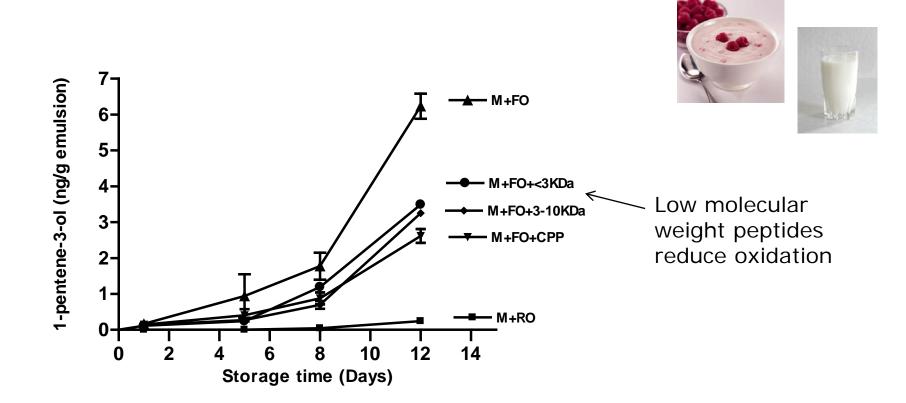
Intensity of fishy off-flavour (0-9):

	Week 0	Week 0 Week 1	Week 3
Milk	5.4 ± 1.5	± 1.5 6.0 ± 2.4	7.4 ± 1.0
Yoghurt (CA+P+FS)	0.0 ± 0.1	± 0.1 0.5 ± 1.0	0.4 ± 0.7
Yoghurt (CA+P)	0.4 ± 0.5	± 0.5 0.9 ± 1.4	1.0 ± 1.3
Yoghurt (CA)	0.4 ± 0.5	± 0.5 0.7 ± 1.0	1.3 ± 0.9
Yoghurt	0.5 ± 0.4	± 0.4 0.8 ± 1.0	1.6 ± 1.2

CA: Citric acid; P: Pectin; FS: Fruit preparation and sugar

- Fish oil enriched milk oxidised much faster than fish oil enriched yoghurt
- Ingredients added to yoghurt did not affect oxidation
 Nielsen, Klein & Jacobsen, 2009, Eur. J. Lipid Sci. Technol. 111, 337-345
 DTU Food, Technical University of Denmark
 Functionality of Oils and Fats and Their Applications

Comparing Milk and Yoghurt: Antioxidant Assays on Peptide Fractions in Yoghurt

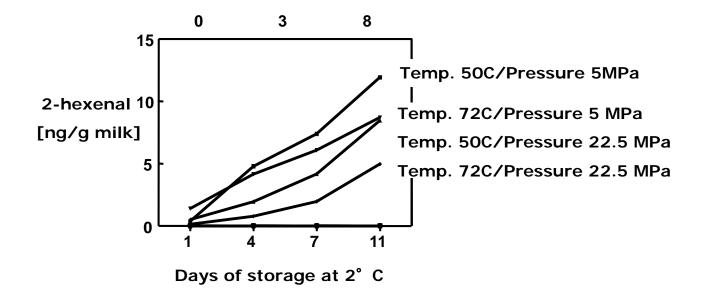


	Crude	Peptide fractions (KDa)					
	protein	>30	10-30	3-10	< 3		
Radical scavenging (DPPH)	+++	+++	+++	+ +	+ +		
Metal chelation	+	+	+	+++	+++		
Reducing power	+	+	+	+ +	+++		

Farvin, Nielsen, Baron & Jacobsen, 2010 Food Chem. 123, 1081-1089.

Comparing Milk and Yoghurt: Oxidative Stability of Milk with Peptide Fractions from Yoghurt

Farvin, Nielsen, Baron & Jacobsen, 2010 Food Chem. 123, 1081-1089.



