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Brief technology description 

Na-NiCl2, or Sodium-nickel chloride, batteries are secondary (i.e. rechargeable) batteries. They are also known 

as ZEBRA (Zeolite Battery Research Africa Project) batteries. They are applicable for both power-intensive and 

energy-intensive electrical energy storage. They can be used on both grid level and for mobile applications such 

as electric and hybrid vehicles [1].  

Na-NiCl2 batteries are similar to the more mature Na-S batteries. The key components of a Na-NiCl2 battery cell 

are the molten sodium anode, a ceramic β-alumina oxide solid state electrolyte (BASE), and a porous cathode, 

where the reactant is NiCl2. The cathode also contains liquid NaAlCl4 to obtain sufficient ionic conductivity [2], 

[3]. A schematic of a cell can be seen in Figure 1.  
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Figure 1: Schematic of Na-NiCl2 battery cell. The “Ceramic electrolyte” is BASE [1]. 

A picture of five connected cells and the components used to manufacture a cell can be seen in Figure 2.  

 

 

Figure 2: Na-NiCl2 battery cell components [1]. 

Cells are assembled in a fully discharged state. This allows the sodium to be supplied in the form of NaCl as can 

be seen from the discharge reaction:  

2 Na – 2e
- 
 �  2 Na

+
 (Anode) 
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NiCl2 + 2 Na
+
 + 2e

- 
 
 
 �   2 NaCl + Ni (Cathode) 

2 Na + NiCl2 �  2 NaCl + Ni (Full Cell) 

During charge the reverse reaction occurs. The reaction has a full cell potential of 2.58 V at 300 °C. The 

operating temperature is 250 °C to 350 °C to ensure sufficient Na ionic conductivity through the BASE [4]. A 

lower limit operation temperature of 150 °C is required to maintain liquid NaAlCl4 [1]. An illustration of the 

charging reaction can be seen in Figure 3. 

 

Figure 3: Illustration of Na-NiCl2 charging process [2]. 

The battery cells are connected in battery units with thermal insulation, heating and cooling systems, and 

various control systems. Battery modules can be combined in larger battery units for grid scale applications. 

Current commercial grid scale units are shown in Section “Examples of market standard technology”. A grid 

scale Na-NiCl2 battery installation consists as a minimum of a unit containing the battery modules, a battery 

management system, and a power conversion system required to connect the batteries to the grid.  

For a more detailed technology description the reader is referred to “Encyclopedia of Electrochemical Power 

Sources” [1]. 

Input/output  

The primary input and output are both electricity. Electricity is converted to electrochemical energy during 

charge. The electrochemical energy is converted back to electricity during discharge in the reaction process 

described above.  

Energy efficiency and losses 

Heat loss is reported to be less than 0.6 % of total energy storage capacity per hours for a 17.8 kWh battery 

module and less than 0.3 % of total storage capacity per hour for a 35.7 kWh battery module [1]. The heat loss 

depends on the specific assembly unit. Heat loss in large battery installations consisting on multiple assembly 
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units, e.g., 10 identical container assembly units, each containing multiple battery modules is expected to scale 

approximately linearly with installation size. The heat loss in percentage of total energy storage capacity is thus 

approximately independent of total installation size. During continued operation, which can include some 

hours of idle time, the Ohmic losses in the charge/discharge reaction will balance the heat loss. The heat loss 

should thus not be treated as an independent source of energy loss during operation as it is included in the 

battery efficiency. Simple air cooling is sufficient for maintaining temperature during operation and build into 

standard battery units. 

Na-NiCl2 batteries can be repeatedly cooled to ambient temperatures and reheated, i.e. undergo so-called 

freeze-thaw cycles, without any decrease to battery lifetime [1], [4], [5]. Typical time scales are days to solidify 

during cooling and tens of hours to liquidize during reheating [6]. Na-NiCl2 batteries should remain heated 

during shorter idle periods.  

At grid scale battery operation, the DC efficiency of a Na-NiCl2 module has been measured to 90 % [7]. A 0.5 

MW Na-NiCl2 battery unit has been measured to 89 % [4]. Auxiliary losses, e.g., from cooling account for 

approximately 2 % [7]. 

