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Abstract

The formal specification of privacy goals in symbolic protocol models
has proved to be not quite trivial so far. The most widely used approach
in formal methods is based on the static equivalence of frames in the
applied pi-calculus, basically asking whether or not the intruder is able
to distinguish two given worlds. But then a subtle question emerges:
how can we be sure that we have specified all pairs of worlds to properly
reflect our intuitive privacy goal? To address this problem, we introduce
in this paper a novel and declarative way to specify privacy goals, called
(α,β)-privacy. This new approach is based on specifying two formulae α
and β in first-order logic with Herbrand universes, where α reflects the
intentionally released information and β includes the actual cryptographic
(“technical”) messages the intruder can see. Then (α,β)-privacy means
that the intruder cannot derive any “non-technical” statement from β that
he cannot derive from α already. We describe by a variety of examples
how this notion can be used in practice. Even though (α,β)-privacy does
not directly contain a notion of distinguishing between worlds, there is
a close relationship to static equivalence of frames that we investigate
formally. This allows us to justify (and criticize) the specifications that
are currently used in verification tools, and obtain a decision procedure
for a large fragment of (α,β)-privacy.

1 Introduction

1.1 Context and motivation.

Over the last fifteen years or so, several formal notions of privacy in symbolic
protocol models have been proposed, e.g., [1, 4, 10, 18, 21, 22, 28, 36, 38] to
name only a few. Although these notions are quite different, they are all witness
to the fact that defining privacy is actually surprisingly subtle and not as easy as
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it is sometimes thought to be. One of the main reasons is that classical secrecy
notions apply only to data that are themselves the secrets, e.g., a private key.
In contrast, the data that privacy goals are formulated about are typically not
secrets in themselves, e.g., the name of the candidates and of the voters in
a voting protocol are usually all publicly known. Rather, the information we
would like to protect is the relation between these values, i.e., who voted for
whom.

For this reason, the majority of the popular approaches to formalizing pri-
vacy are based not on the question of what the intruder can deduce from a set
of known messages, but rather whether he can distinguish two different worlds.1

A crucial question is thus: what is the “right” set of distinguishability questions
to define privacy? For instance, in voting protocols, it has become standard to
define vote privacy by the following “vote swapping” encoding: take the proto-
col with fixed votes and consider a variant where the votes of two honest voters
have been swapped; then the two variants should be indistinguishable for the
intruder. We propose that this vote swap, though formally precise, is still an
encoding of an unspoken underlying idea or intuition. This becomes apparent
when we ask the question: is vote swapping in some sense a “correct” (sound
and complete) encoding? That is, does it really capture all privacy violations
that we intuitively would see as a violation and only those? In some sense
we cannot completely avoid the fact that there may be a gap between intuitive
ideas and mathematical notions, but simple, declarative, logical notions can give
a higher confidence. Below we argue that with (α,β)-privacy there is a rather
straightforward formal goal we can state: that in a voting protocol the intruder
only learns the number of cast votes and the result, i.e., the information that
is officially published anyway. We can then prove that this is in fact equivalent
to the vote-swapping trick and thereby justify this notion as being sound and
complete with respect to a different, more high-level notion. In fact, this is the
main theme of this paper: we do not want to replace the existing works on
privacy, but we want to highlight it from a new angle that can give us novel
insights and methods to reason about privacy.

It is even more difficult to come up with privacy definitions for other, more
open-ended fields like identity management. In general, we have no good crite-
rion when a given set of distinguishabilities is “complete”, i.e., to be sure that
we have not overlooked some possible connection the intruder could make that
would violate our intuitive understanding of privacy. We return to this in the
next subsection, after having introduced (α,β)-privacy.

1There are also approaches, such as k-anonymity, `-diversity, t-closeness and differential
privacy, that, instead of focusing on distinguishability, aim at quantifying privacy in order to
capture privacy loss and thus analyse the minimal information disclosure inherent in a system.
We will discuss these approaches, and their relationship to (α,β)-privacy in more detail at
the end of the paper (Section 8).
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1.2 Contributions.

In this paper, we take a step back and approach the problem of defining privacy
from a different angle. Our overall contribution is the definition of a formal
description that reflects the idea of privacy in a “natural” and less “technical”
way.2 This allows us to formally relate such declarative logical privacy defi-
nitions with existing low-level encodings based on indistinguishability: either
proving that the encoding is correct or giving a counter example (e.g., where
the declarative notion of privacy is violated while the encoding does not detect
it). This also allows us to use existing verification technologies, but opens a new
way of understanding and declaratively using the goals, and ultimately also new
ways of implementing verification tools.

The logical notion we introduce in this paper is called (α,β)-privacy and it
is based on specifying two formulae α and β in First-Order Logic with Herbrand
Universes [27].

The formula α formalizes the intentionally released information, i.e., the
information that we consciously give to the intruder; we also refer to this in-
formation as payload. This is in fact inspired by cryptographic zero-knowledge
proofs: here a prover proves a statement to the verifier (for instance, that one
possesses a credential and is over 21 years old according to this credential).
The verifier clearly learns this statement, including any logical consequence (for
instance, that the prover is also over 18 years old). The point about zero knowl-
edge is that the verifier does not learn any more information than the proved
statement (for instance, whether or not the prover is over 65 years old). Our
idea is to use such a simple formula α that describes the deliberately released
information as the core of the privacy definition: the intruder should not be
able to learn anything that is not a logical consequence of α.

As a counterpart to the “ideal knowledge” provided by the payload α, we also
describe the technical information β, which represents the “actual knowledge”
that the intruder has, describing the information (e.g., names, keys ...) that he
initially knows, which actual cryptographic messages he has observed and what
he knows about these messages. For instance, he may be unable to decrypt
a message but anyway know that it has a certain format and contains certain
(protected) information, like a vote.

(α,β)-privacy then means that every “non-technical” statement that the
intruder can derive from β can already be derived from α. We believe that this
is indeed a simple way to define privacy, and is a more declarative way to talk
about privacy than distinguishability of frames. To some extent, this liberates
the modelers from thinking about what technical information the intruder could
exploit, and rather think about only two crucial aspects of the system that they
should be clear about anyway: namely, what information is deliberately released
(α) and what messages are actually exchanged (β).

2Note that, as will become clearer below, when we write “less technical” here we do not
mean “less formal”; rather, we mean that our definition is declarative and not at the technical
level like in the case of the different indistinguishability questions where one needs to consider
explicitly the cryptographic messages that are being exchanged.
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For the example of vote privacy, the deliberately released information may
be for instance the number of cast votes and for each candidate the number of
received votes. We can then formally prove that this is indeed equivalent to the
aforementioned vote-swapping trick. In other words, one can convince oneself
by examples that the vote-swapping encoding makes sense: for instance, the
intruder should not find out whether two honest voters have voted the same or
differently, and if this were violated in a protocol, then this would be detected by
the vote-swapping goal. However checking that a number of intuitive examples
are covered is not completely satisfactory from a scientific point of view. To
put it differently: the vote swap is an encoding of an (otherwise unformalized)
intuition. With α-β privacy, in contrast, we are able to formally prove that
it is a correct encoding of a simple privacy goal α: that the intruder does not
find out more than we deliberately release, i.e., the number of cast votes, the
election result and what the dishonest voters voted for (if that is considered).

An interesting property of (α,β)-privacy is that it is stable under background
information, in the following sense: if (α,β)-privacy holds for a particular α and
β, and the intruder somehow has some additional background knowledge α0,
then also (α ∧ α0,β ∧ α0)-privacy holds, i.e., the intruder cannot find out more
than what follows from his background knowledge and the information that was
released to him.

Another interesting and declarative feature of our approach is how we can
reason about the collusion of dishonest parties. If the knowledge of every dis-
honest party is described by an (α, β) pair, say (α1, β1) and (α2, β2), then we
can consider the conjunction of the α’s and the conjunction of the β’s and re-
quire (α1 ∧ α2,β1 ∧ β2)-privacy to hold. This is indeed the strongest possible
privacy goal any system can fulfill in the face of such a collusion, because we
cannot prevent the dishonest parties from pooling their knowledge—both on the
α and on the β level—and drawing conclusions from that.

Last but not least, (α,β)-privacy also provides a model-theoretic approach to
privacy: given some information or observations about the world (a formula),
what are the possible worlds that are compatible with this information (the
models of the formula)? A privacy goal then specifies simply the set of possible
worlds (the models of α), and the intruder should not be able to exclude any
of them using β. In fact, we will show that combining the model-theoretic and
proof-theoretic views yields a powerful tool-set for reasoning about privacy.

