
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Development and characterization of nano- microfibers for the encapsulation and
release of bioactive phenolic compounds

Shekarforoush, Elhamalsadat

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Shekarforoush, E. (2018). Development and characterization of nano- microfibers for the encapsulation and
release of bioactive phenolic compounds. Kgs. Lyngby, Denmark: Technical University of Denmark.

http://orbit.dtu.dk/en/publications/development-and-characterization-of-nano-microfibers-for-the-encapsulation-and-release-of-bioactive-phenolic-compounds(b8599029-9e4c-46fa-b5be-2aaa63c99bde).html


 
 

 
 

 

 

 

 

 

 

Development and characterization of nano- 
microfibers for the encapsulation and 
release of bioactive phenolic compounds 

 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

Elhamalsadat Shekarforoush 
PhD Thesis 
2018 

 
 

 
 

 

 
 

 
 

 
 

 

 

 



 



i 
 

Development and characterization of nano-microfibers for the 

encapsulation and release of bioactive phenolic compounds 

 

 

 

 

 

PhD Thesis 

by 

Elhamalsadat Shekarforoush 

 

 

 

 

Submitted: 30.04.2018 

National Food Institute 

Technical University of Denmark 

Kemitorvet 202, 2800 Kongens Lyngby, Denmark 

 

 

 



ii 
 

 



i 
 

Preface 

This thesis presents the results of my work as a PhD student and is submitted to meet the 

requirements for obtaining the PhD degree at the National Food Institute, Technical University 

of Denmark. The PhD scholarship was co-founded by a third of a PhD stipend from the 

Technical University of Denmark. The project was also supported by the European Union FP7 

project “Nano3Bio” (grant agreement no 613931). The work was conducted in the Research 

group of Nano-Bio Science at the National Food Institute, Technical University of Denmark, 

from 1st of February 2015 to 30th of April 2018 under the principle supervision of Professor 

Ioannis S. Chronakis and co-supervision of Dr. Ana Carina Loureiro Mendes. 

 

 

 

 

 

 

 

 

 

 



ii 
 

Acknowledgment 

Numerous people have been engaged in this thesis in different ways to which I would like to say 

thanks! First of all, I would like to thank my supervisors; Professor Ioannis S. Chronakis and Dr. 

Ana Carina Loureiro Mendes for all patience and great expertise, for always having their door 

open for discussions, help and guidance.  

Also I would like to thank Professor Thomas Andresen for access to cell laboratory facilities and 

also Dr. Adele Faralli and Dr. Fatemeh Ajalloueian for good collaboration and for presenting me 

to cell culturing for Permeability and Cytotoxicity tests of electrospun fibers.  

Also I would like Dr. Hamed Safafar for collaborating and supporting me thorough antioxidants 

methods.  

Also I would like to acknowledge Assistant Professor Sophie Beeren, Senior Researcher Sokol 

Ndoni and Guanghong Zeng for great discussions related to the 1H NMR, Size-exclusion 

chromatography (SEC) and Atomic force microscopy (AFM), respectively.   

Also thank you to the people in buildings 227 and 201 for good social activities and for 

contributing to a good research environment.  

Last but not least, I wish to thank my loved ones for inspiring me to pursue my dreams, for 

encouraging me during the difficult times and for being patient with me throughout my 

undergraduate and graduate journey. My family specially my father and mother; you have 

sacrificed so much for me to achieve this lifelong goal. This work is entirely dedicated to you. I 

am forever grateful towards you for being my constant source of inspiration and strength and for 

showing me the proper perspective for life and living.  

Elhamalsadat Shekarforoush 2018  



iii 
 

Abstract 

In this PhD project, electrospun nano-microfibers of polysaccharides xanthan gum, and chitosan, 

as well as phospholipids were investigated as encapsulating matrices of phenolic bioactives, that  

are the most abundant bioactives in our diet.  

The processing of electrospun xanthan gum nanofibers using formic acid as a solvent was 

reported for the first time (Paper I). Morphological studies by scanning electron microscopy 

show that uniform fibers with average diameters ranging from 128 ± 36.7 to 240 ± 80.7 nm are 

formed depending on the polysaccharide concentration (0.5 to 2.5 wt/vol%) (Paper I). At the 

polysaccharide concentrations where nanofiber formation was observed, an increase of the 

elastic modulus and first normal stress differences is observed. Fourier transform infrared 

spectroscopy and circular dichroism measurements indicated that an esterification reaction took 

place, where formic acid reacted with the pyruvic acid groups of xanthan. Therefore, formate 

groups neutralized the pyruvic charges, which in turn stabilized the helical conformation of 

xanthan.   

The potential to utilize electrospun xanthan nanofibers as a delivery carrier system of bioactive 

phenolic compounds was investigated (Paper II).  Gallic acid (GA) and (  ̶  )-epigallocatehin 

gallate (EGCG) were encapsulated within xanthan nanofibers, and their release was studied in 

relevant media at pH 6.5 and 7.4. A sustained release of the bioactives up to 60-80% was 

observed over 8h. Furthermore, the xanthan-GA and xanthan-EGCG nanofibers were incubated 

with Caco-2 cells, and the cell viability, transepithelial transport and permeability properties 

across cell monolayers were investigated. An increase of permeability of Ga and EGCG was 

observed when the polyphenols were loaded into xanthan nanofibers, comparatively to the non-
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encapsulated bioactives. These results suggested that xanthan nanofibers have the ability to 

enhance the transepithelial permeation of phenolic compounds in vitro by inhibiting efflux 

transporters and opening the tight junctions. 

Novel electrospun xanthan-chitosan (X-Ch) nanofibers were developed as a carrier for the 

delivery of curcumin (Cu), a model hydrophobic phenolic bioactive (Paper III and IV). 

Nanofibers stable in aqueous media were produced by the electrospinning of X-Ch viscoelastic 

gels with average diameter of 750 nm. The addition of curcumin led to the increase in average 

fiber diameters to 910 nm. A sustained release of curcumin of 8-10% from X-Ch nanofibers was 

observed over a period of 12 h for the different pH media (2.2, 6.5, and 7.4) at 37oC. However, 

after 120 h, 20% of Cu was released from X-Ch nanofibers in pH 2, while nearly 50% of Cu was 

released in neutral media, through a non-Fickian mechanism. The data support that X-Ch 

nanofibers could be used as a carrier for the encapsulation of hydrophobic bioactive compounds 

with long-term pH-stimulated release properties.  

Furthermore, the potential to utilize X-Ch nanofibers to enhance the transepithelial transport and 

permeability of curcumin across Caco-2 cell monolayer was investigated (Paper IV). After 24 h 

of incubation, the exposure of Caco-2 cell monolayers to X-Ch-Cu nanofibers resulted in a cell 

viability of ~80%. A 3-fold increase of curcumin permeability was observed when the 

polyphenol was loaded into X-Ch nanofibers, compared to the free curcumin. This increased 

transepithelial permeation of curcumin was induced by interactions between the nanofibers and 

the Caco-2 cells that led to the opening of the tight junctions.  

In the last study of the thesis (Paper V), electrospun phospholipid (asolectin) microfibers were 

investigated as an antioxidant and encapsulation matrix for curcumin and vanillin. Release 
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studies in aqueous media revealed that the phenolic bioactives were released mainly due to 

swelling of the phospholipid fiber matrix over time. Asolectin fibers were observed to have 

antioxidant properties, which were improved after the encapsulation of the phenolic compounds, 

as observed from total antioxidant capacity (TAC) and the total phenolic content (TPC) assays. 

Furthermore, the antioxidant capacity of curcumin/phospholipid and vanillin/phospholipid 

microfibers was observed to remain stable over time at different temperatures (refrigerated, 

ambient) and pressures (vacuum, ambient), while the non-encapsulated phenolic compounds 

decreased their TAC and TPC values. Therefore, this study confirms the efficacy of electrospun 

phospholipid microfibers as encapsulation and antioxidant systems. 
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Resumé (Danish) 

I dette ph.d.-projekt blev elektrospundne nano-mikrofibre af polysakkariders xanthangummi og 

chitosan samt fosfolipider som indkapslingsmatricer af fenoliske bioaktiver, der er de mest 

hyppige bioaktive stoffer i vores kost, undersøgt. 

Behandlingen af nanofibre af elektrospunden xanthangummi under anvendelse af myresyre som 

opløsningsmiddel blev rapporteret for første gang (Paper I). Morfologiske undersøgelser ved at 

scanne med elektronmikroskop viser, at ensartede fibre med gennemsnitlige diametre fra 128 ± 

36.7 til 240 ± 80.7 nm dannes afhængigt af polysakkaridkoncentrationen (0.5 til 2.5 

vægt/volumen %) (Paper I). Ved polysakkaridkoncentrationerne, hvor nanofiberdannelse blev 

observeret, observeres en stigning i elastisk modulus samt de første normale spændingsforskelle. 

Fourier transform infrared spectroscopy (FTIR)- og cirkulære dikroisme-målinger viste, at en 

esterificeringsreaktion fandt sted, hvor myresyre reagerede med xanthans pyrodruesyregrupper. 

Formatgrupper neutraliserede derfor de pyruviske ladninger, der igen stabiliserede den 

spiralformede konformation af xanthan. 

Potentialet for at anvende elektrospundne xanthannanofibre som et leverancebærende system af 

bioaktive fenolforbindelser blev undersøgt (Paper II). Gallussyre (GA) og (̶)-epigallocatechin 

gallat (EGCG) blev indkapslet i xanthannanofibre, og deres frigivelse blev undersøgt i relevante 

medier ved en pH på 6.5 og 7.4. Der blev observeret en vedvarende frigivelse af bioaktiverne op 

til 60-80 % over 8 timer. Endvidere blev xanthan-GA- og xanthan-EGCG-nanofibrene inkuberet 

med Caco-2-celler, og cellelevedygtighed, transepithelial transport- og 

permeabilitetsegenskaberne på tværs af cellemonolagene blev undersøgt. Der blev observeret en 

stigning i permeabiliteten af Ga og EGCG, når polyfenolerne blev anbragt i xanthannanofibre, 
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sammenlignet med de ikke-indkapslede bioaktive stoffer. Disse resultater tydede på, at 

xanthannanofibre har evnen til at forøge transepithelial permeationen af fenolforbindelser in 

vitro ved at inhibere effluxtransportører og åbne cellemellemrummene. 

Nye elektrospundne xanthan-chitosan (X-Ch)-nanofibre blev dannet som bærer til levering af 

curcumin (Cu), hydrofobe fenoliske bioaktiver (Paper III og IV). Nanofibre, stabile i vandige 

medier, blev fremstillet ved elektrospinding af X-Ch-viskoelastiske geler med en gennemsnitlig 

diameter på 750 nm. Tilsætningen af curcumin førte til stigningen i gennemsnitlige fiberdiametre 

til 910 nm. Der blev observeret en vedvarende frigivelse af curcumin på 8-10 % fra X-Ch-

nanofibre over en periode på 12 timer for de forskellige pH-medier (2.2, 6.5 og 7.4) ved 37 °C. 

Efter 120 timer blev imidlertid 20 % af Cu frigivet fra X-Ch-nanofibre i pH 2, medens næsten  

50 % af Cu blev frigivet i neutrale medier gennem en ikke-Fick’sk mekanisme. Dataene 

understøtter, at X-Ch-nanofibre kan anvendes som bærer til indkapsling af hydrofobe bioaktive 

forbindelser med langvarige pH-stimulerede frigivelsesegenskaber. 

Endvidere blev potentialet for at udnytte X-Ch-nanofibre til at forbedre transepithelial transport 

og permeabilitet af curcumin over Caco-2-cellemonolag undersøgt (Paper IV). Efter 24 timers 

inkubation resulterede eksponeringen af Caco-2-cellemonolag på X-Ch-Cu-nanofibre i en 

cellelevedygtighed på ~ 80 %. Der blev observeret en trefoldig stigning i curcuminpermeabilitet, 

når polyfenolen blev fyldt i X-Ch-nanofibre, sammenlignet med den frie curcumin. Denne øgede 

transepithelial permeation af curcumin blev induceret af interaktioner mellem nanofibrene og 

Caco-2-cellerne, der førte til åbningen af cellemellemrummene. 

I afhandlingens sidste undersøgelse (Paper V) blev elektrospundne fosfolipide (asolectin) 

mikrofibre undersøgt som en antioxidant- og indkapslingsmatrix for curcumin og vanillin. 
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Frigivelsesundersøgelser i vandige medier afslørede, at de fenoliske bioaktiver blev frigivet 

hovedsagelig på grund af hævelse af fosfolipidfibermatrixen over tid. Det blev observeret, at 

solectinfibre havde antioxidantegenskaber, som blev forbedret efter indkapslingen af 

fenolforbindelserne, målt ud fra total antioxidantkapacitet (TAC) og totalt fenolindhold (TPC). 

Desuden blev det observeret, at antioxidantkapaciteten af curcumin/fosfolipid og 

vanillin/fosfolipidmikrofibre forblev stabil over tid ved forskellige temperaturer (nedkølede 

omgivelser) og tryk (vakuum omgivelser), mens de ikke-indkapslede fenolforbindelser 

reducerede deres TAC- og TPC-værdier. Derfor bekræfter denne undersøgelse virkningen af 

elektrospundne fosfolipidmikrofibre som indkapslings- og antioxidantsystemer. 
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1. Introduction 

Studies associated with the nano-microstructures of biopolymers (polysaccharides and proteins) 

and phospholipids have been receiving particular attention within the last years, in food and 

pharmaceutical research. Reasons for that rely on to their favorable properties such as 

biocompatibility, biodegradability and sustainable supply, among other.1,2 One of the major 

applications of those nano-microstructures is encapsulation of bioactive compounds. The 

encapsulation can protect the bioactive compounds from the environmental and gastro-intestinal 

tract conditions against degradation, mask odors and tastes of the bioactive components and 

prevent them from interactions with other food components.3,4 There are a broad range of 

bioactive compounds that are widely used in food and pharmaceutical industries. Among them, 

phenolic compounds, are the most abundant bioactives in our diet.5,6 They are classified as 

water-soluble (phenolicacids, phenyl propanoids, flavonoids, and quinones) and water-insoluble 

compounds (condensed tannins, lignins, and certain hydroxycinammic acids). These compounds 

have diverse biological properties including antioxidant, anti-cancer, anti-microbial.7–10 

However, the health benefits of pristine phenolics are limited due to their low solubility, low 

permeation, low bioavailability, and damage against environmental stresses. Therefore, 

designing adequate carriers by using nano-microstructures of biopolymers and phospholipids are 

necessary to overcome these limitations.  

This PhD project aimed to investigate: 

i) the processing of polysaccharides such as xanthan gum, chitosan and phospholipids 

using electrospinning technology for the development of novel nano-microstructures 

(particularly nano-microfibers); 
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ii) the potential of these nano-microstructures to encapsulate and release phenolic 

bioactive compounds; 

iii) the potential of these nano-microstructures to improve the bioavailability of the 

phenolic compounds; 

iv) the potential of these nano-microstructures to preserve chemically and stabilize the 

phenolic compounds.  

 

The main results obtained during this PhD project are presented in five papers. 

Paper I described the electrospinning of xanthan gum. The correlation between the concentration 

and the rheological properties of xanthan solutions, with the morphology of the nanofibers is 

investigated. Circular dichroism, Fourier transform infrared spectroscopy, size-exclusion 

chromatography were used to characterize the physicochemical properties of xanthan solutions 

in formic acid and electrospun xanthan nanofibers. The use of electrospun xanthan nanofibers as 

a delivery carrier of phenolic compounds Gallic acid (GA) and (  ̶  )-epigallocatechin gallate 

(EGCG) was further studied in Paper II. The release behavior of phenolic compounds from 

xanthan fibers in bio-relevant buffers in different pH was studied. Also the effect of the xanthan 

nanofibers on the transepithelial permeation of phenolic compounds was studied in vitro using 

human intestinal Caco-2 cells. Paper III focus on the development of a novel electrospun fiber 

matrix, made from viscoelastic gels of xanthan and chitosan. On Paper III, the morphology, 

rheological and adhesion properties, as well as the encapsulation and release of a phenolic 

compound (curcumin) were investigated. Paper IV explored the in vitro potential of electrospun 

xanthan gum-chitosan nanofibers to enhance the permeability of curcumin across Caco-2 cells 

monolayers. Paper V, electrospun phospholipid fibers were produced as micro-encapsulation and 
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antioxidant matrices for the preservation and release of phenolic compounds (vanillin and 

curcumin). 
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2.    Literature review  

2.1. Principles of electrospinning 

Electrospinning, a term derivative from ‘electrostatic spinning’, is a simple and effective top-

down fabrication process for producing non-woven fibrillary structures made of (bio)polymers 

and long-chain molecules whose diameters can be controlled from the nano to the micro 

scale.11,13–16 Electrospinning consists of charging the surface of (bio) polymer solution droplets, 

through the applications of high-voltage electrostatic fields, thereby inducing the ejection of a 

liquid jet through a spinneret (typically a metallic syringe needle). 

A typical electrospinning set-up (Figure 1) involves infusion pump to carry a polymer solution 

in a syringe mounted to a spinneret. The spinneret is typically connected to the positive 

conductor, plugged to the high voltage power supply, whereas the counter conductor (usually 

grounded) is connected to the collector. The applied high voltage applied to the polymers 

solution in the spinneret induces the ejection of a liquid jet through the spinneret.  

The curved form of pendant droplet at the end of capillary tip changes into a conical form with 

increasing voltage, which is known as the Taylor cone. By applying a significant voltage to the 

spinneret, the charge gathered within the polymer droplet overcomes its surface tension and 

causes the polymer solution to eject from the spinneret tip to the collector.  The solvent 

evaporates and therefore the jet solidifies as the polymer jet moves in the air towards the 

collector, leading to a fibrous mat on the collector. 17–20   
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Figure 1. Typical electrospinning set-up was presented at Sustain-ATV Conference 2016. 

Several parameters in the electrospinning process can control the production and the morphology 

of the fibers. Electrospinning process parameters include the distance between the spinneret and 

collector, the flow rate and the applied voltage. Furthermore, the properties of the electrospun 

solution such as concentration, viscosity, conductivity, surface tension, dielectric constant and 

the environmental variables such as humidity and temperature where the process is conducted, 

also affect substantially the fiber processing.  

Common effects of the electrospinning processing parameters on the fiber morphology are 

summarized in Figure 2. As an example an increase in the flow rate or a decrease in the syringe 

tip to the collector plate distance sometimes ends up in the formation of fibers with larger 

diameters. 21   
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Figure 2. Overview of variables that can affect the electrospinning process and the fiber 

morphology12,22   

This technology was first discovered by Rayleigh in 1987, then studied by Zeleny in 1914 in 

more detail, 23 and later patented by Formhals in 1934. 24 However, the last twenty years research 

on electrospinning started to be more notorious, due to its promising utility in a broad range of 

fields, which resulted on the increase of the number of publications as shown in Figure 3.  
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conditions

Increased viscosity 
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bead generation, 
increase fiber 
diameter 
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Figure 3. Number of publications in the last decade on electrospinning. 

     

2.2. Materials used in electrospinning technology  

A large variety of synthetic and biopolymers have been processed by electrospinning. Examples 

of synthetic polymers commonly used in electrospinning include Poly(α-hydroxy acids), such as 

lactic acids (PLA), glycolic acids (PGA) and their copolymers, Poly(caprolactone) (PCL), 

Poly(vinyl alcohol) (PVA), Polycarbonate, Poly(ethyleneglycol) (PEG), O Poly(urethane) 

(PU).25 Synthetic polymers can often be electrospun more easily comparatively to biopolymers, 

however the last ones are preferred to be used in pharmaceutical or food applications due to 

health and safety issues.26,27 Moreover, many synthetic polymers lack the biocompatibility and 

degradability required for specific (life science) applications. Thus, the electrospinning of 

biopolymers, have been increasingly investigated,28 and will be discussed in the following 

sections.   
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2.2.1. Biopolymers and biomolecules  

Electrospun biopolymers include two main classes: proteins and polysaccharides.  

Proteins (e.g. zein, gelatin, whey, casein, amaranth, soy, and egg and fish protein) are a class of 

biopolymers with unique properties/functionalities that can interact with a broad range of 

hydrophobic and hydrophilic bioactive compounds.29 To be electrospun, proteins need to be 

unfolded in order to increase polymer chain entanglements,1 which can be achieved by changing 

protein structure/aggregation and intra/inter-molecular disulfide bonds.1 

Polysaccharides (e.g. pullulan, dextran, chitosan, starch, alginate, cellulose, cyclodextrin, 

xanthan gum) are biopolymers consisting of repeating monomeric units of monosaccharides. 

They are often classified accordingly their charge into anionic, neutral and cationic, but also 

accordingly to their origin (bacterial, plants, seaweeds).  

The electrospinning of polysaccharides, which is part of the main focus of this thesis, is also 

challenging,1 and depends on many factors, including chemical properties (e.g. molecular 

weight, functional groups, charges of the polysaccharide) and the selection of the solvent. Those 

features will lead to different conductivities, extensional  and intrinsic viscosities, surface tension 

and vapour pressure 30 necessary to produce fibers. The formation of electrospun polysaccharide 

fibers is dependent on the degree of their chain entanglements 30 and requires a weak shear 

thinning behavior.30 

Although most of the electrospinning studies focus on the use of (bio) macromolecules, recently 

some studies using biomolecules such as phospholipids have been reported.  
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The thesis focuses on the electrospinning of the polysaccharides xanthan gum, and chitosan, as 

well as phospholipids, which will be discussed in the following sections.  

2.2.1.1. Xanthan Gum 

 Xanthan gum was discovered in the late 1950s by American Scientists and is that the first 

biopolymer made industrially. Xanthan gum is an extracellular biopolymer produced by the 

bacterium Xanthomonas campestris, consiting of pentasaccharide units containing glucose, 

mannose and glucuronic acid at a 2:2:1 relation respectively.31,32 Due to the presence of pyruvate 

residues at the terminal mannose moiety and the acetyl groups at D-Mannose unit linked to the 

main chain, xanthan gum has a polyanionic character. Moreover molecular modeling studies 

have demonstrated that xanthan for specific concentrations, temperature and pH, can assume a 

helical conformation, with the side branches positioned almost parallel to the helix axis that 

stabilizes the structure. Subsequently xanthan forms very viscous aqueous solutions, and at 

sufficiently high polymer concentration, it exhibits weak gel-like properties. Consequently, it has 

been widely used and investigated in areas such as food, pharmaceutical, cosmetics, biomedical, 

tissue engineering and oil industries as thickeners or stabilizers.33,34–38  

Stijnman and co-authors reported that xanthan gum could not be electrospun in water because of 

insufficient entanglement during electrospinning.30 However due to the relevance of this polymer 

in different fields of research and industry, one of the main objectives of this thesis was to 

investigate the electrospinning of xanthan gum, by using formic acid as solvent. 
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2.2.1.2. Chitosan 

Chitosan´s (deacetylated chitin) are the second plentiful polysaccharides found in nature.39 

Chitosan(s) are constituted of glucosamine and N-acetyl glucosamine units. Properties of 

chitosan rely on its molecular weight (MW), degree of deacetylation (DDA), the distribution of 

acetylation patterns.40 Chitosan´s are insoluble in water due to its rigid crystalline structure 41,42 

and soluble in aqueous acidic solutions (for pH below their pKa of 6.5). At a higher pH than 6.5, 

chitosan´s molecules tend to precipitate owing to deprotonating of the amino groups and lose of 

its charges.40 Chitosan has been widely used in food, biomedical, cosmetic, chemical and 

pharmaceutical industries due to its nontoxicity, bio functionality, biocompatibility, 

biodegradability and antimicrobial properties.41,42 

The electrospinning of chitosan into a fibrous structure is also challenging12,43 and the production 

of electrospun chitosan nanofibers are known to be dependent of the electrospinning conditions 

(distance, voltage, flow rate), the physico-chemical properties of chitosan (e.g. Mw, DA) and the 

solvent.44–47 Ohkawa and collaborators48 electrospun chitosan using solvents mixtures of 

TFA/DCM into homogeneous and uniform nanofibers with an average diameter within the 

submicron range. However these fibers presented limited applicability, as they easily dissolve in 

neutral and weak basic aqueous solvents 49,50 due to the high solubility of the TFA-chitosan salt 

residues. Efforts to enhance chitosan nanofiber stability have been reported through the 

neutralization of electrospun chitosan fiber mats with saturated solutions of  Na2CO3,
51 and 

crosslinking of chitosan electrospun fibers with glutaraldehyde,52 genipin, hexamethylene-1,6-

diaminocarboxysulphonate (HDACS) and epi- chlorohydrin (ECH)53. Nevertheless, the methods 

mentioned follow a two-step protocol or use components with latent cytotoxicity, which cannot 

suits applications within life sciences.  
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Table 1. Electrospinning of chitosan blended with other polymers. 

Polymer 
Molecular weight 

(kDa) 
Solvent Average diameter References 

Synthetic Polymers  

Chitosan/PEO 654  AA Aq 80 nm to 180 nm 55 

Chitosan/PEO  200  AA Aq 98 nm 54 

Chitosan/PVA  120  AcrA Aq 90 to 590 nm 58 

Chitosan/PVA 220  AA Aq 80 to150 nm 59 

Chitosan/PVA  94  AA Aq 125 to 300 nm 57 

Chitosan/PVA 1600  AA Aq 100 nm 60 

Chitosan/PVA Low Molecular Weight AA Aq 80 to 250 nm 67 

Chitosan/Silk Fibroin  220   FA  100 to 500 nm 62 

Chitosan/ Pectin /PVA 1600  AA Aq 191 nm 63 

Biopolymers  

Chitosan/Pullulan 50–190  CA Aq 650 nm 64 

Chitosan/ Zein 50–190  Ethanol and TFA 100 to 600 nm 65 

Chitosan/Gelatin 50–190  TFA/DCM 250 to 470 nm 66 

Chitosan/Collagen 1000  HFP/TFA 400 to 700 nm 69 

Chitosan/Collagen 15  AA Aq 134 to 398 nm 67 

Abbreviation: PEO, poly ethylene oxide; PVA, poly(ethylene oxide); AA Aq, acetic acid 

aqueous; AcrA Aq, acrylic acid aqueous; CA Aq, citric acid aqueous; FA, formic acid; TFA, 

trifluoroacetic acid; DCM, dichloromethane; HFP, 1,1,1,3,3,3 hexafluoro-2-propanol. 

 

Alternatively, the production of electrospun chitosan based fibers has been carried out by 

blending this biopolymer with other polymers, which are listed in Table 1. Chitosan was mixed 

with other synthetic or biopolymers, such as PEO 54–56 or polyvinyl alcohol (PVA),57–61  silk 

fibroin, 62 Pectin, 63 pullulan, 64 Zein, 65 Gelatin 66 and collagen.67,68,69  For example, Duan et al. 

56 reported the electrospinning of chitosan (654 kDa) mixed with PEOs (600 and 4000 kDa) 

using 2 wt% aqueous acetic acid solutions as the solvent. The lowest diameter nanofibers (less 
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than 150 nm) were produced from chitosan/PEO ratio of 2:1 and 1:1 using 1500 kDa PEO at 

polymer concentrations of 6 wt%.   

Similarly, Zhou and his colleagues stated that 7 wt% of pure chitosan (120 kDa) solutions were 

not electrospinnable in aqueous acrylic acid, however the addition of 9 wt% PVA solutions 

favored the production of the electrospun fibers 58. Uniform fibers with average diameters 

ranging from 157 to 590 nm and 89–320 nm were fabricated using concentrated acrylic acid to 

dissolve chitosan/PVA at ratios of 9:1 and 5:5, respectively. Moreover Huang et al.59 blended 9 

wt% PVA (2.5 kDa) with 3 wt% of chitosan (220 kDa) in aqueous acetic acid solution at a ratio 

of 3:7, which resulted in fibers diameters ranging between 150 and 300 nm.   

2.2.1.3. Phospholipids 

Phospholipids have been used for preparing capsular structures (mainly vesicles or liposomes),70–

73 for nano-microencapsulation of drugs 74 and mammalian cells,75 and in food 76 as delivery 

carriers of nutrients, nutraceuticals, food additives and antimicrobials. Encapsulation of 

bioactives within lipid formulations offers enhanced stability and protection combined with 

superior biocompatibility and enhanced permeability, depending on the lipid composition and 

properties.77,78 Among other phospholipids, asolectin, a mixture of lecithin, cephalin and 

phosphatidylinositol, saturated fatty acids, mono-unsaturated and poly-unsaturated fatty acids 

has been used to develop nano-microstructures such as fibers,79–82 hydrogels 83 and liposomes 

76,84 for the encapsulation of bioactives.82,85 In addition, asolectin components have also been 

proven to display antioxidants properties.85–88 

The electrospinning of phospholipids was reported for the first time by Mckee and co-workers, 

where critical concentrations of phospholipids, using mixtures of DMF:CHCl3 as solvents, were 
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required to favor the self-assembly of the phospholipids into wormlike micelles able to originate 

significant entanglements to produce electrospun phospholipid fibers.79  

Recently, electrospun asolectin fibers with average diameters of 2.57±0.59µm, ~3-8 µm, ~4-5µm 

and 14.3±2.7µm were produced using chloroform:dimethylformamide, isooctane, cyclohexane 

and limonene as solvents.  The use of co-axial solvent electrospinning was tested, by using 

individual solvents in the outer needle and solutions of phospholipids dissolved in CHCl3: DMF 

in the inner needle. The average diameter of the fibers was observed to be reduced to the 

nanoscale, when DMF (a solvent with a high dielectric constant) was used as a sheath solvent. 

