

Production of steviol glycosides in recombinant hosts

Robertsen, Helene Lunde; Møller-Hansen, Iben; Takos, Adam Matthew; Hallwyl, Swee Chuang Lim; Ambri, Francesca; Quiros Asensio, Manuel; Mikkelsen, Michael Dalgaard; Houghton-Larsen, Jens; Douchin, Veronique; Dyekjær, Jane Dannow; Carlsen, Simon; Rasmussen, Nina Nicoline; Hansen, Esben Halkjaer

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Robertsen, H. L., Møller-Hansen, I., Takos, A. M., Hallwyl, S. C. L., Ambri, F., Quiros Asensio, M., ... Hansen, E. H. (2016). IPC No. A23L27/36; C07H15/256. Production of steviol glycosides in recombinant hosts (Patent No. WO2016038095.)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

WIPOLPCT

(43) International Publication Date 17 March 2016 (17.03.2016)

- (51) International Patent Classification: A23L 1/236 (2006.01)
- (21) International Application Number:

PCT/EP20 15/070620

(22) International Filing Date: \$>September 2015 (09.09.2015)

(25) Filing Language: English

(26) Publication Language: English

- (30)
 Priority Data:
 US

 62/048,178
 9 September 2014 (09.09.2014)
 US

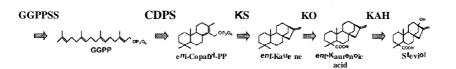
 62/103,547
 14 January 2015 (14.01.2015)
 US

 62/1 17,396
 17 February 2015 (17.02.2015)
 US

 62/148,585
 16 April 2015 (16.04.2015)
 US
- (71) Applicant: EVOLVA SA [CH/CH]; Duggingerstrasse 23, 4153 Reinach (CH).
- (72) Inventors; and
- (71)Applicants : ROBERTSEN, Helene Lunde [DK/DK]; Kogle Alle 6, DK-2970 Horsholm (DK). ANDERSEN, Iben Nordmark [DK/DK]; Krogholmgardsvej 93, DK-2950 Vedbaek (DK). TAKOS, Adam Matthew [AU/DK]; Lyshojgardsvej 85, 3 mf, DK-2500 Valby (DK). HALL-WYL, Swee Chuang Lim [MY/DK]; Amalieparken 87, 4-4, DK-2665 Vallensbaek Strand (DK). AMBRI, [IT/DK]; Brodeskovparken 57, DK-3400 Francesca Hillerod (DK). ASENSIO, Manuel Quiros [ES/DK]; Gyngemose Parkvej 2A, st tv, DK-2860 Soborg (DK).
- (72) Inventors: MIKKELSEN, Michael Dalgaard; Bregnevej
 1, DK-3500 Vaerlose (DK). HOUGHTON-LARSEN,
 Jens; Grondalsvej
 13, DK-3460 Birkerod (DK).
 DOUCHIN, Veronique; Aurikelvej
 2-4th, DK-2000 Frederiksberg (DK). DYEKJAER, Jane Dannow; J.A.

(10) International Publication Number WO 2016/038095 A2

Schwartz Gade 34, DK-2100 Copenhagen (DK). CARLSEN, Simon; Heimdalsgade 15, 2nd, DK-2200 Copenhagen (DK). RASMUSSEN, Nina Nicoline; Glimvej 29, DK-2650 Hvidovre (DK). HANSEN, Esben Halkjaer; Howitzvej 20B 2, DK-2000 Frederiksberg (DK).


- (74) Agent: SMAGGASGALE, Gillian Helen; 55 Drury Lane, London WC2B 5SQ (GB).
- (81) Designated States (unless otherwise indicated, for every kind *f* national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind & regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: PRODUCTION OF STEVIOL GLYCOSIDES IN RECOMBINANT HOSTS

Figure 1

(57) Abstract: The invention relates to recombinant microorganisms and methods for producing steviol glycosides and steviol glycoside precursors.

WO 2016/038095 A2

PRODUCTION OF STEVIOL GLYCOSIDES IN RECOMBINANT HOSTS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This disclosure relates to recombinant production of steviol glycosides and steviol glycoside precursors in recombinant hosts. In particular, this disclosure relates to production of steviol glycosides comprising steviol-13-O-glucoside (13-SMG), steviol-1,2-bioside, steviol-1,3-bioside, steviol-19-O-glucoside (19-SMG), stevioside, 1,3-stevioside, rubusoside, Rebaudioside A (RebA), Rebaudioside B (RebB), Rebaudioside C (RebC), Rebaudioside D (RebD), Rebaudioside E (RebE), Rebaudioside F (RebF), Rebaudioside M (RebM), Rebaudioside Q (RebQ), Rebaudioside I (RebI), dulcoside A, or isomers thereof in recombinant hosts.

Description of Related Art

[0001] Sweeteners are well known as ingredients used most commonly in the food, beverage, or confectionary industries. The sweetener can either be incorporated into a final food product during production or for stand-alone use, when appropriately diluted, as a tabletop sweetener or an at-home replacement for sugars in baking. Sweeteners include natural sweeteners such as sucrose, high fructose com syrup, molasses, maple syrup, and honey and artificial sweeteners such as aspartame, saccharine, and sucralose. Stevia extract is a natural sweetener that can be isolated and extracted from a perennial shrub, *Stevia rebaudiana*. Stevia is commonly grown in South America and Asia for commercial production of stevia extract. Stevia extract, purified to various degrees, is used commercially as a high intensity sweetener in foods and in blends or alone as a tabletop sweetener.

[0002] Chemical structures for several steviol glycosides are shown in Figure 1, including the diterpene steviol and various steviol glycosides. Extracts of the Stevia plant generally comprise steviol glycosides that contribute to the sweet flavor, although the amount of each steviol glycoside often varies, *inter alia,* among different production batches.

[0002] As recovery and purification of steviol glycosides from the Stevia plant have proven to be labor intensive and inefficient, there remains a need for a recombinant production system that can accumulate high yields of desired steviol glycosides, such as RebD and RebM. There

also remains a need for improved production of steviol glycosides in recombinant hosts for commercial uses.

SUMMARY OF THE INVENTION

[0003] it is against the above background that the present invention provides certain advantages and advancements over the prior art.

[0004] Although this invention disclosed herein is not limited to specific advantages or functionalities, the invention provides a recombinant host comprising one or more of:

- (a) a gene encoding an ent-kaurene oxidase (KO) polypeptide;
- (b) a gene encoding a cytochrome P450 reductase (CPR) polypeptide; and/or
- (c) a gene encoding an ent-kaurenoic acid hydroxylase (KAH) polypeptide;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

[0005] The invention also provides a recombinant host comprising:

- (a) a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide;
- (b) a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide;
- (c) a gene encoding an ent-kaurene synthase (KS) polypeptide
- (d) a gene encoding an ent-kaurene oxidase (KO) polypeptide;
- (e) a gene encoding a cytochrome P450 reductase (CPR) polypeptide; and
- (f) a gene encoding an ent-kaurenoic acid hydroxylase (KAH) polypeptide;wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing stevioi.

[0006] In one aspect of the recombinant hosts disclosed herein,

(a) the KO polypeptide comprises a KO polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:72 or SEQ ID NO:75; 65% identity to an amino acid sequence set forth in SEQ ID NO:54; at least 70% identity to an amino acid sequence set forth in SED ID NO: 70, SEQ ID NO:71, or SEQ ID NO:79; at least 40% identity to an amino acid sequence set forth in SEQ ID NO:77; or at least 50% identity to an amino acid sequence set forth in SEQ ID NO:78;

- (b) the CPR polypeptide comprises a CPR polypeptide having at least 70% identity to an amino acid sequences set forth in SEQ ID NO:69, SEQ ID NO:74, SEQ ID N0.76, or SEQ ID NO:87; at least 80% identity to an amino acid sequence set forth in SEQ ID NO;73; at least 85% identity to an amino acid sequence set forth in SEQ ID NO:22; at least 65% identity to an amino acid sequence set forth in SEQ ID NO:28; or at least 50% identity to an amino acid sequence set forth in SEQ ID NO:28; or at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98; and/or
- (c) the KAH polypeptide comprises a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; at least 50% identity to an amino acid sequence set forth in SEQ ID NO:91; or at least 60% identity to an amino acid sequence set forth in SEQ ID NO:68.
- [0007] The invention further provides a recombinant host comprising one or more of:
 - (a) a gene encoding a KO polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:75;
 - (b) a gene encoding a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; and/or
 - a gene encoding a CPR polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

- [0008] The invention further provides a recombinant host comprising one or more of:
 - (a) a gene encoding a KO polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:70;
 - (b) a gene encoding a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; and/or
 - (c) a gene encoding a CPR polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

[0009] In one aspect of the recombinant hosts disclosed herein, the host further comprises a gene encoding a KO polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:54.

[001 0] In another aspect of the recombinant hosts disclosed herein, the recombinant host further comprises a gene encoding a KAH polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:68.

[0011] In another aspect of the recombinant hosts disclosed herein, the recombinant host further comprises a gene encoding a KO polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:79,

[0012] In one aspect of the recombinant hosts disclosed herein, the host further comprises one or more of:

- (a) a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide;
- (b) a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide; and/or
- (c) a gene encoding an ent-kaurene synthase (KS) polypeptide;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

[0013] In some aspects of the recombinant hosts disclosed herein,

- the GGPPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:49;
- (b) the CDPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:37; and/or
- (c) the KS polypeptide comprises a polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:6.

[0014] In one aspect of the recombinant hosts disclosed herein, the recombinant host further comprises a gene encoding an endoplasmic reticulum membrane polypeptide.

[0015] In another aspect of the recombinant hosts disclosed herein, the endoplasmic reticulum membrane polypeptide comprises an Inheritance of cortical ER protein 2 (ICE2)

polypeptide having at least 50% identity to the amino acid sequence set forth in SEQ ID NO:1 14.

[0016] In one aspect of the recombinant host disclosed herein, the KO polypeptide is a fusion construct.

[0017] In another aspect, the fusion construct comprises a polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:118 or SEQ ID NO:120.

[0018] In another aspect, the fusion construct has at least 50% identity to an amino acid sequence set forth in SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:104, SEQ ID NO:106, SEQ ID NO:108, SEQ ID NO:1 10, or SEQ ID NO:1 12.

[0019] in one aspect of the recombinant hosts disclosed herein, the host further comprises one or more of:

- (a) a gene encoding a UGT85C polypeptide;
- (b) a gene encoding a UGT76G polypeptide;
- (c) a gene encoding a UGT74G1 polypeptide;
- (d) a gene encoding a UGT91 D2 functional homolog polypeptide; and/or
- (e) a gene encoding an EUGT11 polypeptide;

wherein at least one of the genes is a recombinant gene; and

wherein the host is capable of producing a stevio! glycoside.

[0020] In some aspects of the recombinant hosts disclosed herein,

- the UGT85C2 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:30;
- (b) the UGT76G1 polypeptide comprises a polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:83;
- the UGT74G1 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:29;
- (d) the UGT91D2 functional homolog polypeptide comprises a UGT91D2 polypeptide having 90% or greater identity to the amino acid sequence set forth in SEQ ID NO:84 or a UGT91D2e-b polypeptide having 90% or greater identity to the amino acid sequence set forth in SEQ ID NO:88; and/or

(e) the EUGT1 1 polypeptide comprises a polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:86.

[0021] In some aspects, the recombinant hosts disclosed herein comprise a plant cell, a mammalian cell, an insect cell, a fungal cell, or a bacterial cell.

[0022] In one aspect, the bacterial cell comprises *Escherichia* bacteria cells, for example, *Escherichia coli* cells; *Lactobacillus* bacteria cells; *Lactococcus* bacteria cells; *Cornebacterium* bacteria cells; *Acetobacter* bacteria cells; *Acinetobacter* bacteria cells; or *Pseudomonas* bacterial cells.

[0023] In one aspect, the fungal cell comprises a yeast cell.

[0024] In one aspect, the yeast cell is a cell from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Yarrowia lipolytica, Candida glabrata, Ashbya gossypii, Cyberlindnera jadinii, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Xanthophyllomyces dendrorhous, or Candida albicans species.

[0025] In one aspect, the yeast ceil is a Saccharomycete.

[0026] In one aspect, the yeast cell is a cell from the Saccharomyces cerevisiae species.

[0027] The invention further provides a method of producing a steviol glycoside or a steviol glycoside precursor, comprising:

- (a) growing a recombinant host disclosed herein in a culture medium, under conditions in which any of the genes disclosed herein are expressed;
- wherein the steviol glycoside or the steviol glycoside precursor is synthesized by said host; and/or
- (b) optionally quantifying the steviol glycoside or the steviol glycoside precursor; and/or
- (c) optionally isolating the steviol glycoside or the steviol glycoside precursor.

[0028] In some aspects, the steviol glycoside comprises steviol-13-O-glucoside (13-SMG), steviol-1,2-bioside, steviol-1,3-bioside, steviol-19-Oglucoside (19-SMG), stevioside, 1,3-stevioside, rubusoside, Rebaudioside A (RebA), Rebaudioside B (RebB), Rebaudioside C (RebC), Rebaudioside D (RebD), Rebaudioside E (RebE), Rebaudioside F (RebF), Rebaudioside M (RebM), Rebaudioside Q (RebQ), Rebaudioside I (Rebi), dulcoside A, di-

glycosylated steviol, tri-glycosylated steviol, tetra-glycosylated steviol, penta-glycosylated steviol, hexa-glycosylated steviol, or isomers thereof.

[0029] In some aspects, the steviol glycoside or steviol glycoside precursor produced by the recombinant hosts or methods disclosed herein accumulates to a detectable concentration when cultured under said conditions.

[0030] In some aspects, the steviol glycoside or steviol glycoside precursor produced by the recombinant hosts or methods disclosed herein has an undetectable concentration of stevia plant-derived contaminants.

[0031] In some aspects, the steviol glycoside or steviol glycoside precursor produced by the recombinant hosts or methods disclosed herein has a steviol glycoside composition enriched for RebD or RebM relative to the steviol glycoside composition of a wild-type Stevia plant.

[0032] These and other features and advantages of the present invention will be more fully understood from the following detailed description taken together with the accompanying claims. It is noted that the scope of the claims is defined by the recitations therein and not by the specific discussion of features and advantages set forth in the present description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The following detailed description of the embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:

[0034] Figure 1 shows a schematic of the engineered biosynthetic pathway for producing steviol in yeast from geranylgeranyl diphosphate using geranylgeranyl diphosphate synthase (GGPPS), ent-copalyl diphosphate synthase (CDPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), and ent-kaurenoic acid hydroxylase (KAH) polypeptides.

[0035] Figure 2 shows representative steviol glycoside glycosylation reactions catalyzed by suitable uridine S'-diphospho (UDP) glycosyl transferases (UGT) enzymes and chemical structures for several steviol glycoside compounds.

[0036] Figure 3 shows Rebaudioside B (RebB) production in a steviol glycoside-producing *S. cerevisiae* strain individually expressing *S. rebaudiana* K01 (SrKOI) encoded by the nucleotide sequence set forth in SEQ ID NO:59, the KO encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:55, or the KO encoded by the nucleotide sequence

set forth in SEQ ID NO:56. RebB production was measured by liquid chromatography-mass spectrometry (LC-MS) analysis as μ M/OD₆₀₀ of individual cultures. See Example 3.

[0037] Figure 4 shows production of ent-kaurenoic acid in steviol glycoside-producing S. *cerevisiae* strains individually expressing SrKOI encoded by the nucleotide sequence set forth in SEQ ID NO:59, the KO encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:55, or the KO encoded by the nucleotide sequence set forth in SEQ ID NO:55, or the KO encoded by the nucleotide sequence set forth in SEQ ID NO:55, or the KO encoded by the nucleotide sequence set forth in SEQ ID NO:56, as measured by LC-MS analysis of culture samples. Ent-kaurenoic acid levels were calculated as the Area under Curve (AUC) of LC-MS peaks corresponding to ent-kaurenoic acid. *See* Example 3.

[0038] Figure 5 shows production of total (extracellular plus intracellular) steviol glycosides in a steviol glycoside-producing S. *cerevisiae* strain overexpressing S. *rebaudiana* KAHel (SrKAHel; encoded by the nucleotide sequence set forth in SEQ ID NO; 18) or in a steviol glycoside-producing S. *cerevisiae* stain co-expressing SrKAHel (encoded by the nucleotide sequence set forth in SEQ ID NO: 18) and a KO encoded by the nucleotide sequences set forth in any one of SEQ ID NOs: 55-60, compared to a control strain that does not overexpress SrKAHel or express a KO encoded by the nucleotide sequence set forth in any one of SEQ ID NOs: 55-60. Production of total steviol glycosides was quantified by comparision to a standard curve. Values plotted on the y-axis in μ M are an average of three biological replicates. *See* Example 4.

[0039] Figure 6 shows production of Rebaudioside A (RebA), Rebaudioside D (RebD), and Rebaudioside M (RebM) in a steviol glycoside-producing *S. cerevisiae* strain overexpressing SrKAHeI (encoded by the nucleotide sequence set forth in SEQ ID NO:18) and further expressing either the KO encoded by the nucleotide sequence set forth in SEQ ID NO:56 or the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65. Production of RebA + RebD + RebM was measured in μ M. See Example 4.

[0040] Figure 7 shows production of glycosylated ent-kaurenoic acid in a steviol glycosideproducing S. *cerevisiae* strain overexpressing SrKAHel (encoded by the nucleotide sequence set forth in SEQ ID NO:18) or in a steviol glycoside-producing strain coexpressing SrKAHel (encoded by the nucleotide sequence set forth in SEQ ID NO:18) and a KO encoded by the nucleotide sequences set forth in any one of SEQ ID NOs: 55-60). Values were calculated as the AUC of LC-MS peaks corresponding to glycosylated ent-kaurenoic acid and as an average of three biological replicates. See Example 4.

[0041] Figure 8 shows production of glycosylated ent-kaurenol in a steviol glycosideproducing *S. cerevisiae* strain overexpressing SrKAHeI (encoded by the nucleotide sequence set forth in SEQ ID NO:18) or in a steviol glycoside-producing *S. cerevisiae* strain co-expressing SrKAHeI (encoded by the nucleotide sequence set forth in SEQ ID NO:18) and a KO encoded by the nucleotide sequence set forth in SEQ ID NO: 55-60). Values plotted on the y-axis were calculated as the AUC of LC-MS peaks corresponding to glycosylated ent-kaurenol. See Example 4.

[0042] Figure 9 shows Rebaudioside IVF (RebM) production in a steviol glycoside-producing S. *cerevisiae* strain expressing CPR1 (encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:61) or CPR7 (encoded by the nucleotide sequence set forth in SEQ ID NO:23). Values plotted on the y-axis were measured in μ M. See Example 5.

[0043] Figure 10 shows Rebaudioside M (RebM) production in a steviol glycoside-producing S. *cerevisiae* strain overexpressing SrKAHeI (encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:18) and further expressing CPR4497 encoded by the nucleotide sequence set forth in SEQ ID NO;62. Values plotted on the y-axis indicate μ M concentration of RebM. See Example 5.

[0044] Figure 11A shows an LC-MS chromatogram of a steviol-1 3-O-glucoside (13-SMG) standard. Figure 11B shows production of 13-SMG by a steviol glycoside-producing S. *cerevisiae* strain expressing the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 (amino acid sequence set forth in SEQ ID NO:82). See Example 7.

[0045] Figure 12 shows steviol-13-O-glucoside (13-SMG) and Rebaudioside B (RebB) production in a steviol glycoside-producing *S. cerevisiae* strain co-expressing a KO and a CPR. The KO was selected from SrKOI (encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:59), the KO encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:63, or the KO encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:64. The cytochrome P450 reductase (CPR) polypeptide was selected from the CPR encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:64. The cytochrome P450 reductase (CPR) polypeptide was selected from the CPR encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:67. Values displayed on the y-axis are μ M concentrations of the indicated steviol glycosides. See Example 6.

[0046] Figure 13 shows production of steviol-1 3-O-glucoside (13-SMG) and rubusoside in a steviol glycoside-producing S. *cerevisiae* strain expressing SrKAHeI (encoded by the

nucleotide sequence set forth in SEQ ID NO:18), the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80, or the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:81. Values displayed in the y-axis are μ M concentrations of 13-SMG and rubusoside, averaged over eight biological replicates and normalized to OD₆₀₀ measured using a plate reader. Error bars are ± the respective standard deviation. See Example 7.

[0047] Figure 14 shows cytochrome P450 reductase (CPR) polypeptide activity on cytochrome c upon incubation with microsomal protein prepared from *S. cerevisiae* strains expressing SrKAHeI (encoded by the nucleotide sequence set forth in SEQ ID NO:18) alone or in combination with CPR1 (encoded by the nucleotide sequence set forth in SEQ ID NO:61) or CPR12 (encoded by the nucleotide sequence set forth in SEQ ID NO:61). Results are shown in U/mg as an average of two biological replicates. *See* Example 9.

Figure 15A shows steviol accumulation upon 30 min incubation of ent-kaurenoic acid [0048] with microsomal protein prepared from S. cerevisiae strains expressing SrKAHel (encoded by the nucleotide sequence set forth in SEQ ID NO:18) alone or in combination with CPR1 (encoded by the nucleotide sequence set forth in SEQ ID NO:61) or CPR12 (encoded by the nucleotide sequence set forth in SEQ ID NO:97). Results are shown in AUC as an average of three biological replicates. Control reactions comprised the microsomal protein described above, but these were not incubated for 30 min prior to measurement of steviol accumulation. Figure 15B shows levels of ent-kaurenoic acid following 30 min incubation of ent-kaurenoic acid with microsomal protein prepared from S. cerevisiae strains expressing SrKAHel (encoded by the nucleotide sequence set forth in SEQ ID NO:18) alone or in combination with CPR1 (encoded by the nucleotide sequence set forth in SEQ ID NO:61) or CPR12 (encoded by the nucleotide sequence set forth in SEQ ID NO:97). Results are shown in μ M as an average of three biological replicates. Control reactions comprised the microsomal protein described above but were not incubated for 30 min prior to measurement of ent-kaurenoic acid levels. See Example 9.

[0049] Figure 16 shows steviol-13-O-glucoside (13-SMG), 1,2-bioside, Rebaudioside B (RebB), ent-kaurenoic acid, and ent-kaurene levels accumulated by a steviol glycosideproducing S. *cerevisiae* strain expressing SrKOi (SEQ ID NO:59, SEQ ID NO:79), a KO encoded by the nucleotide sequence set forth in SEQ ID NO:65, or a fusion construct between either SrKOi or the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65, or a fusion construct between NADPH-dependent P450 oxidoreductase domain of CYP102A1 (referred to herein as the "BMR domain"). Figure 16A shows levels of 13-SMG, 1,2-bioside, and RebB measured by LC-MS for

a steviol glycoside-producing S. cerevisiae strain expressing SrKOI (SEQ ID NO:59, SEQ ID NO:79), a fusion construct of SrKOI and BMR (SEQ ID NO:99, SEQ ID NO:100), a fusion construct of SrKOI and BMR W1046A (SEQ ID NO:101, SEQ ID NO:102), a fusion construct of truncated SrKOI and BMR (SEQ ID NO:103, SEQ ID NO:104), a fusion construct of truncated SrKOI and BMR W1046A (SEQ ID NO1 05, SEQ ID NO:106), or a control plasmid. Figure 16B shows levels of ent-kaurenoic acid and ent-kaurene measured by LC-UV for a steviol glycosideproducing S. cerevisiae strain expressing SrKOI (SEQ ID NO:59, SEQ ID NO:79), a fusion construct of SrKOI and BMR (SEQ ID NO:99, SEQ ID NO:100), a fusion construct of SrKOI and BMR W 1046A (SEQ ID NO:101, SEQ ID NO:102), a fusion construct of truncated SrKOI and BMR (SEQ ID NO:103, SEQ ID NO:104), a fusion construct of truncated SrKOI and BMR W1046A (SEQ ID NO:105, SEQ ID NO:106), or a control plasmid. Figure 16C shows levels of 13-SMG, 1,2-bioside, and RebB measured by LC-MS for a steviol glycoside-producing S. cerevisiae strain expressing the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65, a fusion construct of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR (SEQ ID NO:107, SEQ ID NO:108), a fusion construct of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR W1046A (SEQ ID NO:109, SEQ ID NO:1 10), a fusion construct of a truncated KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR W1046A (SEQ ID NO:1 11, SEQ ID NO:1 12), or a plasmid control. Figure 16D shows levels of ent-kaurenoic acid or ent-kaurene accumulated by a steviol glycoside-producing S. cerevisiae strain expressing the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65, a fusion construct of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR (SEQ ID NO:107, SEQ ID NO:108), a fusion construct of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR W1046A (SEQ ID NO:109, SEQ ID NO:110), a fusion construct of a truncated KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and BMR W1046A (SEQ ID NO:1 11, SEQ ID NO:1 12), or a plasmid control. See Example 10.

DETAILED DESCRIPTION OF THE INVENTION

[0050] Before describing the present invention in detail, a number of terms will be defined. As used herein, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. For example, reference to a "nucleic acid" means one or more nucleic acids.

[0051] It is noted that terms like "preferably," "commonly," and "typically" are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that can or cannot be utilized in a particular embodiment of the present invention.

[0052] For the purposes of describing and defining the present invention it is noted that the term "substantially" is utilized herein to represent the inherent degree of uncertainty that can be attributed to any quantitative comparison, value, measurement, or other representation. The term "substantially" is also utilized herein to represent the degree by which a quantitative representation can vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.

[0053] Methods well known to those skilled in the art can be used to construct genetic expression constructs and recombinant cells according to this invention. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, *in vivo* recombination techniques, and polymerase chain reaction (PGR) techniques. *See,* for example, techniques as described in Green & Sambrook, 2012, MOLECULAR CLONING: A LABORATORY MANUAL, Fourth Edition, Cold Spring Harbor Laboratory, New York; Ausubei *et ai.*, 1989, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, New York, and PGR Protocols: A Guide to Methods and Applications (Innis *et a/.*, 1990, Academic Press, San Diego, CA).

[0054] As used herein, the terms "polynucleotide", "nucleotide", "oligonucleotide", and "nucleic acid" can be used interchangeably to refer to nucleic acid comprising DNA, RNA, derivatives thereof, or combinations thereof.

[0055] As used herein, the terms "microorganism," "microorganism host," "microorganism host cell," "recombinant host," and "recombinant host cell" can be used interchangeably. As used herein, the term "recombinant host" is intended to refer to a host, the genome of which has been augmented by at ieast one DNA sequence. Such DNA sequences include but are not limited to genes that are not naturally present, DNA sequences that are not normally transcribed into RNA or translated into a protein ("expressed"), and other genes or DNA sequences which one desires to introduce into a host. It will be appreciated that typically the genome of a recombinant host described herein is augmented through stable introduction of one or more recombinant genes. Generally, introduced DNA is not originally resident in the host that is the recipient of the DNA, but it is within the scope of this disclosure to isolate a DNA segment from

a given host, and to subsequently introduce one or more additional copies of that DNA into the same host, e.g., to enhance production of the product of a gene or alter the expression pattern of a gene. in some instances, the introduced DNA will modify or even replace an endogenous gene or DNA sequence by, *e.g.*, homologous recombination or site-directed mutagenesis. Suitable recombinant hosts include microorganisms.

[0056] As used herein, the term "recombinant gene" refers to a gene or DNA sequence that is introduced into a recipient host, regardless of whether the same or a similar gene or DNA sequence may already be present in such a host. "Introduced," or "augmented" in this context, is known in the art to mean introduced or augmented by the hand of man. Thus, a recombinant gene can be a DNA sequence from another species or can be a DNA sequence that originated from or is present in the same species but has been incorporated into a host by recombinant methods to form a recombinant host. It will be appreciated that a recombinant gene that is introduced into a host can be identical to a DNA sequence that is normally present in the host being transformed, and is introduced to provide one or more additional copies of the DNA to thereby permit overexpression or modified expression of the gene product of that DNA. In some aspects, said recombinant genes are encoded by cDNA. in other embodiments, recombinant genes are synthetic and/or codon-optimized for expression in *S. cerevisiae*.

[0057] As used herein, the term "engineered biosynthetic pathway" refers to a biosynthetic pathway that occurs in a recombinant host, as described herein. In some aspects, one or more steps of the biosynthetic pathway do not naturally occur in an unmodified host. In some embodiments, a heterologous version of a gene is introduced into a host that comprises an endogenous version of the gene.

[0058] As used herein, the term "endogenous" gene refers to a gene that originates from and is produced or synthesized within a particular organism, tissue, or cell. In some embodiments, the endogenous gene is a yeast gene. In some embodiments, the gene is endogenous to *S. cerevisiae*, including, but not limited to *S. cerevisiae* strain S288C. In some embodiments, an endogenous yeast gene is overexpressed. As used herein, the term "overexpress" is used to refer to the expression of a gene in an organism at levels higher than the level of gene expression in a wild type organism. *See, e.g.,* Prelich, 2012, *Genetics* 190:841-54. In some embodiments, an endogenous yeast gene is deleted. *See, e.g.,* Giaever & Nislow, 2014, *Genetics* 197(2):451-65. As used herein, the terms "deletion," "deleted," "knockout," and "knocked out" can be used interchangabley to refer to an endogenous gene that

has been manipulated to no longer be expressed in an organism, including, but not limited to, *S. cerevisiae.*

[0059] As used herein, the terms "heterologous sequence" and "heterologous coding sequence" are used to describe a sequence derived from a species other than the recombinant host, in some embodiments, the recombinant host is an S. *cerevisiae* cell, and a heterologous sequence is derived from an organism other than *S. cerevisiae*. A heterologous coding sequence, for example, can be from a prokaryotic microorganism, a eukaryotic microorganism, a plant, an animal, an insect, or a fungus different than the recombinant host expressing the heterologous sequence. In some embodiments, a coding sequence is a sequence that is native to the host.

[0060] A "selectable marker" can be one of any number of genes that complement host cell auxotrophy, provide antibiotic resistance, or result in a color change. Linearized DNA fragments of the gene replacement vector then are introduced into the cells using methods well known in the art (*see* below). Integration of the linear fragments into the genome and the disruption of the gene can be determined based on the selection marker and can be verified by, for example, PGR or Southern blot analysis. Subsequent to its use in selection, a selectable marker can be removed from the genome of the host cell by, *e.g.*, Cre-LoxP systems (*see, e.g.*, Gossen *et a*/., 2002, *Ann. Rev. Genetics* 36:153-173 and U.S. 2006/0014264). Alternatively, a gene replacement vector can be constructed in such a way as to include a portion of the gene to be disrupted, where the portion is devoid of any endogenous gene promoter sequence and encodes none, or an inactive fragment of, the coding sequence of the gene.

[0061] As used herein, the terms "variant" and "mutant" are used to describe a protein sequence that has been modified at one or more amino acids, compared to the wild-type sequence of a particular protein.

[0062] As used herein, the term "inactive fragment" is a fragment of the gene that encodes a protein having, *e.g.*, less than about 10% (e.g., less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or 0%) of the activity of the protein produced from the full-length coding sequence of the gene. Such a portion of a gene is inserted in a vector in such a way that no known promoter sequence is operably linked to the gene sequence, but that a stop codon and a transcription termination sequence are operably linked to the portion of the gene sequence. This vector can be subsequently linearized in the portion of the gene sequence

and transformed into a cell. By way of single homologous recombination, this linearized vector is then integrated in the endogenous counterpart of the gene with inactivation thereof.

[0063] As used herein, the term "stevio! glycoside" refers to Rebaudioside A (RebA) (CAS # 58543-16-1), Rebaudioside B (RebB) (CAS # 58543-17-2), Rebaudioside C (RebC) (CAS # 63550-99-2), Rebaudioside D (RebD) (CAS # 63279-13-0), Rebaudioside E (RebE) (CAS # 63279-14-1), Rebaudioside F (RebF) (CAS # 438045-89-7), Rebaudioside M (RebM) (CAS # 1220616-44-3), Rubusoside (CAS # 63849-39-4), Dulcoside A (CAS # 64432-06-0), Rebaudioside I (RebI) (MassBank Record: FU000332), Rebaudioside Q (RebQ), 1,2-Stevioside (CAS # 57817-89-7), 1,3-Stevioside (RebG), 1,2-bioside (MassBank Record: FU000299), 1,3-bioside, Stevioi-13-O-glucoside (13-SMG), Steviol-19-O-glucoside (19-SMG), a tri-glucosylated steviol glycoside, a tetra-glycosylated steviol glycoside, a penta-glucosylated steviol glycoside, a hexa-glucosylated steviol glycoside, a hepta-glucosylated steviol glycoside, and isomers thereof. See Figure 2; see also, Steviol Glycosides Chemical and Technical Assessment 69th JECFA, 2007, prepared by Harriet Wallin, Food Agric. Org.

[0064] As used herein, the terms "steviol glycoside precursor" and "steviol glycoside precursor compound" are used to refer to intermediate compounds in the steviol glycoside biosynthetic pathway. Steviol glycoside precursors include, but are not limited to, geranylgeranyl diphosphate (GGPP), ent-copalyl-diphosphate, ent-kaurene, ent-kaurenol, ent-kaurenai, ent-kaurenoic acid, and steviol. *See* Figure 1. In some embodiments, steviol glycoside precursors are themselves steviol glycoside precursors of RebM. *See* Figure 2. Steviol glycosides and/or steviol glycoside precursors can be produced *in vivo (i.e.,* in a recombinant host), *in vitro (i.e.,* enzymatically), or by whole cell byconversion. As used herein, the terms "produce" and "accumulate" can be used interchangeably to describe synthesis of steviol glycosides and steviol glycoside precursors *in vivo, in vitro,* or by whole cell bioconversion.

[0065] As used herein, the term "di-glycosylated steviol" can be used to refer to a steviol molecule comprising two sugar moieties, such as glucose or N-acetylglucosamine (GicNAc). Non-limiting examples of di-glycosylated steviol molecules include steviol-1,3-bioside, steviol-1,2-bioside, rubusoside, a steviol molecule comprising two glucose moieties, a steviol molecule comprising one glucose moiety and one GicNAc moiety, and isomers thereof.

[0066] As used herein, the term "tri-glycosylated steviol" can be used to refer to a steviol molecule comprising three sugar moieties, such as glucose or GicNAc. Non-limiting examples

of tri-glycosylated steviol molecules include RebB, RebG, stevioside, a steviol molecule comprising two glucose moieties and one GlcNAc moiety, and isomers thereof.

[0067] As used herein, the term "tetra-glycosylated steviol" can be used to refer to a steviol molecule comprising four sugar moleties, such as glucose or GlcNAc. Non-limiting examples of tetra-glycosylated steviol molecules include RebA, RebE, RebQ, a steviol molecule comprising four glucose moleties, a steviol molecule comprising three glucose moleties and one GlcNAc molety, and isomers thereof.

[0068] As used herein, the term "penta-glycosylated steviol" can be used to refer to a steviol molecule comprising five sugar moieties, such as glucose or GlcNAc. Non-limiting examples of penta-glycosylated steviol molecules include RebD, a steviol molecule comprising five glucose moieties, a steviol molecule comprising four glucose moieties and one GlcNAc moiety, and isomers thereof.

[0069] As used herein, the term "hexa-glycosylated steviol" can be used to refer to a steviol molecule comprising six sugar molecules, such as glucose or GlcNAc. Non-limiting examples of hexa-glycosylated steviol molecules include RebM, a steviol molecule comprising six glucose molecules, a steviol molecule comprising five glucose molecules and one GlcNAc molecy, and isomers thereof.

[0070] As used herein, the term "hepta-glycosylated steviol" can be used to refer to a steviol molecule comprising seven sugar moieties, such as glucose or GlcNAc. Non-limiting examples of hepta-glycosylated steviol molecules include a steviol molecule comprising seven glucose moieties and isomers thereof.

[0071] As used herein, the term "glycosylated ent-kaurenoic acid" can be used to refer to an ent-kaurenoic acid molecule comprising sugar moieties, such as glucose or GlcNAc. Nonlimiting examples of glycosylated ent-kaurenoic acid molecules include ent-kaurenoic acid molecule comprising two glucose moieties and one GlcNAc moiety, an ent-kaurenoic acid molecule comprising three glucose moieties, an ent-kaurenoic acid molecule comprising two glucose moieties, and isomers thereof.

[0072] As used herein, the term "glycosylated ent-kaurenol" can be used to refer to an entkaurenol molecule comprising sugar moieties, such as glucose or GlcNAc. Non-limiting examples of glycosylated ent-kaurenol molecules include an ent-kaurenol molecule comprising three glucose moieties, an ent-kaurenol molecule comprising one glucose moiety and one

GlcNAc moiety, an ent-kaureno! molecule comprising two glucose moieties, and isomers thereof.

[0073] Recombinant steviol glycoside-producing *Saccharomyces cerevisiae* (*S. cerevisiae*) strains are described in WO 201 1/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328. Methods of producing steviol glycosides in recombinant hosts, by whole cell bio-conversion, and *in vitro* are also described in WO 201 1/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328.

[0074] In some embodiments, steviol glycosides and/or steviol glycoside precursors are produced *in vivo* through expression of one or more enzymes involved in the steviol glycoside biosynthetic pathway in a recombinant host. For example, a steviol-producing recombinant host expressing one or more of a gene encoding a GGPPS polypeptide, a gene encoding a CDPS polypeptide, a gene encoding a KS polypeptide, a gene encoding a KO polypeptide, a gene encoding a UGT polypeptide can produce a steviol glycoside and/or steviol glycoside precursors *in vivo*. *See, e.g.,* Figures 1 and 2. The skilled worker will appreciate that one or more of these genes can be endogenous to the host provided that at least one (and in some embodiments, all) of these genes is a recombinant gene introduced into the recombinant host.

[0075] in another example, a recombinant host expressing a gene encoding a GGPPS polypeptide, a gene encoding a CDPS polypeptide, a gene encoding a KS polypeptide, a gene encoding a KO polypeptide, a gene encoding a KAH polypeptide, and a gene encoding a CPR polypeptide can produce steviol *in vivo*. *See, e.g.,* Figures 1. The skilled worker will appreciate that one or more of these genes can be endogenous to the host provided that at least one (and in some embodiments, all) of these genes is a recombinant gene introduced into the recombinant host.

[0076] In another example, a steviol-producing recombinant host expressing a gene encoding a GGPPS polypeptide, a gene encoding a CDPS polypeptide, a gene encoding a KS polypeptide, a gene encoding a KO polypeptide, a gene encoding a KAH polypeptide, a gene encoding a CPR polypeptide, and one or more of a gene encoding a UGT polypeptide can produce a steviol glycoside *in vivo.* See, e.g., Figures 1 and 2. The skilled worker will appreciate that one or more of these genes can be endogenous to the host provided that at least one (and in some embodiments, all) of these genes is a recombinant gene introduced into the recombinant host.

[0077] Non-limiting examples of KS polypeptides are set forth in SEQ ID NOs:1-4 and SEQ ID NO:6. Non-limiting examples of KO polypeptides are set forth in SEQ ID NOs:7-10, 54, 70-72, 75, and 77-79. Non-limiting examples of KAH polypeptides are set forth in SEQ ID NOs:13-17, 68, 82, and 91. Non-limiting examples of CPR polypeptides are set forth in SEQ ID NOs:20-22, 28, 69, 73, 74, 76, 87, and 98. Non-limiting examples of CDPS polypeptides are set forth in SEQ ID NOs:33-39. Non-limiting examples of CDPS-KS polypeptides are set forth in SEQ ID NOs:43-50.

[0078] In some embodiments, a recombinant host comprises a nucleic acid encoding a UGT85C2 polypeptide (SEQ ID NO:32), a nucleic acid encoding a UGT76G1 polypeptide (SEQ ID NO:83), a nucleic acid encoding a UGT74G1 polypeptide (SEQ ID NO:29), a nucleic acid encoding a UGT91D2 polypeptide, and/or a nucleic acid encoding a EUGT11 polypeptide (SEQ ID NO:86). In some aspects, the UGT91D2 polypeptide can be a UGT91D2e polypeptide (SEQ ID NO:84) or a UGT91D2e-b polypeptide (SEQ ID NO:88). The skilled worker will appreciate that expression of these genes may be necessary to produce a particular steviol glycoside but that one or more of these genes can be endogenous to the host provided that at least one (and in some embodiments, all) of these genes is a recombinant gene introduced into the recombinant host. In a particular embodiment, a steviol-producing recombinant microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, or UGT91D2 polypeptides. In another particular embodiment, a steviol-producing recombinant microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, and UGT91D2 In yet another particular embodiment, a steviol-producing recombinant polypeptides. microorganism comprises exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, and EUGT11 polypeptides. In yet another particular embodiment, a steviol-producing recombinant microorganism comprises the exogenous nucleic acids encoding UGT85C2, UGT76G1, UGT74G1, UGT91D2 (including inter alia 91D2e, 91D2m, 91D2e-b, and functional homologs thereof), and EUGT1 1 polypeptides.

[0079] In certain embodiments, the steviol glycoside is RebA, RebB, RebD, and/or RebM. RebA can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1, UGT74G1, and UGT91D2. RebB can be synthesized in a steviolproducing recombinant microorganism expressing UGT85C2, UGT76G1, and UGT91D2. RebD can be synthesized in a steviol-producing recombinant microorganism expressing UGT85C2, UGT76G1 UGT74G1, and UGT91D2 and/or EUGT1 1. RebM can be synthesized in a steviol-

producing recombinant microorganism expressing UGT85C2, UGT76G1, UGT74G1, and UGT91 D2 and/or EUGT1 1 (see Figure 2).

[0080] In some embodiments, steviol glycosides and/or steviol glycoside precursors are produced through contact of a steviol glycoside precursor with one or more enzymes involved in the steviol glycoside pathway *in vitro*. For example, contacting steviol with a UGT polypeptide can result in production of a steviol glycoside *in vitro*. In some embodiments, a steviol glycoside precursor is produced through contact of an upstream steviol glycoside precursor with one or more enzymes involved in the steviol glycoside pathway *in vitro*. For example, contacting ent-kaurenoic acid with a KAH enzyme can result in production of steviol *in vitro*.

[0081] In some embodiments, a steviol glycoside or steviol glycoside precursor is produced by whole cell bioconversion. For whole cell bioconversion to occur, a host cell expressing one or more enzymes involved in the steviol glycoside pathway takes up and modifies a stevioi glycoside precursor in the cell; following modification *in vivo*, a steviol glycoside remains in the cell and/or is excreted into the culture medium. For example, a host cell expressing a gene encoding a UGT polypeptide can take up steviol and glycosylate steviol in the cell; following glycosylation *in vivo*, a steviol glycoside can be excreted into the culture medium. In some embodiments, the cell is permeabilized to take up a substrate to be modified or to excrete a modified product.

[0082] In some embodiments, stevioi, one or more steviol glycoside precursors, and/or one or more steviol glycosides are produced by co-culturing of two or more hosts. In some embodiments, one or more hosts, each expressing one or more enzymes involved in the stevioi glycoside pathway, produce stevioi, one or more steviol glycoside precursors, and/or one or more steviol glycosides. For example, a host comprising a GGPPS, a CDPS, a KO, a KS, a KAH, and/or a CPR and a host comprising one or more UGTs produce one or more stevioi glycosides.

[0083] In some embodiments, a steviol glycoside or steviol glycoside precursor composition produced *in vivo, in vitro,* or by whole cell bioconversion comprises less contaminants than a stevia extract from, *inter alia,* a stevia plant. Contaminants include plant-derived compounds that contribute to off-flavors. Potential contaminants include pigments, lipids, proteins, phenolics, saccharides, spathulenol and other sesquiterpenes, labdane diterpenes, monoterpenes, decanoic acid, 8,1 1,14-eicosatrienoic acid, 2-methyloctadecane, pentacosane, octadecanol, stigmasterol, β -sitosterol, a-amyrin, β -amyrin, lupeol, β -

amryin acetate, pentacyclic triterpenes, centauredin, quercitin, epi-alpha-cadinoi, carophyllenes and derivatives, beta-pinene, beta-sitosterol, and gibberellin.

[0084] As used herein, the terms "detectable amount," "detectable concentration," "measurable amount," and "measurable concentration" refer to a level of steviol glycosides measured in AUC, μ M/OD₆₀₀, mg/L, μ M, or mM. Steviol glycoside production *(i.e.,* total, supernatant, and/or intracellular steviol glycoside levels) can be detected and/or analyzed by techniques generally available to one skilled in the art, for example, but not limited to, liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), ultraviolet-visible spectroscopy/ spectrophotometry (UV-Vis), mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR).

[0085] As used herein, the term "undetectable concentration" refers to a level of a compound that is too low to be measured and/or analyzed by techniques such as TLC, HPLC, UV-Vis, MS, or NMR. In some embodiments, a compound of an "undetectable concentration" is not present in a steviol glycoside or steviol glycoside precursor composition.

[0086] As used herein, the terms "or" and "and/or" is utilized to describe multiple components in combination or exclusive of one another. For example, "x, y, and/or z" can refer to "x" alone, "y" alone, "z" alone, "x, y, and z," "(x and y) or z," "x or (y and z)," or "x or y or z." In some embodiments, "and/or" is used to refer to the exogenous nucleic acids that a recombinant cell comprises, wherein a recombinant cell comprises one or more exogenous nucleic acids selected from a group. In some embodiments, "and/or" is used to refer to production of steviol glycosides and/or steviol glycoside precursors. In some embodiments, "and/or" is used to refer to production of steviol glycosides, wherein one or more steviol glycosides are produced. In some embodiments, "and/or" is used to refer to production of steviol glycosides are produced through one or more of the following steps: culturing a recombinant microorganism, synthesizing one or more steviol glycosides in a recombinant microorganism, and/or isolating one or more steviol glycosides.

[0087] In some embodiments, the nucleotide sequence of a nucleic acid encoding a KO polypeptide is set forth in SEQ ID NO: 55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, or SEQ ID NO:60, SEQ ID NO:63, SEQ ID NO:64, or SEQ ID NO:65. In some aspects, the nucleic acid encoding the KO polypeptide has at least 70% identity to the nucleotide sequence set forth in SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59 or SEQ ID NO:60, at least 80% identity to the nucleotide sequence set forth in SEQ ID NO:58, at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:58, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth in SEQ ID NO:63, or at least 95% identity to the nucleotide sequence set forth 95% identity to the nucleotide sequence set forth 95% id

75% identity to the nucleotide sequence set forth in SEQ ID NO:64 or SEQ ID NO:65. In some embodiments, the amino acid sequence of a KO enzyme is set forth in SEQ ID NO:54, SEQ ID NO.70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:78, OR SEQ ID NO:79. In some embodiments, a host ceil comprises one or more copies of one or more nucleic acids encoding a KO polypeptide.

[0088] In some embodiments, expression of a KO gene set forth in SEQ ID NO:55 or SEQ ID NO:56 in a RebB-producing S. *cerevisiae* strain results in higher production of RebB compared to expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79) in a RebB-producing S. *cerevisiae* strain. See Example 3.

[0089] In some embodiments, expression of a KO gene set forth in SEQ ID NO:55, SEQ ID NO:56, or SEQ ID NO:57 in an *S. cerevisiae* strain capable of producing RebB with a functional KO results in production of ent-kaurenoic acid. See Example 3.

[0090] As used herein, the terms "ent-kaurenoic acid hydroxylase" and "steviol synthase" can be used interchangeably and be abbreviated "KAH." In some embodiments, the nucleotide sequence of a nucleic acid encoding a KAH enzyme is set forth in SEQ ID NO:18, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:90, or SEQ ID NO:96. In some aspects, the nucleic acid encoding the KAH polypeptide has at least 75% identity to a nucleotide sequence set forth in SEQ ID NO:80; or at least 70% identity to a nucleotide sequence set forth in SEQ ID NO:81, SEQ ID NO:90, or SEQ ID NO:96. In some embodiments, the amino acid sequence of a KAH enzyme is set forth in SEQ ID NO:81, SEQ ID NO:90, or SEQ ID NO:96. In some embodiments, the amino acid sequence of a KAH enzyme is set forth in SEQ ID NO:68, SEQ ID NO:82, or SEQ ID NO:91. In some embodiments, a host cell comprises one or more copies of one or more nucleic acids encoding a KAH enzyme.

[0091] In some embodiments, one or more copies of SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) are expressed in an *S. cerevisiae* strain. For example, in some embodiments, two copies of SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) are expressed in an *S. cerevisiae* strain.

[0092] In some embodiments, the nucleotide sequence of a nucleic acid encoding a KAH enzyme is set forth in SEQ ID NO:80. The nucleic acid of SEQ ID NO:80 encodes a KAH with an amino acid sequence set forth in SEQ ID NO:82. A version of SEQ ID NO:80 codon-optimized for expression in *S, cerevisiae* is set forth in SEQ ID NO:81. In some embodiments, a host cell comprises one or more copies of one or more nucleic acids encoding a KAH enzyme. See Example 7.

[0093] In some embodiments, SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) and either the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 or the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:81 are co-expressed in a steviol glycoside-producing S. *cerevisiae* strain. In some embodiments, co-expression of SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) and either the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 or the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 or the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80 or the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:81 in a steviol glycoside-producing strain results in higher production of steviol glycosides compared to a control steviol glycoside-producing strain or a steviol glycoside producing strain overexpressing SrKAHeI. See Example 7 and Table 6. In some aspects, overexpressing SrKAHeI results in production of 85.5 μ M 13-SMG, expression of SrKAHeI and the KAH encoded by the nucleotide set forth in SEQ ID NO:81 results in production of 130.5 μ M 13-SMG.

[0094] In some embodiments, a KO gene is expressed in a steviol glycoside-producing S. *cerevisiae* strain that further overexpresses SrKAHeI (SEQ ID NO:18, SEQ ID NO:68). In some embodiments, expression of a KO gene of SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, or SEQ ID NO:60, SEQ ID NO:65 in a steviol glycoside-producing S. *cerevisiae* strain overexpressing SrKAHeI results in higher expression of steviol glycoside compared to a control steviol-glycoside producing strain overexpressing SrKAHeI (SEQ ID NO:68). See Example 4.

[0095] In some embodiments, expression of a KO gene of SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, or SEQ ID NO:60 in a steviol glycoside-producing S. *cerevisiae* strain overexpressing SrKAHel (SEQ ID NO:18, SEQ ID NO:68) results in higher levels of glycosylated ent-kaurenoic acid compared to a control S. *cerevisiae* strain. *See* Example 4.

[0096] In some embodiments, expression of a KO gene of SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, or SEQ ID NO:60 in a steviol glycoside-producing S. *cerevisiae* strain overexpressing SrKAHel (SEQ ID NO:18, SEQ ID NO;68) results in improved metabolic conversion of a glycosylated ent-kaurenol intermediate compound relative to a control S. *cerevisiae* strain or a steviol glycoside-producing S. *cerevisiae* strain overexpressing SrKAHel (SEQ ID NO:18, SEQ ID NO;68) results in SrKAHel (SEQ ID NO:18, SEQ ID NO:68). *See* Example 4.

[0097] In some embodiments, a KAH is a *Prunus* KAH, such as a *Prunus avium, Prunus mume,* or *Prunus persica* KAH. In some embodiments, a KAH is a KAH of the CYP72A219 or CYP71A219-like family. In some embodiments, the nucleotide sequence of a nucleic acid

encoding a KAH enzyme is set forth in SEQ ID NO:90 or SEQ ID NO:96. The nucleic acids of SEQ ID NO:90 and SEQ ID NO:96 encode a KAH from *Prunus avium* with an amino acid sequence set forth in SEQ ID NO:91. In some embodiments, a KAH polypeptide is a polypeptide with an amino acid sequence set forth in SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:95. In some embodiments, a KAH polypeptide is a KAH polypeptide with at least 50% sequence identity to an amino acid sequence set forth in SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:95. In some embodiments, a kat polypeptide is a kat polypeptide with at least 50% sequence identity to an amino acid sequence set forth in SEQ ID NO:91, SEQ ID NO:95. In some embodiments, expression of a gene encoding a polypeptide having at least 50% sequence identity to an amino acid sequence set forth in SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:95. In some embodiments, expression of a gene encoding a polypeptide having at least 50% sequence identity to an amino acid sequence set forth in SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:95 in a recombinant host results in production of a steviol glycoside or steviol glycoside precursor, such as 13-SMG and/or rubusoside. See Example 8.

[0098] In some embodiments, the nucleotide sequence of the nucleic acid encoding a CPR enzyme is set forth in SEQ ID NO:23, SEQ ID NO:51, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:66, SEQ ID NO:67, or SEQ ID NO:97. In some aspects, the nucleic acid encoding the CPR polypeptide has at least 75% identity to the nucleotide sequence set forth in SEQ ID NO:23, SEQ ID NO:61, or SEQ ID NO:62, or at least 70% identity to the nucleotide sequence set forth in SEQ ID NO:24, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:51, or SEQ ID NO:67. In some embodiments, the amino acid sequence of the CPR enzyme is set forth in SEQ ID NO:22, SEQ ID NO:28, SEQ ID NO:69, SEQ ID NO:73, SEQ ID NO:74, or SEQ ID NO:76, SEQ ID NO:87, or SEQ ID NO:98. In some embodiments, a host cell comprises one or more copies of one or more nucleic acids encoding a CPR enzyme.

[0099] In a non-limiting example, SrKAHeI is activated by the *S. cerevisiae* CPR encoded by gene NCP1 (YHR042W). Enhanced activation of the KAH encoded by SrKAHeI is observed when the *Arabidopsis thaliana* CPR encoded by the gene ATR2 (SEQ ID NO:51) or the S. *rebaudiana* CPR encoded by the genes CPR7 (SEQ ID NO:23) or CPR8 (SEQ ID NO:24, SEQ ID NO:28) are co-expressed in a recombinant cell. Amino acid sequences of the *A. thaliana* polypeptides ATR1 and ATR2 are set forth in SEQ ID NO:25 and SEQ ID NO:26, respectively. The *S. rebaudiana* polypeptides CPR7 and CPR8 are set forth in SEQ ID NO:27 and SEQ ID NO:28, respectively.

[00100] In some embodiments, expression of CPR1 (SEQ ID NO:61, SEQ ID NO:76) or of CPR7 in the steviol glycoside-producing *S. cerevisiae* strain co-expressing *S. rebaudiana* CPR8 (SEQ ID NO:24, SEQ ID NO:28) and *A. thaliana* ATR2 (SEQ ID NO:51) results in higher levels of RebM compared to a control steviol glycoside-producing *S. cerevisiae* strain expressing *S.*

rebaudiana CPR8 (SEQ ID NO:24, SEQ ID NO:28) and *A. thaliana* ATR2 (SEQ ID N0:51). In some embodiments, expression of the CPR set forth in SEQ ID NO:62 in a steviol glycoside-producing *S. cerevisiae* strain overexpressing SrKAHeI (SEQ ID NO: 18, SEQ ID NO:68) results in higher levels of RebM compared to a steviol glycoside-producing *S. cerevisiae* strain that does not express the nucleic acid set forth in SEQ ID NO:62 or overexpress SrKAHeI. See Example 5.