Optimising homogenization conditions

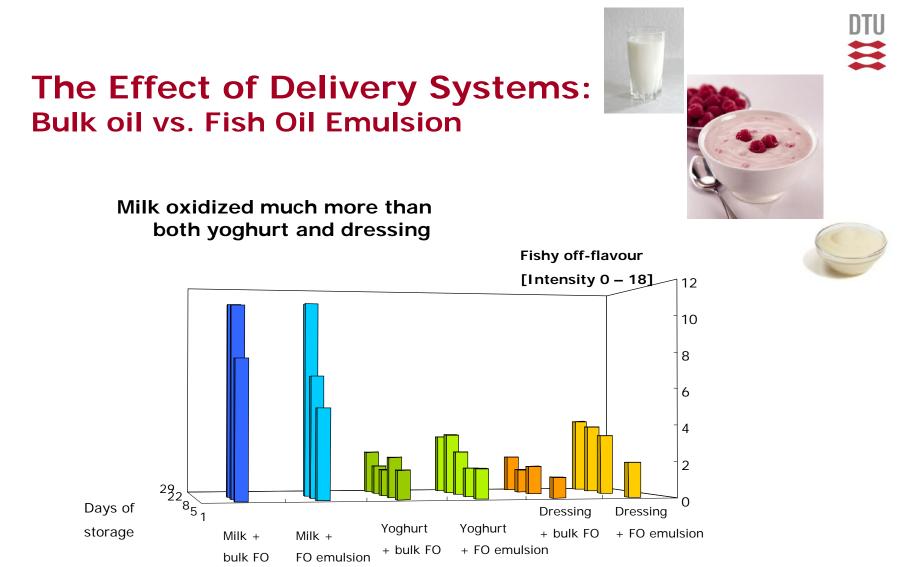
- Temperature and pressure

Effect of Emulsification Conditions: Milk Affected by Temperature and Pressure

• Homogenization with a low temperature and a low pressure leads to more oxidation than a high temperature and a high pressure!

Let, Jacobsen, Sørensen & Meyer (2007), J. Agric. Food Chem. 55:1773-1780

Homogenisation Conditions Affect Protein Composition at the Interface

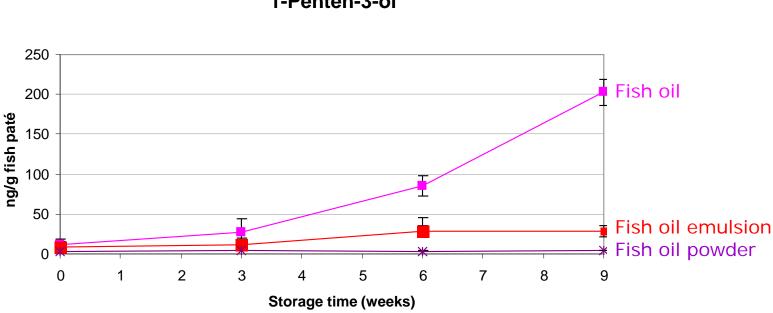


Pressure [MPa]	Temperature [°C]	β -lactoglobulin		a _{s1} -casein		a₅₂-casein	
Reference, no treatment		4.92		5.18		4.19	
F	50	8.01		5.94		5.14	
5	72	10.17		4.28		4.09	
15	50	9.36	+	5.21	-	5.08	-
15	72	14.56		4.55		4.59	
22.5	50	9.45		4.56		4.23	
	72	13.72		3.68		3.74	

Sørensen, Baron, Brüggemann, Pedersen & Jacobsen (2007) J. Agric. Food Chem. 55:1781-1789