The dielectric constant of the solvents was found to have a strong influence on the the jet split 

properties and to play an important role on the morphology of the electropsun phospholipid 

fibers.80  Furthermore, the mechanical properties of phospholipid fibers, prepared using isooctane 

as a solvent, were evaluated by nanoindentation using Atomic Force Microscopy.81 Their elastic 

modulus was found to be approximately 17.261 MPa. At a cycle of piezo expansion-retraction 

(loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during 

unloading.81 The phospholipid fibers were shown to be stable in ambient conditions, preserving 

the modulus of elasticity up to 24 h. In another study, Yu et al. 89 used polyvinylpyrrolidone 

(PVP) with soybean lecithin to create a electrospun fibers. They observed liposomes and vesicles 

with a very narrow distribution (between 120–370 nm) after immersion of lecithin/PVP fibers in 

water. Zhang and co-authors applied a hybridization strategy to produce electrospun cholesteryl-

succinyl silane (CSS) nanofibers to increase stability of electrospun lipid. 90 

 

 

 

13



2.3. Applications of Electrospinning 

The unique properties of electrospun nano-microfibers, such as high surface area per unit mass, 

high porosity, tunable pore size and surface properties, layer thinness, high permeability and 

cost-effectiveness11,91 has led to the increased interest on this this technology. Furthermore, 

electrospinning can be processed at room temperature; enables encapsulation of bioactive 

ingredients or functional compounds with high encapsulation efficiency, the final product is 

collected on dry state and requires low energy consumption and investment.  

 

Figure 4. Examples of applications of electrospun fibers. 

 

Therefore, electrospinning technology has been explored in a wide range of applications 

including food, drug delivery, tissue engineering, biomedicine, sensors, textile, filtration, 

composites, electronics, among others 22,92 (Figure 4).  
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2.3.1. Encapsulation of bioactives within electrospun fibers 

Food and pharmaceutical industries are searching for novel food products containing health-

promoting bioactive compounds, with little or no synthetic ingredients. However, some 

bioactives are sensitive to the ambient factors such as light, temperature, pressure, and pH media, 

among others. The interactions of sensitive bioactives with ambient factors, might affect their 

chemical instability and degradation, leading too undesirable reactions with other compounds or 

formation of strong and unpleasant odor and/or flavors,93 which affects their functionality and 

usage. In this context, encapsulation emerges as a solution to overcome these problems, and to 

control the release and delivery of the bioactives. Electrospinning facilitates the encapsulation of 

a broad range of bioactives using a variety of food ingredients (e.g. proteins, polysaccharides and 

phospholipids), at room temperature with a very high encapsulation efficiency. In addition, the 

encapsulation of bioactives within electrospun fibers with controlled diameters, morphologies, 

porosities and overall functionality, can further facilitate their delivery and improve their 

bioavailability.  

Examples of bioactives include vitamins, omega-3 polyunsaturated fatty acids, probiotics, and 

polyphenolic compounds.94 Polyphenols belongs to a class of antioxidants and are the most 

abundant in human diet.56 Because of their antioxidant,95 antimutagenic,96 antimicrobial,97 and 

anticarcinogenic properties,98,99  polyphenols have recently attracted the research towards the 

study of the metabolism and absorption mechanisms across the gut barrier.100 Polyphenols are 

categorized according to the chemical structure of their carbon skeleton, and the most abundant 

classes in our diet are phenolic acids and flavonoids. Examples of polyphenols are caffeic acid, 

ferulic acid, epicatechin gallate, epicatechin, epigallocatehin gallate, curcumin and gallic acid 

15



and the encapsulation of the three last polyphenols within electrospun fibers will be discussed in 

the following sections.  

2.3.1.1. Vanillin  

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a phenolic compound, which can either be 

extracted from pods of Vanilla Planifolia or synthesized chemically. It has been widely used in 

the food industry as a flavor, but also as a food preservative, due to its  antioxidant, 

antimicrobial, anticarcinogenic and antimutagenic properties.101,102 However, its high volatility 

and thermal instability are the main drawbacks for its use and processing in food industry.103–105   

The encapsulation of vanillin using electrospinning technology has been investigated by Uyar 

and co-workers using cyclodextrins as carrier CD.101,106  For instance, electrospun PVA 

nanofibers with diameters of 200 nm incorporating vanillin/cyclodextrin inclusion complex 

(vanillin/CD-IC) were shown to prolong the shelf-life and the high temperature stability of 

vanillin.106 In another study, vanillin/cyclodextrin inclusion complex nanofibers were 

successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three 

different solvent systems (water, DMF and DMAc) via electrospinning processing, without using 

a polymer carrier.101 The authors demonstrated that these fibers allowed the loading of high 

amounts of vanillin, while improving its antioxidant property. Maximum encapsulation 

efficiency of vanillin (∼85% w/w) was observed for vanillin/MβCD-IC nanofibers, however still 

considerable amount of vanillin (∼75% w/w) was encapsulated in vanillin/HPβCD-IC nanofibers 

and vanillin/HPγCD-IC nanofibers. Electrospun PVA nanofibers loaded with ethyl vanillin with 

diameters in the range 100–1700 nm, were also produced. PVA/ethyl vanillin nanofibers were 
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observed to be mechanically stable and to influence the thermal properties of vanillin 

comparatively to the free flavor.107 

2.3.1.2. Curcumin  

Curcumin is another phenolic compound derived from the turmeric herb Curcuma longa L., with 

biological and pharmacological properties, such as antioxidant, anti-inflammatory, antimicrobial, 

antimalarial, and anticarcinogenic.108  It has been also used in food industry as colorant.2 As an 

hydrophobic molecule, curcumin has very low solubility in water and its chemical stability has 

been reported to be affected by external factors such as pH, exposure to light, temperature and 

oxygen.109,110 Moreover, curcumin has poor bioavailability due to inefficient absorption at the 

intestinal track and for that reason2 it is commonly administered with carriers to transport this 

phenolic compound to the epithelial tissue. 109 

Therefore, the production of curcumin delivery carriers has been attempted using 

electrospinning. For example, encapsulated curcumin in polyvinyl alcohol (PVA) nanofibers 

with and without β-cyclodextrin (CD) was investigated by Zhu Sun. 108 They demonstrated that 

the solubility and stability of curcumin was improved in PVA/curcumin and PVA/CD–curcumin 

complex nanofibers (containing 5 to 50% wt % of curcumin) which favored the delivery of 

curcumin more rapidly than the pristine drug. This study suggested the potential to utilize 

electrospun fibers with curcumin in anti-cancer therapies.   

Furthermore, Rüzgar et al.,111 produced electrospun polyethylene oxide (PEO)/ hydroxypropyl 

methylcellulose (HPMC) fibers loaded with curcumin. In vitro solubility tests showed that 

curcumin loaded within nanofibers dissolved in both distilled water and buffer (pH 1.2), and thus 
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curcumin- PEO/HPMC nanofibers can be a promising system for the oral delivery of 

curcumin.111  

Wang et al.112 also produced homogeneous and smooth surface polyvinyl pyrrolidone (PVP) 

nanofibers loaded with curcumin by electrospinning. In vitro dissolution profiles have been 

shown that curcumin encapsulated within PVP nanofibers could be fast released in phosphate-

buffered saline (pH 7.4) solution, while insignificant dissolution was detected in pure curcumin 

sample.112 Thus, the bioavailability of curcumin was enhanced by using this electrospun fiber 

matrix, which was confirmed also with in vitro cell studies and in vivo animal tests.  

Moreover, Aytac and Uyar113 developed electrospun core-shell nanofibers using cyclodextrin 

(core) and polylactic acid (shell) for the encapsulation of curcumin. They found that greater 

amount of curcumin was released from both CD/PLA and PLA nanofibers at pH 1 (simulated 

gastric fluid) compared to pH 7.4 (simulated intestinal fluid) due to increased solubility of 

curcumin at low pH.  However, the released curcumin from CD/PLA core-shell fibers was higher 

than curcumin released from PLA due to the enhancement of solubility,113 suggesting that the 

core-shell nanofiber structure has the potential to be used for the delivery of  hydrophobic drugs. 

Another study described the fabrication of curcumin-loaded gum tragacanth (GT)/poly (vinyl 

alcohol) (PVA) nanofibers.114 Other studies reported the encapsulation of curcumin with 

electrospun silk fibroin, polyvinyl(pyrrolidone), zein and amaranth-pullulan fibers to modulate 

the solubility, antioxidant, bioavailability and release properties of the bioactive compound.115–

118  
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2.3.1.3. Epigallocatechin gallate (ECGC)  

EGCG is one of the most abundant polyphenolic compounds, and has recently received 

increasing attention in food and pharmaceutical applications due to its antioxidative properties, 

antimicrobial activities, and health benefits.119 However, it is not stable under alkaline conditions 

and may undergo oxidation, polymerization, and epimerization during processing.120–122  In 

addition, as many other polyphenols, EGCG has a poor bioavailability, due to its high 

hydrophilicity that limits EGCG permeability across intestinal epithelium.123 Several studies 

have demonstrated a high and specific accumulation of tea flavonoids in epithelial Caco-2 cells 

or epithelial cells along the aerodigestive tract,124–126 which have been recognized as major sites 

for biological activity of flavonoids.  

The development of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibers to encapsulate 

and control the release of EGCG was reported by Shin et a.l. 127  EGCG/PLGA fibers with 

diameter of 300–500 nm allowed the sustained release of EGCG over 28 days in the phosphate-

buffered saline (pH 7.4). The release was mainly controlled by the diffusion of the EGCG and 

the degradation PLGA nanofibers.127 In another study, zein nanofibers (with diameters ranging 

from 150 to 600nm) have been used to study the encapsulation and preservation of EGCG in 

aqueous media.128 It was found that the recovery of ECGC increased significantly after its 

immersion in water (98 %) when the fibers have been stored for at least 1 day at 0 % relative 

humidity (RH), compared to fresh nanofibers (82 %), while at 75 % RH, a considerable loss of 

ECGC in water was observed. Based on the FTIR data, Li and co-workers concluded that the 

high amount of immobilized ECGC within the nanofibers was due to hydrogen bonding, 

hydrophobic interactions and possibly physical encapsulation, which caused in the retaining of 

ECGC within the zein fibers that are immersed in water. 128  
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Furthermore, Lee and co-workers 129 have developed hyaluronic acid/ lactic-co-glycolic acid 

(HA/PLGA) core/shell fibers for the encapsulation of EGCG. The studies suggested that the 

release of EGCG from HA/PLGA was controlled by the diffusion of the bioactive and the 

degradation of PLGA matrix over 4 weeks.129 Other studies have also reported the use of 

electrospun fibers to create proper EGCG release carriers. 130–132 

2.3.1.4. Gallic acid (GA)  

GA, also known as 3,4,5-trihydroxybenzoic acid, is one of the main phenolic compounds found 

in plants, mostly in tea leaves,133 vegetables, grapes, and pomegranates. It has been widely used 

as additive in food and pharmaceutical industries and its known by its antioxidant, antimicrobial, 

anti-inflammatory and anticancer activities.134–136 Several studies have demonstrated that only 

small amounts of orally administered GA are absorbed through the intestine due to its low 

permeability, poor water solubility (11.5 mg/mL) and chemical instability, as it easily 

oxidize.136–138  

Electrospun fibers have been used as a delivery carrier of GA. Due to high surface area of 

nanofibers, one would expect that the fibers improve the solubility and release of GA as well as 

protect it from oxidation. For example, Neo et al. 139 encapsulated GA in zein-based nanofibers 

to increase its stability. Moreover, cellulose acetate (CA),136 and poly (L-lactic acid) (PLLA)/GA 

fibers 140 have been developed as an encapsulation matrices of GA.  

Futhermore, Aytac et al. 137 developed an inclusion complex of GA in cyclodextrin (CD), that 

was then electrospun withing polylactic acid (PLA) nanofibers. They have studied the release 

behavior of GA into three different mediums: water, 10% ethanol and 95% ethanol, which were 

aqueous, alcoholic and fatty food simulants, respectively. They found that the release of GA 
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from PLA/GA nanofibers with and without CD showed similar behavior in all three mediums, 

however higher amount of GA release was achieved from PLA/GA/CD nanofibers in aqueous 

solution and 10% ethanol compared to PLA/GA nanofibers, due to the higher solubility of GA in 

water. Overall, it was suggested that the nanofibers with encapsulated GA displayed a high 

antioxidant activity which might be appropriate as a food packaging material, to rise the shelf life 

of food products and to improve the quality of foods.137 

2.3.2. Caco-2 cell model – the oral delivery system 

Oral delivery is the one of the most adequate and safe means for administration of the bioactive 

compounds because of its appropriateness and easiness of administration. Electrospun fibers has 

been studied as oral delivery and oral cavity delivery systems,141–143 with promising results. The 

large surface to volume ratio of electrospun fibers can be utilized to improve the rate of 

dissolution and thus to increase the release of bioactive compounds.144–146 However, the oral 

delivery of the bioactive compounds at the intestine using electrospun nanofibers has not 

assessed in detail. 

The Caco-2 cell model is used frequently to mimic the epithelial layer in the small intestine, and 

thus to evaluate the absorption of bioactive compounds in vitro assays.147 The Caco-2 cells, 

which are originally from a human colon cell line, can polarize and express receptors that 

resemble the intestinal absorptive cells found in the small intestine when cultured under specific 

conditions. 148 In vitro permeability studies have been employed using Caco-2 cells, to assess the 

cytotoxicity and the permeation of bioactive compounds using a particular delivery system.149,150 

Figure 5 shows an illustration of the setup employed for the permeation assays of phenolic 

compounds curcumin, EGCG and GA that used for the studied described at Papers II and IV. 
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Figure 5. Illustration of a Transwell® setup with seeded Caco-2 cells. Electrospun fiber with an 

encapsulated compound was located on top of the cells. The compound was released and 

permeated the monolayer. The accumulated amount of permeated compounds was determined by 

taking out samples from the basolateral side and apical side, and analyzing them using 

spectrophotometry. 

 

Furthermore, the stability of ions across the cell monolayer could be investigated by the 

transepithelial electrical resistance (TEER), to examine the mechanism behind the transepithelial 

permeation of the bioactive compound. The variations in TEER can designate the mechanism by 

which a molecule is transported; a reduced TEER values often indicates a paracellular transport 

facilitated by opening of the tight junctions - provided that the cell viability is not compromised.  
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The viability of the Caco-2 cells can be studied by measuring the relative metabolism of treated 

cells, in relation to untreated cells. The MTS/PMS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium/phenazinemethosulfate) assay is 

viability colorimetric assay, where the cell viability is evaluated by monitoring a reduction of 

MTS, to a colored formazan product using absorbance spectroscopy. The reduction of MTS is 

only possible by viable cells, and the relative viability can therefore be quantified by comparison 

to a positive control. 

Only few studies have evaluated the intestinal delivery properties of electrospun nanofibers with 

encapsulated bioactive compounds assessed using the Caco-2 cells model. 151–153 Studies by 

Stephansen et al.152 from our group using a Caco-2 cell permeability assay found that 

electrospun fish sarcoplasmic proteins (FSP) nanofibers could be used as novel oral delivery 

system of biopharmaceuticals. In particular, encapsulation of insulin into the FSP fibers provided 

protection against chymotrypsin degradation (suitable for oral administration), and the 

interactions between fibers and epithelial cells led to opening of the tight junctions, which 

promoted an increased transepithelial transport of insulin without compromising cellular 

viability. Moreover, Tibolla et al. 151 have shown that cellulose nanofibers (CNFs), isolated from 

an agro-industrial waste (unripe banana peel), were not cytotoxic to Caco-2 cells and can be 

safely used in food packaging applications. Lin et al. 153 also studied the anticancer efficiency of 

magnetic electrospun chitosan nanofibers by assessing the Caco-2 cell viability. It was found, 

that magnetic electrospun chitosan nanofibers have a potential therapeutic modality in tumor 

administration.  
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3.    Results and discussion 

This section has been separated into two parts; part A concerns electrospinning of xanthan, 

xanthan-chitosan and phospholipid (asolectin), and is composed of five parts organized by Paper 

I to Paper V. Part B concerns co-assembly of chitosan and phospholipids in to hydrogel, and is 

composed of one part organized by Paper VI.  

3.1. Part A – electrospinning 

3.1.1. Development of xanthan nanofibers- Paper I 

Electrospinning of Xanthan Polysaccharide 
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their chain entanglements, the viscosity of the solution, 
and requires weak shear thinning properties to favor the 
breakdown of the liquid jet when pulled and extended 
by the electric field.[2,3] For a number of polysaccharides, 
including xanthan gum, gellan gum, arabic gum, and car-
rageenan, it has been challenging to electrospun,[2] and 
thus water-soluble polymers such as poly(ethylene oxide) 
and poly(vinyl alcohol) were used as “carriers.”[4–6]

Xanthan gum is an extracellular heteropolysaccha-
ride produced by the bacterium Xanthomonas campes-
tris, containing glucose, mannose, and glucuronic acid 
(Figure 1) in the molar ratio 2:2:1.[7,8] Due to the presence 
of pyruvic and acetic residues, xanthan has a polyanionic 
character.[9,10] In its native state, xanthan adopts a helical 
structure as single or double helix. Upon high salt and 
polymer concentrations, intra- and intermolecular inter-
actions promote double-helix ordering state.[11]

Solutions of xanthan prepared using various molecular 
weights of the polysaccharide, concentrations, tempera-
ture, solvents, and pH have been widely studied in terms 
of their rheological properties.[12–21] The “weak gel-like” 
properties of xanthan solutions arise from lateral associa-
tion of ordered chain sequences to form extended junc-
tion zones comparable to those in true gels but much 

Electrospun pure xanthan polysaccharide nanofibers are prepared using formic acid as a 
solvent. Morphological studies by scanning electron microscopy show that uniform fibers 
with average diameters ranging from 128 ± 36.7 to 240 ± 80.7 nm are formed depending 
on the polysaccharide concentration (0.5 to 2.5 wt/vol%). The correlation between the con-
centration and the rheological properties of xanthan solutions, with the morphology of the 
nanofibers is investigated. At the polysaccharide concentrations where nanofiber forma-
tion is observed, an increase of the elastic modulus and first normal stress differences is 
observed. The typical “weak gel-like” and thixotropic properties known for aqueous xanthan 
solutions, are not observed for the xanthan solutions in formic acid. The Fourier transform 
infrared spectroscopic and circular dichroism studies verify that an esterification reaction 
takes place, where formic acid reacts with the pyruvic acid groups of xanthan. Hence, for-
mate groups neutralize the pyruvic charges which in turn sta-
bilize the helical conformation of xanthan. The results obtained 
from size-exclusion chromatography reveal a small difference in 
the molecular weight of the polysaccharide when dissolved in 
distilled water or in formic acid.
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1. Introduction

Studies related to the electrospinning of polysaccharides 
such as chitosan, starch, alginate, cellulose and cellulose 
derivatives, pullulan, dextran, and cyclodextrins are of 
growing interest the last years.[1] It is known that the con-
centration, the chemical structure, and the shear thinning 
properties of the polysaccharides, affect their electrospin-
ning processing.[1,2] Typically, the formation of electro-
spun polysaccharide fibers is dependent on the degree of 
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weaker, since the network structure may be broken down 
under stress conditions.[22–24] The distinct shear thinning 
behavior of xanthan is associated with its molecular con-
formation, which at low shear stress association of chains 
is induced by hydrogen bonding resulting in high vis-
cosity. However, disruption of the intra- and intermolec-
ular hydrogen bonding at high shear stress, leads to the 
decrease of its viscosity.[18,25,26]

Previous studies suggested that xanthan could not 
be electrospun due to the insufficient entanglements 
during electrospinning.[2] In the present study we report 
for the first time the formation of electrospun xanthan  
nanofibers using formic acid as a solvent. The elec-
trospinability and the morphology of the resultant 
nanofibers were correlated with the rheological proper-
ties and the molecular conformation of xanthan solutions.

2. Experimental Section

2.1. Materials

Xanthan gum (Cosphaderm X 34), from Xanthomonas camp-
estris, was kindly provided by Cosphatec GmbH (Drehbahn, 
Hamburg, Germany). All chemicals, including formic acid, were 
obtained from Sigma-Aldrich (Denmark) and used as received. 
Xanthan was dissolved in formic acid at final concentrations of 
0.5, 1, 1.5, 2, and 2.5 wt/vol% (weight/volume%) and vigorous 
stirred overnight at room temperature.

2.2. Rheological Properties of Xanthan Solutions

The viscoelastic properties, elastic (G′) and viscous modulus 
(G′′) of xanthan solutions in formic acid were examined by low 

amplitude oscillatory measurements using a controlled stress 
HAAKE MARS rheometer (Thermo Scientific Inc., Germany). A 
cone and plate probe (cone diameter 60 mm, angle 1° and gap 
0.53 mm) were utilized. The sample was loaded on the rheom-
eter plate and frequency sweeps (0.01 to 100 rad s−1) were car-
ried out using a constant shear stress of 1 Pa (within the linear 
viscoelastic region). Flow measurements were performed after-
ward in which the shear rate was increased from 0.1 to 100 s−1 
and instantaneously decreased from 100 to 0.1 s−1. The samples 
were covered with silicone oil to avoid evaporation. All measure-
ments were carried out at room temperature (25 °C) in triplicate 
for each sample.

2.3. Conductivity

Electrical conductivity of xanthan solutions was determined 
using WTW LF323-B conductivity meter (WTW GmbH, Weilheim, 
Germany). All measurements were carried out at room tempera-
ture (25 ± 2 °C) in triplicate for each sample.

2.4. Circular Dichroism (CD)

CD measurements were performed on a Jasco J-810 spectropola-
rimeter connected to a temperature controller (Jasco PTC-423S). 
CD spectra of 0.5 wt/vol% xanthan solutions were collected in the 
wavelength range of 192–250 nm, at 20 ± 1 °C using a scan speed 
of 10 nm min−1, data pitch of 0.1 nm and bandwidth of 1 nm. Five 
scans were accumulated for each sample using a 0.1 cm path 
length quartz cuvette.

In order to evaluate the effect of formic acid on the molecular 
conformation of xanthan chains, 0.5 wt/vol% xanthan was 
dissolved in water or in formic acid at room temperature 
overnight under vigorous stirring. Subsequently, the samples 
were snap-frozen in liquid nitrogen and incubated overnight 
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Figure 1. Repeating structure of xanthan gum.

26



Electrospinning of Xanthan Polysaccharide

www.mme-journal.de

Macromolecular
Materials and Engineering

© 2017  WILEY-VCH Verlag GmbH &  Co.  KGaA, Weinheimwww.advancedsciencenews.com
(3 of 11) 1700067

in a vacuum chamber (Christ Alpha 1–2 ld. plus) at 0.75 mbar. 
The xanthan powders were both redissolved in water at a 
final concentration of 0.5 wt/vol% and kept under vigorous 
stirring at room temperature overnight. A 0.5 wt/vol% xanthan 
aqueous solution was used as a control without freeze-drying 
the sample.

2.5. Fourier Transform Infrared Spectroscopy

The Fourier transform infrared spectroscopic (FTIR) analysis was 
performed using a Perkin Elmer Spectrum 100 spectrometer 
based on a universal attenuated total reflectance-FTIR sensor. 
A crystal composed of diamond in the upper layer and zinc sele-
nide focusing element was utilized for the analysis of xanthan 
samples in their solid state (pellet). Solid samples were analyzed 
on a measurement area of 2 mm in diameter enabling good con-
tact between sample and crystal surface. 130 N force gauge was 
applied on the sample through a pressure arm. Measurements 
of native xanthan, freeze-dried xanthan previously dissolved 
in water, freeze-dried xanthan first dissolved in formic acid, 
and electrospun xanthan fibers after formic acid evaporation 
were recorded in a wavenumber range of 4000–700 cm−1 in the 
transmission mode. A total of four scans for each sample were 
accumulated at room temperature at a resolution of 1 cm−1. The 
infrared peaks were identified using Spectrum 10 software using 
1%T peak threshold. Spectra were plotted as percentage trans-
mittance (%T) against wavenumber (cm−1) with Origin Pro SR1 
software.

2.6. Size-Exclusion Chromatography (SEC)

SEC has been used to evaluate the absolute molecular weight of 
xanthan solutions. A solution of xanthan dissolved in water, as 
well as freeze-dried xanthan previously dissolved in formic acid 
and resolubilized in water, were analyzed by SEC at the same 
concentration (0.05 wt/vol%). Such low concentration of xanthan 
was used to avoid the clogging of the filter located just before 
the detector units. A Shimadzu 10A HPLC instrument was oper-
ated with two SEC columns attached: a TSK-guard column PWH 
(internal diameter of 7.5 mm and length of 7.5 cm), and a TSKgel 
G6000PW column from Tosoh Bioscience (with particle size 
of 17 µm, internal diameter of 7.5 mm, and length of 30.0 cm).  
After the columns, the solution was analyzed by two detectors, 
a Shimadzu RID-10A differential refractive index detector and a 
Viscotek model 270 light scattering detector. The eluent (0.8 m 
NaNO3 aqueous solution) was pumped through the columns at 
a flow rate of 0.5 mL min−1 and the measurement and detec-
tion units were kept at room temperature (20 °C). The injection 
volume was 400 µL and triplicate analysis was done for each 
sample. The analytical columns were calibrated with two pul-
lulan standards (MW = 107 and 344 kDa, Polymer Standards Ser-
vice, Germany) and a dextran standard with a molecular weight 
of 1750 kDa (American Polymer Standards, US). Data analysis 
was performed with Viscotek TriSEC GPC V3.0 software. For 
the evaluation of xanthan molecular weight, a refractive index 
increment dn/dc of 0.153 mL g−1 was used, which is typical for 
polysaccharides.[27]

2.7. Electrospinning Process

The electrospinning setup included a high voltage generator 
(ES50P-10W, Gamma High Voltage Research, Inc., USA) to 
provide a voltage of 20 kV, and syringe pump (New Era Pump 
Systems, Inc., USA) to feed the xanthan solution at a flow rate of 
0.01 mL min-1. Xanthan fibers were collected on a steel plate cov-
ered with aluminum foil placed at a distance of 8 cm from the 
end of the needle. The electrospinning process was carried out at 
ambient conditions.

2.8. Morphology

The morphology of electrospun xanthan fibers was monitored 
using a Quanta FEG 3D scanning electron microscope (SEM). For 
SEM analysis, a small amount of fibers was attached on SEM 
specimen by a double-sided carbon adhesive tape, and sputter 
coated with 6 nm of gold (Leica Coater ACE 200). The Fibermetric 
application (Phenom Pro Suite software) was used to obtain the 
histograms with the diameter distribution of the nanofibers 
(measured at 100 different points for each image).

2.9. Statistical Analysis

All determinations were carried out in triplicate and results were 
stated as the mean values ± of standard deviations. Significant 
differences (p < 0.05) among samples were assessed with analysis 
of variance (one-way ANOVA with Fisher’s multiple comparison 
test), using the statistical Minitab software version 16 (Minitab 
Inc. State College, PA, USA).

3. Results and Discussions

3.1. Electrospinning of Xanthan Nanofibers

Xanthan nanofibers were obtained by the electrospinning 
of 1.5–2.5 wt/vol% polysaccharide solutions in formic acid 
(Figure 2). The nanofibrous structure is composed of indi-
vidual, uniform, and randomly oriented fibers with average 
diameters ranging from 128 ± 36.7 to 240 ± 80.7 nm. 
Decrease of the xanthan concentration below 1 wt/vol% 
resulted in the formation of electrospun beaded fibers, 
and beads (at 0.5 wt/vol%), denoting that the polysaccha-
ride concentration is critical for the formation of uniform 
nanofibers. Xanthan solutions beyond 2.5 wt/vol% were 
highly viscous and it was not possible to electrospun higher 
polysaccharide concentrations of this molecular weight.

Figure 3 shows the average nanofiber diameter (D) 
dependence with the concentration [c] of xanthan that 
can be described as

[ ]=D c0.127 0.69  (1)

The dependence of the nanofiber diameter with the 
polysaccharide concentration is related to the intermolec-
ular conformation and association of xanthan in formic 
acid and it will be discussed below.
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The electrical conductivity of xanthan solutions was 
increased significantly (p < 0.05) with the increase of the 
polysaccharide concentration (Table 1), as result of the 
increase of xanthan negative charges at higher concen-
trations.[28] Such an increase of the solution conductivity 
induces greater transfer of the surface charges of the 
polymer jet, enhanced electrostatic repulsion, promoting 

elongation, stretching, and the formation of electrospun 
nanofibers.[29–33] Moreover, the high dielectric constant 
of formic acid (57.9) contributes positively to the develop-
ment of charges within the jet, facilitating the formation 
of electrospun xanthan nanofibers.

