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Brief technology description 

Na-S batteries are secondary (i.e. rechargeable) batteries and are designed for system level applications. They 

are both power-intensive and energy-intensive. Larger installations (34 MW – 50 MW) are used for time 

shifting of production from renewable or conventional production plants. Smaller installations (400 kW – 8 

MW) are used as back-up power, for off-grid applications, and for ancillary services. [1]–[3] 

Na-S battery cells consist of a molten sodium anode, a molten sulfur cathode, and a β-alumina oxide solid state 

electrolyte (BASE) incased in a single tube. A schematic of a Na-S battery cell can be seen in Figure 1.  
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Figure 1: Schematic of a Na-S battery cell. [4] 

 

The reactions taking place during discharge on the cathode and anode sides of the battery are  [5], [6] 

2 Na – 2e-  �  2 Na+ (Anode) 

xS + 2 Na
+
 + 2e

- 
 
 
 �   Na2Sx (x=3~5)  (Cathode) 

During charge the reverse reaction occurs. A graphical schematic of the reaction process and the full cell 

reaction can be seen in Figure 2. 
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Figure 2: Graphical schematic of the reaction process and the full cell reaction. EMF: electromotive force. [4] 

During continued discharge the value of x in Na2Sx will gradually decrease and more sodium rich discharge 

products will be formed. The reaction occurs at a potential of 1.78 – 2.08 V at 350 °C depending on the state of 

battery charge. Relatively high temperatures (300-350 °C) are required for the reaction to take place. Elevated 

temperatures are required to keep the electrodes molten (98 °C for Na, 115 °C for S, and > 250 °C for Na2Sx 

products [7]). A temperature of 300 °C or more is required to ensure sufficient Na ion conductivity through the 

BASE. The production of BASE has large impact on both battery performance and cost [6]. 

Cells are arranged in modules with thermal enclosures to minimize heat loss. An illustration of a module can be 

seen in Figure 3.  
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Figure 3: Illustration of Na-S battery module. [4]  

A Na-S battery installation consists of one or more Na-S battery units containing the battery modules (shown in 

Figure 3), a battery management system, and a power conversion system required to connect the batteries to 

the grid. A schematic and a picture of an older 1 MW Na-S battery installation can be seen in Figure 4. For 

current market standard units see “  

An alternative research route is to use the Na-S chemistry in a flow battery [20], [21].  

Due to the similarity with Na-NiCl2 batteries, synergies in research and development efforts can be expected.  

Examples of market standard technology”.  
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Figure 4: Schematic and picture of a 1 MW Na-S battery installation. [4] 

For a more detailed technology description the reader is referred to “Encyclopedia of Electrochemical Power 

Sources” [8]. 

Input/Output  

Primary input and output are both electricity. Electricity is converted to electrochemical energy during the 

charge process and converted back to electricity during the discharge process as described above. 

Energy efficiency and losses 

The heat loss from each battery module will be 2.2 – 4.0 kW [4]. This loss amounts to approximately 1 % per 

hour, and the Na-S batteries are thus not ideal for long term storage. During continued operation, which can 

include some hours of idle time, the Ohmic losses in the charge/discharge reaction will balance the heat loss 

[8]. The heat loss should thus not be treated as an independent source of energy loss during operation as it is 

included in the battery efficiency. Simple air cooling is sufficient for maintaining temperature and build into 

standard battery units. The battery temperature should be maintained to prevent the electrodes from 

solidifying since freeze-thaw cycles significantly reduce battery lifetime [9]. 

Individual battery cells have been measured with efficiencies at 89 % [9]. The efficiency of a grid size battery 

unit including auxiliary losses has been measured to be 83 % for an Italian installation primarily used for time 

shifting [9]. Reliable data for the efficiency in operation mode with constant power adjustment is not available 

for recently produced Na-S battery units.  
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Regulation ability and other system services 

The response time (i.e. the time it takes for the battery to supply requested charge or discharge power) is 

according to the manufacture <1 ms at operation temperature[10]. Measurements find that the battery can 

change from full rated charging power to full rated discharging power in less than 50 ms [9] This is possibly 

limited by the power conversion system (PCS). Na-S batteries are able to provide energy pulses above rated 

discharge power for up to minutes at a time [8]. Pulses can be as large as 6 times rated power capacity for 30 s 

[11]. The other systems in the total installation, e.g., the PCS, and the grid connection must, however, be 

dimensioned accordingly for the pulse power capability to be utilized. This will increase cost.  

