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The dynamic speckle-based wavemeter

Steen G. Hanson, Department of Photonics Engineering, Technical University of Denmark, 
Denmark1 

Michael Linde Jakobsen, Department of Photonics Engineering, Technical University of 
Denmark, Denmark. 

Maumita Chakrabarti, DenseLight Semiconductor Pte. Ltd. Singapore. 

Abstract 

Based on a previously devised speckle-based set-up for probing minute wavelength changes for a coherent field [1], 
[2] we will here present the first experiments where these changes are resolved on a millisecond time scale. The
setup is based on probing the lateral shift of a speckle pattern arising from a slanted rough object, the speckle
displacement being linearly proportional to the wavenumber change. Thus, by shearing the speckle pattern across a
grating-like structure [3],[4] and [5], a frequency proportional to the frequency of the wavelength change can be
derived as will the irradiance. Thus, a cordial display of the complex field amplitude may be obtained with a high
temporal resolution and a reasonable spectral resolution. The spatial filter is here preliminarily implemented by
recording the speckle pattern with a CMOS array with subsequent digital image processing mimicking the use of a
spatial filter.

Keywords: Spectrometry, speckle, scattering 

1. Introduction

Scattering of spatially coherent light from a rough surface will due to constructive and destructive interference give 
rise to a granular structure, named speckles[6], [7] and [8]. This pattern will appear in case of free space propagation 
of the scattered field, and usually as well when an optical system transforms the field. The advantage of this pattern 
with respect to measurement systems is the modulation depth of the intensity, facilitating a precise determination of 
any movement of the speckles. An abundance of measurement systems have been established based on this fact, e.g. 
strain measurement [9], surface roughness determination [10] or velocity determination (LDA) [11]. 

For resolving minute spectral changes for a coherent source, effectively three different approaches have been 
employed, which will briefly reviewed here:  

The first being the grating-based systems relying on diffraction of the incident field from a repetitive structure. 
Although an abundance of implementations have been put forward, we will here only briefly discuss the ones that 
possess some of the same features as the one presented in [1] and [2], namely being simple, inexpensive and yet 
having high resolution. Chaganti et al. [12] offer a miniaturized implementation with a resolution between 0.3 nm 
and 4.6 nm in the visible range, where Kong et al. [13] display a miniaturized IR-spectrometer. These systems are in 
fact spectrometers that can cope with a continuous spectrum, where the one dealt with in this paper addresses a 
minute determination of spectral changes for a more or less monochromatic source. 
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The coherence length of the radiation from a source will reveal its spectral properties. This is employed in the 
Fourier transform spectrometer, where the incident field is split into two arms of and recombined. Since the travelled 
distance in the two arms is varied, the modulation depth of the resulting interference pattern will make the 
correlation function known. The Fourier transform of the modulation depth gives the source’s spectral content. A 
miniaturized version of this imaging system, which calls for rather minute alignment, has been given[14]. 

The third generic method relies on sending the field into a cavity consisting of two partly reflecting mirrors, and thus 
establishing a variable bandpass filter by changing he distance between the mirrors. A very sensitive, but delicate, 
system is established, named a Fabry-Perot interferometer by having two spherical mirrors [15]. A simpler system 
using fiber optics has been implemented with single mode fibers acting as the two arms [16].  

If coherent light is scattered off a rough surface, a change in wavelength may make the speckle pattern shift and/or 
decorrelate. Two speckle-based system relying on measuring the change/decorrelation of a speckle have been 
demonstrated; in the first system speckles arise when laser light bounces inside in multimode fiber, at the output of 
which the speckle pattern will change appearance, uncovering the change in wavelength[17]. Later a second system 
built around a photonic chip was presented [18]. In both cases, the speckle pattern will change form as a function of 
the change in wavelength. Therefore, a calibration was needed in order to relate a certain speckle pattern with the 
corresponding wavelength.  

The system, described in the following, will give rise to a linear dependence between speckle displacement and 
wavelength change.  

 
2.The speckle-based wavemeter: Theory 

The basic principle for the wavemeter will be superficially presented here, as it was previously shown in [1] and [2]. 
An incident coherent beam hits the rough surface at an angle 1α  and the diffusely scattered light is recorded by a 

detector array placed at an angle 2α . For simplicity, we assume these two angles to be in the same plane as the 
normal to the scattering surface. The simple setup is shown in Fig.1.  