Furthermore, a significant parameter influencing 
the electrospinnability is the viscoelasticity of the 

Macromol. Mater. Eng. 2017,  DOI: 10.1002/mame.201700067

Figure 2. SEM images of electrospun xanthan nanofibers from different concentrations in formic acid: a) 0.5 wt/vol%, b) 1 wt/vol%,  
c) 1.5 wt/vol%, d) 2 wt/vol%, and e) 2.5 wt/vol%. The histograms summarize the diameter distribution of the nanofibers.
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polysaccharide solution. The solution must have a con-
centration and viscoelasticity high enough to cause poly-
saccharide chain entanglements, yet not so high that the 
viscoelasticity prevents the motion induced by the elec-
tric field. In the next section, we have studied the viscoe-
lastic properties of different concentrations of xanthan 
solutions in formic acid.

3.2. Rheological Properties of Xanthan Solutions  
in Formic Acid

3.2.1. Oscillatory Measurements

The frequency (ω) dependence of the elastic (G′) and loss 
modulus (G″) of the xanthan solutions is presented in 
Figure 4a. The values of both dynamic moduli gradually 
increased with the increase of xanthan concentration. 
For the lowest xanthan concentration (0.5 wt/vol%) the 
loss modulus was predominant over the elastic modulus 
(G″ > G′) within the frequency range of 0.1–100 rad s−1. 
At higher polysaccharide concentrations (2 and 2.5 wt/
vol%), the G′ was marginally dominant over the G″, with 
relatively high frequency dependence for both moduli 

(Figure 4a). The crossover of the dynamic moduli appeared 
to shift toward lower frequencies with increasing xan-
than concentration, in agreement with previous studies 
using dilute aqueous xanthan solutions.[34–36] Previous 
studies, however, showed that for ordered conformation 
of xanthan aqueous solutions, G′ dominates G″ over most 
of the frequencies (weak “gel-like” behavior), in agreement 
with the rheological behavior of most of the rigid polymers 
at relatively concentrated solutions.[37] Overall, oscillatory 
rheological studies indicate that 0.5–2.5 wt/vol% xanthan 
in formic acid forms very “weak” viscoelastic solutions 
with high frequency dependence of G′ and G″.

Moreover, the tan δ value (tan δ = G″/G′) provides a con-
venient index of the proportion of elastic-like character 
(Figure 4b). Clearly, the tan δ value decreased more than 
seven times at the frequency of 0.1 rad s−1 by varying the 
xanthan concentration from 1 to 1.5 wt/vol%, the concen-
tration at which electrospun nanofibers formation was 
observed. The tan δ value was found to decrease with the 

Macromol. Mater. Eng. 2017,  DOI: 10.1002/mame.201700067

Figure 3. Dependence of the average nanofiber diameter with 
the concentration of xanthan (R2 = 0.998).

Table 1. Electrical conductivity of xanthan solutions in formic acid.

Xanthan  
[wt/vol%]

Conductivity  
[µs cm−1]

0.5 134.3 ± 4.0a)

1 265.7 ± 5.1b)

1.5 356.7 ± 1.5c)

2 436.0 ± 3.6d)

2.5 551.0 ± 4.6e)

a–e)Significant different at p < 0.05.

Figure 4. a) Elastic (G′) and viscous (G″) modulus as a function 
of frequency, and b) tan δ values as a function of frequency, for 
xanthan solutions (wt/vol%) in formic acid at 25 °C.
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increase of xanthan concentration and to be around 0.4 at 
10 rad s−1 for the 2.5 wt/vol% xanthan in formic acid. It is 
to note that for other biopolymer hydrogels such as gel-
atin, agarose, and carrageenan the tan δ value was found 
to range from about 0.02 to 0.07.[38,39]

Figure 5 shows the dependence of the average 
nanofiber diameter (D) of xanthan with the elastic mod-
ulus (G′) (or viscous modulus, G″) and dynamic complex 
viscosity (ƞ*), at the cross-over frequency of the moduli 
(Figure 4a). The dependence can be described as

= ′D G0.14[ ]0.12  (2)

η=D 0.06[ *]0.42  (3)

where the fiber diameter is in micrometers. Obviously, 
an increase in the viscoelastic parameters of the polysac-
charide (as concentration increased) resulted to a larger 
number of entanglements, thus causing the formation of 
electrospun nanofibers with higher average diameters.

3.2.2. Flow Properties

As shown in Figure 6, flow rheological studies reveal that 
xanthan in formic acid has a shear thinning behavior, 
which is observed for xanthan and other aqueous poly-
saccharide solutions. No hysteresis were observed for the 
viscosity during increasing and decreasing of the imposed 
shear rate, suggesting that the xanthan solutions were not 
thixotropic with fast relaxation times, in contrast with 
aqueous preparations of xanthan that are thixotropic.[40] 
Thus, disruption and reformation of weaker linkages could 
be responsible for the reversible shear thinning behavior of 
xanthan in formic acid. It is to note the strong increase of 
the viscosity beyond 1 wt/vol% (the concentration at which 
the formation of electrospun nanofibers was initiated); at 

the low shear rate of 0.1 s−1, the 1 wt/vol% of xanthan solu-
tion displayed ten times higher viscosity than the 0.5 wt/
vol%.

Moreover, xanthan follows a power-law thinning 
behavior of η = m·γ̇ n−1 where η is the apparent viscosity, γ̇  
is shear rate, and m is the flow index. The flow index (m), 
which is a rheological parameter that reflects the values 
of the viscosity, was substantially increased above 1 wt/
vol%. The power law index values (n) were in the range 
of 0.761–0.236 (Table 2). This behavior is close to that of 
aqueous xanthan gum behavior (n = 0.24) which is known 
to be caused by forming aggregates through hydrogen 
bonds and polymer entanglements, resulting in a high 
viscosity at low shear rates.[41,42] Power law index values 
(n) in the range of 0.15–0.25, implying high shear thin-
ning behavior, have been also reported for high concen-
trations of other polysaccharide solutions.[40] Such a shear 
thinning behavior is critical for the extension of the poly-
saccharide jet by the electric field and for the formation of 
electrospun xanthan nanofibers.

Figure 7, shows an exponential relationship of the 
solution (apparent) viscosity with the increase of xanthan 
concentration in formic acid. Similar exponential 
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Figure 5. Dependence of the diameter of xanthan nanofibers 
with the elastic modulus (G′) (R2 = 0.995) and dynamic complex 
viscosity (ƞ*) (R2 = 0.993) at 25 °C.

Figure 6. Flow curves for xanthan solutions (wt/vol%) in formic 
acid at 25 °C.

Table 2. Power law parameters from the shear thinning properties 
of xanthan solutions in formic acid (25 °C).

Xanthan  
[wt/vol%]

n K R2

0.5 0.761 0.214 0.999

1 0.473 2.274 0.998

1.5 0.317 10.617 0.993

2 0.299 17.286 0.995

2.5 0.236 35.588 0.999
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concentration dependence was also observed for aqueous 
xanthan solutions higher than 0.2 wt/vol%, both at 20 and 
80 °C.[43] Garcia-Ochoa et al.,[44] also reported an expo-
nential correlation of the viscosity of aqueous xanthan 
concentrations in the range from 0.1 to 0.2 wt/vol% with 
the addition of 0.1 wt/vol% of NaCl.

3.2.3. Normal Stress Difference

The first normal stress difference (N1) as a function of 
shear rate at different xanthan solutions is illustrated in 
Figure 8. For xanthan concentrations beyond 1.5 wt/vol%, 
the viscoelastic forces increased as the shear rate was 
increased, due to the stretching of xanthan chains within 
the flow field, resulted in an increased N1 values. The N1 
values of xanthan in formic acid were highly dependent 
on the shear rate above the concentration of 1.5 wt/vol% 

(at which nanofiber formation was observed) and exhib-
ited a power-law dependence (N1 = A·γ̇ B). For the shear 
rate of 10–100 s−1 the B values were 0.85, 1.06, and 1.49 
for the 1.5, 2, and 2.5 wt/vol% xanthan concentrations, 
respectively. Comparatively, N1 values of aqueous xan-
than solutions were less dependent on shear rate (B = 
0.09).[45,46] Overall, the data clearly indicate that at higher 
concentrations xanthan solutions in formic acid are elastic 
with strong entanglements among the molecular chains, 
resulting in a noticeable increase of N1.

3.2.4. Comparison between Apparent Viscosity  
and Dynamic Complex Viscosity

Figure 9 shows that the complex viscosity (ƞ*) values 
of xanthan in formic acid are slightly higher than the 
apparent viscosity values (ƞ) for the concentrations 
of 2 and 2.5 wt/vol%. At the concentration range of 
0.5–1 wt/vol%, it was observed that (ƞ*) was superimposed 
with (ƞ). This suggests that xanthan in formic acid at high 
concentrations, deviate slightly from the “Cox–Merz” rule, 
which typically applies to most viscoelastic systems with 
physical entanglements and relates linear and nonlinear 
viscoelastic properties. A deviation from the Cox–Merz rule 
is generally attributed to the structural decay due to strain 
deformation applied to the system (i.e., low in oscillatory 
shear and high in steady shear).[47–49] For the majority of 
polysaccharide solutions, the complex viscosity is almost 
always higher than the apparent viscosity at the same 
numerical values of frequency and shear rate, and their 
difference becomes increasingly larger with decreasing 
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Figure 7. Semilogarithmic representation of the relation of the 
viscosity with xanthan concentration (circles: 50 ± 5 s−1; triangles: 
0.2 ± 0.02 s−1). The solid lines represent exponential concentration 
dependence.

Figure 8. First normal stress difference (N1) upon increasing shear 
rate for xanthan solutions (wt/vol%) in formic acid at 25 °C.

Figure 9. Complex viscosity (circles) and apparent viscosity (trian-
gles) as a function of frequency of oscillation and shear rate for 
xanthan solutions at 25 °C.
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frequencies and shear rates.[47–49] The agreement with 
this empirical rule in the case of xanthan in formic acid at 
low concentrations and the slight deviation at higher con-
centrations is in contrast with the case of typical aqueous 
xanthan solutions, where structural features such as 
entanglements and/or aggregates and hydrogen bonding 
are responsible for the significant deviation from the 
Cox–Merz rule.

3.3. Molecular Conformation of Xanthan

Xanthan chains are subjected to a conformational transi-
tion from helix to random coils depending on the changes 
in concentration, pH, temperature, and solvent ionic 
strength.[44,50,51] At low temperature (below 40 °C)[44] or 
high ionic strength (less than 1 m NaCl),[51] xanthan chains 
adopt ordered structures such as single or double helix.[52] 
When the polysaccharide is subjected to high tempera-
ture or low ionic strength, disordered, and highly dynamic 
chain structures were found.[53,54]

Although CD spectroscopy is a powerful technique 
for evaluating molecular conformations and the content 
of secondary structures, the analysis is limited toward 
analytes dissolved in solvents that do not interfere 
with circularly polarized light. Indeed, the evaluation of  
xanthan conformation when dissolved in formic acid was 
problematic because of the solvent optical activity, and 
the corresponding CD spectrum was found noisy (data not 
shown). Accordingly, xanthan solutions were prepared in 
water and in formic acid, freeze-dried, and resolubilized in 
water. As a control, the CD spectrum of xanthan in water 
without prior freeze-drying was also recorded. In Figure 10, 
the helix conformation of xanthan chains in solution is 
represented by the positive ellipticity at ≈200 nm and the 
negative ellipticity at ≈223 nm. These bands are attributed 
to the optically active carboxylic or carboxylate groups of 
the d-glucuronic acid and the pyruvate groups (band at 
≈200 nm), and to the acetate groups (band at ≈223 nm).[50] 
The CD spectrum of freeze-dried xanthan, previously dis-
solved in water and resolubilized in water (Figure 10, red 
line) shows a slight ellipticity shift in the positive band 
from 200 to 202 nm, indicating no significant effect of the 
ordered conformation, whereas the ellipticity intensity is 
comparable to that obtained from not freeze-dried xan-
than solution in water (Figure 10, black line). On the other 
hand, the CD spectrum of freeze-dried xanthan, previously 
dissolved in formic acid and resolubilized in water shows 
a marked decrease in the ellipticity at 200 nm suggesting 
a reduction or a partial destruction of helix structures 
(Figure 10, blue line). However, the decrease of ellipticity 
in the range between 220 and 250 nm indicates dimin-
ished random coil content.

Hence, the CD analysis of xanthan solutions revealed that 
freeze-drying does not affect the conformational stability 

of xanthan chains and moreover, formic acid influences the 
xanthan secondary structure inducing an alteration of the 
helix content. Interestingly, a helix conformation recovery 
might occur when freeze-dried xanthan chains, first dis-
solved in formic acid are resolubilized in water. To elucidate 
the formic acid effect on the molecular conformation of 
xanthan, SEC and FTIR were also employed.

3.4. Fourier Transform Infrared Spectroscopy

Figure 11 shows the infrared spectra of native xanthan, 
freeze-dried xanthan previously dissolved in water, freeze-
dried xanthan first dissolved in formic acid and electro-
spun xanthan fibers after formic acid evaporation. The IR 
peaks (numbered from 1 to 9 in Figure 11) and the group 
frequencies were assigned for all samples according 
to reported data.[8,55,56] The broad peak in the region of 
3000–3500 cm−1 was ascribed to OH stretching (peak 1), 
and the band around 2900 cm−1 to the axial deformation 
of CH of CH2 groups (peak 2). In Figure 11b, the region 
between 2000 and 700 cm−1 was enlarged for a better peaks 
visualization. Here, the stretching vibration of CO was 
distinguished as three peaks: one band attributed to car-
bonyl functionalities (peak 3), a second one corresponding 
to symmetrical stretching of carboxylic groups (peak 4) of 
pyruvate and glucuronic acid, and a third band ascribed 
to the carboxylate asymmetric stretching (peak 5).[8,55,56] 
Polysaccharide structure also presented a weak peak due 
to OH in-plane deformation around 1250 cm−1 (peak 6), 
and as indicated by the red arrows in Figure 11b, the inten-
sities of this band are much lower for xanthan powder 
previously dissolved in formic acid. Other characteristic 
peaks were found in the region of 1200–1000 cm−1: peak 7 

Macromol. Mater. Eng. 2017,  DOI: 10.1002/mame.201700067

Figure 10. CD spectra of xanthan aqueous solution (0.5 wt/vol%,  
black line); xanthan aqueous solution (MQ) subjected to 
freeze-dry and redissolved in water (0.5 wt/vol%, red line);  
xanthan in formic acid (FA), freeze-dried, and redissolved in water 
(0.5 wt/vol%, blue line).
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corresponds to OH and COC stretching of tertiary 
alcohols and esters, and peak 8 to OH stretching of pri-
mary alcohols. In the wavenumber range between 900 and 
750 cm−1, the vibrational mode of backbone β-glycosidic 
linkages and the bending mode of CH and OH out-
of-plane were assigned (peak 9).

Consequently, the esterification process of xanthan 
polysaccharide molecules dissolved in formic acid may 
explain the decrease in intensity of the OH in-plane 
peak. The presence of formate groups at the hydroxyl 
positions 4 and 6 of glucose units might also explain the 
intensity increase of the IR peak 3 which corresponds to 
the carbonyl functionalities. Previous studies using var-
ious polysaccharides (such as starch, guar gum, chitin, 
and cellulose), dissolved in formic acid also revealed that 
an esterification reaction taking place at the hydroxyl 
groups in position 4 and 6 of glucose units.[57]

3.5. Size-Exclusion Chromatography

The results obtained from size-exclusion chromatography 
revealed a small difference in molecular weight of the 
polysaccharide when dissolved in water or in formic acid. 
In Figure 12, the refractive index and the light scattering 
peaks of standard and xanthan solutions were plotted as a 
function of the retention volume.

Figure 11. FTIR spectra of xanthan at different conditions: native, dissolved in water and freeze-dried, dissolved in formic acid and 
freeze-dried, and electrospun polysaccharide fibers after formic acid evaporation. a) FTIR spectra recorded in the wavenumber range 
from 4000 to 700 cm-1 and b) the corresponding enlarged plots in the region between 2000 and 700 cm-1. FTIR peaks are labeled with 
numbers ((1)–9), and red arrows indicate missing peaks.

Figure 12. Size exclusion chromatograms of pullulan with a 
molecular weight of 107 and 344 kDa (blue line and magenta line, 
respectively); dextran with molecular weight of 1750 kDa (green 
line); xanthan dissolved in water (red line), and xanthan previ-
ously dissolved in formic acid for 15 h, freeze-dried, and resolubi-
lized in water (black line). Standards (0.01 wt/vol%) and xanthan 
(0.05 wt/vol%) samples were dissolved in ultrapure milliQ water. 
In the plot, the refractive index (RI) and the light scattering (LS) 
of samples are reported as a function of retention volume (mL). 
Measurements were repeated three times (light colors along the 
curves indicate the standard deviation).
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Indeed, xanthan dissolved in water was found to have 
a molecular weight approximately of 990 kDa with a 
polydispersity of 1.03 while the molecular weight of 
xanthan dissolved in formic acid corresponded approxi-
mately to 1030 kDa (polydispersity = 1.03). The absolute 
molecular weight of xanthan in the solutions were calcu-
lated by the respective ratios between the peak areas of 
light scattering and the refractive index traces given by 
the following equations[58,59]

A k n
c

md
dRI RI= 



  (4)

A k n
c

mMwd
dLS LS

2

=






  (5)

where ARI and ALS are the areas underneath the refractive 
index peak and the light scattering peak, respectively. kRI and 
kLS are parameters that depend on the instrument and on 
the eluent used, not on the analyzed polymer; dn/dc is the 
differential refractive index increment (dn/dc = 0.153 mL g−1  
for xanthan eluted with 0.8 m NaNO3 aqueous solution at 
λ = 633 nm); m is the injected mass and it is given by mul-
tiplying the injection volume with the mass concentration 
of a certain solution; Mw is the weight average molecular 
weight. The parameters kRI and kLS were determined from 
relations[9,10] applied to the SEC chromatograms of the 
dextran and pullulan standards (with known Mw, dn/dc, 
and m), and then applied for the calculation of Mw for the 
xanthan samples. Given the similar chemical composi-
tion, the values of dn/dc for the analyzed polysaccharides 
are expected to be very similar. This is supported by the 
observation that, with the exception of xanthan sample 
dissolved in water, the values of the ARI in Figure 12 are 
directly proportional to the sample concentrations, as 
expected from relation at unchanged dn/dc.[9] The simi-
larity of the calculated Mw values for the xanthan in water 
and in formic acid is an indication that the obtained distri-
bution of molecular masses was not significantly distorted. 
Notice that the ALS/ARI is independent of the concentration. 
Interestingly, the results obtained from the size exclusion 
chromatography suggest a slight increase in molecular 
weight of the xanthan dissolved in formic acid of ≈40 kDa, 
confirming the hypothesis that during polysaccharide dis-
solution in formic acid an esterification reaction occurs.

4. Conclusions

Electrospun xanthan polysaccharide nanofibers with 
an average diameter of 128 ± 36.7 to 240 ± 80.7 nm were 
prepared using formic acid as a solvent. The correlation 
between the concentration and the rheological proper-
ties of xanthan solutions with the morphology of the 
nanofibers was investigated. At xanthan concentrations 

above 1 wt/vol% chain entanglements leads to an increase 
of its elastic modulus, apparent viscosity, and first normal 
stress differences (N1), resulting to the stabilization of 
the xanthan jet during electrospinning and formation of 
electrospun fibers. The typical “weak gel-like” properties 
of aqueous xanthan solutions, with junction zones com-
parable to those in true gels but much weaker, were not 
observed for xanthan solutions in formic acid. From the 
FTIR studies it was observed that an esterification reac-
tion takes place; most probably formic acid reacts with 
the pyruvic acid groups of xanthan. As the esterification of 
pyruvic acid to pyruvil formate induces a decrease of the 
negative charges of xanthan, it neutralizes and stabilizes 
the helical conformation of xanthan. The results obtained 
from SEC revealed a small difference in molecular weight 
of the polysaccharide when dissolved in distilled water or 
in formic acid. Further studies are required to investigate 
the effect of different solvents, ionic conditions, and poly-
saccharide properties (e.g., molecular weight) for the for-
mation of electrospun xanthan nanofibers.
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Abstract  

Xanthan polysaccharide nanofibers (X) were prepared using electrospinning processing as an 

encapsulation and delivery system of the poorly absorbed polyphenols compounds gallic acid 

(GA) and ( ̶ )-epigallocatechin gallate (EGCG). Scanning electron microscopy was used to 

characterize the electrospun nanofibers, and controlled release studies were performed at pH 6.5 

and 7.4 in saline buffer, suggesting that the release of polyphenols from xanthan nanofibers 

follows a non Fickian mechanism. Furthermore, the X-GA and X-EGCG nanofibers were 

incubated with Caco-2 cells, and the cell viability, transepithelial transport and permeability 

properties across cell monolayers were investigated. An increase of GA and EGCG 

permeabilities was observed when the polyphenols were loaded into xanthan nanofibers, 

compared to the free compounds. The observed in vitro permeability enhancement of GA and 

EGCG was induced by the presence of the polysaccharide nanofibers, that successfully inhibited 

efflux transporters, as well as by tight junctions opening. 

 

Keywords: Xanthan gum, electrospinning, gallic acid, ( ̶ )-epigallocatechin gallate, apparent 

permeability coefficient, efflux.  
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1. Introduction 

Polyphenols are the most abundant antioxidants in our diet and they are receiving increasing 

interest due to the established association between the intake of polyphenol-rich diet and the 

prevention of various diseases.1,2 Because of their antioxidant,3 antimutagenic4 and 

anticarcinogenic properties,5,6 polyphenols have recently attracted the research interest towards 

the study of their metabolism and absorption mechanisms across the gut barrier.7  

Polyphenols are categorized according to the chemical structure of their carbon skeleton, and the 

most abundant classes in our diet are phenolic acids and flavonoids. The most encountered 

phenolic acids are caffeic acid, ferulic acid and gallic acid. The latter, also known as 3,4,5-

trihydroxybenzoic acid, is one of the main endogenous phenolic acids found in plants, mostly in 

tea leaves.8 Gallic acid (GA), also found in vegetables, grapes, and pomegranates is a potent non-

enzymatic antioxidant and has a natural antitumor activity against lung, prostate, colon, gastric, 

breast cancer and human pre-myelocytic leukemia.9–12 It has been reported that the in vitro 

treatment of lung and HeLa cancer cells with gallic acid concentrations in the micromolar range 

induces cell death associated to the depletion of glutathione (GSH) as well as reactive oxygen 

species (ROS) level changes.13,14 The physiological impact and efficiency of GA is strictly 

dependent on its bioavailability, biochemical integrity and succeeding interaction with target 

tissues. Many studies have demonstrated that only small amounts of orally administered GA are 

absorbed through the intestine due to its low permeability, poor water solubility and chemical 

instability.  

Flavonoids, the most abundant polyphenols in our diet together with phenolic acids, can be 

divided into several classes, and catechins are the main flavonols found in tea.1 The major tea 
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catechins are ( ̶ )-epigallocatechin gallate (EGCG), ( ̶ )-epicatechin gallate (ECG), ( ̶ )-epicatechin 

(EC) and ( ̶ )-epigallocatechin (EGC).15 These natural compounds have demonstrated various 

health-beneficial properties, including antioxidant, anti-inflammatory and anticancer effects both 

in animals and humans.16,17 Indeed, an inverse association between tea consumption and 

colorectal cancer frequency as well as gastric cancer has been identified.18,19 A particular 

interests towards EGCG has led to an extensive investigation of the beneficial properties of this 

natural molecule in the cosmetic, nutritional and pharmaceutical fields. However, as gallic acid, 

EGCG has a poor oral bioavailability and poor biochemical stability.  

In the light of these considerations, the oral administration of gallic acid and ( ̶ )-epigallocatechin 

gallate requires a formulation strategy able to protect and maintain their structural integrity, 

increase their bioavailability and water solubility, and deliver them to target tissues. Among the 

existing delivery and stabilization approaches, the encapsulation of sensitive compounds is 

considered to be the most effective strategy for improving the oral bioavailability and shelf-life 

of compounds.20–22 Nowadays, a plethora of encapsulation techniques are commonly use in oral 

delivery systems, and carrier systems for phenolic acids and flavonoids encapsulation have been 

found feasible approaches to overcome both enzymatic degradation and membrane permeation 

issues.7,17 The encapsulation of EGCG in niosomal formulation results in a significantly 

enhanced drug absorption, stronger stability and lower toxicity compared with the free EGCG.17 

The in vitro apparent permeability Papp of EGCG niosome across Caco-2 cell monolayers was 

found to be around 1.42 ± 0.24x10-6 cm/s, almost 2-folds as free EGCG (Papp value around 0.88 ± 

0.09x10-6 cm/s). Furthermore, GA-loaded mesoporous silica nanoparticles (MSNs-GA) were 

easily internalized into Caco-2 cells without deleterious effect on cell viability, and preserving 

the same antitumor properties of free GA.7 In addition, the topical and transdermal delivery of 
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GA loaded into poly(L-lactic acid) fiber mats resulted in a preserved radical scavenging activity 

of the released phenolic acid.23 GA has been  also encapsulated within electrospun fibers as 

delivery carriers using the protein zein24, cellulose acetate25, as well as polylactic acid (PLA) 

nanofibers including complexes of GA and cyclodextrin26. The encapsulation and release of 

EGCG loaded into electrospun nanofibers has been also investigated using zein nanofibers27, 

hyaluronic acid/ lactic-co-glycolic acid fibers (HA/PLGA, core/shell)28 and cellulose electrospun 

nanofibrous mats coated with bilayers of chitosan and EGCG29.  

In the present study, we report the formation of electrospun xanthan nanofibers as an 

encapsulation and delivery system of the two polyphenols, GA and EGCG. The resulting GA- 

and EGCG-loaded nanofibers were incubated with Caco-2 cells, and the cell viability, 

transepithelial transport and permeability properties across cell monolayers were investigated. 

2. Materials and Methods 

2.1.  Materials 

The human colon adenocarcinoma cell line Caco-2 [Caco-2] (ATCC® HTB-37™) was obtained 

from the American Type Culture Collection (Rockville, MD). Dulbecco´s modified Eagle´s 

medium (DMEM) high glucose (4.5 g/L), L-glutamine (200 mM), nonessential amino acids 

(100X), penicillin-streptomycin (10,000 U/mL and 10 mg/mL in 0.9% sodium chloride, 

respectively), trypsin-EDTA (10X), Phosphate Buffered Saline (PBS), fluorescein sodium salt 

(FLUO), lucifer yellow dilithium salt (LY), methanesulfonic acid, MES (1 M; pH 5.5-6.7), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid solution, HEPES (1 M; pH 7.0-7.6), gallic acid 

(GA) and ( ̶ )-epigallocatechin gallate (EGCG) were purchased from Sigma Aldrich (Brøndby, 

Denmark). Tissue culture 12-well plates and 12-mm polycarbonate cell culture inserts with an 
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area of 1.12 cm2 and a pore size of 0.4 µm were purchased from Corning Costar® Corporation. 

Fetal bovine serum (FBS) and Hanks´ balanced salt solution (HBSS) with calcium and 

magnesium and without phenol red were obtained from Thermo Fisher Scientific (Roskilde, 

Denmark). CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was purchased 

from Promega Biotech AB (Sweden). Xanthan gum (Cosphaderm X-34) from Xanthomonas 

campestris was kindly provided by Cosphatec GmbH (Drehbahn, Hamburg, Germany).30 

2.2. Fabrication of electrospun nanofibers 

Xanthan was dissolved in formic acid at a final concentration of 2.5% w/v under vigorous 

stirring overnight at room temperature. Subsequently, GA and EGCG were added to the 

polysaccharide solution and further stirred for 30 min. The electrospinning setup consisted of a 

high voltage generator (ES50P-10W, Gamma High Voltage Research, Inc., USA) to provide a 

voltage of 20 kV, and a syringe pump (New Era Pump Systems, Inc., USA) to feed the xanthan 

solution at a flow rate of 0.01 mL/min using a 21 G needle gauge. Xanthan fibers were collected 

on a steel plate covered with an aluminum foil placed at a distance of 8 cm from the end of the 

needle. The electrospinning process was carried out at ambient conditions (20 °C and around 

20% humidity). 

2.3. Morphology of the nanofibers  

The morphology of electrospun X, X-GA and X-EGCG nanofibers was studied using a Phenom 

Pro scanning electron microscope (Phenom World, Thermo Fisher Scientific, Netherlands). For 

SEM analysis, a small piece of nanofibers web was attached on SEM specimen stubs by a 

double-sided adhesive tape. The average fiber diameter of nanofibers was calculated using image 
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J analysis software (National Institutes of Health, MD, USA) measured at 100 different points 

for each image.    