This paper is focused on developing new foundations for reasoning about
privacy and we do not discuss automated procedures. However, we prove that
a fragment of (α,β)-privacy corresponds to frame equivalence problems, so that
existing decision procedures are applicable. (α,β)-privacy is, however, more
powerful and can incorporate how information is released during a protocol run.
We will finally illustrate with an example how to define transition systems based
on (α,β)-privacy, i.e., where every reachable state characterizes the intruder
knowledge by an (α, β) pair.
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Table 1: Roadmap of the main notions and primitives introduced
Primitive Section Meaning

Σ,V, TΣ(V) Section 2.1,
p.6 (Defini-
tion 1)

Finite alphabet, disjoint set of variables, and terms
of our Herbrand Logic (FOL with Herbrand Uni-
verses)

Σop Table 2, p.10 Example set of standard cryptographic construc-
tors, destructors, verifiers

zi Section 2.3,
p.9 (Defini-
tion 4)

Frame (as in static equivalence), adapted to Her-
brand Logic

mi Section 2.3,
p.9

Memory location i, storing a piece of intruder
knowledge

α Section 3,
p.13

Payload, information that the intruder may legiti-
mately obtain, over V0 ⊆ V and Σ0 ⊆ Σ

β Section 3,
p.13

Technical information of and about observed pro-
tocol messages, over V and Σ

φframe(z),
φz1∼z2

Fig. 1, p.12 Axioms used in (α,β)-privacy

concr Section 3.2,
p.15

Encoding of concrete intruder knowledge, ground
terms from TΣ

struct Section 3.2,
p.15

Encoding of structural intruder knowledge, terms
from TΣ(V)

1.3 Organization.

Section 2 provides the basis for our approach: we discuss First-Order Logic with
Herbrand Universes, messages and frames. In Section 3, we formalize (α,β)-
privacy and consider some concrete examples. Note that we introduce the main
notions and primitives of our new (α,β)-privacy approach step by step, where
Table 1 gives an overview of where they are introduced. In Section 4, we discuss
automation and the relation of (α,β)-privacy to static equivalence. In Section 5,
we provide additional examples of how (α,β)-privacy may be employed to model
randomized and deterministic pooling of knowledge, and e-voting. In Section 6,
we discuss how we can extend (α,β)-privacy to transition systems. In Section 7,
we show how the intruder can make use of some background knowledge to carry
out attacks. Finally, in Section 8, we draw conclusions, discussing also related
work and future work. This paper extends and supersedes the preliminary
version [34].
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2 Preliminaries

2.1 Herbrand Logic

To formalize our approach, we need to choose an appropriate logic. An obvious
candidate is first-order logic (FOL), but this has one difficulty when it comes
to the interpretation of the constants and cryptographic operators. As is stan-
dard in security protocol verification, we would like to interpret these operators
either in the free algebra or in the initial algebra induced by a set of algebraic
equations; we call this the Herbrand Universe.3 In general, we cannot enforce
the desired interpretation by axioms in FOL (see, e.g., Example 2). There are
some workarounds for this; for instance, [9, 25, 37, 39] use first-order Horn the-
ories that are inconsistent (in standard FOL) iff there is an attack in the least
Herbrand model, but this construction is not possible for our work because we
want to talk about deductions that hold in all Herbrand models of a formula
(which does not necessarily have a unique least Herbrand model).

As proposed in [27], FOL with Herbrand universes, or Herbrand Logic for
short, can be seen as a logic in its own right—as justified by the higher expres-
siveness, see, e.g., Example 2 below. We define Herbrand Logic as follows (and
will then discuss differences with respect to the definition of [27] below).

Definition 1 (Syntax of Herbrand Logic). Let Σ = Σf ]Σi]Σr be an alphabet
that consists of

• a set Σf of free function symbols,

• a set Σi of interpreted function symbols and

• a set Σr of relation symbols,

all with their arities. We write fn and rn to denote a function symbol f and a
relation symbol r of arity n, respectively.

We write f(t1, . . . , tn) when f ∈ Σf and f [t1, . . . , tn] when f ∈ Σi, and
we denote the set of considered cryptographic operators by the subset Σop ⊆
Σf . Constants are the special case of function symbols with arity 0; for an
uninterpreted constant c0 ∈ Σf , we omit the parentheses and write simply c
instead of c(), whereas for interpreted constants c0 ∈ Σi, we do not omit the
square brackets for clarity and write c[].

Let V be a countable set of variable symbols, disjoint from Σ. We denote
with TΣ(V) the set of all terms that can be built from the function symbols in Σ
and the variables in V. We simply write TΣ when V = ∅, and call its elements
ground terms (over signature Σ). We define substitutions θ as is standard.

We define the set LΣ(V) of formulae over the alphabet Σ and the variables
V as usual: relations and equality of terms are atomic formulae, and composed

3Note that it is common to define the Herbrand Universe as the free term algebra but for
our purposes it is crucial to include also algebraic properties of the operators, as illustrated
in Example 1.
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formulae are built using conjunction ∧, negation ¬, and existential quantification
∃.

The function fv returns the set of free variables of a formula as expected.
�

We employ the standard syntactic sugar and write, for example, ∀x. φ for
¬∃x.¬φ. We also write x ∈ {t1, . . . , tn} to abbreviate x = t1 ∨ . . . ∨ x = tn.

Slightly abusing notation, we will also consider a substitution {x1 7→ t1, . . . , xn 7→
tn} as a formula x1 = t1 ∧ . . . ∧ xn = tn.

Definition 2 (Herbrand Universe and Algebra). Formulae in Herbrand logic
are always interpreted with respect to a given fixed set Σf of free symbols (since
this set may contain symbols that do not occur in the formulae) and a congruence
relation ≈ on TΣf

. We may annotate all notions of the semantics with Σf and
≈ when it is not clear from the context.

We write [[t]]≈ = {t′ ∈ TΣf
| t ≈ t′} to denote the equivalence class of a term

t ∈ TΣf
with respect to ≈. Further, let U = {[[t]]≈ | t ∈ TΣf

} be the set of all
equivalence classes. We call U the Herbrand universe (since it is freely generated
by the function symbols of Σf modulo ≈). Based on U , we define a Σf -algebra A
that interprets every n-ary function symbol f ∈ Σf as a function fA : Un → U in
the following standard way. fA([[t1]]≈, . . . , [[tn]]≈) = [[f(t1, . . . , tn)]]≈, where the
choice of the representatives t1, . . . , tn of the equivalence classes is irrelevant
because ≈ is congruent. A is sometimes also called the quotient algebra (in the
literature sometimes denoted with TΣf

/ ≈). �

Example 1. As an example, suppose the congruence relation ≈ is given by a
set of equations like ∀x, y. x+y ≈ y+x for some binary function symbol + in
Σf . Then we have in the quotient algebra 5+3 ≈ 3+5 but still 3+5 6≈ (1+2)+5.
Thus, the quotient algebra is the finest (or “free-est”) interpretation still com-
patible with the given algebraic properties. �

Definition 3 (Semantics of Herbrand Logic). An interpretation I maps every
interpreted function symbol f ∈ Σi of arity n to a function I(f) : Un → U on
the Herbrand universe, every relation symbol r ∈ Σr of arity n to a relation
I(r) ⊆ Un on the Herbrand universe, and every variable x ∈ V to an element
of U .

We extend I to a function on TΣ(V) as expected: I(f(t1, . . . , tn)) = fA(I(t1),
. . . , I(tn)) for f ∈ Σf and I(f[t1, . . . , tn]) = I(f)(I(t1), . . . , I(tn)) for f ∈ Σi.

We define that I is a model of formula φ, in symbols I |= φ, as follows:

I |= s = t iff I(s) = I(t)
I |= r(t1, . . . , tn) iff (I(t1), . . . , I(tn)) ∈ I(r)
I |= φ ∧ ψ iff I |= φ and I |= ψ
I |= ¬φ iff not I |= φ
I |= ∃x. φ iff there is a c ∈ U such that I{x 7→ c} |= φ

where I{x 7→ c} denotes the interpretation that is identical to I except that x
is mapped to c. Entailment φ |= ψ is defined as I |= φ implies I |= ψ for all

7



interpretations I. We write φ ≡ ψ when both φ |= ψ and ψ |= φ. We also use
≡ in the definitions of formulae. Finally, we write Sat(φ) if φ has a model. �

For most applications, the interpretation of the Herbrand universe modulo a
congruence ≈ is actually syntactic sugar. For instance, when ≈ is induced by a
set of equations, it is not difficult to see that the relation ≈ can be axiomatized
in Herbrand logic itself.