Regulation ability and other system services 

Standard recharging is slower than discharging the battery, i.e. the standard charging input will be lower than 

the rated output capacity. Commercial data states 6-8 hours to recharge a battery with 3 hour capacity at rated 

discharge capacity [1], [8]. Fast recharge at a rated equal to or above the rated output power is possible at the 

cost of decreased energy efficiency and accelerated battery degradation [9]. At low charge/discharge rates 

(approximately 1/3 of rated power) the full battery energy storage capacity can be used. At rated power output 

only 80 % of storage capacity should be utilized to prevent accelerated degradation [4].  

The response time (i.e. the time it takes for the battery to supply requested charge or discharge power) is 

stated to be 20 ms [10] and measured to be less than 1 second when the battery is operational [4]. The 

response time from non-operational mode with the battery at operating temperature takes 45 seconds. [4]. 

Given the necessary power conversion system (PCS) equipment etc. is installed, Na-NiCl2 batteries are able to 

provide energy pulses of up to at least 3 times rated power capacity for periods measured as long as 30 min 

but with storage capacity reduced by a factor of two compared to rated discharge rate [4]. The effect of such 

operation on battery lifetime is not known.  

Grid scale battery operation depends on the application. Batteries used for time shifting will generally 

complete a single charge/discharge cycle over 24 hours. Batteries used for various other grid services including 

stabilization of input from renewables will often not undergo traditional battery cycling but frequently switch 

between being charged and discharged according to demand.  

Na-NiCl2 batteries can provide a range of system services. The manufacturer FZSoNick states the following 

applications: Load levelling, power quality, renewable resource optimization, and utility grid ancillary services 

[8]. 
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Typical characteristics and capacities 

Some noteworthy European stationary installations of Na-NiCl2 batteries are listed in Table 1. 

Name Location Year of 

commissioning 

Storage capacity Rated power 

output capacity 

FIAMM Green 

Energy Island 

Almisano, Italy 2010 230 kWh 180 kW 

EDF EN Gabardone 

Project 

Colombiers, 

France 

2013 70 kWh 20 kW 

Terna Storage Lab 

1+2  

(3 installations) 

Codrongianos 

(Sardinia) and 

Ciminna (Sicily), 

Italy   

2014 and 2015 4150 kWh 

2000 kWh 

4150 kWh 

1200 kW 

1000 kW 

1200 kW 

 

Table 1: Selected Na-NiCl installations in Europe [4], [11], [12]. 

The energy density and specific energy calculated for the Energy Spring 164 system from FZSoNick [8] (See 

Figure 5) is 32.8 kWh/m3 and 56 Wh/kg, respectively.  

Typical storage period 

The storage period for Na-NiCl2 batteries depends on the operation of the batteries and can range from 

minutes to hours. 

Space Requirement 

For the Energy Spring 164 system from FZSoNick [8], the footprint of a single battery assembly unit is 10.5 

m2/MWh. Data is not available for footprint of full installations of Na-NiCl2 batteries. Assuming Na-NiCl2 battery 

assembly units will occupy a similar fraction of total installation area as Na-S battery units, the total installation 

footprint can be estimated to 70 – 116 m2/MWh on the basis of large recent Na-S battery installations [13]–

[15]. This estimate takes into consideration that the battery unit footprint is 1.5 times larger per MWh for 

current commercially available Na-NiCl2 battery units than commercially available Na-S battery units (See 

Figure 5 and reference [16]). 

Advantages/disadvantages 

General advantages and disadvantages of batteries in comparison to other technologies for energy storage are 

listed in Table 3. 
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Advantages Disadvantages 

Short response time  

Flexible installation size Relatively short lifetime 

High energy efficiency  

Versatile application Large investment cost 

Relatively compact  

Low maintenance  

Table 3: General advantages and disadvantages of batteries in comparison to other technologies for energy storage 

Even compared to other batteries, Na-NiCl2 batteries are considered reliable and low maintenance [8], [17]. 