2.4. In vitro release of gallic acid and ( ̶ )-epigallocatechin gallate from electrospun nanofibers 

The amount of gallic acid (GA) and ( ̶ )-epigallocatechin gallate (EGCG) loaded into xanthan 

nanofibers was evaluated by immersing the nanofibers in equal volumes of complete growth 

medium (DMEM-FBS) or HBSS solution at pH 6.5 or pH 7.4. Briefly, 1.0 mg of X-GA and X-

EGCG fibers were immersed in 2 mL pre-warmed medium in a 48-well plate, and the release of 

molecules from nanofibers were conducted at 37 °C for 8 h. The withdrawn aliquots were 

analyzed by RP-HPLC with detection of GA and EGCG at 255 nm and 270 nm, respectively. 

The cumulative amount of each compound released from nanofibers was then considered as the 

maximum releasable GA and EGCG amounts from these nanofiber formulations at that 

condition. All data were expressed as mean ± SD of three independent experiments. 

2.5. Caco-2 cell culture and subculture 

Caco-2 cells were routinely seeded at a concentration of 1.0x105 cells/mL in T-75 cm2 flasks and 

incubated at 37 °C in a humidified atmosphere of 5% CO2. The complete cell medium, here 

indicated as DMEM-FBS, consisted of high glucose DMEM containing 10% heat-inactivated 

FBS, 2 mM L-glutamine, 1% nonessential amino acids, 100 U/mL penicillin and 100 µg/mL 

streptomycin. The medium was renewed every second day until cells reached approximately 

90% confluence. Cells were passaged at a subcultivation ratio of 1:4 by treatment with 0.25% 

trypsin - 0.53 mM EDTA solution for 10 min at 37 °C. After trypsinization, the cells were 

suspended in complete growth medium and centrifuged for 5 min at 1000 rpm. After supernatant 

removal, the pellet was suspended in the growth medium and cell concentration was determined 
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with ORFLO Moxi Z Mini Automated Cell Counter using Type S cassette (Biofrontier 

Technology, Singapore). All Caco-2 cells were used between passages 9 - 15. 

2.6. Compounds and electrospun nanofibers tested with Caco-2 cell monolayers 

Xanthan (X), gallic acid-loaded xanthan (X-GA) and ( ̶ )-epigallocatechin gallate-loaded xanthan 

(X-EGCG) nanofibers were produced by electrospinning a solution of the mixed compounds 

dissolved in formic acid. These nanofibers were tested with Caco-2 cell monolayers to evaluate 

their toxicity and apparent permeability coefficient (Papp) after release from nanofibers and as 

free compounds. Before testing nanofiber mats with Caco-2 cells, the collected fibers were kept 

under air stream for 3 days allowing complete formic acid evaporation. Besides GA and EGCG, 

the transepithelial transport of fluorescein (FLUO) and Lucifer yellow (LY) across Caco-2 cell 

monolayers were also investigated as marker models for intestinal epithelial permeability and 

integrity.  

2.7. Caco-2 cell viability assay  

The in vitro Caco-2 cell viability after treatment with free GA, free EGCG, xanthan nanofibers 

(X), GA-loaded xanthan nanofibers (X-GA) and EGCG-loaded xanthan nanofibers was 

evaluated by using the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium inner salt] colorimetric bioassay. Different concentrations of free 

GA and EGCG ranging from 1 µM to 1 mM were prepared in PBS and sterile-filter with a 0.22 

µm pore size. Furthermore, increasing amounts of dried X, X-GA and X-EGCG nanofibers were 

peeled off from the aluminum foils and incubated with cells. In a 48-well plate, a concentration 

of 1.5x105 cells/mL were seeded in a complete growth medium and incubated for 2 days at 37 °C 

in a humidified atmosphere of 5% CO2. Then, the monolayers were washed with PBS and the 
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complete medium was renewed. Caco-2 cells were incubated with free GA and free EGCG 

solutions, X nanofibers, X-GA nanofibers, X-EGCG nanofibers and PBS as a control. The plates 

were incubated for 24 h at 37 °C in a humidified atmosphere of 5% CO2. The following day, all 

supernatants including those with suspended nanofibers were removed, cells were washed with 

PBS and the medium was renewed. 40 µL of pre-warmed MTS solution was added to each well 

under dark conditions. After 3 h incubation at 37 °C, the absorbance of the reduced MTS 

(formazan product) was recorded at 490 nm through a well plate reader (Wallac 1420 Victor2 

Multilabel Counter, Perkin Elmer, Waltham, MA).  

2.8. Transepithelial transport experiments 

The transepithelial transport of free fluorescein (FLUO), free lucifer yellow (LY), free gallic acid 

(GA), free ( ̶ )-epigallocatechin gallate (EGCG), free gallic acid in presence of empty xanthan 

nanofibers (X + GA), free ( ̶ )-epigallocatechin gallate in presence of empty xanthan nanofibers 

(X + EGCG), gallic acid-loaded xanthan nanofibers (X-GA) and ( ̶ )-epigallocatechin gallate-

loaded xanthan nanofibers (X-EGCG) across Caco-2 cell monolayers were investigated 

according to the protocol reported by Artursson et al.31 The transport experiments were 

performed in both apical-to-basolateral (AB, absorptive) and basolateral-to-apical (BA, 

secretory) directions, under a proton gradient. In fact, in order to mimic the acid microclimate of 

the small intestine, an apical and basolateral pH around 6.5 and 7.4 were used, respectively. 

Briefly, 1.0x105 cells/insert were seeded onto pre-wetted 12-mm polycarbonate cell culture 

inserts with an area of 1.12 cm2 and a pore size of 0.4 µm. The apical and basolateral 

compartments were filled with 0.5 mL cell suspension and 1.5 mL complete medium, 

respectively. The Caco-2 cells were incubated onto the filters overnight at 37 °C in a humidified 

atmosphere of 5% CO2. The day after, the growth medium was replaced in both compartments 
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and the plates were incubated for 21 days at 37 °C in a humidified atmosphere of 5% CO2, 

renewing the complete growth medium every second day. For the AB transport experiments, 

donor solutions of FLUO, LY, GA and EGCG at a concentration of 11 mM, 9.57 mM, 1.1 mM 

and 1.1 mM, respectively were prepared in sterile-filter HBSS at pH 6.5 buffered with 10 mM 

MES. Again, donor solutions of FLUO, LY, GA and EGCG at a concentration of 10.3 mM, 9 

mM, 1.03 mM and 1.03 mM, respectively were prepared in sterile-filter HBSS at pH 7.4 

buffered with 25 mM HEPES to evaluate their BA transport. A volume of 50 µL of each stock 

solution was added to the donor chamber (0.55 mL and 1.55 mL were the total volumes in A and 

B, respectively). The transport of GA and EGCG released from nanofibers and as free 

compounds in presence of empty X nanofibers was also investigated. For the AB transport, 0.2 

mg X-GA, 1.0 mg X-EGCG, 0.2 mg and 1.0 mg X were used, and accordingly, 0.6 mg X-GA, 

3.0 mg X-EGCG, 0.6 mg and 3.0 mg X were incubated with cell monolayers to evaluate their 

BA transport. Prior nanofibers incubation, the mats were peeled off from the aluminum foil and 

kept under air stream for 3 days. After 21 days cell growth, the complete DMEM medium was 

removed from the cell monolayers and replaced with HBSS at pH 6.5 and pH 7.4 at the apical 

and basolateral compartments, respectively. For the AB transport studies, 1.5 mL HBSS was 

used in the basolateral side and 0.55 mL of each donor solution and/or nanofibers were added to 

the apical side. Immediately, 200 µL aliquots were withdrawn from each donor compartment 

(time=0). Aliquots from the acceptor side were then withdrawn at different time intervals, and 

the volume was replaced with fresh HBSS at pH 7.4 maintaining the well plates at 37 °C in a 

humidified atmosphere of 5% CO2. A final aliquot from the donor chamber was taken as last 

time point. BA transport studies were conducted using the same procedure and incubating 0.5 

mL HBSS at pH 6.5 in the apical side and 1.55 mL of donor solution and/or nanofibers in the 
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basolateral chamber. During the transport experiments, all cell media were pre-warmed at 37 °C. 

Each transport experiment was performed for a time interval of 8 h in triplicates (n=3). After 8 h 

transport studies and TEER measurements, both apical and basolateral chambers were washed 

twice with PBS and cell monolayers were detached from the insert membrane with 0.25% 

trypsin - 0.53 mM EDTA solution for 10 min at 37 °C. The collected Caco-2 cell lysates were 

centrifuged for 5 min at 1000 rpm and supernatants were discarded. Furthermore, the 

semipermeable membranes were carefully removed from the insert using a scalpel and collected 

into Eppendorf tubes in 500 µL HBSS at pH 6.5 (apical conditions). Cell pellets as well were 

resuspended in 500 µL HBSS at pH 6.5 and both cells and membranes were sonicated for 3 h 

using an ultrasonic bath (Branson Ultrasonic Corp., VWR, Denmark). The collected samples 

were then centrifuged for 15 min at 10000 rpm and supernatants were analyzed by HPLC. The 

same procedure was used to quantify the compound amounts adsorbed (X+GA and X+EGCG) or 

remained encapsulated (X-GA and X-EGCG) into the nanofibers at the end of transport 

experiments. The tested nanofibers were removed from the donor chamber and suspended in 500 

µL of HBSS (pH 6.5 for AB transport and pH 7.4 for BA transport). After sonication and 

centrifugation, the molecules found in the supernatants were quantified by HPLC.   

2.9. Measurement of transepithelial electrical resistance (TEER)  

The Transepithelial Electrical Resistance (TEER) was measured at room temperature before and 

after permeability experiments with an epithelial volt-ohmmeter equipped with an STX2 

“chopstick” electrodes (EVOM2™, World Precision Instruments, Sarasota, FL, USA). Before 

measuring the resistance values of each well, the cell monolayers and the basolateral chamber 

were washed twice with pre-warmed HBSS at pH 6.5 and HBSS at pH 7.4, respectively. The 

resistance values of the semipermeable membrane without cells (RBLANK) were recorded and 
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subtracted from the resistance values obtained from the measurement of each cell monolayers 

onto semipermeable membrane (RTOTAL). The specific cell resistance values (RTISSUE) were 

calculated by: 

RTISSUE (Ω) = RTOTAL (Ω) – RBLANK(Ω)                         [1] 

 

TEER values of cellular monolayers were expressed in Ω x cm2 and calculated by: 

TEERTISSUE (Ω cm2) = RTISSUE (Ω) x AMEMBRANE (cm2)       [2] 

 

2.10. Quantification of compounds 

Donor solutions of FLUO, LY, GA and EGCG were prepared and sterile-filter in HBSS at pH 

6.5 and pH 7.4 to perform transepithelial studies. Standard curves of GA and EGCG dissolved in 

HBSS at pH 6.5 and pH 7.4 were obtained by HPLC analysis. 200 µL samples withdrawn from 

the donor and acceptor compartments during transport experiments across cell monolayers were 

quantitatively analyzed using RP-HPLC (Thermo Fisher Scientific, Denmark). A C18 column 

(3.0 x 100 mm) and 0.5 mL/min flow rate were used. GA and EGCG were quantified with 

detection at 255 nm and 270 nm, respectively. FLUO and LY aliquots were instead analyzed by 

UV-vis spectrometry (Nanodrop OneC, Thermo Fisher Scientific, Denmark), recording their 

absorbance at 490 nm and 430 nm, respectively. The amount of each compound transported 

across the cell monolayers within a time interval of 8 h was calculated for both apical-to-

basolateral (AB) and basolateral-to-apical (BA) directions. FLUO, LY, GA and EGCG that 

remained entrapped within cell monolayers, insert membranes and nanofibers were likewise 

quantified at the end of permeability studies. 
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2.11. FLUO, LY, GA and EGCG distribution after transport experiments and mass balance. 

After transport experiments in both AB and BA directions, the amount of each compound 

collected at the apical and basolateral chambers were quantified. Donor concentrations at time=0 

(CD,t=0h), donor and acceptor concentrations at time=8h (CD,t=8h and CA,t=8h), compound 

concentrations remained inside cell monolayer at time=8h (CCaco-2,t=8h), within membrane filters 

at time=8h (Cinsert,t=8h), and adsorbed or remained encapsulated into nanofibers at time=8h 

(Cfibers,t=8h) were experimentally measured. Therefore, the mass balance of each compound was 

calculated as follow: 

CD,t=0h = CD,t=8h +  CA,t=8h +  CCaco−2,t=8h +  Cinsert,t=8h +  (Cfibers,t=8h)           [3] 

Mass balance values of >90% were found for all tested compounds. 

2.12. Calculation of the apparent permeability coefficients Papp, AB and Papp, BA. 

The absorptive apparent permeability coefficient (Papp, AB) and the secretory apparent 

permeability coefficient (Papp, BA) were calculated by: 

Papp =  
dC

dt
∗  

V

A∗C0
        [4] 

where, dC/dt (µM/s) is the change in concentration on the acceptor chamber over time; V (cm3) 

is the volume of the solution in the acceptor compartment; A (cm2) is the area of the 

semipermeable membrane; C0 (µM) is the initial concentration in the donor chamber. The results 

presented in this study were expressed as mean ± SD of three independent experiments. PDR, or 

permeability directional ratio, is a measure of compound polarization in Caco-2 cell monolayers, 

and was calculated by: 
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PDR =  
Papp,BA

Papp,AB
         [5] 

3. Results  

3.1. Morphological characterization and stability of xanthan nanofibers  

Xanthan nanofibers were obtained by electrospinning a 2.5% w/v xanthan solution in formic acid 

(Figure 1). The nanofibrous structures are composed of individual, uniform and randomly 

oriented fibers with average diameters of 235 ± 49 nm. The average diameter of electrospun X-

GA and X-EGCG nanofibers was slightly increased to 327 ±119 nm and 270 ± 95 nm, 

respectively, when 2 mM of phenolic compound was added to the polysaccharide solution.  

3.2. In vitro release of GA and EGCG from xanthan nanofibers 

The cumulative in vitro release of GA and EGCG from xanthan nanofibers was investigated by 

immersing the fibers in complete growth medium (DMEM-FBS), HBSS at pH 6.5 and HBSS at 

pH 7.4 (Figure 2). The total amount of GA and EGCG released from fibers was 69.01% and 

70.53% in HBSS at pH 6.5, 58.47% and 83.44% in HBSS at pH 7.4, respectively. Slightly 

different release values emerged from the immersion of fibers in the complete growth medium, 

which had an experimentally measured pH value of 7.28. It is to note that electrospun X, X-GA, 

and X-EGCG nanofibers remained intact in all release media and no morphological changes 

were observed during the experimental studies (data not shown). It is suggested that the presence 

of several salts in both DMEM-FBS and HBSS, successfully prevented the dissolution of X, X-

GA and X-EGCG nanofibers.    
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Figure 1. Morphological analysis by scanning electron microscopy and average fiber diameter 

distributions of electrospun X nanofibers, X-GA and X-EGCG nanofibers. 
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The mechanism of GA and EGCG release from X nanofibers in pH 6.5 and 7.4 media were fitted 

by Korsmeyer-Peppas kinetic model ( nC kt ), where, C is amount of compound released within 

the time t; k is the rate constant and n the release exponent. The constant value of k is usually 

related to the characteristics of the delivery system and drug; while n is the diffusion exponent 

which characterizes the transport mechanism of the drug and it depends on the type of transport, 

geometry, and polydispersity. The n values of the kinetic model in pH 6.5 and 7.4 media for the 

release of GA were 0.85 and 0.83, respectively.  In the case of EGCG release, the n values in pH 

6.5 and 7.4 media were 0.84 and 0.77, respectively. These results confirm that the release of the 

studied phenolic compounds is governed by the non Fickian mechanism. 

 

 

Figure 2. Cumulative in vitro release of GA (A) and EGCG (B) from xanthan nanofibers. All 

data were the mean ± SD of three independent experiments. 
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3.3. Effect of GA, EGCG and their nanofiber forms on Caco-2 cell viability  

The viability of Caco-2 cells after 24 h treatment with free GA, EGCG and PBS as control was 

evaluated through MTS bioassay (Figure 3). The MTS tetrazolium compound is normally 

reduced by living cells into a colored formazan product that is soluble in culture medium and 

quantified recording its absorbance at 490 nm. This conversion is accomplished by 

dehydrogenase enzymes in metabolically active cells; therefore MTS conversion is directly 

proportional to the number of living cells.  

 

 

Figure 3. Viability bioassay of Caco-2 cells incubated with PBS (control, white bar) and 

increasing concentrations of free GA (red bars) and free EGCG (blue bars) diluted in PBS 

ranging from 1 µM to 1 mM. After 24 h incubation with the compounds, the cell viability was 

evaluated through MTS assay. Data were the mean ± SD of four independent experiments. 
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When Caco-2 cells were incubated with free GA or EGCG in the concentration range between 1-

100 µM, an increase in the cell viability confirmed the beneficial properties of these 

polyphenols. By contrast, concentrations above 100 µM resulted in a drastically decrease of cell 

viability, with a 50% or even higher cell mortality. The IC50 of free GA after 24 h incubation was 

estimated to be around 180µM.7 The concentration-dependent toxic effect of GA and EGCG was 

taken into account in order to perform transepithelial transport across proliferating cell 

monolayers. Indeed, the amount of X-GA and X-EGCG fibers was carefully calculated to obtain 

a final released GA and EGCG concentration lower or equal to 100 µM.  

 

 

Figure 4. MTS viability bioassay of Caco-2 cells after 24 h incubation with complete growth 

medium (Control, white bar) and increasing amounts of empty xanthan nanofibers (X, magenta 

bars), gallic acid-loaded xanthan nanofibers (X-GA, red bars) and ( ̶ )-epigallocatechin gallate-

loaded xanthan nanofibers (X-EGCG, blue bars). The numbers reported on top of the red and 
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blue bars represent the maximum releasable concentration (mM) of GA and EGCG in a 1.2 mL 

volume of complete growth medium. Data were the mean ± SD of four independent experiments. 

The viability of Caco-2 cells after 24 h treatment with increasing amount of empty X, X-GA and 

X-EGCG nanofibers was also investigated to establish the amount of fibers (in milligrams) to be 

used for transepithelial transport studies. As shown in Figure 4, the incubation of empty X fibers 

induced a directly proportional decrease of cell viability, reaching around 60% cell viability for 

10 mg X nanofibers. However, this reduction was found to be more pronounced when cells were 

treated with X-GA and X-EGCG fibers. The release of GA from 2.0 mg X-GA fibers caused a 

cell mortality around 70% and down until 98% for 5 mg X-GA fibers. The same effect was also 

confirmed after EGCG release from X-EGCG fibers, even though 95% cell mortality was 

observed for 10 mg fibers. Consequently, the reduction of cell viability induced by X-GA and X-

EGCG fibers was mainly attributed to GA and EGCG releases, as confirmed in Figure 3, and 

only partially caused by X nanofibers. Altogether, the in vitro release profile of GA and EGCG 

from nanofibers, the incubation time of fibers with cells, and the encapsulation efficiency must 

be taken into account. 

3.4. Assessment of cell monolayers integrity 

The cell monolayers integrity is a fundamental determinant for the study of compound transport 

across the intestinal barrier, especially when passive transport through tight junctions is 

involved.32 To ensure reliable in vitro permeability experiments across Caco-2 cell monolayers, 

the transport of non-radiolabeled markers, fluorescein and lucifer yellow, and transepithelial 

electrical resistance measurement were conducted to quantitatively investigate the integrity of 

monolayers after 21 days growth on 12-mm polycarbonate inserts. The average TEER value for 
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Caco-2 cell monolayers randomly chosen for transport studies was 370.74 ± 15.81 Ω cm2. The 

TEER values of monolayers before and after transport of FLUO and LY were found in the range 

of 300-500 Ω cm2 (Figure 5), indicating an “intermediate” tightness of the gastrointestinal 

epithelium.33  

 

 

Figure 5. Transepithelial electrical resistance (TEER) measurements of cell monolayers before 

(full colored bars) and after (patterned bars) apical-to-basolateral (AB) and basolateral-to-apical 

(BA) studies for a time interval of 8 h. TEER values were recorded for GA, X+GA, X-GA (A) 

and EGCG, X+EGCG and X-EGCG (B). All data were the mean ± SD of three independent 

experiments.     
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Given that, the AB and BA transepithelial transports of FLUO and LY across Caco-2 

monolayers under a proton gradient were investigated, resulting in a pH-dependent transport of 

FLUO. The apparent permeability coefficients of FLUO were Papp,AB = 3.31x10-6 cm/s and 

Papp,BA = 2.01x10-6 cm/s, whereas much lower values were observed from the LY transport: 

Papp,AB = 1.13x10-7 cm/s and Papp,BA = 1.21x10-7 cm/s (Figure 6C). Because of the lipoid nature of 

polarized epithelial cell layers, the transport of ions and hydrophilic compounds is restricted 

through the membrane. Indeed, the hydrophilic LY was transported across epithelial cells solely 

via tight junctions, whereas the lipophilic nature of FLUO permitted its permeation through 

transcellular transport.34–36 Thus, the TEER and permeability observations suggested that the 

integrity and tightness of epithelial cell monolayers were maintained after 21 days culturing. 

3.5. Transepithelial transport and distribution of free GA, EGCG and their nanofiber forms 

The transported amounts of GA and EGCG, their apparent permeability coefficient and their 

permeability directional ratio were assessed for both AB and BA directions under a proton 

gradient. In addition, the compounds were incubated at the donor chamber in a free form (GA 

and EGCG), in a free form in presence of empty xanthan nanofibers (X+GA and X+EGCG), and 

in the nanofiber forms (X-GA and X-EGCG).  

Figure 6 summarizes all the above-mentioned parameters. First and foremost, the amounts of 

molecules transported in the acceptor chamber were higher in the AB direction than BA. 

Secondly, the addition of empty or loaded xanthan nanofibers enhanced the transport of GA and 

EGCG in the AB direction (Figure 6 B-D).  
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Figure 6. Transepithelial transport of GA and EGCG across Caco-2 monolayers. Illustration of 

the efflux transporters expressed on the apical membrane of epithelial cells (A). Transported 

amount of GA, X+GA and X-GA (B), and EGCG, X+EGCG and X-EGCG (D) in both AB and 
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BA directions. Apparent permeability coefficient, Papp and PDR of GA, X+GA and X-GA (C), 

and EGCG, X+EGCG and X-EGCG (E). All data were the mean ± SD of three independent 

experiments. 

Indeed, the permeated amount of gallic acid in the X+GA and X-GA formulations was 2-fold 

and 2.5-fold higher than that of free GA. The same results were obtained for the transported 

EGCG in the AB direction, but on the contrary, the X+EGCG form was the most effective (a 1.9-

fold the free EGCG). These results suggested that the permeation of the compounds was greatly 

enhanced by the presence of xanthan nanofibers, either as empty nanostructures or loaded with 

polyphenols. Accordingly, the apparent permeability coefficients of GA and EGCG incubated 

with nanofibers were at least 2-fold than of these without fibers in the donor chamber. The GA 

and X-GA permeability values in the AB direction were Papp, AB = 7.12x10-7 cm/s and Papp, AB = 

1.96x10-6 cm/s, respectively (Figure 6C). The same increase in permeability was calculated also 

for the EGCG nanofiber form, where EGCG and X-EGCG had a Papp, AB =7.99x10-7 cm/s and 

Papp, AB = 1.99x10-6 cm/s, respectively (Figure 6E). An increment of the apparent permeability 

coefficient values was also found in the BA direction, even though less pronounced than in the 

AB direction. 

The fate of GA and EGCG during 8 h transepithelial transports in both AB and BA directions 

was monitored by quantifying their concentration in the donor and acceptor compartments, and 

also in the cell lysate, insert membrane (filter), and within xanthan nanofibers (adsorbed or 

unreleased).  
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Figure 7. Quantification of GA (A) and EGCG (B) distribution in the donor side, acceptor side, 

cell lysate, membrane insert and fibers, after 8 h transepithelial transport in both AB and BA 

directions. All data are the mean ± SD of three independent experiments. 

Figure 7 shows the distribution of the tested compounds in the above-mentioned compartments. 

As first, after 8 h experiment, most of the incubated compounds were still found in the donor 

chamber (≥ 60% of the concentration at time=0h), and only less than 20% were detected in the 

acceptor side. However, the yields of GA and EGCG recorded in A were higher when incubated 

with xanthan nanofibers than in absence. Small amounts of GA and EGCG were also detected 
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inside the epithelial monolayers (3% and 1.3%, respectively), and adsorbed to or unreleased from 

xanthan nanofibers (28.79% and 20.71%, respectively).  

4. Discussion 

In this study, the human differentiated epithelial Caco-2 cells were chosen as an established in 

vitro cell model for the prediction of bioactive compounds absorption and transport 

mechanism.37 The Caco-2 cells possess many features, among which their ability to slowly 

differentiate into monolayers forming microvilli and tight junctions at the apical side, and to 

express brush border transporters and enzymes involved in the metabolism and transport of 

several substrates.31,38,39 Therefore, transepithelial transport studies of GA and EGCG were 

performed across Caco-2 monolayers in the apical-to-basolateral and basolateral-to-apical 

direction under proton gradient. The two polyphenols investigated in this study are characterized 

by a poor intestinal absorption due to their high hydrophilicity; in fact, they can hardly penetrate 

the cell membrane and only passive diffusion seems to be involved in permeation.17  

In our previous study, the electrospinning processing of xanthan polysaccharide solutions 

dissolved in formic acid was investigated.30 The developed xanthan nanofibers were 

morphologically stable over a wide pH range in saline buffers, thus in the present study xanthan 

polysaccharide nanofibers was used to encapsulate and release the GA and EGCG bioactives. 

The 24 h incubation of nanofibers with Caco-2 cells revealed a proliferative effect in cell 

viability for amount lower or equal to 0.5 mg X-GA and 2.0 mg X-EGCG; drastic cell mortality 

was observed for doses above this range. In addition, the treatment of Caco-2 cells with 

increasing amount of empty xanthan nanofibers resulted in a dose-dependent reduction of cell 

viability, near to 60% for 10.0 mg X amount. However, this observed effect in cell viability was 
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expected to be less pronounced for the transepithelial transport studies, since the cell monolayers 

were exposed to X, X-GA and X-EGCG for 8 h interval rather than 24 h. The transepithelial 

transport of GA and EGCG in the acceptor compartment was successfully enhanced by the 

presence of xanthan, both as empty nanostructure and as nanocarrier, and the permeability 

coefficients were higher than those calculated for free compounds. In addition, the PDR values 

estimated for free GA and free EGCG were both higher than 1.5 (2.4 and 1.7, respectively). 

These results suggest that the transport of GA and EGCG is modulated by an active transport 

pathway, and more specifically by efflux. Several studies have described the mechanism and the 

efflux transporters involved in the unidirectional transport of GA and EGCG across epithelial 

barrier.15,17,40–42 Enterocytes express several transporters on the apical and basolateral membrane 

which can actively transport a wide range of structurally diverse compounds into (influx) or out 

(efflux) of the cell. GA and EGCG, as depicted in Figure 6A, are actively transported outside 

cells through P-glycoprotein (P-gp), multidrug resistant protein 2 (MRP2) and the ATP binding 

cassette (ATP) transporters that are expressed on the apical membrane of Caco-2 

monolayers.39,42 These efflux pumps restrict therefore the influx of GA and EGCG in the 

acceptor chamber, rather promoting their efflux from enterocytes. Several efflux pump inhibitory 

compounds, such as indomethacin, verapamil, MK-57117,41 have been thoroughly investigated, 

resulting to an increase in oral absorption. In this study, the calculated PDR values obtained for 

free GA and free EGCG transport were higher than 1.5, confirming their efflux from 

monolayers. However, the PDR values of X+GA, X-GA, X+EGCG and X-EGCG were all lower 

than 1.5 (Figure 6C-E). Hence, the incubation of xanthan nanofibers in the donor compartment 

greatly improved the absorption of GA and EGCG across epithelial barrier, suggesting an 

inhibitory effect of xanthan on efflux transporters. Indeed, it has been demonstrated that 
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naturally occurring polymers and polysaccharides, such as dextran, anionic gums as well as 

polysaccharides in Aloe vera, can inhibit efflux pumps.42,43 For instance, the effect of 0.5 mg/mL 

xanthan gum have shown increased concentration of P-gp substrates such as vinblastine and 

doxorubicin, pointing out its inhibitory activity.42 Additionally, polysaccharides consisting of 

linear chains of glucose and mannose units, and acetylated mannose residues, like Aloe vera 

polysaccharides and xanthan gum, have shown a reversible intestinal tight junctions opening 

behavior, enhancing the paracellular permeability and thus, the bioavailability of drugs.43 Such 

effect of xanthan nanofibers on tight junctions opening was also confirmed by a moderate 

decrease of TEER after transepithelial transports.  