[00101] In some embodiments, co-expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79) and a CPR gene of SEQ ID NO:66 or SEQ ID NO:77 in a RebB-producing strain results in higher production of 13-SMG and RebB than co-expression of a KO gene of SEQ ID NO:63 or SEQ ID NO:64 and a CPR gene of SEQ ID NO:66 or SEQ ID NO:77. See Example 6.

[00102] In some embodiments, CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) activates cytochrome c. In some embodiments, CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) in the presence of SrKAHel (SEQ ID NO:18, SEQ ID NO:68) activate cytochrome c. In some embodiments, CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) regulate conversion of ent-kaurenoic acid to steviol. In some embodiments, CPR1 (SEQ ID NO:76) or CPR12 (SEQ ID NO:98) in combination with SrKAHel (SEQ ID NO:76) or CPR12 (SEQ ID NO:98) in combination with SrKAHel (SEQ ID NO:76) or CPR12 (SEQ ID NO:98) in combination with SrKAHel (SEQ ID NO:18, SEQ ID NO:68) convert ent-kaurenoic acid to steviol. In some embodiments, steviol production is detected upon incubation of ent-kaurenoic acid with microsomal protein prepared from S. *cerevisiae* strains expressing CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:98) in combination with SrKAHel (SEQ ID NO:68). In some embodiments, expression of CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) in combination with SrKAHel (SEQ ID NO:68). In some embodiments, expression of CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) in a recombinant host results in production of a steviol glycoside or steviol glycoside precursor. See Example 9.

[00103] In some embodiments, a steviol glycoside-producing strain expresses a fusion construct comprising a KO and the NADPH-dependent P450 oxidoreductase domain of CYP102A1, referred to herein as "BMR." The codon-optimized nucleotide sequence encoding the BMR polypeptide is set forth in SEQ ID NO:117; the BMR amino acid sequence is set forth in SEQ ID NO:118. In some embodiments, BMR is a mutant BMR, including, but not limited to a BMR W1046A mutant (SEQ ID NO:119, SEQ ID NO:120). The BMR mutant can be specific for NADH. In some embodiments, the KO-BMR fusion construct comprises a linker (SEQ ID NO:121, SEQ ID NO:122). In some embodiments, the KO of the fusion construct is SrKOI (SEQ ID NO:59, SEQ ID NO:79) or the KO encoded by the nucleotide sequence set forth in

SEQ ID NO:65 (corresponding to the amino acid sequence set forth in SEQ ID N0.75). In some embodiments, the KO of the fusion construct is a truncated KO. Exemplary KO-BMR fusion constructs are set forth in SEQ ID NOs:99-1 12. See Example 10.

[00104] In some embodiments, expression of SrK01-BMR fusion constructs (SEQ ID NOs:99-106) in a steviol glycoside-producing strain results in an increase in ent-kaurenoic acid, 13-SMG, and RebB levels, compared to expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79) in a steviol glycoside-producing strain. In some embodiments, expression of a fusion construct (SEQ ID NO:107, SEQ ID NO:108) in a steviol glycoside-producing strain results in greater conversion of ent-kaurene to ent-kaurenoic acid and greater conversion of ent-kaurenoic acid to 13-SMG, compared to expression of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 in a steviol glycoside-producing strain. In some embodiments, expression of a fusion construct comprising the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and the W1046A mutant BMR (SEQ ID NO:109, SEQ ID NO:1 10) results in incrased ent-kaurenoic acid levels. See Figure 16 (B and D) and Example 10.

[00105] In some embodiments, a steviol glycoside-producing strain comprises inheritance of cortical ER protein 2 (ICE2; SEQ ID NO:1 13, SEQ ID NO:1 14). ICE2 is also referred to as YIL090W. In some aspects, ICE2 is overexpressed. ICE2 can be expressed in a strain comprising CPR1 (SEQ ID NO:61, SEQ ID NO:76) and/or CPR12 (SEQ ID NO:97, SEQ ID NO:98). In some embodiments, a steviol glycoside-producing strain comprises two copies of ICE2. In some embodiments, expression of ICE2 increases ent-kaurene metabolism (resulting in decreased accumulation of ent-kaurene, ent-kaurenol, ent-kaurenal, and ent-kaurenol glycosides), resulting in increased accumulation of steviol glycosides, compared to a control strain. See Table 10 and Example 11.

[00106] In some embodiments, expression of the KO encoded by nucleotide sequence set forth in SEQ ID NO:56 in a steviol glycoside-producing strain cultivated by fermentation results in a lower accumulation of ent-kaurene compounds, compared to a control steviol glycoside-producing strain. In some aspects, higher levels of ent-kaurenoic acid and steviol glycosides result, as compared to a control strain. In some embodiments, expression of the KAH encoded by nucleotide sequence set forth in SEQ ID NO:56, and the KO encoded by nucleotide sequence set forth in SEQ ID NO:56, and the KO encoded by nucleotide sequence set forth in decreased accumulation of ent-kaurenol, ent-kaurenal, ent-kaurenol glycosides, ent-kaurenoic acid, and ent-kaurenoic acid glycosides and increased production of steviol glycosides, as

compared to a control strain. In some embodiments, expression of CPR12 (SEQ ID NO:97, SEQ ID NO:98), the KAH encoded by nucleotide sequence set forth in SEQ ID NO:80, and the KO encoded by nucleotide sequence set forth in SEQ ID NO;56 cultivated by fermentation results in decreased ent-kaurene, ent-kaurenol, ent-kaurenal, ent-kaurenol glycosides, ent-kaurenoic acid, and ent-kaurenoic acid glycosides accumulation and higher levels of steviol glycosides, as compared to a control strain. *See* Table 12 and Example 12.

Functional Homologs

[00107] Functional homologs of the polypeptides described above are also suitable for use in producing steviol glycosides in a recombinant host. A functional homolog is a polypeptide that has sequence similarity to a reference polypeptide, and that carries out one or more of the biochemical or physiological function(s) of the reference polypeptide. A functional homolog and the reference polypeptide can be a natural occurring polypeptide, and the sequence similarity can be due to convergent or divergent evolutionary events. As such, functional homologs are sometimes designated in the literature as homologs, or orthologs, or paralogs. Variants of a naturally occurring functional homolog, such as polypeptides encoded by mutants of a wild type coding sequence, can themselves be functional homologs. Functional homologs can also be created via site-directed mutagenesis of the coding sequence for a polypeptide, or by combining domains from the coding sequences for different naturally-occurring polypeptides ("domain swapping"). Techniques for modifying genes encoding functional polypeptides described herein are known and include, inter alia, directed evolution techniques, site-directed mutagenesis techniques and random mutagenesis techniques, and can be useful to increase specific activity of a polypeptide, alter substrate specificity, alter expression levels, alter subcellular location, or modify polypeptide-polypeptide interactions in a desired manner. Such modified polypeptides are considered functional homologs. The term "functional homolog" is sometimes applied to the nucleic acid that encodes a functionally homologous polypeptide.

[00108] Functional homologs can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologs of steviol glycoside biosynthesis polypeptides. Sequence analysis can involve BLAST, Reciprocal BLAST, or PSI-BLAST analysis of non-redundant databases using a KO, KAH, or CPR amino acid sequence as the reference sequence. Amino acid sequence is, in some instances, deduced from the nucleotide sequence. Those polypeptides in the database that have greater than 40% sequence identity are candidates for further evaluation for suitability as a steviol glycoside biosynthesis polypeptide.

Amino acid sequence similarity allows for conservative amino acid substitutions, such as substitution of one hydrophobic residue for another or substitution of one polar residue for another. If desired, manual inspection of such candidates can be carried out in order to narrow the number of candidates to be further evaluated. Manual inspection can be performed by selecting those candidates that appear to have domains present in steviol glycoside biosynthesis polypeptides, e.g., conserved functional domains. In some embodiments, nucleic acids and polypeptides are identified from transcriptome data based on expression levels rather than by using BLAST analysis.

[00109] Conserved regions can be identified by locating a region within the primary amino acid sequence of a steviol glycoside biosynthesis polypeptide that is a repeated sequence, forms some secondary structure (e.g., helices and beta sheets), establishes positively or negatively charged domains, or represents a protein motif or domain. See, e.g., the Pfam web site describing consensus sequences for a variety of protein motifs and domains on the World Wide Web at sanger.ac.uk/Software/Pfam/ and pfam.janelia.org/. The information included at the Pfam database is described in Sonnhammer *et al., Nucl. Acids Res.,* 26:320-322 (1998); Sonnhammer *et al.,* Proteins, 28:405-420 (1997); and Bateman *et al., Nucl. Acids Res.,* 27:260-262 (1999). Conserved regions also can be determined by aligning sequences of the same or related polypeptides from closely related species. Closely related species preferably are from the same family. In some embodiments, alignment of sequences from two different species is adequate to identify such homologs.

[00110] Typically, polypeptides that exhibit at least about 40% amino acid sequence identity are useful to identify conserved regions. Conserved regions of related polypeptides exhibit at least 45% amino acid sequence identity (e.g., at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% amino acid sequence identity). In some embodiments, a conserved region exhibits at least 92%, 94%, 96%, 98%, or 99% amino acid sequence identity.

[00111] For example, polypeptides suitable for producing steviol in a recombinant host include functional homologs of KO, KAH, and CPR.

[00112] Methods to modify the substrate specificity of, for example, KO, KAH, or CPR, are known to those skilled in the art, and include without limitation site-directed/rational mutagenesis approaches, random directed evolution approaches and combinations in which random mutagenesis/saturation techniques are performed near the active site of the enzyme. For example see Osmani *et al.*, 2009, *Phytochemistry* 70: 325-347.

[00113] A candidate sequence typically has a length that is from 80% to 200% of the length of the reference sequence, e.g., 82, 85, 87, 89, 90, 93, 95, 97, 99, 100, 105, 110, 115, 120, 130, 140, 150, 160, 170, 180, 190, or 200% of the length of the reference sequence. A functional homolog polypeptide typically has a length that is from 95% to 105% of the length of the reference sequence, e.g., 90, 93, 95, 97, 99, 100, 105, 110, 115, or 120% of the length of the reference sequence, or any range between. A% identity for any candidate nucleic acid or polypeptide relative to a reference nucleic acid or polypeptide can be determined as follows. A reference sequence (*e.g.*, a nucleic acid sequence or an amino acid sequence described herein) is aligned to one or more candidate sequences using the computer program Clusta!W {version 1.83, default parameters}, which allows alignments of nucleic acid or polypeptide sequences to be carried out across their entire length (global alignment). Chenna *et a*/., 2003, *Nucleic Acids Res.* 31(13):3497-500.

[00114] CiustalW calculates the best match between a reference and one or more candidate sequences, and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a reference sequence, a candidate sequence, or both, to maximize sequence alignments. For fast pairwise alignment of nucleic acid sequences, the following default parameters are used: word size: 2; window size: 4; scoring method: % age; number of top diagonals: 4; and gap penalty: 5. For multiple alignment of nucleic acid sequences, the following parameters are used: gap opening penalty: 10.0; gap extension penalty: 5.0; and weight transitions: yes. For fast pairwise alignment of protein sequences, the following parameters are used: word size: 1; window size: 5; scoring method:% age; number of top diagonals: 5; gap penalty: 3. For multiple alignment of protein sequences, the following parameters are used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Ser, Asn, Asp, Gin, Glu, Arg, and Lys; residue-specific gap penalties: on. The CiustalW output is a sequence alignment that reflects the relationship between sequences. CiustalW can be run, for example, at the Baylor College of Medicine Search Launcher site on the World Wide Web (searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) and at the European Bioinformatics Institute site on the World Wide Web (ebi.ac.uk/clustalw).

[00115] To determine % identity of a candidate nucleic acid or amino acid sequence to a reference sequence, the sequences are aligned using CiustalW, the number of identical matches in the alignment is divided by the length of the reference sequence, and the result is multiplied by 100. It is noted that the % identity value can be rounded to the nearest tenth. For

example, 78. 11, 78. 12, 78. 13, and 78. 14 are rounded down to 78.1, while 78.15, 78. 16, 78. 17, 78. 18, and 78. 19 are rounded up to 78.2.

It will be appreciated that functional KO, KAH, or CPR proteins can include additional [001 16] amino acids that are not involved in the enzymatic activities carried out by the enzymes. In some embodiments, KO, KAH, or CPR proteins are fusion proteins. The terms "chimera," "fusion polypeptide," "fusion protein," "fusion enzyme," "fusion construct," "chimeric protein," "chimeric polypeptide," "chimeric construct," and "chimeric enzyme" can be used interchangeably herein to refer to proteins engineered through the joining of two or more genes that code for different proteins. In some embodiments, a nucleic acid sequence encoding a KO, KAH, or CPR polypeptide can include a tag sequence that encodes a "tag" designed to facilitate subsequent manipulation (e.g., to facilitate purification or detection), secretion, or localization of the encoded polypeptide. Tag sequences can be inserted in the nucleic acid sequence encoding the polypeptide such that the encoded tag is located at either the carboxyl or amino terminus of the polypeptide. Non-limiting examples of encoded tags include green fluorescent protein (GFP), human influenza hemagglutinin (HA), glutathione S transferase (GST), polyhistidine-tag (HIS tag), and Flag[™] tag (Kodak, New Haven, CT). Other examples of tags include a chloroplast transit peptide, a mitochondrial transit peptide, an amyloplast peptide, signal peptide, or a secretion tag.

[001 17] In some embodiments, a fusion protein is a protein altered by domain swapping. As used herein, the term "domain swapping" is used to describe the process of replacing a domain of a first protein with a domain of a second protein. In some embodiments, the domain of the first protein and the domain of the second protein are functionally identical or functionally similar. In some embodiments, the structure and/or sequence of the domain of the second protein differs from the structure and/or sequence of the first protein. In some embodiments, a KO polypeptide is altered by domain swapping. See Example 10.

Steviol and Steviol Glycoside Biosynthesis Nucleic Acids

[001 18] A recombinant gene encoding a polypeptide described herein comprises the coding sequence for that polypeptide, operably linked in sense orientation to one or more regulatory regions suitable for expressing the polypeptide. Because many microorganisms are capable of expressing multiple gene products from a polycistronic mRNA, multiple polypeptides can be expressed under the control of a single regulatory region for those microorganisms, if desired. A coding sequence and a regulatory region are considered to be operably linked when the regulatory region and coding sequence are positioned so that the regulatory region is effective

for regulating transcription or translation of the sequence. Typically, the translation initiation site of the translational reading frame of the coding sequence is positioned between one and about fifty nucleotides downstream of the regulatory region for a monocistronic gene.

[00119] In many cases, the coding sequence for a polypeptide described herein is identified in a species other than the recombinant host, *i.e.*, is a heterologous nucleic acid. Thus, if the recombinant host is a microorganism, the coding sequence can be from other prokaryotic or eukaryotic microorganisms, from plants or from animals. In some case, however, the coding sequence is a sequence that is native to the host and is being reintroduced into that organism. A native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found. "Regulatory region" refers to a nucleic acid having nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and combinations thereof. A regulatory region typically comprises at least a core (basal) promoter. A regulatory region also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). А regulatory region is operably linked to a coding sequence by positioning the regulatory region and the coding sequence so that the regulatory region is effective for regulating transcription or translation of the sequence. For example, to operably link a coding sequence and a promoter sequence, the translation initiation site of the translational reading frame of the coding sequence is typically positioned between one and about fifty nucleotides downstream of the promoter. A regulatory region can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site, or about 2,000 nucleotides upstream of the transcription start site.

[00120] The choice of regulatory regions to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and preferential expression during certain culture stages. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. It will be understood that more than one

regulatory region may be present, *e.g.*, introns, enhancers, upstream activation regions, transcription terminators, and inducible elements.

[00121] One or more genes can be combined in a recombinant nucleic acid construct in "modules" useful for a discrete aspect of steviol and/or steviol glycoside production. Combining a plurality of genes in a module, particularly a polycistronic module, facilitates the use of the module in a variety of species. For example, a steviol biosynthesis gene cluster, or a UGT gene cluster, can be combined in a polycistronic module such that, after insertion of a suitable regulatory region, the module can be introduced into a wide variety of species. As another example, a UGT gene cluster can be combined such that each UGT coding sequence is operably linked to a separate regulatory region, to form a UGT module. Such a module can be used in those species for which monocistronic expression is necessary or desirable. In addition to genes useful for steviol or steviol glycoside production, a recombinant construct typically also contains an origin of replication, and one or more selectable markers for maintenance of the construct in appropriate species.

[00122] It will be appreciated that because of the degeneracy of the genetic code, a number of nucleic acids can encode a particular polypeptide; *i.e.*, for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino add. Thus, codons in the coding sequence for a given polypeptide can be modified such that optimal expression in a particular host is obtained, using appropriate codon bias tables for that host (e.g., microorganism). As isolated nucleic acids, these modified sequences can exist as purified molecules and can be incorporated into a vector or a virus for use in constructing modules for recombinant nucleic acid constructs.

[0003] In some cases, it is desirable to inhibit one or more functions of an endogenous polypeptide in order to divert metabolic intermediates towards steviol or steviol glycoside biosynthesis. For example, it may be desirable to downregulate synthesis of sterols in a yeast strain in order to further increase steviol or steviol glycoside production, e.g., by downregulating squalene epoxidase. As another example, it may be desirable to inhibit degradative functions of certain endogenous gene products, e.g., glycohydrolases that remove glucose moieties from secondary metabolites or phosphatases as discussed herein. In such cases, a nucleic acid that overexpresses the polypeptide or gene product may be included in a recombinant construct that is transformed into the strain. Alternatively, mutagenesis can be used to generate mutants in genes for which it is desired to increase or enhance function.

Host Microorganisms

[00123] Recombinant hosts can be used to express polypeptides for the producing steviol glycosides, including mammalian, insect, plant, and algal cells. A number of prokaryotes and eukaryotes are also suitable for use in constructing the recombinant microorganisms described herein, *e.g.*, gram-negative bacteria, yeast, and fungi. A species and strain selected for use as a steviol glycoside production strain is first analyzed to determine which production genes are endogenous to the strain and which genes are not present. Genes for which an endogenous counterpart is not present in the strain are advantageously assembled in one or more recombinant constructs, which are then transformed into the strain in order to supply the missing function(s).

[00124] Typically, the recombinant microorganism is grown in a fermenter at a defined temperature(s) for a desired period of time. The constructed and genetically engineered microorganisms provided by the invention can be cultivated using conventional fermentation processes, including, *inter alia*, chemostat, batch, fed-batch cultivations, semi-continuous fermentations such as draw and fill, continuous perfusion fermentation, and continuous perfusion cell culture. Depending on the particular microorganism used in the method, other recombinant genes such as isopentenyl biosynthesis genes and terpene synthase and cyclase genes may also be present and expressed. Levels of substrates and intermediates, *e.g.,* isopentenyl diphosphate, dimethylailyl diphosphate, GGPP, ent-kaurene and ent-kaurenoic acid, can be determined by extracting samples from culture media for analysis according to published methods.

[00125] Carbon sources of use in the instant method include any molecule that can be metabolized by the recombinant host cell to facilitate growth and/or production of the steviol glycosides. Examples of suitable carbon sources include, but are not limited to, sucrose (e.g., as found in molasses), fructose, xylose, ethanol, glycerol, glucose, cellulose, starch, cellobiose or other glucose-comprising polymer. In embodiments employing yeast as a host, for example, carbons sources such as sucrose, fructose, xylose, ethanol, glycerol, and glucose are suitable. The carbon source can be provided to the host organism throughout the cultivation period or alternatively, the organism can be grown for a period of time in the presence of another energy source, *e.g.*, protein, and then provided with a source of carbon only during the fed-batch phase.

[00126] After the recombinant microorganism has been grown in culture for the desired period of time, steviol and/or one or more steviol glycosides can then be recovered from the culture using various techniques known in the art. In some embodiments, a permeabilizing

agent can be added to aid the feedstock entering into the host and product getting out. For example, a crude iysate of the cultured microorganism can be centrifuged to obtain a supernatant. The resulting supernatant can then be applied to a chromatography column, *e.g.*, a C-18 column, and washed with water to remove hydrophilic compounds, followed by elution of the compound(s) of interest with a solvent such as methanol. The compound(s) can then be further purified by preparative HPLC. *See also*, WO 2009/140394.

[00127] It will be appreciated that the various genes and modules discussed herein can be present in two or more recombinant hosts rather than a single host. When a plurality of recombinant hosts is used, they can be grown in a mixed culture to accumulate steviol and/or steviol glycosides.

[00128] Alternatively, the two or more hosts each can be grown in a separate culture medium and the product of the first culture medium, e.g., steviol, can be introduced into second culture medium to be converted into a subsequent intermediate, or into an end product such as, for example, RebA. The product produced by the second, or final host is then recovered. It will also be appreciated that in some embodiments, a recombinant host is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.

[00129] Exemplary prokaryotic and eukaryotic species are described in more detail below. However, it will be appreciated that other species can be suitable. For example, suitable species can be in a genus such as Agaricus, Aspergillus, Bacillus, Candida, Corynebacteriurn, Eremothecium, Escherichia, Fusarium/Cibberella, Kluyveromyces, Laetiporus, Lentinus, Phaffia, Phanerochaete, Pichia, Physcomitrella, Rhodoturu!a, Saccharomyces, Schizosaccharomyces, Sphaceloma, Xanthophyllomyces or Yarrowia. Exemplary species from such genera include Lentinus tigrinus, Laetiporus sulphureus, Phanerochaete chrysosporium, Pichia pastoris, Cyberlindnera jadinii, Physcomitrella patens, Rhodoturula glutinis, Rhodoturula Phaffia Xanthophyllomyces mucilaginosa, rhodozyma, dendrorhous, Fusarium fujikuroi/Gibberella fujikuroi, Candida utilis, Candida glabrata, Candida albicans, and Yarrowia lipolytica.

[00130] In some embodiments, a microorganism can be a prokaryote such as *Escherichia* bacteria cells, for example, *Escherichia coli* cells; *Lactobacillus* bacteria cells; *Lactococcus* bacteria cells; *Cornebacterium* bacteria cells; *Acetobacter* bacteria cells; *Acinetobacter* bacteria cells; or *Pseudomonas* bacterial cells.

[00131] In some embodiments, a microorganism can be an Ascomycete such as *Gibberella fujikuroi, Kluyveromyces lactis, Schizosaccharomyces pombe, Aspergillus niger, Yarrowia lipolytica, Ashbya gossypii, or S. cerevisiae.*

[00132] in some embodiments, a microorganism can be an algal cell such as Blakeslea trispora, Dunaliella salina, Haematococcus pluvialis, Chlorella sp., Undaria pinnatifida, Sargassum, Laminaria japonica, Scenedesmus almeriensis species.

[00133] In some embodiments, a microorganism can be a cyanobacterial cell such as Blakeslea trispora, Dunaliella salina, Haematococcus pluvialis, Chlorella sp., Undaria pinnatifida, Sargassum, Laminaria japonica, Scenedesmus almeriensis.

Saccharomyces spp.

[00134] Saccharomyces is a widely used chassis organism in synthetic biology, and can be used as the recombinant microorganism platform. For example, there are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for S. *cerevisiae,* allowing for rational design of various modules to enhance product yield. Methods are known for making recombinant microorganisms.

<u>Aspergillus_spp.</u>

[001 35] Aspergillus **species** such as *A. oryzae, A. niger* and *A. sojae* are widely used microorganisms in food production and can also be used as the recombinant microorganism platform. Nucleotide sequences are available for genomes of *A. nidulans, A. fumigatus, A. oryzae, A. clavatus, A. flavus, A. niger,* and *A. terreus,* allowing rational design and modification of endogenous pathways to enhance flux and increase product yield. Metabolic models have been developed for *Aspergillus,* as well as transcriptomtc studies and proteomics studies. *A. niger* is cultured for the industrial production of a number of food ingredients such as citric acid and gluconic acid, and thus species such as *A. niger* are generally suitable for producing steviol glycosides.

<u>E. ∞ li</u>

[00136] *E. coli,* another widely used platform organism in synthetic biology, can also be used as the recombinant microorganism platform. Similar to *Saccharomyces,* there are libraries of mutants, plasmids, detailed computer models of metabolism and other information available for *E. coli,* allowing for rational design of various modules to enhance product yield. Methods

similar to those described above for *Saccharomyces* can be used to make recombinant *E. coli* microorganisms.

Agaricus. Gibberella, and Phanerochaete sop.

[00137] Agaricus, Gibberella, and Phanerochaete spp. can be useful because they are known to produce large amounts of isoprenoids in culture. Thus, the terpene precursors for producing large amounts of steviol glycosides are already produced by endogenous genes. Thus, modules comprising recombinant genes for steviol glycoside biosynthesis polypeptides can be introduced into species from such genera without the necessity of introducing mevalonate or MEP pathway genes.

Arxuia adeninivorans (Blastobotrys adeninivorans)

[00138] Arxuia adeninivorans is dimorphic yeast (it grows as budding yeast like the baker's yeast up to a temperature of 42°C, above this threshold it grows in a filamentous form) with unusual biochemical characteristics. It can grow on a wide range of substrates and can assimilate nitrate. It has successfully been applied to the generation of strains that can produce natural plastics or the development of a biosensor for estrogens in environmental samples.

Yarrowia lipolytica

[00139] Yarrowia lipolytica is dimorphic yeast (see Arxuia adeninivorans) and belongs to the family Hemiascomycetes. The entire genome of Yarrowia lipolytica is known. Yarrowia species is aerobic and considered to be non-pathogenic. Yarrowia is efficient in using hydrophobic substrates (*e.g.* aikanes, fatty acids, oils) and can grow on sugars. It has a high potential for industrial applications and is an oleaginous microorgamism. Yarrowia lipolyptica can accumulate lipid content to approximately 40% of its dry cell weight and is a model organism for lipid accumulation and remobilization. See *e.g.*, Nicaud, 2012, Yeast 29(10):409-18; Beopoulos *et al.*, 2009, *Biochimie* 91(6):692-6; Bankar *et al.*, 2009, *Appl Microbiol Biotechnol.* 84(5):847-65.

Rhodotorula so.

[00140] *Rhodotorula* is unicellular, pigmented yeast. The oleaginous red yeast, *Rhodotorula glutinis*, has been shown to produce lipids and carotenoids from crude glycerol (Saenge *et al.,* 201 1, *Process Biochemistry* 46(1):21 0-8). *Rhodotorula toruloides* strains have been shown to be an efficient fed-batch fermentation system for improved biomass and lipid productivity (Li *et al.,* 2007, *Enzyme and Microbial Technology* 41:31 2-7).

<u>Rhodosporidium</u> toruioides

[00141] *Rhodosporidium toruioides* is oleaginous yeast and useful for engineering iipidproduction pathways (See e.g. Zhu *et al.*, 2013, *Nature Commun.* 3:1 112; Ageitos *et al.*, 2011, *Applied Microbiology and Biotechnology* 90(4):1219-27).

Candida boidinii

[00142] Candida boidinii is methylotrophic yeast (it can grow on methanol). Like other methylotrophic species such as Hansenula polymorpha and Pichia pastoris, it provides an excellent platform for producing heterologous proteins. Yields in a multigram range of a secreted foreign protein have been reported. A computational method, IPRO, recently predicted mutations that experimentally switched the cofactor specificity of Candida boidinii xylose reductase from NADPH to NADH. See, e.g., Mattanovich et al., 2012, Methods Mol Biol. 824:329-58; Khoury et al., 2009, Protein Sci. 18(10):2125-38.

Hansenula polymorpha (Pichia anousta)

[00143] Hansenula polymorpha is methylotrophic yeast (see Candida boidinii). It can furthermore grow on a wide range of other substrates; it is thermo-tolerant and can assimilate nitrate (see also *Kluyveromyces lactis*). It has been applied to producing hepatitis B vaccines, insulin and interferon alpha-2a for the treatment of hepatitis C, furthermore to a range of technical enzymes. *See, e.g.,* Xu *et al.,* 2014, *Virol Sin.* 29(6):403-9.

Kluyveromyces lactis

[00144] *Kluyveromyces lactis* is yeast regularly applied to the production of kefir. It can grow on several sugars, most importantly on lactose which is present in milk and whey. It has successfully been applied among others for producing chymosin (an enzyme that is usually present in the stomach of calves) for producing cheese. Production takes place in fermenters on a 40,000 L scale. *See, e.g.,* van Ooyen *et al.,* 2006, *FEMS Yeast Res.* 6(3):381-92.

Pichia pastoris

[00145] *Pichia pastoris* is methylotrophic yeast (see *Candida boidinii* and *Hansenula polymorpha*). It provides an efficient platform for producing foreign proteins. Platform elements are available as a kit and it is worldwide used in academia for producing proteins. Strains have been engineered that can produce complex human N-glycan (yeast glycans are similar but not identical to those found in humans). *See, e.g.,* Piirainen *et al.,* 2014, *N Biotechnol.* 31(6):532-7.

Physcomitrella_spp.

[00146] *Physcomitrella mosses,* when grown in suspension culture, have characteristics similar to yeast or other fungal cultures. This genera can be used for producing plant secondary metabolites, which can be difficult to produce in other types of cells.

Steviol Glycoside Compositions

[00147] Steviol glycosides do not necessarily have equivalent performance in different food systems. It is therefore desirable to have the ability to direct the synthesis to steviol glycoside compositions of choice. Recombinant hosts described herein can produce compositions that are selectively enriched for specific steviol glycosides (e.g., RebD or RebM) and have a consistent taste profile. As used herein, the term "enriched" is used to describe a steviol glycoside composition with an increased proportion of a particular steviol glycoside, compared to a steviol glycoside composition (extract) from a stevia plant. Thus, the recombinant hosts described herein can facilitate the production of compositions that are tailored to meet the sweetening profile desired for a given food product and that have a proportion of each steviol glycoside that is consistent from batch to batch. In some embodiments, hosts described herein do not produce or produce a reduced amount of undesired plant by-products found in Stevia extracts. Thus, steviol glycoside compositions produced by the recombinant hosts described herein are distinguishable from compositions derived from Stevia plants.

[00148] The amount of an individual steviol glycoside (e.g., RebA, RebB, RebD, or RebM) accumulated can be from about 1 to about 7,000 mg/L, e.g., about 1 to about 10 mg/L, about 3 to about 10 mg/L, about 5 to about 20 mg/L, about 10 to about 50 mg/L, about 10 to about 100 mg/L, about 25 to about 500 mg/L, about 100 to about 1,500 mg/L, or about 200 to about 1,000 mg/L, at least about 1,000 mg/L, at least about 1,200 mg/L, at least about at least 1,400 mg/L, at least about 1,600 mg/L, at least about 1,800 mg/L, at least about 2,800 mg/L, or at least about 7,000 mg/L. In some aspects, the amount of an individual steviol glycoside can exceed 7,000 mg/L. The amount of a combination of steviol glycosides (e.g., RebA, RebB, RebD, or RebM) accumulated can be from about 1 mg/L to about 7,000 mg/L, e.g., about 200 to about 1,500, at least about 2,000 mg/L, at least about 3,000 mg/L, at least about 4,000 mg/L, at least about 5,000 mg/L, at least about 6,000 mg/L, or at least about 7,000 mg/L. In some aspects, the amount of a combination of steviol glycosides can exceed 7,000 mg/L. In general, longer culture times will lead to greater amounts of product. Thus, the recombinant microorganism can be cultured for from 1 day to 7 days, from 1 day to 5 days, from 3 days to 5 days, about 3 days, about 4 days, or about 5 days.

[00149] It will be appreciated that the various genes and modules discussed herein can be present in two or more recombinant microorganisms rather than a single microorganism. When a plurality of recombinant microorganisms is used, they can be grown in a mixed culture to produce steviol and/or steviol glycosides. For example, a first microorganism can comprise one or more biosynthesis genes for producing a steviol glycoside precursor, while a second microorganism comprises steviol glycoside biosynthesis genes. The product produced by the second, or final microorganism is then recovered. It will also be appreciated that in some embodiments, a recombinant microorganism is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.

[00150] Alternatively, the two or more microorganisms each can be grown in a separate culture medium and the product of the first culture medium, *e.g.*, steviol, can be introduced into second culture medium to be converted into a subsequent intermediate, or into an end product such as RebA. The product produced by the second, or final microorganism is then recovered. It will also be appreciated that in some embodiments, a recombinant microorganism is grown using nutrient sources other than a culture medium and utilizing a system other than a fermenter.

[00151] Steviol glycosides and compositions obtained by the methods disclosed herein can be used to make food products, dietary supplements and sweetener compositions. *See, e.g.,* WO 201 1/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328.

[00152] For example, substantially pure steviol or steviol glycoside such as RebM or RebD can be included in food products such as ice cream, carbonated beverages, fruit juices, yogurts, baked goods, chewing gums, hard and soft candies, and sauces. Substantially pure steviol or steviol glycoside can also be included in non-food products such as pharmaceutical products, medicinal products, dietary supplements and nutritional supplements. Substantially pure steviol or steviol glycosides may also be included in animal feed products for both the agriculture industry and the companion animal industry. Alternatively, a mixture of steviol and/or steviol glycosides can be made by culturing recombinant microorganisms separately, each producing a specific steviol or steviol glycoside, recovering the steviol or steviol glycoside in substantially pure form from each microorganism and then combining the compounds to obtain a mixture comprising each compound in the desired proportion. The recombinant microorganisms described herein permit more precise and consistent mixtures to be obtained compared to current Stevia products.

[00153] In another alternative, a substantially pure steviol or steviol glycoside can be incorporated into a food product along with other sweeteners, e.g. saccharin, dextrose, sucrose, fructose, erythritol, aspartame, sucralose, monatin, or acesulfame potassium. The weight ratio of steviol or steviol glycoside relative to other sweeteners can be varied as desired to achieve a satisfactory taste in the final food product. See, *e.g.*, U.S. 2007/0128311. In some embodiments, the steviol or steviol glycoside may be provided with a flavor (e.g., citrus) as a flavor modulator.

[00154] Compositions produced by a recombinant microorganism described herein can be incorporated into food products. For example, a steviol glycoside composition produced by a recombinant microorganism can be incorporated into a food product in an amount ranging from about 20 mg steviol glycoside/kg food product to about 1800 mg steviol glycoside/kg food product on a dry weight basis, depending on the type of steviol glycoside and food product. For example, a steviol glycoside composition produced by a recombinant microorganism can be incorporated into a dessert, cold confectionary (e.g., ice cream), dairy product (e.g., yogurt), or beverage (e.g., a carbonated beverage) such that the food product has a maximum of 500 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a baked good (e.g., a biscuit) such that the food product has a maximum of 300 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a sauce (e.g., chocolate syrup) or vegetable product (e.g., pickles) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism can be incorporated into a bread such that the food product has a maximum of 160 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a hard or soft candy such that the food product has a maximum of 1600 mg steviol glycoside/kg food on a dry weight basis. A steviol glycoside composition produced by a recombinant microorganism, plant, or plant cell can be incorporated into a processed fruit product (e.g., fruit juices, fruit filling, jams, and jellies) such that the food product has a maximum of 1000 mg steviol glycoside/kg food on a dry weight basis. In some embodiments, a steviol glycoside composition produced herein is a component of a pharmaceutical composition. See, e.g., Steviol Glycosides Chemical and Technical Assessment 69th JECFA, 2007, prepared by Harriet Wailin, Food Agric. Org.; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), "Scientific Opinion on the safety of steviol glycosides for the proposed uses as a food additive," 2010, EFSA Journal 8(4): 1537;

U.S. Food and Drug Administration GRAS Notice 323; U.S Food and Drug Administration GRAS Notice Notice 329; WO 201 1/037959; WO 2010/146463; WO 201 1/046423; and WO 2011/056834.

[001 55] For example, such a steviol glycoside composition can have from 90-99 weight % RebA and an undetectable amount of stevia plant-derived contaminants, and be incorporated into a food product at from 25-1600 mg/kg, *e.g.*, 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1 000 mg/kg on a dry weight basis.

[00156] Such a steviol glycoside composition can be a RebB-enriched composition having greater than 3 weight % RebB and be incorporated into the food product such that the amount of RebB in the product is from 25-1600 mg/kg, *e.g.*, 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1 000 mg/kg on a dry weight basis. Typically, the RebB-enriched composition has an undetectable amount of stevia plant-derived contaminants.

[001 57] Such a steviol glycoside composition can be a RebD-enriched composition having greater than 3 weight % RebD and be incorporated into the food product such that the amount of RebD in the product is from 25-1600 mg/kg, *e.g.*, 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebD-enriched composition has an undetectable amount of stevia plant-derived contaminants.

[00158] Such a steviol glycoside composition can be a RebE-enriched composition having greater than 3 weight % RebE and be incorporated into the food product such that the amount of RebE in the product is from 25-1600 mg/kg, *e.g.*, 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebE-enriched composition has an undetectable amount of stevia plant-derived contaminants.

[00159] Such a steviol glycoside composition can be a RebM-enriched composition having greater than 3 weight % RebM and be incorporated into the food product such that the amount of RebM in the product is from 25-1600 mg/kg, e.g., 100-500 mg/kg, 25-100 mg/kg, 250-1000 mg/kg, 50-500 mg/kg or 500-1000 mg/kg on a dry weight basis. Typically, the RebM-enriched composition has an undetectable amount of stevia plant-derived contaminants.

[00160] In some embodiments, a substantially pure steviol or steviol glycoside is incorporated into a tabletop sweetener or "cup-for-cup" product. Such products typically are diluted to the appropriate sweetness level with one or more bulking agents, *e.g.*, maltodextrins, known to those skilled in the art. Steviol glycoside compositions enriched for RebA, RebB, RebD, RebE, or RebM, can be package in a sachet, for example, at from 10,000 to 30,000 mg

steviol glycoside/kg product on a dry weight basis, for tabletop use. In some embodiments, a steviol glycoside produced *in vitro, in vivo,* or by whole cell byconversion

[00161] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

[00162] The Examples that follow are illustrative of specific embodiments of the invention, and various uses thereof. They are set forth for explanatory purposes only, and are not to be taken as limiting the invention.

Example 1. LC-MS Analytical Procedures

[00163] Three LC-MS procedures were used herein. In the first method used for Examples 2-6, LC-MS analyses were performed using an Ultimate 3000 UPLC system (Dionex) fitted with a Waters Acquity UPLC ®BEH shield RP18 column (2.1 x 50 mm, 1.7 μm particles, 130 Å pore size) connected to a TSQ Quantum Access (ThermoFisher Scientific) triple quadropole mass spectrometer with a heated electrospray ion (HESI) source. Elution was carried out using a mobile phase of eluent B (MeCN with 0.1% formic acid) and eluent A (water with 0.1% formic acid) by increasing the gradient from 25% to 47% B from min 0.0 to 4.0, increasing 47% to 100% B from min 4.0 to 5.0, and holding 100% B from min 5.0 to 6.5. The flow rate was 0.4 mL/min and the column temperature 35°C. Steviol glycosides were detected using SIM (Single Ion Monitoring) with the following m/z-traces.

Description	Exact Mass	m/z trace (Da)	compound (typical <i>t_R</i> in min)
Steviol + 1 Glucose	[M+H] ⁺ 481.2796 [M+Na] ⁺ 503.2615	481.2±0.5 503.1±0.5	19-SMG (2.29), 13-SMG (3.5)
Steviol + 2 Glucose	[M+Na] ⁺ 665.3149	665± 0.5	Rubusoside (2.52) Steviol-1,2-bioside (2.92) Steviol-1,3-bioside (2.28)
Steviol + 3 Glucose	[M+Na] ⁺ 827.3677	827.4 ± 0.5	1,2-Stevioside (2.01) 1,3-Stevioside (2.39) Rebaudioside B (2.88)
Steviol + 4 Glucose	[M+Na] ⁺ 989.4200	989.4 ± 0.5	Rebaudioside A (2.0)
Steviol + 5 Glucose	[M+Na] ⁺ 1151.4728	1151.4 ± 0.5	Rebaudioside D (1.1)
Steviol +	[M+Na] ⁺ 1313.5257	1313.5 ± 0.5	Rebaudioside M (1.3)

Table 1A: LC-MS analytical	l information for	or Steviol	Glycosides.
----------------------------	-------------------	------------	-------------

Description	Exact Mass	m/z trace (Da)	compound (typical <i>t_R</i> in min)
6 Glucose			

[001 64] in the second method used for Examples 7, 8, and 10, LC-MS analyses were performed on Waters ACQUITY UPLC (Waters Corporation, Milford, MA) with coupled to a Waters ACQUITY ESI (electrospray ionization)-TQD triple quadropole mass spectrometer. Compound separation was achieved on Waters ACQUITY UPLC® BEH C18 column (2.1 x 50 mm, 1.7 pm particles, 130 Å pore size) equipped with ACQUITY UPLC BEH C18 VanGuard pre-column (130 Å, 1.7 pm, 2.1 mm X 5 mm) by using a gradient of the two mobile phases: A (Water with 0.1% formic acid) and B (Acetonitrile with 0.1% formic acid)increasing B from 20% to 50% between 0.3 to 2.0 min up to 100% at 2.01 min, holding to 100% for 0.6 min, and re-equilibrating for 0.6 min. The flow rate was 0.6 m l/ min, and the column temperature was 55°C. The MS acquisition was in negative ion-mode using SIM mode (Single Ion Monitoring). Stevioi glycoside quantification was done by comparison with authentic standards.

Compound	m/z trace (Da)	Retention time (min)
RebE	965.42	1.06
RebD	1127.48	1.09
RebM	1289.53	1.15
RebA	965.42	1.43
1,3-Stevioside	803.37	1.60
Rubusoside	641.32	1.67
RebB	803.37	1.76
1,2-bioside	641.32	1.77
13-SMG	479.26	2.04

Table 1B: MS analytical information for Steviol Glycosides.

[00165] in the third method used for Example 9, LC-MS analyses were performed on Waters ACQUITY UPLC (Waters Corporation, Milford, MA) using a Waters Acquity UPLC® BEH C18 column (2.1 x 50 mm, 1.7 pm particles, 130 A) coupled to a Waters single quadropole mass spectrometer (SQD), equipped with an ESI and operated in negative mode. Compound separation was achieved by a gradient of the two mobile phases: A (water with 0.1% formic acid) and B (acetonitrile with 0.1% formic acid) by increasing from 60% to 100% B between 0.3 to 2.5 min, holding 100% B for 0.1 min, and re-equilibrating for 0.2 min. The flow rate was 0.6 m L min, and the column temperature was set at 55°C. Steviol or ent-kaurenoic acid was

monitored using SIM (Single Ion Monitoring) and quantified by comparing with authentic standards.

Compound	m/z trace (Da)	Retention time (min)
Steviol	317.21	0.61
Ent-kaurenoic acid	301.001	1.46

Table 1C: MS analytical information for steviol and ent-kaurenoic acid.

Example 2. Construction of Steviol Glycoside-Producing and RebB-Producing Yeast Strains

Steviol glycoside-producing S. cerevisiae strains were constructed as described in [00166] WO 201 1/153378, WO 2013/022989, WO 2014/122227, and WO 2014/122328. For example, a yeast strain comprising a recombinant gene encoding a Synechococcus sp. GGPPS (SEQ ID NO:49) polypeptide, a recombinant gene encoding a truncated Zea mays CDPS (SEQ ID NO:37) polypeptide, a recombinant gene encoding an A. thaliana KS (SEQ ID NO:6) polypeptide, a recombinant gene encoding an S. rebaudiana KO (SEQ ID NO:59, SEQ ID NO:79) polypeptide, a recombinant gene encoding an A. thaliana ATR2 (SEQ ID NO:51, SEQ ID NO:87) polypeptide, a recombinant gene encoding an O. sativa EUGT1 1 (SEQ ID NO:86) polypeptide, a recombinant gene encoding an SrKAHel (SEQ ID NO:18, SEQ ID NO:68) polypeptide, a recombinant gene encoding an S. rebaudiana CPR8 (SEQ ID NO:24, SEQ ID NO:28) polypeptide, a recombinant gene encoding an S. rebaudiana UGT85C2 (SEQ ID NO:30) polypeptide, a recombinant gene encoding an S. rebaudiana UGT74G1 (SEQ ID NO:29) polypeptide, a recombinant gene encoding an S, rebaudiana UGT76G1 (SEQ ID NO:2) polypeptide, and a recombinant gene encoding an S. rebaudiana UGT91D2 variant, UGT91D2e-b (SEQ ID NO:88), polypeptide accumulated steviol glycosides.

[00167] The UGT91D2e-b variant of UGT91D2 (SEQ ID NO:5 from PCT/US2012/050021) includes a substitution of a methionine for leucine at position 211 and a substitution of an alanine for valine at position 286. Additional variants can include variants (except T144S, M152L, L213F, S364P, and G384C variants) described in Table 14 and Example 11 of the PCT/US2012/050021. GeneArt codon-optimized sequence encoding a S. *rebaudiana* UGT91D2e-b with the amino acid modifications L21 1M and V286A (SEQ ID NO:88 for amino acid sequence; codon optimized nucleotide sequence is set forth in SEQ ID NO:89) and

expressed from the native yeast TDH3 promoter and followed by the native yeast CYC1 terminator.

[00168] Cells were grown in Synthetic Complete (SC) medium at 30°C for 5 days with shaking (400 rpm for deep wells and 200 rpm for 15 ml_ Falcon growth tubes) prior to harvest. Culture samples (without cell removal) were heated in the presence of DMSO for detection of total glycoside levels with LC-MS. The strain accumulated total amounts of RebD of over 2500 mg/L, total amounts of RebM of over 2500 mg/L, and total amounts of RebA of over 700 mg/L. See WO 2014/122227.

[00169] A separate *S. cerevisiae* strain was constructed to accumulate RebB. This strain comprised a recombinant gene encoding a *Synechococcus sp.* GGPPS (SEQ ID NO:49) polypeptide, a recombinant gene encoding an *truncated Z. mays* CDPS (SEQ ID NO:37) polypeptide, a recombinant gene encoding an *A. thaliana* KS (SEQ ID NO:6) polypeptide, a recombinant gene encoding an *A. thaliana* KS (SEQ ID NO:6) polypeptide, a recombinant gene encoding an *A. thaliana* KS (SEQ ID NO:79) polypeptide, a recombinant gene encoding an *A. thaliana* ATR2 (SEQ ID NO:51, SEQ ID NO:87) polypeptide, a recombinant gene encoding an O. *sativa* EUGT1 1 (SEQ ID NO:86) polypeptide, a recombinant gene encoding an S. *rebaudiana* CPR8 (SEQ ID NO:68) polypeptide, a recombinant gene encoding an *S. rebaudiana* CPR8 (SEQ ID NO:24, SEQ ID NO:30) polypeptide, a recombinant gene encoding an *S. rebaudiana* UGT85C2 (SEQ ID NO:30) polypeptide, a recombinant gene encoding an *S. rebaudiana* UGT76G1 (SEQ ID NO:22) polypeptide, and a recombinant gene encoding an *S. rebaudiana* UGT76G1 (SEQ ID NO:22) polypeptide, and a recombinant gene encoding an *S. rebaudiana* UGT91D2 variant, UGT91D2e-b (SEQ ID NO:88), polypeptide accumulated steviol glycosides.

Example 3. Steviol Glycoside Production in Yeast Strains Expressing KO Genes

[00170] To determine whether increased levels of ent-kaurenoic acid improve steviol glycoside production, the activity of KO genes from various species were analyzed. Putative KO genes were identified using the NCBi Basic Local Alignment Sequence Search Tool (BLAST). Genes encoding KO polypeptides were cloned and expressed the RebB-producing *S. cerevisiae* strain described in Example 2, which was modified to lack KO genes. Thus, RebB was only accumulated upon expression of a functional KO.

[00171] Two KO polypeptides identified by the amino acid sequences set forth in SEQ ID NO:54 (nucleotide sequence set forth in SEQ ID NO:55) and SEQ ID NO:75 (nucleotide sequences set forth in SEQ ID NO:56) were found to accumulate higher levels of RebB than

SrKOI (nucleotide sequence set forth in SEQ ID NO:59, amino acid sequences set forth in SEQ ID NO:79) in the RebB-producing strain. RebB levels (μ M/00 ₆₀0) are shown in Figure 3.

[00172] Expression of genes (SEQ ID NO:55 or SEQ ID NO:56) encoding KO polypeptides in an S. *cerevisiae* steviol glycoside-producing strain also resulted in accumulation of ent-kaurenoic acid (Figure 4). Expression of a gene encoding a codon-optimized KO polypeptide (SEQ ID NO:57) and a gene encoding the KO polypeptide set forth in SEQ ID NO:70 also resulted in accumulation of ent-kaurenoic acid. However, expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79) did not result in measurable levels of ent-kaurenoic acid. Thus, the KO polypeptides encoded by nucleotide sequences set forth in SEQ ID NOs: 55-57 more efficiently converted ent-kaurenoi, and/or ent-kaurenal to ent-kaurenoic acid in S. *cerevisiae,* as compared to the SrKOI polypeptide encoded by nucleotide sequence set forth in SEQ ID NO:59.

Example 4. Steviol Glycoside Production in Yeast Strains Expressing KO Genes and Further Overexpressing SrKAHel

[00173] Cloned KO genes were individually expressed in a steviol glycoside-producing *S. cerevisiae* strain. The S. *cerevisiae* strain described in Example 2, which expresses SrKOI (SEQ ID NO:59, SEQ ID NO:79), was modified to comprise overexpress SrKAHeI (SEQ ID NO:18, SEQ ID NO:68). The coding sequences of the KO genes tested, as well as their corresponding amino acid sequences, are set forth in Table 2. The sequences set forth in SEQ ID NOs: 55, 57, 58, 59, and 60 were codon-optimized for expression in S. *cerevisiae*.

Table 2: KO Genes Expressed in Steviol Glycoside-Producing S. *cerevisiae* strain that Further Overexpresses SrKAHel.

KO Nucleotide Sequence	Corresponding KO Amino Acid Sequence
SEQ ID NO:55	SEQ ID NO:54
SEQ ID NO:56	SEQ ID NO:75
SEQ ID NO:57	SEQ ID NO:70
SEQ ID NO:58	SEQ ID NO:71
SEQ ID NO:59	SEQ ID NO:79
SEQ ID NO:60	SEQ ID NO:72

[00174] S. cerevisiae strains co-expressing any of the heterologous nucleic acids encoding a KO enzyme of Table 2 and further overexprssing SrKAHel (SEQ ID NO:18, SEQ ID NO:68)

accumulated higher levels of steviol glycosides than the control S. *cerevisiae* strain (not expressing a KO of Table 2) or a steviol glycoside-producing S. *cerevisiae* strain only overexpressing SrKAHel, as shown in Figure 5. A steviol glycoside-producing *S. cerevisiae* strain expressing a codon-optimized version of SEQ ID NO:56, identified herein as SEQ ID NO:65, and overexpressing SrKAHel accumulated higher levels of steviol glycosides (RebA, RebD, and RebM) than the steviol glycoside-producing *S. cerevisiae* strain co-expressing the nucleic acid set forth in SEQ ID NO:56 and SrKAHel (Figure 6).

[001 75] Additionally, *S, cerevisiae* strains co-expressing a nucleic acid set forth in SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, or SEQ ID NO:60 and further overexpressing SrKAHel accumulated higher levels of glycosylated ent-kaurenoic acid than the control *S. cerevisiae* strain not expressing a KO of Table 2 (Figure 7).

[00176] As well, S. *cerevisiae* strains co-expressing a nucleic acid set forth in SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, or SEQ ID NO:60 and further overexpressing SrKAHeI demonstrated improved metabolic conversion of intermediate compound, ent-kaurenol, which, in turn, resulted in reduced accumulation of glycosylated ent-kaurenol, relative to the control *S. cerevisiae* strain not expressing a KO of Table 2 or the steviol glycoside-producing *S. cerevisiae* strain only overexpressing SrKAHeI, as shown in Figure 8. The control *S. cerevisiae* strain and the steviol glycoside-producing *S. cerevisiae* strain only overexpressing SrKAHeI, as shown in Figure 8. The control *S. cerevisiae* strain and the steviol glycoside-producing *S. cerevisiae* strain only overexpressing SrKAHeI each accumulated higher leveis of glycosylated ent-kaurenol than did S. *cerevisiae* strains expressing a nucleic acid set forth in SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, or SEQ ID NO:60 and further overexpressing SrKAHeI.

Example 5. Steviol Glycoside Production in Yeast Strains Expressing CPR Genes

[00177] Cloned CPR genes were individually expressed in a steviol glycoside-producing S. *cerevisiae* strain. The steviol glycoside-producing *S. cerevisiae* strain described in Example 2, which expresses S. *rebaudiana* CPR8 (SEQ ID NO:24, SEQ ID NO:28) and *A. thaliana* ATR2 (SEQ ID NO:51), was modified to co-express a nucleic acid encoding a CPR of Table 3. The coding sequences of the CPR genes tested, as well as their corresponding amino acid sequences, are set forth in Table 3.

Table 3: CPR Genes Tested in	Combination with CPR8	and ATR2.
Gene	Nucleotide Sequence	Amino Acid Sequence

S. rebaudiana CPR1	SEQ ID NO:61	SEQ ID NO:76
S. rebaudiana CPR7	SEQ ID NO:23	SEQ ID NO:69
CPR4497	SEQ ID NO:62	SEQ ID NO:74

[00178] As shown in Figure 9, expression of CPR1 (SEQ ID NO:61, SEQ ID NO:76) or of CPR7 (SEQ ID NO:23, SEQ ID NO:69) in the steviol glycoside-producing S. *cerevisiae* strain already expressing *S. rebaudiana* CPR8 (SEQ ID NO:24, SEQ ID NO:28) and *A. thaliana* ATR2 (SEQ ID NO:51) resulted in higher levels of RebM than those accumulated by the control steviol glycoside-producing S. *cerevisiae* strain not expressing CPR1 or CPR7. As well, a steviol glycoside-producing *S. cerevisiae* strain expressing the nucleic acid set forth in SEQ ID NO:62 and overexpressing SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) accumulated higher levels of RebM than those accumulated by the control steviol glycoside-producing S. *cerevisiae* strain expressing the nucleic acid set forth in SEQ ID NO:62 and overexpressing SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) accumulated higher levels of RebM than those accumulated by the control steviol glycoside-producing S. *cerevisiae* strain that only overexpressed SrKAHeI (Figure 10).

Example 6. Steviol Glycoside Production in Yeast Strains Co-Expressing KO and CPR Genes

[00179] Steviol glycoside production was tested in the RebB-producing *S. cerevisiae* strain described in Example 2, which was modified to co-express a KO gene of Table 4 and a CPR of Table 5.

Gene	Nucleotide Sequence	Amino Acid Sequence
SrKO1	SEQ ID NO:59	SEQ ID NO:79
Codon-optimized KO	SEQ ID NO:63	SEQ ID NO:77
Codon-optimized KO	SEQ ID NO:64	SEQ ID NO:78

	Table 4: KO Genes	Tested in	Combination	with	CPR Genes.
--	-------------------	-----------	-------------	------	------------

Table 5: CPR	Genes	Tested in	Combination	with	ко	Genes.
	001100		•••••••••••••			

Nucleotide Sequence	Amino Acid Sequence
SEQ ID NO:66	SEQ ID NO:73
SEQ ID NO:67	SEQ ID NO:22

[00180] As shown in Figure 12, co-expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79) and either of the CPR genes of Table 5 in the RebB-producing strain resulted in higher production of 13-SMG and RebB than co-expression of a nucleic acid set forth in SEQ ID NO:63 or SEQ ID NO:64 and either of the cytochrome P450 genes of Table 5.