Na-NiCl2 are high temperature batteries, however they can operate at lower temperatures than Na-S batteries. 

They can in contrast to Na-S batteries withstand repeated cooling and reheating without degradation  [4], [5]. 

They have significant pulse power capabilities, i.e. they can operate at higher power than rated for short 

durations of time [18][19]. They are among the most efficient large scale batteries. They are, despite the highly 

reactive molten sodium electrode and elevated temperatures, considered relatively safe due to intrinsic safety 

features [4], [18], [20].  

The batteries are currently expensive compared to other batteries for grid scale application for both energy 

intensive and power intensive applications. There is currently only one trading manufacturer. The energy 

storage capacity is directly coupled to the usage of nickel, which account for 47% [21] to 60 % [22] of raw 

material costs. The raw material cost of nickel is approximately 18 $/kWh at a price of 11.6 $/kg [21]–[23]. Cost 

of Ni is currently not critical to the overall battery cost but could become significant in case of large production 

cost reductions.  

Environment 

Operating batteries contain molten sodium, which pose a potential safety and environmental risks. Risk 

analyses can be found in References [4], [20]. Raw materials used in the production of Na-NiCl2 batteries are 

nonhazardous and globally available [20]. Discharged batteries can easily be recycled and the nickel reclaimed 

[17], [20]. A detailed Life Cycle Assessment (LCA) can be found in Reference [24]. 
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Research and development perspectives 

It is not possible to quantify the full potential for improvements through R&D at the given time. The potential is 

however, estimated to be substantial in terms of both technical and financial specifications [25].  

All critical components of the battery are undergoing active research. These include the BASE, the sealing 

materials, the sodium electrode, the cathode, and battery interfaces. Research efforts are especially focused 

on geometry optimizations and improvement of Na ionic conductivity through the BASE. New solid electrolytes 

to replace BASE are also being considered [25].  

Research is also going into slightly changed chemistries which would change the battery characteristics 

significantly [3], [26]. 

Due to the similarity with Na-S batteries, synergies in research and development efforts can be expected.  

Examples of market standard technology 

FZSoNick, a subsidiary of FIAMM, is the only currently trading commercial manufacturer of Na-NiCl2 batteries 

[8]. Illustration and technical specifications available at below referenced URL are presented for a grid scale 

assembly unit in Figure 4 - Figure 5. Units are highly modular and can be combined to an installation of desired 

size. 

 

Figure 4: Energy Spring 164 system from FZSoNick [8]. 
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Figure 5: Specifications for Energy Spring 164 system from FZSoNick [8]. http://www.fzsonick.com/media/369733/20161221_energy-

spring-164_datasheet-a4.pdf 

 

Prediction of performance and cost 

Data for 2015 

The Italian “Terna Storage Lab” installation reported above has been used for economic data to as large extend 

as possible [4], [12]. A significant reason for placing emphasis on this specific installation is that the owner, 

Italian grid operator Terna, has made financial and measured technical data available. This is preferred over 

estimates.  

The balance between power capacity and energy storage capacity in battery installations will influence the 

investment costs per MW and MWh. The ratio can be quantified through the discharge time at rated power, h, 

and has historically varied. Calculated as a weighted average for the “Terna Storage Lab”, h is 3 hours. This is 

similar to h for currently available commercial grid-scale units.  

O&M costs are obtained from Carlsson et al. [27] (assumed similar to 2013 values for Na-S batteries in good 

agreement with EPRI data [28]), and Zakeri and Syri [29]. It is highly uncertain how O&M costs will change in 

the future with deployment of highly standardized container type units.  
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Assumptions for the period 2020 to 2050 

Estimates for 2020 and 2030 in the data sheet below are based on data from IRENA [30]–[32]. Values in USD 

have been converted to € using an exchange rate of 0.86. 