Effect of using an omega-3 PUFA delivery system

Yoghurt and dressing with fish oil-in-water emulsion tend to be


more fishy than those with neat fish oil

Let, Jacobsen & Meyer (2007) J. Agric. Food Chem. 55:7802-7809

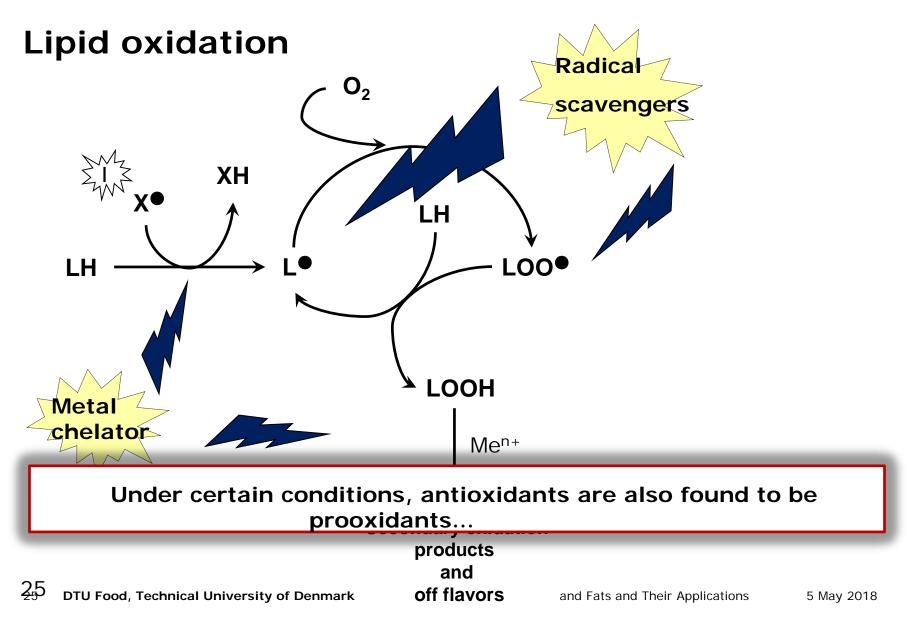
1-Penten-3-ol

- Oxidation rate: FO powder < FO emulsion < FO
- Similar results in fitness bars

Nielsen & Jacobsen, J. Food Biochemistry (2013), 37, 88-97

22 DTU Food, Technical University of Denmark Functionality of Oils and Fats and Their Applications

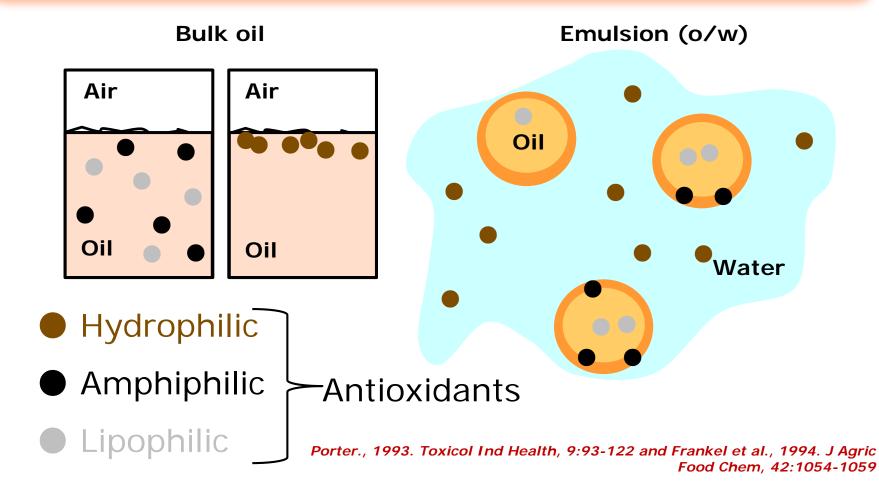
Effect of antioxidants in omega-3 enriched foods

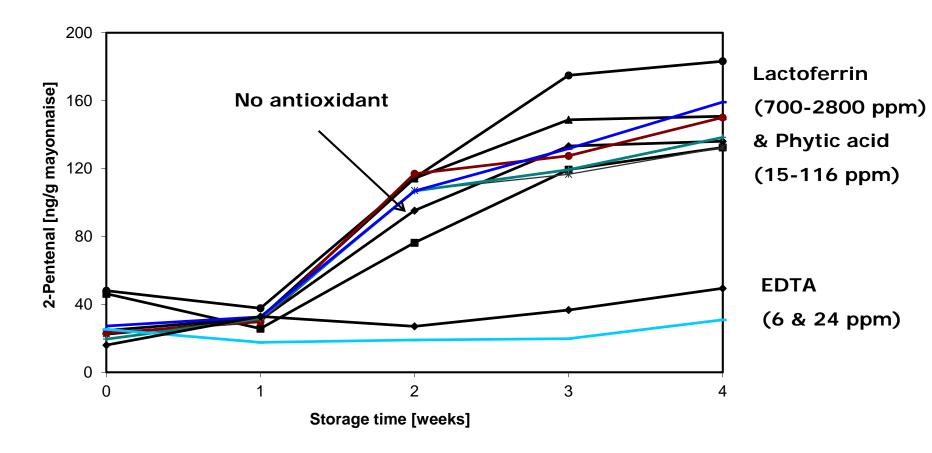

Antioxidants

Antioxidants = Compounds that prevent or delay lipid oxidation

- 1) Primary antioxidants / Radical scavenging
 - → Inactivate reactive radicals

2) Secondary antioxidants


Bind oxygen
 Chelate metal ions
 Quench singlet oxygen
 Regenerate other antioxidants