Example 2. Similar to [27], we can axiomatize arithmetic in Herbrand logic;
simply let Σf = {z0, s1}, representing 0 and (+1), let ≈ be syntactic equality on
TΣf

, and let Σi = {add2,mult2} and Σr = {<} with the following formula:

φ ≡ ∀x, y. add [z, y] = y ∧ add [s(x), y] = add [x, s(y)] ∧ mult [z, y] = z ∧
mult [s(x), y] = add [y,mult [x, y]] ∧ x < s(x) ∧ x < y =⇒ x < s(y)

Then φ |= ψ iff ψ is a true arithmetic statement. It is well-known that (as a con-
sequence of Löwenheim-Skolem’s theorem, see [23], for instance) an equivalent
axiomatization cannot be achieved in standard FOL. �

We note the following three differences with respect to the definition of Her-
brand logic in [27]. First, in [27] and as is standard, the Herbrand universe is
the free term algebra, forbidding one to model algebraic properties of the free
operators. Our definition is a generalization to equivalence classes modulo the ≈
relation (and ≈ can simply be set to be the syntactic equality on TΣf

to get the
free algebra). Second, the logic in [27] treats free variables as implicitly univer-
sally quantified, which is quite non-standard.4 In our definition, an interpreta-
tion of a formula includes the interpretation of the free variables as is standard.
This is, of course, without loss of expressiveness since one can quantify variables
when this is what one wants to express. Third, the logic in [27] does not have in-
terpreted functions and, in fact, these are syntactic sugar: an interpreted n-ary
function symbol f can be modeled by an n+ 1-ary relation Rf symbol with the
axiom ∀x1, . . . , xn. ∃y. Rf (x1, . . . , xn, y) ∧ ∀y′. Rf (x1, . . . , xn, y

′) =⇒ y = y′.

2.2 Messages, Operators and Algebraic Properties

In (α,β)-privacy we generally use a black-box algebraic model that consists of
an arbitrary set of cryptographic operators and their algebraic properties. For
concreteness, for most examples in this paper, we will use the set Σop given in
Table 2.

The congruence relation ≈ that the Herbrand universe is defined by is the
least relation so that the equations in Table 2 hold (for all terms s, r, t, t1, t2
in TΣop and for i ∈ {1, 2}). Intuitively,

4It is, of course, common to use some quantifier-free representations, e.g., a set of clauses
where all variables are implicitly universally quantified. However, in a logic with (arbitrarily
scoped) quantifiers this is indeed non-standard. Consider, as an example, the absurd statement
x = c |= x 6= c. In our definition of Herbrand Logic, this is false. If we consider all variables
as explicitly quantified, i.e., ∀x. x = c |= ∀x. x 6= c, it is trivially true (since the formula on
the left is unsatisfiable).
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• pub(a) and priv(a) represent an asymmetric key pair for an agent a, where
pub is a public function in Σop and priv is a private function in Σ \ Σop ;5

• crypt(p, r, t) represents the asymmetric encryption of a message t with a
public key p and randomness r;

• dcrypt(p′, t) represents the decryption with private key p′ of a message t,
and the first property formalizes that decryption with the correct private
key yields the original message;

• vcrypt(p′, t) and the second property formalize that we can check whether
the message t can be correctly decrypted with private key p′ (we return
to this below);

• sign(p′, t), retrieve(t) and vsig(p′, t), together with their properties, sim-
ilarly formalize digital signatures (where we here model signatures that
contain the plaintext so that it can be retrieved);

• scrypt(k, t), dscrypt(k, t) and vscrypt(k, t), together with their properties,
similarly formalize symmetric cryptography;

• pair, proji and vpair, together with their properties, formalize that we
assume to have a mechanism to concatenate plaintext so that it can later
be decomposed in a unique way (sometimes called “serialization”);

• h is a cryptographic hash function (where the lack of destructors reflects
that it is hard to find a pre-image).

This model represents cryptographic implementations that allow for checking
whether one has decrypted correctly (for instance, in symmetric cryptography,
this is often realized by message authentication codes). This means that the
real decryption functions stop with a failure whenever the message has not been
encrypted with the corresponding key, and are thus partial functions. The way
we model them, destructors are total functions and the corresponding verifiers
represent the domain for which they are defined. Of course, we can model
other cryptographic set-ups, however they often have quite different properties
for privacy, e.g., the randomization is crucial in asymmetric cryptography (as
illustrated by the examples below).

Note also that our model is untyped, e.g., one can build crypt(h(t1), r, t2),
although decryption will later fail for any term as decryption key.

2.3 Frames

Frames and the notion of their static equivalence are a standard way to formalize
privacy goals in formal methods, e.g., [10, 18, 21]. In this paper, we define
frames in a slightly non-standard way that is more convenient to formalize them

5In this theory, every agent can have only one key pair for simplicity; to allow for arbitrary
key infrastructures, one can rather model both pub and priv as public functions that map
secret seeds to public and private keys, respectively.
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Table 2: Example set Σop : standard cryptographic constructors, destructors,
verifiers
Constructors Destructors Verifiers Properties

pub
crypt dcrypt vcrypt dcrypt(priv(s), crypt(pub(s), r, t)) ≈ t

vcrypt(priv(s), crypt(pub(s), r, t)) ≈ yes
sign retrieve vsig retrieve(sign(priv(s), t)) ≈ t

vsig(pub(s), sign(priv(s), t)) ≈ yes
scrypt dscrypt vscrypt dscrypt(k, scrypt(k, t)) ≈ t

vscrypt(k, scrypt(k, t)) ≈ yes
pair proji vpair proji(pair(t1, t2)) ≈ ti

vpair(pair(t1, t2)) ≈ yes
h

directly in Herbrand logic. In Section 2.4, we discuss the differences between
the standard definition of frames and the one we consider here, and then, in
Section 3, we relate frames to our concept of (α,β)-privacy.

Definition 4 (Frame). A frame is written as

z = {|m1 7→ t1, . . . ,ml 7→ tl|} ,

where the mi are distinguished constants and the ti are ground terms that do not
contain any mi. We call m1, . . . ,ml and t1, . . . , tl the domain and the image of
the frame, respectively. �

This frame represents that the intruder knows l messages t1, . . . , tl that he
can “refer to” as m1, . . . ,ml. In standard Dolev-Yao-style intruder models, the
intruder knowledge is just a set of messages {t1, . . . , tl}; in contrast, frames give
each message a unique label mi. This allows us to talk more precisely about
what operations the intruder performs, e.g., “the intruder hashes the message
at label m1 and compares it with the message at label m2”. We may thus refer
to the mi as memory locations of the intruder knowledge.6

Definition 5 (Recipes and intruder-generable term). The set of recipes is the
least set that contains m1, . . . ,ml and that is closed under all the cryptographic
operators Σop. A frame z can be regarded as a substitution that replaces every
mi of its domain with the corresponding ti. For a recipe t, we thus write z(t)
for the term obtained by applying this substitution to t. An intruder generable
term (or just generable term for short) is any term s for which there is a recipe
t with s = z(t). �

6The original definition of frames uses actually variables instead of constants for the labels,
so that a frame is a substitution. In a logical context this is however quite inconvenient, since
substitutions are meta level instead of object level, and mixing them usually does not lead
to great results. Using constants for memory locations instead yields a clean solution and we
can easily model frames as (object-level) functions on ground terms.
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To formalize frames and recipes (and later equivalence of frames) in Her-
brand Logic, we introduce two new symbols for every distinct frame z that
we want to talk about: an interpreted unary function symbol knz (for knowl-
edge) and a unary predicate symbol genz (for generate). We introduce two
axioms φframe(z) and φz1∼z2 that are shown in Fig. 1. Both these axioms
are parameterized over a given set Σop of operators; for instance an expression
like

∨
fn ∈Σop

φ stands for the corresponding disjunction of the instances of the
formula φ for every operator f of arity n of Σop .

Let, for instance, z = {|m1 7→ t1,m2 7→ t2,m3 7→ t3,m4 7→ t4|} for some
terms t1, . . . , t4; then, for our example Σop of Table 2, we have

φframe(z) ≡ (∀x. genz(x) ⇐⇒
(x ∈ {m1,m2,m3,m4} ∨

(∃x1. x = priv(x1) ∧ genz(x1)) ∨
(∃x1, x2, x3. x = crypt(x1, x2, x3)
∧genz(x1) ∧ genz(x2) ∧ genz(x3)) ∨
. . .

)
)
∧
(∀x1. genz(x1) =⇒ knz[priv(x1)] = priv(knz[x1]))
∧
(∀x1, x2, x3. genz(x1) ∧ genz(x2) ∧ genz(x3) =⇒

knz[crypt(x1, x2, x3)] = crypt(knz[x1], knz[x2], knz[x3]))
∧ ...