5. Conclusion 

Uniform and homogeneous xanthan nanofibers were fabricated using electrospinning processing 

and the encapsulation and release of two poorly absorbed polyphenol compounds, GA and 

EGCG, was investigated. It was found that X, X-GA and X-EGCG nanofibers remained stable in 

aqueous HBSS medium at different pH (6.5 and pH 7.4). The total amount of GA and EGCG 

released from xanthan nanofibers was 69.01% and 70.53% in HBSS at pH 6.5, and 58.47% and 

83.44% in HBSS at pH 7.4, respectively. Moreover, the nanofibers were incubated with Caco-2 

cells and the cell viability, transepithelial transport and GA and EGCG permeability properties 

across cell monolayers were investigated. At least a 2-fold increase of GA and EGCG 

permeability was observed in the presence of X-GA and X-EGCG nanofibers, in comparison 

with the free- phenolic compounds. Indeed, the polysaccharide nanofibers enhanced the GA and 

EGCG permeability by opening the tight junctions of Caco-2 monolayers, as well as inhibiting 

the efflux transporters. These findings are extremely relevant to promote the delivery not only of 

polyphenols but also of other poorly absorbed bioactives.  
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a b s t r a c t

Viscoelastic gels of xanthan gum-chitosan(X-Ch) in formic acid were electrospun to produce nanofibers,
stable in aqueous media, for the encapsulation and release of curcumin (Cu). After 120 h, the nanofibers
released lower amount of curcumin (�20%) at pH 2.2 comparatively to the release in neutral media
(�50%), suggesting that X-Ch nanofibers could be used as a carrier for the encapsulation of hydrophobic
bioactive compounds with long-term pH-stimulated release properties.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The efficient delivery of hydrophobic bioactives, requires proper
encapsulation to overcome concerns related with their low solubil-
ity and instability in aqueous body fluids, and limited bioavailabil-
ity. Electrohydrodynamic (electrospinning and electrospray)
methods have been widely studied due to their high encapsulation
efficiency, low process temperature using a range broad food
bioactive and shell ingredient [1]. Moreover, electrospun fibers
comes along with high surface area, tunable diameter and surface
functionality, which makes them very attractive for encapsulation
and controlled bioactive release [1,2].

Curcumin is a phenolic compound recognized by its
pharmaceutical properties as an antioxidant, antimicrobial, anti-
inflammatory agent and inhibitor of tumorigenesis and metastasis
[3,4]. Due to its hydrophobicity and subsequent poor bioavailabil-
ity, new delivery carriers have been investigated using electrospin-
ning technology [5–7].

Chitosan (Ch) is a cationic polysaccharide consisting of N-acetyl
glucosamine and glucosamine known for its biocompatibility,
biodegradability, and mucoadhesivity [8] and ability to enhance
gastrointestinal drug absorption [9]. Xanthan (X) gum is an anionic
polysaccharide known for its peculiar physico-chemical properties

[10] and has been used as encapsulating matrix [11]. A recent
study from our group found that X-Ch-Cu nanofibers incubated
with Caco-2 cells, resulted in enhancement of the in vitro absorp-
tion of Cu across cell monolayers, with a 3-fold increase of Cu
permeability, compared to free-curcumin. This work aims to
investigate the X-Ch nanofiber development, morphological and
encapsulation properties and evaluate its potential as a Cu release
carrier in various pH media.

2. Experimental

2.1. Materials

All chemicals including xanthan gum (Mw about 2000 kDa [12],
chitosan (Mw 28 kD, degree of deacetylation (DD) of 89% and
degree of polymerization (DP) of 175), curcumin and formic acid,
were obtained from Sigma-Aldrich (Denmark).

2.2. Preparation and characterization of electrospun solutions and
fibers

Xanthan (0.75% w/v) and chitosan (3% w/v) were dissolved in
formic acid under vigorous stirring overnight at room tempera-
ture. Curcumin (2% w/v) was added to X-Ch solution, and stirred
for 30 min. X, Ch and X-Ch (with and without curcumin) rheo-
logical properties were determined as described at [13]. X-Ch

https://doi.org/10.1016/j.matlet.2018.06.033
0167-577X/� 2018 Elsevier B.V. All rights reserved.
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and X-Ch-Cu solutions were electrospun at 25 kV (ES50P-10 W,
Gamma High Voltage Research, Inc., USA), feed rate of 0.01 mL/
min (syringe pump, New Era Pump Systems, USA) using a 21G
needle (Proto Advantage, Canada). Fibers were collected on a
stainless steel plate, placed 10 cm from the needle tip. Scanning
electron microscopy (SEM) and fiber diameter distribution anal-
yses (100 data points) followed the protocol described in [5].
Atomic force microscopy (AFM) was performed on Multimode
8 in PeakForce QNM mode. TAP150A probes with normial spring
constant of 5 N/m were used. To measure the adhesion force,
deflection sensitivity calibration was performed on sapphire
and spring constant (determined by thermal tuning). Adhesion
map was formed by plotting the adhesion forces at each point,
obtained from the retraction part of each force-distance curve.
The encapsulation efficiency (EE) of the Cu within X-Ch nanofi-
bers was determined by Cu fiber extraction using methanol in
a sonication bath [5].

2.3. In vitro release studies

X-Ch-Cu nanofibers (3.0 mg) were suspended in 2 mL of Tris
buffered saline solution (pH 2.2, 6.5 and 7.6) at 37 �C in a ther-
moshaker water bath. Supernatant aliquots (100 mL) were with-
drawn and replaced with the same volume of fresh media. The
amount of Cu released was determined using a NanoDrop One
UV–Vis Spectrophotometer (Thermo Fisher Scientific, Denmark)
at the optical wavelength of 420 nm. Triplicates were conducted
for each sample.

3. Results and discussions

Formation of a viscoelastic network with elastic modulus val-
ues (G0) higher than the viscous modulus (G00) was observed for
the X-Ch mixture in formic acid after 12.5 h (Fig. 1a). Individual
xanthan and chitosan solutions exhibited G’’ higher than G’. The
tan d value (tan d = G00/G0) for individual chitosan and xanthan
solutions was 2,533 and 1,17, respectively, denoting a liquid-
like behaviour, whereas the tan d of X-Ch mixture was 0.144, con-
firming a gel-like behaviour as reported for other biopolymers
gels [13].

Flow rheological studies (Fig. 1b) reveal that xanthan in
formic acid has a shear thinning behaviour [13]. The chitosan
solution shows nearly Newtonian behaviour at the shear rates
of 0.1–100 s�1, and higher viscosity values than xanthan solu-
tion. However, a substantial viscosity increase was observed
for X-Ch mixture. X and X-Ch mixture followed a power-law
thinning behaviour of g = m�c n�1 where g is the apparent
viscosity, c the shear rate, and m the flow index. The power
law index values (n) were in the range of 0.551–0.437 for
X-Ch and X-Ch-Cu, which are necessary to produce electro-
spun fibers [13]. The formation of a viscoelastic gel network,
and an apparent viscosity increase of the X-Ch mixture is
due to the oppositely charged X-Ch polyelectrolytes electro-
static interactions [14].

Fig. 2 shows individual, uniform and randomly oriented X-Ch
nanofibers with average diameters of 750 nm. Note that both indi-
vidual xanthan and chitosan solutions at the aforementioned con-
centrations could not be electrospun into fibers. The average
diameter of electrospun xanthan-chitosan nanofibers slightly
increased to 910 nm with the addition of 2% curcumin, due to
the increase of the solution viscosity (Fig. 1b). The EE of Cu within
X-Ch nanofibers was 69.4 ± 4.1%.

The X-Ch and X-Ch-Cu fibers’ adhesive properties were quanti-
fied by Peakforce QNM, which measures adhesion force between
the AFM tip (silicon) and nanofibers at each pixel (Fig. 3). Adhesion
forces from the top of the nanofibers are shown in the line profiles
of X-Ch and X-Ch-Cu, with the average values of 10 nN, and 4 nN,
respectively. X-Ch nanofibers displayed adhesive properties that
decreased with the encapsulation of curcumin, due to the
hydrophobic nature of this bioactive. The adhesive maps indicate
that curcumin is incorporated homogeneously within X-Ch-Cu
nanofibers.

Fig. 4 shows an 8–10% sustained release of curcumin from X-
Ch nanofibers over 12 h for all pH studied (2.2, 6.5 and 7.4) with
no burst effect [6]. Beyond that, the release of curcumin at pH 2.2
was much lower than the other media, with no significant
increase for up to 120 h. On the other hand, the Cu release con-
ducted in media at pH 7.4 and 6.5 was increased beyond 12 h
up to 45 and 50% respectively [6]. It is to note that X-Ch and
X-Ch-Cu nanofibers remained intact in all release media after
10–12 h at 37 �C (data not shown). However, after 120 h X-Ch-
Cu nanofibers slightly swelled in buffer at pH 6.5 and 7.4 (about
3.5 times the initial fiber diameter), while at pH 2.2 the diameter
increased about 1.5 times.

It is suggested, that the oppositely charged xanthan-chitosan
mixture in formic acid is associated electrostatically [14].
When the electrospun nanofibers are immersed in the release
media at different pH(s), the electrostatic equilibrium for both

Fig. 1. Viscoelastic properties over time (a) and flow curves (b) of X, Ch, X-Ch and
X-Xh-Cu solution.

E. Shekarforoush et al. /Materials Letters 228 (2018) 322–326 323

71



polyelectrolytes is expected to change. Consequently, at pH values
below the pKA of chitosan (about 6.5), such at pH 2.2, stronger
interactions chitosan-xanthan are expected [15], resulting in den-
ser nanofibers with lower swelling and lower diffusion of the
bioactive. Korsmeyer-Peppas model [16], confirmed that the
release of Cu at neutral pH followed non Fickian mechanism, an
indicator of drug diffusion in the hydrated matrix and polymer
relaxation (release exponents ‘‘n” of 0.70 (pH 6.5) and 0.71 (pH
7.4)). At pH 2.2 the release of Cu is described by the Higuchi math-

ematical model (C ¼ kt0:5), with k value of 2.13.

4. Conclusions

Stable nanofibers in aqueous were produced by the electrospin-
ning of X-Ch viscoelastic gels for the encapsulation and release of
curcumin. The adhesion properties of the fibers were reduced with
the addition of Cu, due to its hydrophobic properties. The release of
curcumin was controlled by the pH of the release media. At pH 2.2
the nanofibers released lower amount of curcumin (�20%) com-
pared to the release in neutral media (�50%) after 120 h due to
the higher swelling of the matrix. The results indicated that

Fig. 2. SEM images of electrospun X, Ch, X-Ch and X-Ch-Cu solutions and histograms displaying nanofibers diameter distribution.
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electrospun X-Ch nanofibers could be used as a carrier for the
encapsulation of hydrophobic bioactive compounds with high
encapsulation efficiency, physical stability in aqueous media, and
with long-term pH-stimulated release properties.
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Abstract 

Xanthan-Chitosan (X-Ch) polysaccharides nanofibers were prepared using electrospinning 

processing as an encapsulation and delivery system of curcumin (Cu). The X-Ch-Cu nanofibers 

remained stable in aqueous HBSS medium at pH 6.5 and pH 7.4, mainly due to the ability of 

oppositely charged xanthan-chitosan polyelectrolytes to form ionically associated electrospun 

nanofibers. The xanthan-chitosan-curcumin nanofibers were incubated with Caco-2 cells, and the 

cell viability, transepithelial transport and permeability properties across cell monolayers were 

investigated. After 24 h of incubation, the exposure of Caco-2 cell monolayers to X-Ch-Cu 

nanofibers resulted in a cell viability of ~80%. A 3-fold increase of curcumin permeability was 

observed when the polyphenol was loaded into X-Ch nanofibers, compared to the free curcumin. 

This increased in vitro transepithelial permeation of curcumin without compromising cellular 

viability was induced by interactions upon contact between the nanofibers and the Caco-2 cells, 

leading to the opening of the tight junctions. The results obtained revealed that X-Ch nanofibers 

can be used for oral delivery applications of poorly water-soluble compounds at the 

gastrointestinal tract. 

Keywords: Xanthan gum; Chitosan; Electrospinning; Fibers; Drug delivery; Curcumin 
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1. Introduction 

Curcumin (Cu) is a polyphenolic compound obtained from the dietary spice turmeric found in 

the Asian plant Curcuma longa. Due to its variety of biological properties such as anti-

inflammatory, analgesic, potent antioxidant capacity,1,2 antimicrobial 3 and anticarcinogenic,4 it 

has been used for centuries as dietary supplement and medicine.5,6 Several studies in animal 

models and humans have reported that no serious toxicity is observed when curcumin is 

administered even at high doses, and clinical phase I studies have shown an high tolerance to 

repeated ingestions of 12 g of curcumin per day.7 Many of the curcumin benefits are also found 

at a cellular level as regulator of cellular enzymes such as cyclooxygenase and glutathione S-

transferases, immuno-modulation, inhibitor of several cell signaling pathways, and cell-cell 

adhesion.6 Despite the established beneficial effects of curcumin as bioactive compound, 

curcumin has a poor aqueous solubility, intense staining color, and very low bioavailability.7,8 In 

fact, after oral  administration of curcumin for up to 12 g/day, plasma and tissue levels of 

curcumin were found very low (in the range of nanogram per milliliter).7 The major reasons 

causing such low gastrointestinal bioavailability of curcumin have been ascribed to poor 

absorption, chemical instability, rapid metabolism and systemic elimination, and accumulation 

within epithelial cells of the intestine.7,9 Furthermore, in the epathic and intestinal tissues of rats 

and humans, curcumin undergoes phase I and phase II metabolism,10,11 similar to in vitro 

investigations.8,12 A stepwise reductions of the olefinic double bonds of curcumin takes place in 

the phase I metabolism leading to tetrahydro-, hexahydro-, and octahydro-curcumin metabolites. 

A further biotransformation of curcumin and its metabolites involves the conjugation to 

glucuronic acid, sulfate, and glutathione under cell-free conditions and also in human Caco-2 
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cells 13. Moreover, it has also been documented that curcumin undergoes degradation in aqueous 

solution and at neutral pH, and hydrolyzed under alkaline pH.14,15 

In order to overcome some of the major drawbacks of curcumin, different promising strategies 

have been undertaken aiming a higher permeability, resistance to metabolic processes, and 

enhancement of its solubility. A wide range of adjuvants such as piperine,16 

quercetin,17epigallocatechin-3-gallate (EGCG)18 and genistein 19 have been proposed to modulate 

the permeability of curcumin and to increase its bioavailability. More recently, a wide variety of 

nano- and micro-delivery systems such as nanoparticles,20 micelles,21,22 liposomes, and 

phospholipid complexes 23 have emerged as solutions to enhance the bioavailability of various 

therapeutic agents.7 However, very few studies have been published reporting improved delivery 

properties of curcumin-loaded systems. Nanoencapsulation of curcumin using natural and 

synthetic polymers 20 and liposomal nanoparticles have been the most explored strategies 

because of their suitability for the encapsulation of a highly hydrophobic compound like 

curcumin, the prevention of curcumin degradation processes, and the enhancement of curcumin 

chemical stability. Lately, mucoadhesive nanostructured lipid carriers (NLCs) coated with 

polyethylene glycol 400 (PEG400) and polyvinyl alcohol (PVA) have been employed as a 

candidate system for oral delivery of curcumin.24 The authors have demonstrated that polymer-

coated curcumin-loaded NLCs improved curcumin water solubility more than 60-folds, as 

compared to curcumin dispersion. In addition, curcumin was protected from degradation 

processes, and the in vitro apparent permeability (Papp) of curcumin across Caco-2 monolayers 

was higher than that obtained from uncoated NLCs.24 Another approach to overcome the low 

curcumin oral bioavailability has been proposed by Frank et al.25 The preparation of nanoscaled 

micellar formulations based on Tween 80 for curcumin delivery has revealed an increase on the 
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apparent permeability through the intestinal barrier, resulting in a Papp value of 2.11x10-6 cm/s, 

compared to a Papp value of 0.56x10-6 cm/s for free native curcumin.25  Furthermore, curcumin 

has been also encapsulated within electrospun fibers as delivery carriers, developed using 

phospholipid 26, as well as biopolymers such as gelatin 27 and blends of amaranth protein isolate 

– pullulan.28 

Electrospun fibers hold great promises as oral delivery systems. The large surface to volume 

ratio, the tunable surface functionality as well as the high encapsulation efficiency of the 

electrospun fibers, favor the diffusion and the dissolution rate of the bioactive compounds, and 

thus enhance their delivery.29,30 However, the delivery of the bioactive compounds at the 

intestine using electrospun fibers has not been assessed.  

 Furthermore, the Caco-2 cell model is used frequently to mimic the epithelial layer in the small 

intestine, and thus to evaluate the absorption of bioactive compounds in vitro assays.31 The Caco-

2 cells, which are originally from a human colon cell line, can polarize and express receptors that 

resemble the intestinal absorptive cells found in the small intestine when cultured under specific 

conditions. In vitro permeability studies have been employed the Caco-2 cells model, to assess 

the cytotoxicity and the permeation of bioactive compounds such as intestinal absorption of 

peptide drugs.32 To the best of our knowledge, only few studies have assessed the intestinal 

delivery properties of bioactive compounds encapsulated within electrospun nanofibers using the 

Caco-2 cells model. A recent study from our group using a Caco-2 cell permeability assay found 

that electrospun fish sarcoplasmic proteins (FSP) nanofibers could be used as novel oral delivery 

system of biopharmaceuticals.33 Lin et al. also studied the anticancer efficiency of magnetic 

electrospun chitosan nanofibers by assessing the Caco-2 cell viability. It was found, that 
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magnetic electrospun chitosan nanofibers have a potential therapeutic modality in tumor 

administration. 34 

Chitosan is a cationic polysaccharide consisting of N-acetyl glucosamine (GlcNAc) and 

glucosamine (GlcN), and it has been widely used in the food, pharmaceutical and biomedical 

fields because of its biocompatibility, biodegradability, and mucoadhesivity.35 One of the most 

interesting properties is the ability of chitosan to enhance gastrointestinal drug absorption.36 

However, the chemical stability of chitosan is limited to a basic environment such as in the 

intestine and colon, whereas in neutral environments the polymer loses its charge and precipitate 

resulting in an ineffective absorption enhancer.37 In order to chemically stabilize chitosan for 

applications that demands enhanced drug absorption, chitosan derivatives such as water-soluble 

quaternary ammonium chitosan,37  and chitosan-glutamate,36  have been synthesized. 

Alternatively, stable polyelectrolyte complexes of chitosan with xanthan have showed favorable 

properties as intestinal delivery systems. For instance, xanthan-chitosan hydrogels 38-41 and 

xanthan-chitosan nanoparticles 38 have been studied as oral delivery carriers for a range of drug 

and bioactive compounds. 

In the present study, we report the formation of electrospun xanthan-chitosan nanofibers as an 

encapsulation and delivery system of curcumin. The resulting curcumin-loaded nanofibers were 

incubated with Caco-2 cells, and the cell viability, transepithelial transport and permeability 

properties across cell monolayers were investigated. A consistent enhancement of the in vitro 

intestinal absorption of curcumin across cell monolayers was observed when the polyphenol was 

loaded into xanthan-chitosan nanofibers compared to the free curcumin. 
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2. Materials and Methods 

2.1. Methods 

Xanthan (X), chitosan (Ch), curcumin (Cu) from Curcuma longa (Turmeric) and formic acid 

were obtained from Sigma-Aldrich (Denmark) and used as received. Xanthan gum from 

Xanthomonas campestris (product nr. G1253), with molecular weight ~ 2000 kDa was used.39 

The selected chitosan polysaccharide (product nr. 448869) has a molecular weight of ~ 28 kDa, 

degree of deacetylation (DD) of 89% and degree of polymerization (DP) of 175. 

The human colon adenocarcinoma cell line Caco-2 [Caco-2] (ATCC® HTB-37™) was obtained 

from the American Type Culture Collection (Rockville, MD). Dulbecco´s modified Eagle´s 

medium (DMEM) high glucose (4.5 g/L), L-glutamine (200 mM), nonessential amino acids 

(100X), penicillin-streptomycin (10,000 U/mL and 10 mg/mL in 0.9% sodium chloride, 

respectively), trypsin-EDTA (10X), Dulbecco’s Phosphate Buffered Saline 1X (DPBS) without 

calcium chloride and magnesium chloride, dimethyl sulfoxide 99.5% purity (DMSO), 

fluorescein sodium salt (FLUO), lucifer yellow dilithium salt (LY), , methanesulfonic acid, MES 

(1 M; pH 5.5-6.7), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid solution, HEPES (1 M; 

pH 7.0-7.6) were purchased from Sigma Aldrich (Brøndby, Denmark). Tissue culture 12-well 

plates and 12-mm polycarbonate cell culture inserts with an area of 1.12 cm2 and a pore size of 

0.4 µm were purchased from Corning Costar® Corporation. Fetal bovine serum (FBS) and 

Hanks´ balanced salt solution (HBSS) with calcium and magnesium and without phenol red were 

obtained from Thermo Fisher Scientific (Roskilde, Denmark). CellTiter 96® AQueous One 

Solution Cell Proliferation Assay (MTS) was purchased from Promega Biotech AB (Sweden).       
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2.2 Preparation of polysaccharides mixtures 

Xanthan and Chitosan mixtures with curcumin were prepared by dissolving 3% w/v chitosan 

powder with 0.75% w/v xanthan powder in formic acid under vigorous stirring overnight at room 

temperature. Subsequently, curcumin (2% w/v) was added to the solubilized mixture of 

polysaccharides, and further stirred for 30 min. 

The electrical conductivity of xanthan, chitosan and xanthan-chitosan, and xanthan-chitosan-

curcumin solutions was determined using WTW LF323-B conductivity meter (WTW GmbH, 

Weilheim, Germany). All measurements were carried out at room temperature (25 ± 2 °C) in 

triplicate for each sample.   

2.3.  Electrospinning setup  

 The electrospinning setup included a high voltage generator (ES50P-10W, Gamma High 

Voltage Research, Inc., USA) to provide a voltage of 25 kV, and a syringe pump (New Era 

Pump Systems, Inc., USA) to feed the xanthan-chitosan and curcumin mixtures at a flow rate of 

0.01 mL/min. A 21 G needle (Proto Advantage, Canada) with inner diameter 0.813 mm was 

used. Nanofibers were collected on a steel plate covered with aluminium foil placed at a distance 

of 10 cm from the edge of the needle. The electrospinning process was carried out at ambient 

conditions and samples were stored in an exicator until further analysis. 

2.4.  Morphology 

The morphology of electrospun nanofibers was monitored using a Quanta FEG 3D scanning 

electron microscope (SEM) as described by Shekarforoush et al.40 Briefly, a small amount of 

fibers was attached on SEM specimen by a double-sided carbon adhesive tape, and sputter 

coated with 6 nm of gold layer (Leica Coater ACE 200). Image J software (National Institute of 
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Health, USA) was used to analyse the average diameter of the nanofibers (measured at 100 

different points for each image).  

2.5. Encapsulation efficiency  

The encapsulation efficiency of Cu within X-Ch electrospun nanofibers was determined by 

extracting the Cu from the fibers using methanol in a sonication bath for 30 min, and collecting 

the amount of loaded curcumin from supernatants after centrifugation at 4500 rpm for 15 min. 

The concentration of curcumin in the supernatant was determined using a UV-vis spectrometry 

(Nanodrop OneC, Thermo Fisher Scientific, Roskilde, DK), by recording its absorbance at 280 

and 420 nm. Standard curves for curcumin were prepared with concentrations ranging from 0–

100 μg/mL. The encapsulation efficiency was calculated using the following equation:  

% Encapsulation Efficiency =  
𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 𝐜𝐮𝐫𝐜𝐮𝐦𝐢𝐧 𝐜𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧

𝐓𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 𝐜𝐮𝐫𝐜𝐮𝐦𝐢𝐧 𝐜𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧
× 𝟏𝟎𝟎 [1] 

 

2.6. In vitro release of curcumin  

The in vitro release of curcumin from xanthan-chitosan nanofibers was evaluated by suspending 

3.0 mg of X-Ch-Cu fibers in 2 mL pre-warmed HBSS at pH 6.5 and pH 7.4, respectively. The 

curcumin release was conducted for a time interval of 8 h at 37 °C without stirring. Supernatant 

aliquots were withdrawn and analyzed by UV-vis spectrometry by recording the curcumin 

absorption at 280 and 420 nm. The cumulative amount of curcumin released from X-Ch-Cu 

nanofibers was then considered as the maximum releasable curcumin from the nanofibers 

structure.  
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2.7. Caco-2 cell culture and subculture   

Caco-2 cells were routinely seeded at a concentration of 1.0 x 105 cells/mL in T-75 cm2 flasks 

and incubated at 37 °C in a humidified atmosphere of 5% CO2. The complete cell medium 

consisted of high glucose DMEM containing 10% heat-inactivated FBS, 2 mM L-glutamine, 1% 

nonessential amino acids, 100 U/mL penicillin, and 100 µg/mL streptomycin. The medium was 

renewed every second day until cells reached approximately 90% confluence. Cells were 

passaged at a subcultivation ratio of 1:4 by treatment with 0.25% trypsin – 0.53 mM EDTA 

solution for 10 min at 37 °C. After trypsinization, the cells were suspended in complete growth 

medium and centrifuged for 5 min at 1000 rpm. After supernatant removal, the pellet was 

suspended in the growth medium and the cell concentration was determined with ORFLO Moxi 

Z Mini Automated Cell Counter using Type S cassette (Biofrontier Technology, Singapore). All 

Caco-2 cells were used between passages 6 - 12. 

2.8. Compounds and electrospun nanofibers used for the cell studies  

Xanthan-chitosan (X-Ch) and curcumin-loaded xanthan-chitosan (X-Ch-Cu) electrospun 

nanofibers were tested with Caco-2 cells to evaluate their toxicity and to determine the apparent 

permeability coefficient (Papp) of curcumin loaded into the nanofibers, and as free compound. 

Before testing the nanofibers with Caco-2 cells, the collected fibers were kept under air stream 

for 3 days allowing complete formic acid evaporation.  

Besides curcumin, the transepithelial transport of fluorescein (FLUO) and Lucifer yellow (LY) 

across Caco-2 cell monolayers were also investigated as markers for intestinal epithelial 

permeability and integrity. The physicochemical properties and the expected mechanisms 

involved on molecules permeation across Caco-2 monolayers are listed in Table 1. 
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Table 1. 

Physicochemical properties of compounds and their expected transepithelial transport across 

Caco-2 cell monolayers. 

Compound 
MW 

(Da) 
ACDLogPa

 ACDpKa
a λAbs

b
 

(nm) 

Transepithelial transport 

across Caco-2 cell monolayers 

 

Curcumin, 

Cu 

 

368.39 

 

3.07 

 

8.11 

 

280 and 

420 

 

 Extremely poor 

gastrointestinal 

absorption. 

 Undergoes phase I and 

II bio-transformations. c 

 Passive transport.c 
 

 

 

Fluorescein, 

FLUO 

 

376.27 

 

4.81 

 

4.40 

 

490 

 pH-dependent transport. 

 Influx ratio ~ 10. d 

 Carrier-mediated 

unidirectional 

transcellular 

transport.d,e 
 

 

 

Lucifer 

Yellow, LY 

 

457.25 -5.06 -0.9 430 

 pH-indipendent 

transport. 

 No observed influx-

efflux. 

 Paracellular pathway.d, f 

 
a Values for LogP and pKa were obtained from the ACD database. 
b Experimentally determined wavelength. 
c Results published by Dempe et al.8 
d Results published by Konishi et al.41  
e Results published by Berginc et al.42  
f  Results published by Hashimoto et al.43 
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2.9. Caco-2 cell viability assay  

The in vitro Caco-2 cell viability after treatment with free curcumin (Cu), xanthan-chitosan 

nanofibers (X-Ch), and curcumin-loaded xanthan-chitosan nanofibers (X-Ch-Cu) was evaluated 

by using the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium inner salt] colorimetric bioassay. A stock solution of 50 mM curcumin was 

prepared in 0.5 M NaOH and immediately diluted to 5 mM in PBS. The curcumin solution was 

filtered through sterile-filters (with a 0.22 µm pore size). In a 96-well plate, a concentration of 

2.0 x 104 cells/100µL were seeded in a complete growth medium and incubated for 2 days at 37 

°C in a humidified atmosphere of 5% CO2. Then the cells were washed with PBS, and the 

complete medium was renewed. Caco-2 cells were incubated with free curcumin solution (150 

and 500 µM), X-Ch nanofibers (0.5 mg), X-Ch-Cu nanofibers (0.5 mg), and PBS as a control. 

Caco-2 cells were incubated for one day at 37 °C in a humidified atmosphere of 5% CO2. The 

following day, the nanofibers were removed from the wells, cells were washed with PBS and the 

medium was renewed (100 µL). 20 µL MTS solution was added to each well under dark 

conditions. After 3 h incubation at 37 °C, the absorbance of the reduced MTS (formazan 

product) was recorded at 490 nm through a well plate reader (Wallac 1420 Victor2 Multilabel 

Counter, Perkin Elmer, Waltham, MA). 