 

 

 

 

 

 

Fig. 1. Simple setup for probing wavelength changes. A change in wavenumber of an incident field 

0 0( / 2 to / 2)K k K k−Δ + Δ gives rise to a speckle displacement observed by a CMOS array placed at a distance L. 

The detector array is placed at a distance L, and we treat the scenario, where the wavenumber of the incident field is 
changed from 0 0/ 2 to / 2K k K k− Δ + Δ . The footprint of the illumination in the plane of detection is 0 .ω A change in 
wavenumber will make the speckle pattern shift proportionally due to the linear phase change across the surface. 

The crosscovariance ( )0, ; ,C K kΔ ΔP p  of the speckle pattern before and after a shiftΔp  at position P in 
wavenumber is defined by 
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where we have omitted an unimportant additive background, which is  independent on the change in wavenumber. 
Angular brackets here denote “ensemble average”. Assuming the scattering structure to give rise to fully developed 
speckles, the statistics for the field will be a circular symmetric Gaussian distribution, and therefore the ensemble 
average over four field components in Eq. 1 can be simplified into the absolute square of the field correlation, which 
can be easily obtained. Following the derivations from [1] and [2], we arrive at the following expression for the 
crosscovariance of the speckle pattern before and after a change in wavelength: 
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A finite radius of curvature, R, of the incident beam has here been included in the derivation. The sign of R is 
positive for a converging field. This equation disclose the most important parameters for the setup. We get a shift in 
position of the speckle pattern: 
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a speckle size: 
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and a decorrelation depending on the change in wavenumber given by: 
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The relation between speckle shift and change in wavenumber given by Eq. 1, shows an interesting and surprising 
feature, namely that the gearing (ratio between speckle shift and change in wavenumber) can be arbitrarily large as 

2α  approaches / 2.π  However, the drawback for such large angles will be a non-linear speckle shift, the cure for 
which will be discussed in the next section.  

A good estimate of the spectral resolution is given by the accuracy with which the center of the crosscovariance can 
be estimated. A good estimate for this is the width of the crosscovariance peak divided by the square root of the 
number of speckles at the detector array. Following Ref. [2], we get the spectral resolution to be given by  
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 where we have assumed 1 2 0 ,α α α= = the number of pixels in the array being pixN  and finally having assumed the 

speckle size to be three pixels. This gives a spectral resolution of 6
0/ 2.7 10k K −Δ = ⋅  . We have here assumed a 
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Fig. 3. The real and imaginary part of each of the 21 speckle patterns, left, and these readings shown as a polar plot to the right. 

It is emphasized that the absolute value of the phasor for the speckle pattern (real- versus imaginary part) is of no 
importance. Only the change in angle and length of the phasor carries information. A one-pitch change of speckle 
position corresponds to one revolution in the cordic plane (Fig.3b). In our case, the pitch was 20 pixels. Here a 
displacement of one pixel corresponds to a wavelength change of 11.4 pm giving that one revolution in the cordic 
corresponds to 229 pm.   

Using the above method for deriving the change in irradiance and wavenumber, the temporal resolution will be 
limited due to the update rate of the array detector. An increase of the temporal resolution is obtained by using the 
methods from Spatial Filtering Velocimetry, [3], [4] and [5]. Alternatively, an array of high-speed single detectors 
can be arranged and connected to provide the real- and imaginary part of the speckle signal. A higher sensitivity can 
be achieved by increasing the angle between the normal to the surface and the observation angle, with the drawback 
of having a variation of the speckle velocity across the grating. This can be circumvented by having a grating with 
variable pitch. 

4.Conclusions 

The basic principle of the speckle-based wavemeter has been revisited and the first use of Spatial Filtering 
Velocimetry (SFV) is shown. A series of speckle images obtained for free space propagation of diffusely scattered 
light from a VCSEL were digitally analyzed as would be the case for SFV processing. A real and imaginary value of 
a spectral component of the speckle pattern were found, and a complex number was associated to each of the 
recordings. The change of the argument to this complex number provided the change in wavenumber, and the 
change in its absolute value revealed the change in irradiance form the scattering surface, and therefore the change in 
laser power. An experiment demonstrated this, when the temperature of the VCSEL was changed.  
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