The formula φframe(z) characterizes a frame in Herbrand logic as follows.
The first conjunct defines the predicate genz to be exactly the set of recipes
for the frame z = {|m1 7→ t1, . . . ,ml 7→ tl|}; the second and third conjuncts
formalize that knz[t] is the result of applying recipe t to frame z, i.e., replacing
every occurrence of a label mi by the corresponding ti in t. Thus, we have:

I |= φframe(z) iff
I(genz) = {[t]≈ | t ∈ TΣop∪{m1,...,ml}} and
I(knz)([t]≈) = [z(t)]≈ for every t ∈ TΣop∪{m1,...,ml}

Example 3. Consider the frame (from [18]):

z1 = {|m1 7→ scrypt(k, n1),m2 7→pair(n1, n2),m3 7→ k|} .

The intruder can then, e.g., obtain n1 as follows: let Φ ≡ φframe(z1); then,
Φ |= genz1

(dscrypt(m3,m1)) ∧ knz1
[dscrypt(m3, m1)] = n1. We then also have

Φ |= knz1 [dscrypt(m3,m1)] = knz1 [proj1(m2)], which intuitively means that the
intruder can check that the decrypted term is equal to the first component of the
term in m2. �

The main idea behind static equivalence of frames (e.g., [10, 18, 21]) is to
ask whether the intruder is able to detect the difference between two “intruder
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For every considered frame z = {|m1 7→ t1, . . . ,ml 7→ tl|}, let knz be an interpreted unary function
symbol and genz be a unary predicate.

For a frame z:

φframe(z) ≡ (∀x. genz(x) ⇐⇒
(x ∈ {m1, . . . ,ml} ∨∨

fn ∈Σop
∃x1 . . . xn. x = f(x1, . . . , xn) ∧ genz(x1) ∧ . . . ∧ genz(xn)))

∧
(knz[m1] = t1 ∧ . . . ∧ knz[ml] = tl)
∧∧

fn ∈Σop
(∀x1 . . . xn.

genz(x1) ∧ . . . ∧ genz(xn) =⇒ knz[f(x1, . . . , xn)] = f(knz[x1], . . . , knz[xn]))

For two frames z1 and z2:

φz1∼z2 ≡ (∀x. genz1
(x) ⇐⇒ genz2

(x))
∧
(∀x, y. genz1(x) ∧ genz1(y) =⇒ (knz1 [x] = knz1 [y] ⇐⇒ knz2 [x] = knz2 [y]))

Figure 1: Axioms used in (α,β)-privacy parameterized over a given set Σop of
operators.

knowledges” (that have the same domain): can the intruder make any check
on the knowledge, i.e., two recipes so that one frame yields the same message
for both recipes, while the other frame yields different messages? If there is no
such critical pair of recipes, i.e., if the intruder has no way to tell whether he is
“in” one frame or the other, then the frames are statically equivalent. We can
formalize this in Herbrand logic using the axiom φz1∼z2

:

Definition 6 (Static Equivalence of Frames). Two frames z1 and z2 with the
same set {m1, . . .ml} of memory locations are statically equivalent (in symbols,
z1 ∼ z2) iff Sat(φframe(z1) ∧ φframe(z2) ∧ φz1∼z2). �

Example 4. We can distinguish z1 of Example 3 from the frame

z2 = {|m1 7→ scrypt(k, n3),m2 7→ pair(n1, n2),m3 7→ k|}

since the check knz2 [dscrypt(m3,m1)] = knz2 [proj1(m2)] fails, whereas the same
check succeeds for knz1 . �

2.4 Differences with Respect to the Standard Definition
of Frames

The standard definition of frames is of the form νn1, . . . , nk. θ, where θ is a
substitution from variables x1, . . . , xl to terms t1, . . . , tl, respectively, and where
the xi do not occur in the ti. (We use the distinct constants mi instead of the
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variables xi.) Further, the ni are the restricted names. Intuitively, the intruder
knows all names that occur freely, i.e., that are not under a restriction. Note
that in the frame νn.{|m1 7→ n|} the intruder can produce n anyway, even though
it is restricted, since he has it as a message in his knowledge. In contrast, in our
notion of frames, all constants are by default unknown to the intruder; thus,
public constants must be modeled in our framework by putting them into the
frame explicitly. This is of course not a restriction (if the set of public constants
is finite), it only may mean longer frames. While the notion of restricted names is
very handy in process calculi, they do not really fit well with a logical approach,
since they are a mixture between constants and variables.

3 A New Privacy Model: (α, β)-privacy

We introduce (α,β)-privacy step by step. In Section 3.1, we introduce the
distinction between payload formulae α and technical formulae β as well as the
notion of interesting consequences. In Section 3.2, we establish the methodology
to reason over such formulae. We also define what it means for α to be combi-
natoric and what is a message-analysis problem. In Section 3.3, we show how
(α,β)-privacy extends straightforwardly to the case of dishonest agents pooling
their knowledge. In Section 4, we discuss automation and the relation to static
equivalence. We then discuss further examples of (α,β)-privacy in Section 5.
In Section 6, we discuss how to extend the (α,β)-privacy notion to transition
systems. In Section 7, we consider the presence of additional background knowl-
edge.

3.1 Payload and Technical Information

Our model is inspired by zero-knowledge proofs for privacy (as they are used,
e.g., in IBM’s Idemix [28]). The following points are characteristic for such
proofs:

• The prover (intentionally) conveys some information to the verifier, i.e.,
the statement being proved to the verifier. We call this statement the
payload α.

• The participants also (inevitably) convey some cryptographic information
(e.g., commitments, challenges, and responses) that, if the scheme is se-
cure, do not reveal anything “interesting” besides α; this, of course, is the
very reason why such a scheme is called zero-knowledge. We call this kind
of information the technical information β.

The term “interesting” that we use here is often defined in the cryptography
world by the fact that it is computationally easy to produce a fake transcript
of zero-knowledge proofs that is statistically indistinguishable from a real tran-
script. Hence, whatever information could possibly be obtained from β, one
may have created oneself. This kind of definition is, however, quite unhandy in
logical reasoning, and it applies only to (some types of) zero-knowledge proofs.
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We show that it is fortunately possible to define the term “interesting” on
a logical basis that makes sense for many actual situations in which we want to
talk about privacy. The key idea is that the payload α may be formulated over
a restricted alphabet Σ0 ( Σ, whereas the technical information β may talk
about the full alphabet Σ (e.g., all cryptographic operators are part of Σ \Σ0).
Hence, we can define (α,β)-privacy as follows.

Definition 7 (Interesting consequences and respect/violation of privacy). Let
Σ0 ( Σ. Given a payload formula α ∈ LΣ0(V) and a technical formula β ∈
LΣ(V), where β |= α and fv(α) = fv(β) and both α and β are consistent, we
say that a statement α′ ∈ LΣ0

(fv(α)) is an interesting consequence of β (with
respect to α) if β |= α′ but α 6|= α′.

We say that β respects the privacy of α if it has no interesting consequences,
and that β violates the privacy of α otherwise. �

Before we move on to the discussion of privacy on messages, let us say a
few more words on the intuition behind Σ0, α, α′ and β. Σ0 is a sub-alphabet
of Σ, namely the restricted alphabet over which we can define the payloads
α and the interesting consequences α′. The choice of Σ0 depends, of course,
on the specific case study we are considering, and we will give a number of
examples in the next subsection and in Section 5. Σ0 allows us to write the
statements α that will be revealed to the intruder and their consequences α′.
As such, Σ0 will typically contain “payload” information, i.e., the information
a system actually deals with, as opposed to all cryptographic functions and
communications that are used to implement the system. For instance, in a
voting system, Σ0 could contain the names of three electoral candidates a, b
and c, and α could then “reveal” that the actual vote being cast is x ∈ {a, b, c},
as opposed to the specific cryptographic messages being sent in the system that
use hash functions and cryptographic operators to encrypt the votes. Note also
that, given the importance of Σ0, we could actually write “(α,β)-privacy with
respect to Σ0”. However, we take the liberty to write just (α,β)-privacy as it
is simpler and Σ0 is, almost always, clear from context.

We have defined the notion of an interesting consequence α′ as anything
the intruder may be able to derive from his knowledge β as long as it is a
non-technical statement (i.e., of LΣ0) and it does not follow from α alone, i.e.,
from what he is permitted to know anyway. This allows us to capture that the
intruder may well see a few technical details, e.g., that two messages come from
the same IP address, but that in itself is not very interesting or useful as long
as he cannot tie that to a relevant information α′.

Another aspect of this definition is that by the information α that we gave
out, also all information that can be derived from α is given out, because the best
cryptographic systems cannot prevent the intruder from drawing conclusions (by
making derivations from the cryptographic messages he knows). In general, the
weaker α is (i.e., the less information we deliberately release to the intruder)
and the stronger β is (i.e., the more information we assume the intruder might
actually have), the stronger is the notion of privacy. So, as a rule of thumb,
when in doubt, one should be restrictive on α and generous on β.
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In the examples below, we will see that, at least for easy systems, it is actu-
ally possible to “infer” β systematically from the definition of the system under
study: β is namely defined as the conjunction of α and the instantiation of the
axioms φframe(z) and φz1∼z2

for the specific system, including in particular
its specific set Σop of cryptographic operators and the cryptographic messages
exchanged. One could even compute β from a formal system specification of
the system written, e.g., in the applied pi-calculus or in an extended Alice–Bob
notation such as [6]. In general, however, it might not be possible to systemat-
ically infer β from the system, as β may actually contain information that goes
beyond the exchanged messages, such as timing information, for instance.