Grid scale battery operation depends on the application. Batteries used for time shifting will generally 

complete a single charge/discharge cycle over 24 hours. Batteries used for various other grid services including 

stabilization of input from renewables will often not undergo traditional battery cycling but frequently switch 

between being charged and discharged according to demand.  

Due to its short response time combined with relatively large storage and power capacity, Na-S batteries can 

provide a range of system services. NGK Insulators states: ”The NAS battery systems also provide additional 

functions, including primary reserve, secondary reserve, load balancing and voltage control.” [1]  

Typical characteristics and capacities 

Na-S battery installations come in two typical sizes. The larger installations used for time shifting have 34-50 

MW capacity with 6-7.2 hours of storage capacity at full load (245-300 MWh). Information for three such 

installations are shown in Table 4. Smaller installations of up to 8 MW capacity have been installed during the 

last 20 years in 200 different locations [1]. In all cases the storage capacity corresponds to 6-8 hours of full 

power output capacity. As the batteries are highly modular, the installation size can be easily be varied 

according to demand. The power capacity to storage capacity is, however, for currently available commercial 

products fixed at a ratio of 1:6-8 [10].   

 

Location Rokkasho village, 

Aomori, Japan 

Campania Region (3 sites), 

Italy 

Buzen City, Fukuoka, Japan 

 

 

Commissioned  2008 2015 2016 
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Storage capacity  245 MWh 250 MWh 300 MWh 

Power capacity  34 MW 34.8 MW 50 MW 

Energy density  <41.6 kWh/m3* 26 kWh/m3 

Specific energy  <76 Wh/kg** 56 Wh/kg 

Total land use 17.5 m2/MWh 77 m2/MWh 47 m2/MWh 

Table 4: Larger Na-S battery installations [1], [9], [12]. *Value for individual battery assembly units. ** Value for individual battery 

modules 

New installations will for economic reasons likely consist of the standard commercially available units 

mentioned in   

An alternative research route is to use the Na-S chemistry in a flow battery [20], [21].  

Due to the similarity with Na-NiCl2 batteries, synergies in research and development efforts can be expected.  

Examples of market standard technology. NGK Insulators states that container type units as those used for the 

Buzen City installation will decrease construction time and cost compared to previous installations. 

The lifetime in number of cycles for Na-S batteries depend on the usage. The number of cycles can be 

increased by utilizing less than the full storage capacity in each cycle as can be seen in Figure 5. The ratio of 

energy discharged from the battery relative to the fully charged state is referred to as the Depth of Discharge 

(DoD). At 0 % DoD the battery is fully charged. At 100 % DoD the battery is fully discharged.  

 

Figure 5: Expected number of cycles (in thousands) as function of Depth of Discharge (DoD) during cycles [9]. 
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A Na-S battery used for time shifting with daily cycles of >80 % DoD will have an expected lifetime of 4500 

cycles. If used for grid services, the average DoD will likely be smaller increasing the expected cycle lifetime. 

The technical lifetime is expected to be 15 years at a usage of 300 cycles at >80 % DoD per year [13] [14]. 

Longer technical lifetimes have not been reported. This is potentially due battery lifetime being limited by cycle 

lifetime during standard battery operation. An extended technical lifetime might not be obtainable by simply 

reducing the number of annual cycles or DoD for various reasons such as corrosion.  

Typical storage period 

The typical storage period depends on operation. It ranges from minutes to hours. With charge/discharge 

times of 6-8 h the normal storage period will be on this scale for optimal battery storage utilization.  