Example 7. Steviol Glycoside Production in Yeast Strains Expressing KAH Genes

[00181] Candidate KAH enzymes were cloned and expressed in an S. *cerevisiae* strain engineered to accumulate 13-SMG. The 13-SMG-producing S. *cerevisiae* strain comprised a recombinant gene encoding a Synechococcus sp. GGPPS7 polypeptide (SEQ ID NO:49), a recombinant gene encoding a truncated *Z. mays* CDPS polypeptide (SEQ ID NO:37), a recombinant gene encoding an *A. thaliana* KS polypeptide (SEQ ID NO:6), SrKOI (SEQ ID NO:59, SEQ ID NO:79), CPR8 (SEQ ID NO:24, SEQ ID NO:28), the KO encoded by the nucleotide sequence set forth in SEQ ID NO:56 (amino acid sequence set forth in SEQ ID NO:75), and UGT85C2 (SEQ ID NO:30) chromosomally integrated in separate expression cassettes (Figure 11B). The strain lacked SrKAHeI (SEQ ID NO:18, SEQ ID NO:68); thus, 13-SMG was only accumulated upon transformation of the **S.** *cerevisiae* strain with a functional KAH (Figure 11B).

[001 82] Transformants were grown in SC-URA medium for 4 days and extracted with 1:1 with DMSO at 80°C for 10 min. The extracts were analyzed by LC-MS (method 2 of Example 1). **S.** *cerevisiae* transformed with the nucleic acid set forth in SEQ ID NO:80 accumulated 13-SMG (Figure 11B). Thus, the protein encoded by SEQ ID NO:80, set forth in SEQ ID NO:82, is a KAH.

[00183] The KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 was codon-optimized for expression in yeast (SEQ ID NO:81) and expressed in the above-described 13-SMG-producing *S. cerevisiae* strain. Similar to expression of SrKAHeI (SEQ ID NO:18) or the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80, expression of the codon-optimized nucleotide sequence set forth in SEQ ID NO:81 resulted in production of 13-SMG plus rubusoside (Figure 13).

[00184] The KAHs encoded by the nucleotide sequence set forth in SEQ ID NO:80 and the codon-optimized nucleotide sequence set forth in SEQ ID NO:81 were also individually expressed in a steviol glycoside-producing strain, as described in Example 2, which expresses SrKAHeI. Production of 13-SMG was increased upon overexpression of SrKAHeI (SEQ ID NO:18), of the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80, or of the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:81, as compared to a control strain not expressing the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:80, the sequence set forth sequence set forth in SEQ ID NO:80, the sequence set forth

in SEQ ID NO:81, or overexpressing SrKAHel. See Table 6. Expression of either the KAH encoded by the nucleotide sequence set forth in SEQ ID NO:80 or the KAH encoded by the codon-optimized nucleotide sequence set forth in SEQ ID NO:81 resulted in higher steviol glycoside production (13-SMG + 1,2-bioside + rubusoside + RebB + RebA + RebD + RebM) than either the control strain or the S. *cerevisiae* strain overexpressing SrKAHel (SEQ ID NO:18). See Table 6.

Table 6: Quantification of Steviol Glycosides Accumulated by Yeast Expressing KAH Genes.

	Control (µM)	Overexpression of SrKAHe1 (encoded by the nucleotide set forth in SEQ ID NO:18) (µM)	SrKAHe1 + KAH (encoded by the nucleotide set forth in SEQ ID NO:80) (µM)	SrKAHe1 + KAH (encoded by the nucleotide sequence set forth in SEQ ID NO:81)
13-SMG	67.6	85.5	153.8	(μ Μ) 130.5
Steviol-1,2-bioside	0.4	0.3	0.4	0.4
Rubusoside	1.2	1.0	1.4	1.1
RebB	8.6	7.6	9.6	9.6
RebA	30.7	26.0	26.8	28.7
RebD	36.2	27.6	32.9	36.5
RebM	138.3	118.9	100.0	90.3
Sum	282.7	266.2	324.0	296.7

Example 8. Steviol Glycoside Production in Yeast Strain Expressing KAH Gene of the CYP72A219 family

[001 85] A nucleic acid of SEQ ID NO:90, which was codon-optimized for expression in *S. cerevisiae* and encodes the polypeptide of SEQ ID NO:91, was cloned and expressed in an *S. cerevisiae* strain described in Example 7, which was engineered to accumulate 13-SMG. The 13-SMG-producing S. *cerevisiae* strain comprised a recombinant gene encoding a *Synechococcus sp.* GGPPS7 polypeptide (SEQ ID NO:49), a recombinant gene encoding a truncated *Z. mays* CDPS polypeptide (SEQ ID NO:37), a recombinant gene encoding an *A. thaliana* KS polypeptide (SEQ ID NO:6), SrKOI (SEQ ID NO:59, SEQ ID NO:79), CPR8 (SEQ ID NO:24, SEQ ID NO:28), the KO encoded by the nucleotide sequence set forth in SEQ ID NO:56 (amino acid sequence set forth in SEQ ID NO:75), and UGT85C2 (SEQ ID NO:30) chromosoma!ly integrated in separate expression cassettes.

[00186] Transformants were grown in SC-URA medium for 4 days and extracted 1:1 with DMSO at 80°C for 10 min. The extracts were analyzed by LC-MS (method 2 of Example 1). S. *cerevisiae* transformed with the nucleic acid set forth in SEQ ID NO:90 accumulated 13-SMG as well as rubusoside (Table 7). Thus, the protein encoded by the nucleic acid sequence of SEQ ID NO:90, set forth in SEQ ID NO:91, is a KAH.

Table 7: Quantification of Steviol Glycosides Accumulated by Yeast Expressing the KAH encoded by the Nucleotide Sequence Set Forth in SEQ ID NO:90 (Amino Acid Sequence Set Forth in SEQ ID NO:91).

	13-SMG (μM)	Rubusoside (µM)
KAH (encoded by the	4.3 ± 0.1	0.2 ± 0.0
nucleotide sequence set forth		
in SEQ ID NO:90)		
ing a second sec		

Example 9. Determination of CPR1 and CPR12 Activity

[00187] Activity of CPR1 and CPR12 were measured using an *in vitro* microsomal assay. Microsomes were prepared by a modified version of the method taught by Pompon *et al.*, "Yeast expression of animal and plant P450s in optimized redox environments," Methods Enzymol. 272:51-64 (1996). S. *cerevisiae* cells were sedimented for 10 min at 4°C. The pellets were washed with 10 mL TEK buffer (50 mM Tris-HCI (pH 7.5), 1 mM EDTA, 100 mM KCI.) The cells were sedimented again for 10 min at 4°C, and the pellets were resuspended in 1-3 mL of TES2 buffer (50 mM Tri-HCI (pH 7.5) 1 mM EDTA, 600 mM sorbitol). Glass beads (425-600 microns) were added to the samples, and the cells were broken vigorously by shaking and vortexing for 5 min at 4°C. The supernatant was collected, and the beads were washed several times with TES2 buffer. The washes were combined with the supernatant, and the samples were centrifuged for 15 min at 4°C to remove unbroken cells and glass beads. Samples were then ultracentrifuged for 1 h at 4°C. The pellets were washed twice with TES buffer (50 mM Tris-HCI (pH 7.5), 1 mM EDTA, 30% (V/V) glycerol). The samples were resuspended in 1-3 mL 7EG, and the pellets were homogenized.

[001 88] Wild-type control microsomal protein was prepared as described above from wild-type *S. cerevisiae* cells that did not comprise a heterologous KAH or CPR. Microsomal protein

was also prepared from *S. cerevisiae* cells expressing i) SrKAHel (SEQ ID NO:18, SEQ ID NO:68), ii) SrKAHel (SEQ ID NO:18, SEQ ID NO:68) and CPR1 (SEQ ID NO:61, SEQ ID NO:76), or iii) SrKAHel (SEQ ID NO:18, SEQ ID NO:68) and CPR12 (SEQ ID NO:97, SEQ ID NO:98) from a genetic construct integrated at the chromosome level. Microsomal protein from a steviol glycoside-producing strain was prepared from *S. cerevisiae* cells expressing the genes described in Example 2 and additionally comprising codon-optimized CPR1 from *S. rebaudiana* (SEQ ID NO:61 corresponding to amino acid sequence SEQ ID NO:76) as well as the KO encoded by SEQ ID NO:75).

[00189] CPR1 and CPR12 activities were first determined using a cytochrome C reductase assay kit (Sigma-Aldrich; CY0100-1KT) to measure the ability of CPR1 or CPR12 to reduce cytochrome C in the presence of NADPH in vitro. Reduction of cytochrome C resulted in an increase in absorbance at 550 nm, which could quantified spectrophotometrically. Working solution was prepared by adding 9 mg cytochrome C to 20 mt_ assay buffer, and solution was stored at 25°C until use. NADPH was diluted in H₂0 to a concentration of 0.85 mg/mL. Final reaction volumes were 1.1 mL (950 μ LL working solution (0.43 mg cytochrome C), 28 μ L enzyme dilution buffer, 100 µL NADPH solution (0.085 mg NADPH), 20µL/L cytochrome C oxidase inhibitor, 2µLL microsomal protein.) Blank samples did not comprise microsomal protein and were prepared with 950 LL working solution (0.43 mg cytochrome C), 30 LL enzyme dilution buffer, 100 µL. NADPH solution (0.085 mg NADPH), and 20 µL cytochrome C oxidase inhibitor. The spectrophotometer was blanked with all components added to the reactions except for NADPH. The enzymatic reactions were initiated by addition of NADPH, the samples were thoroughly mixed by pipetting, and absorbance was measured at 550 nm for 70 s with 10 s intervals between reads. Two independent rate measurements were taken for each microsomal preparation, and rates were averaged for calculation of specific activity. After the reactions were completed, results were normalized to protein concentration, which was measured using a standard BCA assay (Thermo Scientific).

[00190] Units/mL was calculated using the following equation, where ΔA_{550} /min represents the change in absorbance at 550 nm during the absorbance reading period, 1.1 represents the reaction volume in mL, and 21.1 represents the extinction coefficient for reduced cytochrome c:

Units/mL = $(\Delta A_{550}/\text{min x} \text{ dilution factor x } 1.1) / (21.1 \text{ x enzyme volume})$

[00191] The units/mL value of each sample was divided by its respective microsomal protein concentrations to calculate CPR activity in units/mg. Figure 14 shows the activity measurements of the i) SrKAHel (SEQ ID NO:18, SEQ ID NO:68), ii) SrKAHel (SEQ ID NO:18,

SEQ ID NO:68) and CPR1 (SEQ ID NO:61, SEQ ID NO:76), and iii) SrKAHel (SEQ ID NO: 18, SEQ ID NO:68) and CPR12 (SEQ ID NO:97, SEQ ID NO:98) microsomal samples.

[001 92] The microsomal preparation from the wild-type control showed only minimal CPR activity, reflecting the low activity of native NCP1 (YHR042W). Likewise, the microsomal preparation from a yeast strain overexpressing KAHel did not demonstrate an increase in CPR activity. In contrast, microsomal preparation from strains expressing SrKAHel (SEQ ID NO:18, SEQ ID NO:68) and CPR1 (SEQ ID NO:61, SEQ ID NO:76) or SrKAHel (SEQ ID NO:18, SEQ ID NO:68) and CPR12 (SEQ ID NO:97, SEQ ID NO:98) demonstrated high CPR activity, with 7-and 14-fold higher activity, respectively, compared to the negative control (Figure 14).

[00193] In a separate experiment, formation of steviol and consumption of ent-kaurenoic acid in microsomes, as prepared above, were measured. 33 μ M ent-kaurenoic acid, 10 mM NADPH, and 10 μ L of microsomal protein in 50 mM phosphate buffer (pH 7.5) were incubated for 30 min at 30°C in a total reaction volume of 100 μ L. Control reactions were extracted immediately after addition of all the reaction components, which were mixed on ice and aliquoted prior to incubation. Steviol and ent-kaurenoic acid ievels were quantified using the second LC-MS procedure described in Example 1. For steviol quantification, the microsomal reactions were extracted with DMSO (1:1) at 80°C for 10 min and submitted for LC-MS analysis after centrifugation. For ent-kaurenoic acid quantification the microsomes reactions were extracted with acetonitrile 1:4 (20% microsomal reaction and 80% acetonitrile) at 80°C for 10 min and after centrifugation submitted for LC-MS analysis. The AUC values obtained for the entkaurenoic acid measurements were converted to concentrations using a standard curve.

[00194] As shown in Figure 15A, microsomal protein prepared from an *S. cerevisiae* strain expressing SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) and either CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) converted ent-kaurenoic acid to steviol during the 30 minute incubation period. The steviol level shown in Figure 15A for the steviol-glycoside-producing strain control (extracted immediately with no 30 min incubation period) corresponds to steviol that was accumulated by the strain prior to microsomal preparation and that had co-purified with the microsomes. As shown in Figure 15B, ent-kaurenoic acid levels decreased upon incubation with microsomal protein prepared from *S. cerevisiae* strains expressing SrKAHeI (SEQ ID NO:18, SEQ ID NO:68) alone or in combination with CPR1 (SEQ ID NO:61, SEQ ID NO:76) or CPR12 (SEQ ID NO:97, SEQ ID NO:98). The increased ent-kaurenoic acid levels shown in Figure 15B for the steviol glycoside-producing strain microsomal sample incubated for 30 min corresponds to ent-kaurenoic acid that was accumulated by the

strain prior to microsomal preparation and to ent-kaurenoic acid accumulated from ent-kaurene that had co-purified with the microsomes. The levels of ent-kaurenoic acid shown in Figure 15B were corrected for the dilution factor used.

Example 10. Steviol Glycoside Production in *S. cerevisiae* strains comprising Fusion Constructs between a KO and a P450 Reductase Domain

[00195] CYP102A1 (also referred to as $P450_{BM3}$; SEQ ID NO:1 15, SEQ ID NO:1 16) is a catalytically self-sufficient soluble enzyme from *Bacillus megatarium*. See, e.g., Whitehouse *et ai*, 2012, Chem Soc Rev. 41(3):1218-60. Two domains are present in the CYP102A1 polypeptide chain: a P450 heme domain (BMP) and an NADPH-dependent P450 oxidoreductase domain (BMR). CYP102A1 utilizes nearly 100% of the reducing power of NADPH to produce a monooxygenated product. See, e.g., Yuan *et ai*, 2009, *Biochemistry* 48(38):9140-6.

[00196] The BMR domain of CYP102A1 ("BMR"; codon-optimized nucleotide sequence set forth in SEQ ID NO:1 17, SEQ ID NO:1 18) was fused to SrKOi (SEQ ID NO:59, SEQ ID NO:79) or a KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 (amino acid sequence set forth in SEQ ID NO:75) with a linker (SEQ ID NO:121, SEQ ID NO:122), as described in Dodhia *et ai*, 2006, J Biol Inorg Chem. 11(7):903-16. A wild-type version of the BMR domain of CYP102A1, as well as a W1046A mutant of the BMR domain (SEQ ID NO:119, SEQ ID NO:120), which has been found to switch the cofactor specificity of CYP102A1 from NADPH to NADH, were used. See, Girvan *et al.*, 2011, Arch Biochem Biophys. 507(1):75-85. SrKOi (SEQ ID NO:59, SEQ ID NO:79) and the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 were also truncated prior to fusion with the BMR domain of CYP102A1; these truncations were predicted by bioinformatics to result in loss of membrane anchors of the KO genes and in cytosolic versions of the KO-BMR fusion constructs. The KO-BMR fusion constructs analyzed are shown in Table 8.

Fusion Construct	Codon-Optimized Nucleotide Sequence	Amino Acid Sequence	
SrKO1-BMR	SEQ ID NO:99	SEQ ID NO:100	
SrKO1-BMR W1046A mutant	SEQ ID NO:101	SEQ ID NO:102	
Truncated SrKO1-BMR	SEQ ID NO:103	SEQ ID NO:104	

Truncated SrKO1-BMR W1046A mutant	SEQ ID NO:105	SEQ ID NO:106
KO (encoded by nucleotide sequence set forth in SEQ ID NO:65)-BMR	SEQ ID NO:107	SEQ ID NO:108
KO (encoded by nucleotide sequence set forth in SEQ ID NO:65)-BMR W1046A mutant	SEQ ID NO:109	SEQ ID NO:110
Truncated KO (encoded by nucleotide sequence set forth in SEQ ID NO:65)-BMR W1046A mutant	SEQ ID NO:111	SEQ ID NO:112

[00197] The KO-BMR fusion constructs were cloned and transformed in the RebB-producing strain described in Example 2, which was modified to not comprise any additional KO genes. Thus, steviol glycosides, including 13-SMG, 1,2-bioside, and RebB, were only accumulated upon expression of a functional KO. Three scrapes (1 μ L loop of cells) from each transformation plate were resuspended in 200 μ I nanopure H₂O. 70 μ L were then transferred to 1 mL SC-URA in a 96 deep well plate and incubated at 30°C for 5 days at 400 rpm. Biological triplicates were analyzed by LC-MS (method 2 of Example 1) to measure 13-SMG, 1,2-bioside, and RebB levels, and single samples were analyzed by LC-UV to measure ent-kaurene and ent-kaurenoic acid levels.

[00198] For LC-MS, 50 µµLsamples were mixed with 50 µL 100% DMSO and heated to 80°C for 10 min. Subsequently, the samples were spun down at 4000 RCF for 10 min, and 85 µL of the resulting supernatant was transferred to an LC-MS plate. The LC-MS results were normalized by OD_{600} of individual cultures, which was measured by a Wallac, 2104 EnVision (Perkin Elmer) plate reader.

[00199] LC-UV was conducted with an Agilent 1290 instrument comprising a variable wavelength detector (VWD), a thermostatted column compartment (TCC), an autosampler, an autosampler cooling unit, and a binary pump and using SB-C18 rapid resolution high definition (RRHD) 2.1 mm x 300 mm, 1.8 pm analytical columns (two 150 mm columns in series; column temperature of 65°C). Steviol glycosides and steviol glycoside precursors were separated by a reversed phase C18 column followed by detection by UV absorbance at 210 mm. Quantification of steviol glycosides was done by comparing the peak area of each analyte to standards of RebA and applying a correction factor for species with differing molar

absorptivities. Quantification of steviol glycoside precursors (such as kaurenoic acid, kaurenal, kaurenol, ent-kaurene, and geranylgeraniol) was done by comparing the peak area of each analyte to standards of kaurenoic acid and applying a correction factor for species with differing molar absorptivities. For LC-UV, 0.5 rriL cultures were spun down, the supernatant was removed, and the wet weight of the pellets was calculated. The LC-UV results were normalized by pellet wet weight.

[00200] As shown in Figures 16B and 16D, the *S. cerevisiae* strain transformed with empty plasmid accumulated ent-kaurene. Transformation with a plasmid comprising SrKOI (SEQ ID NO:59, SEQ ID NO:79) or with a plasmid comprising the KO gene having the nucleotide sequence set forth in SEQ ID NO:65 resulted in accumulation of 13-SMG, 1,2-bioside, and RebB (Figures 16A and 186C).

[00201] Expression of full-length SrKOI -BMR fusion constructs (wild type or W1046A mutant BMR; SEQ ID NOs:99-102), resulted in an increase in ent-kaurenoic acid, 13-SMG, and RebB, compared to expression of SrKOI (SEQ ID NO:59, SEQ ID NO:79). See Figures 16A and 16B. Expression of truncated SrKOI -BMR fusion constructs (wild type or W1046A mutant BMR; SEQ ID NOs: 103-106) resulted in an increase in ent-kaurenoic acid, compared to expression of SrKOI (SEQ ID NO:79) (Figure 16B). Although the truncated SrKOI -BMR fusion constructs also increased steviol glycoside production, glycosyiation activity was higher for the full-length SrKOI-BMR fusion constructs than for the truncated SrKOI -BMR fusion constructs (Figure 16A).

[00202] Expression of a fusion construct comprising the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 and the wild type BMR (SEQ ID NO:107, SEQ ID NO:108) resulted in greater conversion of ent-kaurenoic acid to 13-SMG, compared to the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 (Figure 16C). Expression of a fusion construct comprising the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 (Figure 16C). Expression of a fusion and the W 1046A mutant BMR (SEQ ID NO:109, SEQ ID NO:110) resulted in decreases in ent-kaurenoic acid levels but glycosyiation activity similar to that of the KO encoded by the nucleotide sequence set forth in SEQ ID NO:65 (Figure 16C).

Example 11. Evaluation of Steviol Glycoside Pathway in *S, cerevisiae* Strain Comprising ICE2

ICE2 is an endoplasmic reticulum (ER) membrane protein involved in mechanisms [00203] such as ER zinc homeostasis and cytochrome P450 stability and/or activity. See, e.g., Estrada de Martin et al., 2005, J Cell Sci. 118(Pt 1):65-77 and Emmerstorfer et al., 2015, Biotechnol J. 10(4):623-35. ICE2 (SEQ ID NO:1 13, SEQ ID NO:1 14) was cloned and overexpressed in a steviol glycoside-producing S. cerevisiae strain comprising a recombinant gene encoding a Synechococcus sp. GGPPS polypeptide (SEQ ID NO:49), a recombinant gene encoding a truncated Z. mays CDPS polypeptide (SEQ ID NO:37), a recombinant gene encoding an A. thaliana KS polypeptide (SEQ ID NO:6), a recombinant gene encoding a recombinant S. rebaudiana KO polypeptide (SEQ ID NO:59, SEQ ID NO:79), a recombinant gene encoding an A. thaliana ATR2 polypeptide (SEQ ID NO:51, SEQ ID NO:87), a recombinant gene encoding an SrKAHel (SEQ ID NO:18, SEQ ID NO:68) polypeptide, a recombinant gene encoding an S. rebaudiana CPR8 polypeptide (SEQ ID NO:24, SEQ ID NO:28), a recombinant KAH gene encoded by the nucleotide sequence set forth in SEQ ID NO:81 (corresponding to the amino acid sequence set forth in SEQ ID NO:82), a recombinant KO gene encoded by the nucleotide sequence set forth in SEQ ID NO:56 (corresponding to the amino acid sequence set forth in SEQ ID NO:75), a recombinant KO gene encoded by the nucleotide sequence set forth in SEQ ID NO:65 (corresponding to the amino acid sequence set forth in SEQ ID NO:75), a recombinant gene encoding a UGT76G1 (SEQ ID NO:83) polypeptide, a recombinant gene encoding an S, rebaudiana UGT85C2 polypeptide (SEQ ID NO:30), a recombinant gene encoding an S. rebaudiana UGT74G1 polypeptide (SEQ ID NO:29), a recombinant gene encoding an EUGT11 (SEQ ID NO:86) polypeptide, a recombinant gene encoding a UGT91 D2e (SEQ ID NO;84) polypeptide, and a recombinant gene encoding a CPR1 (SEQ ID NO:61, SEQ ID NO:76) polypeptide. Overexpression was performed by integration using the USER cloning system; see, e.g., Nour-Eldin et al., 2010, Methods Mol Biol. 643:185-200. Table 9 shows additional recombinant genes (ICE2 and/or CPR12) expressed in the above-described strain. The control strain did not comprise recombinant genes encoding ICE2 (SEQ ID NO:1 13, SEQ ID NO:114) or CPR12 (SEQ ID NO:97, SEQ ID NO:98) polypeptides.

Strain	Sequences	
ICE2 "strain A"	ICE2 (SEQ ID NO:113, SEQ ID NO:114)	
	Overexpressed CPR1 (SEQ ID NO:61, SEQ ID NO:76)	
ICE2 "strain B"	ICE2 (SEQ ID NO:113, SEQ ID NO:114) (2 copies)	

Table 9:	ICE2 steviol	glycoside-producing	strains.
----------	--------------	---------------------	----------

ICE2 "strain C"	ICE2 (SEQ ID NO:113, SEQ ID NO:114)	
	CPR12 (SEQ ID NO:97, SEQ ID NO:98)	

[00204] Fed-batch fermentation was carried out aerobically in 2 L fermenters at 30°C with an approximate 16 h growth phase in minimal medium comprising glucose, ammonium sulfate, trace metals, vitamins, salts, and buffer followed by an approximate 110 h feeding phase with a glucose-comprising defined feed medium. A pH near 6.0 and glucose-limiting conditions were maintained. Whole culture samples (without cell removal) were analysed by the LC-UV method of Example 10 to determine levels of steviol glycosides and steviol pathway intermediates.

[00205] The following values were calculated based upon the measured levels of steviol glycosides and steviol glycoside precursors. "Total Flux" was calculated as a sum (in g/L RebD equivalents) of measured RebA, RebB, RebD, RebE, RebM, 13-SMG, rubusoside, steviol-1,2-bioside, di-glycosylated steviol, tri-glycosylated steviol, tetra-glycosylated steviol, penta-glycosylated steviol, hexa-glycosylated steviol, hepta-glycosylated steviol, copalol, ent-kaurenoic acid, glycosylated ent-kaurenoic acid, glycosylated ent-kaurenoic acid, glycosylated ent-kaurenal, and ent-kaurene levels. "Pre-steviol glycoside/flux" was calculated as (("total flux" - (geranylgeraniol + copalol + ent-kaurene + glycosylated ent-kaurenoic acid) / "total flux"). "KO step/flux" was calculated as ((ent-kaurene + glycosylated ent-kaurenoic acid) / "total flux"). "KO step/flux" was calculated as ((ent-kaurene + glycosylated ent-kaurenoil + ent-kaurenoic acid + glycosylated ent-kaurenoic acid) / "total flux"). "KO step/flux" was calculated as ((ent-kaurene + glycosylated ent-kaurenoil + ent-kaurenoil +

[00206] The pre-steviol glycoside/flux, KO step/flux, and KAH step/flux values are shown in Table 10 below. Decreased amounts of ent-kaurene, ent-kaurenol, ent-kaurenal, glycosylated ent-kaurenol and increased amounts of ent-kaurenoic acid and glycosylated ent-kaurenoic acid were observed in the strains comprising ICE2, as compared to the control steviol glycoside-producing strain. These effects were stronger in the presence of CPR1 and/or CPR12 (Table 10). Overexpression of two copies of ICE2 (ICE2 strain B) resulted decreased ent-kaurene, ent-kaurenol, ent-kaurenal, and ent-kaurenol glycoside levels and increased steviol glycoside levels, compared to the control strain, ICE2 strain A, or ICE2 strain C (Table 10). Steviol glycoside levels increased most in the steviol glycoside-producing strain comprising two copies of ICE2. Thus, ICE2 was found to improve cytochrome P450 function.

Table 10: Pre-steviol glycoside/flux, KO step/flux, and KAH step/flux values for steviol glycoside-producing strains comprising ICE2.

Strain	Pre-Steviol Glycoside/Flux	KO step/Flux	KAH step/Flux
ICE2 "strain A"	0.38	0.36	0.22
ICE2 "strain B"	0.43	0.42	0.10
ICE2 "strain C"	0.39	0.38	0.19
Control	0.41	0.48	0.08

Example 12. Steviol Glycoside Production by Fermentation of *S. cerevisiae* strain comprising CPR1 and CPR12

[00207] Steviol glycoside-producing S, cerevisiae strains comprising a recombinant gene encoding a Synechococcus sp. GGPPS polypeptide (SEQ ID NO:49), a recombinant gene encoding a truncated Z. mays CDPS polypeptide (SEQ ID NO:37), a recombinant gene encoding an A. thaliana KS polypeptide (SEQ ID NO:6), a recombinant gene encoding a recombinant S. rebaudiana KO polypeptide (SEQ ID NO:59, SEQ ID NO:79), a recombinant gene encoding an A. thaliana ATR2 polypeptide (SEQ ID NO:51, SEQ ID NO:87), a recombinant gene encoding an SrKAHei (SEQ ID NO:18, SEQ ID NO:68) polypeptide, a recombinant gene encoding an S. rebaudiana CPR8 polypeptide (SEQ ID NO:24, SEQ ID NO:28), a recombinant gene encoding a CPR1 (SEQ ID NO:61, SEQ ID NO:76) polypeptide, a recombinant gene encoding an SrKAHei (SEQ ID NO:18, SEQ ID NO:68) polypeptide, a recombinant KO gene encoded by the nucleotide sequence set forth in SEQ ID NO:56 (corresponding to the amino acid sequence set forth in SEQ ID NO:75), a recombinant gene encoding a UGT76G1 (SEQ ID NO:83) polypeptide, a recombinant gene encoding an S. rebaudiana UGT85C2 (SEQ ID NO:30) polypeptide, a recombinant gene encoding an S. rebaudiana UGT74G1 (SEQ ID NO:29) polypeptide, a recombinant gene encoding a UGT91D2e-b polypeptide (SEQ ID NO:88), and a recombinant gene encoding an EUGT11 (SEQ ID NO:86) polypeptide, as well as the recombinant genes shown in Table 11, which were genomically integrated into the strains, were cultivated by fermentation. Levels of steviol glycosides and steviol glycoside precursors were measured by LC-UV as described in Example The pre-KO/flux, pre-KAH/flux, pre-steviol giycoside/flux values were calculated as 11. described in Example 11.

Table 11: Recombinant genes also expressed in steviol glycoside-producing S.cerevisiae strain in Example 12.

Strain	Genes	-
		Australia

Example	12,	KO encoded by nucleotide sequence set forth in SEQ ID NO:56
Strain A		(corresponding to amino acid sequence set forth in SEQ ID NO:75)
Example	12,	KAH encoded by nucleotide sequence set forth in SEQ ID NO:80
Strain B		(corresponding to amino acid sequence set forth in SEQ ID NO:82)
		KO encoded by nucleotide sequence set forth in SEQ ID NO:56
		(corresponding to amino acid sequence set forth in SEQ ID NO:75)
		KO encoded by nucleotide sequence set forth in SEQ ID NO:65
		(corresponding to amino acid sequence set forth in SEQ ID NO:75)
Example	12,	CPR12 (SEQ ID NO:97, SEQ ID NO:98)
Strain C		KAH encoded by nucleotide sequence set forth in SEQ ID NO:80
		(corresponding to amino acid sequence set forth in SEQ ID NO:82)
		KO encoded by nucleotide sequence set forth in SEQ ID NO:56
		(corresponding to amino acid sequence set forth in SEQ ID NO:75)

The pre-steviol glycoside/flux, KO step/flux, and KAH step/flux values are shown in [00208] Table 12 below. In the strain comprising the KO encoded by nucleotide sequence set forth in SEQ ID NO:56 (strain A), lower accumulation of ent-kaurene, ent-kaurenol, ent-kaurnal, and ent-kaurenol glycosides resulted. Higher levels of ent-kaurenoic acid and steviol glycosides were also measured, as compared to the control strain. In the strain comprising the KAH encoded by nucleotide sequence set forth in SEQ ID NO:80, the KO encoded by nucleotide sequence set forth in SEQ ID NO:56 (corresponding to amino acid sequence set forth in SEQ ID NO:75), and the KO encoded by nucleotide sequence set forth in SEQ ID NO:65 (strain B), entkaurene, ent-kaurenol, ent-kaurenal, ent-kaurenol glycosides, and ent-kaurenoic acid accumulation decreased and accumulation of steviol glycosides increased, as compared to the control strain. In the strain comprising CPR12 (SEQ ID NO:97, SEQ ID NO:98), the KAH encoded by nucleotide sequence set forth in SEQ ID NO:80, and the KO encoded by nucleotide sequence set forth in SEQ ID NO:56 (strain C), ent-kaurenol, ent-kaurenol, ent-kaurenol glycosides, and ent-kaurenoic acid accumulation decreased and accumulation of steviol glycosides increased, as compared to the control. See Table 12. Thus, CPR12 was found to be a reductase protein that improves KAH and/or KO activity.

Strain	Pre-Steviol			
	Glycoside/Flux	KO step/Flux	KAH step/Flux	
Example 12, Strain A	0.48	0.28	0.22	
Example 12, Strain B	0.64	0.18	0.12	
Example 12, Strain C	0.55	0.24	0.12	
Control	0.40	0.43	0.17	

Table 12.	Pre-steviol glycoside/flux, KO step/flux, and KAH step/flux values for steviol
	glycoside-producing strains of Example 12.

[00209] Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as particularly advantageous, it is contemplated that the present invention is not necessarily limited to these particular aspects of the invention.

Table 13. Sequences disclosed herein.

MNLSLCIASP	LLTKSNRPAA	LSAIHTASTS	HGGOTNPTNL	IIDTTKERIO	KOFKNVEISV	60
SSYDTAWVAM	VPSPNSPKSP	CFPECLNWLI	NNOLNDGSWG	LVNHTHNHNH	PLLKDSLSST	120
LACIVALKRW	NVGEDOINKG	LSFIESNLAS	ATEKSOPSPI	GFDIIFPGLL	EYAKNLDINL	180
LSKQTDFSLM	LHKRELEOKR	CHSNEMDGYL	AYISEGLGNL	YDWNMVKKYO	MKNGSVFNSP	240
SATAAAFINH	ONPGCLNYLN	SLLDKFGNAV	PTVYPHDLFI	RLSMVDTIER	LGISHHFRVE	300
IKNVLDETYR	CWVERDEOIF	MDVVTCALAF	RLLRINGYEV	SPDPLAEITN	ELALKDEYAA	360
LETYHASHIL	YOEDLSSGKO	ILKSADFLKE	IISTDSNRLS	KLIHKEVENA	LKFPINTGLE	420
RINTRRNIOL	YNVDNTRILK	TTYHSSNISN	TDYLRLAVED	FYTCOSIYRE	ELKGLERWVV	480
ENKLDOLKFA	ROKTAYCYFS	VAATLSSPEL	SDARISWAKN	GILTTVVDDF	FDIGGTIDEL	540
TNLIOCVEKW	NVDVDKDCCS	EHVRILFLAL	KDAICWIGDE	AFKWOARDVT	SHVIOTWLEL	600
MNSMLREAIW	TRDAYVPTLN	EYMENAYVSF	ALGPIVKPAI	YFVGPKLSEE	IVESSEYHNL	660
FKLMSTOGRL	LNDIHSFKRE	FKEGKLNAVA	LHLSNGESGK	VEEEVVEEMM	MMIKNKRKEL	720
MKLIFEENGS	IVPRACKDAF	WNMCHVLNFF	YANDDGFTGN	TILDTVKDII	YNPLVLVNEN	780
EEQR						784
SEQ ID NO	1.0					
	t e han					
MNLSLCIASP	LLTKSSRPTA	LSAIHTASTS	HGGQTNPTNL	IIDTTKERIQ	KLFKNVEISV	60
SSYDTAWVAM	VPSPNSPKSP	CFPECLNWLI	NNQLNDGSWG	LVNHTHNHNH	PLLKDSLSST	120
LACIVALKRW	NVGEDQINKG	LSFIESNLAS	ATDKSQPSPI	GFDIIFPGLL	EYAKNLDINL	180
LSKQTDFSLM	LHKRELEQKR	CHSNEIDGYL	AYISEGLGNL	YDWNMVKKYQ	MKNGSVFNSP	240
SATAAAFINH	QNPGCLNYLN	SLLDKFGNAV	PTVYPLDLYI	RLSMVDTIER	LGISHHFRVE	300
IKNVLDETYR	CWVERDEQIF	MDVVTCALAF	RLLRIHGYKV	SPDQLAEITN	ELAFKDEYAA	360
LETYHASQIL	YQEDLSSGKQ	ILKSADFLKG	ILSTDSNRLS	KLIHKEVENA	LKFPINTGLE	420

RINTRRNIQL QNKLDQLKFA	YNVDNTRILK RQKTAYCYFS	TTYHSSNISN VAATLSSPEL	TYYLRLAVED SDARISWAKN	FYTCQSIYRE GILTTVVDDF	ELKGLERWVV FDIGGTIDEL		180 540
TNLIQCVEKW	NVDVDKDCCS	EHVRILFLAL	KDAICWIGDE	AFKWQARDVT	SHVIQTWLEL	6	500
MNSMLREAIW	TRDAYVPTLN	EYMENAYVSF	ALGPIVKPAI	YFVGPKLSEE	IVESSEYHNL	6	560
FKLMSTQGRL	LNDIHSFKRE	FKEGKLNAVA	LHLSNGESGK	VEEEVVEEMM	MMIKNKRKEL	7	20
MKLIFEENGS	IVPRACKDAF	WNMCHVLNFF	YANDDGFTGN	TILDTVKDII	YNPLVLVNEN	7	80
EEQR						7	84
SEO ID NO	1.3						
SEQ ID INC							
MAMPVKLTPA		FSSGGHALRF		24			60
KSKQHDQEAS	EATIRQQLQL	VDVLENMGIS	RHFAAEIKCI	LDRTYRSWLQ	RHEEIMLDTM		20
TCAMAFRILR	LNGYNVSSDE	LYHVVEASGL	HNSLGGYLND	TRTLLELHKA	STVSISEDES		.80
ILDSIGSRSR	TLLREQLESG	GALRKPSLFK	EVEHALDGPF	YTTLDRLHHR	WNIENFNIIE	2	40
QHMLETPYLS	NQHTSRDILA	LSIRDFSSSQ	FTYQQELQHL	ESWVKECRLD	QLQFARQKLA	C	00
YFYLSAAGTM	FSPELSDART	LWAKNGVLTT	IVDDFFDVAG	SKEELENLVM	LVEMWDEHHK	1	60
VEFYSEQVEI	IFSSIYDSVN	QLGEKASLVQ	DRSITKHLVE	IWLDLLKSMM	TEVEWRLSKY	4	20
VPTEKEYMIN	ASLIFGLGPI	VLPALYFVGP	KISESIVKDP	EYDELFKLMS	TCGRLLNDVQ	4	80
TFEREYNEGK	LNSVSLLVLH	GGPMSISDAK	RKLQKPIDTC	RRDLLSLVLR	EESVVPRPCK	5	40
ELFWKMCKVC	YFFYSTTDGF	SSQVERAKEV	DAVINEPLKL	QGSHTLVSDV		5	90
	N- A						

SEQ ID NO:4

			mmox stratt cont.	DDTIMATOR	PT 0170 017 003	60
		ASKLVTGEFK				~ ~
WVAMVPSPDC	PETPCFPECT	KWILENQLGD	GSWSLPHGNP	LLVKDALSST	LACILALKRW	120
GIGEEQINKG	LRFIELNSAS	VTDNEQHKPI	GFDIIFPGMI	EYAKDLDLNL	PLKPTDINSM	180
LHRRALELTS	GGGKNLEGRR	AYLAYVSEGI	GKLQDWEMAM	KYQRKNGSLF	NSPSTTAAAF	240
IHIQDAECLH	YIRSLLQKFG	NAVPTIYPLD	IYARLSMVDA	LERLGIDRHF	RKERKFVLDE	300
TYRFWLQGEE	EIFSDNATCA	LAFRILRLNG	YDVSLEDHFS	NSLGGYLKDS	GAALELYRAL	360
QLSYPDESLL	EKQNSRTSYF	LKQGLSNVSL	CGDRLRKNII	GEVHDALNFP	DHANLQRLAI	420
RRRIKHYATD	DTRILKTSYR	CSTIGNQDFL	KLAVEDFNIC	QSIQREEFKH	IERWVVERRL	480
DKLKFARQKE	AYCYFSAAAT	LFAPELSDAR	MSWAKNGVLT	TVVDDFFDVG	GSEEELVNLI	540
ELIERWDVNG	SADFCSEEVE	IIYSAIHSTI	SEIGDKSFGW	QGRDVKSHVI	KIWLDLLKSM	600
LTEAQWSSNK	SVPTLDEYMT	TAHVSFALGP	IVLPALYFVG	PKLSEEVAGH	PELLNLYKVM	660
STCGRLLNDW	RSFKRESEEG	KLNAISLYMI	HSGGASTEEE	TIEHFKGLID	SQRRQLLQLV	720
LQEKDSIIPR	PCKDLFWNMI	KLLHTFYMKD	DGFTSNEMRN	VVKAIINEPI	SLDEL	775

cotcautcat	caaggetaat	tcgtcgcgag	ttoctacoac	accatttcaa	ttacttctaa	60
		ttcgctcctc				120
-		aagtacagac				180
		tgttggagaa				240
		catcaccgag				300
		atcaacatga				360
		atgtgttatc	-			420
		gacaaataaa				480
		ccatacagaa				540
		atttgaatct				600
		atctggatct				660
	*	atgttttaga				720
		aaaatgggtc				780
10 IV		atgatggttg				840
		cagtttatcc				900
		gaattgatag				960
-		ggcttcgtgg	-			1020
	+	tattgcttgc				1080
		ctggtttctc				1140
		ttaaggctgc				1200
		aacaatatct				1260
ctctgttcga	gataaatacc	tcaagaaaga	ggtcgaggat	gctcttgctt	ttccctccta	1320
		atcacaggag				1380
		catatcgttt				1440
gttagctgtg	gatgacttca	atttctgcca	gtccatacac	cgtgaagaaa	tggaacgtct	1500
tgataggtgg	attgtggaga	atagattgca	ggaactgaaa	tttgccagac	agaagctggc	1560

ttactgttat ttctctgggg ctgcaacttt attttctcca gaactatctg atgctcgtat 1620 atcgtgggcc aaaggtggag tacttacaac ggttgtagac gacttctttg atgttggagg 1680 gtccaaagaa gaactggaaa acctcataca cttggtcgaa aagtgggatt tgaacggtgt 1740 1800 teetgagtae ageteagaae atgttgagat catattetea gttetaaggg acaceattet cgaaacagga gacaaagcat teacetatea aggaegeaat gtgaeaeaee acattgtgaa 1860 aatttggttg gatetgetea agtetatgtt gagagaagee gagtggteea gtgaeaagte 1920 aacaccaagc ttggaggatt acatggaaaa tgcgtacata tcatttgcat taggaccaat 1980 tgtcctccca gctacctatc tgatcggacc tccacttcca gagaagacag tcgatagcca ccaatataat cagctctaca agctcgtgag cactatgggt cgtcttctaa atgacataca 2040 2100 aggttttaag agagaaagcg cggaagggaa gctgaatgcg gtttcattgc acatgaaaca 2160 cgagagagac aatcgcagca aagaagtgat catagaatcg atgaaaggtt tagcagagag 2220 aaagagggaa gaattgcata agctagtttt ggaggagaaa ggaagtgtgg ttccaaggga 2280 atgcaaagaa gcgttcttga aaatgagcaa agtgttgaac ttattttaca ggaaggacga 2340 tggattcaca tcaaatgatc tgatgagtct tgttaaatca gtgatctacg agcctgttag 2400 cttacagaaa gaatetttaa ettgateeaa gttgatetgg caggtaaaet cagtaaatga 2460 aaataagact ttggtcttct tctttgttgc ttcagaacaa gaagag 2506

SEQ ID NO:6

MSINLRSSGC	SSPISATLER	GLDSEVQTRA	NNVSFEQTKE	KIRKMLEKVE	LSVSAYDTSW	60
VAMVPSPSSQ	NAPLFPQCVK	WLLDNQHEDG	SWGLDNHDHQ	SLKKDVLSST	LASILALKKW	120
GIGERQINKG	LQFIELNSAL	VTDETIQKPT	GFDIIFPGMI	KYARDLNLTI	PLGSEVVDDM	180
IRKRDLDLKC	DSEKFSKGRE	AYLAYVLEGT	RNLKDWDLIV	KYQRKNGSLF	DSPATTAAAF	240
TQFGNDGCLR	YLCSLLQKFE	AAVPSVYPFD	QYARLSIIVT	LESLGIDRDF	KTEIKSILDE	300
TYRYWLRGDE	EICLDLATCA	LAFRLLLAHG	YDVSYDPLKP	FAEESGFSDT	LEGYVKNTFS	360
VLELFKAAQS	YPHESALKKQ	CCWTKQYLEM	ELSSWVKTSV	RDKYLKKEVE	DALAFPSYAS	420
LERSDHRRKI	LNGSAVENTR	VTKTSYRLHN	ICTSDILKLA	VDDFNFCQSI	HREEMERLDR	480
WIVENRLQEL	KFARQKLAYC	YFSGAATLFS	PELSDARISW	AKGGVLTTVV	DDFFDVGGSK	540
EELENLIHLV	EKWDLNGVPE	YSSEHVEIIF	SVLRDTILET	GDKAFTYQGR	NVTHHIVKIW	600
LDLLKSMLRE	AEWSSDKSTP	SLEDYMENAY	ISFALGPIVL	PATYLIGPPL	PEKTVDSHQY	660
NQLYKLVSTM	GRLLNDIQGF	KRESAEGKLN	AVSLHMKHER	DNRSKEVIIE	SMKGLAERKR	720
EELHKLVLEE	KGSVVPRECK	EAFLKMSKVL	NLFYRKDDGF	TSNDLMSLVK	SVIYEPVSLQ	780
KESLT						785

SEQ ID NO:7

MDAVTGLLTV	PATAITIGGT	AVALAVALIF	WYLKSYTSAR	RSQSNHLPRV	PEVPGVPLLG	60
NLLQLKEKKP	YMTFTRWAAT	YGPIYSIKTG	ATSMVVVSSN	EIAKEALVTR	FQSISTRNLS	120
KALKVLTADK	TMVAMSDYDD	YHKTVKRHIL	TAVLGPNAQK	KHRIHRDIMM	DNISTQLHEF	180
VKNNPEQEEV	DLRKIFQSEL	FGLAMRQALG	KDVESLYVED	LKITMNRDEI	FQVLVVDPMM	240
GAIDVDWRDF	FPYLKWVPNK	KFENTIQQMY	IRREAVMKSL	IKEHKKRIAS	GEKLNSYIDY	300
LLSEAQTLTD	QQLLMSLWEP	IIESSDTTMV	TTEWAMYELA	KNPKLQDRLY	RDIKSVCGSE	360
KITEEHLSQL	PYITAIFHET	LRRHSPVPII	PLRHVHEDTV	LGGYHVPAGT	ELAVNIYGCN	420
MDKNVWENPE	EWNPERFMKE	NETIDFQKTM	AFGGGKRVCA	GSLQALLTAS	IGIGRMVQEF	480
EWKLKDMTQE	EVNTIGLTTQ	MLRPLRAIIK	PRI			513

SEQ ID NO:8

MAFFSMISIL LGFVISSFIF IFFFKKLLSF SRKNMSEVST LPSVPVVPGF PVIGNLLQLK 60 EKKPHKTFTR WSEIYGPIYS IKMGSSSLIV LNSTETAKEA MVTRFSSIST RKLSNALTVL 120 TCDKSMVATS DYDDFHKLVK RCLLNGLLGA NAQKRKRHYR DALIENVSSK LHAHARDHPQ 180 EPVNFRAIFE HELFGVALKQ AFGKDVESIY VKELGVTLSK DEIFKVLVHD MMEGAIDVDW 240 RDFFPYLKWI PNKSFEARIQ QKHKRRLAVM NALIQDRLKQ NGSESDDDCY LNFLMSEAKT 300 LTKEQIAILV WETIIETADT TLVTTEWAIY ELAKHPSVQD RLCKEIQNVC GGEKFKEEQL 360 SQVPYLNGVF HETLRKYSPA PLVPIRYAHE DTQIGGYHVP AGSEIAINIY GCNMDKKRWE 420 RPEDWWPERF LDDGKYETSD LHKTMAFGAG KRVCAGALQA SLMAGIAIGR LVQEFEWKLR 480 DGEEENVDTY GLTSOKLYPL MAIINPRRS 509

MSKSNSMNST	SHETLFQQLV	LGLDRMPLMD	VHWLIYVAFG	AWLCSYVIHV	LSSSSTVKVP	60
VVGYRSVFEP	TWLLRLRFVW	EGGSIIGQGY	NKFKDSIFQV	RKLGTDIVII	PPNYIDEVRK	120
LSQDKTRSVE	PFINDFAGQY	TRGMVFLQSD	LQNRVIQQRL	TPKLVSLTKV	MKEELDYALT	180
KEMPDMKNDE	WVEVDISSIM	VRLISRISAR	VFLGPEHCRN	QEWLTTTAEY	SESLFITGFI	240

SEQ ID NO:10

300

360

420

480

525

60

120

180

1678

DAIHADIIKE	KUIKGUPAVU	PDVIEELILA	VRQIIFIEGD	EMARANCEVA	ARDIVARASN	TOU
RVFVGLPACR	NQGYLDLAID	FTLSVVKDRA	IINMFPELLK	PIVGRVVGNA	TRNVRRAVPF	240
VAPLVEERRR	LMEEYGEDWS	EKPNDMLQWI	MDEAASRDSS	VKAIAERLLM	VNFAAIHTSS	300
NTITHALYHL	AEMPETLQPL	REEIEPLVKE	EGWTKAAMGK	MWWLDSFLRE	SQRYNGINIV	360
SLTRMADKDI	TLSDGTFLPK	GTLVAVPAYS	THRDDAVYAD	ALVFDPFRFS	RMRAREGEGT	420
KHQFVNTSVE	YVPFGHGKHA	CPGRFFAANE	LKAMLAYIVL	NYDVKLPGDG	KRPLNMYWGP	480
TVLPAPAGQV	LFRKRQVSL					499
SEQ ID NO	D:11					
aaacaaaqaa	tgattcaagt	tctaacaccg	atccttctct	tcctcatttt	cttcgttttc	60
	acaagcacca	~				120
N 10 10 10	gcgaaactct	10				180
	aacqqatcaa					240
ggcgaccgtt	ttgcggtgtt	gtgtggacct	gccggaaaca	agttcctgtt	ctgcaacgag	300
aacaagctgg	tggcgtcgtg	gtggccgqtt	ccqqtqaqqa	agettttegg	caagtetetg	360
ctcacgattc	gtggtgatga	agctaagtgg	atgaggaaga	tgttgttatc	gtatctcggt	420
cctgatgctt	tegeaactea	ttatgccgtc	accatggacg	tcgtcacccg	tcggcatatc	480
gacgttcatt	ggcgagggaa	ggaagaggtg	aacgtattcc	aaaccgttaa	gttatatgcc	540
tttgagcttg	catgtcgttt	attcatgaac	ctagacgacc	caaaccacat	tgcaaaactc	600
ggttccttgt	tcaacatttt	cttgaaaggc	atcattgagc	ttccaatcga	cgtcccaggg	660
acacgatttt	atagctccaa	aaaagcagca	gcagctatca	ggattgaact	aaaaaattg	720
attaaagcaa	gaaaactgga	actgaaagaa	gggaaggcat	catcttcaca	agacctctta	780
tcacatttgc	ttacatctcc	agatgaaaat	ggtatgtttc	taaccgaaga	agagattgta	840
gacaacatct	tgttactact	ctttgcgggt	catgatacct	cggctctttc	aatcactttg	900
ctcatgaaga	ctcttggcga	acattctgat	gtttatgaca	aggtgttaaa	agagcaacta	960
gagatatcga	agacgaaaga	agcatgggag	tccctgaaat	gggaggacat	acaaaagatg	1020
aaatactcct	ggagtgttat	atgtgaagtc	atgagactaa	atccacctgt	tataggaacc	1080
	cccttgtgga	-			5 F F F F	1140
	gtgctgtatc					1200
	cacggtttga					1260
	gaatgtgttt					1320
	tcaccaattt	4 4 4	w w			1380
	ctaccccage					1440
-	catgaatcag	~ ~ ~ ~	JP	an		1500
	gtttttatgg		**			1560
acttatgtaa	tttgtgcctg	taagtaactg	aatctattaa	tgttttatgt	gacatgaaac	1620

LRVVPHILRP FIAPLLPSYR TLLRNVSSGR RVIGDIIRSQ QGDGNEDILS WMRDAATGEE

KQIDNIAQRM LILSLASIHT TAMTMTHAMY DLCACPEYIE PLRDEVKSVV GASGWDKTAL

NRFHKLDSFL KESQRFNPVF LLTFNRIYHQ SMTLSDGTNI PSGTRIAVPS HAMLQDSAHV

PGPTPPTEFD GFRYSKIRSD SNYAQKYLFS MTDSSNMAFG YGKYACPGRF YASNEMKLTL

MEDPTVLYAC LAIAVATFVV RWYRDPLRSI PTVGGSDLPI LSYIGALRWT RRGREILQEG

YDGYRGSTFK IAMLDRWIVI ANGPKLADEV RRRPDEELNF MDGLGAFVQT KYTLGEAIHN

DPYHVDIIRE KLTRGLPAVL PDVIEELTLA VRQYIPTEGD EWVSVNCSKA ARDIVARASN

AILLLQFEFK LPDGKGRPRN ITIDSDMIPD PRARLCVRKR SLRDE

SEQ ID NO:12

MIQVLTPILL	FLIFFVFWKV	YKHQKTKINL	PPGSFGWPFL	GETLALLRAG	WDSEPERFVR	60
ERIKKHGSPL	VFKTSLFGDR	FAVLCGPAGN	KFLFCNENKL	VASWWPVPVR	KLFGKSLLTI	120
RGDEAKWMRK	MLLSYLGPDA	FATHYAVTMD	VVTRRHIDVH	WRGKEEVNVF	QTVKLYAFEL	180
ACRLFMNLDD	PNHIAKLGSL	FNIFLKGIIE	LPIDVPGTRF	YSSKKAAAAI	RIELKKLIKA	240
RKLELKEGKA	SSSQDLLSHL	LTSPDENGMF	LTEEEIVDNI	LLLLFAGHDT	SALSITLLMK	300
TLGEHSDVYD	KVLKEQLEIS	KTKEAWESLK	WEDIQKMKYS	WSVICEVMRL	NPPVIGTYRE	360
ALVDIDYAGY	TIPKGWKLHW	SAVSTQRDEA	NFEDVTRFDP	SRFEGAGPTP	FTFVPFGGGP	420
RMCLGKEFAR	LEVLAFLHNI	VTNFKWDLLI	PDEKIEYDPM	ATPAKGLPIR	LHPHQV	476

MGLFPLEDSY ALVFEGLAIT LALYYLLSFI YKTSKKTCTP PKASGEHPIT GHLNLLSGSS 60 GLPHLALASL ADRCGPIFTI RLGIRRVLVV SNWEIAKEIF TTHDLIVSNR PKYLAAKILG 120 FNYVSFSFAP YGPYWVGIRK IIATKLMSSS RLQKLQFVRV FELENSMKSI RESWKEKKDE 180 EGKVLVEMKK WFWELNMNIV LRTVAGKQYT GTVDDADAKR ISELFREWFH YTGRFVVGDA 240 FPFLGWLDLG GYKKTMELVA SRLDSMVSKW LDEHRKKQAN DDKKEDMDFM DIMISMTEAN 300 SPLEGYGTDT IIKTTCMTLI VSGVDTTSIV LTWALSLLLN NRDTLKKAQE ELDMCVGKGR 360 QVNESDLVNL IYLEAVLKEA LRLYPAAFLG GPRAFLEDCT VAGYRIPKGT CLLINMWKLH 420 RDPNIWSDPC EFKPERFLTP NQKDVDVIGM DFELIPFGAG RRYCPGTRLA LQMLHIVLAT 480 LLQNFEMSTP NDAPVDMTAS VGMTNAKASP LEVLLSPRVK WS 522