3.2 Privacy on Messages

The frames that we have introduced above formalize the knowledge of the in-
truder. The new idea is that we also model the structural information that
the intruder has about messages, and that that information takes the form of
a frame too, but with variables in messages. The concrete knowledge (that
is modeled by frames so far) is then an instance of this structural knowledge.
Thus, a key idea of (α,β)-privacy is to make explicit the fact that the intruder
will usually also have information about the structure of messages and can use
this for his reasoning.

For instance, the intruder may know a message f(a, a), and he may know
that the term is the application of the operator f to two terms, but he may
not know which terms. This structural knowledge can be expressed by the term
f(x, y) with two variables x and y as placeholders for what the intruder cannot
determine so far. If the intruder learned that the two unknown arguments are
the same, then we would have the structural information f(x, x).

For most part of this paper, we will call the frame for the structural informa-
tion struct and the frame for the concrete knowledge concr , and for simplicity
we will abuse notation and write also struct [·] and concr [·] in Herbrand logic
instead of knstruct [·] and knconcr [·]. Since struct and concr will then also have
the same domain, it follows that genstruct and genconcr are equivalent and thus
we will simply write gen.

The variables that occur in frame struct are the free variables from α, e.g.,
the intruder may know about an encrypted term that it contains a particular
secret, although he does not know this secret.

The axiom φframe(z) can now be instantiated with concr and struct . This
formalizes that (a) the intruder knowledge is closed under application of public
operators and (b) when the intruder composes terms himself, he knows the
structure of the result as far as he knows the structure of the subterms.

An interesting question is now what it means if we also instantiate the axiom
φz1∼z2

with concr and struct , i.e., φconcr∼struct . This expresses that the in-
truder can connect knowledge of concrete terms and their structure: two recipes
yield the same intruder-generable messages iff they have the same structure.

Let us now illustrate this by introducing a running example. In (α,β)-
privacy, we typically consider infinite state-transition systems and we now first
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focus on the analysis of privacy with respect to one particular reachable state
of such a system.

Example 5 (A simple voting example). As an example, let us consider a very
simplistic toy e-voting protocol (we will discuss more realistic examples in Sec-
tion 5 and Section 6). Assume that users vote by choosing values xi from a
payload alphabet Σ0 = {a, b, c}, and that, as part of the protocol, a voting server
publishes messages of the form h(xi). Consider an intermediate state of an
election in which only one vote x = a has been cast (and the final result of the
election has not yet been released by the server). Then, α and β for this state
could look as follows:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(x)|}, so that concr =
θ(struct) for a substitution θ = {x 7→ a}. Then, in particular, we have that

concr [m1] = struct [m1] = a ∧
concr [m2] = struct [m2] = b ∧
concr [m3] = struct [m3] = c ∧
concr [m4] = h(a) ∧ struct [m4] = h(x)

The payload formula α expresses the obvious, namely, that the intruder
knows that the vote is in Σ0. The technical formula β contains α, the concrete
and structural knowledge, and the ability to compare them. β thus expresses the
fact that the intruder knows

• all the constants of Σ0 (in memory locations m1, m2 and m3, for which
the structural information is identical to the concrete information),

• the concrete (observed) hash of the vote (in m4) and the structural infor-
mation that the vote message has the form h(x).

We, the modelers, can indirectly read off from the formula β “what actually
happened”: there is only one interpretation of the x such that concr [m4] =
struct [m4] holds, namely x = a. The intruder cannot reason this way, and thus
in general will not know the right interpretation of the variables, but may in
some cases be able to infer it by comparing concrete and structural information
he has, as is the case in this example: first, observe that, by φframe(concr),
we have concr [h(m1)] = concr [m4]; hence, by applying φconcr∼struct , we get
struct [h(m1)] = struct [m4], which, by φframe(struct), yields h(a) = h(x); thus,
we conclude that the intruder can indeed find out that the vote was x = a,
meaning that β does not respect the privacy of α (with respect to Σ0 = {a, b, c})
and that the protocol is not safe.

Let us therefore consider a more refined protocol by adding a fixed and secret
number n: the voting server now publishes messages of the form h(pair(n, xi)) for
a number n known only to the server, i.e., n is a secret from Σ\Σ0. (Obviously,
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using such a fixed number, even though secret from the intruder, is a risk for
guessing attacks, but we will abstract away from guessing for now and discuss
it later.) Let us again consider an intermediate state of the election in which
only one vote x = a has been cast (and the final result of the election has not
yet been released by the server). Then, the α and β for this state could look as
follows:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n, x))|}, with
concr = θ(struct) for θ = {x 7→ a}. Now, β expresses that the intruder knows
the observed hash of the vote (concr [m4] = h(pair(n, a)) and the structural in-
formation that this message has the form struct [m4] = h(pair(n, x)). Here, the
intruder does not know n and thus β has several satisfying interpretations of
the free variables, i.e., β has models for each x ∈ {a, b, c}), which represents the
uncertainty of the intruder. Hence, this β does respect the privacy of α (with
respect to Σ0 = {a, b, c}).

One would thus be tempted to say that the variant of the protocol with the
fixed secret number is safe, but what happens if there are some dishonest voters
who collaborate with the intruder? Let us now focus on an intermediate state
of the election in which only two votes x1 and x2 have been cast (and the final
result of the election has not yet been released by the server), where x1 = a is
from a dishonest voter and x2 = b from an honest one. Then, the α and β for
this state could look as follows:

α ≡ x1, x2 ∈ {a, b, c} ∧ x1 = a
β ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n, x1)),m5 7→
h(pair(n, x2)|}, with concr = θ(struct) for θ = {x1 7→ a, x2 7→ b}, where now α
expresses that the intruder knows that both votes are in Σ0 and that he knows
the value of the dishonest vote, whereas β expresses that the intruder not only
knows the concrete observed messages h(pair(n, a)) and h(pair(n, b)), which are
respectively in m4 and m5, but he also has the structural information that these
messages have the form h(pair(n, xi)).

The intruder can now reason as follows: since, by φframe(concr), it holds that
concr [m4] 6= concr [m5] (recall that all terms are interpreted in the Herbrand uni-
verse), we have struct [m4] 6= struct [m5] by φconcr∼struct , so that h(pair(n, x1)) 6=
h(pair(n, x2)), and therefore x1 6= x2 (again since terms are interpreted in the
Herbrand universe). Since the intruder knows already the dishonest vote x1 = a,
he knows x2 6= a, and can hence derive from β the Σ0-formula α′ ≡ x2 ∈ {b, c}
that does not follow from α. Thus, in this example, β does not respect the pri-
vacy of α (with respect to Σ0 = {a, b, c}). Note that the intruder cannot derive
more, which is—very declaratively—because β has both a model in which x2 = b,
and one in which x2 = c, so the intruder was not even able to determine the
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choice x2, he was only able to exclude one interpretation, namely x2 = a.7

Let us briefly also consider three further variants of the example with α ≡ x ∈
{a, b, c}. First, if the intruder also knows n, say concr [m6] = struct [m6] = n,
then he can indeed derive x = b, because he can verify that h(pair(m6,m2)) gives
the same concrete value as m4.

Second, if the server uses different secret nonces instead of a fixed number
for all votes, i.e., β ≡ . . . concr [m4] = struct [m4] = h(pair(n1, a)) ∧ concr [m5] =
h(pair(n2, b)) ∧ struct [m5] = h(pair(n2, x)), then β indeed preserves the privacy
of α. To see this, note that β has models with x = a, with x = b, and with
x = c. Therefore, every Σ0-formula α′ that follows from β also follows from α
and thus β respects the privacy of α (with respect to Σ0 = {a, b, c}).