2.10. Transepithelial transport experiments  

The transport of free fluorescein (FLUO), free lucifer yellow (LY), free curcumin (Cu), free 

curcumin in presence of xanthan-chitosan nanofibers (X-Ch + Cu), and curcumin-loaded 

xanthan-chitosan nanofibers (X-Ch-Cu) across Caco-2 cell monolayers were investigated 

according to the protocol reported by Artursson et al.44 The transepithelial transport experiments 
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were performed in both apical-to-basolateral (AB, absorptive) and basolateral-to-apical (BA, 

secretory) directions, under a proton gradient. In fact, in order to mimic the acidic microclimate 

of the small intestine, an apical pH of 6.5 and a basolateral pH of 7.4 were used. Briefly, 1.0 x 

105 cells/insert were seeded onto pre-wetted 12-mm polycarbonate cell culture inserts (area of 

1.12 cm2 and a pore size of 0.4 µm). The apical and basolateral compartments were filled with 

0.5 mL cell suspension and 1.5 mL complete medium, respectively. The Caco-2 cells plates were 

incubated overnight at 37 °C in a humidified atmosphere of 5% CO2. The day after, the growth 

medium was replaced in both compartments and the plates were incubated for 21 days at 37 °C 

in a humidified atmosphere of 5% CO2, renewing the complete growth medium every second 

day. For the AB transport experiments, donor solutions of fluorescein, lucifer yellow, and 

curcumin at a concentration of 11 mM, 9.57 mM, and 1.65 mM, respectively were prepared in 

sterile-filter HBSS at pH 6.5 buffered with 10 mM MES. Again, donor solutions of fluorescein, 

lucifer yellow, and curcumin at a concentration of 10.3 mM, 9 mM, and 1.55 mM, respectively 

were prepared in sterile-filter HBSS at pH 7.4 buffered with 25 mM HEPES to evaluate their BA 

transport across cell monolayers. X-Ch and X-Ch-Cu nanofibers have been also investigated, and 

3.0 mg of nanofibers for AB transport and 9.0 mg of nanofibers for BA transport were used. 

After 21 days cell growth, the complete DMEM medium was removed from the Caco-2 cell 

monolayers and was replaced with HBSS at pH 6.5 and pH 7.4 at the apical and basolateral 

compartments, respectively. For the AB transport studies, 1.5 mL HBSS was used in the 

basolateral side and 0.55 mL of each donor solutions and/or nanofibers were added to the apical 

side. Immediately, 50 µL aliquots were withdrawn from each donor compartment (time=0). The 

aliquots were then withdrawn from the acceptor side at different time intervals, and the volume 

was replaced with fresh pre-warmed HBSS at pH 7.4 maintaining the well plates at 37 °C in a 
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humidified atmosphere of 5% CO2. A final aliquot from the donor chamber was taken as last 

time point. BA transport studies were conducted by using 0.5 mL HBSS at pH 6.5 in the apical 

side, and 1.55 mL of donor solution and/or nanofibers in the basolateral chamber. Again, a 50 µL 

aliquot was immediately withdrawn from the donor compartment (time=0), and the plates were 

kept at 37 °C in a humidified atmosphere of 5% CO2. At different time intervals, 50 µL aliquots 

from the acceptor compartment were collected and the volume was replaced with fresh pre-

warmed HBSS at pH 6.5. A final aliquot was taken from the donor side at last time point. During 

the transport experiments, all cell media and solutions were pre-warmed at 37 °C. Each transport 

experiment was performed for a time interval of 8h, in triplicates (n=3). After 8 h transport 

studies both apical and basolateral chambers were washed twice with PBS, and cell monolayers 

were detached from the insert membrane with 0.25% trypsin – 0.53 mM EDTA solution for 10 

min at 37 °C. The collected Caco-2 cell lysates were centrifuged for 5 min at 1000 rpm and 

supernatants were discarded. Furthermore, the semipermeable membranes were carefully 

removed from the insert using a scalpel and collected into Eppendorf tubes in 500 µL HBSS at 

pH 6.5 (apical conditions). Cell pellets as well were re-suspended in 500 µL HBSS at pH 6.5 and 

both cells and membranes were sonicated for 3 h using an ultrasonic bath (Branson Ultrasonic 

Corp., VWR, Denmark). The collected samples were then centrifuged for 5 min at 10 000 rpm 

and the supernatants were analyzed by UV-vis spectroscopy. The same procedure was used to 

quantify the amount of curcumin adsorbed (X-Ch + Cu) or encapsulated (X-Ch-Cu) into the 

nanofibers at the end of transport experiments. The tested nanofibers were removed from the 

donor chamber and suspended in 500 µL of HBSS (pH 6.5 for AB transport and pH 7.4 for BA 

transport). After sonication and centrifugation, the curcumin found in the supernatants was 

quantified by absorbance measurement.  
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Measurement of transepithelial electrical resistance (TEER)  

The Transepithelial Electrical Resistance (TEER) was measured at room temperature before and 

after permeability experiments with an epithelial volt-ohmmeter equipped with an STX2 

“chopstick” electrodes (EVOM2™, World Precision Instruments, Sarasota, FL, USA). Before 

measuring the resistance values of each well, the cell monolayers and the basolateral chamber 

were washed twice with pre-warmed HBSS at pH 6.5 and HBSS at pH 7.4, respectively. The 

resistance values of the semipermeable membrane without cells (RBLANK) were recorded and 

subtracted from the resistance values obtained from the measurement of cell monolayers on the 

semipermeable membrane (RTOTAL). The specific cell resistance values (RTISSUE) were obtained 

from the following equation: 

RTISSUE (Ω) = RTOTAL (Ω) – RBLANK(Ω)               [2] 

TEER values of cellular monolayers were expressed in Ω x cm2 and calculated according to the 

following equation: 

TEERTISSUE (Ω cm2) = RTISSUE (Ω) x AMEMBRANE (cm2)          [3] 

 

2.11. Quantification of compounds 

Donor solutions of fluorescein, lucifer yellow, and curcumin were prepared and sterile-filter in 

HBSS at pH 6.5 and pH 7.4 to perform transepithelial studies. Standard curves of FLUO, LY, 

and Cu dissolved in HBSS at pH 6.5 and pH 7.4 were obtained through UV-vis spectroscopic 

analysis (Nanodrop OneC, Thermo Fisher Scientific, Roskilde, DK). The aliquots withdrawn 

from the donor and acceptor compartments during transport experiments across cell monolayers 
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were quantified by UV-vis spectrometry recording the absorbance values at 490 nm for FLUO, 

430 nm for LY, and 280 nm and 420 nm for Cu (Table 2). The amount of each compound 

transported across the cell monolayers within a time interval of 8 h was calculated for both 

apical-to-basolateral (AB) and basolateral-to-apical (BA) directions. FLUO, LY, and curcumin 

that remained entrapped within cell monolayers, insert membranes and nanofibers were likewise 

quantified at the end of permeability studies after sonication treatment. 

Table 2 

Tested compounds and relative concentrations used for transepithelial transport studies (AB and 

BA) across Caco-2 cell monolayers. 

 AB transport BA transport  

Compound [ ]A (µM) VA (µL) [ ]B (µM) VB (µL) 
λAbs 

(nm) 

 

Fluorescein, FLUO 
1000 50 1000 150 490 

 

Lucifer Yellow, LY 

 

870 50 870 150 430 

Free Curcumin, Cu 

 
150 50 150 150 

280 

and 

420 

 

Free Curcumin + 

nanofibers, Cu+X-

Ch 

 

150µM+3.0 

mg fibers 

50 

 

150µM+9.0 

mg fibers 

150 

 

280 

and 

420 

 

 

Curcumin loaded 

nanofibers,  

X-Ch-Cu 

 

 

 

3.0 mg fibers 

(150µM 

releasable 

Cu) 

0 

9.0 mg 

fibers  

(150µM 

releasable 

Cu) 

0 

280 

and 

420 
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2.12. FLUO, LY, and Cu distribution after transport experiments and mass balance  

 After transport experiments in both AB and BA directions, the amount of each compound in the 

apical and basolateral compartments was quantified by UV-vis spectrometry. Donor 

concentrations at time=0 (CD,t=0h), donor and acceptor concentrations at time=8h (CD,t=8h and 

CA,t=8h, respectively), compound concentrations remained within cell monolayer at time=8h 

(CCaco-2,t=8h), membrane filters at time=8h (Cinsert,t=8h), and adsorbed or encapsulated into 

nanofibers at time=8h (Cfibers,t=8h) were experimentally measured by UV-vis spectroscopy. 

Therefore, the mass balance of each compound was calculated as follow: 

CD,t=0h = CD,t=8h +  CA,t=8h +  CCaco−2,t=8h +  Cinsert,t=8h +  (Cfibers,t=8h)      [4] 

Mass balance values of >90% were found for all tested compounds. 

2.13. Calculation of the apparent permeability coefficients P app, AB and Papp, BA. 

The absorptive apparent permeability coefficient (Papp, AB) and the secretory apparent 

permeability coefficient (Papp, BA) were determined according to the equation: 

Papp =  
dC

dt
∗  

V

A∗C0
             [5] 

where, dC/dt (µM/s) is the change in concentration on the acceptor chamber over time; V (cm3) 

is the volume of the solution in the acceptor compartment; A (cm2) is the area of the 

semipermeable membrane; C0 (µM) is the initial concentration in the donor chamber. The results 

presented in this study were the averages of three experiments and were expressed as the mean ± 

standard deviation. 
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3. Results and Discussions 

3.1. Electrospinning of Xanthan - Chitosan nanofibers 

Xanthan-Chitosan nanofibers were obtained by electrospinning mixtures of X at the 

concentration of 0.75% w/v with 3% w/v Ch dissolved in formic acid (Figure 1). The obtained 

nanofibrous structures are composed of individual, uniform and randomly oriented fibers with an 

average diameter of 750 ± 250 nm. Note that chitosan solution (3% w/v) in formic acid (without 

xanthan) could not be electrospun into fibers. The average diameter of electrospun xanthan-

chitosan nanofibers slightly increased to 900 ± 440 nm with the addition of 2% w/v curcumin 

(Figure 1). The encapsulation efficiency of Cu within X-Ch nanofibers was 69.4±4.1%. 

Furthermore, the electrical conductivity of 0.75 % w/v xanthan and 3% w/v chitosan solutions in 

formic acid was 0.19+0.01 mS/cm and 1.23+0.06 mS/cm, respectively. However the electrical 

conductivity of the X-Ch mixture (0.75-3 % w/v) and X-Ch-Cu (0.75-3-2 % w/v) was enhanced 

significantly to 5.5+0.08 mS/cm and 5.71+0.09 mS/cm, respectively, as an indication of an 

organizational change in the structure of the polysaccharides mixture. Such an increase of the 

solution conductivity induces greater transfer of the surface charges of the polysaccharides jet, 

enhanced electrostatic repulsion, promoting elongation, stretching, and the formation of 

electrospun X-Ch-Cu nanofibers.45   

Moreover, the X-Ch-Cu nanofibers remained stable in aqueous HBSS medium at different pH 

(6.5 and pH 7.4), due to the ability of oppositely charged xanthan-chitosan mixture to form 

ionically associated electrospun nanofibers.46 The features of xanthan-chitosan-curcumin 

nanofibers were not further examined in the present study.   
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Figure 1. SEM images of electrospun nanofibers of (a) xanthan-chitosan (0.75 - 3% w/v) and (b) 

xanthan-chitosan-curcumin (0.75 - 3 -2% w/v) mixtures in formic acid.  

  

50 µm 
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3.2. In vitro release study 

The cumulative release profile of curcumin from the electrospun X-Ch nanofibers at two 

different pH (7.4 and 6.5) at 37 °C is shown in Figure 2. A sustained release of curcumin from 

X-Ch nanofibers was observed over a period of 4 h for both pH with no significant burst effect. 

Approximately 4% of curcumin was released from X-Ch nanofibers after 4 h and beyond that, no 

significant changes in the cumulative release of Cu were found up to 8 h. The slow release of 

curcumin is due to its hydrophobic nature. FTIR studies confirmed the absence of physical or 

chemical interactions between curcumin molecules and xanthan-chitosan fibers matrix (data not 

shown).    

 

Figure 2. Release of curcumin from X-Ch-Cu nanofibers suspended in HBSS medium at pH 6.5 

(solid line), and pH 7.4 (dashed line) at 37 °C. All data are the mean ± SD of three independent 

experiments. 
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3.3. Caco-2 cell studies 

 In our previous studies, we have observed a significant effect on the permeation of a model 

protein (insulin) across Caco-2 cells upon contact with electrospun fish sarcoplasmic protein 

fibers (FSP).33 Encapsulation of insulin into the FSP fibers provided protection against 

chymotrypsin degradation (suitable for oral administration), and the interactions between fibers 

and epithelial cells led to opening of the tight junction, which promoted an increased 

transepithelial transport of insulin without compromising cellular viability.33 This approach of 

using electrospun nanofibers is superior to the typical approach of administering solely 

nanoparticles for intestinal delivery of bioactives (typically nanoparticles are distributed over the 

entire surface, having a short retention time, and low bioactive penetration). 

The Caco-2 cell system has been recommended by the US Food and Drug Administration (FDA) 

as being an established in vitro cell model for the prediction of oral drug absorption and drug 

transport mechanism across human differentiated epithelial cell monolayers 31. The human colon 

carcinoma cell line Caco-2 was chosen because of the many similar features with the intestinal 

epithelial cells. In fact, Caco-2 cells can slowly differentiates into monolayers forming microvilli 

and tight junctions at the apical side, and expressing brush border enzymes for phase I and phase 

II metabolism and transport proteins 44,47,48. In the present study, the Caco-2 cell system was 

selected as a tool to investigate the in vitro absorption and the transports (both apical-to-

basolateral (AB) and basolateral-to-apical (BA)) of curcumin across cell monolayers.  

3.4. Evaluation of cell viability   

The viability of Caco-2 cells after 24-h treatment with free curcumin (Cu), Xanthan-Chitosan 

nanofibers (X-Ch), curcumin-loaded Xanthan-Chitosan nanofibers (X-Ch-Cu), and PBS was 
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evaluated through MTS bioassay (Figure 3). The MTS tetrazolium compound is reduced by cells 

into a colored formazan product that is soluble in tissue culture medium and quantified recording 

its absorbance at 490 nm. This conversion is accomplished by dehydrogenase enzymes in 

metabolically active cells, therefore MTS conversion is directly proportional to the number of 

living cells 49. The incubation of Caco-2 cells with 0.5 mg X-Ch nanofibers, 0.5 mg X-Ch-Cu 

nanofibers, and free curcumin (Cu, 150 µM) was non-toxic to the cells, and cell viability was 

found to be ≥ 80%. By contrast, when cells were exposed to 500 µM free curcumin, the cell 

viability value was decreased to ~20%, indicating a concentration-dependent toxic effect of 

curcumin in cell viability. According to the encapsulation efficiency of curcumin into nanofibers 

and the in vitro release profile of curcumin from X-Ch-Cu nanofibers at pH 7.4, the amount of 

releasable curcumin from 0.5 mg X-Ch-Cu nanofibers was assumed to be 150 µM. Therefore, 

this concentration was selected to determine the apical-to-basolateral and basolateral-to-apical 

transports of curcumin across Caco-2 cell monolayers.  

97



 

Figure 3. MTS cell viability bioassay. Caco-2 cells were seeded in 96-well plates at a 

concentration of 2.0 x 104 cells/mL for 48 h. Then cells were incubated with: PBS (also used for 

curcumin dilution), 0.5 mg Xanthan-Chitosan nanofibers (X-Ch), 0.5 mg curcumin-loaded 

Xanthan-Chitosan nanofibers (X-Ch-Cu), 150 µM curcumin diluted in PBS (Cu), and 500 µM 

curcumin diluted in PBS (Cu). After 24 h incubation, the cell viability was evaluated through 

MTS assay. Data are the mean ± SD of six independent experiments. 
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3.5. Evaluation of Caco-2 cell monolayers integrity 

To perform reliable in vitro permeability experiments across Caco-2 cell monolayers, the 

transport of non-radiolabeled markers, fluorescein and lucifer yellow, and the transepithelial 

electrical resistance measurements were conducted to quantitatively investigate the integrity and 

permeability of cell monolayers after 21 days growth on 12-mm polycarbonate inserts. The 

monolayers integrity is a fundamental determinant of the study of drugs transport via the 

intestinal membrane, especially when the passive transport of substances through tight junctions 

is involved.50 Therefore, the AB and BA transepithelial transports of fluorescein (FLUO) and 

lucifer yellow (LY) across Caco-2 monolayers under a proton gradient were investigated (Figure 

4). The average of TEER values for Caco-2 cell monolayers measured at 37 °C  was 422 ± 30 Ω 

cm2 and the TEER values of Caco-2 cell monolayers before and after transport of FLUO and LY 

were found to be in the range of 350-500 Ω cm2 (Figure 4a) indicating an “intermediate” 

tightness of the gastrointestinal epithelium, as established by the GI epithelia classification based 

on TEER values.51 Figure 4b and 4c show the cumulative permeated amount of the two markers 

after apical-to-basolateral and basolateral-to-apical transport across Caco-2 cell monolayers in 

presence of a proton gradient (pH 6.5 in A and pH 7.4 in B), and the FLUO and LY distribution 

within the cell model system, respectively. The permeation of fluorescein across the monolayers 

increased over time and it was higher when a lower pH of the donor solution was used. In fact, 

after 8h the amount of fluorescein at the acceptor chamber was 20% and 12% for the AB and BA 

transport respectively, suggesting a pH-dependent transport of fluorescein. Consequently, most 

of the fluorescein at the donor side was still found at time=8h (~78%), and this value was even 

higher for BA transport. Only small amounts of FLUO were detected within the cell lysate and 

insert membrane (0.74 and 0.58%, respectively). Contrarily, the permeation of LY was weakly 
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affected by pH and the cumulative amounts transferred across cell monolayers were less than 

1.5% for both AB and BA transports, resulting in a highly poor absorption of LY (98% of the 

initial donor concentration remained there). The values of the apparent permeability coefficients 

of FLUO were Papp,AB =9.52x10-6 and Papp,BA =1.89x10-6 cm/s, whereas much lower values were  

calculated for the LY transport: Papp,AB =6.26x10-7 and Papp,BA =1.46x10-7 cm/s (Figure 4d). 

These results demonstrate that the different physical-chemical properties of FLUO and LY are 

strongly reflected in their permeation across the cell monolayers and the transport mechanism 

involved in the absorption. The main features of a compound influencing its permeation are logP, 

pKa, molecular weight, and ionization (Table 1).52 Fluorescein is a small and lipophilic molecule 

(logPo/w =4.81) and possesses two ionization groups having a pKa1=4.36 and pKa2=6.38. By 

contrast, lucifer yellow is a small hydrophilic compound (logPo/w= -5.06) and has a pKa= -0.9. 

According to the results presented in Figure 4, Papp values of FLUO increased with the 

decreasing pH of the donor solution, at which the compound is ionized at a smaller extent, while 

the high hydrophilicity and ionization of LY prevent its absorption through cell monolayers. The 

apical membrane of polarized epithelial cell layers has a lipoid nature thus it restricts the 

transport of ions and hydrophilic molecules. Therefore, lipophilic compounds like FLUO, across 

the cell barrier through a passive transcellular transport following their pH partitioning into the 

apical membrane and diffusing through the cytoplasm reaching the basolateral membrane 53. For 

more hydrophilic compounds like LY, transcellular diffusion is often prevented and depending 

on the pKa of molecules at the donor pH, the transport of these solutes across epithelial cells can 

occur via tight junctions (paracellular transport). In the light of these considerations, the results 

obtained from AB and BA transport of FLUO and LY suggested that the integrity and tightness 
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of Caco-2 cell monolayers after 21 days were maintained, and further studies using X-Ch-Cu 

nanofibers have been investigated using this approach.    

 

Figure 4. Quantitative evaluation of Caco-2 cell monolayers integrity. Fluorescein (FLUO) and 

lucifer yellow (LY) were used as non-radiolabeled permeability markers and the transepithelial 

electrical resistance values (TEER) of cell monolayers were measured before and after apical-to-

basolateral (AB) and basolateral-to-apical (BA) studies for a time interval of 8 h. a) TEER values 

of Caco-2 monolayers incubated respectively with a transport medium, 1 mM FLUO, and 870 

µM LY at the donor chamber, before and after AB and BA transport processes. b) Percentage of 

the cumulative transported amount of FLUO and LY over time, for both AB and BA studies. c) 
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FLUO and LY distribution after 8 h transport experiments in the acceptor chamber, donor 

chamber, Caco-2 cell monolayer, and insert membrane. d) Apparent permeability coefficient 

(Papp) of FLUO and LY calculated for both AB and BA transports. All data are the mean ± SD of 

three independent experiments. 

3.6. Caco-2 cell monolayers treatments  

The low aqueous solubility, poor intestinal absorption and extensive metabolism and excretion 

are crucial parameters that affect curcumin bioavailability. In order to overcome some of these 

limiting factors, Xanthan-Chitosan electrospun nanofibers as curcumin delivery system were 

produced and investigated. In the present study, the restricted use of chitosan as an in vitro 

absorption enhancer in epithelial cell monolayers was overcome by mixing the chitosan with 

xanthan gum polysaccharide. As reported by Dempe et al., 8 Caco-2 cell monolayers express the 

enzymes involved in phase I and II metabolism of curcumin. In fact, curcumin metabolites such 

as hexahydro- and octahydro-curcumin, as well as their glucuronide and sulfate conjugates were 

identified as major metabolites at the donor and acceptor side.8 Thus, in the present study, the 

quantification of curcumin at the apical and basolateral side was conducted recording the 

absorbance of native curcumin at 420 nm, and also measuring the absorbance of curcumin 

metabolites at 280 nm, as suggested by Dempe et al.8 Therefore, the data obtained for curcumin 

transepithelial transport studies, include the contribution of both transported native curcumin and 

its metabolites.   

The 24 h exposure of Caco-2 cell monolayers to X-Ch and X-Ch-Cu nanofibers resulted in a cell 

viability >90% and ~80%, respectively (Figure 3). In addition to that, the incubation of cell 

monolayers with 150 µM free Cu and X-Ch-Cu nanofibers ended up to a comparable cell 
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viability value, indicating that the amount of curcumin loaded into the nanofibers was similar to 

the free curcumin (150 µM), and that the small decrement in cell viability (~80%) was attributed 

to the curcumin dose and not to the presence of X-Ch nanofibers (>90%). In order to investigate 

the presumed enhancement of curcumin absorption across epithelial cell monolayers in presence 

of Xanthan-Chitosan nanofibers, the AB and BA transport of free Cu (Cu), X-Ch nanofibers + 

free Cu (X-Ch + Cu), and curcumin-loaded X-Ch nanofibers (X-Ch-Cu) were performed (Figure 

5a and b). As depicted in the illustrations, the free curcumin and/or nanofibers were incubated at 

the donor chamber and the transported amount of curcumin was withdrawn from the acceptor 

side over a period of 8h under a proton gradient. The addition of Xanthan-Chitosan nanofibers to 

free curcumin was found to enhance curcumin permeation of nearly 2-fold compared to free 

curcumin alone, and such enhancement was even higher for X-Ch-Cu nanofibers reaching 3.4-

fold. For X-Ch-Cu nanofibers, the total amount of curcumin transported across cell monolayers 

for AB and BA transports was 32.81% and 46.94% of the releasable curcumin, respectively. The 

observed slight reduction of TEER values for AB transport of X-Ch + Cu and X-Ch-Cu was 

found to be more pronounced for BA transport of X-Ch + Cu and X-Ch-Cu (Figure 5c and d). 

Taken together, the observed results suggest that the presence of Xanthan-Chitosan nanofibers 

positively affect curcumin permeation since a 3-fold higher concentration of curcumin was 

detected in the acceptor chamber. The decrease in TEER values supports that the tight junctions 

were affected by the electrospun fibers, and direct contact between the fibers and cell 

monolayers. This is in agreement with our previous study on the permeation of a model protein 

(insulin) across Caco-2 cells upon contact with electrospun fish protein fibers.33 Indeed, we 

found that direct interaction between the nanofibers and the monolayer induces changes in the 

tight junctions, and thus an increase in permeation at local hot spots on the epithelial barrier. 
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Moreover, the reduction of TEER values could be also attributed in part to the presence of 

chitosan within the electrospun nanofibers, which is responsible for the tight junctions opening, 

thus promoting paracellular transport. In addition to that, no cell-damaging was detected after 24 

h treatment with X-Ch and X-Ch-Cu. In fact, the effect of chitosan and its derivatives on Caco-2 

cell monolayers has been extensively studied,35,37 and TEER measurements have shown that 

chitosan induces an immediate reduction of TEER in a dose-dependent effect on tight junction 

permeability. However, a recovery of TEER values in the time range of few hours up to one day 

could be observed after chitosan polymer solution removal.35,37 In these studies, a paracellular 

transport of [14C]-mannitol across Caco-2 monolayers was recorded only when a certain TEER 

threshold value was reached.35  

The fate of curcumin during transepithelial transport in both AB and BA directions was 

monitored by quantifying (after 8 h) the amount of curcumin in the donor and acceptor side, 

Caco-2 cell lysate, insert membrane, and within X-Ch nanofibers. Figure 6a shows the 

distribution of curcumin in the above-mentioned compartments when free Cu, X-Ch + Cu, and 

X-Ch-Cu nanofibers were incubated in the donor chamber. Although significant amounts of 

curcumin were still detected in the donor side after 8h transport, curcumin concentrations ≥10% 

of the donor initial concentration were detected in the acceptor side. Only small amounts of 

curcumin were found into cell lysate, < 3%, and insert membrane, < 1.5%, while considerable 

curcumin amounts remained loaded into X-Ch-Cu nanofibers even after 8h release (28% into X-

Ch-Cu in the AB study, and 13% into X-Ch-Cu in the BA study). 
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Figure 5. Study of the transepithelial transport across Caco-2 cell monolayers of free curcumin 

(Cu, 150 µM), free curcumin (150 µM) + 3.0 mg Xanthan-Chitosan nanofibers (X-Ch + Cu), and 

9.0 mg curcumin-loaded Xanthan-Chitosan nanofibers (X-Ch-Cu, fibers amount that 

corresponded to 150 µM released curcumin) at the donor chamber. Apical-to-basolateral (AB) 

and basolateral-to-apical (BA) transport were conducted for a time interval of 8 h under a proton 

gradient, pH= 6.5 at the apical side and pH= 7.4 at the basolateral chamber. a) and b) Percentage 

of the transported amount of Cu over time for AB and BA studies, respectively. c) and d) TEER 
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values of Caco-2 cell monolayers before and after AB and BA transport, respectively. All data 

are the mean ± SD of three independent experiments. 

Nevertheless, the proposed curcumin delivery system showed the highest amount of curcumin 

permeating the epithelial cell monolayers with a Papp, AB = 1.49x10-5 cm/s and a Papp, BA = 7.00x 

10-6 cm/s (Figure 6c), and a 2-fold permeability enhancement was measured when Xanthan-

Chitosan nanofibers were added to a free curcumin solution in the donor side compared to free 

curcumin without fibers. In addition, after 8 h, the morphology of the tested nanofibers was 

analyzed by microscopy (data not shown), and besides a loss of yellow-orange coloration due to 

the released curcumin, no morphological variations were observed.    

 

Figure 6. Study of the transepithelial transport of 150 µM free curcumin (Cu), 3.0 mg Xanthan-

Chitosan nanofibers + 150 µM free Cu (X-Ch + Cu), and 9.0 mg curcumin-loaded Xanthan-

Chitosan nanofibers (X-Ch-Cu) across Caco-2 cell monolayers. a) Cu distribution after 8 h 

transport experiments in the acceptor chamber, donor chamber, Caco-2 cell monolayer, insert 
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membrane, and within X-Ch nanofibers. b) Image of a Caco-2 cell monolayer cultured for 21 

days in a 12-mm polycarbonate semipermeable membrane containing a solution of HBSS at pH 

6.5 and 9.0 mg X-Ch-Cu nanofibers. The yellow medium indicates the presence of released 

curcumin from X-Ch-Cu nanofibers that has a strong orange color. c) Apparent permeability 

coefficient (Papp) of Cu calculated for both AB and BA transports. All data are the mean ± SD of 

three independent experiments.    

4. Conclusions  

Uniform and homogeneous Xanthan-Chitosan nanofibers were fabricated using electrospinning 

processing and investigated as an encapsulation and delivery system of curcumin, a poor water 

soluble polyphenolic compound. It was found that X-Ch-Cu nanofibers remained stable in 

aqueous HBSS medium at different pH (6.5 and pH 7.4). Moreover, X-Ch-Cu nanofibers were 

incubated with Caco-2 cells, and cell viability, transepithelial transport and curcumin 

permeability properties across cell monolayers were investigated. After 24 h of incubation, the 

exposure of Caco-2 cell monolayers to X-Ch and X-Ch-Cu nanofibers resulted in a cell viability 

of >90% and ~80%, respectively. A 3.4-fold increase of curcumin permeability was observed in 

the presence of X-Ch fibers, in comparison with free-curcumin. The X-Ch nanofibers interacted 

with intestinal Caco-2 cells and caused tight junctions opening, demonstrated by a decrease in 

TEER values, which promoted increased transepithelial permeation of curcumin without 

compromising cellular viability. Hence, the interactions between electrospun fibers and the 

epithelial cells, could be used to promote increased uptake of bioactives. Furthermore, in vivo 

experiments are required to fully demonstrate the efficiency of these nanofibers for oral delivery 

applications of poorly water-soluble compounds at the gastrointestinal tract. 
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Abstract: Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and
encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited
antioxidant properties which increased after the encapsulation of both curcumin and vanillin.
The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid
and vanillin/phospholipid microfibers remained stable over time at different temperatures
(refrigerated, ambient) and pressures (vacuum, ambient). 1H-NMR confirmed the chemical stability
of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous
media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid
fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers
as encapsulation and antioxidant systems.