SEQ ID NO:14

MIQVLTPILL	FLIFFVFWKV	YKHQKTKINL	PPGSFGWPFL	GETLALLRAG	WDSEPERFVR	60
ERIKKHGSPL	VFKTSLFGDR	FAVLCGPAGN	KFLFCNENKL	VASWWPVPVR	KLFGKSLLTI	120
RGDEAKWMRK	MLLSYLGPDA	FATHYAVTMD	VVTRRHIDVH	WRGKEEVNVF	QTVKLYAFEL	180
ACRLFMNLDD	PNHIAKLGSL	FNIFLKGIIE	LPIDVPGTRF	YSSKKAAAAI	RIELKKLIKA	240
RKLELKEGKA	SSSQDLLSHL	LTSPDENGMF	LTEEEIVDNI	LLLLFAGHDT	SALSITLLMK	300
TLGEHSDVYD	KVLKEQLEIS	KTKEAWESLK	WEDIQKMKYS	WSVICEVMRL	NPPVIGTYRE	360
ALVDIDYAGY	TIPKGWKLHW	SAVSTQRDEA	NFEDVTRFDP	SRFEGAGPTP	FTFVPFGGGP	420
RMCLGKEFAR	LEVLAFLHNI	VTNFKWDLLI	PDEKIEYDPM	ATPAKGLPIR	LHPHQV	476

SEQ ID NO:15

MESLVVHTVN	AIWCIVIVGI	FSVGYHVYGR	AVVEQWRMRR	SLKLQGVKGP	PPSIFNGNVS	60
EMQRIQSEAK	HCSGDNIISH	DYSSSLFPHF	DHWRKQYGRI	YTYSTGLKQH	LYINHPEMVK	120
ELSQTNTLNL	GRITHITKRL	NPILGNGIIT	SNGPHWAHQR	RIIAYEFTHD	KIKGMVGLMV	180
ESAMPMLNKW	EEMVKRGGEM	GCDIRVDEDL	KDVSADVIAK	ACFGSSFSKG	KAIFSMIRDL	240
LTAITKRSVL	FRENGETDMV	FGSKKHGDVD	IDALEMELES	SIWETVKERE	IECKDTHKKD	300
LMQLILEGAM	RSCDGNLWDK	SAYRRFVVDN	CKSIYFAGHD	STAVSVSWCL	MLLALNPSWQ	360
VKIRDEILSS	CKNGIPDAES	IPNLKTVTMV	IQETMRLYPP	APIVGREASK	DIRLGDLVVP	420
KGVCIWTLIP	ALHRDPEIWG	PDANDFKPER	FSEGISKACK	YPQSYIPFGL	GPRTCVGKNF	480
GMMEVKVLVS	LIVSKFSFTL	SPTYQHSPSH	KLLVEPQHGV	VIRVV		525

SEQ ID NO:16

MYFLLQYLNI	TTVGVFATLF	LSYCLLLWRS	RAGNKKIAPE	AAAAWPIIGH	LHLLAGGSHQ	60
LPHITLGNMA	DKYGPVFTIR	IGLHRAVVVS	SWEMAKECST	ANDQVSSSRP	ELLASKLLGY	120
NYAMFGFSPY	GSYWREMRKI	ISLELLSNSR	LELLKDVRAS	EVVTSIKELY	KLWAEKKNES	180
GLVSVEMKQW	FGDLTLNVIL	RMVAGKRYFS	ASDASENKQA	QRCRRVFREF	FHLSGLFVVA	240
DAIPFLGWLD	WGRHEKTLKK	TAIEMDSIAQ	EWLEEHRRRK	DSGDDNSTQD	FMDVMQSVLD	300
GKNLGGYDAD	TINKATCLTL	ISGGSDTTVV	SLTWALSLVL	NNRDTLKKAQ	EELDIQVGKE	360
RLVNEQDISK	LVYLQAIVKE	TLRLYPPGPL	GGLRQFTEDC	TLGGYHVSKG	TRLIMNLSKI	420
QKDPRIWSDP	TEFQPERFLT	THKDVDPRGK	HFEFIPFGAG	RRACPGITFG	LQVLHLTLAS	480
FLHAFEFSTP	SNEQVNMRES	LGLTNMKSTP	LEVLISPRLS	SCSLYN		526

SEQ ID NO:17

MEPNFYLSLL	LLFVTFISLS	LFFIFYKQKS	PLNLPPGKMG	YPIIGESLEF	LSTGWKGHPE	60
KFIFDRMRKY	SSELFKTSIV	GESTVVCCGA	ASNKFLFSNE	NKLVTAWWPD	SVNKIFPTTS	120
LDSNLKEESI	KMRKLLPQFF	KPEALQRYVG	VMDVIAQRHF	VTHWDNKNEI	TVYPLAKRYT	180
FLLACRLFMS	VEDENHVAKF	SDPFQLIAAG	IISLPIDLPG	TPFNKAIKAS	NFIRKELIKI	240
IKQRRVDLAE	GTASPTQDIL	SHMLLTSDEN	GKSMNELNIA	DKILGLLIGG	HDTASVACTF	300
LVKYLGELPH	IYDKVYQEQM	EIAKSKPAGE	LLNWDDLKKM	KYSWNVACEV	MRLSPPLQGG	360
FREAITDFMF	NGFSIPKGWK	LYWSANSTHK	NAECFPMPEK	FDPTRFEGNG	PAPYTFVPFG	420
GGPRMCPGKE	YARLEILVFM	HNLVKRFKWE	KVIPDEKIIV	DPFPIPAKDL	PIRLYPHKA	479

atggaagcct	cttacctata	catttctatt	ttgcttttac	tggcatcata	cctgttcacc	60
actcaactta	gaaggaagag	cgctaatcta	ccaccaaccg	tgtttccatc	aataccaatc	120
attggacact	tatacttact	caaaaagcct	ctttatagaa	ctttagcaaa	aattgccgct	180
aagtacggac	caatactgca	attacaactc	ggctacagac	gtgttctggt	gatttcctca	240
ccatcagcag	cagaagagtg	ctttaccaat	aacgatgtaa	tcttcgcaaa	tagacctaag	300

acattgtttg	gcaaaatagt	gggtggaaca	tcccttggca	gtttatccta	cggcgatcaa	360
tggcgtaatc	taaggagagt	agcttctatc	gaaatcctat	cagttcatag	gttgaacgaa	420
tttcatgata	tcagagtgga	tgagaacaga	ttgttaatta	gaaaacttag	aagttcatct	480
tctcctgtta	ctcttataac	agtcttttat	gctctaacat	tgaacgtcat	tatgagaatg	540
atctctggca	aaagatattt	cgacagtggg	gatagagaat	tggaggagga	aggtaagaga	600
tttcgagaaa	tcttagacga	aacgttgctt	ctageeggtg	cttctaatgt	tggcgactac	660
ttaccaatat	tgaactggtt	gggagttaag	tctcttgaaa	agaaattgat	cgctttgcag	720
aaaaagagag	atgactttt	ccagggtttg	attgaacagg	ttagaaaatc	tcgtggtgct	780
aaagtaggca	aaggtagaaa	aacgatgatc	gaactcttat	tatctttgca	agagtcagaa	840
cctgagtact	atacagatgc	tatgataaga	tctttgtcc	taggtctgct	ggctgcaggt	900
agtgatactt	cagcgggcac	tatggaatgg	gccatgagct	tactggtcaa	tcacccacat	960
gtattgaaga	aagctcaagc	tgaaatcgat	agagttatcg	gtaataacag	attgattgac	1020
gagtcagaca	ttggaaatat	cccttacatc	gggtgtatta	tcaatgaaac	tctaagactc	1080
tatccagcag	ggccattgtt	gttcccacat	gaaagttctg	ccgactgcgt	tatttccggt	1140
tacaatatac	ctagaggtac	aatgttaatc	gtaaaccaat	gggcgattca	tcacgatcct	1200
aaagtctggg	atgatcctga	aacctttaaa	cctgaaagat	ttcaaggatt	agaaggaact	1260
agagatggtt	tcaaacttat	gccattcggt	tctgggagaa	gaggatgtcc	aggtgaaggt	1320
ttggcaataa	ggctgttagg	gatgacacta	ggctcagtga	tccaatgttt	tgattgggag	1380
agagtaggag	atgagatggt	tgacatgaca	gaaggtttgg	gtgtcacact	tcctaaggcc	1440
gttccattag	ttgccaaatg	taagccacgt	tccgaaatga	ctaatctcct	atccgaactt	1500
taa						1503

SEQ ID NO:19

MEASYLYISI	LLLLASYLFT	TQLRRKSANL	PPTVFPSIPI	IGHLYLLKKP	LYRTLAKIAA	60
KYGPILQLQL	GYRRVLVISS	PSAAEECFTN	NDVIFANRPK	TLFGKIVGGT	SLGSLSYGDQ	120
WRNLRRVASI	EILSVHRLNE	FHDIRVDENR	LLIRKLRSSS	SPVTLITVFY	ALTLNVIMRM	180
ISGKRYFDSG	DRELEEEGKR	FREILDETLL	LAGASNVGDY	LPILNWLGVK	SLEKKLIALQ	240
KKRDDFFQGL	IEQVRKSRGA	KVGKGRKTMI	ELLLSLQESE	PEYYTDAMIR	SFVLGLLAAG	300
SDTSAGTMEW	AMSLLVNHPH	VLKKAQAEID	RVIGNNRLID	ESDIGNIPYI	GCIINETLRL	360
YPAGPLLFPH	ESSADCVISG	YNIPRGTMLI	VNQWAIHHDP	KVWDDPETFK	PERFQGLEGT	420
RDGFKLMPFG	SGRRGCPGEG	LAIRLLGMTL	GSVIQCEDWE	RVGDEMVDMT	EGLGVTLPKA	480
VPLVAKCKPR	SEMTNLLSEL					500

SEQ ID NO:20

MQSDSVKVSP	FDLVSAAMNG	KAMEKLNASE	SEDPTTLPAL	KMLVENRELL	TLFTTSFAVL	60
IGCLVFLMWR	RSSSKKLVQD	PVPQVIVVKK	KEKESEVDDG	KKKVSIFYGT	QTGTAEGFAK	120
ALVEEAKVRY	EKTSFKVIDL	DDYAADDDEY	EEKLKKESLA	FFFLATYGDG	EPTDNAANFY	180
KWFTEGDDKG	EWLKKLQYGV	FGLGNRQYEH	FNKIAIVVDD	KLTEMGAKRL	VPVGLGDDDQ	240
CIEDDFTAWK	ELVWPELDQL	LRDEDDTSVT	TPYTAAVLEY	RVVYHDKPAD	SYAEDQTHTN	300
GHVVHDAQHP	SRSNVAFKKE	LHTSQSDRSC	THLEFDISHT	GLSYETGDHV	GVYSENLSEV	360
VDEALKLLGL	SPDTYFSVHA	DKEDGTPIGG	ASLPPPFPPC	TLRDALTRYA	DVLSSPKKVA	420
LLALAAHASD	PSEADRLKFL	ASPAGKDEYA	QWIVANQRSL	LEVMQSFPSA	KPPLGVFFAA	480
VAPRLQPRYY	SISSSPKMSP	NRIHVTCALV	YETTPAGRIH	RGLCSTWMKN	AVPLTESPDC	540
SQASIFVRTS	NFRLPVDPKV	PVIMIGPGTG	LAPFRGFLQE	RLALKESGTE	LGSSIFFFGC	600
RNRKVDFIYE	DELNNFVETG	ALSELIVAFS	REGTAKEYVQ	HKMSQKASDI	WKLLSEGAYL	660
YVCGDAKGMA	KDVHRTLHTI	VQEQGSLDSS	KAELYVKNLQ	MSGRYLRDVW		710

SEQ ID NO:21

MTSALYASDL FKQLKSIMGT DSLSDDVVLV IATTSLALVA GFVVLLWKKT TADRSGELKP 60 LMIPKSLMAK DEDDDLDLGS GKTRVSIFFG TQTGTAEGFA KALSEEIKAR YEKAAVKVID 120 LDDYAADDDQ YEEKLKKETL AFFCVATYGD GEPTDNAARF YKWFTEENER DIKLQQLAYG 180 VFALGNRQYE HFNKIGIVLD EELCKKGAKR LIEVGLGDDD QSIEDDFNAW KESLWSELDK 240 LLKDEDDKSV ATPYTAVIPE YRVVTHDPRF TTQKSMESNV ANGNTTIDIH HPCRVDVAVQ 300 KELHTHESDR SCIHLEFDIS RTGITYETGD HVGVYAENHV EIVEEAGKLL GHSLDLVFSI 360 HADKEDGSPL ESAVPPPFPG PCTLGTGLAR YADLLNPPRK SALVALAAYA TEPSEAEKLK 420 HLTSPDGKDE YSQWIVASQR SLLEVMAAFP SAKPPLGVFF AAIAPRLQPR YYSISSSPRL 480 APSRVHVTSA LVYGPTPTGR IHKGVCSTWM KNAVPAEKSH ECSGAPIFIR ASNFKLPSNP 540 STPIVMVGPG TGLAPFRGFL QERMALKEDG EELGSSLLFF GCRNRQMDFI YEDELNNFVD 600 QGVISELIMA FSREGAQKEY VQHKMMEKAA QVWDLIKEEG YLYVCGDAKG MARDVHRTLH 660 TIVQEQEGVS SSEAEAIVKK LQTEGRYLRD VW 692

SEQ ID NO:22

MAELDTLDIV	VLGVIFLGTV	AYFTKGKLWG	VTKDPYANGF	AAGGASKPGR	TRNIVEAMEE	60
				EDYDFDNLDT		120
				VAFGLGNNTY		180
				AKKMGLEERE		240
				AESYELFSAK		300
				VVTVKALEPT		360
			141-			
				SDKDYFHEKT		420
				KKISITAVVE		480
				IHVPVHVRHS		540
				RKSTEDFMYQ		600
			~	FYVCGDAAHM	PN	660
IIAEGRGVSE	AKGEEIVKNM	RSANQYQVCS	DFVTLHCKET	TYANSELQED	VWS	713
SEQ ID NO	D:23					
ataaataaa					***	60
				tgactgctgt		
				caaagatgcc		120
				ctacgtcagt		180
				ggaagaagtc		240
ttggagccgc	cgaagatcgt	tgtgccgaag	aggcggctgg	agcaggaggt	tgatgatggt	300
aagaagaagg	ttacgatttt	cttcggaaca	caaactggaa	cggctgaagg	tttcgctaag	360
gcacttttcg	aagaagcgaa	agcgcgatat	gaaaaggcag	cgtttaaagt	gattgatttg	420
gatgattatg	ctgctgattt	ggatgagtat	gcagagaagc	tgaagaagga	aacatatgct	480
ttcttcttct	tggctacata	tggagatggt	gagccaactg	ataatgctgc	caaattttat	540
aaatggttta	ctgagggaga	cgagaaaggc	gtttggcttc	aaaaacttca	atatggagta	600
				ttggaatagt		660
				gtcttggaga		720
				ggcccgaatt		780
				cagetgeaat		840
				atcatactca		900
				tggctgttaa		960
-		-		ttgacatttc		1020
				aaaacctaat		1080
				atttctcgtt		1140
aacgaagatg	gttcaccact	tggtggacct	tcattacaac	ctccttttcc	tccttgtact	1200
ttaagaaaag	cattgactaa	ttatgcagat	ctgttaagct	ctcccaaaaa	gtcaactttg	1260
cttgctctag	ctgctcatgc	ttccgatccc	actgaagctg	atcgtttaag	atttcttgca	1320
tctcgcgagg	gcaaggatga	atatgctgaa	tgggttgttg	caaaccaaag	aagtettett	1380
gaagtcatgg	aagettteee	gtcagctaga	ccgccacttg	gtgttttctt	tgcagcggtt	1440
gcaccgcgtt	tacageeteg	ttactactct	atttcttcct	ccccaaagat	ggaaccaaac	1500
aggattcatg	ttacttgcgc	gttggtttat	gaaaaaactc	ccgcaggtcg	tatccacaaa	1560
				ccgaaagtca		1620
				caattgaccc		1680
			-	ggggttttct		1740
			-	ttttattett		1800
						1860
				actttgttga		
				cgaaagaata		1920
			-	ctgagggagc		1980
				gtacacttca		2040
caagaacagg	gaagtttgga	ctcgtctaaa	gcggagttgt	atgtgaagaa	tctacaaatg	2100
tcaggaagat	acctccgtga	tgtttggtaa				2130
SEQ ID NC	0.24					
	l e haa ^{ma} l					
atgcaatcta	actecataaa	gatttcccco	cttgatctog	taactgcgct	gtttagcggg	60
				ctgctatgct		120
				caacgtcggt		180
		2-2-03-03			-) 3	

ĉ atcggatgeg ttgtegttt ggtgtggegg agategteta caacgteggt tgetgtattg 180 atcggatgeg ttgtegttt ggtgtggegg agategteta cgaagaagte ggegttggag 240 ceaeeggtga ttgtggttee gaagagagtg caagaggagg aagttgatga tggtaagaag 300 aaagttaegg ttttettegg caeceaact ggaacagetg aaggettege taaggeaett 360 gttgaggaag etaaageteg atatgaaaag getgtettta aagtaattga ttggatgat 420 tatgetgetg atgaegatga gtatgaggag aaaetaaaga aagaatett ggeetttte 480 tttttggeta egtatggaga tggtgageea acagataatg etgeeagatt ttataaatgg 540

tttactgagg gagatgcgaa	aggagaatgg	cttaataagc	ttcaatatgg	agtatttqqt	600
ttgggtaaca gacaatatga	acattttaac	aagatcgcaa	aagtggttga	tgatggtctt	660
gtagaacagg gtgcaaagcg	tcttgttcct	gttggacttg	gagatgatga	tcaatgtatt	720
gaagatgact tcaccgcatg	gaaagagtta	gtatggccgg	agttggatca	attacttcgt	780
gatgaggatg acacaactgt	tgctactcca	tacacagetg	ctgttgcaga	atatcgcgtt	840
gtttttcatg aaaaaccaga					900
gttcatgatg ctcaacatcc	atgcagatcc	aacgtggctg	tcaaaaagga	acttcatagt	960
cctgaatctg accggtcttg					1020
tatgaaactg gggaccatgt					1080
gctgaaagat tagtaggatt					1140
gacgggtcgc cacttggcgg					1200
aaagcattga cgtgttatgc					1260
ctagetgete atgecacega					1320
gccggaaagg atgaatattc					1380 1440
atggaagcat tcccgtcagc					
cgcttacaac caagatacta					1500 1560
catgttacat gtgcattagt tgttcaactt ggatgaagaa					1620
ccaatatacg tccgaacatc					1680
atgattggac ctggcactgg					1740
ttaaaggaag ccggaactga					1800
aaagtggatt tcatatatga					1860
gagettattg ttgetttete					1920
aqtqaqaaqq cttcqqatat		20 SP 30		10 A	1980
ggtgatgcca aaggcatggc			<i>w w</i>	2º 0º	2040
cagggatete ttgactegte					2100
agatacetec gtgacgtttg	10 ar ar				2124
س دو دو من	2				
SEQ ID NO:25					
					<i>c</i> 0
MTSALYASDL FKQLKSIMGT					60
LMIPKSLMAK DEDDDLDLGS					120
LDDYAADDDQ YEEKLKKETL					180 240
VFALGNRQYE HFNKIGIVLD LLKDEDDKSV ATPYTAVIPE					300
KELHTHESDR SCIHLEFDIS		-4			360
HADKEDGSPL ESAVPPPFPG					420
HLTSPDGKDE YSQWIVASQR					480
APSRVHVTSA LVYGPTPTGR					540
STPIVMVGPG TGLAPFRGFL					600
OGVISELIMA FSREGAOKEY					660
TIVOEOEGVS SSEAEAIVKK	and a				692
an man of \$60,000 \$20,000 on of their second second second and the form	and the second second second				4. P
SEQ ID NO:26					
MSSSSSSSTS MIDLMAAIIK					60
AVLIGCIVML VWRRSGSGNS					120
KALGEEAKAR YEKTRFKIVD					180
YKWFTEGNDR GEWLKNLKYG					240
QCIEDDFTAW REALWPELDT					300
GNGYTVFDAQ HPYKANVAVK					360
ETVDEALRLL DMSPDTYFSL ALVALAAHAS DPTEAERLKH					420
GVAPRLOPRF YSISSSPKIA					480 540
LFLGRPIFVR OSNFKLPSDS					540 600
GCRNRRMDFI YEEELQRFVE			100		660
YLYVCGDAKG MARDVHRSLH					712
ు, une va శా కురాజావరావ వర్షాలు - మైద్ర సిని పాల్ 9 సిపి సిఫిల్ dod స్	an ann a hE na hE lai pa p gur		m ge a tar tar hin a dala har		t vite but
SEQ ID NO:27					
		MCDOWNDAT	***	7 77 11/13 (777 7 7 7 7 7	<i>c</i> 0
MQSESVEAST IDLMTAVLKD					60

MQSESVEAST	IDLMTAVLKD	TVIDTANASD	NGDSKMPPAL	AMMFEIRDLL	LILTTSVAVL	60
VGCFVVLVWK	RSSGKKSGKE	LEPPKIVVPK	RRLEQEVDDG	KKKVTIFFGT	QTGTAEGFAK	120
ALFEEAKARY	EKAAFKVIDL	DDYAADLDEY	AEKLKKETYA	FFFLATYGDG	EPTDNAAKFY	180
KWFTEGDEKG	VWLQKLQYGV	FGLGNRQYEH	FNKIGIVVDD	GLTEQGAKRI	VPVGLGDDDQ	240
SIEDDFSAWK	ELVWPELDLL	LRDEDDKAAA	TPYTAAIPEY	RVVFHDKPDA	FSDDHTQTNG	300

68

atggatgcaa tggctacaac tgagaagaaa ccacacgtca tcttcatacc atttccagca 60 caaagccaca ttaaagccat gctcaaacta gcacaacttc tccaccacaa aggactccag 120 ataacetteg teaacacega etteateeac aaceagttte ttgaateate gggeeeacat 180 tgtctagacg gtgcaccggg tttccggttc gaaaccattc cggatggtgt ttctcacagt ccggaagcga gcatcccaat cagagaatca ctcttgagat ccattgaaac caacttcttg 240 300 gategtttea ttgatettgt aaccaaaett eeggateete egaettgtat tateteagat 360 gggttettgt eggtttteae aattgaeget geaaaaaage ttggaattee ggteatgatg tattggaeae ttgetgeetg tgggtteatg ggtttttaee atatteatte teteattgag 420 480 aaaggatttg caccacttaa agatgcaagt tacttgacaa atgggtattt ggacaccgtc 540 attgattggg ttccgggaat ggaaggcatc cgtctcaagg atttcccgct ggactggagc actgacctca atgacaaagt tttgatgttc actacggaag ctcctcaaag gtcacacaag 600 660 gtttcacate atatttteea caegttegat gagttggage etagtattat aaaaaetttg 720 tcattgaggt ataatcacat ttacaccatc ggcccactgc aattacttct tgatcaaata cccgaagaga aaaagcaaac tggaattacg agtctccatg gatacagttt agtaaaagaa 780 840 gaaccagagt gtttccagtg gcttcagtct aaagaaccaa attccgtcgt ttatgtaaat 900 tttggaagta ctacagtaat gtctttagaa gacatgacgg aatttggttg gggacttgct 960

MDAMATTEKK PHVIFIPFPA QSHIKAMLKL AQLLHHKGLQ ITFVNTDFIH NQFLESSGPH CLDGAPGFRF ETIPDGVSHS PEASIPIRES LLRSIETNFL DRFIDLVTKL PDPPTCIISD GFLSVFTIDA AKKLGIPVMM YWTLAACGFM GFYHIHSLIE KGFAPLKDAS YLTNGYLDTV IDWVPGMEGI RLKDFPLDWS TDLNDKVLMF TTEAPQRSHK VSHHIFHTFD ELEPSIIKTL SLRYNHIYTI GPLQLLLDQI PEEKKQTGIT SLHGYSLVKE EPECFQWLQS KEPNSVVYVN FGSTTVMSLE DMTEFGWGLA NSNHYFLWII RSNLVIGENA VLPPELEEHI KKRGFIASWC SQEKVLKHPS VGGFLTHCGW GSTIESLSAG VPMICWPYSW DQLTNCRYIC KEWEVGLEMG TKVKRDEVKR LVQELMGEGG HKMRNKAKDW KEKARIAIAP NGSSSLNIDK MVKEITVLAR N

SEQ ID NO:30

SEQ ID NO:31

TTSIEIQAIS	DGCDEGGFMS	AGESYLETFK	QVGSKSLADL	IKKLQSEGTT	IDAIIYDSMT	120
EWVLDVAIEF	GIDGGSFFTQ	ACVVNSLYYH	VHKGLISLPL	GETVSVPGFP	VLQRWETPLI	180
LQNHEQIQSP	WSQMLFGQFA	NIDQARWVFT	NSFYKLEEEV	IEWTRKIWNL	KVIGPTLPSM	240
YLDKRLDDDK	DNGFNLYKAN	HHECMNWLDD	KPKESVVYVA	FGSLVKHGPE	QVEEITRALI	300
DSDVNFLWVI	KHKEEGKLPE	NLSEVIKTGK	GLIVAWCKQL	DVLAHESVGC	FVTHCGFNST	360
LEAISLGVPV	VAMPQFSDQT	TNAKLLDEIL	GVGVRVKADE	NGIVRRGNLA	SCIKMIMEEE	420
RGVIIRKNAV	KWKDLAKVAV	HEGGSSDNDI	VEFVSELIKA			460

MAEQQKIKKS PHVLLIPFPL QGHINPFIQF GKRLISKGVK TTLVTTIHTL NSTLNHSNTT

SEQ ID NO:29

MQSNSVKISP	LDLVTALFSG	KVLDTSNASE	SGESAMLPTI	AMIMENRELL	MILTTSVAVL	60
IGCVVVLVWR	RSSTKKSALE	PPVIVVPKRV	QEEEVDDGKK	KVTVFFGTQT	GTAEGFAKAL	120
VEEAKARYEK	AVFKVIDLDD	YAADDDEYEE	KLKKESLAFF	FLATYGDGEP	TDNAARFYKW	180
FTEGDAKGEW	LNKLQYGVFG	LGNRQYEHFN	KIAKVVDDGL	VEQGAKRLVP	VGLGDDDQCI	240
EDDFTAWKEL	VWPELDQLLR	DEDDTTVATP	YTAAVAEYRV	VFHEKPDALS	EDYSYTNGHA	300
VHDAQHPCRS	NVAVKKELHS	PESDRSCTHL	EFDISNTGLS	YETGDHVGVY	CENLSEVVND	360
AERLVGLPPD	TYSSIHTDSE	DGSPLGGASL	PPPFPPCTLR	KALTCYADVL	SSPKKSALLA	420
LAAHATDPSE	ADRLKFLASP	AGKDEYSQWI	VASQRSLLEV	MEAFPSAKPS	LGVFFASVAP	480
RLQPRYYSIS	SSPKMAPDRI	HVTCALVYEK	TPAGRIHKGV	CSTWMKNAVP	MTESQDCSWA	540
PIYVRTSNFR	LPSDPKVPVI	MIGPGTGLAP	FRGFLQERLA	LKEAGTDLGL	SILFFGCRNR	600
KVDFIYENEL	NNFVETGALS	ELIVAFSREG	PTKEYVQHKM	SEKASDIWNL	LSEGAYLYVC	660
GDAKGMAKDV	HRTLHTIVQE	QGSLDSSKAE	LYVKNLQMSG	RYLRDVW		707

SEQ ID NO:28

HAVHDAQHPC	RSNVAVKKEL	HTPESDRSCT	HLEFDISHTG	LSYETGDHVG	VYCENLIEVV	360
EEAGKLLGLS	TDTYFSLHID	NEDGSPLGGP	SLQPPFPPCT	LRKALTNYAD	LLSSPKKSTL	420
LALAAHASDP	TEADRLRFLA	SREGKDEYAE	WVVANQRSLL	EVMEAFPSAR	PPLGVFFAAV	480
APRLQPRYYS	ISSSPKMEPN	RIHVTCALVY	EKTPAGRIHK	GICSTWMKNA	VPLTESQDCS	540
WAPIFVRTSN	FRLPIDPKVP	VIMIGPGTGL	APFRGFLQER	LALKESGTEL	GSSILFFGCR	600
NRKVDYIYEN	ELNNFVENGA	LSELDVAFSR	DGPTKEYVQH	KMTQKASEIW	NMLSEGAYLY	660
VCGDAKGMAK	DVHRTLHTIV	QEQGSLDSSK	AELYVKNLQM	SGRYLRDVW		709

60

60

120

180

240

300

360 420

480

480

540 600

660

720

780

787

60

120

180

240

300

360

		3	3.3.3.							
SEQ ID NO:32										
	atggatgcaa	tggcaactac	tgagaaaaag	cctcatgtga	tcttcattcc	atttcctgca	60			
	caatctcaca	taaaggcaat	gctaaagtta	gcacaactat	tacaccataa	gggattacag	120			
	ataactttcg	tgaataccga	cttcatccat	aatcaatttc	tggaatctag	tggccctcat	180			
	tgtttggacg	gageceeagg	gtttagattc	gaaacaattc	ctgacggtgt	ttcacattcc	240			
	ccagaggcct	ccatcccaat	aagagagagt	ttactgaggt	caatagaaac	caactttttg	300			
	gatcgtttca	ttgacttggt	cacaaaactt	ccagacccac	caacttgcat	aatctctgat	360			
	<i>M M</i>	~ ~	tatcgacgct		~ ~ ~		420			
	~ ~		cggtttcatg	~ ~		~	480			
			agatgcatca				540			
			ggaaggtata				600			
			attgatgttt				660			
	-		cacctttgat	e		*	720			
			ctacactatt				780			
		*	tggtattaca		-		840			
	2 a	<i>2 2</i>	gctacaaagt		~ ~ ~	~	900			
		*	gtccttggaa	a. a. w.	<i>x</i>		960			
			atggattate	20 U	ur ur ur ur	ar ar 60	1020			
	#	e- 10 e	ggaacacatc		<i>w w</i>		1080			
	10 III	v	acatecttet				1140			
			aagtgcagga	w			1200			
	<i>1n</i>		gtatatctgt		~ ~ ~	~ ~ ~ ~	1260			
			agtgaaaaga				1320			
			caaagattgg		10- UP		1380			
	aactaa	CCLCLCLddd	cattgataag	arggreaaag	agattacagt	cttagecaga	1440 1446			
	ddCLdd						1440			
	SEQ ID NO):33								
	MKTGFISPAT	VFHHRISPAT	TFRHHLSPAT	TNSTGIVALR	DINFRCKAVS	KEYSDLLQKD	60			
			NLYPNDEIKE				120			
			NQLSDGSWGD				180			
			HMPIGFEVTF				240			
			LEGMPDLEWE	140			300			
			PVDLFEHIWV				360			
			FRVLRAHGYD				420			
	3757527D 75 (C) (C) 887 T 77	DODDTTDDX	TZ THO VENTUE TZ TO TZ	COMMENT & DUG	TTNEEDT DODLE	CAUST DTDDDDD	100			

NVYRASQMLF PGERILEDAK KFSYNYLKEK QSTNELLDKW IIAKDLPGEV GYALDIPWYA

SLPRLETRYY LEQYGGEDDV WIGKTLYRMG YVSNNTYLEM AKLDYNNYVA VLQLEWYTIQ QWYVDIGIEK FESDNIKSVL VSYYLAAASI FEPERSKERI AWAKTTILVD KITSIFDSSQ

SSKEDITAFI DKFRNKSSSK KHSINGEPWH EVMVALKKTL HGFALDALMT HSQDIHPQLH

QAWEMWLTKL QDGVDVTAEL MVQMINMTAG RWVSKELLTH PQYQRLSTVT NSVCHDITKL

HNFKENSTTV DSKVQELVQL VFSDTPDDLD QDMKQTFLTV MKTFYYKAWC DPNTINDHIS

MPDAHDAPPP QIRQRTLVDE ATQLLTESAE DAWGEVSVSE YETARLVAHA TWLGGHATRV

AFLLERQHED GSWGPPGGYR LVPTLSAVHA LLTCLASPAQ DHGVPHDRLL RAVDAGLTAL

RRLGTSDSPP DTIAVELVIP SLLEGIQHLL DPAHPHSRPA FSQHRGSLVC PGGLDGRTLG

DSARRYLEEL QHRYSGPVPS ITPITYFERA WLLNNFAAAG VPCEAPAALL DSLEAALTPQ

GAPAGAGLPP DADDTAAVLL ALATHGRGRR PEVLMDYRTD GYFQCFIGER TPSISTNAHV

ALRSHAAAGT PVPGKVWHAS ETLGLSTEAA SHLQPAQGII GGSAAATATW LTRVAPSQQS

Ś

KVFEIVI

	-			DKWHASPYYA LQILAPPSGG	**	420 480	
			ARAAALYTTR	-		527	
SEQ ID NO:35							
				NVTGRQDAYA FLOROPDPYA		60 120	
AELILPQFCG	EAAWLLGGVA	FPRHPALLPL	RQACLVKLGA	VAMLPSGHPL	LHSWEAWGTS	180	
				YLQMASRATR		240	
				LGVHGLGPAL		300	
				NIHALHALRL DERALAALLO		360 420	
				WMLARHAAHG		480	
		LRWGRRVLAE			04 <i>7</i>	516	
SEQ ID NO	0:36						
				cttactttct		60	
				tgcgtacatt cgatcgcaag		120 180	
				caacggcggc		240	
20 W W		w w		ttatcttctt		300	
tetetattat	atacctagat	tttctccaca	ggcagatcag	attetttaca	cagetgtatt	360	
				aaaggagcga		420	
				ttttttcatt cgcagatagc		480 540	
				cagtttcatg		600	
ur 10	ar ar ar ar ar		~	ccaaaggaag	~ ~ ~	660	
				aaacgtacta		720	
				cacctttctt		780	
				acggatacag		840	
				cagcacacca ctccaaatct		900 960	
				cgtccctaac		1020	
				acgacgacga		1080	
				acggggacat		1140	
				acggcggcga		1200	
				ccgacggete		1260 1320	
			-	tggcgtgcgt cgtaattact		1380	
				aacgggcgtt		1440	
			~ ~	cggccggaac	~ ~ ~	1500	
				gctcgcgttc		1560	
• •			-	egaceaceag		1620	
				taaggaagtg gctagactgg		1680 1740	
				cgcggccacc		1800	
				caggacagtc		1860	
acggaggagg	tacgcaagca	gtagcgtaga	tacatgggca	tagcatgcat	gcatgcaatg	1920	
cagcgttgcc	cactgcatgc	gcetteette	ettecttete	gtetetteaa	cggttcgtct	1980	
tctctcgccg	tttctcgcag	tgcccaacgt	ctaccccgtg	gaccttttcg	agcacatatg	2040	
				ttccagaaag atctgctggg		2100 2160	
				ctgctacggc		2220	
				acgcgcagac		2280	
gtcacgtcat	acacacgcgt	gteetgaaca	tttttcattt	ggtctcccac	ccatcgtacg	2340	
				tacgtgtaga		2400	
				agtogaacca		2460 2520	
catacaaaaa	accudacag ettetenta	coacttete	acaayeecce	cggggggagga aggccgaggg	accontect	2520	
				tgtacaccct		2640	
tggtatggga						2700	
gacgatgtct						2760	
gtttcagatc	gaccagataa	aatttgcatt	attggttctt	ttgatgcatg	taattgaaag	2820	

ccaataaata	acctcagtat	gcgtgatggc	tgacttttgc	attggcagga	tgcctcttgt	2880
gaataacgat	gtgtatcttg	agctggctag	gatggacttc	aaccattgcc	aagccctaca	2940
tcagcttgag	tggcaaggcc	tgaaaaggta	tgtatgttac	tatatatata	cagcccggtt	3000
gttgagtttt	ttttttattt	tattttttc	gcgattacca	tttcttctcg	atgcaaaata	3060
aatctgcaca	gatcatcata	tatatccttg	atgatatata	agggcttctc	gtatatatat	3120
cttatcacct	atatatacat	aggtggtaca	ctgagaaccg	gctcatggat	ttcggagtgg	3180
cgcaagagga	tgctctgcga	gcgtatttcc	tggccgccgc	ttccgtctac	gagccgtgcc	3240
gageegegga	gcggcttgcg	tgggccagag	cggcgatact	tgccaacgcc	gtctctaccc	3300
atctccgtaa	cagcccctca	ttcagagaac	gcttggaaca	ctccttgcgt	tgccgcccca	3360
gtgaagaaac	ggatggatca	tggtaataag	ctgatcgatg	ggaaattaaa	aatttaagtt	3420
ttttttttt	ttttgttgc	cattatctga	gaccaatgca	atgtggtgca	tatatatcca	3480
ggttcaactc	atcaagtgga	agtgacgctg	ttcttgtgaa	ggcagttctg	cggcttaccg	3540
actcgttagc	gcgagaagcg	cagccgattc	atggcggtga	tccggaggac	atcatccaca	3600
agctactgag	atcagctgta	agttaaacgt	aacgttcaga	agaagatttt	tttttttt	3660
tgcagttaac	aagtactacg	acatctatcg	tttttgttca	gcatgcacag	tcatcctagc	3720
tactaatacc	attattcttc	tgtgaacttg	tgtagtgggc	tgaatgggtc	agggagaagg	3780
cagatgcagc	agacagcgtg	tgtaatggat	ccagtgctgt	ggaacaagaa	gggtcgcgca	3840
tggttcatga	caagcaaacg	tgtctgcttt	tagctcgaat	gatcgagatc	agcgctgggc	3900
gagctgcagg	tgaggctgcg	agcgaagatg	gtgaccgtcg	gattatccag	ctcactgggt	3960
ctatatgtga	cagtctcaag	cagaagatgc	tagtatctca	ggtatagcac	atatatacta	4020
cagaaagttt	gtgcgtagtt	attatttccc	ttttttcatg	tgacgaacat	gatgacctga	4080
tgatgcatgt	atatggcttc	atataggacc	ccgagaagaa	cgaagagatg	atgagccatg	4140
tcgatgacga	attgaagctg	cgtatacgag	agttcgttca	gtatcttctg	agactcggtg	4200
agaagaaaac	cggcagcagc	gagacaaggc	agacctttct	gagcatcgtg	aaaagctgtt	4260
actacgctgc	tcactgcccg	ccgcatgtgg	tagacaggca	tatttccaga	gttattttg	4320
aacctgtttc	cgccgcaaaa	taatggtaat	ggtagatgtg	aatgtgatat	ggagataaga	4380
gagagagaaa	atgttgatag	tggaaattgg	cgttgatgtc	gcctccacat	tctttacgca	4440
aaagtagcgt	ctgttttgga	taaaaaaaat	ccagtttctg	taaattatag	aataaatcaa	4500
tcgctgtgtc	ccaaactcta	aaatgttatt	ctgtgaagta	tggaataaat	cggtcactat	4560
acctatcttg	tggatgc					4577

MVLSSSCTTV	PHLSSLAVVQ	LGPWSSRIKK	KTDTVAVPAA	AGRWRRALAR	AQHTSESAAV	60
AKGSSLTPIV	RTDAESRRTR	WPTDDDDAEP	LVDEIRAMLT	SMSDGDISVS	AYDTAWVGLV	120
PRLDGGEGPQ	FPAAVRWIRN	NQLPDGSWGD	AALFSAYDRL	INTLACVVTL	TRWSLEPEMR	180
GRGLSFLGRN	MWKLATEDEE	SMPIGFELAF	PSLIELAKSL	GVHDFPYDHQ	ALQGIYSSRE	240
IKMKRIPKEV	MHTVPTSILH	SLEGMPGLDW	AKLLKLQSSD	GSFLFSPAAT	AYALMNTGDD	300
RCFSYIDRTV	KKFNGGVPNV	YPVDLFEHIW	AVDRLERLGI	SRYFQKEIEQ	CMDYVNRHWT	360
EDGICWARNS	DVKEVDDTAM	AFRLLRLHGY	SVSPDVFKNF	EKDGEFFAFV	GQSNQAVTGM	420
YNLNRASQIS	FPGEDVLHRA	GAFSYEFLRR	KEAEGALRDK	WIISKDLPGE	VVYTLDFPWY	480
GNLPRVEARD	YLEQYGGGDD	VWIGKTLYRM	PLVNNDVYLE	LARMDFNHCQ	ALHQLEWQGL	540
KRWYTENRLM	DFGVAQEDAL	RAYFLAAASV	YEPCRAAERL	AWARAAILAN	AVSTHLRNSP	600
SFRERLEHSL	RCRPSEETDG	SWFNSSSGSD	AVLVKAVLRL	TDSLAREAQP	IHGGDPEDII	660
HKLLRSAWAE	WVREKADAAD	SVCNGSSAVE	QEGSRMVHDK	QTCLLLARMI	EISAGRAAGE	720
AASEDGDRRI	IQLTGSICDS	LKQKMLVSQD	PEKNEEMMSH	VDDELKLRIR	EFVQYLLRLG	780
EKKTGSSETR	QTFLSIVKSC	YYAAHCPPHV	VDRHISRVIF	EPVSAAK		827

cttcttcact	aaatacttag	acagagaaaa	cagagetttt	taaagccatg	tctcttcagt	60
atcatgttct	aaactccatt	ccaagtacaa	cctttctcag	ttctactaaa	acaacaatat	120
cttcttcttt	ccttaccatc	tcaggatete	ctctcaatgt	cgctagagac	aaatccagaa	180
gcggttccat	acattgttca	aagcttcgaa	ctcaagaata	cattaattct	caagaggttc	240
aacatgattt	gcctctaata	catgagtggc	aacagettea	aggagaagat	gctcctcaga	300
ttagtgttgg	aagtaatagt	aatgcattca	aagaagcagt	gaagagtgtg	aaaacgatct	360
tgagaaacct	aacggacggg	gaaattacga	tatcggctta	cgatacagct	tgggttgcat	420
tgatcgatgc	cggagataaa	actccggcgt	ttccctccgc	cgtgaaatgg	atcgccgaga	480
accaactttc	cgatggttct	tggggagatg	cgtatctctt	ctcttatcat	gatcgtctca	540
tcaataccct	tgcatgcgtc	gttgctctaa	gatcatggaa	tctctttcct	catcaatgca	600
acaaaggaat	cacgtttttc	cgggaaaata	ttgggaagct	agaagacgaa	aatgatgagc	660
atatgccaat	cggattcgaa	gtagcattcc	catcgttgct	tgagatagct	cgaggaataa	720
acattgatgt	accgtacgat	tctccggtct	taaaagatat	atacgccaag	aaagagctaa	780
agcttacaag	gataccaaaa	gagataatgc	acaagatacc	aacaacattg	ttgcatagtt	840
tggaggggat	gcgtgattta	gattgggaaa	agctcttgaa	acttcaatct	caagacggat	900

MEFDEPLVDE	ARSLVQRTLQ	DYDDRYGFGT	MSCAAYDTAW	VSLVTKTVDG	RKQWLFPECF	60
EFLLETQSDA	GGWEIGNSAP	IDGILNTAAS	LLALKRHVQT	EQIIQPQHDH	KDLAGRAERA	120
AASLRAQLAA	LDVSTTEHVG	FEIIVPAMLD	PLEAEDPSLV	FDFPARKPLM	KIHDAKMSRF	180
RPEYLYGKQP	MTALHSLEAF	IGKIDFDKVR	HHRTHGSMMG	SPSSTAAYLM	HASQWDGDSE	240
AYLRHVIKHA	AGQGTGAVPS	AFPSTHFESS	WILTTLFRAG	FSASHLACDE	LNKLVEILEG	300
SFEKEGGAIG	YAPGFQADVD	DTAKTISTLA	VLGRDATPRQ	MIKVFEANTH	FRTYPGERDP	360
SLTANCNALS	ALLHQPDAAM	YGSQIQKITK	FVCDYWWKSD	GKIKDKWNTC	YLYPSVLLVE	420
VLVDLVSLLE	QGKLPDVLDQ	ELQYRVAITL	FQACLRPLLD	QDAEGSWNKS	IEATAYGILI	480
LTEARRVCFF	DRLSEPLNEA	IRRGIAFADS	MSGTEAQLNY	IWIEKVSYAP	ALLTKSYLLA	540
ARWAAKSPLG	ASVGSSLWTP	PREGLDKHVR	LFHQAELFRS	LPEWELRASM	IEAALFTPLL	600
RAHRLDVFPR	QDVGEDKYLD	VVPFFWTAAN	NRDRTYASTL	FLYDMCFIAM	LNFQLDEFME	660
ATAGILFRDH	MDDLRQLIHD	LLAEKTSPKS	SGRSSQGTKD	ADSGIEEDVS	MSDSASDSQD	720
RSPEYDLVFS	ALSTFTKHVL	QHPSIQSASV	WDRKLLAREM	KAYLLAHIQQ	AEDSTPLSEL	780
KDVPQKTDVT	RVSTSTTTFF	NWVRTTSADH	ISCPYSFHFV	ACHLGAALSP	KGSNGDCYPS	840
AGEKFLAAAV	CRHLATMCRM	YNDLGSAERD	SDEGNLNSLD	FPEFADSAGN	GGIEIQKAAL	900

MSLQYHVLNS	IPSTTFLSST	KTTISSSFLT	ISGSPLNVAR	DKSRSGSIHC	SKLRTQEYIN	60
SQEVQHDLPL	IHEWQQLQGE	DAPQISVGSN	SNAFKEAVKS	VKTILRNLTD	GEITISAYDT	120
AWVALIDAGD	KTPAFPSAVK	WIAENQLSDG	SWGDAYLFSY	HDRLINTLAC	VVALRSWNLF	180
PHQCNKGITF	FRENIGKLED	ENDEHMPIGF	EVAFPSLLEI	ARGINIDVPY	DSPVLKDIYA	240
KKELKLTRIP	KEIMHKIPTT	LLHSLEGMRD	LDWEKLLKLQ	SQDGSFLFSP	SSTAFAFMQT	300
RDSNCLEYLR	NAVKRFNGGV	PNVFPVDLFE	HIWIVDRLQR	LGISRYFEEE	IKECLDYVHR	360
YWTDNGICWA	RCSHVQDIDD	TAMAFRLLRQ	HGYQVSADVF	KNFEKEGEFF	CFVGQSNQAV	420
TGMFNLYRAS	QLAFPREEIL	KNAKEFSYNY	LLEKREREEL	IDKWIIMKDL	PGEIGFALEI	480
PWYASLPRVE	TRFYIDQYGG	ENDVWIGKTL	YRMPYVNNNG	YLELAKQDYN	NCQAQHQLEW	540
DIFQKWYEEN	RLSEWGVRRS	ELLECYYLAA	ATIFESERSH	ERMVWAKSSV	LVKAISSSFG	600
ESSDSRRSFS	DQFHEYIANA	RRSDHHFNDR	NMRLDRPGSV	QASRLAGVLI	GTLNQMSFDL	660
FMSHGRDVNN	LLYLSWGDWM	EKWKLYGDEG	EGELMVKMII	LMKNNDLTNF	FTHTHFVRLA	720
EIINRICLPR	QYLKARRNDE	KEKTIKSMEK	EMGKMVELAL	SESDTFRDVS	ITFLDVAKAF	780
YYFALCGDHL	QTHISKVLFQ	KV				802

SEQ ID NO:39

		0000009000		Joudarcoda	goodgoodoo	200
gcctcgagta	tttgcgaaat	gccgtcaaac	gtttcaatgg	aggagttccc	aatgtctttc	1020
ccgtggatct	tttcgagcac	atatggatag	tggatcggtt	acaacgttta	gggatatcga	1080
gatactttga	agaagagatt	aaagagtgtc	ttgactatgt	ccacagatat	tggaccgaca	1140
atggcatatg	ttgggctaga	tgttcccatg	tccaagacat	cgatgataca	gccatggcat	1200
ttaggctctt	aagacaacat	ggataccaag	tgtccgcaga	tgtattcaag	aactttgaga	1260
aagagggaga	gtttttctgc	tttgtggggc	aatcaaacca	agcagtaacc	ggtatgttca	1320
acctataccg	ggcatcacaa	ttggcgtttc	caagggaaga	gatattgaaa	aacgccaaag	1380
agttttctta	taattatctg	ctagaaaaaac	gggagagaga	ggagttgatt	gataagtgga	1440
ttataatgaa	agacttacct	ggcgagattg	ggtttgcgtt	agagattcca	tggtacgcaa	1500
gcttgcctcg	agtagagacg	agattctata	ttgatcaata	tggtggagaa	aacgacgttt	1560
ggattggcaa	gactctttat	aggatgccat	acgtgaacaa	taatggatat	ctggaattag	1620
caaaacaaga	ttacaacaat	tgccaagete	agcatcaget	cgaatgggac	atattccaaa	1680
agtggtatga	agaaaatagg	ttaagtgagt	ggggtgtgcg	cagaagtgag	cttctcgagt	1740
gttactactt	agcggctgca	actatatttg	aatcagaaag	gtcacatgag	agaatggttt	1800
gggctaagtc	aagtgtattg	gttaaagcca	tttcttcttc	ttttggggaa	tcctctgact	1860
ccagaagaag	cttctccgat	cagtttcatg	aatacattgc	caatgctcga	cgaagtgatc	1920
atcactttaa	tgacaggaac	atgagattgg	accgaccagg	atcggttcag	gccagtcggc	1980
ttgccggagt	gttaatcggg	actttgaatc	aaatgtcttt	tgaccttttc	atgtctcatg	2040
gccgtgacgt	taacaatctc	ctctatctat	cgtggggaga	ttggatggaa	aaatggaaac	2100
tatatggaga	tgaaggagaa	ggagagctca	tggtgaagat	gataattcta	atgaagaaca	2160
atgacctaac	taacttcttc	acccacactc	acttcgttcg	tctcgcggaa	atcatcaatc	2220
gaatctgtct	tcctcgccaa	tacttaaagg	caaggagaaa	cgatgagaag	gagaagacaa	2280
				agcattgtcg		2340
catttcgtga	cgtcagcatc	acgtttcttg	atgtagcaaa	agcattttac	tactttgctt	2400
tatgtggcga	tcatctccaa	actcacatct	ccaaagtett	gtttcaaaaa	gtctagtaac	2460
				tgtatccata	gatgcgtgaa	2520
taatatttca	tgtagagaag	gagaacaaat	tagatcatgt	agggttatca		2570

cttteetett eteteettee tetacegett ttgeatteat geagaeeega gaeagtaaet

960

	YLEAFRRLQD EVEKKRKLDD		GDEARLSRRR	MAILEFFAQQ	VDLYGQVYVI	960 983
SEQ ID NO):41					
GSGSYRIVTG CLLQVTENVQ IIDNQLPDGD DANHMPIGFE LHSLEGLHRE PNVYPVDLFE TAMAFRLLRT KKARTFSRNF DDIWIGKSLY SVECYFAGAA LINGLPEQAK YVPTFDEYME QGMKREASQG KRIHLNMAKI	PSGINPSSNG MNEWIEEIRM WGEPSLFLGY IVFPAMMEDA VDWNKLLQLQ RLWMVDRLQR HGFDVKEDCF LRTKHENNEC KMPAVTNEVF TMFEPEMVQA ILFMGLYKTV VAEISVALEP KISSVQIYME MHAFYKDTDG	HLQEGSLTHR YFRNMTLGEI DRVCNTLACV KALGLDLPYD SENGSFLYSP LGISRYFERE RQFFKDGEFF FDKWIITKDL LKLAKADFNM RLVWARCCVL NTIAEEAFMA IVCSTLFFAG EHPSVPSEAM	LPIPMEKSID SMSPYDTAWV IALKTWGVGA ATILQQISAE ASTACALMYT IRDCLQYVYR CFAGQSSQAV AGEVEYNLTF CQALHKKELE TTVLDDYFDH QKRDVHHLKK HRLDEDVLDS	QCLKKRRCLR NFQSTLYVSD ARVPALDGSH QNVERGIQFL REKKMKKIPM KDVKCFDYLN YWKDCGIGWA TGMFNLSRAS PWYASLPRLE QVIKWNASCQ GTPVEELRVF HYWDKLITSA YDYHLVMHLV NSMQQLTYEV E	IWSETLQRTE GPQFHRSLQW QSNIYKMEED AMVYKYPTTL QLLIKFDHAC SNSSVQDVDD QTLFPGESLL HRTYLDQYGI FRDLEFARQK VQAVRTWNPE LKEAEWAESG NRVGRILNDI	60 120 240 300 420 480 540 600 720 780 840 881
SEQ ID NC):42					
DNVKQWLFPE PDEMGLRIEH LERMHGEKLG IGATKWDDEA GLRGLSTILL FTTFGSERDP HLYPTMLLVE REQTCYAILA VAEAYKLAAL IESSFFVPLL SLLGYQTDEY GQVEDTLTRF FSSPEQSYFQ TNMCRMYNDF ALEALERQSR SEQ ID NOC MALVNPTALF LQTHLETPFN ACEIVGGNIL DALLSLSFEH YIHIHKTAML	CFHYLLKTQA GVTSLKRQLA HFDLEQVYGK EDYLRHVMRN EALRDENGVI SLTSNLHVLL AFTEVLHLID LVQARHVCFF QSASLEVPAA QAQRVEIYPR MEAVAGPVFG TNSVLNHKDV WVNSTGGSHV GSIARDNAER DDAGDRAGSK :43 YGTSIRTRPT FDSYMLEKVN NAMPAACAVE IATATKGVSK LESSVVIGAI	ADGSWGSLPT VWNDVEDTNH PSSLLHSLEA GAGHGNGGIS GFAPRTADVD SLLKQSNLSQ GGELSSLFDE THMVDRLQSC TIGHSVTSAV DNIKVDEDKY DVSLLHQTID LNSSSSDQDT ACAYSFAFSN NVNSIHFPEF DMRKLKIVKL NLLNPTQKLR MVNEALDASV MIHTMSLVHD DRIVRAIGEL MGGGSDQQIE	TQTAGILDTA IGVEFIIPAL FLGKLDFDRL GTFPTTHFEC DTAKALLALS YHPQILKTTL SFKCKIGLSI VDRGFSWLKS PSSDLEKYMR LSIIPFTWVG KVIDNTMGNL LRREFRTFMH CLMSANLLQG TLCNGTSQNL FCDVTDLYDQ PVSSSSLPSF PLKDPIKIHE DLPCMDNDDF ARSVGSEGLV KLRKFARSIG	SSVSAILTEK	QEPLQILDVS PSFEFPCRSI ASPSSTAAYL GFTLKQIDGD MIKVFEGKDH HCVKDKWNLS QDNDGSWRGY TSKTAYEVGF LDEWGLMASI NRWLYDMMYL NGHQHESPNI RFSKQASSDA YLISSVMRHA ATYEQGYLDR MK HQSNPSENNN KRIRPMMCIA YGEEMAVLTG GADVGLDHLE DVTKSTEELG	60 120 180 240 300 420 480 540 600 660 720 780 840 900 952 60 120 180 240 300 361
SEQ ID NO	:44					
MAEQQISNLL LSHNAASPDI VWLEVPEDET VKAIEKIQDI RLSLELLALN GKYSLTLIHA	VSQLCFSTAM SVIKEVIGML VGHDALADVT SEASISDSAL LQTDSSDLLT	SSELNHRWKS HNSSLIIDDF GTITTIFQGQ ESLSSAVSLL	QRLKVADSPY QDNSPLRRGK AMDLWWTANA GQYFQIRDDY	NYILTLPSKG PSTHTVFGPA IVPSIQEYLL MNLIDNKYTD	IRGAFIDSLN QAINTATYVI MVNDKTGALF	60 120 180 240 300 342
MEKTKEKAER LLIDDIEDSS				EKVLTLDHPD		
				70		