Third, so far m4 represented the vote of a dishonest agent and the intruder
knew already its value x1 = a. Protecting the privacy of two honest votes can
be formalized as follows (where we have two different nonces, but model them
just as some fixed constants that the intruder does not know by default):

α ≡ x1 ∈ {a, b, c} ∧ x2 ∈ {a, b, c}
β ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

such that β includes

. . . concr [m4] = h(pair(n1, a)) ∧ struct [m4] = h(pair(n1, x1)) ∧
concr [m5] = h(pair(n2, b) ∧ struct [m5] = h(pair(n2, x2))

Here again β respects the privacy of α (with respect to Σ0 = {a, b, c}) because
we can find a model for each combination of values for x1, x2 ∈ {a, b, c}. In
contrast, if we had used the same nonce (replacing both n1 and n2 with n), we
would have that concr [m4] 6= concr [m5] and thus x1 6= x2, which does not follow
from α. Again the intruder does not find out x1 or x2 but only that the two users
voted differently. The crucial point here (and the strength of (α, β)-privacy) is
that we do not have to specify checks for all the different things that the intruder
may be able to figure out, or even think about them; we do not need to list all
the different equivalences that should be considered. In (α, β)-privacy, we simply
just specify a formula α that describes what he is cleared to know and a formula
β containing all information that may be available to him. �

The form of α and β that we have used for Example 5 is at the core of
many specifications, namely, when the intruder has observed a set of messages

7Note also that one may, of course, consider a similar use of variables for non-payload
secrets, like the value n. However, since we require that α and β have the same set of free
variables, one would then existentially quantify that value, e.g.,

β ≡ ∃y. . . . concr [m4] = h(pair(n, a)) ∧ struct [m4] = h(pair(y, x1)) ∧
concr [m5] = h(pair(n, b)) ∧ struct [m5] = h(pair(y, x2))

Without the existential quantifier (if y were left free), the intruder could derive, e.g., that y 6= a
(by generating h(pair(m1,m1)) and comparing the result with m4). The ∃ thus intuitively says
that we are not interested in the concrete value of y; in fact, the goal is not the protection of
the nonces in the hash-values, so if they are found out, then it is not in itself a violation of
privacy (but may lead to one).
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and knows their structure. For this reason, we define a particular fragment of
(α,β)-privacy (for which we give some decidability results in Section 4) that
deals only with what we call combinatoric α and only with the analysis of
messages similar to the previous example.

Definition 8 (Combinatoric α). We call α ∈ LΣ0(V) combinatoric if Σ0 is
finite and contains only uninterpreted constants. �

Thus, every model I of α maps the free variables of α to elements of the
Herbrand universe induced by Σ0. For each free variable x of α, we have I(x) =
[c]≈ for some unique c ∈ Σ0. For every I such that I |= α, we define the
substitution θI that has as domain the set of free variables of α, and such that
θI(x) = c iff I(x) = [c]≈ (note that θI is unique modulo ≈). Recall that, by
slight abuse of notation, we may treat a substitution θ = [x1 7→ t1, . . . , xn 7→ tn]
as the Herbrand formula x1 = t1 ∧ . . . ∧ xn = tn. Thus α is equivalent to the
disjunction of all such substitutions:

Lemma 1. For every combinatoric α, there is a finite set of substitutions Θ
such that α ≡

∨
θ∈Θ θ. We thus call Θ also the models of α.

Proof. Let Θ = {θI | I |= α}. Then Θ is finite since both the domain (namely
the free variables of α) and co-domain (namely Σ0) of every θI are finite. For
every I |= α, it is clear that I |= θI , thus α |=

∨
θ∈Θ θ. For every θ ∈ Θ

and every I |= θ, we have I |= α, since Σ0 contains nothing but uninterpreted
constants and all free variables of α are mapped to Σ0 by θ, thus also

∨
θ∈Θ θ |=

α. �

Definition 9 (Message-analysis problem). Let α be combinatoric, θ a model
of α, struct = {|m1 7→ t1, . . . ,ml 7→ tl|} for some t1, . . . , tl ∈ TΣ(fv(α)), and
concr = θ(struct). Define

MsgAna(α, struct , θ) ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

If β ≡ MsgAna(α, struct , θ), then we say that β is a message-analysis problem
(with respect to α, struct , and θ). �

In general, such a β allows us to model a system where messages ti have
been exchanged that depend on some payload values fv(α) and the intruder
has seen the concrete instantiations θ(ti) of these messages. Typically, the
intruder knowledge will contain all the values of Σ0 but he does not know
the substitution θ, i.e., how the payload variables were actually chosen from
Σ0. What he knows, however, is the structure of the terms, i.e., where these
variables occur in the ti, because this structural information is usually part of
a publicly available protocol description. He can try to exploit comparisons
(φconcr∼struct) of concrete terms and structural information.
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3.3 Pooling of Knowledge in (α, β)-privacy

If we model several dishonest parties, an interesting question is what they can
achieve if they collaborate, in particular, if they pool their knowledge. (α,β)-
privacy offers a particularly simple and declarative way of modeling, and rea-
soning about, the pooling of knowledge.

The general principle for pooling knowledge is as follows. We can describe
the individual view of the world of two dishonest agents as two pairs (α1,β1)-
privacy and (α2,β2)-privacy. Suppose they are message-analysis problems, i.e.,
β1 = MsgAna(α1, struct1, θ1) and β2 = MsgAna(α2, struct2, θ2), where we
assume that the domains of struct1 and struct2 are disjoint (i.e., we do not have
a name clash in the memory locations).

Thus, α1 and α2 is the knowledge we have deliberately released to the two
dishonest agents, and β1 and β2 is the technical information such as exchanged
messages that they could observe, respectively. Of course, we require that both
(α1,β1)-privacy and (α2,β2)-privacy already hold. If the two parties collude,
then they can in general derive more than their individual αi, but it is quite
“natural” to require that still (α1 ∧ α2,β1 ∧ β2)-privacy should hold. Why is
it “natural”? It is obviously the strongest privacy requirement we can make:
no system can prevent the intruders from combining their knowledge, i.e., both
on the payload level α1 ∧ α2 and on the technical level β1 ∧ β2, and derive
conclusions from that. The point is that the intruders should not be able to
derive even more than that.

Example 6. Continuing in the realm of the previous examples, consider two
dishonest agents who each have observed the messages around one vote x1 and
x2, respectively:

α1 ≡ x1 ∈ {a, b, c}
β1 ≡ MsgAna(α1, struct1, θ1)

with struct1 = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n, x1)|} and θ1 = {x1 7→
a}, and

α2 ≡ x2 ∈ {a, b, c}
β2 ≡ MsgAna(α2, struct2, θ2)

with struct2 = {|m5 7→ a,m6 7→ b,m7 7→ c,m8 7→ h(pair(n, x2)|} and θ2 = {x2 7→
b}.

Now consider β1 ∧ β2. The question is whether it respects the privacy of
α1 ∧ α2. By joining forces and pooling their knowledge, and reasoning exactly
like we did in Example 5, the two dishonest agents can derive that the two
votes are different, i.e., x1 6= x2, which does not follow from α1 ∧ α2. This
is an example of the fact that, even though a protocol may safeguard privacy
against two intruders who do not collude and see only part of the messages, the
two intruders may be able to break the protocol’s privacy when they pool their
knowledge. As in the previous examples, the problem is that the two messages
in question use the same nonce; if the hash-values in m4 and m8 used different
nonces n1 and n2 (instead of n), then the same derivation is not possible, and
the privacy of α1 ∧ α2 is respected. �
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Thus, in general, it makes sense to consider the case that dishonest agents can
pool their knowledge and draw conclusions: no system can prevent this. From
the (α,β)-privacy paradigm it is clear that the conjunction of the respective αs
and the respective βs yields the best possible privacy requirement for the case
of such a collusion, and this is a natural candidate to verify in a system.

3.4 Model-theoretical (α, β)-privacy

We now introduce a model-theoretical view of (α,β)-privacy that gives us ad-
ditional tools to tackle some problems in a more semantical way. We then
prove two theorems about the relationship between the classical notion of (α,β)-
privacy that we have considered above and the model-theoretical notion.

Recall that in Herbrand logic an interpretation does not specify a universe (as
is the case in standard first-order logic), but the universe is rather the Herbrand
universe induced by the considered alphabet (typically Σ or Σ0 in our case) and
the congruence relation ≈. When it is not determined by the context, we may
explicitly denote the alphabet and write, e.g., “a Σ0-interpretation”.

Definition 10 (Model-theoretical (α,β)-privacy). Consider Σ0 and Σ as before,
a formula α over Σ0 and a formula β over Σ such that fv(α) = fv(β), both α
and β are consistent and β |= α. We say that (α,β)-privacy holds model-
theoretically iff every Σ0-model of α can be extended to a Σ-model of β, where
a Σ-interpretation I ′ is an extension of a Σ0-interpretation I if they agree on
all variables and all the interpreted function and relation symbols of Σ0. �

Theorem 1. If (α, β)-privacy holds model-theoretically, then it also holds in
the classical sense. Conversely, if for every model I of α, there is a Σ0-formula
φI that has only I as a model (with respect to Σ0), then classical (α, β)-privacy
implies model-theoretical (α, β)-privacy.