As discussed in the Chapter Electricity Storage, the current PCS cost including grid connection is 0.4-0,5 

M€/MW. This is used as reference value for the “capacity component”. The inverter costs, which account for 

approximately 50 % of cost [13], [22], [24], is predicted to decrease by 20 in 2020 %  and 50 % in 2030 [25], 

[26]. The other 50 % of cost is assumed constant. Cost reductions of capacity components is assumed to not 

occur beyond 2030.  

2050 values of the battery cost (here “energy component”) predicted from learning curves have previously 

found cost reductions of approximately 10 %[23] and 25 %[28] for the period 2030 to 2050 for Na-S batteries. 

As Na-S and Na-NiCl2 batteries have similar cost drivers, the average (17.5 %) is used for the energy component 

cost in 2050.  

“Other project costs” is assumed to be 8 % of CAPEX (here “Specific investment”), as was the case for the 

Terna unit [29]. 

O&M costs are assumed to be constant in the given units.  

No development in calendar lifetime, cycle lifetime, and efficiency is assumed to take place beyond 2030. The 

regulatory ability is assumed to not improve.  

Learning curves and technological maturity 

The level of maturity for grid scale Na-NiCl2 batteries is “Category 2: Pioneer Phase”. Based on the current 

commercial situation it is not possible to establish learning curves. The technology is for grid scale applications 

suffering from slow rate of deployment compared to other grid scale batteries despite being relatively old. It is 

doubtful whether grid scale Na-NiCl2 batteries will ever achieve Category 3 maturity: “Commercial technologies 

with moderate deployment”. 

Uncertainty 

As the technology is in Category 2 level maturity, a technology development track cannot yet be established 

without large uncertainty. Uncertainties for 2020 and 2030 are when possible obtained from IRENA [26], [27]. 

Uncertainties in 2050 are assumed to be percentagewise similar to those in 2030. For the “capacity 

component” the maximum values for PCS cost found by Zakeri and Syri [24] are used as baseline. The 

uncertainties are calculated for future years by keeping the relative uncertainty compared to the cost 

prediction constant.  

The uncertainties for O&M costs are determined using the literature review by Zakeri and Syri [24]. The 

uncertainties are calculated from the expected value using the relative difference between the extrema and 

the average in the literature review. Uncertainties are in general large.  



 

 156 

Additional remarks 

Since battery units are highly modular and equipment is the main cost of a full installation, a close to linear 

scaling in total cost vs. installation size is expected from a technological point of view. Significant financial 

benefits from increasing installation sizes will rely on negotiations with the manufacturer.  

Even though Na-NiCl2 batteries have high commercial potential, rapid cost reduction of alternative storage 

solutions, e.g. Li-ion batteries could halter commercial deployment and technological development of Na-NiCl2 

batteries. This can prevent Na-NiCl2 batteries from reaching full commercial potential.   
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Quantitative description 

Assumptions for prediction of development are discussed above. 

Technology 
 

Na-NiCl2 battery 
 

  
2015 2020 2030 2050 

Uncertainty 
(2020) 

Uncertainty 
(2050) 

Note Ref 
 

Energy/technical data 
  

   
Lower Upper Lower Upper 

 
 

 

Form of energy stored Electricity        

Application System, power- and energy-

intensive 
       

Energy storage capacity for one unit 
(MWh) 

4.15 4.15 4.15 4.15 3.11 5.19 3.11 5.19 A,B,P [12]+[11] 
 

Output capacity for one unit (MW) 1.2 1.2 1.2 1.2 0.90 1.50 0.90 1.50 A,B,P [12]+[11]  

Input capacity for one unit (MW) 0.45 0.45 0.45 0.45 0.34 0.56 0.34 0.56 C,P [34]+[8]  

Round trip efficiency  DC(%) 87 87 87 87 81 93 83 95 D [4]+[7]; [31]  

 - Charge efficiency (%) - - - - - - - -    

 - Discharge efficiency (%) - - - - - - - -    

Energy losses during storage (%/day) 
0 0 0 0 0 15 0 15 E,P [35]+[5];[31] 

 

Forced outage (%) 0 0 0 0 0 2 0 2 F,P [8]  

Planned outage (weeks per year) 0 0 0 0 0 0 0 0 F,P [8]  