Keywords: phospholipids; electrospinning; microfibers; antioxidants; encapsulation; vanillin; curcumin

1. Introduction

Phospholipids have been used for preparing biomimetic capsular structures (mainly vesicles
or liposomes) [1–4], for several life science applications, including nano-micro encapsulation of
drugs [5] and mammalian cells [6], and in food [7] as delivery carriers of nutrients, nutraceuticals,
food additives and antimicrobials. Encapsulation of bioactives within lipid formulations often
offers enhanced stability and protection, combined with superior biocompatibility and enhanced
permeability, depending on the lipid composition and properties [8,9]. Among other phospholipids,
asolectin, constituted by a mixture of lecithin, cephalin and phosphatidylinositol, saturated fatty acids,
mono-unsaturated and poly-unsaturated fatty acids has been used to develop nano-microstructures
such as fibers [10–13], hydrogels [14] and liposomes [7,15] for the encapsulation of bioactives [13,16].
In addition, asolectin components have also been proven to display antioxidant properties [16–19].
Pan and co-workers [16] evaluated the effect of the antioxidant properties of lecithin emulsifier on
the oxidative stability of encapsulated bioactive compounds. They demonstrated that the antioxidant
activity of lecithin emulsifier can significantly reduce the saturation of free radicals across the interface
of oil-in-water emulsions, as well as the rate of oxidation of the bioactive encapsulate (curcumin),
thus increasing its shelf life. The antioxidant effect of lecithins was also tested on several oils and
fats varying in FA composition and tocopherol content [17]. They found that lecithins, at specific
concentrations, exhibited a good protective effect against oxidation on several oils and fats with varying
FA composition. These antioxidant properties were enhanced in samples containing tocopherols,
due to the synergistic interactions between amino-alcohol phospholipids and γ- and δ-tocopherols.
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Furthermore, Doert and co-authors [20] studied the synergistic effect of lecithins with tocopherols and
observed that phospholipids synergistically enhance the antioxidant effect of phenolic antioxidants.

Phenolic compounds are known for the inhibition of free radical formation and/or for the
interruption of the propagation of autoxidation [21]. Vanillin (4-hydroxy-3-methoxybenzaldehyde)
is a phenolic compound, which can either be extracted from pods of Vanilla Planifolia or synthesized
chemically, and has been widely used in the food industry as a flavor, but also as a food preservative,
due to its antioxidant, antimicrobial, anticarcinogenic and antimutagenic properties [22,23]. However,
its high volatility and thermal instability are the main drawbacks for its use and processing. Curcumin
is another phenolic compound derived from the turmeric of the herb Curcuma longa L., with biological
and pharmacological properties, such as antioxidant, anti-inflammatory, antimicrobial, antimalarial,
and anticarcinogenic properties [24]. Due to its hydrophobic nature, curcumin has very low solubility
in water and its chemical stability has been reported to be affected by external factors such as pH,
exposure to light, temperature and oxygen [25,26]. Curcumin has poor bioavailability due to inefficient
absorption at the intestinal track and for that reason it is commonly administered with digestible lipids
that facilitate the solubilization and transport of this phenolic compound to the epithelial tissue [25].

Electrospinning processing is suitable for the production of continuous and functional nano-microfibers,
from a wide range of (bio)polymers [27] and small molecules such as phospholipids [10–12]. The fabrication
of electrospun phospholipid fibers has been initially reported using DMF:CHCl3 solvents [11]. Recently,
it was demonstrated that the morphological properties of electropsun phospholipid fibers could be controlled
using solvents with different polarities such as isooctane, cyclohexane and limonene and by the application
of a co-axial solvent electrospinning [11]. The mechanical properties of phospholipid microfibers were
investigated by nanoindentation using Atomic Force Microscopy [12]. It was found that these fibers have
an elastic modulus of 17.26 MPa and were stable in ambient conditions, preserving the modulus of elasticity
up to 24 h [12]. In another study, Yu et al. [28] mixed polyvinylpyrrolidone (PVP) with soybean lecithin
to create a fibrous network by electrospinning. Formation of liposomes and vesicles with a very narrow
distribution between 120–370 nm was observed after immersion of lecithin/PVP fibers in water. To increase
the stability of electrospun lipid based systems, Zhang et al. applied a hybridization strategy to produce
electrospun cholesteryl-succinyl silane (CSS) nanofibers [29].

Electrospun fibers have been used for encapsulation and controlled release of bioactives [27].
The encapsulation of curcumin within electrospun fibers using Chitosan/Phospholipids [13], polylactic
acid (PLA) [30,31], polyvinyl pyrrolidone [32], blends of amaranth protein isolate/pullulan [33],
and cellulose acetate [34], as well as the encapsulation of the vanillin/cyclodextrin inclusion complex
(vanillin/CD-IC) within electrospun polyvinyl alcohol (PVA) [35] fibers has been reported.

This study aimed to develop electrospun phospholipid microfibers to encapsulate vanillin and curcumin
as model phenolic compounds and investigate their morphology, release and antioxidant properties.

2. Results and Discussion

2.1. Morphology

Phospholipid microfibers were obtained by electrospinning using limonene and isooctane solvents,
as reported previously [11,12]. The fibrous structure (Figure 1a,b) is composed of individual, uniform
and randomly oriented fibers with average diameters of 15.74 ± 4.68 µm and 4.51 ± 1.27 µm for
limonene and isooctane, respectively.

The higher average diameter of electrospun asolectin phospholipid using limonene as solvent in
comparison with isooctane is related to the dielectric constant (ε solvent) and the evaporation point
(Bp solvent) of the solvents. Limonene has a higher evaporation point and dielectric constant (176 ◦C;
2.3) compared to isooctane (99 ◦C, 1.92), thus slower evaporation takes place resulting in fibers with
higher average diameter as discussed in our previous studies [11].

Electrospun phospholipid fibers loaded with vanillin and curcumin were also developed with
average diameters of 20.36 ± 5.4.5 and 4.42 ± 1.71 µm, respectively (Figure 1c,d). The inclusion of
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vanillin and curcumin on phospholipid solutions did not significantly change the morphology of
electrospun phospholipid fibers, suggesting that the bioactives were efficiently encapsulated and well
distributed within the microfibers. The increase in fiber diameter after encapsulation of bioactives
within electropsun fibers has been well reported [13,36].
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2.2. FTIR Analysis

Figure 2a,b shows the FTIR spectra of asolectin, vanillin, curcumin, asolectin electrospun fibers
made with isooctane and limonene (controls) and asolectin fibers with encapsulated vanillin and
curcumin, respectively. Table 1 lists the assigned peaks.

The FTIR spectrum of pure asolectin powder showed the peaks at 3000 and 2800 cm−1

corresponding to the C-H stretching of CH2 groups, and the peaks at 1730 cm−1 and 1240 cm−1

corresponded to C=O stretching and PO2
− groups, respectively (Figure 2a) [37]. The features for

asolectin fibers remained the same as the pure asolectin powder before the electrospinning process
in both solvents, suggesting that the electrospinning process and the solvents did not change the
physico-chemical properties of asolectin.
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Figure 2. FTIR spectra of vanillin powder, asolectin powder, electrospun asolectin fiber and electrospun
asolectin/vanillin fiber prepared using limonene (a) and curcumin powder, electrospun asolectin fiber
and electrospun asolectin/curcumin fiber prepared using isooctane (b) as solvents. The red numbers
in the figure are the assigned peaks listed in Table 1.

The FTIR spectrum of pure vanillin powder indicates characteristic peaks at 731, 1510 and
1590 cm−1 which correspond to the stretching vibration absorption of the benzene ring. The peak at
1660 cm−1 is attributed to the stretching vibration of C=O of the aldehyde group [38]. Also, the peak at
1150 cm−1 shows the presence of ether groups in pure vanillin (Figure 2a) [23,39].

For curcumin, the bands observed at 3085–3552 cm−1, 1601 cm−1, 1273 cm−1, and 1152 cm−1

are respectively attributed to the phenolic O-H stretching, stretching vibrations of the benzene ring,
aromatic C-O stretching and C-O-C stretching modes (Figure 2b) [24] .

The FTIR spectra of electrospun asolectin fibers loaded with both vanillin and curcumin showed
the same main peaks; therefore, it is assumed that both phenolic compounds were efficiently loaded
within asolectin fibers and no interactions between the bioactives and the matrix occurred.

Table 1. IR peak assignment of the electrospun phospholipid (Phos) fibers.

Peak
Number Group Frequency (cm−1) Assignment

Vanillin
Powder

Curcumin
Powder

Phos
Powder

Phos
(Limonene)

Fiber

Phos
(Isooctane)

Fiber

Phos/
Vanillin

Fiber

Phos/
Curcumin

Fiber

1 - 3085–3552 3001 3000 3000 3000 3000 phenolic O-H
stretching

2 - - 2920
2850

2922
2852

2930
2859

2908
2847

2923
2853

C-H stretching of
CH2 groups

3 1660 - 1730 1735 1746 1725 1740 C=O stretching of
carbonyl groups

4 1590
1510 1601 - - - - - stretching vibrations

of the benzene ring

5 1273 1240 1230 1243 1205 1229
PO2

− groups;
aromatic C-O

stretching

6 1150 1152 - - - - - C-O-C stretching

7 731 - - - - - - stretching vibrations
of the benzene ring
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2.3. Encapsulation Efficiency (EE)

The encapsulation efficiency of vanillin and curcumin within asolectin microfibers was found
to be of 85.23 ± 1.19% and 96.39 ± 2.81%, respectively. The relatively high encapsulation efficiency
is related to the high solubility of vanillin and curcumin in limonene and isooctane, respectively.
Consequently, the boactives could be efficiently dispersed within the fibers and well encapsulated.

The encapsulation efficiency of vanillin using electrospun almond gum/polyvinyl alcohol (PVA)
composite nanofibers was reported to range from 68% to 75% for vanillin concentrations of 1% to 3%
(w/w) respectively [40]. The EE of vanillin loaded within microcapsules of spray dried soy protein
isolate/maltodextrin was 58.3% [41].

The EE of curcumin encapsulated within cellulose acetate electrospun fibers at concentrations of
5, 10, 15, and 20% w/v was reported to be of 101.9 ± 0.8%, 95.6 ± 2.5%, 91.4 ± 0.4%, and 90.8 ± 0.4%,
respectively [34]. In another study, the EE of curcumin within liposomes was determined to range
from 80.77 ± 4.12% to 82.32 ± 3.91% [42].

2.4. Total Antioxidant Capacity (TAC) Assay

Figure 3 presents the effect of storage conditions (time, temperature and pressure) on the total
antioxidant capacity of the both asolectin fibers with and without phenolic compounds. TAC was
measured through the formation of the phosphomolybdenum complex and the reduction of Mo
(VI) to Mo (V) by the antioxidant components in the phospholipid and phospholipid/bioactive
specimens [34]. Several methods are available to measure the antioxidant capacity of food and
biological systems [43,44]. The phosphomolybdenum method is used for extensive screening of
the total antioxidant capacity of samples of very different origins and composition (hydrophobic
and hydrophilic) from natural sources [45]. This is a simple low-cost method [46,47] and has been
utilized for the determination of the antioxidant capacity of various compounds such as vitamin E [45],
quercetin [29], curcumin [48], and flavonoid fractions of Pistacia atlantica fruit [43].

Electrospun asolectin fibers produced using limonene exhibited antioxidant capacity ranging
from 76 to 89 µg Galic Acid Equivalent/mg of microfibers (µgGAE/mg) for samples stored at 4 ◦C,
and from 75 to 86 µgGAE/mg when stored at ambient temperature (Figure 3). Similarly, the TAC
determined for asolectin fibers prepared using isooctane ranged from 76 to 80 µgGAE/mg (4 ◦C) and
from 71 to 80 µgGAE/mg (ambient temperature). These data suggested that the solvent does not play
a significant role in TAC of phospholipid fibers. It is noteworthy that the slight differences of the TAC
values of the (control) asolectin fibers prepared using limonene or isooctane as solvents, are related
to the differences of the molecular mass of the solvents that has to be considered when using this
analytical method. Phospholipids are known for their antioxidant properties [18,19,49] and asolectin
that contains lecithin, cephalin and other phospholipids display antioxidant activity, as demonstrated
previously [16,17].

For pure vanillin and curcumin powders (non-encapsulated), a decrease in TAC was observed
over 15 days of storage. The TAC of vanillin stored at 4 ◦C was decreased by 23 (low pressure) and 25%
(ambient pressure) from day 1 to day 15. At ambient temperature, the TAC of vanillin stored at low
pressure and ambient pressure decreased by 30% and 26% respectively from 1 to day 15. After 15 days,
curcumin stored at 4 ◦C was observed to significantly decrease its TAC to about 28% and 44% when
stored at low pressure and ambient pressure, respectively. At room temperature non-encapsulated
curcumin lost around 38% (at low pressure) and 33% (at room pressure) of its total antioxidant capacity
from day 1 to day 15. Curcumin is a bioactive susceptible to oxidation [16] and its stability is known to
be negatively affected by oxygen exposure [25,26].

However, after encapsulation of phenolic compounds, the TAC of asolectin fibers loaded with both
curcumin and vanillin was found to be constant over time (Figure 3), suggesting that the antioxidant
stability of the compounds can be maintained. Moreover, an increase in TAC was observed for fibers
loaded with curcumin and vanillin, suggesting an improvement of antioxidant activity due to the
combination of phospholipids with phenolic compounds. This is in accordance with previous studies
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where an improvement of TAC was confirmed by synergistic interactions of lecithins with other
phenolic compounds such as tocopherols [17,50].

Previous studies showed that encapsulated curcumin could retain higher antioxidant stability
in lecithin (antioxidant) stabilized emulsions compared to curcumin in Tween 20 (non-antioxidant)
stabilized emulsions. The higher antioxidant activity of emulsifier could significantly lower the rate of
radical permeation and consequently reduce the rate of oxidation of the encapsulated curcumin [16].
Figure 3 shows the TAC of curcumin/asolectin and curcumin/vanillin fibers over 15 days. The TAC
assay was also conducted for 45 days and no evidence of reduction of TAC was observed (data not
shown), suggesting that the phospholipids fibers and phospholipids/phenolic compounds fibers
preserve their antioxidant activity for extended periods of time.
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Figure 3. Total antioxidant capacity (TAC) over time of electropsun phospholipid fibers prepared using
limonene (top graphs (a)) and isooctane (bottom graphs (b)) as solvent; Data are represented as mean
± SD [N = 3]; a–c: significant difference at p ≤ 0.05 in terms of total antioxidant capacity of each storage
condition during storage time.

Antioxidant activity of phenolic compounds is known to be affected by the presence of oxygen
and temperature. Figure 3 shows that no significant differences were observed for the TAC when
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microfibers-bioactives were stored at different temperatures (refrigerated, ambient) and pressures
(vacuum, ambient pressure). However, the most favorable storage conditions for both curcumin
and vanillin loaded in electrospun asolectin fibers were refrigerated temperature and low pressure,
as slightly higher TAC values were determined.

The total phenolic content (TPC) within the fibers over time was also determined based on the
electron transfer from phospholipid and phospholipid/bioactive specimens to the complexed Mo (IV)
present in the Folin–Ciocalteu reagent [51,52] (Figure 4). Similar to TAC (Figure 3), the total phenolic
content was not changed significantly over time for the phenolics encapsulated within electropsun
phospholipid fibers. However, for the non-encapsulated curcumin, a reduction of TPC by 40% from
day 1 to day 15 was determined when this bioactive was stored in ambient pressure and refrigerated
temperature (11.9 µgGAE/mg). The encapsulated curcumin displayed a TPC of 24.5 µgGAE/mg for
the same storage conditions.
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Figure 4. Total phenolic content (TPC) over time of electropsun phospholipid fibers prepared using
limonene (a) and isooctan (b) as solvents; Data are represented as mean ± SD [N = 3]; a–c: significant
difference at p ≤ 0.05 in terms of total phenolic content of each storage condition during storage time.

The TPC of non-encapsulated vanillin was observed to decrease by about 35% when this compound
was stored at reduced pressure and room temperature, reaching the values of 15 µgGAE/mg after
15 days. The encapsulated vanillin stored at reduced pressure and room temperature exhibited a TPC
of 28 µgGAE/mg (Figure 4).
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Hence, TAC and TPC data demonstrate the potential of asolectin fibers to be used as antioxidant
systems as well as efficient matrices for the encapsulation of phenolic compounds. Cases of
preservation of TPC within electropsun fibers have been reported [53–55].

2.5. Stability of Phenolic Compounds Test under Storage by 1H-NMR

The composition of the electrospun asolectin fibers with encapsulated curcumin or vanillin
was analyzed using 1H-NMR spectroscopy. The chemical stability of vanillin and curcumin and
the retention of these encapsulated phenolic compounds in the fibers upon storage were monitored.
1H-NMR spectra of the fibers in DMSO-d6 solution were obtained after increasing storage times at
room temperature ranging from 1 day to 30 days (Figure 5). Figure 5a(i),b(i) shows the assigned
1H-NMR spectra of vanillin and curcumin as references. Figure 5a(ii),b(ii) shows the spectra for each
fiber after 1 day of storage. In the region 0.5–3 ppm, several peaks corresponding to the aliphatic tails
of the phospholipids can be seen. Highlighted in red are the peaks corresponding to the phenolic
compounds. After 30 days of storage (Figure 5a(iii),b(iii)), the spectra have not altered. This suggests
that not only are the encapsulated curcumin and vanillin chemically stable over the 30 days storage
time, but the concentration of encapsulated phenolic compounds does not decrease under the storage
conditions. This finding is in agreement with the total phenolic content data (TPC) measured at room
temperature and pressure (Figure 3), suggesting that asolectin fibers were effective matrices to prolong
the stability of vanillin and curcumin.
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2.6. In Vitro Release Study

The release profiles at 37 ◦C of vanillin and curcumin from asolectin microfibers are shown in
Figure 6. For both vanillin and curcumin, a steady increase in the release of the bioactives was observed
up to 240 min. At this time, the released amount of vanillin was 95% while the released amount of
curcumin was 70%. From 240 to 300 min, only a slight increase of the released bioactives was observed.

The lower percentage of released curcumin compared to vanillin could be attributed to its
hydrophobic nature. Similar curcumin release profiles showing a steady increase of curcumin released
from electrospun nanofibers, produced using chitosan/phospholipid [13], blends of amaranth protein
isolate (API)/pullulan [33] and PLGA copolymer solutions [56] have been reported. On the other
hand, a higher percentage of release (near 100%) of vanillin from almond gum/polyvinyl alcohol
(PVA) electrospun fibers has been observed in aqueous media, due to the higher solubility and higher
swelling degree of almond gum/PVA/vanillin nanofiber in distilled water [40].
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Figure 6. Cumulative release of vanillin and curcumin from phospholipid fibers into phosphate buffered
saline (PBS), pH = 7.6 (n = 3). The error bars in the figure represent the standard deviation (SD).

The release mechanism of the phenolic compounds from electrospun asolectin fibers was analyzed
using the Korsmeyer–Peppas model [57]. This model concerns the release of drugs from cylindrical
structures and predicts whether the release of the compound from a matrix follows Fickian diffusion,
through determination of the coefficient “n” estimated from linear regression of the log(Cumulative
Release) as a function of log(Time). The “n” determined from both release curves was above 0.45,
with a correlation value (R2) of 0.98 and 0.99 for vanillin and curcumin respectively, suggesting that
the release mechanism of both bioactives was mainly due to the swelling of the phospholipid fibers
that influenced the release of bioactives. Wongsasulak and co-authors [58] also reported that the
swelling of the matrix (electrospun polymers of zein, poly(ethylene oxide), and chitosan) triggered
the release of the bioactive (α-tocopherol) according to Korsmeyer–Peppas model. To confirm the
changes in morphology of phospholipid fibers after immersion in PBS, Environmental SEM (ESEM)
photographs were taken at different time points of immersion (Figure 7). After one hour in PBS, fibers
were observed to slightly increase their diameter as a result of the swelling of the matrix. At the end of
2 h, the progressive water absorption was observed (Figure 7c) resulting in the loss of fibril-like shape,
that was further observed at the end of 4 hours of immersion in PBS (Figure 7d). It is to be noted that
a previous study suggested that electrospun phospholipid scaffolds, made from lethicin solutions,
lack physical stability as a consequence of hydration and further breakdown of fibril-like structures in
the presence of moisture [59].

124



Molecules 2017, 22, 1708 10 of 16
Molecules 2017, 22, 1708 10 of 16 

 
 

Figure 7. Environmental SEM (ESEM) images of elestrospun asolectin microfiber fibers (a), showing 
its morphology after immersion in PBS for 1 h (b), 2 h (c) and 4 h (d). 

Yu and co-authors reported the fabrication of electropsun composite fibers made of 
polyvinylpyrrolidone (PVP) and soybean lecithin [27] and observed the collapse of composite fibers 
after contact with water within less than one minute as a result of changes in the 
hydrophilic/hydrophobic nature. Our system was observed to last longer which allowed the 
sustained release of encapsulated bioactives for 360 min (Figure 6). 

3. Materials and Methods 

3.1. Materials 

Asolectin from soybean (Sigma-Aldrich product nr: 11145, lot nr: BCB66221V) was used as 
received. It contains approximately lecithin (25–33%), cephalin and phosphatidylinositol, saturated 
fatty acids (24%), mono-unsaturated (14%) and poly-unsaturated fatty acids (62%). 
Methyl-4-(1-methylethenyl)-cyclohexene (limonene), isooctane, curcumin and vanillin were 
obtained from Sigma-Aldrich and used as received without further purification. 

3.2. Preparation of Electrospinning Solutions 

A total of 60% (wt/wt) asolectin phospholipid was dissolved in limonene and isooctane at room 
temperature and then, vanillin (3%, wt/v) or curcumin (0.5% wt/v) were added, respectively, and 
stirred for 15 min before electrospinning processing. Solutions of 60% (wt/wt) asolectin were also 
prepared in both limonene and isooctane without phenolic compounds. Isooctane and Limonene 
were selected as solvents due to their capability produce electrospun phospholipid fibers [11] and to 
dissolve curcumin and vanillin, respectively. 
  

(a) (b)

(c) (d)

Figure 7. Environmental SEM (ESEM) images of elestrospun asolectin microfiber fibers (a); showing its
morphology after immersion in PBS for 1 h (b); 2 h (c) and 4 h (d).

Yu and co-authors reported the fabrication of electropsun composite fibers made of
polyvinylpyrrolidone (PVP) and soybean lecithin [27] and observed the collapse of composite fibers after
contact with water within less than one minute as a result of changes in the hydrophilic/hydrophobic
nature. Our system was observed to last longer which allowed the sustained release of encapsulated
bioactives for 360 min (Figure 6).

3. Materials and Methods

3.1. Materials

Asolectin from soybean (Sigma-Aldrich product nr: 11145, lot nr: BCB66221V) was used as
received. It contains approximately lecithin (25–33%), cephalin and phosphatidylinositol, saturated
fatty acids (24%), mono-unsaturated (14%) and poly-unsaturated fatty acids (62%). Methyl-4-
(1-methylethenyl)-cyclohexene (limonene), isooctane, curcumin and vanillin were obtained from
Sigma-Aldrich and used as received without further purification.

3.2. Preparation of Electrospinning Solutions

A total of 60% (wt/wt) asolectin phospholipid was dissolved in limonene and isooctane at
room temperature and then, vanillin (3%, wt/v) or curcumin (0.5% wt/v) were added, respectively,
and stirred for 15 min before electrospinning processing. Solutions of 60% (wt/wt) asolectin were
also prepared in both limonene and isooctane without phenolic compounds. Isooctane and Limonene
were selected as solvents due to their capability produce electrospun phospholipid fibers [11] and to
dissolve curcumin and vanillin, respectively.
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3.3. Electrospinning Processing

The electrospinning setup included a high voltage generator (ES50P-10W, Gamma High Voltage
Research, Inc., Ormond Beach, FL, USA) to provide a voltage of 21 kV, and syringe pump (New Era
Pump Systems, Inc., Farmingdale, NJ, USA) to feed the solutions at a flow rate of 0.01 mL/min.
Phospholipids fibers were collected on a steel plate covered with aluminium foil placed at a distance
of 10 cm from the end of the needle. A blunt end stainless steel needle (Proto Advantage, Ancaster,
ON, Canada) with inner diameters between 0.8 mm to 0.4 mm was used. The electrospinning process
was carried out at ambient conditions.

3.4. Morphology

The morphology of the electrospun phospholipid, phospholipid/vanillin and phospholipid/
curcumin fibers was investigated using a Quanta FEG 3D scanning electron microscope (SEM). Samples
were attached on metal stubs with double-sided adhesive carbon tape and coated with 6 nm of gold
for better conductivity using a sputter coater (Leica Coater ACE 200). The average fiber diameter
was calculated using image J analysis software (National Institutes of Health, MD, USA) measured at
100 different points for each image. Changes in morphology of electrospun phospholipid fibers were
further monitored after contact in PBS by Environmental SEM (ESEM). Samples were mounted on
aluminium stubs and placed upside down immersed in PBS for 1, 2 and 4 h prior to the visualization
in the Quanta FEG 3D SEM.

3.5. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra in the transmission mode were recorded using a Perkin 124 Elmer Spectrum 100
spectrometer based on a Universal Attenuated Total Reflectance sensor 125 (UATR-FTIR). The infrared
peaks were identified using Spectrum™ 10 software using 1 %T peak threshold. Spectra were plotted
as percentage transmittance (%T) against wavenumber (cm−1).

3.6. Encapsulation Efficiency

The encapsulation efficiency of the phenolic compounds (vanillin and curcumin) in asolectin fibers
was determined by extracting the bioactives from the fibers using water and ethanol in a sonication
bath for 30 min prior to centrifugation at 4500 rpm for 15 min. The concentration of bioactives in
the supernatant was determined using a UV-Vis spectrophotometer (U-1500, Hitachi, Tokyo, Japan),
where absorbance of vanillin and curcumin were measured at wavelengths of 280 nm and 425 nm,
respectively. Standard curves for vanillin and curcumin were prepared with concentrations ranging
from 0–100 µg/mL. Encapsulation efficiency was calculated using the following Equation (1):

% EncapsulationEfficiency =
Phenolic compounds (encapsulated)

Phenolic compounds (total)
× 100 (1)

3.7. Total Antioxidant Capacity Assay (TAC)

Antioxidant capacities of phospholipid powder, vanillin powder, curcumin powder, phospholipid
fibers, phospholipid/vanillin fibers and phospholipid/curcumin fibers were evaluated by the method
of Jayaprakasha et al., 2006 [48]. Asolectin fibers (with and without phenolic compounds) were
stored at different pressures (ambient and vacuum) and temperatures (refrigerated 4 ◦C and room
temperature) and their TAC was evaluated after 1, 7 and 15 days storage. An amount of 300 µL of
diluted extracted solution prepared in methanol was added to an Eppendorf tube containing 3 mL
reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate).
The Eppendorf tubes were capped and incubated in a water bath at 95 ◦C for 90 min. Then, samples
were cooled to room temperature and the absorbance of each sample was measured at 695 nm against
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a blank (1 mL of reagent solution and the appropriate volume of the same solvent used for the sample).
Gallic acid was used as the reference.

3.8. Total Phenolic Content (TPC)

The total phenolic content of the stored samples at different pressures (ambient and vacuum)
and temperatures (refrigerated at 4 ◦C and room temperature) were determined via a modified
Folin–Ciocalteu method [51] for 1, 7, 15 and 45 days of their storage. Briefly, 0.3 mL of diluted extract
solution (5 mg/mL) was mixed with 0.6 mL of deionized water and 0.5 mL of Folin-Ciocalteu reagent in
a test tube and then 1.5 mL of 20% sodium carbonate aqueous solution was added and the volume was
made up to 10 mL with deionized water. The samples were incubated for 30 min at room temperature
in darkness and then absorbance measured at 760 nm using and UV–Vis spectrophotometer (U-1500,
Hitachi, Tokyo, Japan). The determination of the phenolic content was obtained by using gallic acid as
a standard.