ELHQQQQLDI YWRDTYTCPT EEEYKAMVLQ KTGGLFGLAV GLMQLFSDYK EDLKPLLDTL 180 GLFFQIRDDY ANLHSKEYSE NKSFCEDLTE GKFSFPTIHA IWSRPESTQV QNILRQRTEN 240 IDIKKYCVQY LEDVGSFAYT RHTLRELEAK AYKQIEACGG NPSLVALVKH LSKMFTEENK 300

SEQ ID NO:46

MARFYFLNALLMVISLQSTTAFTPAKLAYPTTTTALNVASAETSFSLDEYLASKIGPIES60ALEASVKSRIPQTDKICESMAYSLMAGGKRIRPVLCIAACEMFGGSQDVAMPTAVALEMI120HTMSLIHDDLPSMDNDDLRRGKPTNHVVFGEDVAILAGDSLLSTSFEHVARETKGVSAEK180IVDVIARLGKSVGAEGLAGGQVMDLECEAKPGTTLDDLKWIHIHKTATLLQVAVASGAVL240GGATPEEVAACELFAMNIGLAFQVADDILDVTASSEDLGKTAGKDEATDKTYPKLLGLE300ESKAYARQLIDEAKESLAPFGDRAAPLLAIADFIIDRKN339

SEQ ID NO:47

MHLAPRRVPR	GRRSPPDRVP	ERQGALGRRR	GAGSTGCARA	AAGVHRRRGG	GEADPSAAVH	60
RGWQAGGGTG	LPDEVVSTAA	ALEMFHAFAL	IHDDIMDDSA	TRRGSPTVHR	ALADRLGAAL	120
DPDQAGQLGV	STAILVGDLA	LTWSDELLYA	PLTPHRLAAV	LPLVTAMRAE	TVHGQYLDIT	180
SARRPGTDTS	LALRIARYKT	AAYTMERPLH	IGAALAGARP	ELLAGLSAYA	LPAGEAFQLA	240
DDLLGVFGDP	RRTGKPDLDD	LRGGKHTVLV	ALAREHATPE	QRHTLDTLLG	TPGLDRQGAS	300
RLRCVLVATG	ARAEAERLIT	ERRDQALTAL	NALTLPPPLA	EALARLTLGS	TAHPA	355

SEQ ID NO:48

MSYFDNYFNE IVNSVNDIIK SY	YISGDVPKL YEASYHLFTS	GGKRLRPLIL	TISSDLFGGQ	60
RERAYYAGAA IEVLHTFTLV HD	DDIMDQDNI RRGLPTVHVK	YGLPLAILAG	DLLHAKAFQL	120
LTQALRGLPS ETIIKAFDIF TR	RSIIIISEG QAVDMEFEDR	IDIKEQEYLD	MISRKTAALF	180
SASSSIGALI AGANDNDVRL MS	SDFGTNLGI AFQIVDDILG	LTADEKELGK	PVFSDIREGK	240
KTILVIKTLE LCKEDEKKIV LK	KALGNKSAS KEELMSSADI	IKKYSLDYAY	NLAEKYYKNA	300
IDSLNQVSSK SDIPGKALKY LA	AEFTIRRRK			330

SEQ ID NO:49

MVAQTFNLDT	YLSQRQQQVE	EALSAALVPA	YPERIYEAMR	YSLLAGGKRL	RPILCLAACE	60
LAGGSVEQAM	PTACALEMIH	TMSLIHDDLP	AMDNDDFRRG	KPTNHKVFGE	DIAILAGDAL	120
LAYAFEHIAS	QTRGVPPQLV	LQVIARIGHA	VAATGLVGGQ	VVDLESEGKA	ISLETLEYIH	180
SHKTGALLEA	SVVSGGILAG	ADEELLARLS	HYARDIGLAF	QIVDDILDVT	ATSEQLGKTA	240
GKDQAAAKAT	YPSLLGLEAS	RQKAEELIQS	AKEALRPYGS	QAEPLLALAD	FITRRQH	297

SEQ ID NO:50

MASVTLGSWI	VVHHHNHHHP	SSILTKSRSR	SCPITLTKPI	SFRSKRTVSS	SSSIVSSSVV	60
TKEDNLRQSE	PSSFDFMSYI	ITKAELVNKA	LDSAVPLREP	LKIHEAMRYS	LLAGGKRVRP	120
VLCIAACELV	GGEESTAMPA	ACAVEMIHTM	SLIHDDLPCM	DNDDLRRGKP	TNHKVFGEDV	180
AVLAGDALLS	FAFEHLASAT	SSDVVSPVRV	VRAVGELAKA	IGTEGLVAGQ	VVDISSEGLD	240
LNDVGLEHLE	FIHLHKTAAL	LEASAVLGAI	VGGGSDDEIE	RLRKFARCIG	LLFQVVDDIL	300
DVTKSSKELG	KTAGKDLIAD	KLTYPKIMGL	EKSREFAEKL	NREARDQLLG	FDSDKVAPLL	360
ALANYIAYRQ	N					371

atgtcttcct	cttcctcttc	cagtacctct	atgattgatt	tgatggctgc	tattattaaa	60
ggtgaaccag	ttatcgtctc	cgacccagca	aatgcctctg	cttatgaatc	agttgctgca	120
gaattgtctt	caatgttgat	cgaaaacaga	caattcgcca	tgatcgtaac	tacatcaatc	180
gctgttttga	tcggttgtat	tgtcatgttg	gtatggagaa	gatccggtag	tggtaattct	240
aaaagagtcg	aacctttgaa	accattagta	attaagccaa	gagaagaaga	aatagatgac	300
ggtagaaaga	aagttacaat	atttttcggt	acccaaactg	gtacagctga	aggttttgca	360
aaagccttag	gtgaagaagc	taaggcaaga	tacgaaaaga	ctagattcaa	gatagtcgat	420
ttggatgact	atgccgctga	tgacgatgaa	tacgaagaaa	agttgaagaa	agaagatgtt	480

gcatttttct	ttttggcaac	ctatggtgac	ggtgaaccaa	ctgacaatgc	agccagattc	540
tacaaatggt	ttacagaggg	taatgatcgt	ggtgaatggt	tgaaaaactt	aaagtacggt	600
gttttcggtt	tgggtaacag	acaatacgaa	catttcaaca	aagttgcaaa	ggttgtcgac	660
gatattttgg	tcgaacaagg	tgctcaaaga	ttagtccaag	taggtttggg	tgacgatgac	720
caatgtatag	aagatgactt	tactgcctgg	agagaagctt	tgtggcctga	attagacaca	780
atcttgagag	aagaaggtga	caccgccgtt	gctaccccat	atactgctgc	agtattagaa	840
tacagagttt	ccatccatga	tagtgaagac	gcaaagttta	atgatatcac	tttggccaat	900
ggtaacggtt	atacagtttt	cgatgcacaa	cacccttaca	aagctaacgt	tgcagtcaag	960
agagaattac	atacaccaga	atccgacaga	agttgtatac	acttggaatt	tgatatcgct	1020
ggttccggtt	taaccatgaa	gttgggtgac	catgtaggtg	ttttatgcga	caatttgtct	1080
gaaactgttg	atgaagcatt	gagattgttg	gatatgtccc	ctgacactta	ttttagtttg	1140
cacgctgaaa	aagaagatgg	tacaccaatt	tccagttctt	taccacctcc	attccctcca	1200
tgtaacttaa	gaacagcctt	gaccagatac	gcttgcttgt	tatcatcccc	taaaaagtcc	1260
gccttggttg	ctttageege	tcatgctagt	gatectactg	aagcagaaag	attgaaacac	1320
ttagcatete	cagccggtaa	agatgaatat	tcaaagtggg	tagttgaatc	tcaaagatca	1380
ttgttagaag	ttatggcaga	atttccatct	gccaagcctc	cattaggtgt	cttctttgct	1440
ggtgtagcac	ctagattgca	accaagattc	tactcaatca	gttcttcacc	taagatcgct	1500
gaaactagaa	ttcatgttac	atgtgcatta	gtctacgaaa	agatgccaac	cggtagaatt	1560
cacaagggtg	tatgctctac	ttggatgaaa	aatgctgttc	cttacgaaaa	atcagaaaag	1620
ttgttcttag	gtagaccaat	cttcgtaaga	caatcaaact	tcaagttgcc	ttctgattca	1680
aaggttccaa	taatcatgat	aggtcctggt	acaggtttag	ccccattcag	aggtttcttg	1740
caagaaagat	tggctttagt	tgaatctggt	gtcgaattag	gtccttcagt	tttgttcttt	1800
ggttgtagaa	acagaagaat	ggatttcatc	tatgaagaag	aattgcaaag	attcgtcgaa	1860
tctggtgcat	tggccgaatt	atctgtagct	ttttcaagag	aaggtccaac	taaggaatac	1920
gttcaacata	agatgatgga	taaggcatcc	gacatatgga	acatgatcag	tcaaggtgct	1980
	tttgcggtga					2040
acaattgctc	aagaacaagg	ttccatggat	agtaccaaag	ctgaaggttt	cgtaaagaac	2100
ttacaaactt	ccggtagata	cttgagagat	gtctggtga			2139

atggcggaac	aacaaaagat	caagaaatca	ccacacgttc	tactcatccc	attcccttta	60
caaggccata	taaacccttt	catccagttt	ggcaaacgat	taatctccaa	aggtgtcaaa	120
acaacacttg	ttaccaccat	ccacacctta	aactcaaccc	taaaccacag	taacaccacc	180
accacctcca	tcgaaatcca	agcaatttcc	gatggttgtg	atgaaggcgg	ttttatgagt	240
gcaggagaat	catatttgga	aacattcaaa	caagttgggt	ctaaatcact	agctgactta	300
atcaagaagc	ttcaaagtga	aggaaccaca	attgatgcaa	tcatttatga	ttctatgact	360
gaatgggttt	tagatgttgc	aattgagttt	ggaatcgatg	gtggttcgtt	tttcactcaa	420
					tttgccattg	480
ggtgaaactg	tttcggttcc	tggatttcca	gtgcttcaac	ggtgggagac	accgttaatt	540
ttgcagaatc	atgagcaaat	acagagccct	tggtctcaga	tgttgtttgg	tcagtttgct	600
aatattgatc	aagcacgttg	ggtcttcaca	aatagttttt	acaagctcga	ggaagaggta	660
atagagtgga	cgagaaagat	atggaacttg	aaggtaatcg	ggccaacact	tccatccatg	720
taccttgaca	aacgacttga	tgatgataaa	gataacggat	ttaatctcta	caaagcaaac	780
		gttagacgat				840
tttggtagcc	tggtgaaaca	tggacccgaa	caagtggaag	aaatcacacg	ggctttaata	900
gatagtgatg	tcaacttctt	gtgggttatc	aaacataaag	aagagggaaa	gctcccagaa	960
aatctttcgg	aagtaataaa	aaccggaaag	ggtttgattg	tagcatggtg	caaacaattg	1020
gatgtgttag	cacacgaatc	agtaggatgc	tttgttacac	attgtgggtt	caactcaact	1080
cttgaagcaa	taagtcttgg	agtccccgtt	gttgcaatgc	ctcaattttc	ggatcaaact	1140
acaaatgcca	agcttctaga	tgaaattttg	ggtgttggag	ttagagttaa	ggctgatgag	1200
aatgggatag	tgagaagagg	aaatcttgcg	tcatgtatta	agatgattat	ggaggaggaa	1260
agaggagtaa	taatccgaaa	gaatgcggta	aaatggaagg	atttggctaa	agtagccgtt	1320
catgaaggtg	gtagctcaga	caatgatatt	gtcgaatttg	taagtgagct	aattaaggct	1380
taaatttttg	ttgctttgta	ttttatgtgt	tatggttttt	tgatttagat	gtattcaatt	1440
aatattgaat	cataactaaa	ttcaagatta	ttgtttgtaa	tattctttgt	cctaaaattt	1500
tgcgacttaa	aacctttagt	ttataaaaag	aaattagaaa	atactattgc	acgga	1555

atggaaaaca	agaccgaaac	aacagttaga	cgtaggcgta	gaatcattct	gtttccagta	60
ccttttcaag	ggcacatcaa	tccaatacta	caactagcca	acgttttgta	ctctaaaggt	120
ttttctatta	caatctttca	caccaatttc	aacaaaccaa	aaacatccaa	ttacccacat	180
ttcacattca	gattcatact	tgataatgat	ccacaagatg	aacgtatttc	aaacttacct	240
acccacggtc	ctttagctgg	aatgagaatt	ccaatcatca	atgaacatgg	tgccgatgag	300

cttagaagag aattagagtt acttatgttg gcatccgaag aggacgagga agtctcttgt ctgattactg acgctctatg gtactttgcc caatctgtgg ctgatagttt gaatttgagg 360 420 agattggtac taatgacatc cagtctgttt aactttcacg ctcatgttag tttaccacaa 480 titgacgaat tgggatactt ggaccctgat gacaagacta ggttagagga acaggcetet ggtttteeta tgttgaaagt caaagatate aagtetgeet attetaattg gcaaatettg 540 600 aaagagatet taggaaagat gateaaacag acaaaggett catetggagt gatttggaac 660 720 agtttcaaag agttagaaga gtctgaattg gagactgtaa tcagagaaat tccagcacct tcatteetga taccattace aaaacatttg actgetteet etteetett gttggateat 780 gacagaacag tttttcaatg gttggaccaa caaccaccta gttctgtttt gtacgtgtca 840 tttggtagta cttctgaagt cgatgaaaag gacttccttg aaatcgcaag aggcttagtc 900 gatagtaagc agtcatteet ttgggtegtg egteeaggtt tegtgaaagg eteaacatgg 960 gtcgaaccac ttccagatgg ttttctaggc gaaagaggta gaatagtcaa atgggttcct 1020 caacaggaag ttttagctca tggcgctatt ggggcattct ggactcattc cggatggaat 1080 tcaactttag aatcagtatg cgaaggggta cctatgatct tttcagattt tggtcttgat 1140 caaccactga acgcaagata catgtctgat gttttgaaag tgggtgtata tctagaaaat 1200 1260 ggctgggaaa ggggtgaaat agctaatgca ataagacgtg ttatggttga tgaagagggg gagtatatca gacaaaacgc aagagtgctg aagcaaaagg ccgacgtttc tctaatgaag 1320 ggaggetett catacgaate ettagaatet ettgttteet acattteate actgtaa 1377

SEQ ID NO:54

MDGVIDMQTI PLRTAIAIGG T	TAVALVVALY	FWFLRSYASP	SHHSNHLPPV	PEVPGVPVLG	60
NLLQLKEKKP YMTFTKWAEM Y	YGPIYSIRTG	ATSMVVVSSN	EIAKEVVVTR	FPSISTRKLS	120
YALKVLTEDK SMVAMSDYHD Y	YHKTVKRHIL	TAVLGPNAQK	KFRAHRDTMM	ENVSNELHAF	180
FEKNPNQEVN LRKIFQSQLF G	GLAMKQALGK	DVESIYVKDL	ETTMKREEIF	EVLVVDPMMG	240
AIEVDWRDFF PYLKWVPNKS F	FENIIHRMYT	RREAVMKALI	QEHKKRIASG	ENLNSYIDYL	300
LSEAQTLTDK QLLMSLWEPI I	IESSDTTMVT	TEWAMYELAK	NPNMQDRLYE	EIQSVCGSEK	360
ITEENLSQLP YLYAVFQETL R	RKHCPVPIMP	LRYVHENTVL	GGYHVPAGTE	VAINIYGCNM	420
DKKVWENPEE WNPERFLSEK E	ESMDLYKTMA	FGGGKRVCAG	SLQAMVISCI	GIGRLVQDFE	480
WKLKDDAEED VNTLGLTTQK L	LHPLLALINP	RK			512