Space Requirement 

Space requirement per MWh are given in Table 4. The space requirements in Table 4 are calculated by dividing 

the total land use of the installations with the storage capacities. Footprint of current grid scale installations 

vary from 17.5 to 77 m2/MWh. The footprint is highly sensitive to the layout of the installation and the used 

battery units and other equipment. The value of 47 m2/MWh for Buzen City, where highly standardized 

container units are installed, is likely the most representative for future grid scale installations.  

Advantages/disadvantages 

General advantages and disadvantages of batteries in comparison to other technologies for energy storage are 

listed in Table 4. 
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Advantages Disadvantages 

Short response time  

Flexible installation size Relatively short lifetime 

High energy efficiency  

Versatile application Large investment cost 

Relatively compact  

Low maintenance  

Table 5: General advantages and disadvantages of batteries in comparison to other technologies for energy storage 

Compared to many other batteries, Na-S batteries have the advantage that they a composed of inexpensive 

and abundant raw materials. Therefore, they have the potential to be very low cost and be manufactured on 

very large scale. Na-S batteries are well proven and developed for grid scale applications and have been 

commercially available for grid scale purposes for 15 years. They are well suited for energy intensive storage 

applications but can also be used for power intensive purposes. The cost per MW power capacity is, however, 

larger than for batteries mainly intended for power intensive applications. Na-S batteries have significant pulse 

power capabilities, i.e. they can operate at higher power than rated for short durations of time [8], [11]. 

Na-S batteries require high temperatures and should remain heated, as the battery can only survive a limited 

(in the order of 20) freeze-thaw cycles in which the temperature is lowered and the molten electrodes solidify 

[9]. They are thus not suited for longer periods of idle storage with resulting heat losses but should ideally 

always be charging or discharging for optimal utilization. The market for Na-S batteries is currently limited, due 

to only one commercial manufacturer existing. Due to the elevated temperatures and the highly reactive 

molten electrode materials, safety concerns and requirements are also higher for Na-S batteries than most 

other types of batteries. However, only one safety incident has been reported as a battery caught fire in 2011 

[6]. 

Environment 

The batteries contain molten sodium, sulfur and polysulfides. These all pose potential safety risks. Detailed 

safety and risk assessments are available in references [4], [9]. Sodium is the only material which must be 

recycled as hazardous [4]. 

Research and development perspectives 

It is not possible to quantify the full potential for improvements through R&D at the given time. The potential is 

however, estimated to be substantial in terms of both technical and financial specifications [15]. 

All critical components of the battery are undergoing active research. These include the BASE, the sealing 

materials, the sodium electrode, the sulfur electrode, and battery interfaces [16]. Research efforts are 

especially focused on geometry optimizations [17] [18] and improvement of Na ionic conductivity through the 

BASE [19]. New solid electrolytes to replace BASE are also being considered [15].  
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An alternative research route is to use the Na-S chemistry in a flow battery [20], [21].  

Due to the similarity with Na-NiCl2 batteries, synergies in research and development efforts can be expected.  

Examples of market standard technology 

NGK Insulators is the only commercial manufacturer of Na-S batteries. They currently supply two types of 

modular units which are shown in Figure 6. These modular units can be used to form installations of the 

desired size.  The recently installation in Buzen City consist of container type units such as the units shown in 

Figure 6. 
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Figure 6: Commercial units available from NGK Insulators (https://www.ngk.co.jp/nas/) [10]. 

Prediction of performance and cost 

Data for 2015 

The Italian case (Campania Region) presented above has been used for economic data to as large an extent as 

possible [9], [22]. A significant reason for placing emphasis on this specific installation is that the owner, Italian 

grid operator Terna, has made financial and measured technical data available. Using real data is preferred 
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over the use of estimates. However, it should be noted, that the cost might be relatively large compared to the 

market situation since Terna, for safety considerations following a 2011 fire incident in a Na-S battery, have 

requested fewer battery cells in each module than standard.  

The balance between power capacity and energy storage capacity in battery installations will influence the 

investment costs per MW and MWh. The ratio can be quantified through the discharge time at rated power, h. 

It is nearly constant at 6-7.2 hours for currently available units. h is used to calculate the investment cost per 

storage capacity from the investment cost per power capacity.  