Polar paradox hypothesis

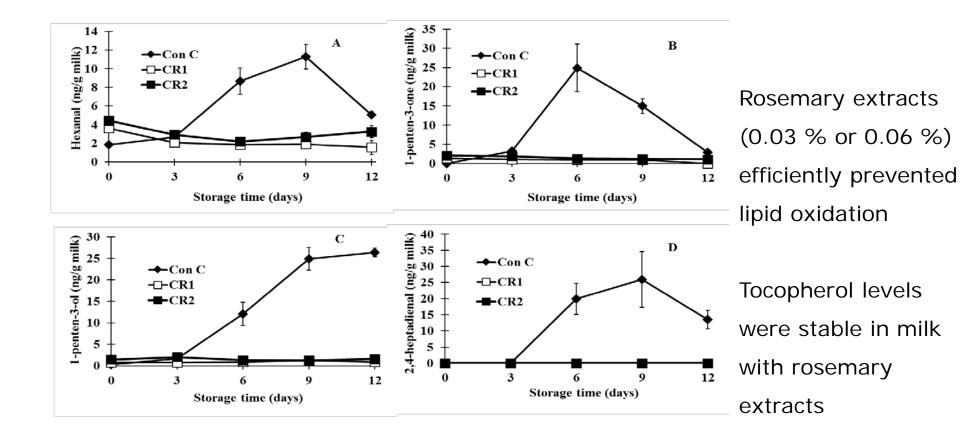
Interfacial phenomena in antioxidant activity

AO in fish oil enriched mayonnaise

Nielsen et al., 2004. J. Agric. Food Chem. 52:7690-7699

DTU

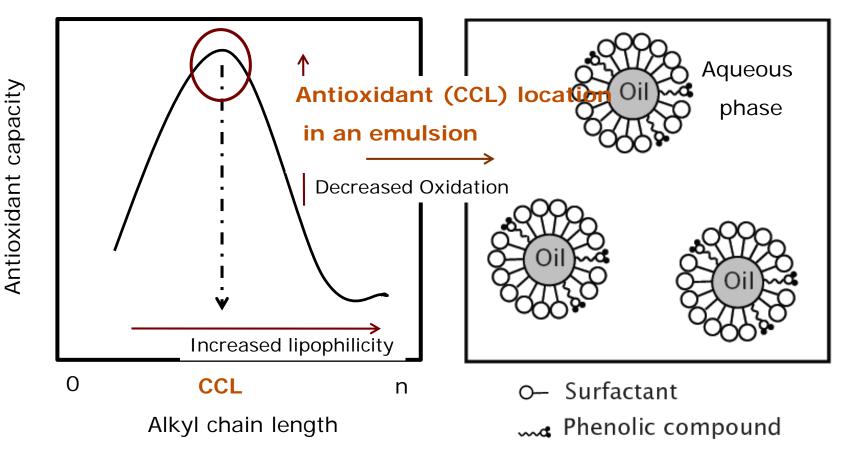
Antioxidant effects in fish oil enriched foods


- Different antioxidants have very different effects in different foods
- Possibly due to different mechanisms of action and localizations

	Tocopherol	Ascorbyl palmitate	Ascorbic acid	EDTA	Propyl gallate/ Gallic acid	Lactoferrin	Caffeic acid
Milk 1.5% fat	Weak anti	Anti		Anti to no			
Milk drink 1.5% fat		Pro		Anti		Weak anti to pro	
Drinking yoghurt 1.5% fat				Anti			
Dressing 25% fat	Weak anti	Pro		Anti			
Mayonnaise 80% fat	Weak anti to pro	Pro	Pro	Anti	Pro	Weak anti to pro	
Energy bars 6.2% fat	Anti to weak pro	Pro		Pro			Pro