SEQ ID NO:55

	~~~~~~~~	an an an for an for an in a		and and an and and and an and and an		60
-	gtaaaatgga					
	gtggtactgc					120
	ccccatctca					180
	tgggtaattt				-	240
aagtgggctg	aaatgtatgg	tccaatctac	tctattagaa	ctggtgctac	ttccatggtt	300
gttgtctctt	ctaacgaaat	cgccaaagaa	gttgttgtta	ccagattecc	atctatctct	360
accagaaaat	tgtcttacgc	cttgaaggtt	ttgaccgaag	ataagtctat	ggttgccatg	420
tctgattatc	acgattacca	taagaccgtc	aagagacata	ttttgactgc	tgttttgggt	480
ccaaacgccc	aaaaaaagtt	tagagcacat	agagacacca	tgatggaaaa	cgtttccaat	540
gaattgcatg	ccttcttcga	aaagaaccca	aatcaagaag	tcaacttgag	aaagatcttc	600
caatcccaat	tattcggttt	ggctatgaag	caagcettgg	gtaaagatgt	tgaatccatc	660
	atttggaaac					720
	tgggtgctat	-				780
	agtccttcga					840
	tgatccaaga					900
tacattgatt	acttgttgtc	tgaagcccaa	accttgaccg	ataagcaatt	attgatgtct	960
ttgtgggaac	ctattatcga	atcttctgat	accactatgg	ttactactga	atgggctatg	1020
	ctaagaatcc					1080
	aaaagattac				-	1140
	ctttgagaaa					1200
	ttttgggtgg					1260
	acatggataa					1320
	aaaaagaatc					1380
	ctggttcttt					1440
	ttgaatggaa					1500
	aaaagttgca					1560
ccgcgg	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				9000000909	1566
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

atggccaccc	tccttgagca	tttccaagct	atgecetttg	ccatecetat	tgcactggct	60
gctctgtctt	ggctgttcct	cttttacatc	aaagtttcat	tcttttccaa	caagagtgct	120

caggetaage	tccctcctgt	gccagtggtt	cctgggctgc	cggtgattgg	gaatttactg	180
caactcaagg	agaagaaacc	ctaccagact	tttacaaggt	gggctgagga	gtatggacca	240
atctattcta	tcaggactgg	tgcttccacc	atggtcgttc	tcaataccac	ccaagttgca	300
aaagaggcca	tggtgaccag	atatttatcc	atctcaacca	gaaagctatc	aaacgcacta	360
aagattetta	ctgctgataa	atgtatggtt	gcaataagtg	actacaacga	ttttcacaag	420
atgataaagc	gatacatact	ctcaaatgtt	cttggaccta	gtgctcagaa	gcgtcaccgg	480
agcaacagag	ataccttgag	agctaatgtc	tgcagecgat	tgcattctca	agtaaagaac	540
tctcctcgag	aagctgtgaa	tttcagaaga	gtttttgagt	gggaactctt	tggaattgca	600
ttgaagcaag	cctttggaaa	ggacatagaa	aagcccattt	atgtggagga	acttggcact	660
acactgtcaa	gagatgagat	ctttaaggtt	ctagtgcttg	acataatgga	gggtgcaatt	720
gaggttgatt	ggagagattt	cttcccttac	ctgagatgga	ttccgaatac	gcgcatggaa	780
acaaaaattc	agcgactcta	tttccgcagg	aaagcagtga	tgactgccct	gatcaacgag	840
cagaagaagc	gaattgcttc	aggagaggaa	atcaactgtt	atatcgactt	cttgcttaag	900
gaagggaaga	cactgacaat	ggaccaaata	agtatgttgc	tttgggagac	ggttattgaa	960
acagcagata	ctacaatggt	aacgacagaa	tgggctatgt	atgaagttgc	taaagactca	1020
aagcgtcagg	atcgtctcta	tcaggaaatc	caaaaggttt	gtggatcgga	gatggttaca	1080
gaggaatact	tgtcccaact	gccgtacctg	aatgcagttt	tccatgaaac	gctaaggaag	1140
cacagtccgg	ctgcgttagt	teetttaaga	tatgcacatg	aagataceca	actaggaggt	1200
tactacattc	cagctggaac	tgagattgct	ataaacatat	acgggtgtaa	catggacaag	1260
catcaatggg	aaagccctga	ggaatggaaa	ccggagagat	ttttggaccc	gaaatttgat	1320
cctatggatt	tgtacaagac	catggctttt	ggggctggaa	agagggtatg	tgctggttct	1380
cttcaggcaa	tgttaatagc	gtgcccgacg	attggtaggc	tggtgcagga	gtttgagtgg	1440
aagctgagag	atggagaaga	agaaaatgta	gatactgttg	ggctcaccac	tcacaaacgc	1500
tatccaatgc	atgcaatect	gaagccaaga	agtta			1535

aagcttacta	gtaaaatggc	ctccatcacc	catttcttac	aagattttca	agctactcca	60
ttcgctactg	cttttgctgt	tggtggtgtt	totttgttga	tattettett	cttcatccgt	120
ggtttccact	ctactaagaa	aaacgaatat	tacaagttgc	caccagttcc	agttgttcca	180
ggtttgccag	ttgttggtaa	tttgttgcaa	ttgaaagaaa	agaagccata	caagactttc	240
ttgagatggg	ctgaaattca	tggtccaatc	tactctatta	gaactggtgc	ttctaccatg	300
gttgttgtta	actctactca	tgttgccaaa	gaagctatgg	ttaccagatt	ctcttcaatc	360
tctaccagaa	agttgtccaa	ggctttggaa	ttattgacct	ccaacaaatc	tatggttgcc	420
acctctgatt	acaacgaatt	tcacaagatg	gtcaagaagt	acatettgge	cgaattattg	480
ggtgctaatg	ctcaaaagag	acacagaatt	catagagaca	ccttgatcga	aaacgtcttg	540
aacaaattge	atgeceatae	caagaattct	ccattgcaag	ctgttaactt	cagaaagatc	600
ttcgaatctg	aattattcgg	tttggctatg	aagcaagcct	tgggttatga	tgttgattcc	660
ttgttcgttg	aagaattggg	tactaccttg	tccagagaag	aaatctacaa	cgttttggtc	720
agtgacatgt	tgaagggtgc	tattgaagtt	gattggagag	actttttccc	atacttgaaa	780
tggatcccaa	acaagteett	cgaaatgaag	attcaaagat	tggcctctag	aagacaagcc	840
gttatgaact	ctattgtcaa	agaacaaaag	aagtccattg	cctctggtaa	gggtgaaaac	900
tgttacttga	attacttgtt	gtccgaagct	aagactttga	ccgaaaagca	aatttccatt	960
ttggcctggg	aaaccattat	tgaaactgct	gatacaactg	ttgttaccac	tgaatgggct	1020
atgtacgaat	tggctaaaaa	cccaaagcaa	caagacagat	tatacaacga	aatecaaaac	1080
gtctgcggta	ctgataagat	taccgaagaa	catttgtcca	agttgcctta	cttgtctgct	1140
gtttttcacg	aaaccttgag	aaagtattet	ccatctccat	tggttccatt	gagatacgct	1200
catgaagata	ctcaattggg	tggttattat	gttccagccg	gtactgaaat	tgctgttaat	1260
atctacggtt	gcaacatgga	caagaatcaa	tgggaaactc	cagaagaatg	gaagccagaa	1320
agatttttgg	acgaaaagta	cgatccaatg	gacatgtaca	agactatgtc	ttttggttcc	1380
ggtaaaagag	tttgcgctgg	ttetttacaa	gctagtttga	ttgcttgtac	ctccatcggt	1440
agattggttc	aagaatttga	atggagattg	aaagacggtg	aagttgaaaa	cgttgatacc	1500
ttgggtttga	ctacccataa	gttgtatcca	atgcaagcta	tettgeaace	tagaaactga	1560
ctcgagecge	gg					1572

atgatttcct	tgttgttggg	ttttgttgtc	tectecttet	tgtttatctt	cttcttgaaa	60
aaattgttgt	tcttcttcag	tcgtcacaaa	atgtccgaag	tttctagatt	gccatctgtt	120
ccagttccag	gttttccatt	gattggtaac	ttgttgcaat	tgaaagaaaa	gaagccacac	180
aagactttca	ccaagtggtc	tgaattatat	ggtccaatct	actctatcaa	gatgggttcc	240
tcttctttga	tcgtcttgaa	ctctattgaa	accgccaaag	aagctatggt	cagtagattc	300
tcttcaatct	ctaccagaaa	gttgtctaac	gctttgactg	ttttgacctg	caacaaatct	360
atggttgcta	cctctgatta	cgatgacttt	cataagttcg	tcaagagatg	cttgttgaac	420
ggtttgttgg	gtgctaatgc	tcaagaaaga	aaaagacatt	acagagatgc	cttgatcgaa	480

agagccattt gtcgaatcca gttttggtcc tacttgaaat agattggctg gatgatgact attgctattt gaatgggcta atccaatggtg ggtaatggtc ggcattaaca tggccagaaa tttggtgctg gctatcggta	tcgaacacga tctatgtaaa acgacatgat ggatcccaaa ttatgaacgc gctacttgaa tgtacgaatt tctgcggtgg tttttcacga atgaagatac tctacggttg gatttttgga gattttgga gtaaaagagt gattggttca	tgcccatacc attattcggt ggaaggtgct caactcttcc ttgatccaa ttccttgatg aaccattatc ggccaaacat tgaaagatc aaccttgag ccaaattggt caacatggat agatagatac ttgtgctggt agaattcgaa	gttgctttga gtcaccttgt attgatgttg gaagccagaa gacagattga tctgaagcta gaaactgctg caatctgttc aagaagagat ggttatcata aagaagagat gaatcetccg gctttacaag tggaagttga	aacaagcctt ccagagatga attggagaga ttcaacaaaa atcaaaacga agaccttgac ataccactt aagtagatt aattgccaag cagctccatt ttccagccgg gggaaagacc acttgcataa ctagtttgat gagatggtga	cggtaaagat aattttcaag tttcttccca gcacaagaga ttccgaatcc catggaacaa ggttactact attcaaagaa attgccttac ggttccaatt ttctgaaatt ttgagaatgg gactatggct ggctggtatt agaagaaaac	540 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
gttgatactt	acggtttgac	ctcccaaaag				1500
agaagatctt	aa					1512
SEQ ID NO	7.59					
	ar 1 war war					
atggatgctg	tgacgggttt	gttaactgtc	ccagcaaccg	ctataactat	tggtggaact	60
		gctaatcttt				120
agatcccaat	caaatcatct	tccaagagtg	cctgaagtcc	caggtgttcc	attgttagga	180
		gaaaaagcca				240
tatggaccta	tctatagtat	caaaactggg	gctacaagta	tggttgtggt	atcatctaat	300
gagatagcca	aggaggcatt	ggtgaccaga	ttccaatcca	tatctacaag	gaacttatct	360
aaagccctga	aagtacttac	agcagataag	acaatggtcg	caatgtcaga	ttatgatgat	420
tatcataaaa	cagttaagag	acacatactg	accgccgtct	tgggtcctaa	tgcacagaaa	480
aagcatagaa	ttcacagaga	tatcatgatg	gataacatat	ctactcaact	tcatgaattc	540
gtgaaaaaca	acccagaaca	ggaagaggta	gaccttagaa	aaatctttca	atctgagtta	600
ttcggcttag	ctatgagaca	agccttagga	aaggatgttg	aaagtttgta	cgttgaagac	660
ctgaaaatca	ctatgaatag	agacgaaatc	tttcaagtcc	ttgttgttga	tccaatgatg	720
ggagcaatcg	atgttgattg	gagagacttc	tttccatacc	taaagtgggt	cccaaacaaa	780
aagttcgaaa	atactattca	acaaatgtac	atcagaagag	aagctgttat	gaaatcttta	840
atcaaagagc	acaaaaagag	aatagcgtca	ggcgaaaagc	taaatagtta	tatcgattac	900
cttttatctg	aagctcaaac	tttaaccgat	cagcaactat	tgatgtcctt	gtgggaacca	960
atcattgaat	cttcagatac	aacaatggtc	acaacagaat	gggcaatgta	cgaattagct	1020
		taggttgtac				1080
aagataaccg	aagagcatct	atcacagetg	ccttacatta	cagctatttt	ccacgaaaca	1140
		tcctatcatt				1200
		tgctggcaca				1260
		aaatccagag				1320
* +		aaagacgatg				1380
		aactgcatct				1440
		gactcaagag			aactacacaa	1500
atgttaagac	cattgagagc	tattatcaaa	cctaggatet	aa		1542

60 aagettaeta gtaaaatgga catgatgggt attgaagetg tteeatttge taetgetgtt gttttgggtg gtatttcctt ggttgttttg atcttcatca gaagattcgt ttccaacaga 120 aagagateeg ttgaaggttt gecaecagtt ecagatatte caggtttace attgattggt 180 aacttgttgc aattgaaaga aaagaagcca cataagacct ttgctagatg ggctgaaact 240 tacggtecaa ttttetetat tagaaetggt gettetacea tgategtett gaattettet gaagttgeea aagaagetat ggteaetaga ttetetteaa tetetaceag aaagttgtee 300 360 aacgcettga agattttgae ettegataag tgtatggttg eeacetetga ttaeaacgat 420 tttcacaaaa tggtcaaggg tttcatcttg agaaacgttt taggtgctcc agcccaaaaa agacatagat gtcatagaga taccttgatc gaaaacatct ctaagtactt gcatgcccat 480 540 gttaagactt ctccattgga accagttgtc ttgaagaaga ttttcgaatc cgaaattttc 600 ggtttggctt tgaaacaagc cttgggtaag gatatcgaat ccatctatgt tgaagaattg ggtactacct tgtccagaga agaaattttt gccgttttgg ttgttgatcc aatggctggt 660 720 gctattgaag ttgattggag agattttttc ccatacttgt cctggattcc aaacaagtct 780

atggaaatga	agatecaaag	aatggatttt	agaagaggtg	ctttgatgaa	ggccttgatt	840
ggtgaacaaa	agaaaagaat	cggttccggt	gaagaaaaga	actcctacat	tgatttcttg	900
ttgtctgaag	ctaccacttt	gaccgaaaag	caaattgcta	tgttgatctg	ggaaaccatc	960
atcgaaattt	ccgatacaac	tttggttacc	tctgaatggg	ctatgtacga	attggctaaa	1020
gacccaaata	gacaagaaat	cttgtacaga	gaaatccaca	aggtttgcgg	ttctaacaag	1080
ttgactgaag	aaaacttgtc	caagttgcca	tacttgaact	ctgttttcca	cgaaaccttg	1140
agaaagtatt	ctccagctcc	aatggttcca	gttagatatg	ctcatgaaga	tactcaattg	1200
ggtggttacc	atattccagc	tggttctcaa	attgccatta	acatctacgg	ttgcaacatg	1260
aacaaaaagc	aatgggaaaa	tcctgaagaa	tggaagccag	aaagattctt	ggacgaaaag	1320
tatgacttga	tggacttgca	taagactatg	gcttttggtg	gtggtaaaag	agtttgtgct	1380
ggtgctttac	aagcaatgtt	gattgcttgc	acttccatcg	gtagattcgt	tcaagaattt	1440
gaatggaagt	tgatgggtgg	tgaagaagaa	aacgttgata	ctgttgcttt	gacctcccaa	1500
aaattgcatc	caatgcaagc	cattattaag	gccagagaat	gactcgagcc	gcgg	1554

atgcaatcag	attcagtcaa	agteteteea	tttgatttgg	tttccgctgc	tatgaatggc	60
aaggcaatgg	aaaagttgaa	cgctagtgaa	tctgaagatc	caacaacatt	gcctgcacta	120
aagatgctag	ttgaaaatag	agaattgttg	acactgttca	caacttcctt	cgcagttett	180
attgggtgtc	ttgtatttct	aatgtggaga	cgttcatcct	ctaaaaagct	ggtacaagat	240
ccagttccac	aagttatcgt	tgtaaagaag	aaagagaagg	agtcagaggt	tgatgacggg	300
aaaaagaaag	tttctatttt	ctacggcaca	caaacaggaa	ctgccgaagg	ttttgctaaa	360
gcattagtcg	aggaagcaaa	agtgagatat	gaaaagacct	ctttcaaggt	tatcgatcta	420
gatgactacg	ctgcagatga	tgatgaatat	gaggaaaaac	tgaaaaagga	atcettagee	480
ttcttcttct	tggccacata	cggtgatggt	gaacctactg	ataatgctgc	taacttctac	540
aagtggttca	cagaaggcga	cgataaaggt	gaatggctga	aaaagttaca	atacggagta	600
tttggtttag	gtaacagaca	atatgaacat	ttcaacaaga	tcgctattgt	agttgatgat	660
aaacttactg	aaatgggagc	caaaagatta	gtaccagtag	gattagggga	tgatgatcag	720
tgtatagaag	atgacttcac	cgcctggaag	gaattggtat	ggccagaatt	ggatcaactt	780
ttaagggacg	aagatgatac	ttctgtgact	accccataca	ctgcagccgt	attggagtac	840
agagtggttt	accatgataa	accagcagac	tcatatgctg	aagatcaaac	ccatacaaac	900
ggtcatgttg	ttcatgatgc	acagcateet	tcaagatcta	atgtggcttt	caaaaaggaa	960
ctacacacct	ctcaatcaga	taggtettgt	actcacttag	aattcgatat	tteteacaca	1020
ggactgtctt	acgaaactgg	cgatcacgtt	ggcgtttatt	ccgagaactt	gtccgaagtt	1080
gtcgatgaag	cactaaaact	gttagggtta	tcaccagaca	catacttctc	agtccatgct	1140
gataaggagg	atgggacacc	tatcggtggt	getteactae	caccaccttt	teeteettge	1200
acattgagag	acgctctaac	cagatacgca	gatgtcttat	cctcacctaa	aaaggtagct	1260
ttgctggcat	tggctgctca	tgctagtgat	cctagtgaag	ccgataggtt	aaagttcctg	1320
gcttcaccag	ccggaaaaga	tgaatatgca	caatggatcg	tcgccaacca	acgttctttg	1380
ctagaagtga	tgcaaagttt	tccatctgcc	aagcetecat	taggtgtgtt	cttcgcagca	1440
gtageteeac	gtttacaacc	aagatactac	tctatcagtt	catctcctaa	gatgtctcct	1500
aacagaatac	atgttacatg	tgctttggtg	tacgagacta	ctccagcagg	cagaatteac	1560
agaggattgt	gttcaacctg	gatgaaaaat	gctgtccctt	taacagagtc	acctgattgc	1620
tctcaagcat	ccattttcgt	tagaacatca	aatttcagac	ttccagtgga	tccaaaagtt	1680
ccagtcatta	tgataggacc	aggcactggt	cttgccccat	tcaggggctt	tcttcaagag	1740
agattggcct	tgaaggaatc	tggtacagaa	ttgggttctt	ctatctttt	ctttggttgc	1800
cgtaatagaa	aagttgactt	tatctacgag	gacgagetta	acaattttgt	tgagacagga	1860
gcattgtcag	aattgatcgt	cgcattttca	agagaaggga	ctgccaaaga	gtacgttcag	1920
cacaagatga	gtcaaaaagc	ctccgatata	tggaaacttc	taagtgaagg	tgcctatctt	1980
tatgtctgtg	gcgatgcaaa	gggcatggcc	aaggatgtcc	atagaactct	gcatacaatt	2040
	aagggagtct					2100
atgtctggaa	gatacttaag	agatgtttgg	taa			2133

atgaaggtca gtccattcga at	ttcatgtcc	gctattatca	agggtagaat	ggacccatct	60
aacteeteat ttgaatetae te	ggtgaagtt	gcctccgtta	tctttgaaaa	cagagaattg	120
gttgccatct tgaccacttc ta	attgctgtt	atgattggtt	gcttcgttgt	cttgatgtgg	180
agaagagetg gttetagaaa go	gttaagaat	gtcgaattgc	caaagccatt	gattgtccat	240
gaaccagaac ctgaagttga ag	gatggtaag	aagaaggttt	ccatcttctt	cggtactcaa	300
actggtactg ctgaaggttt tg	gctaaggct	ttggctgatg	aagctaaagc	tagatacgaa	360
aaggetaeet teagagttgt to	gatttggat	gattatgctg	ccgatgatga	ccaatacgaa	420
gaaaaattga agaacgaatc ct	ttegeegtt	ttcttgttgg	ctacttatgg	tgatggtgaa	480
cctactgata atgctgctag at	ttttacaag	tggttcgccg	aaggtaaaga	aagaggtgaa	540
tggttgcaaa acttgcacta to	gctgttttt	ggtttgggta	acagacaata	cgaacacttc	600

aacaagattg	ctaaggttgc	cgacgaatta	ttggaagete	aaggtggtaa	tagattggtt	660
aaggttggtt	taggtgatga	cgatcaatgc	atcgaagatg	atttttctgc	ttggagagaa	720
tctttgtggc	cagaattgga	tatgttgttg	agagatgaag	atgatgctac	tactgttact	780
actccatata	ctgctgctgt	cttggaatac	agagttgtct	ttcatgattc	tgctgatgtt	840
gctgctgaag	ataagtcttg	gattaacgct	aatggtcatg	ctgttcatga	tgctcaacat	900
ccattcagat	ctaacgttgt	cgtcagaaaa	gaattgcata	cttctgcctc	tgatagatcc	960
tgttctcatt	tggaattcaa	catttccggt	tccgctttga	attacgaaac	tggtgatcat	1020
				aagccttgaa		1080
ttgtctccag	aaacttactt	ctctatctac	accgataacg	aagatggtac	tccattgggt	1140
ggttcttcat	tgccaccacc	atttccatca	tgtactttga	gaactgcttt	gaccagatac	1200
gctgatttgt	tgaactctcc	aaaaaagtct	gctttgttgg	ctttagctgc	tcatgettet	1260
aatccagttg	aagctgatag	attgagatac	ttggcttctc	cagctggtaa	agatgaatat	1320
gcccaatctg	ttatcggttc	ccaaaagtct	ttgttggaag	ttatggctga	attcccatct	1380
				caagattgca		1440
tactccattt	catcctctcc	aagaatggct	ccatctagaa	tccatgttac	ttgtgctttg	1500
gtttacgata	agatgccaac	tggtagaatt	cataagggtg	tttgttctac	ctggatgaag	1560
aattctgttc	caatggaaaa	gtcccatgaa	tgttcttggg	ctccaatttt	cgttagacaa	1620
				tcatggttgg		1680
ggtttggctc	cttttagagg	tttttacaa	gaaagattgg	ccttgaaaga	atccggtgtt	1740
gaattgggtc	catccatttt	gtttttcggt	tgcagaaaca	gaagaatgga	ttacatctac	1800
gaagatgaat	tgaacaactt	cgttgaaacc	ggtgctttgt	ccgaattggt	tattgctttt	1860
tctagagaag	gtcctaccaa	agaatacgtc	caacataaga	tggctgaaaa	ggcttctgat	1920
atctggaact	tgatttctga	aggtgcttac	ttgtacgttt	gtggtgatgc	taaaggtatg	1980
gctaaggatg	ttcatagaac	cttgcatacc	atcatgcaag	aacaaggttc	tttggattct	2040
tccaaagetg	aatccatggt	caagaacttg	caaatgaatg	gtagatactt	aagagatgtt	2100
tggtaa		-				2106

aagcttaaaa	tgagtaagtc	taatagtatg	aattctacat	cacacgaaac	cctttttcaa	60
caattggtct	tgggtttgga	ccgtatgcca	ttgatggatg	ttcactggtt	gatctacgtt	120
gctttcggcg	catggttatg	ttcttatgtg	atacatgttt	tatcatcttc	ctctacagta	180
aaagtgccag	ttgttggata	caggtctgta	ttcgaaccta	catggttgct	tagacttaga	240
ttcgtctggg	aaggtggctc	tatcataggt	caagggtaca	ataagtttaa	agactctatt	300
ttccaagtta	ggaaattggg	aactgatatt	gtcattatac	cacctaacta	tattgatgaa	360
gtgagaaaat	tgtcacagga	caagactaga	tcagttgaac	ctttcattaa	tgattttgca	420
ggtcaataca	caagaggcat	ggttttcttg	caatctgact	tacaaaaccg	tgttatacaa	480
caaagactaa	ctccaaaatt	ggtttccttg	accaaggtca	tgaaggaaga	gttggattat	540
gctttaacaa	aagagatgcc	tgatatgaaa	aatgacgaat	gggtagaagt	agatatcagt	600
agtataatgg	tgagattgat	ttccaggatc	tccgccagag	tctttctagg	gcctgaacac	660
tgtcgtaacc	aggaatggtt	gactactaca	gcagaatatt	cagaatcact	tttcattaca	720
gggtttatct	taagagttgt	acctcatatc	ttaagaccat	tcatcgcccc	tctattacct	780
tcatacagga	ctctacttag	aaacgtttca	agtggtagaa	gagtcatcgg	tgacatcata	840
agateteage	aaggggatgg	taacgaagat	atactttcct	ggatgagaga	tgctgccaca	900
ggagaggaaa	agcaaatcga	taacattgct	cagagaatgt	taattctttc	tttagcatca	960
atccacacta	ctgcgatgac	catgacacat	gccatgtacg	atctatgtgc	ttgccctgag	1020
tacattgaac	cattaagaga	tgaagttaaa	tctgttgttg	gggcttctgg	ctgggacaag	1080
acagcgttaa	acagatttca	taagttggac	tccttcctaa	aagagtcaca	aagattcaac	1140
ccagtattct	tattgacatt	caatagaatc	taccatcaat	ctatgacctt	atcagatggc	1200
actaacattc	catctggaac	acgtattgct	gttccatcac	acgcaatgtt	gcaagattet	1260
gcacatgtcc	caggtccaac	cccacctact	gaatttgatg	gattcagata	tagtaagata	1320
cgttctgata	gtaactacgc	acaaaagtac	ctattctcca	tgaccgattc	ttcaaacatg	1380
gctttcggat	acggcaagta	tgcttgtcca	ggtagatttt	acgcgtctaa	tgagatgaaa	1440
ctaacattag	ccattttgtt	gctacaattt	gagttcaaac	taccagatgg	taaaggtcgt	1500
cctagaaata	tcactatcga	ttctgatatg	attccagacc	caagagctag	actttgcgtc	1560
agaaaaagat	cacttagaga	tgaatgaccg	cgg			1593

aagcttaaaa	tggaagatcc	tactgtctta	tatgcttgtc	ttgccattgc	agttgcaact	60
ttcgttgtta	gatggtacag	agatccattg	agatecatec	caacagttgg	tggttccgat	120
ttgcctattc	tatcttacat	cggcgcacta	agatggacaa	gacgtggcag	agagatactt	180
caagagggat	atgatggcta	cagaggatet	acattcaaaa	tcgcgatgtt	agaccgttgg	240
atcgtgatcg	caaatggtcc	taaactagct	gatgaagtca	gacgtagacc	agatgaagag	300
ttaaacttta	tggacggatt	aggagcattc	gtccaaacta	agtacacctt	aggtgaagct	360

atteataacg atceatacea tgtegatate ataagagaaa aactaacaag aggeetteea 420 gccgtgcttc ctgatgtcat tgaagagttg acacttgcgg ttagacagta cattccaaca 480 540 gaaggtgatg aatgggtgtc cgtaaactgt tcaaaggccg caagagatat tgttgctaga gettetaata gagtetttgt aggtttgeet gettgeagaa aceaaggtta ettagatttg 600 gcaatagact ttacattgtc tgttgtcaag gatagagcca tcatcaatat gtttccagaa 660 ttgttgaage caatagttgg cagagttgta ggtaacgeea eeagaaatgt tegtagaget 720 gttccttttg ttgctccatt ggtggaggaa agacgtagac ttatggaaga gtacggtgaa 780 gactggtctg aaaaacctaa tgatatgtta cagtggataa tggatgaagc tgcatccaga 840 900 gatagtteag tgaaggeaat egeagagaga ttgttaatgg tgaaettege ggetatteat gatagtteag tgaaygeaat egeayayaya tegetateg seaaatgee tgaaactttg 960 caaccactta gagaagagat cgaaccatta gtcaaagagg agggctggac caaggctgct 1020 atgggaaaaa tgtggtggtt agattcattt ctaagagaat ctcaaagata caatggcatt 1080 aacategtat etttaaetag aatggetgae aaagatatta eattgagtga tggeaeattt ttgeeaaaag gtaetetagt ggeegtteea gegtatteta eteatagaga tgatgetgte 1140 1200 1260 tacgctgatg cettagtatt egateette agatteteae gtatgagage gagagaaggt gaaggtacaa agcaccagtt cgttaatact tcagtcgagt acgttccatt tggtcacgga aagcatgctt gtccaggaag attcttcgcc gcaaacgaat tgaaagcaat gttggcttac 1320 1380 attgttctaa actatgatgt aaagttgcct ggtgacggta aacgtccatt gaacatgtat 1440 tggggtccaa cagttttgcc tgcaccagca ggccaagtat tgttcagaaa gagacaagtt 1500 agtetataac cgcgg 1515

SEQ ID NO:65

		1. 5. 4. 4. 5. 5. 5. 5. 4				~~
	tgttggaaca					60
	ggttgtttt					120
caagctaaat	: tgccaccagt	tccagttgtt	ccaggtttgc	cagttattgg	taatttgttg	180
caattgaaag	aaaagaagcc	ataccaaacc	ttcactagat	gggctgaaga	atatggtcca	240
atctactcta	i ttagaactgg	tgcttctact	atggttgtct	tgaacactac	tcaagttgcc	300
aaagaagcta	tggttaccag	atacttgtct	atctctacca	gaaagttgtc	caacgccttg	360
aaaattttga	ccgctgataa	gtgcatggtt	gccatttctg	attacaacga	tttccacaag	420
atgatcaaga	gatatatctt	gtctaacgtt	ttgggtccat	ctgcccaaaa	aagacataga	480
tctaacagag	ataccttgag	agccaacgtt	tgttctagat	tgcattccca	agttaagaac	540
tctccaagag	aagctgtcaa	ctttagaaga	gttttcgaat	gggaattatt	cggtatcgct	600
ttgaaacaag	ccttcggtaa	ggatattgaa	aagccaatct	acgtcgaaga	attgggtact	660
actttgtcca	gagatgaaat	cttcaaggtt	ttggtcttgg	acattatgga	aggtgccatt	720
gaagttgatt	ggagagattt	tttcccatac	ttgcgttgga	ttccaaacac	cagaatggaa	780
actaagatco	aaagattata	ctttagaaga	aaggccgtta	tgaccgcctt	gattaacgaa	840
caaaagaaaa	gaattgcctc	cggtgaagaa	atcaactgct	acatcgattt	cttgttgaaa	900
gaaggtaaga	ccttgaccat	ggaccaaatc	tctatgttgt	tgtgggaaac	cgttattgaa	960
actgctgata	ccacaatggt	tactactgaa	tgggctatgt	acgaagttgc	taaggattct	1020
aaaagacaag	acagattata	ccaagaaatc	caaaaggtct	gcggttctga	aatggttaca	1080
	tgtcccaatt					1140
	ctgctttggt					1200
tattacatto	cagccggtac	tgaaattgcc	attaacatct	acggttgcaa	catggacaaa	1260
caccaatggg	aatctccaga	agaatggaag	ccagaaagat	ttttggatcc	taagtttgac	1320
ccaatggact	tgtacaaaac	tatggctttt	ggtgctggta	aaagagtttg	cgctggttct	1380
	tgttgattgc					1440
aagttgagag	atggtgaaga	agaaaacgtt	gatactgttg	gtttgaccac	ccataagaga	1500
tatccaatgo	atgctatttt	gaagccaaga	tcttaa			1536

atggcagaat	tagatacact	tgatatagta	gtattaggtg	ttatctttt	gggtactgtg	60
gcatacttta	ctaagggtaa	attgtggggt	gttaccaagg	atccatacgc	taacggattc	120
gctgcaggtg	gtgcttccaa	gcctggcaga	actagaaaca	tcgtcgaage	tatggaggaa	180
tcaggtaaaa	actgtgttgt	tttctacggc	agtcaaacag	gtacagcgga	ggattacgca	240
tcaagacttg	caaaggaagg	aaagtccaga	ttcggtttga	acactatgat	cgccgatcta	300
gaagattatg	acttcgataa	cttagacact	gttccatctg	ataacatcgt	tatgtttgta	360
ttggctactt	acggtgaagg	cgaaccaaca	gataacgccg	tggatttcta	tgagttcatt	420
actggcgaag	atgcctcttt	caatgagggc	aacgateete	cactaggtaa	cttgaattac	480
gttgcgttcg	gtctgggcaa	caatacctac	gaacactaca	actcaatggt	caggaacgtt	540
aacaaggete	tagaaaagtt	aggagctcat	agaattggag	aagcaggtga	gggtgacgac	600
ggagctggaa	ctatggaaga	ggactttta	gcttggaaag	atccaatgtg	ggaagcettg	660
gctaaaaaga	tgggcttgga	ggaaagagaa	gctgtatatg	aacctatttt	cgctatcaat	720
gagagagatg	atttgacccc	tgaagcgaat	gaggtatact	tgggagaacc	taataagcta	780

cacttggaag	gtacagcgaa	aggtccattc	aactcccaca	acccatatat	cgcaccaatt	840
gcagaatcat	acgaactttt	ctcagctaag	gatagaaatt	gtctgcatat	ggaaattgat	900
atttctggta	gtaatctaaa	gtatgaaaca	ggcgaccata	tcgcgatctg	gcctaccaac	960
ccaggtgaag	aggtcaacaa	atttcttgac	attctagatc	tgtctggtaa	gcaacattcc	1020
gtcgtaacag	tgaaagcctt	agaacctaca	gccaaagttc	cttttccaaa	tccaactacc	1080
tacgatgcta	tattgagata	ccatctggaa	atatgcgctc	cagtttctag	acagtttgtc	1140
tcaactttag	cagcattcgc	ccctaatgat	gatatcaaag	ctgagatgaa	ccgtttggga	1200
tcagacaaag	attacttcca	cgaaaagaca	ggaccacatt	actacaatat	cgctagattt	1260
ttggcctcag	tctctaaagg	tgaaaaatgg	acaaagatac	cattttctgc	tttcatagaa	1320
ggccttacaa	aactacaacc	aagatactat	tctatctctt	cctctagttt	agttcagect	1380
aaaaagatta	gtattactgc	tgttgtcgaa	tctcagcaaa	ttccaggtag	agatgaccca	1440
ttcagaggtg	tagcgactaa	ctacttgttc	gctttgaagc	agaaacaaaa	cggtgatcca	1500
aatccagctc	cttttggcca	atcatacgag	ttgacaggac	caaggaataa	gtatgatggt	1560
atacatgttc	cagtccatgt	aagacattct	aactttaagc	taccatctga	tccaggcaaa	1620
cctattatca	tgatcggtcc	aggtaccggt	gttgcccctt	ttagaggett	cgtccaagag	1680
agggcaaaac	aagccagaga	tggtgtagaa	gttggtaaaa	cactgctgtt	ctttggatgt	1740
agaaagagta	cagaagattt	catgtatcaa	aaagagtggc	aagagtacaa	ggaagetett	1800
ggcgacaaat	tcgaaatgat	tacagettt	tcaagagaag	gatctaaaaa	ggtttatgtt	1860
				ttctatccca		1920
ttctacgttt	gcggagacgc	cgcacatatg	gcacgtgaag	tgaacactgt	gttagcacag	1980
atcatagcag	aaggccgtgg	tgtatcagaa	gccaagggtg	aggaaattgt	caaaaacatg	2040
agatcagcaa	atcaatacca	agtgtgttct	gatttcgtaa	ctttacactg	taaagagaca	2100
acatacgcga	attcagaatt	gcaagaggat	gtctggagtt	aa		2142

atorcoraat	togatacctt	ggatatcott	atttaaata	ttatcttctt	agatactatt	60
				atccatacgc		120
				tcgttgaagc		180
				gtactgctga		240
				acaccatgat		300
				ataacatcgt		360
	-		* *	ttgacttcta		420
				cattgggtaa		480
				actccatggt		540
				aagctggtga		600
				acccaatgtg		660
				aacctatttt		720
					-	780
	-		- +	tgggtgaacc		840
				acccatatat		900
				gcttgcacat		960
		*		ttgccatttg	-	1020
				tgtccggtaa		
				cttttccaaa		1080
				cagtetetag	-	1140
		-		ctgaaatgaa		1200
				actacaacat		1260
				catteteege		1320
				cctcatcttt		1380
				ttccaggtag		1440
				aaaagcaaaa		1500
-		-		caagaaacaa		1560
				tgccatctga		1620
ccaattatca	tgattggtcc	aggtactggt	gttgctccat	tcagaggttt	tgttcaagaa	1680
agagctaagc	aagctagaga	tggtgttgaa	gttggtaaaa	ccttgttgtt	cttcggttgt	1740
agaaagtcca	ctgaagattt	catgtaccaa	aaagaatggc	aagaatacaa	agaagcetta	1800
ggtgacaagt	tcgaaatgat	tactgccttc	tcaagagaag	gttctaagaa	ggtttacgtc	1860
caacacagat	tgaaagaaag	atccaaagaa	gtctccgatt	tgttgtctca	aaaggcctac	1920
ttttacgttt	gtggtgatgc	tgctcatatg	gccagagaag	ttaatactgt	tttggcccaa	1980
attatcgctg	aaggtagagg	tgtatctgaa	gctaagggtg	aagaaatcgt	taagaacatg	2040
agateegeea	atcaatacca	agtttgctct	gattttgtta	ccttgcactg	taaagaaacc	2100
acctacgcta	attccgaatt	gcaagaagat	gtttggtcct	aa		2142

MEASYLYISI LLLLASYLFT TQLRRKSANL PPTVFPSIPI IGHLYLLKKP LYRTLAKIAA KYGPILQLQL GYRRVLVISS PSAAEECFTN NDVIFANRPK TLFGKIVGGT SLGSLSYGDQ WRNLRRVASI EILSVHRLNE FHDIRVDENR LLIRKLRSSS SPVTLITVFY ALTLNVIMRM ISGKRYFDSG DRELEEEGKR FREILDETLL LAGASNVGDY LPILNWLGVK SLEKKLIALQ KKRDDFFQGL IEQVRKSRGA KVGKGRKTMI ELLLSLQESE PEYYTDAMIR SFVLGLLAAG SDTSAGTMEW AMSLLVNHPH VLKKAQAEID RVIGNNRLID ESDIGNIPYI GCIINETLRL YPAGPLLFPH ESSADCVISG YNIPRGTMLI VNQWAIHHDP KVWDDPETFK PERFQGLEGT RDGFKLMPFG SGRRGCPGEG LAIRLLGMTL GSVIQCFDWE RVGDEMVDMT EGLGVTLPKA VPLVAKCKPR SEMTNLLSEL	60 120 240 300 360 420 480 500
SEQ ID NO:69	
MQSESVEAST IDLMTAVLKD TVIDTANASD NGDSKMPPAL AMMFEIRDLL LILTTSVAVL VGCFVVLVWK RSSGKKSGKE LEPPKIVVPK RRLEQEVDDG KKKVTIFFGT QTGTAEGFAK ALFEEAKARY EKAAFKVIDL DDYAADLDEY AEKLKKETYA FFFLATYGDG EPTDNAAKFY KWFTEGDEKG VWLQKLQYGV FGLGNRQYEH FNKIGIVVDD GLTEQGAKRI VPVGLGDDQ SIEDDFSAWK ELVWPELDLL LRDEDDKAAA TPYTAAIPEY RVVFHDKPDA FSDDHTQTNG HAVHDAQHPC RSNVAVKKEL HTPESDRSCT HLEFDISHTG LSYETGDHVG VYCENLIEVV EEAGKLLGLS TDTYFSLHID NEDGSPLGGP SLQPFFPCT LRKALTNYAD LLSSPKKSTL LALAAHASDP TEADRLRFLA SREGKDEYAE WVVANQRSLL EVMEAFFSAR PPLGVFFAAV APRLQPRYYS ISSSPKMEPN RIHVTCALVY EKTPAGRIHK GICSTWMKNA VPLTESQDCS WAPIFVRTSN FRLPIDPKVP VIMIGPGTGL APFRGFLQER LALKESGTEL GSSILFFGCR NRKVDYIYEN ELNNFVENGA LSELDVAFSR DGPTKEYVQH KMTQKASEIW NMLSEGAYLY	60 120 180 240 300 360 420 480 540 600 660
VCGDAKGMAK DVHRTLHTIV QEQGSLDSSK AELYVKNLQM SGRYLRDVW	709
SEQ ID NO:70	
MASITHFLQD FQATPFATAF AVGGVSLLIF FFFIRGFHST KKNEYYKLPP VPVVPGLPVV GNLLQLKEKK PYKTFLRWAE IHGPIYSIRT GASTMVVVNS THVAKEAMVT RFSSISTRKL SKALELLTSN KSMVATSDYN EFHKMVKKYI LAELLGANAQ KRHRIHRDTI IENVLNKLHA HTKNSPLQAV NFRKIFESEL FGLAMKQALG YDVDSLFVEE LGTTLSREEI YNVLVSDMLK GAIEVDWRDF FPYLKWIPNK SFEMKIQRLA SRRQAVMNSI VKEQKKSIAS GKGENCYLNY LLSEAKTLTE KQISILAWET IIETADTTVV TTEWAMYELA KNPKQQDRLY NEIQNVCGTD KITEEHLSKL PYLSAVFHET LRKYSPSPLV PLRYAHEDTQ LGGYYVPAGT EIAVNIYGCN MDKNQWETPE EWKERFLDE KYDPMDMYKT MSFGSGKRVC AGSLQASLIA CTSIGRLVQE FEWRLKDGEV ENVDTLGLTT HKLYPMQAIL QPRN	60 120 180 240 300 360 420 480 514
SEQ ID NO:71	
MASMISLLLG FVVSSFLFIF FLKKLLFFFS RHKMSEVSRL PSVPVPGFPL IGNLLQLKEK KPHKTFTKWS ELYGPIYSIK MGSSSLIVLN SIETAKEAMV SRFSSISTRK LSNALTVLTC NKSMVATSDY DDFHKFVKRC LLNGLLGANA QERKRHYRDA LIENVTSKLH AHTRNHPQEP VNFRAIFEHE LFGVALKQAF GKDVESIYVK ELGVTLSRDE IFKVLVHDMM EGAIDVDWRD FFPYLKWIPN NSFEARIQQK HKRRLAVMNA LIQDRLNQND SESDDDCYLN FLMSEAKTLT MEQIAILVWE TIIETADTTL VTTEWAMYEL AKHQSVQDRL FKEIQSVCGG EKIKEEQLPR LPYVNGVFHE TLRKYSPAPL VPIRYAHEDT QIGGYHIPAG SEIAINIYGC NMDKKRWERP EEWWPERFLE DRYESSDLHK TMAFGAGKRV CAGALQASLM AGIAIGRLVQ EFEWKLRDGE EENVDTYGLT SQKLYPLMAI INPRRS	60 120 180 240 300 360 420 480 506
SEQ ID NO:72	
MDMMGIEAVP FATAVVLGGI SLVVLIFIRR FVSNRKRSVE GLPPVPDIPG LPLIGNLLQL KEKKPHKTFA RWAETYGPIF SIRTGASTMI VLNSSEVAKE AMVTRFSSIS TRKLSNALKI LTFDKCMVAT SDYNDFHKMV KGFILRNVLG APAQKRHRCH RDTLIENISK YLHAHVKTSP LEPVVLKKIF ESEIFGLALK QALGKDIESI YVEELGTTLS REEIFAVLVV DPMAGAIEVD WRDFFPYLSW IPNKSMEMKI QRMDFRRGAL MKALIGEQKK RIGSGEEKNS YIDFLLSEAT TLTEKQIAML IWETIIEISD TTLVTSEWAM YELAKDPNRQ EILYREIHKV CGSNKLTEEN LSKLPYLNSV FHETLRKYSP APMVPVRYAH EDTQLGGYHI PAGSQIAINI YGCNMNKKQW ENPEEWKPER FLDEKYDLMD LHKTMAFGGG KRVCAGALQA MLIACTSIGR FVQEFEWKLM GGEEENVDTV ALTSQKLHPM QAIIKARE	60 120 240 300 360 420 480 508

MAELDTLDTV	VLGVIFLGTV	AYFTKGKLWG	VTKDPYANGF	AAGGASKPGR	TRNIVEAMEE	60
			FGLNTMIADL			120
LATYGEGEPT	DNAVDFYEFI	TGEDASFNEG	NDPPLGNLNY	VAFGLGNNTY	EHYNSMVRNV	180
NKALEKLGAH	RIGEAGEGDD	GAGTMEEDFL	AWKDPMWEAL	AKKMGLEERE	AVYEPIFAIN	240
ERDDLTPEAN	EVYLGEPNKL	HLEGTAKGPF	NSHNPYIAPI	AESYELFSAK	DRNCLHMEID	300
ISGSNLKYET	GDHIAIWPTN	PGEEVNKFLD	ILDLSGKQHS	VVTVKALEPT	AKVPFPNPTT	360
YDAILRYHLE	ICAPVSRQFV	STLAAFAPND	DIKAEMNRLG	SDKDYFHEKT	GPHYYNIARF	420
LASVSKGEKW	TKIPFSAFIE	GLTKLQPRYY	SISSSSLVQP	KKISITAVVE	SQQIPGRDDP	480
FRGVATNYLF	ALKQKQNGDP	NPAPFGQSYE	LTGPRNKYDG	IHVPVHVRHS	NFKLPSDPGK	540
PIIMIGPGTG	VAPFRGFVQE	RAKQARDGVE	VGKTLLFFGC	RKSTEDFMYQ	KEWQEYKEAL	600
GDKFEMITAF	SREGSKKVYV	QHRLKERSKE	VSDLLSQKAY	FYVCGDAAHM	AREVNTVLAQ	660
IIAEGRGVSE	AKGEEIVKNM	RSANQYQVCS	DFVTLHCKET	TYANSELQED	VWS	713

MKVSPFEFMS	AIIKGRMDPS	NSSFESTGEV	ASVIFENREL	VAILTTSIAV	MIGCEVVLMW	60
RRAGSRKVKN	VELPKPLIVH	EPEPEVEDGK	KKVSIFFGTQ	TGTAEGFAKA	LADEAKARYE	120
KATFRVVDLD	DYAADDDQYE	EKLKNESFAV	FLLATYGDGE	PTDNAARFYK	WFAEGKERGE	180
WLQNLHYAVF	GLGNRQYEHF	NKIAKVADEL	LEAQGGNRLV	KVGLGDDDQC	IEDDFSAWRE	240
SLWPELDMLL	RDEDDATTVT	TPYTAAVLEY	RVVFHDSADV	AAEDKSWINA	NGHAVHDAQH	300
PFRSNVVVRK	ELHTSASDRS	CSHLEFNISG	SALNYETGDH	VGVYCENLTE	TVDEALNLLG	360
LSPETYFSIY	TDNEDGTPLG	GSSLPPPFPS	CTLRTALTRY	ADLLNSPKKS	ALLALAAHAS	420
NPVEADRLRY	LASPAGKDEY	AQSVIGSQKS	LLEVMAEFPS	AKPPLGVFFA	AVAPRLQPRF	480
YSISSSPRMA	PSRIHVTCAL	VYDKMPTGRI	HKGVCSTWMK	NSVPMEKSHE	CSWAPIFVRQ	540
SNFKLPAESK	VPIIMVGPGT	GLAPFRGFLQ	ERLALKESGV	ELGPSILFFG	CRNRRMDYIY	600
EDELNNFVET	GALSELVIAF	SREGPTKEYV	QHKMAEKASD	IWNLISEGAY	LYVCGDAKGM	660
AKDVHRTLHT	IMQEQGSLDS	SKAESMVKNL	QMNGRYLRDV	W		701

SEQ ID NO:75

MATLLEHFQA	MPFAIPIALA	ALSWLFLFYI	KVSFFSNKSA	QAKLPPVPVV	PGLPVIGNLL	60
QLKEKKPYQT	FTRWAEEYGP	IYSIRTGAST	MVVLNTTQVA	KEAMVTRYLS	ISTRKLSNAL	120
KILTADKCMV	AISDYNDFHK	MIKRYILSNV	LGPSAQKRHR	SNRDTLRANV	CSRLHSQVKN	180
SPREAVNFRR	VFEWELFGIA	LKQAFGKDIE	KPIYVEELGT	TLSRDEIFKV	LVLDIMEGAI	240
EVDWRDFFPY	LRWIPNTRME	TKIQRLYFRR	KAVMTALINE	QKKRIASGEE	INCYIDFLLK	300
EGKTLTMDQI	SMLLWETVIE	TADTTMVTTE	WAMYEVAKDS	KRQDRLYQEI	QKVCGSEMVT	360
EEYLSQLPYL	NAVFHETLRK	HSPAALVPLR	YAHEDTQLGG	YYIPAGTEIA	INIYGCNMDK	420
HQWESPEEWK	PERFLDPKFD	PMDLYKTMAF	GAGKRVCAGS	LQAMLIACPT	IGRLVQEFEW	480
KLRDGEEENV	DTVGLTTHKR	YPMHAILKPR	S			511

SEQ ID NO:76

MQSDSVKVSP	FDLVSAAMNG	KAMEKLNASE	SEDPTTLPAL	KMLVENRELL	TLFTTSFAVL	60
IGCLVFLMWR	RSSSKKLVQD	PVPQVIVVKK	KEKESEVDDG	KKKVSIFYGT	QTGTAEGFAK	120
ALVEEAKVRY	EKTSFKVIDL	DDYAADDDEY	EEKLKKESLA	FFFLATYGDG	EPTDNAANFY	180
KWFTEGDDKG	EWLKKLQYGV	FGLGNRQYEH	FNKIAIVVDD	KLTEMGAKRL	VPVGLGDDDQ	240
CIEDDFTAWK	ELVWPELDQL	LRDEDDTSVT	TPYTAAVLEY	RVVYHDKPAD	SYAEDQTHTN	300
GHVVHDAQHP	SRSNVAFKKE	LHTSQSDRSC	THLEFDISHT	GLSYETGDHV	GVYSENLSEV	360
VDEALKLLGL	SPDTYFSVHA	DKEDGTPIGG	ASLPPPFPPC	TLRDALTRYA	DVLSSPKKVA	420
LLALAAHASD	PSEADRLKFL	ASPAGKDEYA	QWIVANQRSL	LEVMQSFPSA	KPPLGVFFAA	480
VAPRLQPRYY	SISSSPKMSP	NRIHVTCALV	YETTPAGRIH	RGLCSTWMKN	AVPLTESPDC	540
SQASIFVRTS	NFRLPVDPKV	PVIMIGPGTG	LAPFRGFLQE	RLALKESGTE	LGSSIFFFGC	600
RNRKVDFIYE	DELNNEVETG	ALSELIVAFS	REGTAKEYVQ	HKMSQKASDI	WKLLSEGAYL	660
YVCGDAKGMA	KDVHRTLHTI	VQEQGSLDSS	KAELYVKNLQ	MSGRYLRDVW		710

MSKSNSMNST	SHETLFQQLV	LGLDRMPLMD	VHWLIYVAFG	AWLCSYVIHV	LSSSSTVKVP	60
VVGYRSVFEP	TWLLRLRFVW	EGGSIIGQGY	NKFKDSIFQV	RKLGTDIVII	PPNYIDEVRK	120
LSQDKTRSVE	PFINDFAGQY	TRGMVFLQSD	LQNRVIQQRL	TPKLVSLTKV	MKEELDYALT	180
KEMPDMKNDE	WVEVDISSIM	VRLISRISAR	VFLGPEHCRN	QEWLTTTAEY	SESLFITGFI	240
LRVVPHILRP	FIAPLLPSYR	TLLRNVSSGR	RVIGDIIRSQ	QGDGNEDILS	WMRDAATGEE	300
KQIDNIAQRM	LILSLASIHT	TAMTMTHAMY	DLCACPEYIE	PLRDEVKSVV	GASGWDKTAL	360
NRFHKLDSFL	KESQRENPVE	LLTFNRIYHQ	SMTLSDGTNI	PSGTRIAVPS	HAMLQDSAHV	420

PGPTPPTEFD GFRYSKIRSD S AILLLQFEFK LPDGKGRPRN I			YASNEMKLTL	480 525
SEQ ID NO:78				
MEDPTVLYAC LAIAVATFVV R YDGYRGSTFK IAMLDRWIVI A DPYHVDIIRE KLTRGLPAVL P RVFVGLPACR NQGYLDLAID F VAPLVEERRR LMEEYGEDWS E NTITHALYHL AEMPETLQPL R SLTRMADKDI TLSDGTFLPK G KHQFVNTSVE YVPFGHGKHA C TVLPAPAGQV LFRKRQVSL	ANGPKLADEV RRRPDEELNF PDVIEELTLA VRQYIPTEGD TISVVKDRA IINMFPELLK KRNDMLQWI MDEAASRDSS REEIEPLVKE EGWTKAAMGK TIVAVPAYS THRDDAVYAD	MDGLGAFVQT EWVSVNCSKA PIVGRVVGNA VKAIAERLLM MWWLDSFLRE ALVFDPFRFS	KYTLGEAIHN ARDIVARASN TRNVRRAVPF VNFAAIHTSS SQRYNGINIV RMRAREGEGT	60 120 180 240 300 360 420 480 499
SEQ ID NO:79				
MDAVTGLLTV PATAITIGGT AV NLLQLKEKKP YMTFTRWAAT YC KALKVLTADK TMVAMSDYDD YH VKNNPEQEEV DLRKIFQSEL FC GAIDVDWRDF FPYLKWVPNK KI LLSEAQTLTD QQLLMSLWEP II KITEEHLSQL PYITAIFHET LH MDKNVWENPE EWNPERFMKE NH EWKLKDMTQE EVNTIGLTTQ MI	GPIYSIKTG ATSMVVVSSN HKTVKRHIL TAVLGPNAQK GLAMRQALG KDVESLYVED FENTIQQMY IRREAVMKSL IESSDTTMV TTEWAMYELA RRHSPVPII PLRHVHEDTV ETIDFQKTM AFGGGKRVCA	EIAKEALVTR KHRIHRDIMM LKITMNRDEI IKEHKKRIAS KNPKLQDRLY LGGYHVPAGT	FQSISTRNLS DNISTQLHEF FQVLVVDPMM GEKLNSYIDY RDIKSVCGSE ELAVNIYGCN	60 120 180 240 300 360 420 480 513
SEQ ID NO:80				
atggaagtaa cagtagctag ta agatgggcat ggagtgtggt ga ttgagggagc aaggccttaa ag aactctatcc tgctcaaaca ag atagcacctc aagtcacccc th tttaattggg ttggccccat ac gtcttaacaa aaaatgttga ch gctacaggta ttgcaatcta to ccaacattcc attcggagag go gagatggtca aggaatggga ga gtctggcctt ttcttgaaaa ta aggctacaaaa aaggacagaa aa aaggcttc aaagtttta ca gagcaaatca ttaaggcagg ta ttgctggctt ggacaatgg ta ttgctggctt ggacaatgg ta ttgctggctt ggacaatgg ta ttgctggctt ggacaatggt ta ttgctggcta ccacactgtt tg aaagtcgtaa ccatgattt gc attcgaacca ttccacagaa aa gtccgacta ccacactgt ta ttgctggctt caagaggt tt caagagtga ccatgattt tg attcgaaca tcagagggt ta ttcttcccct tcggagcgg ta ttcttcccct tcgagaggt ta ttcttcccct tcgagaggt ta ttcttcccct tcgagaggt ta ttcttcccct tcgagaggt ta	aattgggtg tggtttaagc ggcaattcc tacaggtttt gcaagatcc aaacccatga tttgtcgac caaaccgtga ccaagggtg aacataatga tttgttaag ccaatatcaa gaaggtgag aaatggacta ctaaagcgt atgttacctt agcttggtg tcaaagagg atgtcggca gatgtgatct atgctggag tggaggttcc gaataaaa ggattaatca gaagaaacc aacgatgact gaacatggg aaaacaacaa aagctgtt tacttgctg ttacttggt caaaatcaga ggaagcage aagccagttt cttgaagtt cttcgatgtt ctacacact gggaagctct atcccaca gacaaggacc tcgaagga gttccaaag attccacact gcaaggacc tcgaagga gttccaaag atcacaga tgcaagtatt	cgaagaagct tatatggaga acctctccac aagcttacgg atccagaaga acccacttat aacacagaag gttcatcatg gttcatcatg gggaacagc agcaagtaat tcccaactaa ggggtattat tattaggtgc aaaatgttgg ggcaagaaac actggcaaga ttgatggtct acctaccaga tgggggtga cactaccaga agaactttcc	ggaaagattt catgaaggag ctcccatgac taagaactct tttgaaggac caagttgcta gattatcaac aagttgtaat tgagttggaa attggaact attggaacaag aattgacaga acttatggag gatgagtatt cacttcagtg tcgagcaaga agctcacctt aggagttgaa tgatgcaaac ccgactcca tatgatggaa tcattgaact	60 120 180 240 300 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1320 1380 1380 1440 1500 1560
SEQ ID NO:81				

atggaagtca	ctgtcgcctc	ttctgtcgct	ttatccttag	tcttcatttc	cattgtcgtc	60
agatgggctt	ggtccgttgt	caactgggtt	tggttcaaac	caaagaagtt	ggaaagattc	120
ttgagagagc	aaggtttgaa	gggtaattct	tatagattct	tgtacggtga	catgaaggaa	180
aattctattt	tgttgaagca	agccagatcc	aaaccaatga	acttgtctac	ctctcatgat	240
attgctccac	aagttactcc	attcgtcgat	caaactgtta	aagcctacgg	taagaactct	300

ttcaattggg	ttggtccaat	tcctagagtt	aacatcatga	acccagaaga	tttgaaggat	360
gtcttgacca	agaacgttga	cttcgttaag	ccaatttcca	acccattgat	taaattgttg	420
gctactggta	ttgccattta	cgaaggtgaa	aagtggacta	agcatagaag	aatcatcaac	480
cctaccttcc	actctgaaag	attgaagaga	atgttaccat	ctttccatca	atcctgtaat	540
gaaatggtta	aggaatggga	atccttggtt	tctaaagaag	gttcttcttg	cgaattggat	600
gtttggccat	tcttggaaaa	tatgtetget	gatgtcattt	ccagaaccgc	tttcggtacc	660
tcctacaaga	agggtcaaaa	gattttcgaa	ttgttgagag	agcaagttat	ttacgttacc	720
aagggtttcc	aatccttcta	cateccaggt	tggagattet	tgccaactaa	aatgaacaag	780
cgtatgaacg	agatcaacga	agaaattaaa	ggtttgatca	gaggtattat	tatcgacaga	840
gaacaaatta	ttaaagctgg	tgaagaaacc	aacgatgatt	tgttgggtgc	tttgatggag	900
tccaacttga	aggatattag	agaacatggt	aagaacaaca	agaatgttgg	tatgtctatt	960
gaagatgtta	ttcaagaatg	taagttattc	tacttcgctg	gtcaagagac	cacttctgtt	1020
ttgttagcct	ggactatggt	cttgttaggt	caaaaccaaa	attggcaaga	tagagctaga	1080
caagaagttt	tgcaagtctt	cggttcttcc	aagccagact	ttgatggttt	ggcccacttg	1140
aaggttgtta	ctatgatttt	gttagaagtt	ttgagattgt	acccaccagt	cattgagtta	1200
atcagaacca	ttcataaaaa	gactcaattg	gqtaaattat	ctttgccaga	aggtgttgaa	1260
gtcagattac	caaccttgtt	gattcaccac	gataaggaat	tatggggtga	cgacgctaat	1320
				ctaccaaaaa		1380
				aaaacttttc		1440
gccaagttgg	ctttggcttt	aatcttgcaa	cacttcactt	tcgaattgtc	tecateccat	1500
				acggtgtcag		1560
cacagaagat	•			ني ان مريم ا		1572

MEVTVASSVA	LSLVFISIVV	RWAWSVVNWV	WFKPKKLERF	LREQGLKGNS	YRFLYGDMKE	60
NSILLKQARS	KPMNLSTSHD	IAPQVTPFVD	QTVKAYGKNS	FNWVGPIPRV	NIMNPEDLKD	120
VLTKNVDFVK	PISNPLIKLL	ATGIAIYEGE	KWTKHRRIIN	PTFHSERLKR	MLPSFHQSCN	180
EMVKEWESLV	SKEGSSCELD	VWPFLENMSA	DVISRTAFGT	SYKKGQKIFE	LLREQVIYVT	240
KGFQSFYIPG	WRFLPTKMNK	RMNEINEEIK	GLIRGIIIDR	EQIIKAGEET	NDDLLGALME	300
SNLKDIREHG	KNNKNVGMSI	EDVIQECKLF	YFAGQETTSV	LLAWTMVLLG	QNQNWQDRAR	360
QEVLQVFGSS	KPDFDGLAHL	KVVTMILLEV	LRLYPPVIEL	IRTIHKKTQL	GKLSLPEGVE	420
VRLPTLLIHH	DKELWGDDAN	QFNPERFSEG	VSKATKNRLS	FFPFGAGPRI	CIGQNFSMME	480
AKLALALILQ	HFTFELSPSH	AHAPSHRITL	QPQYGVRIIL	HRR		523

SEQ ID NO:83

				FSITIFHTNF		60
FTFRFILDND	PQDERISNLP	THGPLAGMRI	PIINEHGADE	LRRELELLML	ASEEDEEVSC	120
				FDELGYLDPD	112	180
				SFKELEESEL		240
				FGSTSEVDEK		300
				QQEVLAHGAI		360
				GWERGEIANA	IRRVMVDEEG	420
EYIRQNARVL	KQKADVSLMK	GGSSYESLES	LVSYISSL			458

SEQ ID NO:84

MDAMATTEKK	PHVIFIPFPA	QSHIKAMLKL	AQLLHHKGLQ	ITEVNTDFIH	NQFLESSGPH	60
CLDGAPGFRF	ETIPDGVSHS	PEASIPIRES	LLRSIETNFL	DRFIDLVTKL	PDPPTCIISD	120
GFLSVFTIDA	AKKLGIPVMM	YWTLAACGFM	GFYHIHSLIE	KGFAPLKDAS	YLTNGYLDTV	180
IDWVPGMEGI	RLKDFPLDWS	TDLNDKVLMF	TTEAPQRSHK	VSHHIFHTFD	ELEPSIIKTL	240
SLRYNHIYTI	GPLQLLLDQI	PEEKKQTGIT	SLHGYSLVKE	EPECFQWLQS	KEPNSVVYVN	300
FGSTTVMSLE	DMTEFGWGLA	NSNHYFLWII	RSNLVIGENA	VLPPELEEHI	KKRGFIASWC	360
SQEKVLKHPS	VGGFLTHCGW	GSTIESLSAG	VPMICWPYSW	DQLTNCRYIC	KEWEVGLEMG	420
TKVKRDEVKR	LVQELMGEGG	HKMRNKAKDW	KEKARIAIAP	NGSSSLNIDK	MVKEITVLAR	480

MATSDSIVDD	RKQLHVATFP	WLAFGHILPY	LQLSKLIAEK	GHKVSFLSTT	RNIQRLSSHI	60
SPLINVVQLT	LPRVQELPED	AEATTDVHPE	DIPYLKKASD	GLQPEVTRFL	EQHSPDWIIY	120
DYTHYWLPSI	AASLGISRAH	FSVTTPWAIA	YMGPSADAMI	NGSDGRTTVE	DLTTPPKWFP	180

HCGSGSIVEG	PEIPGDEKDE YRKPKGPAKS LMFGHPLIML	PGISDGYRMG TWVSIKKWLD DSVELPDGFV PIFGEIPRNE VDYLEKNARA	GKQKGSVVYV ERTRDRGLVW EDGCLTKESV	ALGSEVLVSQ	TEVVELALGL SHESVCGFLT		240 300 360 420 457	
SEQ ID NO):86							
RPALAPLVAF CADWVIVDVF AAAPTFEVAR PITFLGLMPP AGTRFLWALR NSTIEGLMFG	VALPLPRVEG HHWAAAAAALE MKLIRTKGSS LHEGRREDGE KPTGVSDADL HPLIMLPIFG	PWLAFGHLLP LPDGAESTND HKVPCAMMLL GMSLAERFSL DATVRWLDAQ LPAGFEERTR DQGPNARLIE ADMACHERYI	VPHDRPDMVE GSAHMIASIA TLSRSSLVVG PAKSVVYVAL GRGVVATRWV AKNAGLQVAR	DRRLERAETE RSCVEFEPET GSEVPLGVEK PQMSILAHAA NDGDGSFDRE	APFSEFLGTA SPAAAGQGRP VPLLSTLRGK VHELALGLEL VGAFLTHCGW		60 120 180 240 300 360 420 462	
SEQ ID NO:87								
AVLIGCIVML KALGEEAKAR YKWFTEGNDR	VWRRSGSGNS YEKTRFKIVD GEWLKNLKYG	GEPVIVSDPA KRVEPLKPLV LDDYAADDDE VFGLGNRQYE ILREEGDTAV	IKPREEEIDD YEEKLKKEDV HFNKVAKVVD	GRKKVTIFFG AFFFLATYGD DILVEQGAQR	TQTGTAEGFA GEPTDNAARF LVQVGLGDDD		60 120 180 240	

MSSSSSSSTS	MIDLMAAIIK	GEPVIVSDPA	NASAYESVAA	ELSSMLIENR	QFAMIVTTSI	60
AVLIGCIVML	VWRRSGSGNS	KRVEPLKPLV	IKPREEEIDD	GRKKVTIFFG	TQTGTAEGFA	120
KALGEEAKAR	YEKTRFKIVD	LDDYAADDDE	YEEKLKKEDV	AFFFLATYGD	GEPTDNAARF	180
YKWFTEGNDR	GEWLKNLKYG	VFGLGNRQYE	HFNKVAKVVD	DILVEQGAQR	LVQVGLGDDD	240
QCIEDDFTAW	REALWPELDT	ILREEGDTAV	ATPYTAAVLE	YRVSIHDSED	AKFNDITLAN	300
GNGYTVFDAQ	HPYKANVAVK	RELHTPESDR	SCIHLEFDIA	GSGLTMKLGD	HVGVLCDNLS	360
ETVDEALRLL	DMSPDTYFSL	HAEKEDGTPI	SSSLPPPFPP	CNLRTALTRY	ACLLSSPKKS	420
ALVALAAHAS	DPTEAERLKH	LASPAGKDEY	SKWVVESQRS	LLEVMAEFPS	AKPPLGVFFA	480
GVAPRLQPRF	YSISSSPKIA	ETRIHVTCAL	VYEKMPTGRI	HKGVCSTWMK	NAVPYEKSEK	540