O&M costs are obtained from Carlsson et al. [23] (assumed similar to 2013 values), and Zakeri and Syri [24]. 

Assumptions for the period 2020 to 2050 

Estimates for 2020 and 2030 in the data sheet below are based on data from IRENA [25]–[27]. Values in USD 

have been converted to € using an exchange rate of 0.86. The specific investment cost is adjusted to account 

for an expected decrease in h for the most common market-standard units from 7.2 h to 6 h.  

As discussed in the Chapter Electricity Storage, the current PCS cost including grid connection is 0.4-0,5 

M€/MW. This is used as reference value for the “capacity component”. The inverter costs, which account for 

approximately 50 % of cost [13], [22], [24], is predicted to decrease by 20 in 2020 %  and 50 % in 2030 [25], 

[26]. The other 50 % of cost is assumed constant. Cost reductions of capacity components is assumed to not 

occur beyond 2030.  

2050 values of the battery cost (here “energy component”) predicted from learning curves have previously 

found cost reductions of approximately 10 % [23] and 25 % [28] for the period 2030 to 2050. The average (17.5 

%) is used for the energy component cost in 2050.  

“Other project costs” is assumed to be 14 % of CAPEX (here “Specific investment”), as was the case for the 

Terna unit [29]. 

O&M costs are assumed to be constant in the given units.  

No development in calendar lifetime, cycle lifetime, and efficiency is assumed to take place beyond 2030. The 

regulatory ability is assumed to not improve.  

Learning curves and technological maturity 

Cost has been reduced with the introduction of large scale production of highly standardized units [12]. The 

level of maturity for system level scale is late “Category 2: Pioneer Phase” but entering “Category 3: 

Commercial technologies with moderate deployment”. 

Uncertainty 

As the technology is just about to enter Category 3 level maturity, a technology development track cannot yet 

be established without large uncertainty. Uncertainties for 2020 and 2030 are when possible obtained from 

IRENA [26], [27]. Uncertainties in 2050 are assumed to be percentagewise similar to those in 2030. For the 
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“capacity component” the maximum values for PCS cost found by Zakeri and Syri [24] are used as baseline. The 

uncertainties are calculated for future years by keeping the relative uncertainty compared to the cost 

prediction constant.  

The uncertainties for O&M costs are determined using the literature review by Zakeri and Syri [24]. The 

uncertainties are calculated from the expected value using the relative difference between the extrema and 

the average in the literature review. Uncertainties are in general large.  

Additional remarks 

Since battery units are highly modular and equipment is the main cost of a full installation, a close to linear 

scaling in total cost vs. installation size is expected from a technological point of view. Significant financial 

benefits from increasing installation sizes will rely on negotiations with the manufacturer.  

Even though Na-S batteries have high commercial potential, rapid cost reduction of alternative storage 

solutions, e.g., Li-ion batteries, might halter commercial deployment and technological development of Na-S 

batteries. This can prevent Na-S batteries from reaching full commercial potential. 
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Quantitative description 
Technology  NaS battery  

  2015 2020 2030 2050 Uncertainty 
(2020) 

Uncertainty 
(2050) 

Note Ref  

Energy/technical data         Lower Upper Lower Upper
  

    

Form of energy stored Electricity        

Application System, power- and energy-

intensive 

    
 

 
 

Energy storage capacity for one unit 
(MWh) 

250 300 300 300 30 3000 30 3000 A B,Q [9]  

Output capacity for one unit (MW) 35 50 50 50 5 500 5 500 A,B,Q [9]  

Input capacity for one unit (MW) 35 50 50 50 5 500 5 500 A,B,Q [9]  

Round trip efficiency - DC (%) 83 83 85 85 71 92 74 96 C [9];[26]  

 - Charge efficiency (%) - - - - - - - -    

 - Discharge efficiency (%) - - - - - - - -    

Energy losses during storage (%/day) 0 0 0 0 0 1 0 1 D,Q [11]/[30]/[26]  