3.9. Stability of Phenolic Compounds Test under Storage by 1H-NMR Spectroscopy

Asolectin, asolectin/vanillin and asolectin/curcumin fibers were stored in ambient conditions at
room temperature in the laboratory for 30 days. After 1, 15 and 30 days of storage, small samples of
fibers were analyzed by 1H-NMR spectroscopy (400 MHz NMR spectrometer, Bruker, Billerica, MA,
USA) at 298 K in order to compare the amount of the remaining phenolic compounds in the samples
during storage time. Samples for 1H-NMR spectroscopic analysis were prepared in DMSO-d6 at a
concentration of 10 mg/mL. The samples were alternatively sonicated and heated in closed vials with
a heat gun in order to dissolve the material. 1H-NMR spectra of vanillin and curcumin were recorded
as references.

3.10. In Vitro Release Study

The in vitro release of phenolic compounds from asolectin fibers was determined by UV–Vis
spectroscopy [13]. Briefly, asolectin fibers (15 mg) were included in dialysis bags (SpectraLab with a
MWCO 6–8 kDa) that were further sealed and placed into 20 mL phosphate buffer saline (pH~7.4)
in a test tube in a shaking water bath at 37 ◦C for 360 min. The 2-mL samples were collected at each
interval time point and replaced by fresh media (PBS, 2 mL). The amount of phenolic compounds
released in the supernatant was determined afterwards using a UV–Vis spectrophotometer (U-1500,
Hitachi, Tokyo, Japan) at optical wavelengths of 280 and 425 for vanillin and curcumin, respectively.
A calibration curve of phenolic compounds in phosphate buffer saline (pH~7.4) was constructed with a
concentration range from 0–100 µg/mL. The experiments were performed in triplicate and the results
were reported as average values ± standard deviation.

The mechanism of release was investigated following the Korsmeyer–Peppas model:

Mt
M∞

= ktn (2)

where Mt/M∞ is the fraction of drug released at time t, k is the rate constant and n is the release
exponent. If n ≤ 0.45, the release mechanism follows a Fickian diffusion and for 0.45 < n < 0.89 the
drug release follows a non-Fickian diffusion (anomalous transport) [35].

3.11. Statistical Analysis

Presented results are an average of at least three independent experiments and are presented as
mean ± standard deviation. The results were analyzed with one-way ANOVA using Fisher’s test in
Minitab software version 16 (Minitab Inc., State College, PA, USA). The significant differences between
samples were considered at a significance level of p ≤ 0.05.
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4. Conclusions

In this study, electrospun phospholipid (asolectin) microfibers were investigated as encapsulation
and antioxidant matrices for phenolic compounds, such as vanillin and curcumin. Asolectin fibers
were observed to have antioxidant properties. Such antioxidant properties were improved after the
encapsulation of the phenolic compounds, as observed from TAC and TPC assays. The antioxidant
capacity of curcumin/phospholipid and vanillin/phospholipid microfibers was observed to remain
stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient),
while the pristine non-encapsulated phenolic compounds decreased their TAC and TPC values.
Moreover, the phospholipid matrix permitted the release of both curcumin and vanillin upon
aqueous emersion, mainly due to the swelling of the phospholipid fibers that triggered the diffusion
of bioactives. The above studies confirm the efficacy of electrospun phospholipid microfibers as
encapsulation and antioxidant systems.
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Abstract: Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled 
particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was inves-
tigated and was observed to affect the rate of hydrogel formation and viscoelastic properties. A lower con-
centration of phospholipids (0.5 % wt/v) in the mixture, facilitates faster network formation as observed by 
Dynamic Light Scattering, with lower elastic modulus than the hydrogels formed with higher phospholipid 
content. The nano-porous structure of Ch/P hydrogels, with a diameter of 260 ± 20 nm, as observed by cryo-
scanning electron microscopy, facilitated the penetration of water and swelling. Cell studies revealed suit-
able biocompatibility of the Ch/P hydrogels that can be used within life sciences applications.

Keywords: biomaterials; carbohydrates; chitosan; colloids; EUCHIS-12; hydrogel; ICCC-13; phospholipids; 
self-assembly.

Introduction
Hydrogels are three-dimensional (3D) structures made of chemical or physical crosslinked polymeric 
 networks with a high ability to absorb and retain large amounts of water [1–5]. Hydrogel properties such as 
soft and rubbery consistency and diffusive transport characteristics [6], gives them the possibility to be used 
as scaffolds for cell growth and proliferation [1]. In addition, some hydrogels have mucoadhesive and bioad-
hesive characteristics [2]. Moreover, hydrogels offer the advantage of flexibility to deform and conform to the 
shape they are confined to, which makes them good candidates to be used in a broad range of food [7] and 
biomedical applications [1–5].

Among other natural derived polymers, chitosan(s) (polysaccharides made of glucosamine and N-acetyl 
glucosamine units), exhibit a set of remarkable biological properties such as biocompatibility, biodegra-
dability, hemostatic activity, antibacterial, antimycotic and anticoagulant activity [8–11]. Furthermore, the 
degradation products of chitosan have been shown to be nontoxic, non-immunogenic and noncarcinogenic 
[12]. Consequently chitosan(s) have been widely formulated into several structures such as fibers, films, 
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particles and hydrogels and used in a wide range of biomedical applications such as drug delivery and tissue 
 engineering [1, 13, 14]. Chitosan(s) physical hydrogels can be produced via non-covalent interactions e.g. 
electrostatic, hydrophobic, and hydrogen bonding forces between polymer chains [1]. The properties of phys-
ical hydrogels can be easily tuned by adjusting the concentration and nature of the components. Furthermore 
these hydrogels are prepared often in mild conditions (as they don’t require toxic covalent crosslinkers), 
making their use safe for medical applications. Examples of chitosan physical hydrogels are numerous and 
have been well described elsewhere [1, 15].

Phospholipids, the self-assembling molecular building blocks of cell membranes, constituted by a 
charged polar head group and a hydrophobic tail, have been largely explored to produce nano-bio structures 
in the shape of nanoparticles, capsules/liposomes, emulsions [12] and organogels [16]. Organogels, the 3-D 
networks of entangled reverse cylindrical micelles and jelly- like phases, immobilizing macroscopic external 
organic phases [17], have been developed by using lecithins as building blocks [16].

The binding of chitosan to phospholipids is a phenomenon known to be caused by the destabilization 
of the phospholipid membrane bilayer when exposed to chitosans [18, 19] as a consequence of the binding 
of the negatively charged phosphate groups in phospholipids to chitosan(s) [20]. Formulation of hybrid 
stable films of chitosan-phospholipids for the release of paclitaxel [21] and docetaxel [22, 23], assembled 
nanoparticles [24, 25] and nanocapsules/nanoparticles to release capsaicin [26], have been reported. In addi-
tion, the biocompatibility of chitosans/phospholipids systems [12, 27] has been confirmed, highlighting the 
benefits of using these components to produce nanostructures to be used within life sciences. Recently our 
group explored the potential of combining chitosan with phospholipids to produce electrospun chitosan/
phospholipids hybrids nanofibers for applications in drug delivery [28], demonstrating the potential of com-
bining both components to develop functional chitosan/phospholipids hybrids. However, to the best of our 
knowledge, the co-assembly of chitosan and phospholipids to fabricate hydrogels has never been studied. 
Therefore, this study aimed to develop hybrid chitosan/phospholipids hydrogels and investigate their phys-
icochemical properties and biocompatibility.

Materials and methods

Materials

Chitosan, with Molecular weight (Mw) of 385 kDa, Degree of Acetilation (DA) of 26 % was obtained from 
GILLET CHITOSAN (product 111). Asolectin from soybean (containing approximately 25–33 % of lecithin, 
cephalin and phosphatidylinositol, 24 % saturated fatty acids, 14 % mono-unsaturated and 62 % poly-unsat-
urated fatty acids) and chemicals were obtained from Sigma-Aldrich, unless otherwise indicated. All of the 
consumable were used as received.

Fabrication of hybrid chitosan/phospholipids hydrogels

Asolectin was suspended in lactic acid (2 M) at concentrations of 0.5, 1 and 2 % wt/v. Solutions of asolectin 
were centrifuged to remove undissolved components. Chitosan was added to asolectin solutions in order to 
reach a concentration of 2 % wt/v. Samples were mixed until hydrogel formation took place (for about 4 min) 
and named as Ch/P0.5, Ch/P1 and Ch/P2, for phospholipids concentrations of 0.5, 1 and 2 % wt/v, respectively.

1H nuclear magnetic resonance (NMR) spectroscopy

1H NMR spectra were recorded on an 800 MHz Bruker (Fällanden, Switzerland) Avance spectrometer equipped 
with a TCI Z-gradient CryoProbe and an 18.7 T magnet (Oxford Magnet Technology, Oxford, UK) and processed 
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with Topspin 3.0 (Bruker). The samples were prepared in the same manner as described for hydrogel preparation 
in D2O. To facilitate the transfer of the hydrogel to the NMR tubes, the samples were warmed with a heat gun.

Dynamic light scatering (DLS) measurements

ζ-Potential and size measurements were performed using a Zetasizer NanoZS Instrument (ZEN 3600, Malvern 
Instruments, Worcestershire, UK). Prior the analyzes, phospholipids and chitosan/phospholipid solutions 
were prepared with the same concentrations used in the hydrogels. The solutions were filtered using a 
pyrogen free 0.45 mm disposable membrane filter (Schleicher and Schuell Bioscience, Germany). The inten-
sity correlation function (ICF) was recorded at a fixed laser position (3 mm) and laser intensity (attenuator 7) 
was optimized prior to the measurements. The ICF was recorded over 100 seconds at 25 °C. The experiments 
were performed in three replicates. For data analysis, the ICF was normalized.

Rheological analysis

The viscoelastic properties (elastic (G′) and viscous modulus (G′′)) of hydrogel samples were examined by 
low amplitude oscillatory measurements using a Thermo Scientific™ Haake Mars II Rheometer System. A 
serrated PP 60Ti (plate–plate geometry) with a gap of 1 mm, at 25 °C was utilized. The sample was loaded on 
the rheometer plate and frequency sweep using a constant shear stress of 1 Pa (within the linear viscoelastic 
region) and stress sweep (at a frequency of 1 Hz) were carried out. The samples were covered with silicone oil 
to avoid evaporation. All experiments were prepared in triplicate for each sample.

Hydrogel morphology

The morphology of the hydrogels was evaluated by cryo-scanning electron microscopy (cryo-SEM). The cross-
sections of the hydrogel were analyzed, applying a cryogenic technique to fracture the samples, before sput-
ter-coating with gold prior the visualization on a scanning electron microscope with cryo-function coupled 
(Quanta FEG 3D SEM).

Water uptake

The amount of water uptake (swelling) was determined by immersion of the samples in PBS and incubation 
at 37 oC over a period of 1, 3, 6, 24 and 72 h in dynamic conditions. After each time point, samples were taken 
out of the solution, rinsed with distilled water, blotted on filter paper to remove surface water, and immedi-
ately weighed (mt, mass of wet sample). Afterwards, samples were dried until constant weight (mf) and the 
percentage of water uptake was determined following equation 1:

 
WU (%) 100mt mf

mf
 −= ×    

(1)

Three replicates were performed for each sample [N = 3].

Weight loss

The stability of these hydrogels was evaluated thought the determinations of weight loss (WL). Samples were 
weighted, immersed in PBS and incubated at 37 oC under dynamic conditions during 1, 3, 6, 24 and 72 h. After 
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each time point, samples were taken out of the solution, rinsed with distilled water, blotted on filter paper (to 
remove surface water) and then dried until constant weight in order to determine the percentages of weight 
loss following equation:

 
0WL (%) 100

0
mf m
m

 −= ×    
(2)

where mf is the final mass after immersion and m0 is the initial mass prior the immersion in PBS. Three rep-
licates were performed for each sample [N = 3].

Biological assessment. LDH assay

The assay was performed as previously reported [29]. Briefly, hydrogels were placed with a spatula to the 
center of a well of a 12-well plate. The covered area was in the range of 0.7 cm2 corresponding to 20 % of the 
total growth area. Prior to the LDH analysis 0.15 × 106 mouse fibroblasts (L929) were seeded into each well and 
cultivated for 24 h and 48 h. L929 cells were maintained in RPMI 1640 medium supplemented with 10 % fetal 
calf serum (FCS), 1 % L-glutamine and 1 % penicillin/streptomycin. LDH was measured in the supernatants 
of cells using a cytotoxicity test kit (Roche Diagnostics, Mannheim, Germany) according to the manufacture’s 
protocol. Fluorescence microscopy and cell cycle analysis. L929 cells were fixed with ice-cold methanol for 
30 min, washed with HEPES-buffered Ringer solution (140 mM NaCl, 5 mM KCl, 1 mM MgCl2; 1 mM CaCl2, 5 mM 
glucose and 10 mM HEPES) and blocked for 1 h at room temperature with 2 % bovine serum albumin (BSA) 
dissolved in HEPES-buffered Ringer solution, supplemented with 0.3 % Triton X-100. F-actin was stained for 
1 h with TRITC-palloidin (Sigma-Aldrich, St. Louis, US) applying a 1:2000 dilution in HEPES-buffered Ringer 
solution. Nuclei were stained for 10 min with 4,6-diamidino-2-phenylindole (DAPI) diluted in HEPES-buffered 
Ringer solution (0.1 μg mL−1). Fluorescence microscopy was employed using a Zeiss Z.1 observer (Zeiss, Jena, 
Germany) using a 20× objective. As basis for the cell cycle analysis DNA concentration per cell was analyzed 
using image J [30].

Results and discussion

NMR spectroscopy

The 1H-NMR spectrum of asolectin in lactic acid (2 M) was recorded at three different concentrations: 0.5, 
1  and 2 % wt/v (Fig. 1). Aside from the dilution factor, the spectra were essentially identical and each 

a

b

c

5 4 2 1 ppm3

2 % wt

1 % wt

0.5 % wt

Fig. 1: 1H-NMR spectra (800 MHz, 323 K) of asolectin/ lactic acid (2 M) in D2O at varying concentrations: (a) 2 % wt/v; 
(b) 1 % wt/v and (c) 0.5 % wt/v.
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showed broad signals for the hydrophobic tails of the phospholipids. When the phospholipids were present 
as monomers in solution, sharp signals with clear splitting patterns corresponding to each of the protons 
on the hydrocarbon tails of the phospholipids could be expected. The broad peaks suggest that instead the 
phospholipids have self-assembled into supramolecular particles. That the spectra are essentially identi-
cal indicates that the concentration of 0.5 % wt/v of asolectin in lactic acid solution is above the critical 
aggregation concentration and that the particles have similar structures within the concentration range 
studied.

The hydrogel and its individual constituent components were each analyzed using 1H-NMR spectros-
copy (Fig. 2). Figure 2a shows the 1H NMR spectrum of the 2 M lactic acid solution used to prepare the 
hydrogel. Both free D,L-lactic acid and D,L-lactic acid oligomers, which form reversibly in aqueous solu-
tion via an ester condensation reaction, were identified [31]. Figure 2b shows the spectrum of chitosan 
(0.5 % wt/v) in the lactic acid solution. The signals for chitosan are identifiable, but broad, most likely 
because this large polymer has reduced mobility in the solution, which leads to line broadening [32]. In 
the presence of chitosan, several signals from the lactic acid broaden and shift upfield. This is most likely 
a consequence of the proton transfer from the carboxylic acid of lactic acid to the amines on the chitosan 
polymer and a consequent, electrostatic interaction between the positively charged polymer and the neg-
atively charged lactate counterions. The signals that shift and broaden correspond to protons adjacent 
to the carboxylate groups. Figure 2c shows the spectrum of a solution of asolectin (2 % wt/v) and lactic 
acid (2 M). As asolectin is a mixture of different phospholipids, the 1H-NMR spectrum is complex and no 
attempt was made to assign all the signals. It is possible, however, to identify the broadened signals due 
to the aliphatic protons in the hydrophobic tails of the phospholipids (colored green). These so broad 
signals are an indication that the phospholipids self-assemble in aqueous solution, presumably due to 
the hydrophobic effect.

a

b

c

d

(ppm)

Fig. 2: 1H-NMR spectra of (800 MHz, 323 K) of the hydrogel and its individual components in D2O: (a) 2 M lactic acid; 
(b)  chitosan (0.5 % wt/v) in 1 M lactic acid (the spectrum is amplified 2 times); (c) asolectin (2 % wt/v in 2 M lactic acid; and 
(d) the hydrogel formed with 2 % wt/v chitosan, 2 % wt asolectin and 2 M lactic acid.
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In the NMR spectrum of the hydrogel (Fig. 2d) it is possible to clearly identify broad signals due to the 
chitosan and lactic acid components. However, the signals due to the hydrophobic tails of the asolectin com-
ponent are conspicuously absent. Signals for gelators frequently become invisible in 1H-NMR spectroscopy 
upon hydrogel formation due to extensive line broadening [33]. Notably the chitosan and lactic acid signals 
are still visible which suggests these components, on the other hand, have sufficient thermal motion in the 
hydrogel to provide the 1H NMR spectrum. The residual water signal at 4.5 ppm is also broadened in the spec-
trum of the hydrogel, which indicates that the water molecules are also part of the gel assembly, as expected.

DLS

DLS analysis suggests the presence of self-assembled asolectin particles in solutions of lactic acid (2 M), as 
observed using NMR spectroscopy (Fig. 1). Increasing the concentration of phospholipid leads to a decrease 
of ζ-potential (Fig. 3a) and an increase in average diameter (Fig. 3b). The ζ-potential is related to the stabil-
ity of charged particles in suspension [34]. The greater value of the ζ-potential (−48.2 ± 1.5 mV) obtained at 
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Fig. 3: The effect of the concentration of phospholipids on (a) zeta-potential, (b) d-particle size and (c) particle size distribution 
of self-assembled phospholipid nanoparticles at concentrations of 0.5, 1 and 2 % wt/v.
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lower concentrations of phospholipids (Fig. 3a) might be related with the higher mobility of the phospholipid 
chains and thus favorable intermolecular interactions between them, leading to the formation of particles 
with a small average diameter of 185 ± 4.5 nm (Fig. 3b). Small and co-workers observed by DLS studies that 
the size of the lipid particles is proportional to the phospholipid concentration [35]. Furthermore, Chuah and 
co-workers [25] observed a similar trend: for higher concentrations of phospholipid molecules, the forma-
tion of larger and less stable particles was observed. At the highest concentration of phospholipid (2 % wt/v) 
the ζ-potential was found to be of −38.9 ± 0.3 mV (Fig. 3a) and the particle size was found to be 220 ± 18 nm 
(Fig. 3b). DLS analysis shows a narrow size distribution, suggesting that the concentration of phospholipid 
doesn’t affect significantly its dispersity in solution (Fig. 3c).

DLS was also used to analyze the dynamic processes occurring in dispersions using the intensity 
 correlation function (ICF), g(2) − 1 [36]. Figure 4a shows a similar decay of ICF for all the tested phospholipid 
solutions in lactic acid, corresponding to the population of vesicles in solution. However after the addition of 
chitosan to each phospholipid solution, the initial intensity of ICF (s) decreased and a noisy/oscillatory signal 
appeared for longer delay times (Fig. 4). The decrease of ICF initial intensity has been correlated with the 
crosslinking of polymeric chains during hydrogel formation [36]. The fluctuations observed after the decay of 
ICF are related to the onset time of gelation [36, 37]. The data presented in Fig. 4 clearly demonstrate that the 
amount of phospholipid affects hydrogel formation. The initial decrease of ICF intensity (from phospholipid 
solution to hydrogel) was found to be more accentuated for Ch/P0.5 hybrid hydrogel (Fig. 4b). For this ratio 
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Fig. 4: Development of the intensity correlation function over time of different concentrations of (a) phospholipids; after the 
addition of chitosan and hydrogel formation using (b) 0.5 % wt/v, (c) 1 % wt/v and (d) 2 % wt/v of phospholipids.
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the ICF intensity dropped from 0.99 to 0.56, while for Ch/P1 and Ch/P2 a decrease in the initial ICF intensity 
was observed from 0.99 to 0.79 and 0.93, respectively. This data suggests that the rate of gelation tend to 
decrease with increasing phospholipid content, as a result of increased viscosity and decreased mobility 
of the molecules in solution. The decrease of g(2) − 1, when Ƭ tends to infinite (∞) was observed as result of a 
decrease of ergodicity and hydrogelation [38, 39].

Rheology

The viscoelastic properties of the Ch/P hybrid hydrogels were studied by oscillatory rheology as a function of 
frequency and shear stress (Fig. 5a and b). Within the frequency range tested, the solid-like response (G′), is 
dominant over the viscous-flow (G″), with high frequency dependence mostly for elastic modulus. Moreover, 
the tan δ value (tan δ = G″/G′) provides a convenient index of the proportion of elastic-like character. The 
tan δ value at the frequency of ~ 1 Hz is 0.277, 0.371 and 0.436 for Ch/P2, Ch/P1 and CH/P0.5 hydrogels, respec-
tively. For other biopolymer hydrocolloid hydrogels such as gelatin, agarose, and carrageenan tan δ value was 
found to range from about 0.02 to 0.07 [40].

The elastic and loss modulus followed the power law relation G′ or G″ (ω) = K ω A at the frequency range 
of 0.1 – 30 Hz and it can be used to describe the behavior of the G′ and G″ in a comparable manner (Table 1). 
For hydrogels, the plots of log G′ and log G″ vs. log ω have zero slope, whereas for weak elastic gels, the plots 
have positive slopes and the values of K′ are higher than those of K″ with the frequency dependency, as found 
for the Ch/P hydrogels.

The response to increasing amplitude of oscillation is shown in Fig. 5b. The elastic and loss modulus 
remain independent of deformation at imposed strains up to ~ 100 Pa, with the samples effectively flowing 
beyond that. This dependence of shear moduli on oscillatory strain is characteristic of a weak elastic gel.
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Fig. 5: Elastic (G′) and viscous modulus (G″) of chitosan/phospholipids hybrid hydrogels as a function of frequency (a) and 
shear stress (b).

Table 1: Parameters from the power law relation G(ω) = K ωA determined from experimentally measured storage modulus and 
loss modulus for Ch/P hydrogels with different concentrations of phospholipids.

Sample designation  K′  A′ (Pa s)  K″  A″ (Pa s)

Ch/P0.5   136.8  0.2669  60.0  0.1419
Ch/P1   158.5  0.2239  57.8  0.1216
Ch/P2   229.7  0.1717  63.5  0.1143

K′ and A′ refer to elastic modulus; K″ and A″ refer to viscous modulus.
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Cryo-scanning electron microscopy (Cryo-SEM)

Figure 6, shows the internal microstructure of Ch/P hybrid hydrogels composed of a hierarchical porous 
structures, with porous diameter of 260 ± 20 nm. The different ratios of Ch/P provided similar morphology. 
Mertins and Dimova [20] have also observed that the adsorption of chitosan on the phospholipid membrane 
leads to the disruption of supramolecular phospholipids vesicles and pore formation. By phase contrast 
microscopy these authors observed the formation of microscopic pores during vesicle collapse and slower 
restructuring into microparticles resembling microgels [20].

Swelling

The swelling profile of the Ch/P hybrids over time is illustrated in the Fig. 7. Overall, it can be observed that 
the amount of phospholipid mediates the swelling capability of the Ch/P hybrid hydrogels. After 1 h, Ch/P0.5 
absorbs about 0.62 that increased to 1.86 after 6 h in contact with PBS at 37 °C. Between 6 and 24 h the water 
uptake didn’t change significantly and at the end of 72 h the swelling  % was about 2.76. A Similar profile was 
observed for Ch/P1 and Ch/P2 hybrid hydrogels. The relatively rapid initial swelling (between 1 and 6 h) is 
mainly caused by the porous structure (Fig. 6) which facilitated the permeation of the PBS inside the hydro-
gels [41, 42]. The increase of phospholipid content tends to increase the swelling capability of these hydrogels 
due to the hydrophilic nature of asolectin. This feature might facilitate the diffusion of water through the 
inner porous existent within the hydrogel nano-micro structure and thus facilitate water absorption.

a b c

Fig. 6: Cyo-SEM images of the cross sections of Ch/P hybrid hydrogels, showing its internal porous micro (a) and 
 nanostructures (b) and (c) at different magnifications.
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The stability of the Ch/P hybrid hydrogels was investigated by determination of their losses of weight. 
With the increase of the incubation time of the hydrogels in PBS, an increase in the percentage of the weight 
loss was observed. Thus, Ch/P0.5 lost about 4 % of its weight after 1 h of incubation within PBS and about 5 % 
after 24 h. At the end of the 72 h these hydrogels lost about 6.68 % of their weight. Comparable trends were 
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Fig. 8: Co-cultivation of chitosan/phospolipid hydrogels with fibroblasts (L929). (a) Concentration of lactate dehydrogenase 
(LDH) measured in the supernatants of cell cultivated for 24 h and 48 h in the presence or absence of hydrogels. Controls (co) 
were set to 0 %, cells treated with 0.1 % triton-X100 inducing a maximal release of LDH were set to 100 %. (N = 3); (b) Fluores-
cence microscopic analysis of cells co-cultivate with hydrogels that were on glass cover slips. Cells seeded on glass cover slips 
without hydrogel were used as control (co). F-actin was stained with TRITC-labeled phalloidin (red), DNA of cell nuclei were 
stained with DAPI (blue). Scale bar corresponds to 20 μm; (c) DNA staining with DAPI was used to analyze the cell cycle status of 
L929 cells. (> 300 nuclei were analyzed of three independent experiments).
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observed for the other hydrogel formulations (Ch/P1 and Ch/P2). Ch/P3 hydrogels lost about 1.4 ± 0.1 % and 
Ch/P1 lost about 1.2 ± 0.2 % more of their weigh compared to Ch/P0.5.

Biological assessment

Fibroblasts were co-cultivated with the phospholipid/chitosan hydrogels with different contents of phos-
pholipids to investigate their biological compatibility. Potential cytotoxicity was accessed by measuring, 
the amount of lactate dehydrogenase (LDH) released into the supernatants 24 h and 48 h after seeding the 
cells. In comparison to the control cells (cultivation on tissue culture treated polystyrene), increased levels 
of LDH released were detected in the supernatants of the cells co-cultivated with hydrogels. However, differ-
ences between the groups were not statistically significant (Fig. 8a). To further supplement these findings, 
immunofluorescence staining of the cells was analyzed by fluorescence microscopy (Fig. 8b). In preliminary 
experiments it was found that cells barely attached directly to the hydrogels but settle around the hydrogels. 
Therefore our examination was focused on areas next to the hydrogels. In agreement with the LDH measure-
ments, no evident differences in cell morphologies or mitosis rate were found. These results were further 
confirmed by a cell cycle analysis indicating no negative impact of the hydrogels on the proliferative potential 
of L929 cells (Fig. 8c).

Conclusions
Asolectin phospholipid in 2  M lactic acid produced supramolecular particles with ζ-potential and size 
depending on the phospholipid concentration. The addition of chitosan (Mw 385 KDa, DA 26 %) to phos-
pholipid self-assembled particles in lactic acid formed stable hybrid hydrogels. The concentration of phos-
pholipid particles affected the rate of the hydrogel formation and on their viscoelastic properties. The lower 
concentration of phospholipids (0.5 % wt/v) facilitates faster network formation, with lower elastic modulus 
than the gels formed with higher phospholipid content. The internal structure of Ch/P hybrid hydrogels was 
found to involve nanoporous sections which in turn facilitated the penetration of water and swelling. Cell 
studies revealed that the cells didn’t attach to the hydrogels, however they could perform their metabolic 
activity suggesting that these hybrid chitosan/phospholipids hybrid hydrogels have suitable biocompatibility 
to be used in life scienses applications.
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4. Conclusions  

In this PhD thesis, electrospun nano-microfibers of polysaccharides (xanthan gum, chitosan) and 

phospholipids were investigated as carriers for the encapsulation and release of phenolic 

bioactive compounds. These functional nano-microcarriers provide a sustained controlled 

released of the phenolic compounds (Papers I-V), with improved bioavailability in the GI tract 

(Papers II, IV), and an increased stability of the phenolic bioactives (with respect to temperature, 

oxygen, light and pressure) (Paper V).  

One of the benefits of utilizing polysaccharides and phospholipids is their inherent 

biocompatibility. The biocompatibility of electrospun xanthan and xanthan-chitosan nanofibers 

was confirmed by in vitro cell studies. In particular, the exposure of Caco-2 cell monolayers to 

xanthan-chitosan-curcumin nanofibers resulted in a cell viability of ~80%. Another advantage of 

using biopolymers is their natural ability to interact with biological systems. The electrospun 

xanthan and xanthan-chitosan nanofibers interacted with Caco-2 cells by inhibiting the efflux 

transporters and opening the tight junctions. Consequently, an enhancement in the transepithelial 

permeability of the bioactive phenolic compounds was demonstrated, confirming the potential to 

utilize these nano-microcarriers to improve the poor bioavailability of phenolic compounds.  

The findings in this PhD thesis expanded the current scientific knowledge on the development 

and utilization of electrospun nano-microfibers of polysaccharides (xanthan gum, chitosan) and 

phospholipids as novel nano-microdelivery systems of bioactive phenolic compounds, for a 

range of new food and pharmaceutical applications.  
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