LFLGRPIFVR	QSNFKLPSDS	KVPIIMIGPG	TGLAPFRGFL	QERLALVESG	VELGPSVLFF	600
GCRNRRMDFI	YEEELQRFVE	SGALAELSVA	FSREGPTKEY	VQHKMMDKAS	DIWNMISQGA	660
YLYVCGDAKG	MARDVHRSLH	TIAQEQGSMD	STKAEGFVKN	LQTSGRYLRD	VW	712

SEQ ID NO:88

MATSDSIVDD	RKQLHVATFP	WLAFGHILPY	LQLSKLIAEK	GHKVSFLSTT	RNIQRLSSHI	60
SPLINVVQLT	LPRVQELPED	AEATTDVHPE	DIPYLKKASD	GLQPEVTRFL	EQHSPDWIIY	120
DYTHYWLPSI	AASLGISRAH	FSVTTPWAIA	YMGPSADAMI	NGSDGRTTVE	DLTTPPKWFP	180
FPTKVCWRKH	DLARLVPYKA	PGISDGYRMG	MVLKGSDCLL	SKCYHEFGTQ	WLPLLETLHQ	240
VPVVPVGLLP	PEIPGDEKDE	TWVSIKKWLD	GKQKGSVVYV	ALGSEALVSQ	TEVVELALGL	300
ELSGLPFVWA	YRKPKGPAKS	DSVELPDGFV	ERTRDRGLVW	TSWAPQLRIL	SHESVCGFLT	360
HCGSGSIVEG	LMFGHPLIML	PIFGDQPLNA	RLLEDKQVGI	EIPRNEEDGC	LTKESVARSL	420
RSVVVEKEGE	IYKANARELS	KIYNDTKVEK	EYVSQFVDYL	EKNARAVAID	HES	473

atggctactt	ctgattccat	cgttgacgat	agaaagcaat	tgcatgttgc	tacttttcca	60
tggttggctt	tcggtcatat	tttgccatac	ttgcaattgt	ccaagttgat	tgctgaaaag	120
		gtctaccacc				180
		tcaattgact				240
gctgaagcta	ctactgatgt	tcatccagaa	gatatccctt	acttgaaaaa	ggcttccgat	300
ggtttacaac	cagaagttac	tagattcttg	gaacaacatt	ccccagattg	gatcatctac	360
gattatactc	attactggtt	gccatccatt	gctgcttcat	tgggtatttc	tagageeeat	420
ttctctgtta	ctactccatg	ggctattgct	tatatgggtc	catctgctga	tgctatgatt	480
aacggttctg	atggtagaac	taccgttgaa	gatttgacta	ctccaccaaa	gtggtttcca	540
tttccaacaa	aagtctgttg	gagaaaacac	gatttggcta	gattggttcc	atacaaagct	600
ccaggtattt	ctgatggtta	cagaatgggt	atggttttga	aaggttccga	ttgcttgttg	660
tctaagtgct	atcatgaatt	cggtactcaa	tggttgcctt	tgttggaaac	attgcatcaa	720
gttccagttg	ttccagtagg	tttgttgcca	ccagaaattc	caggtgacga	aaaagacgaa	780
acttgggttt	ccatcaaaaa	gtggttggat	ggtaagcaaa	agggttctgt	tgtttatgtt	840
gctttgggtt	ccgaagcttt	ggtttctcaa	accgaagttg	ttgaattggc	tttgggtttg	900
gaattgtctg	gtttgccatt	tgtttgggct	tacagaaaac	ctaaaggtcc	agctaagtct	960
gattctgttg	aattgccaga	tggtttcgtt	gaaagaacta	gagatagagg	tttggtttgg	1020
acttcttggg	ctccacaatt	gagaattttg	tctcatgaat	ccgtctgtgg	tttcttgact	1080
cattgtggtt	ctggttctat	cgttgaaggt	ttgatgtttg	gtcacccatt	gattatgttg	1140

gaaateecaa agateegttg aagatetaca	gaaatgaaga tcgttgaaaa acgataccaa	agatggttgc agaaggtgaa ggtcgaaaaa	agattattgg ttgaccaaag atctacaagg gaatacgttt catgaatctt	aatctgttgc ctaacgctag cccaattcgt	tagatetttg agaattgtee	1200 1260 1320 1380 1422
SEQ ID NO	D:90					
actttggctt	ggagagtttt	gaattgggtc	ttgtgtgttg tggttaagac	caaaaaagtt	ggaaagatgc	60 120
ttgtctaaga	tgttggaaca	aactcaatcc	tacagattgt aagcctatca agaactgtta	agttgtctac	ctctcatgat	180 240 300
gctttcaaca	gacatgatga	tttccataag	catattatga accgtcaaga caatgggcca	acccaattat	gaagteteea	360 420 480
ccageettee gaaatgatta	acttggaaaa acaagtggga	gttgaaaggt atccttggtt	atggttccaa tccaaagaat	tettetacea etteetgtga	atcctgctct attggatgtc	540 600 660
tacgaagaag	gtagaaagat	cttccaatta	gttatttcca ttgagagaag agattcttgc	aagccaaggt	ttactccgtt	720 780
gaagctatga	aggctggtga	agctacaaaa	ttgttgaagg gatgatttgt aacaagaatg	tgggtatctt	gatggaatcc	840 900 960
gttatcggtg gtttggacca	aatgcaagtt tgattttgtt	gttctacttt gtcccaaaat	gctggtcaag caagattggc	aaactacctc aagctagagc	cgttttgttg tagagaagaa	1020 1080 1140
gtcactatga	tcttgttgga	agtattgaga	acctacgaag ttatacccat ttgtccttgc	ccgttgttgc	attgccaaga	1200 1260
						1 2 0 0

atggaagctt	ctagagcatc	ttgtgttgct	ttgtgtgttg	tttgggtttc	catcgttatt	60
actttggctt	ggagagtttt	gaattgggtc	tggttaagac	caaaaaagtt	ggaaagatgc	120
ttgagagaac	aaggtttgac	tggtaactct	tacagattgt	tgttcggtga	taccaaggac	180
ttgtctaaga	tgttggaaca	aactcaatcc	aagcctatca	agttgtctac	ctctcatgat	240
attgctccaa	gagttactcc	attcttccat	agaactgtta	actccaacgg	taagaactct	300
tttgtttgga	tgggtccaat	tccaagagtc	catattatga	accctgaaga	tttgaaggac	360
gctttcaaca	gacatgatga	tttccataag	accgtcaaga	acccaattat	gaagteteea	420
ccaccaggta	tagttggtat	tgaaggtgaa	caatgggcca	aacatagaaa	gattattaac	480
ccageettee	acttggaaaa	gttgaaaggt	atggttccaa	tettetacea	atcetgetet	540
gaaatgatta	acaagtggga	atccttggtt	tccaaagaat	cttcctgtga	attggatgtc	600
tggccatatt	tggaaaactt	cacctccgat	gttatttcca	gagetgettt	tggttcttct	660
tacgaagaag	gtagaaagat	cttccaatta	ttgagagaag	aagccaaggt	ttactccgtt	720
gctttgagat	ctgtttacat	tccaggttgg	agattcttgc	caactaagca	aaacaaaaag	780
accaaagaaa	tccacaacga	aatcaagggt	ttgttgaagg	gtatcatcaa	caagagagaa	840
gaagctatga	aggctggtga	agctacaaaa	gatgatttgt	tgggtatctt	gatggaatec	900
aacttcagag	aaatccaaga	acacggtaac	aacaagaatg	ccggtatgtc	tattgaagat	960
gttatcggtg	aatgcaagtt	gttctacttt	gctggtcaag	aaactacctc	cgttttgttg	1020
gtttggacca	tgattttgtt	gteccaaaat	caagattggc	aagctagagc	tagagaagaa	1080
gtcttgaaag	ttttcggttc	taacatccca	acctacgaag	aattgtetea	cttgaaggtt	1140
gtcactatga	tcttgttgga	agtattgaga	ttatacccat	ccgttgttgc	attgccaaga	1200
actactcata	agaaaactca	attgggtaaa	ttgtccttgc	cagetggtgt	tgaagtttct	1260
ttgccaattt	tgttagtcca	ccacgacaaa	gaattgtggg	gtgaagatgc	taatgaattc	1320
aagccagaaa	gattctccga	aggtgtttct	aaagctacca	agaacaagtt	cacttacttg	1380
ccatttggtg	gtggtccaag	aatatgtatt	ggtcaaaatt	tcgctatggt	cgaagctaaa	1440
ttggctttgg	ctttgatctt	gcaacatttc	gctttcgaat	tgtcaccatc	ttatgctcat	1500
gctccatctg	ctgttattac	attgcaacca	caatttggtg	cccatatcat	cttgcataag	1560
agataac						1567

MEASRASCVA	LCVVWVSIVI	TLAWRVLNWV	WLRPKKLERC	LREQGLTGNS	YRLLFGDTKD	60
LSKMLEQTQS	KPIKLSTSHD	IAPRVTPFFH	RTVNSNGKNS	FVWMGPIPRV	HIMNPEDLKD	120
AFNRHDDFHK	TVKNPIMKSP	PPGIVGIEGE	QWAKHRKIIN	PAFHLEKLKG	MVPIFYQSCS	180
EMINKWESLV	SKESSCELDV	WPYLENFTSD	VISRAAFGSS	YEEGRKIFQL	LREEAKVYSV	240
ALRSVYIPGW	RFLPTKQNKK	TKEIHNEIKG	LLKGIINKRE	EAMKAGEATK	DDLLGILMES	300
NFREIQEHGN	NKNAGMSIED	VIGECKLFYF	AGQETTSVLL	VWTMILLSQN	QDWQARAREE	360
VLKVFGSNIP	TYEELSHLKV	VTMILLEVLR	LYPSVVALPR	TTHKKTQLGK	LSLPAGVEVS	420
LPILLVHHDK	ELWGEDANEF	KPERFSEGVS	KATKNKFTYL	PFGGGPRICI	GQNFAMVEAK	480
LALALILQHF	AFELSPSYAH	APSAVITLQP	QFGAHIILHK	R		521

SEQ ID NO:92

ASWVAVLSVV	WVSMVIAWAW	RVLNWVWLRP	KKLEKCLREQ	GLAGNSYRLL	FGDTKDLSKM	60
LEQTQSKPIK	LSTSHDIAPH	VTPFFHQTVN	SYGKNSFVWM	GPIPRVHIMN	PEDLKDTFNR	120
HDDFHKVVKN	PIMKSLPQGI	VGIEGEQWAK	HRKIINPAFH	LEKLKGMVPI	FYRSCSEMIN	180
KWESLVSKES	SCELDVWPYL	ENFTSDVISR	AAFGSSYEEG	RKIFQLLREE	AKIYTVAMRS	240
VYIPGWRFLP	TKQNKKAKEI	HNEIKGLLKG	IINKREEAMK	AGEATKDDLL	GILMESNFRE	300
IQEHGNNKNA	GMSIEDVIGE	CKLFYFAGQE	TTSVLLVWTM	VLLSQNQDWQ	ARAREEVLQV	360
FGSNIPTYEE	LSQLKVVTMI	LLEVLRLYPS	VVALPRTTHK	KTQLGKLSLP	AGVEVSLPIL	420
LVHHDKELWG	EDANEFKPER	FSEGVSKATK	NQFTYFPFGG	GPRICIGQNF	AMMEAKLALS	480
LILRHFALEL	SPLYAHAPSV	TITLQPQYGA	HIILHKR			517

MEASRPSCVA LSVVI	LVSIVI AWAWRVLNW	V WLRPNKLERC	LREQGLTGNS	YRLLFGDTKE	60
ISMMVEQAQS KPIKI	LSTTHD IAPRVIPFS	H QIVYTYGRNS	FVWMGPTPRV	TIMNPEDLKD	120

EMINKWESLV AARSVYIPGW NFREIQEHGN VLQVFGTNIP LHIMLAHHDK	FKEGSREMDV RFLPTKQNKR NKNAGMSIED TYDQLSHLKV ELWGEDAKEF	MKEIHKEVRG VIGECKLFYF	VISRAAFGSS LLKGIINKRE AGQETTSVLL LYPAVVELPR KATKNQFTYF	YEEGRKIFQL DAIKAGEAAK VWTLVLLSQN TTYKKTQLGK PFGAGPRICI	LREEAKFYTI GNLLGILMES QDWQARAREE FLLPAGVEVS	2 3 3 4 4	.80 40 60 20 80 21		
SEQ ID NO:94									
CVALSVVLVS	IVIAWAWRVL	NWVWLRPNKL	ERCLREOGLT	GNSYRLLFGD	TKEISMMVEO		60		
AOSKPIKLST			RNSFVWMGPT	PRVTIMNPED	-		20		
FORAISNPIV	KSISQGLSSL	EGEKWAKHRK	IINPAFHLEK	LKGMLPTFYQ	SCSEMINKWE	1	80		
SLVFKEGSRE	MDVWPYLENL	TSDVISRAAF	GSSYEEGRKI	FOLLREEAKF	YTIAARSVYI	2	40		
PGWRFLPTKQ	NKRMKEIHKE	VRGLLKGIIN	KREDAIKAGE	AAKGNLLGIL	MESNFREIQE	3	00		
HGNNKNAGMS	IEDVIGECKL	FYFAGQETTS	VLLVWTLVLL	SQNQDWQARA	REEVLQVFGT	3	60		
NIPTYDQLSH	LKVVTMILLE	VLRLYPAVVE	LPRTTYKKTQ	LGKFLLPAGV	EVSLHIMLAH	4	20		
HDKELWGEDA	KEFKPERFSE	GVSKATKNQF	TYFPFGAGPR	ICIGQNFAML	EAKLALSLIL	4	80		
QHFTFELSPS	YAHAPSVTIT	LHPQFGAHFI	LHKR			5	14		
SEQ ID NO:95									

MGPIPRVHIM	NPEDLKDTFN	RHDDFHKVVK	NPIMKSLPQG	IVGIEGDQWA	KHRKIINPAF	60
HLEKLKGMVP	IFYQSCSEMI	NIWKSLVSKE	SSCELDVWPY	LENFTSDVIS	RAAFGSSYEE	120
GRKIFQLLRE	EAKVYTVAVR	SVYIPGWRFL	PTKQNKKTKE	IHNEIKGLLK	GIINKREEAM	180
KAGEATKDDL	LGILMESNFR	EIQEHGNNKN	AGMSIEDVIG	ECKLFYFAGQ	ETTSVLLVWT	240
MVLLSQNQDW	QARAREEVLQ	VFGSNIPTYE	ELSHLKVVTM	ILLEVLRLYP	SVVALPRTTH	300
KKTQLGKLSL	PAGVEVSLPI	LLVHHDKELW	GEDANEFKPE	RFSEGVSKAT	KNQFTYFPFG	360
GGPRICIGQN	FAMMEAKLAL	SLILQHFTFE	LSPQYSHAPS	VTITLQPQYG	AHLILHKR	418

SEQ ID NO:96

atggaagcat	caagggctag	ttgtgttgcg	ctatgtgttg	tttgggtgag	catagtaatt	60
acattggcat	ggagggtgct	gaattgggtg	tggttgaggc	caaagaaact	agaaagatgc	120
ttgagggagc	aaggcettae	aggcaattct	tacaggettt	tgtttggaga	caccaaggat	180
ctctcgaaga	tgetggaaca	aacacaatcc	aaacccatca	aactctccac	ctcccatgat	240
atagegeeae	gagtcacccc	atttttccat	cgaactgtga	actctaatgg	caagaattct	300
tttgtttgga	tgggccctat	accaagagtg	cacatcatga	atccagaaga	tttgaaagat	360
geetteaaca	gacatgatga	ttttcataag	acagtaaaaa	atcctatcat	gaagteteea	420
ccaccgggca	ttgtaggcat	tgaaggtgag	caatgggcta	aacacagaaa	gattatcaac	480
ccagcattcc	atttagagaa	gctaaagggt	atggtaccaa	tattttacca	aagttgtagc	540
gagatgatta	acaaatggga	gagcttggtg	tecaaagaga	gttcatgtga	gttggatgtg	600
tggccttatc	ttgaaaattt	taccagcgat	gtgatttccc	gagetgeatt	tggaagtagc	660
tatgaagagg	gaaggaaaat	atttcaacta	ctaagagagg	aagcaaaagt	ttattcggta	720
gctctacgaa	gtgtttacat	tccaggatgg	aggtttctac	caaccaagca	gaacaagaag	780
acgaaggaaa	ttcacaatga	aattaaaggc	ttacttaagg	gcattataaa	taaaagggaa	840
gaggcgatga	aggcagggga	agccactaaa	gatgacttac	taggaatact	tatggagtcc	900
aacttcaggg	aaattcagga	acatgggaac	aacaaaaatg	ctggaatgag	tattgaagat	960
gtaattggag	agtgtaagtt	gttttacttt	gctgggcaag	agaccacttc	ggtgttgctt	1020
gtttggacaa	tgattttact	aagccaaaat	caggattggc	aagctcgtgc	aagagaagag	1080
gtcttgaaag	tctttggaag	caacatccca	acctatgaag	agctaagtca	cctaaaagtt	1140
gtgaccatga	ttttacttga	agttettega	ttatacccat	cagtcgttgc	getteetega	1200
accactcaca	agaaaacaca	gcttggaaaa	ttatcattac	cagetggagt	ggaagtetee	1260
ttgcccatac	tgcttgttca	ccatgacaaa	gagttgtggg	gtgaggatgc	aaatgagttc	1320
aagccagaga	ggttttcaga	gggagtttca	aaggcaacaa	agaacaaatt	tacatactta	1380
cctttcggag	ggggtccaag	gatttgcatt	ggacaaaact	ttgccatggt	ggaagctaaa	1440
ttggccttgg	ccctgatttt	acaacacttt	gcctttgagc	tttctccatc	ctatgctcat	1500
gctccttctg	cagttataac	ccttcaacct	caatttggtg	ctcatatcat	tttgcataaa	1560
cgttga						1566

SEQ ID NO:97

atgteeteea acteegattt ggteagaaga ttggaatetg ttttgggtgt ttettteggt 60

89

ggttetgtta etga	ttccgt tgttgttat	t gctaccacc	t ctattgcttt	ggttatcggt	120
	gtggag aagateete				180
	tactat cgttgaagaa				240
	tttcta cggtactcaa				300
	caaagc cagatacgaa				360
gattacacag coga	agatga caaatacggi	t gaaaagttg	a agaaagaaac	tatggcette	420
	ttatgg tgatggtgaa				480
tggttcaccg aagg	tactga tagaggtgtt	t tggttggaa	c atttgagata	cggtgtattc	540
ggtttgggta acaga	acaata cgaacactto	c aacaagatt	g ccaaggttgt	tgatgatttg	600
	tgccaa gagattggtt				660
atcgaagatg attto	ctccgc ttggaaagaa	a gccttgtgg	c cagaattgga	tcaattattg	720
	cacegt ttetacteea				780
	atctgt tacctcttat				840
aatgootott acgat	tattca tcatccatgt	t agagctaac	g ttgccgtcca	aaaagaattg	900
cataagccag aatct	tgacag aagttgcato	c catttggaa	t tcgatatttt	cgctactggt	960
ttgacttacg aaaco	cggtga tcatgttggt	t gtttacgct	g ataattgtga	tgatactgta	1020
gaagaageeg etaag	gttgtt gggtcaacca	a ttggatttg	t tgttctccat	tcataccgat	1080
aacaacgacg gtact	ttattt gggttattat	t ttgccacca	c catttccagg	tccatgtact	1140
ttgagaactg ctttg	ggctag atatgccgat	t ttgttgaat	c caccaaaaaa	ggctgctttg	1200
	tcatgc tgatgaacca				1260
	ggacga atattctaaa				1320
	atttcc atctgctaaa				1380
	acctag atattactco			-	1440
	ttgcgc tttggtttat			+	1500
	ctggat gaagaatgtt				1560
	catcag acaatctaat			-	1620
	tccagg tactggttta				1680
	agaagg tgctcaagtt				1740
	cttcat ctacgaagto				1800
	cgttgc tttttcaaga		-	-	1860
	ggcagc ttacatgtgg				1920
	taaagg tatggctaga				1980
	ygttga ttetaccaag		a tcgttaagaa	attgcaaatg	2040
gacggtagat acttg	gagaga tgtttggtga	a			2070

MSSNSDLVRR LE	SVLGVSFG G	GSVTDSVVVI	ATTSIALVIG	VLVLLWRRSS	DRSREVKQLA	60
VPKPVTIVEE ED	EFEVASGK 1	TRVSIFYGTQ	TGTAEGFAKA	LAEEIKARYE	KAAVKVIDLD	120
DYTAEDDKYG EK	LKKETMAF F	FMLATYGDGE	PTDNAARFYK	WFTEGTDRGV	WLEHLRYGVF	180
GLGNRQYEHF NK	IAKVVDDL I	LVEQGAKRLV	TVGLGDDDQC	IEDDFSAWKE	ALWPELDQLL	240
QDDTNTVSTP YI	AVIPEYRV V	VIHDPSVTSY	EDPYSNMANG	NASYDIHHPC	RANVAVQKEL	300
HKPESDRSCI HI	EFDIFATG I	LTYETGDHVG	VYADNCDDTV	EEAAKLLGQP	LDLLFSIHTD	360
NNDGTSLGSS LF	PPFPGPCT I	LRTALARYAD	LLNPPKKAAL	IALAAHADEP	SEAERLKFLS	420
SPQGKDEYSK WV	VGSQRSLV E	EVMAEFPSAK	PPLGVFFAAV	VPRLQPRYYS	ISSSPRFAPH	480
RVHVTCALVY GP	TPTGRIHR C	GVCSFWMKNV	VPLEKSQNCS	WAPIFIRQSN	FKLPADHSVP	540
IVMVGPGTGL AP	FRGFLQER I	LALKEEGAQV	GPALLFFGCR	NRQMDFIYEV	ELNNFVEQGA	600
LSELIVAFSR EG	PSKEYVQH F	KMVEKAAYMW	NLISQGGYFY	VCGDAKGMAR	DVHRTLHTIV	660
QQEEKVDSTK AE	SIVKKLQM I	DGRYLRDVW				689

SEQ ID NO:99

atggatgetg tgaegggttt gttaactgte ceageaaceg etataactat tggtggaact getgtageat tggeggtage getaatettt tggtaeetga aateetaeae ateagetaga agateeeaa eaateatet teeaagagtg eetgaagtee caggtgttee attgttagga aatetgttae aattgaagga gaaaaageea taeatgaett ttaeggagtg ggeagegaea tatggaeeta tetatagtat caaaactggg getaeagta tggtgtggt ateatetaat 60 120 180 240 300 gagatageca aggaggeatt ggtgaceaga ttecaateea tatetaeaag gaaettatet 360 aaagcootga aagtaottao agcagataag acaatggtog caatgtoaga ttatgatgat tatoataaaa cagttaagag acacataotg acogoogtot tgggtootaa tgoacagaaa 420 480 aagcatagaa ttcacagaga tatcatgatg gataacatat ctactcaact tcatgaattc 540 aagcatagaa ttcacagaga Lalcalgaly yalaalala ttattuut tuuguli gtgaaaaaca acccagaaca ggaagaggta gaccttagaa aaatctttca atctgagtta ttcggcttag ctatgagaca agccttagga aaggatgttg aaagtttgta cgttgaagac ctgaaaatca ctatgaatag agacgaaatc tttcaagtcc ttgttgttga tccaatgatg 600 660 720 ggagcaatcg atgttgattg gagagacttc tttccatacc taaagtgggt cccaaacaaa 780

	atactattca	•				840
atcaaagagc	acaaaaagag	aatagcgtca	ggcgaaaagc	taaatagtta	tatcgattac	900
cttttatctg	aagetcaaac	tttaaccgat	cagcaactat	tgatgtcctt	gtgggaacca	960
atcattgaat	cttcagatac	aacaatggtc	acaacagaat	gggcaatgta	cgaattagct	1020
aaaaacccta	aattgcaaga	taggttgtac	agagacatta	agteegtetg	tggatctgaa	1080
aagataaccg	aagagcatct	atcacagctg	ccttacatta	cagctatttt	ccacgaaaca	1140
ctgagaagac	actcaccagt	tcctatcatt	cctctaagac	atgtacatga	agataccgtt	1200
ctaggcggct	accatgttcc	tgctggcaca	gaacttgeeg	ttaacatcta	cggttgcaac	1260
atggacaaaa	acgtttggga	aaatccagag	gaatggaacc	cagaaagatt	catgaaagag	1320
aatgagacaa	ttgattttca	aaagacgatg	gccttcggtg	gtggtaagag	agtttgtgct	1380
ggttccttgc	aagccctttt	aactgcatct	attgggattg	ggagaatggt	tcaagagttc	1440
gaatggaaac	tgaaggatat	gactcaagag	gaagtgaaca	cgataggcct	aactacacaa	1500
atgttaagac	cattgagagc	tattatcaaa	cctaggatcc	catcaagacc	aagtcctagt	1560
accgaacaat	ctgcaaaaaa	agttagaaaa	aaagcagaaa	atgcacacaa	tactccattg	1620
ctagttettt	atggttctaa	tatgggaaca	gcggaaggaa	cggccaggga	tctagctgac	1680
atagctatgt	ccaagggatt	tgccccgcaa	gtagcaaccc	tggattccca	tgcaggtaac	1740
ttgccaagag	aaggtgctgt	tctaatagtt	accgctaget	acaatgggca	ccctccagat	1800
aatgcgaagc	agttcgtcga	ttggttagat	caagcatcag	cagatgaagt	taagggtgtt	1860
agatactctg	tttttggatg	tggagataag	aattgggcca	ccacatatca	gaaggttccg	1920
gctttcatcg	atgaaatgct	tgctgcaaaa	ggggctgaaa	atatagcaga	tcgtggtgag	1980
gccgacgcaa	gcgacgattt	tgagggtacc	tatgaggagt	ggagagagca	catgtggtct	2040
gatgttgccg	cgtattttaa	tctagacata	gaaaattctg	aagacaataa	aagtgcctta	2100
cttcttcaat	tegtegatag	tgctgcggac	atgcccttag	caaagatgca	tggageettt	2160
tcaacgaacg	tagtageeag	taaggaactt	caacaaccag	gtagtgccag	aagtacacgt	2220
cacttggaaa	ttgaattacc	aaaagaggca	tectaccaag	aaggtgacca	tettggtgta	2280
atcccaagaa	actacgaagg	tatagtcaat	agggtaacgg	caagatttgg	gctggatgca	2340
agccaacaga	taagactaga	agcagaagaa	gaaaaattgg	cgcaccttcc	actagcgaag	2400
acagtatccg	ttgaagaatt	attgcaatac	gtggaattgc	aggatcccgt	cactagaacg	2460
caattgagag	ctatggcagc	aaagactgtt	tgtccacctc	acaaggttga	acttgaagct	2520
ctacttgaaa	aacaagcata	caaagagcaa	gtgctagcaa	agagactaac	catgttagaa	2580
ttgctggaaa	aatacccggc	atgcgaaatg	gaatteteeg	aatttatcgc	gttgttgcca	2640
agtattcgtc	ccaggtatta	ctcaatttca	tcttcaccaa	gggttgacga	gaaacaggca	2700
tctattaccg	tatctgtggt	ctctggagaa	gcttggagtg	gttacggaga	atacaagggt	2760
attgcttcca	attatettge	agaactgcag	gaaggggata	caattacctg	ctttatttct	2820
actecteaat	cagaatttac	tcttccgaag	gatccagaaa	ctccgttaat	tatggtaggt	2880
ccgggaacag	gagtegeeee	tttcagaggc	tttgtgcaag	caaggaagca	actaaaagaa	2940
cagggacaaa	gtctgggtga	ggcacatcta	tatttcggtt	gcagatetee	gcatgaggat	3000
tacttatacc	aagaagaact	tgaaaacgcc	caatcagaag	gtattatcac	cttgcatact	3060
gcattcagta	gaatgccaaa	ccagccgaaa	acttacgtac	agcatgttat	ggagcaagat	3120
ggtaagaagt	taattgagct	tttggataag	ggcgcccact	tctacatttg	cggcgacgga	3180
tcccaaatgg	cgcctgccgt	tgaagccacc	ttgatgaaat	catatgcaga	tgttcatcaa	3240
gtttcagaag	cggacgeeeg	tetttggtta	caacaactag	aggagaaagg	aaggtatgca	3300
aaagatgttt	ggtaa					3315

MDAVTGLLTV	PATAITIGGT	AVALAVALIF	WYLKSYTSAR	RSQSNHLPRV	PEVPGVPLLG	60
NLLQLKEKKP	YMTFTRWAAT	YGPIYSIKTG	ATSMVVVSSN	EIAKEALVTR	FQSISTRNLS	120
KALKVLTADK	TMVAMSDYDD	YHKTVKRHIL	TAVLGPNAQK	KHRIHRDIMM	DNISTQLHEF	180
VKNNPEQEEV	DLRKIFQSEL	FGLAMRQALG	KDVESLYVED	LKITMNRDEI	FQVLVVDPMM	240
GAIDVDWRDF	FPYLKWVPNK	KFENTIQQMY	IRREAVMKSL	IKEHKKRIAS	GEKLNSYIDY	300
LLSEAQTLTD	QQLLMSLWEP	IIESSDTTMV	TTEWAMYELA	KNPKLQDRLY	RDIKSVCGSE	360
KITEEHLSQL	PYITAIFHET	LRRHSPVPII	PLRHVHEDTV	LGGYHVPAGT	ELAVNIYGCN	420
MDKNVWENPE	EWNPERFMKE	NETIDFQKTM	AFGGGKRVCA	GSLQALLTAS	IGIGRMVQEF	480
EWKLKDMTQE	EVNTIGLTTQ	MLRPLRAIIK	PRIPSRPSPS	TEQSAKKVRK	KAENAHNTPL	540
LVLYGSNMGT	AEGTARDLAD	IAMSKGFAPQ	VATLDSHAGN	LPREGAVLIV	TASYNGHPPD	600
NAKQEVDWLD	QASADEVKGV	RYSVEGCGDK	NWATTYQKVP	AFIDEMLAAK	GAENIADRGE	660
ADASDDFEGT	YEEWREHMWS	DVAAYFNLDI	ENSEDNKSAL	LLQFVDSAAD	MPLAKMHGAF	720
STNVVASKEL	QQPGSARSTR	HLEIELPKEA	SYQEGDHLGV	IPRNYEGIVN	RVTARFGLDA	780
SQQIRLEAEE	EKLAHLPLAK	TVSVEELLQY	VELQDPVTRT	QLRAMAAKTV	CPPHKVELEA	840
LLEKQAYKEQ	VLAKRLTMLE	LLEKYPACEM	EFSEFIALLP	SIRPRYYSIS	SSPRVDEKQA	900
SITVSVVSGE	AWSGYGEYKG	IASNYLAELQ	EGDTITCFIS	TPQSEFTLPK	DPETPLIMVG	960
PGTGVAPFRG	FVQARKQLKE	QGQSLGEAHL	YFGCRSPHED	YLYQEELENA	QSEGIITLHT	1020
AFSRMPNQPK	TYVQHVMEQD	GKKLIELLDK	GAHFYICGDG	SQMAPAVEAT	LMKSYADVHQ	1080
VSEADARLWL	QQLEEKGRYA	KDVW				1104

	tgacgggttt					60
	tggcggtagc					120
-	caaatcatct			* * *		180
	aattgaagga		-			240
	tctatagtat					300
	aggaggcatt				VP	360
	aagtacttac					420
	cagttaagag					480
	ttcacagaga		-		-	540
	acccagaaca					600
	ctatgagaca				هې کې کې	660
-	ctatgaatag		-		• •	720
	atgttgattg					780
	atactattca	-				840
	acaaaaagag					900
	aagctcaaac					960
	cttcagatac					1020
	aattgcaaga					1080
	aagagcatct					1140
	actcaccagt					1200
	accatgttcc					1260
	acgtttggga					1320
	ttgattttca					1380
	aagccctttt					1440
	tgaaggatat					1500
	cattgagage		10° 11°			1560
	ctgcaaaaaa					1620
-	atggttctaa					1680
	ccaagggatt					1740
	aaggtgctgt					1800
	agttcgtcga					1860
	tttttggatg					1920
	atgaaatgct					1980
	gcgacgattt					2040 2100
	cgtattttaa					2100
	togtogatag					2220
	tagtagccag					2220
	ttgaattacc					2280
	actacgaagg					2340
	taagactaga					2460
	ttgaagaatt ctatggcagc					2520
	aacaagcata					2580
	aatacccggc					2640
	ccaggtatta					2700
-	tatctgtggt					2760
	attatcttgc					2820
						2880
	cagaatttac gagtcgcccc					2940
	gtctgggtga					3000
	aagaagaact					3060
	gaatgccaaa					3120
	taattgagct					3180
	cgcctgccgt					3240
	cggacgcccg					3300
aaagatgttg						3315
	ware war and halfs built					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MDAVTGLLTV	PATAITIGGT	AVALAVALIF	WYLKSYTSAR	RSQSNHLPRV	PEVPGVPLLG	60
NLLQLKEKKP	YMTFTRWAAT	YGPIYSIKTG	ATSMVVVSSN	EIAKEALVTR	FQSISTRNLS	120
KALKVLTADK	TMVAMSDYDD	YHKTVKRHIL	TAVLGPNAQK	KHRIHRDIMM	DNISTQLHEF	180
VKNNPEQEEV	DLRKIFQSEL	FGLAMRQALG	KDVESLYVED	LKITMNRDEI	FQVLVVDPMM	240

CATOUDWDDE	FOVIENUONE	REENETOOM	TODEAMWET	IKEHKKRIAS	CETTNEVINV	300
				KNPKLQDRLY		360
KITEEHLSQL	PYITAIFHET	LRRHSPVPII	PLRHVHEDTV	LGGYHVPAGT	ELAVNIYGCN	420
MDKNVWENPE	EWNPERFMKE	NETIDFQKTM	AFGGGKRVCA	GSLQALLTAS	IGIGRMVQEF	480
EWKLKDMTOE	EVNTIGLTTO	MLRPLRAIIK	PRTPSRPSPS	TEQSAKKVRK	KAENAHNTPL	540
				LPREGAVLIV		600
				AFIDEMLAAK		660
ADASDDFEGT	YEEWREHMWS	DVAAYFNLDI	ENSEDNKSAL	LLQFVDSAAD	MPLAKMHGAF	720
STNVVASKEL	QQPGSARSTR	HLEIELPKEA	SYQEGDHLGV	IPRNYEGIVN	RVTARFGLDA	780
SOOTRLEAFE	EKLAHLPLAK	TVSVEELLOY	VELODPVTRT	QLRAMAAKTV	CPPHKVELEA	840
				SIRPRYYSIS		900
				TPQSEFTLPK		960
				YLYQEELENA		1020
AFSRMPNQPK	TYVQHVMEQD	GKKLIELLDK	GAHFYICGDG	SQMAPAVEAT	LMKSYADVHQ	1080
VSEADARLWL	QQLEEKGRYA	KDVA				1104
SEQ ID NO	0:103					
atoccaadad	tacctaaaat	cccaggtgtt	ccattottad	gaaatctgtt	acaattraar	60
			(* B*		20 10	120
				catatggacc		
				atgagatagc		180
				ctaaagccct		240
acagcagata	agacaatggt	cgcaatgtca	gattatgatg	attatcataa	aacagttaag	300
				aaaagcatag		360
				tcgtgaaaaa		420
				tatteggett		480
				acctgaaaat		540
agagacgaaa	tctttcaagt	ccttgttgtt	gatccaatga	tgggagcaat	cgatgttgat	600
tggagagact	tctttccata	cctaaagtgg	gteccaaaca	aaaagttcga	aaatactatt	660
caacaaatot	acatcagaag	agaagetgtt	atgaaatctt	taatcaaaga	gcacaaaaag	720
*			-	accttttatc	-	780
						840
				caatcattga		
				ctaaaaaccc		900
gataggttgt	acagagacat	taagtccgtc	tgtggatctg	aaaagataac	cgaagagcat	960
ctatcacage	tgeettacat	tacagetatt	ttccacgaaa	cactgagaag	acactcacca	1020
gttcctatca	tteetetaag	acatgtacat	gaagatacco	ttetaggegg	ctaccatott	1080
				acatggacaa		1140
		-	• • •	agaatgagac		1200
				ctggttcctt		1260
				tcgaatggaa		1320
atgactcaag	aggaagtgaa	cacgataggc	ctaactacac	aaatgttaag	accattgaga	1380
gctattatca	aacctaggat	cccatcaaga	ccaagtocta	gtaccgaaca	atctgcaaaa	1440
aaagttagaa	aaaaagcaga	aaatgcacac	aatactccat	tgctagttct	ttatoottct	1500
		•		acatagetat		1560
		1 U. M.	10 V- M	acttgccaag	u u u u	1620
						1680
			-	ataatgcgaa		
				ttagatactc		1740
tgtggagata	agaattgggc	caccacatat	cagaaggttc	cggctttcat	cgatgaaatg	1800
cttgctgcaa	aaggggctga	aaatatagca	gatcgtggtg	aggccgacgc	aagcgacgat	1860
				ctgatgttgc		1920
aatctagaca						1980
-	-					
				tttcaacgaa		2040
				gtcacttgga	-	2100
ccaaaagagg	catcctacca	agaaggtgac	catcttggtg	taatcccaag	aaactacgaa	2160
ggtatagtca	atagggtaac	ggcaagattt	gggctggatg	caagccaaca	gataagacta	2220
gaagcagaag	aagaaaaatt	ggcgcacctt	ccactagcga	agacagtate	cottoaagaa	2280
ttattgcaat						2340
						2400
gcaaagactg						
tacaaagagc						2460
gcatgcgaaa						2520
tactcaattt	catettcacc	aagggttgac	gagaaacagg	catctattac	cgtatctgtg	2580
gtctctggag	aagcttggag	tggttacgga	gaatacaagq	gtattgcttc	caattatctt	2640
gcagaactgc						2700
actetteega						2760
						2820
cctttcagag						
gaggcacatc	LATATETEGG	regeagatet	eegeacgagg	actactata	ccaagaagaa	2880

1500

1560 1620

1680

1740 1800

1860

1920

1980 2040

2100

2160

cttgaaaacg cccaatcaga aggtattatc accttgcata ctgcattca	y tagaatgeea	2940
aaccageega aaacttaegt acageatgtt atggageaag atggtaaga	a gttaattgag	3000
cttttggata agggegeeea ettetaeatt tgeggegaeg gateeeaaa	ggegeetgee	3060
gttgaagcca cettgatgaa ateatatgea gatgtteate aagttteag	a ageggaegee	3120
cgtctttggt tacaacaact agaggagaaa ggaaggtatg caaaagatg	: ttggtaa	3177
SEQ ID NO:104		
MPRVPEVPGV PLLGNLLQLK EKKPYMTFTR WAATYGPIYS IKTGATSMV	VSSNEIAKEA	60
LVTRFQSIST RNLSKALKVL TADKTMVAMS DYDDYHKTVK RHILTAVLG	NAOKKHRIHR	120
DIMMDNISTO LHEFVKNNPE QEEVDLRKIF OSELFGLAMR OALGKDVES	YVEDLKITMN	180
RDEIFOVLVV DPMMGAIDVD WRDFFPYLKW VPNKKFENTI OOMYIRREAN		240
RIASGEKLNS YIDYLLSEAO TLTDOOLLMS LWEPIIESSD TTMVTTEWAM		300
DRLYRDIKSV CGSEKITEEH LSQLPYITAI FHETLRRHSP VPIIPLRHV		360
PAGTELAVNI YGCNMDKNVW ENPEEWNPER FMKENETIDF OKTMAFGGG		420
LTASIGIGRM VQEFEWKLKD MTQEEVNTIG LTTQMLRPLR AIIKPRIPSH		480
KVRKKAENAH NTPLLVLYGS NMGTAEGTAR DLADIAMSKG FAPOVATLDS		540
VLIVTASYNG HPPDNAKQFV DWLDQASADE VKGVRYSVFG CGDKNWATTY		600
LAAKGAENIA DRGEADASDD FEGTYEEWRE HMWSDVAAYF NLDIENSED		660
SAADMPLAKM HGAFSTNVVA SKELQQPGSA RSTRHLEIEL PKEASYQEGI		720
GIVNRVTARF GLDASQQIRL EAEEEKLAHL PLAKTVSVEE LLQYVELQDH		780
AKTVCPPHKV ELEALLEKQA YKEQVLAKRL TMLELLEKYP ACEMEFSEF		840
YSISSSPRVD EKQASITVSV VSGEAWSGYG EYKGIASNYL AELQEGDTIJ		900
TLPKDPETPL IMVGPGTGVA PFRGFVQARK OLKEQGQSLG EAHLYFGCRS		960
LENAQSEGII TLHTAFSRMP NOPKTYVOHV MEODGKKLIE LLDKGAHFYJ		1020
VEATLMKSYA DVHQVSEADA RLWLQQLEEK GRYAKDVW	CGDGSQMAFA	1020
VENIDARSIA DVRQVSEADA KLWDQQDEER GRIARDVW		1010
an ann an 1 an 1 an 1 an		
SEQ ID NO:105		
SEQ ID NO:105		
	acaattgaag	60
atgecaagag tgeetgaagt eecaggtgtt eeattgttag gaaatetgtt		
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc	tatctatagt	120
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatagc	tatctatagt caaggaggca	
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatagc ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct	tatctatagt caaggaggca gaaagtactt	120 180 240
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatago ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa	tatctatagt caaggaggca gaaagtactt aacagttaag	120 180
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatago ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga	120 180 240 300
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatago ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa	120 180 240 300 360 420
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatago ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccot acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggct	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga	120 180 240 300 360
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatago ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccot acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat	120 180 240 300 360 420 480 540
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggtt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat agagacgaaa tctttccaagt ccttgttgtt gatccaatga tgggagcaat	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat	120 180 240 300 420 480 540 600
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat agagacgaaa tctttccaagt ccttgttgtt gatccaatga tgggagcaat tggagagact tctttccaa cctaaagtgg gtcccaaaca aaaagttcga	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat aaatactatt	120 180 240 300 420 480 540 600 660
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa ggacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat agagacgaaa tctttccaag ccttgttgtt gatccaatga tgggagcaat tggagagact tctttccaa cctaaagtgg gtcccaaaca aaaagttcga caacaaatgt acatcagaag agaagctgtt atgaaatctt taatcaaag	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaag	120 180 240 300 420 480 540 600 660 720
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatagc ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat agagacgaaa tctttccaag ccttgttgtt gatccaatga tgggagcaat tggagagact tctttccaa cctaaagtgg gtcccaaca aaaagttcga caacaatgt acatcagaag agaagctgtt atgaaatctt taatcaaaga agaatagcgt caggcgaaa gctaaatagt tatatcgatt acctttatca	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaaag tgaagctcaa	120 180 240 300 420 480 540 600 660 720 780
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggac atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atcactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatctt caatctgagt tatcggct caagcctag gaaggatgt tgaaagtttg tacgttgag acctgaaaat aggacaaat ctttccaag ccttggtgtcct aatgcacaga aaaagcatag gatatcatga tggataacat atcactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatctt caatctgag tactcggct tggagagcaa tctttccaag ccttgttgt gatccaatga tgggagcaa tggagagact tcttccaa cctaaagtg gtcccaaca aaaagttgg caacaaatgt acatcagaag agaagctgtt atgaaatctt taatcaaaga agaatagcgt caggcgaaa gctaaatagt tatatcgat acctttaac	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga cacccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaaag tgaagctcaa atcttcagat	120 180 240 300 420 480 540 600 660 720 780 840
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccet acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaatcttt caatctgagt tattcggctt caagccttag gaaaggatg tgaagttg tacgttgag acctgaaaat agagacgaaa tctttccaag ccttgtgtt gatccaatga tgggagcat tgggagagct tcttccata cctaatgt ggggagcat tggagagagt acatcaga gaagctgt atgaaatctt taatcaaga agaatagcgt caggcgaaa gctaaatagt tattagatttg tacgttgat acaacaatgt caggcgaaa gctaatagt tattacgatt taatccaaca agaatagcgt caggcgaaa gctaatagt tattacgat accttttatca actttaaccg atcagcaact attgatgtcc ttgtgggaca caatcattga acaacaatgg tcacaacaga atgggcaatg tacgaatag ccaacatgg	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga cacccagaa agctatgaga cactatgaat cgatgttgat gaagctata gcacaaaag tgaagctcaa atcttcagat	120 180 240 300 420 480 540 600 660 720 780
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggctt caagcctag gaaaggatgt tgaaagttg gatccaatga tgggagcaat tggagagact tcttccaag ccttgtgtg gtccaaaca aaaagtcga gaaaaatgt acatcagaa gaaagctgtt atgaaatctt taatcaaag agaatagcgt caggcgaaa gctaaatagt tatatcgatt agaatagcgt caggcgaaa gctaaatagt tatatcgat gaaatagcgt caggcgaaa gctaaatagt tatatcgat acattaacg atcagcaact atgatgcc ttgtgggaac caatcatga gaaatagcgt caggcgaaa gctaaatagt tatatcgat acatcatgg tcacaacaga agggccatg tacgaatag acaacaatgg tcacaacaga atgggcaatg tacgaattag ctaaaaaccc gataggttgt acagagacat taagtccgtc tgtggatctg aaaagtag	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat gcacaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat	120 180 240 300 420 480 540 600 660 720 780 840 900 960
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatagc ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgttgag acctgaaaat tggagagact tcttccaag ccttgtgtg gtccaaaca aaaagtcga cacaaaatgt acatcagaa gaagctgtt atgaaatctt taatcaaag agaatagcg caggcgaaa gctaaatagt tatatcgatt acctttatca agaatagcg tcaggcgaaa gctaaatagt tatatcgatt acctttatca agaatagcg tcaggcgaaa atgggcaatg tacgaatag acaacaatgg tcacaacaga atgggcaatg tacgaattag acaacaatgg tcacaacaga atgggcaatg tacgaattag ctaaaaaccc gataggttgt acagagacat taagtccgtc tgtggatcg aaaagatagc	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaga cactatgaat gaagttaga gaagagctaa atcttcagat taaattgcaa cgaagagcat acactacca	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatagc ttggtgacca gattccaatc catatctaca aggaacttat ctaaagccct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggtt caagccttag gaaaggatgt tgaaagtttg tacgttgaag acctgaaaat ggagacgaaa tctttccata cctagtgg tggagacaat tgggagagct tcttccata cttatcatag tgggagcaat gagacgaaa tctttccaag gatagctgt atgaagttg caacaaatgt acatcagag agaagctgtt atgaaatctt taatcaaaga agaatagcgt caggcgaaa gctaaatagt tatatcgatt acctttatca gatataccg atcagcaac atggacatg tagaatctg acatcaacag tcagcaaca atgggcacatg tagaatacct acatcaacag tcagcaaca atgggcacatg tagaatac gataggttgt acagagacat taagtccg tggggaac gataggttgt acagagacat taagtccg tggggatg gataggttgt acagagacat taagtccg taggaatag gataggttgt acagagacat taagtccg tgggaatag ctatcacagc tgccttacat tacggttat tccagaaa gataggttgt acagagacat taagtccg tgggatcg gataggttgt acagagacat tacgattag ctaaaaccc gataggttgt acagagacat tacgacatg tacgaatag gttcctatca ttcctctaag acatgtacat gaagataccg ttctaggggg	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaga cactatgat gaagtgtgat aaatactatt gcacaaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat acactacca	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcctt acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggtt caagccttag gaaaggatgt tgaaagttg tacgttgaag acctgaaaat agagacgaaa tctttccata cctagtgat tattcggctt caagagacgaa tctttccata cctagtgt tattcggctt caagacatg acatcagag agaagctgtt atgaagttg tagaccttag agaatacgg caggcgaaa gctaaatagt tatatcgat tatacaaga agaatagcg caggcgaaa gctaaatagt tatatcgat acctttaac agatagcg tacacacag atggtgcact ttgtgggac caatcatcg gatagttg caggcgaaa gctaaatagt tatatcgat acctttaac agaatagcg caggcgaaa atggtcgta taggaatctg taaaaaccc gataggttg acagaacat tacgtcgc tgtggatcg aaaagataac gataggttg acagaacat tacgattag taggaatac gataggttg acagagacat taggccat tacgaatag ttgtggagac caatcagag agagcgat taggaatac gataggttg acagagacat taggccat taggaatac gataggttg acagagacat tacgacac gatagg ctaccaacag tgccttacat tacagctat ttccacagaa gataggttg acagagacat tacgacat gaagatacg gttcctatca ttccctaag acatgtacat gaagatacg ttctaggcgg cctgctggca cagaacttgc cgttaacat tacggttga acatggacaa	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat acactcacca ctaccatgtt aaacgtttgg	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagtttg tacgttgaag acctgaaaat agagacgaaa tctttccata cctaagtgg gtcccaatga caaggag gataggggagact tctttccata cctaagtgg gtcccaatga caaggag agaatagcgt caggcgaaa gctaaatagt tattcgatt aactctaaga agaatagcgt caggcgaaa gctaaatagt tattcggt acctttag gataggttg tacaacaga atgggcaatg tatatcgat acctttatg gatagatgg tacacacaga atgggcaatg tatatcgat acctttag gataggttg acaggagact tatgtgtcc tigtgggac caatcatga agaatagcgt caggcgaaa gctaaatagt tatatcgat acctttag accacaatgg tcacaacaga atgggcaatg tacgaatag ctaaaaacco gataggttgt acagagacat tacgtcgtc tgtggatct aaaaaacco gataggttgt acagagacat tacgacatg tacgaatag ctatcacagc tgccttacat tacagtcg tgtggatct aaaaaacco gataggttgt acagagacat tacgacatg tacgaatag gttcctatca ttcctctaag acatgtacat gaagatacg ttctaggggg cctgctggca cagaacttgc cgttaacat tacggttga acatggaca	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat acactcacca ctaccatgtt aaacgtttgg aattgattt	120 180 240 300 420 480 540 600 660 720 780 840 900 900 960 1020 1080 1140 1200
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgatgag acctgaaaat agagacgaaa tctttccaat cctagtgg gtcccaacaa aaaagtcga agaaagacgaa tctttccata cctagtgg gtcccaacaa aaagtcga agaaaggg tagacctag agagcgtt atgaagttg tatatcgat agaaaaggg agaggaga gaagcgtt atgaagatct taatccaaga agaatagcgt caggcgaaa gctaaatagt tatatcgat acctttatg acatcaatgg tcacaacag aggagcatg taggggaac caatcattga acaacaatgg tcacaacag atgggcaatg tacgaatag ctaaaaacc gataggttg acaggacat tacgatcg tggggatc gaagataac gataggttg acagagacat tacgctgt tgtccaatga caatcattga acaacaatgg tcacaacag atgggcaatg tacgaatag ctacaaaacc gataggttg acagagacat tacgctatt ttcacagaa gataccaac g gccttacat tacagtcg tgtggatcg acatgagata gttcctatca ttcctctaag acatgtacat gaagataccg ttctaggcgg cctgctggca cagaacttge cgttaacatc tacggttga acatggaca gaaatccag aggaatgga cccagaaga ttcatgaaag agaatgaga caaaagacg tggcttcgg tggtggtaag agagttgg ctggtcct	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caacccagaa agctatgaga cactatgaat cgatgttgat aatactatt gcaagaccaa atcttcagat taaattgcaa cgaagagcat acactacca ctaccatgtt aaacgtttgg aattgattt gcaagcctt	120 180 240 300 420 480 540 600 660 720 780 840 900 900 900 900 1020 1080 1140 1200 1260
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatctt caatctgagt tattcggct caagccttag gaaaggatgt tgaagttg tacgttgaag acctgaaaat agagacgaaa tctttccata cctagttg tacgttgaag acctgaaaat tggagagact tcttccata cctagtgt tattcggct caacaaatgt acatcagaag agaagctgtt atgaaatctt taatcaaaga agaatagcgt caggcgaaa gctaaatagt tattcggt acctttatg acaacaatgg tcacaacaga atgggcaatg tagacatg gataggtgt acaggacat attgatgcc ttgtgggac caatcattg acaacaatgg tcacaacag atgggcaatg tacgaatag gataggttg acaggacat tacggcaatg tacgaatag gataggttg acaggacat tacggcatg tacgaatag gataggttg acaggacat tacggcatg tacgaatag gataggttg acaggacat tacggcatg tacgaatag gataggttg acagagacat tacggcatg tacgaatag gttcctatca ttcctcaag acatggacat tacggatacg tccaggaag gttcctatca ttcctcaag accggaaga ttcaggatacg ttcaggacaa gaaatccag gggaatgga cccagaaga ttcatgaag acatggaca gaaatccag aggaatgga cccagaaga ttcatgaag agaatgaga ccaacaagg tggcttcg ggggaag agagttgg acatggaag gaaatccag aggaatgga cccagaaga ttcatgaag agaatgaga caaaagacg tggcttcgg tggtggtaag agagttgg ctggtcctt	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga caccagaa agctatgaga cactatgaat cgatgttgat aaatactatt gcacaaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat acaccatgtt aacccatgtt gaattgatttt gcaagcttaga	120 180 240 300 420 480 540 600 660 720 780 840 900 900 900 900 1020 1080 1140 1200 1260 1320
atgccaagag tgcctgaagt cccaggtgtt ccattgttag gaaatctgtt gagaaaaagc catacatgac ttttacgaga tgggcagcga catatggacc atcaaaactg gggctacaag tatggttgtg gtatcatcta atgagatag ttggtgacca gattccaatc catatctaca aggaacttat ctaaagcct acagcagata agacaatggt cgcaatgtca gattatgatg attatcataa agacacatac tgaccgccgt cttgggtcct aatgcacaga aaaagcatag gatatcatga tggataacat atctactcaa cttcatgaat tcgtgaaaaa caggaagagg tagaccttag aaaaatcttt caatctgagt tattcggctt caagccttag gaaaggatgt tgaaagttg tacgatgag acctgaaaat agagacgaaa tctttccaat cctagtgg gtcccaacaa aaaagtcga agaaagacgaa tctttccata cctagtgg gtcccaacaa aaagtcga agaaaggg tagacctag agagcgtt atgaagttg tatatcgat agaaaaggg agaggaga gaagcgtt atgaagatct taatccaaga agaatagcgt caggcgaaa gctaaatagt tatatcgat acctttatg acatcaatgg tcacaacag aggagcatg taggggaac caatcattga acaacaatgg tcacaacag atgggcaatg tacgaatag ctaaaaacc gataggttg acaggacat tacgatcg tggggatc gaagataac gataggttg acagagacat tacgctgt tgtccaatga caatcattga acaacaatgg tcacaacag atgggcaatg tacgaatag ctacaaaacc gataggttg acagagacat tacgctatt ttcacagaa gataccaac g gccttacat tacagtcg tgtggatcg acatgagata gttcctatca ttcctctaag acatgtacat gaagataccg ttctaggcgg cctgctggca cagaacttge cgttaacatc tacggttga acatggaca gaaatccag aggaatgga cccagaaga ttcatgaaag agaatgaga caaaagacg tggcttcgg tggtggtaag agagttgg ctggtcct	tatctatagt caaggaggca gaaagtactt aacagttaag aattcacaga cactatgaat cactatgaat cgatgtgat aatactatt gcacaaaaag tgaagctcaa atcttcagat taaattgcaa cgaagagcat acactatgtt aacgtttgg aattgatttt gcacaacagttgg aattgatttt gcacagggat acctatgaga	120 180 240 300 420 480 540 600 660 720 780 840 900 900 900 900 1020 1080 1140 1200 1260

gctattatca aacctaggat cccatcaaga ccaagtccta gtaccgaaca atctgcaaaa aaagttagaa aaaaagcaga aaatgcacac aatactccat tgctagttct ttatggttct

aatatgggaa cageggaagg aaeggeeagg gatetagetg acatagetat gteeaaggga

tttgccccgc aagtagcaac cctggattcc catgcaggta acttgccaag agaaggtgct

gttctaatag ttaccgctag ctacaatggg caccetecag ataatgegaa geagttegte gattggttag ateaageate ageagatgaa gttaagggtg ttagataete tgtttttgga

tgtggagata agaattgggc caccacatat cagaaggttc cggctttcat cgatgaaatg cttgctgcaa aaggggctga aaatatagca gatcgtggtg aggccgacgc aagcgacgat

tttgagggta cctatgagga gtggagagag cacatgtggt ctgatgttgc cgcgtatttt

aatétagaca tagaaaatte tgaagacaat aaaagtgeet taettettea attegtegat agtgetgegg acatgeeett ageaaagatg catggageet ttteaaegaa egtagtagee

ccaaaagagg catectacca agaaggtgac catettggtg taateccaag aaactaegaa

agtaaggaac ttcaacaacc aggtagtgcc agaagtacac gtcacttgga aattgaatta

ggtatagtca	atagggtaac	ggcaagattt	gggctggatg	caagccaaca	gataagacta	2220
gaagcagaag	aagaaaaatt	ggcgcacctt	ccactagcga	agacagtatc	cgttgaagaa	2280
ttattgcaat	acgtggaatt	gcaggatccc	gtcactagaa	cgcaattgag	agctatggca	2340
gcaaagactg	tttgtccacc	tcacaaggtt	gaacttgaag	ctctacttga	aaaacaagca	2400
tacaaagagc	aagtgctagc	aaagagacta	accatgttag	aattgctgga	aaaatacccg	2460
gcatgegaaa	tggaattete	cgaatttatc	gcgttgttgc	caagtattcg	tcccaggtat	2520
tactcaattt	catcttcacc	aagggttgac	gagaaacagg	catctattac	cgtatctgtg	2580
gtctctggag	aagcttggag	tggttacgga	gaatacaagg	gtattgcttc	caattatctt	2640
gcagaactgc	aggaagggga	tacaattacc	tgctttattt	ctactcctca	atcagaattt	2700
actcttccga	aggatccaga	aacteegtta	attatggtag	gtccgggaac	aggagtcgcc	2760
cetttcagag	gctttgtgca	agcaaggaag	caactaaaag	aacagggaca	aagtctgggt	2820
gaggcacate	tatatttcgg	ttgcagatct	ccgcatgagg	attacttata	ccaagaagaa	2880
cttgaaaacg	cccaatcaga	aggtattatc	accttgcata	ctgcattcag	tagaatgcca	2940
aaccagccga	aaacttacgt	acagcatgtt	atggagcaag	atggtaagaa	gttaattgag	3000
cttttggata	agggcgccca	cttctacatt	tgcggcgacg	gateccaaat	ggcgcctgcc	3060