Proof. First, suppose that (α,β)-privacy holds model-theoretically. Let I be a
model of α. Then, for some extension I ′ of I (interpreting also the symbols in
Σ \Σ0), we have I ′ |= β. Let further α′ be any Σ0 formula that follows from β.
Then, I ′ |= α′ and thus also I |= α′. Since I |= α was arbitrary, we have that
α |= α′; since α′ was arbitrary, we have classical (α,β)-privacy.

Conversely, suppose that for every I such that I |= α there is a Σ0 formula
φI that has (with respect to Σ0) exactly I as a model. Suppose, for the sake of
contradiction, that (α,β)-privacy does not hold in the model-theoretical sense,
i.e., let I |= α be such that no extension I ′ to Σ is a model of β. Thus, no model
of β is a model of φI , and then β |= ¬φI . Let thus α′ ≡ φI . Obviously, α 6|= α′,
so classical (α,β)-privacy is violated, and we conclude by contradiction. �

Hence, for a combinatoric α, classical (α,β)-privacy and model-theoretical
(α,β)-privacy coincide. In general, however, classical (α,β)-privacy does not
imply model-theoretical (α,β)-privacy.

Theorem 2. Classical (α, β)-privacy does not imply model-theoretical (α, β)-
privacy.
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Proof. Let Σ0 consist of the predicate p/1 and the uninterpreted functions z/0
and s/1, i.e., the Herbrand Universe is the natural numbers and p is a unary
predicate over the natural numbers. We can represent any model of p as an
ω-word w ∈ {0, 1}ω, where the i-th position in the word is 1 iff p[si(z)] holds.
Let α ≡ true. Let now Σ contain Σ0 and the interpreted function +/2 and let

β ≡ (∀x, y. (x+z = x) ∧ (x+s(y) = s(x+y))) ∧ (∃t1, t2. (t1 6= z)∧ (∀x. p[t2+x]↔ p[t1+t2+x]))

Thus, β says that + is addition on natural numbers and that p when written
as an ω-word has the form uvω for some u, v ∈ {0, 1}∗, v 6= ε. Clearly, (α,β)-
privacy does not hold in the model-theoretical sense, but we now show that it
holds in the classical sense.

Let α′ be any formula over Σ0, and let G be the models for p of the formula
¬α′ represented as ω-words. Now G is an ω-regular language: this is because
¬α′ is over Σ0, thus can only use z, s and p besides the symbols of the logic;
the meaning of z and s and the domain of p are determined by the Herbrand
universe, thus ¬α′ corresponds to an S1S formula and the set of its models
forms an ω-regular language [11]. We can distinguish two cases. In the first
case, G = ∅, then α |= α′, so (α,β)-privacy is not violated for this α′. In the
second case, G 6= ∅. A non-empty ω-regular language, however, always contains
a word of the form w = uvω for some u, v ∈ {0, 1}∗, v 6= ε. Then, w can be
extended to a model of β, but it is also a model of ¬α′, and thus β 6|= α′. Hence,
also for this α′, (α,β)-privacy is not violated either. In conclusion, there is no
α′ over Σ0 such that β |= α′ but α 6|= α′. �

Note again that whenever all models of α can be written as Σ0-formulae—
which holds in all but quite construed cases—classical and model-theoretical
(α,β)-privacy holds. This allows us to overcome the following obstacle. (α,β)-
privacy asks for any Σ0-formula α′ that can be derived from β but not from α.
In general, there is a (countably) infinite choice for α′ to consider. However,
this is not the case when α is combinatoric:

Corollary 1. Consider an (α, β) pair, where α is combinatoric and Θ is the
set of models of α. Then, β violates the privacy of α iff β |= ¬θ for any θ ∈ Θ.

Proof. For a combinatoric α, classical and model-theoretical privacy coincide
by Theorem 1. Moreover, for a combinatoric α, Θ is finite by definition. The
statement follows by the fact that β |= ¬θ is equivalent to ¬Sat(β ∧ θ). �

4 Automation and the Relation to Static Equiv-
alence

The concept of (α,β)-privacy is very expressive, because Herbrand logic is.
Considering Example 2, we recall that we can axiomatize arithmetic (of natural
numbers) by a Herbrand formula α so that α |= γ iff γ is a true sentence
of arithmetic. Let valid be a further nullary relation symbol in Σ0 and β ≡
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α ∧ (γ =⇒ valid); then β respects the privacy of α iff γ is a true sentence
of arithmetic. Thus, in general, (α,β)-privacy (or its complement) is not even
semi-decidable.

We see this expressive power as a feature, because it allows us to think about
privacy without the tight corset imposed by automated methods. In this section,
we explore a decidable fragment and the relation to static equivalence of frames
for which many decidability results already exist. Because of its expressive
power, it is no surprise that one can formulate static equivalence in Herbrand
logic, and thus reduce static equivalence of frames to (α,β)-privacy.

Lemma 2. Given two frames z1 and z2, we have z1 ∼ z2 iff (α, β)-privacy
holds for α ≡ x ∈ {0, 1} and β ≡ α ∧ (x = 1 =⇒ φframe(z1) ∧ φframe(z2) ∧
φz1∼z2

).

Proof. The statement follows straightforwardly by observing that every model
of α can be extended to a model of φframe(z1)∧φframe(z2)∧φz1∼z2 iff z1 ∼ z2.
�

The simple argument of this lemma may seem slightly unfair towards static
equivalence of frames, since we are not truly using α for the high-level pay-
load information available to the intruder, but rather considering everything
as technical, and then just exploiting the expressive power of Herbrand logic.
In order to show a closer relationship between static equivalence and (α,β)-
privacy, we prove below that a large fragment of the static equivalence problem
for frames can be encoded into the message-analysis fragment of (α,β)-privacy
(cf. Definition 9).

Static equivalence of frames is essentially the question whether the intruder
can distinguish two concrete worlds. For instance, the frames z1 and z2 in
Example 3 and Example 4 represent two concrete worlds that the intruder can
distinguish: z1 6∼ z2. In contrast, (α,β)-privacy expresses with α all possible
worlds (there may be more than two) and with β one concrete world, asking
whether the intruder can exclude some of the worlds that are models of α.
This, in particular, requires a distinction—that frames do not have—between
high-level payload information and low-level technical information.

The fact that static equivalence problems can be somehow encoded into
(α,β)-privacy is not too surprising since it simply exploits the expressiveness
of Herbrand logic, as we already remarked. A deeper relation is highlighted in
the following where we show that message-analysis-style problems with a clear
distinction of payload and technical information can be “more directly” encoded
into (α,β)-privacy.

The other direction for message-analysis problems is also possible. This is
interesting and useful not just conceptually but also practically, since it allows
us to use for (α,β)-privacy existing results and tools for static equivalence (in
particular, for various algebraic theories).

As first step towards a relation between static equivalence and (α,β)-privacy,
we show the following:

23



Lemma 3. Let α be combinatoric, Θ be the models of α, and β ≡ MsgAna(α, z, θ1)
for some θ1 ∈ Θ. Then, for every θ2 ∈ Θ, we have Sat(θ2∧β) iff θ1(z) ∼ θ2(z).

Proof. The following statements are equivalent:

• Sat(θ2 ∧ β)

• Sat(θ2 ∧ α ∧ φframe(θ1(z)) ∧ φframe(z) ∧ φθ1(z)∼z) [by Definition 9]

• Sat(θ2 ∧ α ∧ φframe(θ1(z)) ∧ φframe(θ2(z)) ∧ φθ1(z)∼θ2(z))
This is because the formula contains θ2 and thus all variables must be
instantiated accordingly, including those occurring in z.

• Sat(φframe(θ1(z)) ∧ φframe(θ2(z)) ∧ φθ1(z)∼θ2(z))
This is because the formula Sat(φframe(θ1(z))∧φframe(θ2(z))∧φθ1(z)∼θ2(z))
is ground (and consistent with α and θ2).

• θ1(z) ∼ θ2(z) [by Definition 6] �

We now show the equivalence of message-analysis problems with a corre-
sponding finite set of static equivalence problems. More specifically, we prove
that it suffices to pick arbitrarily one of the models of α and show that (α,β)-
privacy holds for that model, and that this is equivalent to showing the indis-
tinguishability of the given frame under every model of α.

Theorem 3. Let α be combinatoric, Θ = {θ1, . . . , θn} be the models of α, and
β ≡ MsgAna(α, z, θ1) for some θ1 ∈ Θ. Then, we have that (α, β)-privacy
holds iff θ1(z) ∼ . . . ∼ θn(z).