Pro: Prooxidative; Anti: Antioxidative

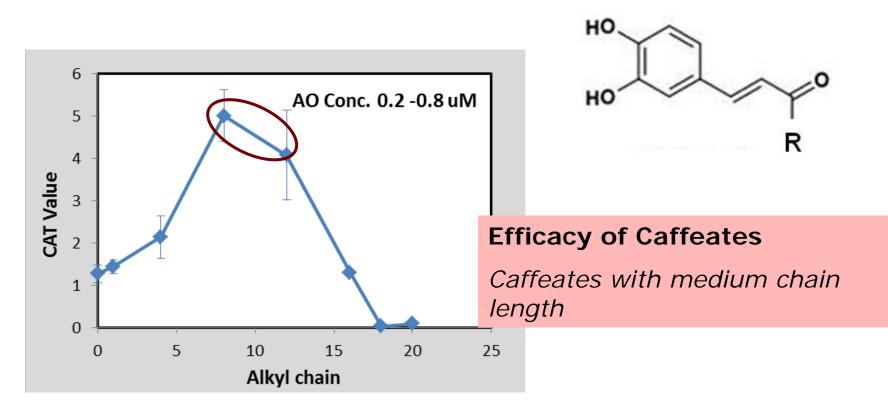
Effect of rosemary extracts on fish oil enriched milk


Qui, Jacobsen and Sørensen, Food Chem (2018)

29 DTU Food, Technical University of Denmark

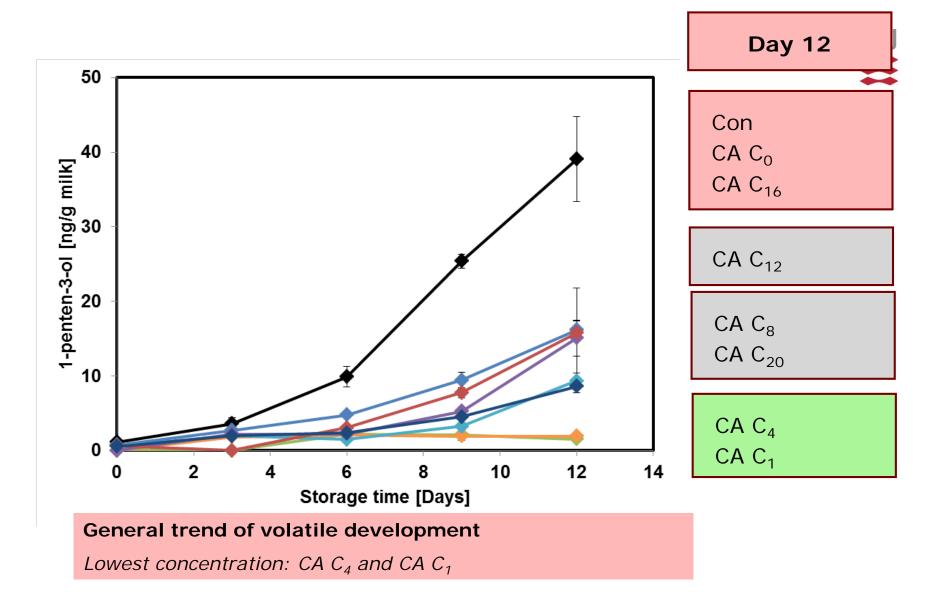
Lipophilised antioxidants

Cut-off effect (Model emulsions, o/w)



CCL = Critical chain length

Modified from Laguerre et al., 2013. In: Lipid Oxidation: Challenges in Food systems, 261-295


Caffeates as antioxidants

Conjugated Autoxidizable Triene (CAT) Assay

Emulsion (o/w): Phosphate buffer, Brij, Tung Oil. AAPH as initiator

Sørensen et al. 2014. J. Agric. Food Chem. 62, 12553–12562

The "cut-off" effect is influenced by the food system \rightarrow different results in mayonnaise

Conclusions

- Ingredients can affect lipid oxidation
- Oil quality is more important in some systems than in others
- The emulsifiers used and the composition of the interface in emulsions affect lipid oxidation
- Emulsification processes must be optimised to minimise oxidation
- Delivery emulsions can reduce lipid oxidation, but delivery emulsion must be optimized for each food system

Conclusions

- The same antioxidant can have very different effects in different food systems
- Antioxidant efficacy cannot be predicted from polar paradox or from simple emulsion systems
- Rosemary extracts are efficient in some omega-3 enriched food systems
- Antioxidants are most efficient when located at the oil-water interface

Acknowledgements

- Caroline Baron
- Nina Skall Nielsen
- Mette Bruni Let
- Anna F. Horn
- Ann-Dorit Moltke Sørensen
- Anne S. Meyer
- Anna Klein
- Sabeena Farvin

- Lis Berner
- Inge Holmberg
- Trang Vu
- Jane Jørgensen
- Xujian Qiu