gttgaageea	ccttgatgaa	atcatatgca	gatgttcatc	aagtttcaga	ageggaegee	3120
cgtctttggt	tacaacaact	agaggagaaa	ggaaggtatg	caaaagatgt	tgettaa	3177

MPRVPEVPGV	PLLGNLLQLK	EKKPYMTFTR	WAATYGPIYS	IKTGATSMVV	VSSNEIAKEA	60
LVTRFQSIST	RNLSKALKVL	TADKTMVAMS	DYDDYHKTVK	RHILTAVLGP	NAQKKHRIHR	120
DIMMDNISTQ	LHEFVKNNPE	QEEVDLRKIF	QSELFGLAMR	QALGKDVESL	YVEDLKITMN	180
RDEIFQVLVV	DPMMGAIDVD	WRDFFPYLKW	VPNKKFENTI	QQMYIRREAV	MKSLIKEHKK	240
RIASGEKLNS	YIDYLLSEAQ	TLTDQQLLMS	LWEPIIESSD	TTMVTTEWAM	YELAKNPKLQ	300
DRLYRDIKSV	CGSEKITEEH	LSQLPYITAI	FHETLRRHSP	VPIIPLRHVH	EDTVLGGYHV	360
PAGTELAVNI	YGCNMDKNVW	ENPEEWNPER	FMKENETIDF	QKTMAFGGGK	RVCAGSLQAL	420
LTASIGIGRM	VQEFEWKLKD	MTQEEVNTIG	LTTQMLRPLR	AIIKPRIPSR	PSPSTEQSAK	480
KVRKKAENAH	NTPLLVLYGS	NMGTAEGTAR	DLADIAMSKG	FAPQVATLDS	HAGNLPREGA	540
VLIVTASYNG	HPPDNAKQFV	DWLDQASADE	VKGVRYSVFG	CGDKNWATTY	QKVPAFIDEM	600
LAAKGAENIA	DRGEADASDD	FEGTYEEWRE	HMWSDVAAYF	NLDIENSEDN	KSALLLQFVD	660
SAADMPLAKM	HGAFSTNVVA	SKELQQPGSA	RSTRHLEIEL	PKEASYQEGD	HLGVIPRNYE	720
GIVNRVTARE	GLDASQQIRL	EAEEEKLAHL	PLAKTVSVEE	LLQYVELQDP	VTRTQLRAMA	780
AKTVCPPHKV	ELEALLEKQA	YKEQVLAKRL	TMLELLEKYP	ACEMEFSEFI	ALLPSIRPRY	840
YSISSSPRVD	EKQASITVSV	VSGEAWSGYG	EYKGIASNYL	AELQEGDTIT	CFISTPQSEF	900
TLPKDPETPL	IMVGPGTGVA	PFRGFVQARK	QLKEQGQSLG	EAHLYFGCRS	PHEDYLYQEE	960
LENAQSEGII	TLHTAFSRMP	NQPKTYVQHV	MEQDGKKLIE	LLDKGAHFYI	CGDGSQMAPA	1020
VEATLMKSYA	DVHQVSEADA	RLWLQQLEEK	GRYAKDVA			1058

atggetacet	tgttggaaca	ttttcaaqct	atgccattcg	ctattccaat	tgetttgget	60
	ggttgttttt				-	120
	tgccaccagt					180
caattgaaag	aaaagaagcc	ataccaaacc	ttcactagat	gggctgaaga	atatggtcca	240
atctactcta	ttagaactgg	tgcttctact	atggttgtct	tgaacactac	tcaagttgcc	300
aaagaagcta	tggttaccag	atacttgtct	atctctacca	gaaagttgtc	caacgccttg	360
aaaattttga	ccgctgataa	gtgcatggtt	gccatttctg	attacaacga	tttccacaag	420
atgatcaaga	gatatatctt	gtctaacgtt	ttgggtccat	ctgcccaaaa	aagacataga	480
tctaacagag	ataccttgag	agccaacgtt	tgttctagat	tgcattccca	agttaagaac	540
tctccaagag	aagctgtcaa	ctttagaaga	gttttcgaat	gggaattatt	cggtateget	600
ttgaaacaag	ccttcggtaa	ggatattgaa	aagccaatct	acgtcgaaga	attgggtact	660
actttgtcca	gagatgaaat	cttcaaggtt	ttggtcttgg	acattatgga	aggtgccatt	720
gaagttgatt	ggagagattt	tttcccatac	ttgcgttgga	ttccaaacac	cagaatggaa	780
actaagatcc	aaagattata	ctttagaaga	aaggccgtta	tgaccgcctt	gattaacgaa	840
caaaagaaaa	gaattgcctc	cggtgaagaa	atcaactget	acatcgattt	cttgttgaaa	900
gaaggtaaga	ccttgaccat	ggaccaaatc	tctatgttgt	tgtgggaaac	cgttattgaa	960
actgctgata	ccacaatggt	tactactgaa	tgggctatgt	acgaagttgc	taaggattct	1020
aaaagacaag	acagattata	ccaagaaatc	caaaaggtet	gcggttctga	aatggttaca	1080
gaagaatact	tgtcccaatt	gccatacttg	aatgctgttt	tccacgaaac	tttgagaaaa	1140
cattctccag	ctgctttggt	tecattgaga	tatgctcatg	aagatactca	attgggtggt	1200
tattacattc	cagecggtac	tgaaattgcc	attaacatct	acggttgcaa	catggacaaa	1260
caccaatggg	aatctccaga	agaatggaag	ccagaaagat	ttttggatcc	taagtttgac	1320
ccaatggact	tgtacaaaac	tatggctttt	ggtgctggta	aaagagtttg	cgctggttct	1380
ttacaagcta	tgttgattgc	ttgtccaacc	atcggtagat	tggttcaaga	atttgaatgg	1440

aagttgagag	atggtgaaga	agaaaacgtt	gatactgttg	gtttgaccac	ccataagaga	1500
tatccaatgc	atgctatttt	gaagccaaga	tctccatcaa	gaccaagtcc	tagtaccgaa	1560
caatctgcaa	aaaaagttag	aaaaaagca	gaaaatgcac	acaatactcc	attgctagtt	1620
ctttatggtt	ctaatatggg	aacagcggaa	ggaacggcca	gggatctagc	tgacatagct	1680
atgtccaagg	gatttgcccc	gcaagtagca	accctggatt	cccatgcagg	taacttgcca	1740
agagaaggtg	ctgttctaat	agttaccgct	agctacaatg	ggcaccctcc	agataatgcg	1800
aagcagttcg	tcgattggtt	agatcaagca	tcagcagatg	aagttaaggg	tgttagatac	1860
tctgtttttg	gatgtggaga	taagaattgg	gccaccacat	atcagaaggt	tccggctttc	1920
atcgatgaaa	tgcttgctgc	aaaaggggct	gaaaatatag	cagatcgtgg	tgaggccgac	1980
gcaagcgacg	attttgaggg	tacctatgag	gagtggagag	agcacatgtg	gtctgatgtt	2040
gccgcgtatt	ttaatctaga	catagaaaat	tctgaagaca	ataaaagtgc	cttacttctt	2100
caattcgtcg	atagtgctgc	ggacatgccc	ttagcaaaga	tgcatggagc	cttttcaacg	2160
aacgtagtag	ccagtaagga	acttcaacaa	ccaggtagtg	ccagaagtac	acgtcacttg	2220
gaaattgaat	taccaaaaga	ggcatcctac	caagaaggtg	accatcttgg	tgtaatccca	2280
agaaactacg	aaggtatagt	caatagggta	acggcaagat	ttgggctgga	tgcaagccaa	2340
cagataagac	tagaagcaga	agaagaaaaa	ttggcgcacc	ttccactage	gaagacagta	2400
tccgttgaag	aattattgca	atacgtggaa	ttgcaggatc	ccgtcactag	aacgcaattg	2460
agagctatgg	cagcaaagac	tgtttgtcca	cctcacaagg	ttgaacttga	agetetaett	2520
gaaaaacaag	catacaaaga	gcaagtgcta	gcaaagagac	taaccatgtt	agaattgctg	2580
gaaaaatacc	cggcatgcga	aatggaattc	tccgaattta	tcgcgttgtt	gccaagtatt	2640
cgtcccaggt	attactcaat	ttcatcttca	ccaagggttg	acgagaaaca	ggcatctatt	2700
accgtatctg	tggtctctgg	agaagcttgg	agtggttacg	gagaatacaa	gggtattgct	2760
tccaattatc	ttgcagaact	gcaggaaggg	gatacaatta	cctgctttat	ttctactcct	2820
caatcagaat	ttactcttcc	gaaggateea	gaaactccgt	taattatggt	aggtccggga	2880
acaggagtcg	cccctttcag	aggetttgtg	caagcaagga	agcaactaaa	agaacaggga	2940
caaagtctgg	gtgaggcaca	tctatatttc	ggttgcagat	ctccgcatga	ggattactta	3000
taccaagaag	aacttgaaaa	cgcccaatca	gaaggtatta	tcaccttgca	tactgcattc	3060
agtagaatgc	caaaccagcc	gaaaacttac	gtacagcatg	ttatggagca	agatggtaag	3120
aagttaattg	agcttttgga	taagggcgcc	cacttctaca	tttgcggcga	cggatcccaa	3180
atggcgcctg	ccgttgaagc	caccttgatg	aaatcatatg	cagatgttca	tcaagtttca	3240
gaagcggacg	cccgtctttg	gttacaacaa	ctagaggaga	aaggaaggta	tgcaaaagat	3300
gtttggtaa						3309

MATLLEHFQA	MPFAIPIALA	ALSWLFLFYI	KVSFFSNKSA	QAKLPPVPVV	PGLPVIGNLL	60
QLKEKKPYQT	FTRWAEEYGP	IYSIRTGAST	MVVLNTTQVA	KEAMVTRYLS	ISTRKLSNAL	120
KILTADKCMV	AISDYNDFHK	MIKRYILSNV	LGPSAQKRHR	SNRDTLRANV	CSRLHSQVKN	180
SPREAVNFRR	VFEWELFGIA	LKQAFGKDIE	KPIYVEELGT	TLSRDEIFKV	LVLDIMEGAI	240
EVDWRDFFPY	LRWIPNTRME	TKIQRLYFRR	KAVMTALINE	QKKRIASGEE	INCYIDFLLK	300
EGKTLTMDQI	SMLLWETVIE	TADTTMVTTE	WAMYEVAKDS	KRQDRLYQEI	QKVCGSEMVT	360
EEYLSQLPYL	NAVFHETLRK	HSPAALVPLR	YAHEDTQLGG	YYIPAGTEIA	INIYGCNMDK	420
HQWESPEEWK	PERFLDPKFD	PMDLYKTMAF	GAGKRVCAGS	LQAMLIACPT	IGRLVQEFEW	480
KLRDGEEENV	DTVGLTTHKR	YPMHAILKPR	SPSRPSPSTE	QSAKKVRKKA	ENAHNTPLLV	540
LYGSNMGTAE	GTARDLADIA	MSKGFAPQVA	TLDSHAGNLP	REGAVLIVTA	SYNGHPPDNA	600
KQFVDWLDQA	SADEVKGVRY	SVFGCGDKNW	ATTYQKVPAF	IDEMLAAKGA	ENIADRGEAD	660
ASDDFEGTYE	EWREHMWSDV	AAYFNLDIEN	SEDNKSALLL	QFVDSAADMP	LAKMHGAFST	720
NVVASKELQQ	PGSARSTRHL	EIELPKEASY	QEGDHLGVIP	RNYEGIVNRV	TARFGLDASQ	780
QIRLEAEEEK	LAHLPLAKTV	SVEELLQYVE	LQDPVTRTQL	RAMAAKTVCP	PHKVELEALL	840
EKQAYKEQVL	AKRLTMLELL	EKYPACEMEF	SEFIALLPSI	RPRYYSISSS	PRVDEKQASI	900
TVSVVSGEAW	SGYGEYKGIA	SNYLAELQEG	DTITCFISTP	QSEFTLPKDP	ETPLIMVGPG	960
TGVAPFRGEV	QARKQLKEQG	QSLGEAHLYF	GCRSPHEDYL	YQEELENAQS	EGIITLHTAF	1020
SRMPNOPKTY	VQHVMEQDGK	KLIELLDKGA	HFYICGDGSQ	MAPAVEATLM	KSYADVHQVS	1080
EADARLWLQQ	LEEKGRYAKD	VW				1102

SEQ ID NO:109

atggctaccttgttggaacattttcaagctatgccattcgctattccaattgctttggct60gctttgtcttggttgttttgttctacatcaaggttctttcttctcccaacaatccgct120caagctaaattgccaccagttccagttgtccaggtttgccagttattgtaattggtg180caattgaaagaaaagaagccataccaaaccttcactagatgggctgaagaatatggtcca240atctactctattagaactggtgcttctactatggttgtcttgaacactactcaagttgcc300aaagaagctatggttaccagatactgtctatctctaccagaaagttgtccaacgccttg360aaaattttgaccgctgataagtgctaggttgccatttctgatacaacgattccacaag420atgatcaagagatatatcttgtctaacgttttgggtccatctgcccaaaaaagacataga480

	ataccttgag					540
tctccaagag	aagctgtcaa	ctttagaaga	gttttcgaat	gggaattatt	cggtatcgct	600
ttgaaacaag	ccttcggtaa	ggatattgaa	aagccaatct	acgtegaaga	attgggtact	660
actttgtcca	gagatgaaat	cttcaaggtt	ttggtcttgg	acattatgga	aggtgccatt	720
gaagttgatt	ggagagattt	tttcccatac	ttgcgttgga	ttccaaacac	cagaatggaa	780
actaagatee	aaagattata	ctttagaaga	aaggccgtta	tgaccgcctt	gattaacgaa	840
caaaagaaaa	gaattgcctc	cggtgaagaa	atcaactgct	acatcgattt	cttgttgaaa	900
gaaggtaaga	ccttgaccat	ggaccaaatc	tctatgttgt	tgtgggaaac	cgttattgaa	960
actgctgata	ccacaatggt	tactactgaa	tgggctatgt	acgaagttgc	taaggattct	1020
aaaagacaag	acagattata	ccaagaaatc	caaaaggtct	gcggttctga	aatggttaca	1080
gaagaatact	tgtcccaatt	gccatacttg	aatgctgttt	tccacgaaac	tttgagaaaa	1140
cattctccag	ctgctttggt	tccattgaga	tatgctcatg	aagatactca	attgggtggt	1200
tattacattc	cagccggtac	tgaaattgcc	attaacatct	acggttgcaa	catggacaaa	1260
caccaatggg	aatctccaga	agaatggaag	ccagaaagat	ttttggatcc	taagtttgac	1320
ccaatggact	tgtacaaaac	tatggetttt	ggtgctggta	aaagagtttg	cgctggttct	1380
ttacaagcta	tgttgattgc	ttgtccaacc	atcggtagat	tggttcaaga	atttgaatgg	1440
	atggtgaaga					1500
	atgctatttt					1560
caatctgcaa	aaaaagttag	aaaaaagca	gaaaatgcac	acaatactcc	attgctagtt	1620
ctttatggtt	ctaatatggg	aacagcggaa	ggaacggcca	gggatetage	tgacataget	1680
atgtccaagg	gatttgcccc	gcaagtagca	accctggatt	cccatgcagg	taacttgcca	1740
agagaaggtg	ctgttctaat	agttaccgct	agctacaatg	ggcaccetee	agataatgcg	1800
aagcagttcg	tcgattggtt	agatcaagca	tcagcagatg	aagttaaggg	tgttagatac	1860
tctgtttttg	gatgtggaga	taagaattgg	gccaccacat	atcagaaggt	teeggettte	1920
atcgatgaaa	tgcttgctgc	aaaaggggct	gaaaatatag	cagatogtgg	tgaggccgac	1980
gcaagcgacg	attttgaggg	tacctatgag	gagtggagag	agcacatgtg	gtctgatgtt	2040
gccgcgtatt	ttaatctaga	catagaaaat	tctgaagaca	ataaaagtgc	cttacttctt	2100
caattcgtcg	atagtgctgc	ggacatgece	ttagcaaaga	tgcatggagc	cttttcaacg	2160
aacgtagtag	ccagtaagga	acttcaacaa	ccaggtagtg	ccagaagtac	acgtcacttg	2220
	taccaaaaga					2280
agaaactacg	aaggtatagt	caatagggta	acggcaagat	ttgggctgga	tgcaagccaa	2340
cagataagac	tagaagcaga	agaagaaaaa	ttggcgcacc	ttccactage	gaagacagta	2400
teegttgaag	aattattgca	atacgtggaa	ttgcaggatc	ccgtcactag	aacgcaattg	2460
	cagcaaagac					2520
	catacaaaga					2580
gaaaaatacc	cggcatgcga	aatggaattc	tccgaattta	tcgcgttgtt	gccaagtatt	2640
cgtcccaggt	attactcaat	ttcatcttca	ccaagggttg	acgagaaaca	ggcatctatt	2700
accgtatctg	tggtctctgg	agaagcttgg	agtggttacg	gagaatacaa	gggtattgct	2760
tccaattatc	ttgcagaact	gcaggaaggg	gatacaatta	cctgctttat	ttctactcct	2820
caatcagaat	ttactcttcc	gaaggatcca	gaaactccgt	taattatggt	aggtccggga	2880
	cccctttcag					2940
caaagtctgg	gtgaggcaca	tctatatttc	ggttgcagat	ctccgcatga	ggattactta	3000
	aacttgaaaa			- +		3060
	caaaccagcc					3120
	agcttttgga					3180
	ccgttgaage					3240
	cccgtctttg					3300
gttgcttaa					-	3309

MATLLEHFQA MPFAIPIALA ALSWLFLFYI KVSFFSNKSA QAKLPPVPVV PGLPVIGNLL 60 120 QLKEKKPYQT FTRWAEEYGP IYSIRTGAST MVVLNTTQVA KEAMVTRYLS ISTRKLSNAL KILTADKCMV AISDYNDFHK MIKRYILSNV LGPSAQKRHR SNRDTLRANV CSRLHSQVKN 180 SPREAVNFRR VFEWELFGIA LKQAFGKDIE KPIYVEELGT TLSRDEIFKV LVLDIMEGAI 240 EVDWRDFFPY LRWIPNTRME TKIQRLYFRR KAVMTALINE QKKRIASGEE INCYIDFLLK 300 EGKTLTMDQI SMLLWETVIE TADTTMVTTE WAMYEVAKDS KRQDRLYQEI QKVCGSEMVT 360 EEYLSQLPYL NAVFHETLRK HSPAALVPLR YAHEDTQLGG YYIPAGTEIA INIYGCNMDK 420 HQWESPEEWK PERFLDPKFD PMDLYKTMAF GAGKRVCAGS LQAMLIACPT IGRLVQEFEW 480 KLRDGEEENV DTVGLTTHKR YPMHAILKPR SPSRPSPSTE QSAKKVRKKA ENAHNTPLLV 540 LYGSNMGTAE GTARDLADIA MSKGFAPQVA TLDSHAGNLP REGAVLIVTA SYNGHPPDNA 600 KQFVDWLDQA SADEVKGVRY SVFGCGDKNW ATTYQKVPAF IDEMLAAKGA ENIADRGEAD 660 ASDDFEGTYE EWREHMWSDV AAYFNLDIEN SEDNKSALLL QFVDSAADMP LAKMHGAFST 720 NVVASKELQQ PGSARSTRHL EIELPKEASY QEGDHLGVIP RNYEGIVNRV TARFGLDASQ 780 QIRLEAEEEK LAHLPLAKTV SVEELLQYVE LQDPVTRTQL RAMAAKTVCP PHKVELEALL 840 EKQAYKEQVL AKRLTMLELL EKYPACEMEF SEFIALLPSI RPRYYSISSS PRVDEKQASI 900

TGVAPFRGFV SRMPNQPKTY	SGYGEYKGIA QARKQLKEQG VQHVMEQDGK LEEKGRYAKD	QSLGEAHLYF KLIELLDKGA	GCRSPHEDYL	YQEELENAQS	EGIITLHTAF	960 1020 1080 1102
SEQ ID NO	D:111					
	gtttgccagt					60
	ctagatgggc					120
	ttgtcttgaa			· · · ·		180 240
-	ctaccagaaa tttctgatta				a	300
	gtccatctqc				-	360
	ctagattgca	-	**			420
	tcgaatggga					480
	caatctacgt					540
	tettggacat					600
	gttggattcc					660
	ccgttatgac					720
	actgetacat					780
caaatctcta	tgttgttgtg	ggaaaccgtt	attgaaactg	ctgataccac	aatggttact	840
actgaatggg	ctatgtacga	agttgctaag	gattctaaaa	gacaagacag	attataccaa	900
gaaatccaaa	aggtetgegg	ttctgaaatg	gttacagaag	aatacttgtc	ccaattgcca	960
tacttgaatg	ctgttttcca	cgaaactttg	agaaaacatt	ctccagctgc	tttggttcca	1020
ttgagatatg	ctcatgaaga	tactcaattg	ggtggttatt	acattccagc	cggtactgaa	1080
	acatctacgg		-	w. w. w.	• •	1140
	aaagattttt					1200
	ctggtaaaag					1260
	gtagattggt					1320
	ctgttggttt					1380
	catcaagacc					1440
	atgcacacaa					1500
	cggccaggga					1560 1620
	tggattecca acaatgggca					1620
	cagatgaagt	-				1740
	ccacatatca					1800
	atatagcaga					1860
	ggagagagca					1920
	aagacaataa					1980
	caãagatgca					2040
caacaaccag	gtagtgccag	aagtacacgt	cacttggaaa	ttgaattacc	aaaagaggca	2100
tectaceaag	aaggtgacca	tcttggtgta	atcccaagaa	actacgaagg	tatagtcaat	2160
agggtaacgg	caagatttgg	gctggatgca	agccaacaga	taagactaga	agcagaagaa	2220
	cgcacettee					2280
gtggaattgc	aggatecegt	cactagaacg	caattgagag	ctatggcagc	aaagactgtt	2340
	acaaggttga					2400
	agagactaac	10- QF	w w w			2460
	aatttatcgc					2520
	gggttgacga					2580
	gttacggaga					2640
	caattacctg					2700
	ctccgttaat					2760 2820
	caaggaagca gcagatetee					2820
	gtattatcac					2940
	agcatgttat	-				3000
	tctacatttg					3060
	catatgcaga					3120
	aggagaaagg					3165
- 2			2 - 2 3			

MVPGLPVIGNLLQLKEKKPYQTFTRWAEEYGPIYSIRTGASTMVVLNTTQVAKEAMVTRY60LSISTRKLSNALKILTADKCMVAISDYNDFHKMIKRYILSNVLGPSAQKRHRSNRDTLRA120

KVLVLDIMEG EEINCYIDFL EIQKVCGSEM IAINIYGCNM PTIGRLVQEF KAENAHNTPL TASYNGHPPD GAENIADRGE MPLAKMHGAF RVTARFGLDA CPPHKVELEA SSPRVDEKQA DPETFLIMVG QSEGIITLHT	KNSPREAVNF AIEVDWRDFF LKEGKTLTMD VTEEYLSQLP DKHQWESPEE EWKLRDGEEE LVLYGSNMGT NAKQFVDWLD ADASDDFEGT STNVVASKEL SQQIRLEAEE LLEKQAYKEQ SITVSVVSGE PGTGVAFFRG AFSRMPNQFK VSEADARLWL	PYLRWIPNTR QISMLLWETV YLNAVFHETL WKPERFLDPK NVDTVGLTTH AEGTARDLAD QASADEVKGV YEEWREHMWS QQPGSARSTR EKLAHLPLAK VLAKRLTMLE AWSGYGEYKG FVQARKQLKE TYVQHVMEQD	METKIQRLYF IETADTTMVT RKHSPAALVP FDPMDLYKTM KRYPMHAILK IAMSKGFAPQ RYSVFGCGDK DVAAYFNLDI HLEIELPKEA TVSVEELLQY LLEKYPACEM IASNYLAELQ QGQSLGEAHL GKKLIELLDK	RRKAVMTALI TEWAMYEVAK LRYAHEDTQL AFGAGKRVCA PRSPSRPSPS VATLDSHAGN NWATTYQKVP ENSEDNKSAL SYQEGDHLGV VELQDPVTRT EFSEFIALLP EGDTITCFIS YFGCRSPHED	NEQKKRIASG DSKRQDRLYQ GGYYIPAGTE GSLQAMLIAC TEQSAKKVRK LPREGAVLIV AFIDEMLAAK LLQFVDSAAD IPRNYEGIVN QLRAMAAKTV SIRPRYYSIS TPQSEFTLPK YLYQEELENA	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1054
SEQ ID NO	D:113					
ctgttattca ctttccttca gcaagacgac catttatca ggaaacgttc agcttgaatt caaccgtggc ttcactattt aattcaaaca ctgtactatt tccttattag caaaaaggat gaaatttccc gtctggcaga aatgtcatat aaaaccggtg atatctaaac aatgaattt caaagaaaaa tacagtcctt ctaaagaaaag	tgtccaaaag cactactttc cggtgacact atggaggaag ttgcatctt tgaaaataa ccaatcaaat aatccagact tagccattca cgtggattat tgtatcggat gacttgtttt ccgtcataga caaattagc aacatcaaag tgaaaaatgc attttcatga gtcaagttac gcttaagagt attttcagat gacaactaga gtacaagtac gcttaagagt atgacaagtac gcttaagagt atgacaaca gcatattaa gccaaattagt atgacaaca gcatattaa gccaaattagt	aattccaatc gttcacttta actatacatt gctatacctg atataatgag taactacgtc taccaagtcc ggccgtcggg ttcctcattg ttatgtcacc gtctatggta gagctcttta tactaccgcg aaatctgccc agaggtgtta tatttttcaag aattaagatg tctgatgtt gttgcgcaag tgctatgtat atggggttgc	tcgtttaaag tatttcataa tttttgtctg tcggagtcgt ttatattatt gaaactaata tcggagtcgg tttttgcgg cccatatggc tgtggactgg ttttttgcgt actgatgaaa acagctgaca tgggggtcet agtgadtcat gcaatctat aatttcacct gcaagcgaat tactcggcaa agtcgcagga agtgaaaagt	ttggtggttt ctacgactct actgtctgta gattttctaa tcctggaagc actactatcg ttactctatc gaggtgtatc gaggtgtgat cgttatccat ggttgtatgg atattgttcg ttttaaattt atcttttgtg ttattcctag cagtttccc caggttccc caggttccc caggttccc cgaggattat tcatgaaggg ttttacaata ggtttgcgtg	ggaatgcggg taacgtgttg ttactcacaa tgatgagttg tttgaaaaat atttgttgta ggaaggttt taatgacttg taccgcatcg ccaaacggcg tattgtgagt ttgtatttat gttcaaagac ctactttcat aggaagaaag agtatccttg gctatcatta agctatgtatta tccagcatta tccagcatta atcgtattgg ttcaggtgag agatcaaca	60 120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
gtatacgcta	cagaattaat	aggttctggt	agttga			1476
SEQ ID NO):114					
ARRHGGRLYI SLNSNQINYV NSNTWIISSL QKGSVIESSL NVILKNAEVL NEFCQVTIKM	SGRICAACFY FFTSCLYYSQ LYYYYYRFVV LTSGGVITAS FFAYIVRCIY WGSFIPRGRK ASESVSPAIV THLILQYSGE S	HFIIASLLYL QPWQFVLTKS LYYLYRIYVT EISPKLATTA KTGDFHDKLI INLCFRVLMF	FLSGFSNDEL TPFFTLSEGF PIWPLSIQTA TDEILNLFKD SILSFEKVSL YSATRIIPAL	GNVLKNKYNE FTILAIQAVG SLLGFVLSMV VWQKHQRNLP ISKPFWKFFK QRKNDKQLRK	SESFLEALKN ETNRWLSNDL CGLGLYGIVS TADNLLCYFH NFTFSVPLSI SRRIMKGLYW	60 120 240 300 360 420 480 491
SEQ ID NO):115					
tgatatatca tgttcactca gaaaatcttt gttttttgtt	gaagacatag gatgatcccg cagcggttcc taactagtaa gtgactgcgt caacatcttt	atttaaacga gcgaggccgt aaaaacatcc tgattatgcg	cagettaega ggagatttta ceettggega ctagaaetge	tttttacgag aaagatgaca atgcaaacga agtgacaaga attcacctcc	aaagagagat gagacaggaa aaggagggat aacaaccttt	60 120 180 240 300 360
				99		

ccggttgcca	gtgccccatt	taacgctact	tttgtaacgg	taacggcaag	ttcttgaaac	420
agtttaactt	cttgttccaa	cacttccatg	cccgctatat	caagactttt	tgaacgatga	480
				gattcacaaa		540
				gcatggctga	4 4 6	600
+-				ctcctttacg	~ ~	660
		-		tcattaataa		720
			2	agcactaaat		780 840
		14° 04°	ur ur	aagaaccttt acttgtaatt		900
				atctactcca		960
				agggtttgat		1020
,. .	+ +			aatttatcgc		1020
				aaacgagttt		1140
	-	-		tgggtttcat		1200
				tggatttatt		1260
	-			tcaaaagctg		1320
				tagaaatctt		1380
cgctaattgc	tatttattt	ggaagtttca	tggaagtata	tgaaatgatt	gaaaatgact	1440
acttatcttt	aactgatgaa	cttcttaccg	gtgtagaaga	gagtetgtgg	gcagcactta	1500
gcagacaatc	atgaaactta	acaagtgaaa	gagggataac	atgacaatta	aagaaatgcc	1560
tcagccaaaa	acgtttggag	agcttaaaaa	tttaccgtta	ttaaacacag	ataaaccggt	1620
				tttaaattcg		1680
				gaagcatgcg		1740
				gattttgcag		1800
				cataatatct		1860
				gtcgatatcg		1920
				gaagtaccgg		1980 2040
				tatcgcttta gcactggatg		2040
u u		-		gaaaacaagc	~ ~	2160
				attgcagate		2220
				ggaaaagatc		2280
				acattettaa		2340
				ttagtgaaaa		2400
			-	gatectgtte		2460
acaagtcaaa	cagcttaaat	atgtcggcat	ggtcttaaac	gaagegetge	gcttatggcc	2520
aactgctcct	gcgttttccc	tatatgcaaa	agaagatacg	gtgcttggag	gagaatatcc	2580
		<i>w w</i>		cttcaccgtg		2640
				gaaaatccaa	10 IA IA	2700
	-			tgtatcggtc		2760
				cactttgact		2820
		-		aaacctgaag		2880 2940
				tcacctagca acgccgctgc		3000
-			-	ttaqcagata		3060
40° (P		50° 50° 50°		gccggaaatc	20 M M	3120
				ccgcctgata		3180
				aaaggcgttc		3240
				aaagtgcctg		3300
tgaaacgctt	gccgctaaag	gggcagaaaa	categetgae	cgcggtgaag	cagatgcaag	3360
cgacgacttt	gaaggcacat	atgaagaatg	gcgtgaacat	atgtggagtg	acgtagcagc	3420
			-	tctactcttt		3480
tgtcgacagc	gccgcggata	tgeegettge	gaaaatgcac	ggtgcgtttt	caacgaacgt	3540
				agcacgcgac		3600
				ttaggtgtta		3660
				ctagatgcat		3720
				ctcgctaaaa		3780
				acgcgcacgc cttgaagcct		3840 3900
				atgettgaac		3960
				cttctgccaa		4020
				aaacaagcaa		4080
				tataaaggaa		4140
				tttatttcca		4200
				atggtcggac		4260
				ctaaaagaac		4320
acttggagaa	gcacatttat	acttcggctg	ccgttcacct	catgaagact	atctgtatca	4380

agaagagett gaaaacgeee aaagegaagg cateattaeg etteataeeg ettetteteg 4440 catgccaaat cagccgaaaa catacgttca gcacgtaatg gaacaagacg gcaagaaatt 4500 gattgaactt cttgatcaag gagcgcactt ctatatttgc ggagacggaa gccaaatggc 4560 4620 acctgccgtt gaagcaacgc ttatgaaaag ctatgctgac gttcaccaag tgagtgaagc agacgctcgc ttatggctgc agcagctaga agaaaaaggc cgatacgcaa aagacgtgtg 4680 ggctgggtaa attaaaaaga ggctaggata aaagtagttt agttggttga aggaagatcc 4740 4800 gaacgatgaa tcgttcggat ctttttattg gtagagtaaa cgtagatttc atctatttag tgacttgtag cggttgattg gagggcaagg tgaagactcc aatcaaccgc ggtgtcacat gcaagccata cgaaattcat ttctcccatt tattcgtctt ttgtccccac ttaattttta 4860 4920 tagegeetta acgtttette tgegtgacag cagatet 4957

SEQ ID NO:116

-	TFGELKNLPL					60
EACDESRFDK	NLSQALKFVR	DFAGDGLFTS	WTHEKNWKKA	HNILLPSFSQ	QAMKGYHAMM	120
VDIAVQLVQK	WERLNADEHI	EVPEDMTRLT	LDTIGLCGFN	YRFNSFYRDQ	PHPFITSMVR	180
ALDEAMNKLQ	RANPDDPAYD	ENKRQFQEDI	KVMNDLVDKI	IADRKASGEQ	SDDLLTHMLN	240
GKDPETGEPL	DDENIRYQII	TFLIAGHETT	SGLLSFALYF	LVKNPHVLQK	AAEEAARVLV	300
DPVPSYKQVK	QLKYVGMVLN	EALRLWPTAP	AFSLYAKEDT	VLGGEYPLEK	GDELMVLIPQ	360
LHRDKTIWGD	DVEEFRPERF	ENPSAIPQHA	FKPFGNGQRA	CIGQQFALHE	ATLVLGMMLK	420
HFDFEDHTNY	ELDIKETLTL	KPEGFVVKAK	SKKIPLGGIP	SPSTEQSAKK	VRKKAENAHN	480
TPLLVLYGSN	MGTAEGTARD	LADIAMSKGF	APQVATLDSH	AGNLPREGAV	LIVTASYNGH	540
PPDNAKQFVD	WLDQASADEV	KGVRYSVFGC	GDKNWATTYQ	KVPAFIDETL	AAKGAENIAD	600
RGEADASDDF	EGTYEEWREH	MWSDVAAYFN	LDIENSEDNK	STLSLQFVDS	AADMPLAKMH	660
GAFSTNVVAS	KELQQPGSAR	STRHLEIELP	KEASYQEGDH	LGVIPRNYEG	IVNRVTARFG	720
LDASQQIRLE	AEEEKLAHLP	LAKTVSVEEL	LQYVELQDPV	TRTOLRAMAA	KTVCPPHKVE	780
LEALLEKQAY	KEQVLAKRLT	MLELLEKYPA	CEMKFSEFIA	LLPSIRPRYY	SISSSPRVDE	840
KQASITVSVV	SGEAWSGYGE	YKGIASNYLA	ELQEGDTITC	FISTPQSEFT	LPKDPETPLI	900
MVGPGTGVAP	FRGFVQARKQ	LKEQGQSLGE	AHLYFGCRSP	HEDYLYQEEL	ENAQSEGIIT	960
LHTAFSRMPN	QPKTYVQHVM	EQDGKKLIEL	LDQGAHFYIC	GDGSQMAPAV	EATLMKSYAD	1020
VHQVSEADAR	LWLQQLEEKG	RYAKDVWAG				1049

ccaagtccta	gtaccgaaca	atctgcaaaa	aaagttagaa	aaaaagcaga	aaatgcacac	60
aatactccat	tgctagttct	ttatggttct	aatatgggaa	cagcggaagg	aacggccagg	120
gatctagctg	acatagctat	gtccaaggga	tttgccccgc	aagtagcaac	cctggattcc	180
catgcaggta	acttgccaag	agaaggtgct	gttctaatag	ttaccgctag	ctacaatggg	240
caccctccag	ataatgcgaa	gcagttcgtc	gattggttag	atcaagcatc	agcagatgaa	300
gttaagggtg	ttagatactc	tgtttttgga	tgtggagata	agaattgggc	caccacatat	360
cagaaggttc	cggctttcat	cgatgaaatg	cttgctgcaa	aaggggctga	aaatatagca	420
gatcgtggtg	aggccgacgc	aagcgacgat	tttgagggta	cctatgagga	gtggagagag	480
cacatgtggt	ctgatgttgc	cgcgtatttt	aatctagaca	tagaaaattc	tgaagacaat	540
aaaagtgcct	tacttcttca	attcgtcgat	agtgctgcgg	acatgccctt	agcaaagatg	600
catggagcct	tttcaacgaa	cgtagtagee	agtaaggaac	ttcaacaacc	aggtagtgcc	660
agaagtacac	gtcacttgga	aattgaatta	ccaaaagagg	catcctacca	agaaggtgac	720
catcttggtg	taatcccaag	aaactacgaa	ggtatagtca	atagggtaac	ggcaagattt	780
gggctggatg	caagccaaca	gataagacta	gaagcagaag	aagaaaaatt	ggcgcacctt	840
ccactagcga	agacagtatc	cgttgaagaa	ttattgcaat	acgtggaatt	gcaggatccc	900
gtcactagaa	cgcaattgag	agctatggca	gcaaagactg	tttgtccacc	tcacaaggtt	960
gaacttgaag	ctctacttga	aaaacaagca	tacaaagagc	aagtgctagc	aaagagacta	1020
accatgttag	aattgctgga	aaaatacccg	gcatgcgaaa	tggaattctc	cgaatttatc	1080
	caagtattcg					1140
	catctattac					1200
gaatacaagg	gtattgcttc	caattatctt	gcagaactgc	aggaagggga	tacaattacc	1260
tgctttattt	ctactcctca	atcagaattt	actcttccga	aggatccaga	aactccgtta	1320
attatggtag	gtccgggaac	aggagtcgcc	cctttcagag	gctttgtgca	agcaaggaag	1380
caactaaaag	aacagggaca	aagtctgggt	gaggcacatc	tatatttcgg	ttgcagatct	1440
ccgcatgagg	attacttata	ccaagaagaa	cttgaaaacg	cccaatcaga	aggtattatc	1500
accttgcata	ctgcattcag	tagaatgcca	aaccagccga	aaacttacgt	acagcatgtt	1560
atggagcaag	atggtaagaa	gttaattgag	cttttggata	agggcgccca	cttctacatt	1620
tgcggcgacg	gateccaaat	ggcgcctgcc	gttgaageca	ccttgatgaa	atcatatgca	1680
gatgttcatc	aagtttcaga	agcggacgcc	cgtctttggt	tacaacaact	agaggagaaa	1740
ggaaggtatg	caaaagatgt	ttggtaa				1767

PSPSTEQSAK	KVRKKAENAH	NTPLLVLYGS	NMGTAEGTAR	DLADIAMSKG	FAPQVATLDS	60
HAGNLPREGA	VLIVTASYNG	HPPDNAKQFV	DWLDQASADE	VKGVRYSVFG	CGDKNWATTY	120
QKVPAFIDEM	LAAKGAENIA	DRGEADASDD	FEGTYEEWRE	HMWSDVAAYF	NLDIENSEDN	180
KSALLLQFVD	SAADMPLAKM	HGAFSTNVVA	SKELQQPGSA	RSTRHLEIEL	PKEASYQEGD	240
HLGVIPRNYE	GIVNRVTARF	GLDASQQIRL	EAEEEKLAHL	PLAKTVSVEE	LLQYVELQDP	300
VTRTQLRAMA	AKTVCPPHKV	ELEALLEKQA	YKEQVLAKRL	TMLELLEKYP	ACEMEFSEFI	360
ALLPSIRPRY	YSISSSPRVD	EKQASITVSV	VSGEAWSGYG	EYKGIASNYL	AELQEGDTIT	420
CFISTPQSEF	TLPKDPETPL	IMVGPGTGVA	PFRGFVQARK	QLKEQGQSLG	EAHLYFGCRS	480
PHEDYLYQEE	LENAQSEGII	TLHTAFSRMP	NQPKTYVQHV	MEQDGKKLIE	LLDKGAHFYI	540
CGDGSQMAPA	VEATLMKSYA	DVHQVSEADA	RLWLQQLEEK	GRYAKDVW		588

SEQ ID NO:119

ccaagtccta	gtaccgaaca	atctgcaaaa	aaagttagaa	aaaaagcaga	aaatgcacac	60
		ttatggttct				120
gatetagetg	acatagctat	gtccaaggga	tttgccccgc	aagtagcaac	cctggattcc	180
catgcaggta	acttgccaag	agaaggtgct	gttctaatag	ttaccgctag	ctacaatggg	240
caccetecag	ataatgcgaa	gcagttcgtc	gattggttag	atcaagcatc	agcagatgaa	300
gttaagggtg	ttagatactc	tgtttttgga	tgtggagata	agaattgggc	caccacatat	360
cagaaggttc	cggctttcat	cgatgaaatg	cttgctgcaa	aaggggctga	aaatatagca	420
gatcgtggtg	aggccgacgc	aagcgacgat	tttgagggta	cctatgagga	gtggagagag	480
cacatgtggt	ctgatgttgc	cgcgtatttt	aatctagaca	tagaaaattc	tgaagacaat	540
aaaagtgcct	tacttettea	attcgtcgat	agtgctgcgg	acatgecett	agcaaagatg	600
catggageet	tttcaacgaa	cgtagtagcc	agtaaggaac	ttcaacaacc	aggtagtgcc	660
agaagtacac	gtcacttgga	aattgaatta	ccaaaagagg	catcctacca	agaaggtgac	720
catcttggtg	taatcccaag	aaactacgaa	ggtatagtca	atagggtaac	ggcaagattt	780
gggctggatg	caagccaaca	gataagacta	gaagcagaag	aagaaaaatt	ggcgcacctt	840
ccactagcga	agacagtatc	cgttgaagaa	ttattgcaat	acgtggaatt	gcaggatece	900
gtcactagaa	cgcaattgag	agctatggca	gcaaagactg	tttgtccacc	tcacaaggtt	960
gaacttgaag	ctctacttga	aaaacaagca	tacaaagagc	aagtgctagc	aaagagacta	1020
accatgttag	aattgctgga	aaaatacccg	gcatgcgaaa	tggaattete	cgaatttatc	1080
gcgttgttgc	caagtatteg	tcccaggtat	tactcaattt	catcttcacc	aagggttgac	1140
gagaaacagg	catctattac	cgtatctgtg	gtctctggag	aagcttggag	tggttacgga	1200
gaatacaagg	gtattgcttc	caattatctt	gcagaactgc	aggaagggga	tacaattacc	1260
tgctttattt	ctactcctca	atcagaattt	actetteega	aggatccaga	aactccgtta	1320
attatggtag	gtccgggaac	aggagtegee	cctttcagag	gctttgtgca	agcaaggaag	1380
caactaaaag	aacagggaca	aagtetgggt	gaggcacatc	tatatttcgg	ttgcagatct	1440
ccgcatgagg	attacttata	ccaagaagaa	cttgaaaacg	cccaatcaga	aggtattatc	1500
accttgcata	ctgcattcag	tagaatgcca	aaccagccga	aaacttacgt	acagcatgtt	1560
atggagcaag	atggtaagaa	gttaattgag	cttttggata	agggcgccca	cttctacatt	1620
tgcggcgacg	gateccaaat	ggcgcctgcc	gttgaagcca	ccttgatgaa	atcatatgca	1680
gatgttcatc	aagtttcaga	ageggaegee	cgtctttggt	tacaacaact	agaggagaaa	1740
ggaaggtatg	caaaagatgt	tgcttaa				1767

SEQ ID NO:120

PSPSTEQSAK	KVRKKAENAH	NTPLLVLYGS	NMGTAEGTAR	DLADIAMSKG	FAPQVATLDS	60
HAGNLPREGA	VLIVTASYNG	HPPDNAKQFV	DWLDQASADE	VKGVRYSVFG	CGDKNWATTY	120
QKVPAFIDEM	LAAKGAENIA	DRGEADASDD	FEGTYEEWRE	HMWSDVAAYF	NLDIENSEDN	180
KSALLLQFVD	SAADMPLAKM	HGAFSTNVVA	SKELQQPGSA	RSTRHLEIEL	PKEASYQEGD	240
HLGVIPRNYE	GIVNRVTARF	GLDASQQIRL	EAEEEKLAHL	PLAKTVSVEE	LLQYVELQDP	300
VTRTQLRAMA	AKTVCPPHKV	ELEALLEKQA	YKEQVLAKRL	TMLELLEKYP	ACEMEFSEFI	360
ALLPSIRPRY	YSISSSPRVD	EKQASITVSV	VSGEAWSGYG	EYKGIASNYL	AELQEGDTIT	420
CFISTPQSEF	TLPKDPETPL	IMVGPGTGVA	PFRGFVQARK	QLKEQGQSLG	EAHLYFGCRS	480
PHEDYLYQEE	LENAQSEGII	TLHTAFSRMP	NQPKTYVQHV	MEQDGKKLIE	LLDKGAHFYI	540
CGDGSQMAPA	VEATLMKSYA	DVHQVSEADA	RLWLQQLEEK	GRYAKDVA		588

SEQ ID NO:121

ccatcaaga

PSR

3

WHAT IS CLAIMED IS:

- 1. A recombinant host comprising one or more of:
 - (a) a gene encoding an ent-kaurene oxidase (KO) polypeptide;
 - (b) a gene encoding a cytochrome P450 reductase (CPR) polypeptide; and/or
 - (c) a gene encoding an ent-kaurenoic **acid** hydroxylase (KAH) polypeptide; wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

- 2. A recombinant host comprising:
 - (a) a gene encoding a geranylgeranyi diphosphate synthase (GGPPS) polypeptide;
 - (b) a gene encoding an ent-copalyi diphosphate synthase (CDPS) polypeptide;
 - (c) a gene encoding an ent-kaurene synthase (KS) polypeptide
 - (d) a gene encoding an ent-kaurene oxidase (KO) polypeptide;
 - (e) a gene encoding a cytochrome P450 reductase (CPR) polypeptide; and

(f) a gene encoding an ent-kaurenoic acid hydroxylase (KAH) polypeptide;

wherein at least one of the $\ensuremath{\text{genes}}$ is a recombinant gene; and

wherein the recombinant host is capable of producing steviol.

- 3. The recombinant host of claims 1 or 2, wherein:
 - (a) the KO polypeptide comprises a KO polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:72 or SEQ ID NO:75; at least 65% identity to an amino acid sequence set forth in SEQ ID NO:54; at least 70% identity to an amino acid sequence set forth in SED ID NO: 70, SEQ ID NO:71, or

SEQ ID NO:79; at least 40% identity to an amino acid sequence set forth in SEQ ID NO:77; or at least 50% identity to an amino acid sequence set forth in SEQ ID NO:78;

- (b) the CPR polypeptide comprises a CPR polypeptide having at least 70% identity to an amino acid sequences set forth in SEQ ID NO:69, SEQ ID NO:74, SEQ ID NO:76, or SEQ ID NO:87; at least 80% identity to an amino acid sequence set forth in SEQ ID NO:73; at least 85% identity to an amino acid sequence set forth in SEQ ID NO:22; at least 65% identity to an amino acid sequence set forth in SEQ ID NO:28; or at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98; and/or
- (c) the KAH polypeptide comprises a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; at least 50% identity to an amino acid sequence set forth in SEQ ID NO:91; or at least 60% identity to an amino acid sequence set forth in SEQ ID NO:68.
- 4 A recombinant host comprising one or more of:
 - (a) a gene encoding a KO polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:75;
 - (b) a gene encoding a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; and/or
 - a gene encoding a CPR polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

- 5. A recombinant host comprising one or more of:
 - (a) a gene encoding a KO polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:70;

- (b) a gene encoding a KAH polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:82; and/or
- a gene encoding a CPR polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:98;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

- 6. The recombinant host of claim 4 or 5, wherein the host further comprises a gene encoding a KO polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:54.
- 7. The recombinant host of any one of claims 4-6, wherein the host further comprises a gene encoding a KAH polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:68.
- 8. The recombinant host of any one of claims 4-7, wherein the host further comprises a gene encoding a KO polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:79.
- 9. The recombinant host of any one of claims 1 or 3-8, wherein the host further comprises one or more of:
 - (a) a gene encoding a geranylgeranyl diphosphate synthase (GGPPS) polypeptide;
 - (b) a gene encoding an ent-copalyl diphosphate synthase (CDPS) polypeptide; and/or
 - (c) a gene encoding an ent-kaurene synthase (KS) polypeptide;

wherein at least one of the genes is a recombinant gene; and

wherein the recombinant host is capable of producing a steviol glycoside precursor.

- 10. The recombinant host of claim 9, wherein:
 - the GGPPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:49;
 - (b) the CDPS polypeptide comprises a polypeptide having at least 70% identity to an amino acid sequence set forth in SEQ ID NO:37; and/or
 - (c) the KS polypeptide comprises a polypeptide having at least 40% identity to an amino acid sequence set forth in SEQ ID NO:6.
- 11. The recombinant host of claims 1-10, wherein the host further comprises a gene encoding an endoplasmic reticulum membrane polypeptide.
- 12. The recombinant host of claim 11, wherein the endoplasmic reticulum membrane polypeptide comprises an Inheritance of cortical ER protein 2 (ICE2) polypeptide having at least 50% identity to the amino acid sequence set forth in SEQ ID NO:114.
- 13. The recombinant host of any one of claim 1-10, wherein the KO polypeptide is a fusion construct.
- 14. The recombinant host of claim 13, wherein the fusion construct comprises a polypeptide having at least 60% identity to an amino acid sequence set forth in SEQ ID NO:1 18 or SEQ ID NO:120.
- 15. The recombinant host of claim 13 or claim 14, wherein the fusion construct has at least 50% identity to an amino acid sequence set forth in SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO:108, SEQ ID NO: 1 10, or SEQ ID NO: 1 12.

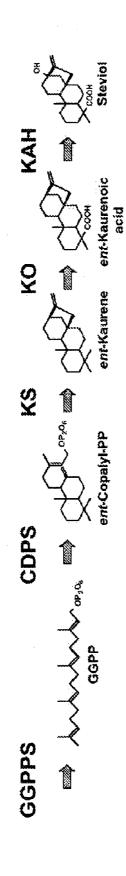
The recombinant host of any one of claims 1-15, wherein the host further comprises one or more of:

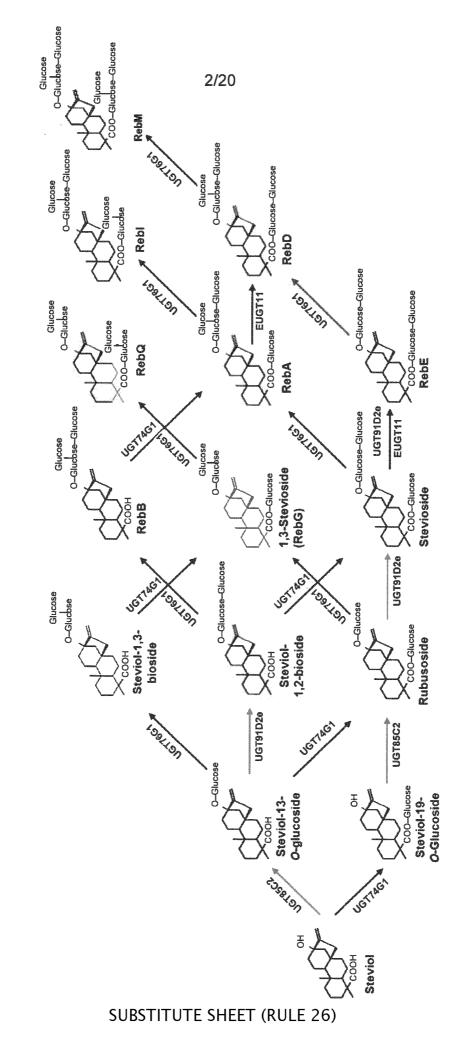
- (a) a gene encoding a UGT85C polypeptide;
- (b) a gene encoding a UGT76G polypeptide;
- (c) a gene encoding a UGT74G1 polypeptide;
- (d) a gene encoding a UGT91 D2 functional homolog polypeptide; and/or
- (e) a gene encoding an EUGT11 polypeptide;

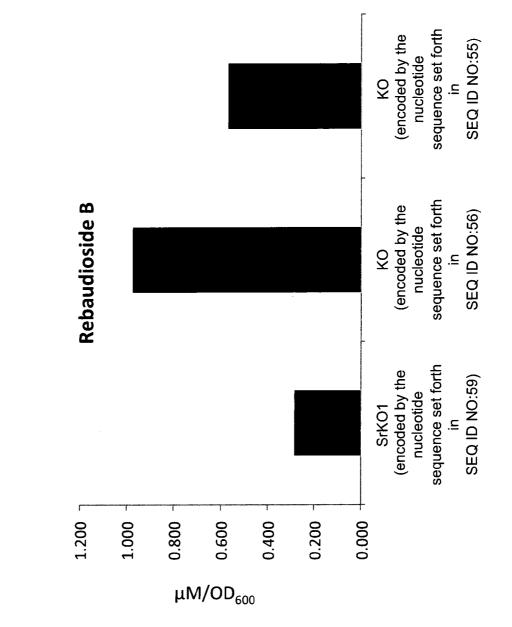
wherein at least one of the genes is a recombinant gene; and

wherein the host is capable of producing a steviol glycoside.

- The recombinant host of claim 16, wherein:
 - the UGT85C2 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:30;
 - (b) the UGT76G1 polypeptide comprises a polypeptide having at least 50% identity to an amino acid sequence set forth in SEQ ID NO:83;
 - the UGT74G1 polypeptide comprises a polypeptide having at least 55% identity to an amino acid sequence set forth in SEQ ID NO:29;
 - (d) the UGT91 D2 functional homolog polypeptide comprises a UGT91D2 polypeptide having 90% or greater identity to the amino acid sequence set forth in SEQ ID NO:84 or a UGT91D2e-b polypeptide having 90% or greater identity to the amino acid sequence set forth in SEQ ID NO:88; and/or
 - (e) the EUGT1 1 polypeptide comprises a polypeptide having at least 65% identity to an amino acid sequence set forth in SEQ ID NO:86.
- 1 ¹/₈ . The recombinant host of any one of claims 1-17, wherein the recombinant host comprises a plant cell, a mammalian cell, an insect cell, a fungal cell, or a bacterial cell.

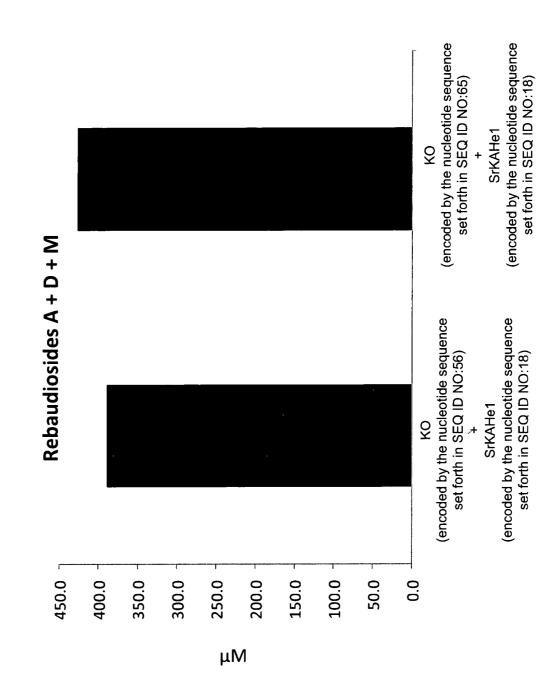

- 1_{19.} The recombinant host of claim 18, wherein the bacterial cell comprises *Escherichia* bacteria cells, *Lactobacillus* bacteria cells, *Lactococcus* bacteria cells, *Cornebacterium* bacteria cells, *Acetobacter* bacteria cells, *Acinetobacter* bacteria cells, or *Pseudomonas* bacterial cells.
- 20. The recombinant host of claim 18, wherein the fungal cell comprises a yeast cell.
- 2 11. The recombinant host of claim 20, wherein the yeast cell is a cell from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Yarrowia lipolytica, Candida glabrata, Ashbya gossypii, Cyberlindnera jadinii, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Xanthophyllomyces dendrorhous, or Candida albicans species.
- 22. The recombinant host of claim 21, wherein the yeast cell is a Saccharomycete.
- 23. The recombinant host of claim 22, wherein the yeast cell is a cell from the *Saccharomyces cerevisiae* species.
- 24. A method of producing a steviol glycoside or a steviol glycoside precursor, comprising:
 - (a) growing the recombinant host of any one of claims 1-23 in a culture medium, under conditions in which any of the genes disclosed in any one of claims 1-23 are expressed;


wherein the steviol glycoside or the steviol glycoside precursor is synthesized by said host; and/or


- (b) optionally quantifying the steviol glycoside or the steviol glycoside precursor; and/or
- (c) optionally isolating the steviol glycoside or the steviol glycoside precursor.


- 25. The method of claim 24, wherein the steviol glycoside comprises steviol-1 3-O-glucoside (13-SMG), steviol-1,2-bioside, steviol-1,3-bioside, steviol-19-O-glucoside (19-SMG), stevioside, 1,3-stevioside, rubusoside, Rebaudioside A (RebA), Rebaudioside B (RebB), Rebaudioside C (RebC), Rebaudioside D (RebD), Rebaudioside E (RebE), Rebaudioside F (RebF), Rebaudioside M (RebM), Rebaudioside Q (RebQ), Rebaudioside I (RebI), dulcoside A, di-glycosylated steviol, tri-glycosylated steviol, tetra-glycosylated steviol, penta-glycosylated steviol, hexa-glycosylated steviol, hepta-glycosylated steviol, or isomers thereof.
- 26. The steviol glycoside or the steviol glycoside precursor produced by the recombinant host of any one of claims 1-23 or the method of claim 24 or claim 25, wherein the steviol glycoside or steviol glycoside precursor accumulates to a detectable concentration when cultured under said conditions.
- 27. A steviol glycoside composition produced by the host of any one of claims 1-23 or the method of claim 24 or claim 25, wherein the composition has an undetectable concentration of stevia plant-derived contaminants.
- 28. A steviol glycoside composition produced by the host of any one of claims 1-23 or the method of claim 24 or claim 25, wherein the composition has a steviol glycoside composition enriched for RebD or RebM relative to the steviol glycoside composition of a wild-type Stevia plant.

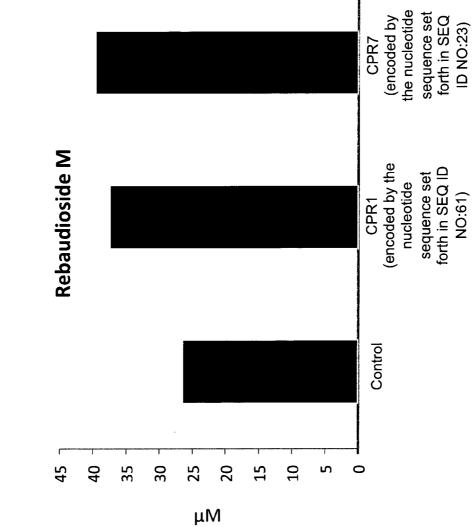
Figure 1



40000 7UA

					KO (encoded by the nucleotide sequence set forth in SEQ ID NO:56)
					KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 59)
					KO (encoded by the nucleotide sequence set forth in SEQ ID NO:58)
cosides					KO KO ed (encoded (encoded (e by the by the by the by the nucleotide nucleotide n nce sequence sequence s h in set forth in set forth in set D SEQ ID NO: SEQ ID SE 7) 55) NO:58) + SrKAHe1 (SEQ ID NO:18)
Figure 5 Total Steviol Glycosides					KO (encoded by the nucleotide sequence set forth in SEQ ID NO:57) + Sr
Total S					KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 60)
					SrKAHe1 KO (encoded by the (encoded nucleotide by the sequence set nucleotide forth in SEQ ID sequence NO:18) set forth in SEQ ID NC 60)
					Control
350	300 - 250 -	- 200 150 -	100 -	50	-1 O

					1120			
								KO (encoded by the nucleotide sequence set forth in SEQ ID NO:56)
								KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 59)
								KO (encoded by the nucleotide sequence set forth in SEQ ID NO:58)
id		ŕ						KO KO ded (encoded (encoded (e by the by the by the by the nucleotide nucleotide nu nce sequence set forth in set forth
Ent-kaurenoic Acid								KO (encoded by the nucleotide sequence set forth in SEQ ID NO:57) + Sr
Ent-kaı								KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 60)
								SrKAHe1 KO (encoded by the (encoded nucleotide by the sequence set nucleotide forth in SEQ ID sequence NO:18) set forth ir SEQ ID NO 60)
								Control
400000	350000 -	300000	250000 20000	200000 -	150000 -	100000 -	50000 -	0

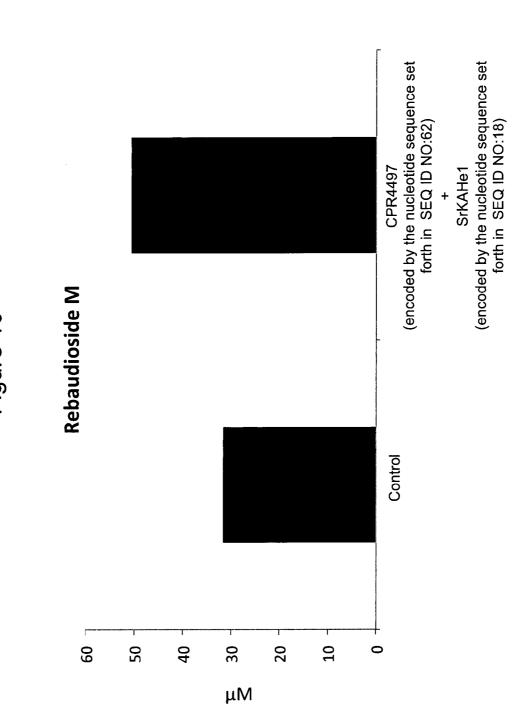
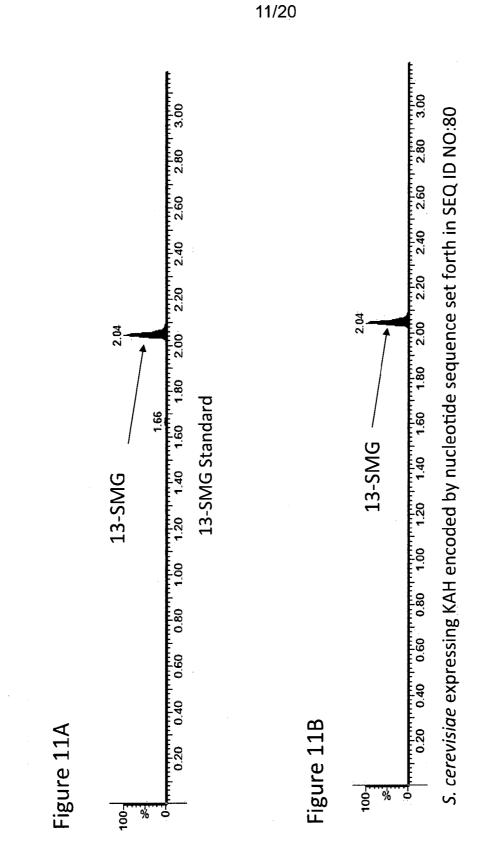
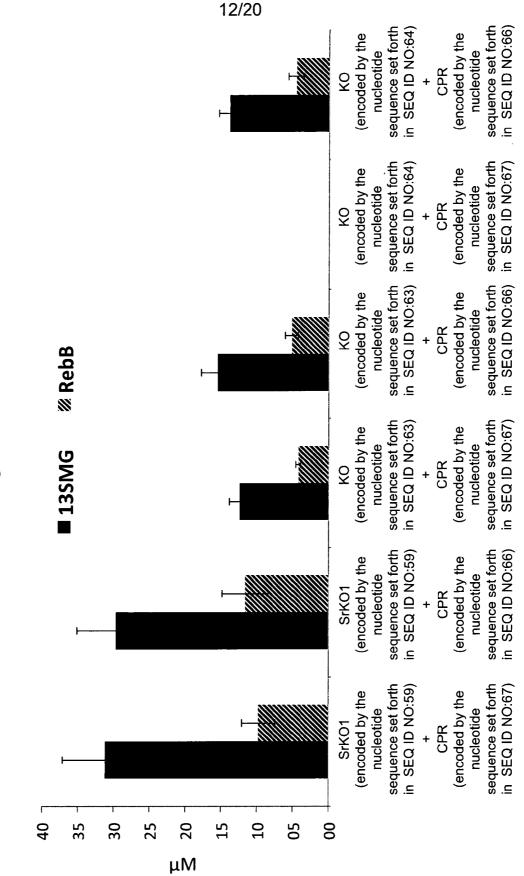
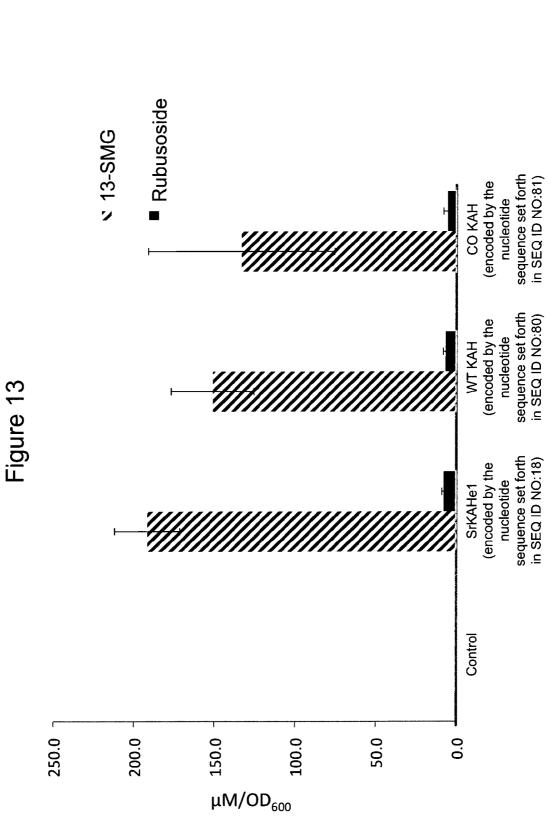

SUBSTITUTE SHEET (RULE 26)

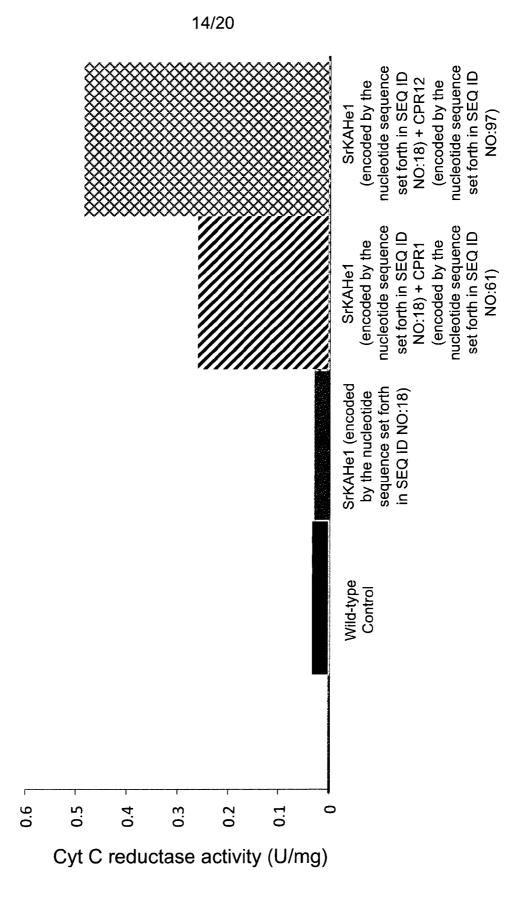
					8/20		
							KO (encoded by the nucleotide sequence set forth in SEQ ID NO:56)
							KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 59)
							KO (encoded by the nucleotide sequence set forth in SEQ ID NO:58)
							KO KO KO ded (encoded (encoded (by the by the by the by the by the nucleotide nucleotid
Figure 8	Ent-kaurenol						KO (encoded by the nucleotide sequence set forth in SEQ ID NO:57) + Sr
LL_	Ent						KO (encoded by the nucleotide sequence set forth in SEQ ID NO: 60)
							SrKAHe1 KO (encoded by the (encoded nucleotide by the sequence set nucleotide forth in SEQ ID set forth ir SEQ ID NO SEQ ID NO
							Control
	300000	250000 -	200000 -	150000 -	100000 -	50000 -	0
			Al	JC			

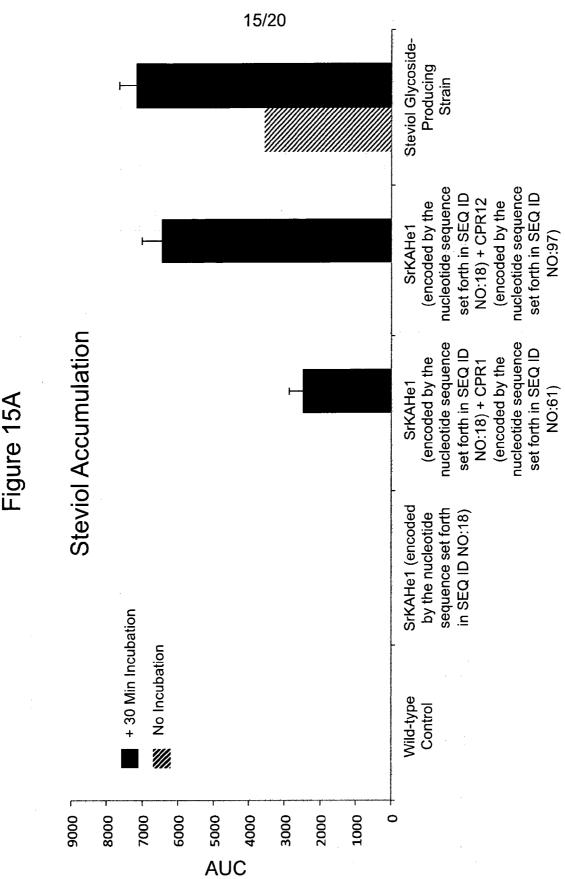
0 סזוויק

SUBSTITUTE SHEET (RULE 26)

PCT/EP2015/070620


Figure 10



13/20

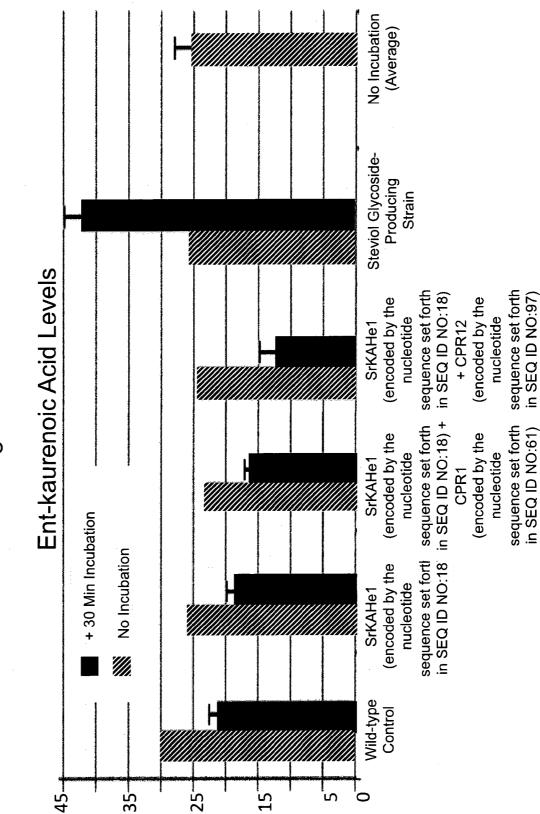


Figure 15B

SUBSTITUTE SHEET (RULE 26)

μM

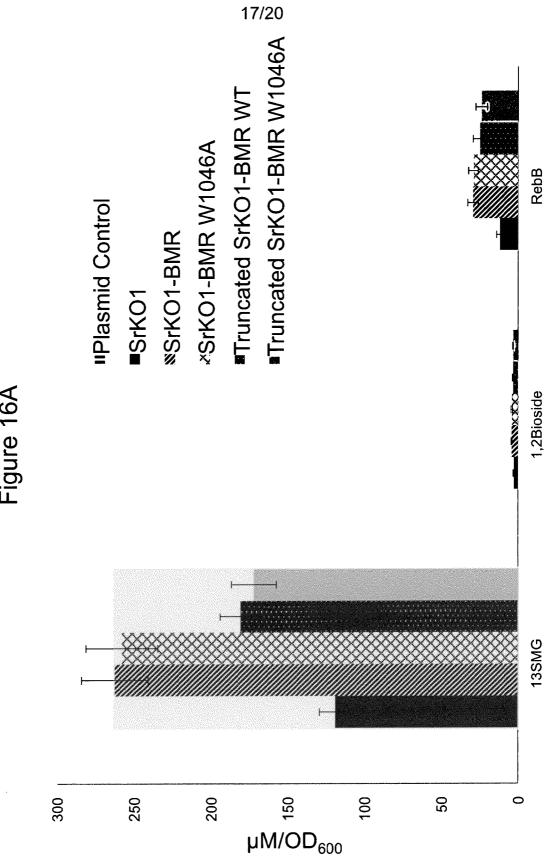
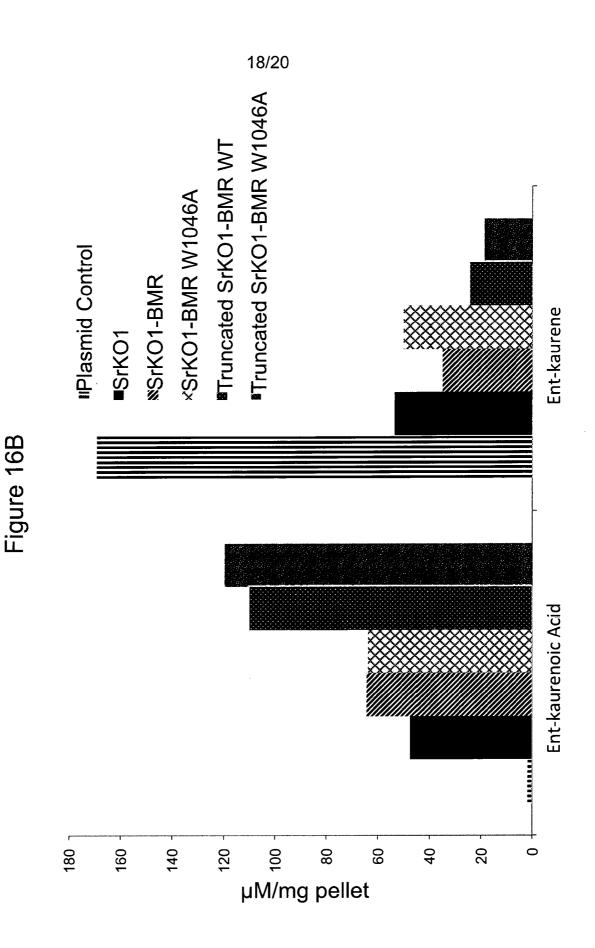
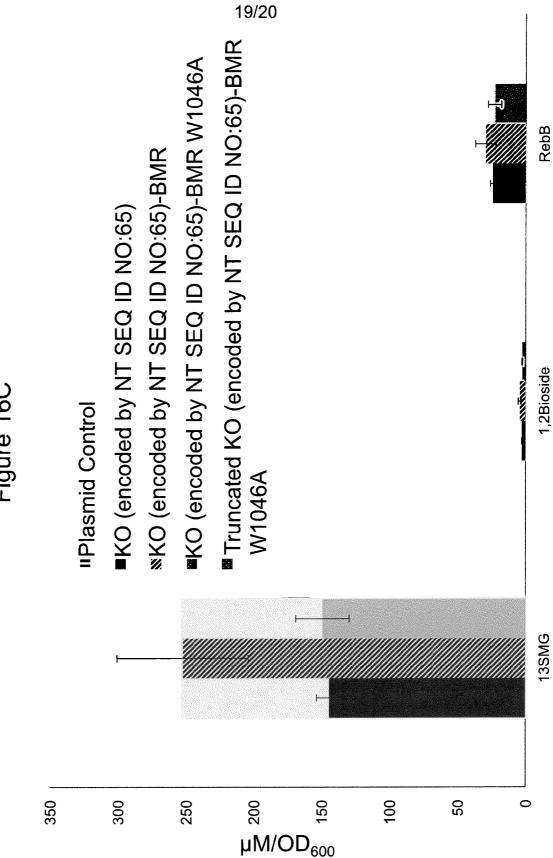




Figure 16A

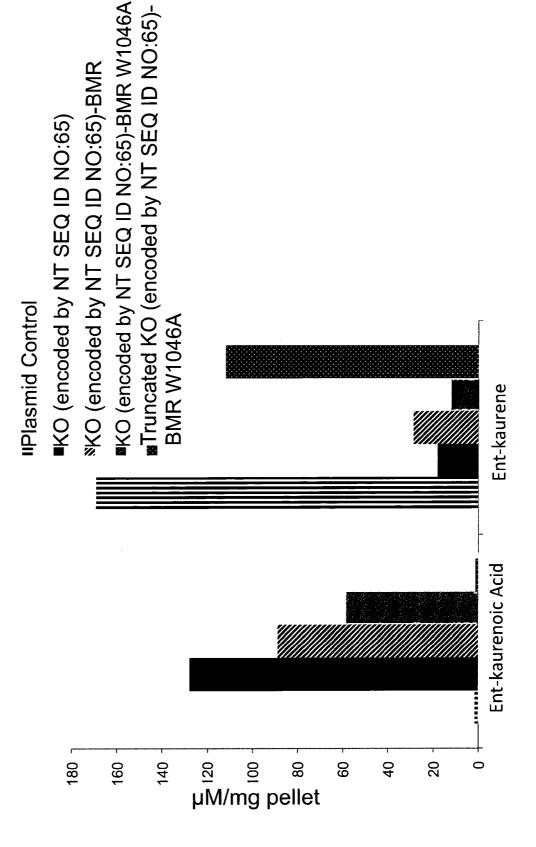


Figure 16D