Forced outage (%) 0 0 0 0 0 2 0 2 E,Q [13]  

Planned outage (weeks per year) 0 0 0 0 0 0 0 0 F,Q [13]  

Technical lifetime (years) 15 19 24 24 10 28 14 36 G [13];[25]+[27]  

Construction time (years) 0.5 0.5 0.5 0.5 0.2 2.0 0.2 2.0 Q [1]  

            

Regulation ability 
 

 

Response time from idle to full-rated 
discharge (sec) 

0.001 0.001 0.001 0.001 0.001  0.02  0.001  0.02 H [10]+[28]  

Response time from full-rated charge to 
full-rated discharge (sec) 

0.050 0.050  0.050 0.050 0.001 0.05 0.001 0.05 H,I,Q [9] 

            

Financial data                                   

Specific investment (M€2015 per MWh) 0.46 0.37 0.23 0.20 0.25 0.73 0.13 0.39 G [22];[25]+[26]  

 - energy component (M€/MWh) 0.31 0.25 0.14 0.11 0.18 0.50 0.08 0.23 G, J [22]+[26]  

 - capacity component (M€/MW)  0.63 0.41 0.33 0.33 0.22 0.78 0.18 0.64 G, K [22]+[26]  

 - other project costs (M€/MWh) 0.06 0.05 0.03 0.03 0.04 0.10 0.02 0.05 G [22]+[26]  

Fixed O&M (% total investment) 1.5 1.5 1.5 1.5 0.8 7.2 0.8 7.2 G,L,M [23];[24]  

Variable O&M (€2015/MWh) 1.8 1.8 1.8 1.8 0.3 5.6 0.3 5.6 G [24]+[23]  

            

Technology specific data  

Alternative Investment cost (M€2015/MW) 3.3 2.2 1.4 1.2 1.5 4.4 0.8 2.3 G [22];[25]+[26]  

Lifetime in total number of cycles 4500 5600 7500 7500  1100 11200 1500 15000 N, G [9];[25]+[27]  

Specific power (W/kg) 9.3 9.3 9.3 9.3 6.98 11.63 6.98 11.63 O,P,Q [10]  

Power density (W/m3) 4300 4300 4300 4.300 3225 5375 3225 5375 O,P,Q [10]  

Specific energy (Wh/kg) 56  56 56 56 42 70 42 70 O,P,Q [10]  

Energy density (Wh/m3) 26000 26000 26000 26000 19500 32500 19500 32500 O,P,Q  
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Notes: 
 

           

A Specific Italian installation from 2015 used here as example. Assuming installations similar to Buzen City discussed above to become 
standard in the future. 

 

B Highly modular technology type with near linear scaling between total cost and installation size. Power and storage capacity cannot be 
varied independently. 

 

C Grid size unit including balancing and auxiliary losses. Excluding converters. Assumes no improvement between 2030 and 2050.   

D Ohmic losses maintain the temperature of the battery during operation. Losses are thus included in round trip efficiency [7]. No 
electrical self-discharge. If idle the heat loss is as much as 1 % of storage capacity per hour but highly variational. IRENA reports as 
“worst” value og 1.0 % [26] 

 

E Forced outage is minimal. Only reported case is a 2011 fire incident [9].  

F On the order of 1 h per year. 
 

 

G Assumptions for development and uncertainty discussed above in “Prediction of performance” and “Uncertainty”.  

H Due to absence of predictions in literature, no development is assumed as an estimate.   

I Measurement. Possibly limited by PCS.  

J Includes “Batteries” from reference [22] for 2015 values.  

K Includes “PCS-SCI”, “Auxiliary equipment”, and “Switching and actuating equipment” from reference [22] for 2015 values.  

L Highly uncertain. Reported in range 2000 to 17300 €2015/MW/year [24]   

M Does not include replacement costs. The batteries do not need replacement within lifetime [13],[10].  

N See Figure 5.  

O Data for standard NGK container unit.  

P Not the technological maximum values, i.e., the density of single cells, but the specifications for a full market-standard commercial 
product.   

 

Q Uncertainties are based on a qualified guess.  
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