Technical lifetime (years) 
15 17 23 23 9 25 12 33  

[28]+[8];[30]+[32]+
[31] 

 

Construction time (years) 0.5 0.5 0.5 0.5 0.2 2.0 0.2 2.0 G,P [11]  

            

Regulation ability 
 

 

Response time from idle to full-rated 
discharge (sec) 

0.02 0.02 0.02 0.02 0.001 0.02 0.001 0.02  [10]/[4]+[33] 
 

Response time from full-rated charge to 
full-rated discharge (sec) 0.5 0.5 0.5 0.5 0.001 0.5 0.001 0.5 H,P [4] 

            

Financial data  

Specific investment (M€2015 per MWh) 1.0 0.42 0.26 0.23 0.32 0.53 0.18 0.30 
I, J 

[12]+[28]; 
[30]+[31] 

 

 - energy component (M€/MWh) 0.76 0.26 0.14 0.11 0.21 0.32 0.09 0.14 K [12]; [31]  

 - capacity component (M€/MW)  0.48 0.41 0.33 0.33 0.30 0.58 0.25 0.47 L [12]; [31]  

 - other project costs (M€/MWh) 0.08 0.03 0.02 0.02 0.03 0.04 0.01 0.02  [12]  

Fixed O&M (% total investment) 1.5 1.5 1.5 1.5 0.9 2.0 0.9 2.0 M [29]+[28]+[27]  

Variable O&M (€2015/MWh) 0.6 0.6 0.6 0.6 0.4 2.1 0.4 2.1 
N [29] 

 

            

Technology specific data  

Alternative Investment cost (M€2015/MW) 3.0 1.4 0.9 0.8 1.1 1.8 0.6 1.0 I [12]+[28]  

Lifetime in total number of cycles 4500 4500 4500 4500 1500 11300 1500 11300 O [4]+[8];[30]+[32]  

Specific power (W/kg) 16 16 16 16 12 20 12 20 O,P [8]  

Power density (W/m3) 9350 9350 9350 9350 7012 11687 7012 11687 O,P [8]  

Specific energy (Wh/kg) 56 56 56 56 42 70 42 70 O,P [3]  

Energy density (Wh/m3) 32700 32700 32700 32700 24525 40875 24525 40875 O,P [3] 
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A. Italian batteries (Codrongianos (Sardinia) and Ciminna (Sicily)) used as standard. 

B. Highly modular technology type with near linear scaling between total cost and installation size. Power 

and storage capacity cannot be varied independently. 

C. Can fast recharge with rate identical to discharge rate. Standard charge/discharge time is 8/3 h. 

D. Efficiency varies depending on use. Loss due to balance of system is approximately 2 % higher than for 

Li-ion batteries with similar PCS equipment [7] 

E. During intended continuous operation, Ohmic losses maintain the temperature of the battery. Losses 

are thus included in round trip efficiency. No electrical self-discharge. Heat losses during idle periods 

on the order of 0.5 %/h discussed above. IRENA finds self-dischage per day to vary between 0.1 % and 

15 % depending on unit and use [31] 

F. Highly reliable and with no downtime required for maintenance during lifetime according to 

manufacturer. 

G. Can be down to 2 months. 

H. Measurement. Possibly limited by PCS. 

I. Average value for Italian “Terna Storage Lab” batteries with their specific storage to power capacity 

ratio. 

J. Development rates from IRENA are used for prediction of future cost [30] 

K. Includes “Batteries” from reference [12] 

L. Includes “PCS-SCI”, “Transformer”, “Auxiliary equipment”, “Switching and actuating equipment”, and 

“System Controls & Instrumentation (SCI)” from reference [12]. 

M. Assumed similar to Na-S batteries in good agreement with data from EPRI [28] 

N. Highly uncertain. Average value given. Reported in range 0.38 to 2.1 [29] 

O. Data for Energy Spring 164 system from FZSoNick. Irena do not expected improvements on cell level. 

Improvements on installation level might occur [32] 

P. Uncertainties are based on a qualified guess. 
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