Proof. The following are equivalent:

• (α,β)-privacy

• Sat(θi ∧ β) for every 1 ≤ i ≤ n [by Definition 10]

• θi(z) ∼ θ1(z) for every 1 ≤ i ≤ n [by Lemma 3]

• θ1(z) ∼ . . . ∼ θn(z) [by Definition of ∼] �

Example 7. Let us consider again the second case of our simple voting ex-
ample (Example 5), in which the voting server publishes messages of the form
h(pair(n, xi)) for a fixed number n known only to the server, i.e., n is a secret
from Σ \ Σ0. The models of

α ≡ x ∈ {a, b, c}

are Θ = {θ1, θ2, θ3} with θ1 = {x 7→ a}, θ2 = {x 7→ b} and θ3 = {x 7→ c}. Then,
for θi ∈ Θ corresponding to the specific vote xi that has been cast, we have

β ≡ MsgAna(α, struct , θi)
≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct
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for a frame struct = {|m1 7→ a,m2 7→ b,m3 7→ c,m4 7→ h(pair(n, x))|}, with
concr = θi(struct). So, to check whether (α, β)-privacy holds it suffices to check
one θi ∈ Θ, say θ1 = {x 7→ a}, and then it holds for all θi ∈ Θ. Theorem 3 tells
us that this is equivalent to checking the static equivalence between all concrete
votes by considering all models, i.e., θ1(struct) ∼ θ2(struct) ∼ θ3(struct). �

Corollary 2. Let α be combinatoric, Θ be the models of α, and z be a frame.
Then, we have that (α, MsgAna(α, z, θ))-privacy holds for some θ ∈ Θ iff
(α, MsgAna(α, z, θ))-privacy holds for all θ ∈ Θ.

Hence, if in a given world θ the intruder cannot exclude any other worlds,
then in no world he can exclude any world. Thus, in transition systems, we
may summarize the worlds that only differ on the concrete value of the privacy
variables in one state. This is however only possible as long as no behavior of
the honest agents depends on it. For instance, in a voting protocol, the actual
values of the vote have no influence on the behavior of the honest agents, so
there we can always model all possible voting outcomes by a single state that is
parameterized over the choice of a model θ. Thus, we can exploit privacy (the
goal) even for an efficient representation.

Since this result is independent of the considered set Σop of cryptographic
operations and algebraic theory, we immediately have that if we can decide
static equivalence for a given theory (e.g., [3, 10]), then we can decide the
message-analysis problem fragment of (α,β)-privacy for that theory.

To conclude the section, note that, instead of relying on static equivalence,
we could have also given a direct decision procedure for our example theory,
without an enumeration of all models.

5 Modeling and Reasoning About Further Ex-
ample Scenarios

We chose the following major areas to model further examples and show (α,β)-
privacy at work:

• randomized vs. non-randomized encryption including non-determinism and
the notion of strong secrecy (Section 5.1),

• guessing attacks (Section 5.2, in which we discuss different approaches to
encode passwords and guessing in (α,β)-privacy and show unique features
of our logic), and

• e-voting (Section 5.3).

5.1 Modeling Subtleties of Encryption

5.1.1 Randomized vs. Non-Randomized Encryption

Standard Dolev-Yao models are blind to the problem of non-randomized en-
cryption because the intruder cannot compare results in these models. Here, we
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have directly modeled randomized encryption operators by means of a random
value r, e.g., crypt(k, r,m), where the randomization should, of course, be differ-
ent at each encryption. In our approach, this is taken care of by the transition
system, which should actually ensure that every honest agent chooses a new
randomness at each encryption.

We model non-randomized encryption by using r = ε for an intruder-known
constant ε, i.e., we write crypt(·, ε, ·) to model the missing randomization.

Example 8 (Simple Voting). Let Σ0 = {0, 1}, α ≡ x ∈ {0, 1}, and β ≡
MsgAna(α, struct , θ), where struct = {|m1 7→ ε,m2 7→ 0,m3 7→ 1,m4 7→
k,m5 7→ crypt(k, ε, x)|} and θ = {x 7→ 0}. The intruder can derive from β
that concr [m5] = crypt(k, ε, 0) = concr [crypt(m4,m1,m2)], and then, by φz1∼z2

,
struct [m5] = struct [crypt(m4,m1,m2)] and thus x = 0.

A similar deduction would not be possible if crypt contained additionally
something random, i.e., if struct = {|m1 7→ ε,m2 7→ 0,m3 7→ 1,m4 7→ k,m5 7→
crypt(k, r, x)|}, where r is not known to the intruder. (This is of course the very
reason for probabilistic encryption.) In such a probabilistic variant, β would
indeed respect the privacy of α as the intruder would no longer be able to generate
terms that would give him any interesting insight on x. �

5.1.2 Non-determinism

Another interesting question that we can ask is what the intruder can discover
when he does not know the content of messages sent by the honest agents (in
fact, he might not even know to which protocol the messages belong), but he
knows the format of the messages that are exchanged in several protocols. (α,β)-
privacy can easily encode non-determinism, e.g., if messages have a different
structure depending on the choices of parties. Consider this example

α ≡ x ∈ {yes, no} ∧ y ∈ {a, b} ,

where x is the server’s decision and y is the concrete name of the client (the
intruder knows yes, no and pub(a)). A party may respond to a request with

crypt(pub(y), r, pair(yes, n)) or crypt(pub(y), r, no) ,

depending on the decision on the vote, where n is a secret from Σ \ Σ0 (and
where, like in Example 5, we abstract away from the fact that the intruder might
be able to guess such a fixed number). This is no longer a message-analysis
problem, since the structure of the messages depends on x; and it cannot be
directly expressed as a problem of static equivalence of frames either.8 However,
(α,β)-privacy allows us to incorporate such more complex relations between α
and the structure of messages, e.g., the history of events that happened so far.
For this example, we can specify the struct and concr knowledge of the intruder

8Note that, in general, even for problems that fall outside the message-analysis fragment
of (α,β)-privacy there could still be suitable encodings into static equivalence problems.
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directly as a formula related to the flag x as part of β:

concr [m1] = struct [m1] = yes ∧
concr [m2] = struct [m2] = no ∧
concr [m3] = struct [m3] = pub(a) ∧
concr [m4] = crypt(pub(a), r, pair(yes, n)) ∧

((x = yes ∧ struct [m4] = crypt(pub(y), r, pair(yes, n))) ∨
(x = no ∧ struct [m4] = crypt(pub(y), r, no)))

so that β actually encodes a concrete world (in this case, such that x = yes).
Indeed, in the example, (α,β)-privacy holds, but if we had used non-randomized

encryption (replacing r with ε), the intruder could have generated the term
crypt(m3, ε, m2) and checked that it does not produce the same concr value
as m4. Thus, β |= struct [m4] 6= crypt(pub(a), ε, no). It follows that the model
(x = no ∧ y = a) is excluded. Note that this does not tell us the value of x nor
that of y, but just excludes one of the combinations.

5.1.3 Strong Secrecy

In the static equivalence community (e.g., [18]), there is also the notion of strong
secrecy:

Definition 11. A frame z that talks about a variable x (the “secret”) respects
the strong secrecy of x if z{x 7→ s} ∼ z{x 7→ t} for any generable terms s and
t. �

Thus, if the intruder can choose arbitrary (known) values and the secret is
replaced for those values, he still cannot deduce which one it is.

The philosophy of the (α,β)-privacy approach is actually a bit different from
this view: we would normally consider problems of strong secrecy actually as
the question of checking that a protocol provides secrecy even when the secrets
are weak, like poor passwords. We illustrate this in the following subsection on
modeling guessing attacks. However, the notion of a game that the intruder can
play is quite interesting for its relation for instance to cryptographic models.
Therefore, we quickly illustrate how this can be done with (α,β)-privacy.

Example 9 (Strong Secrecy Game). As an example of the experiment that the
intruder can do with his environment, consider the following “strong secrecy
game”. To model an interaction between the intruder and a (virtual) host, we
design a formula that represents the evolution of the intruder knowledge in the
game in two steps:

• We start in a state where the intruder knowledge is represented by z1 =
{|m1 7→ n1,m2 7→ n2|}.

• The intruder can choose any two recipes s0 and s1 with respect to z1, i.e.,
genz1

(s0)∧ genz1
(s1), and he sends concr [s0] and concr [s1] to an honest

agent host.
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• Now the host non-deterministically chooses a Boolean b ∈ {0, 1} and en-
crypts concr [sb] with a key k and sends it back to the intruder, who only
knows that the encryption contains sb depending on the choice b (that the
intruder does not know). For this uncertainty, we introduce a new variable
x and have α ≡ x ∈ {0, 1}. Let θ = [x 7→ b]. Now we define

β ≡ MsgAna(α, z1, θ)
∧
∃s0, s1. genz1

(s0) ∧ genz1
(s1)

∧ ∃sx. sx ∈ {s0, s1}.
((x = 0 ∧MsgAna(α, z2, θ ∪ [sx 7→ s0])) ∨

(x = 1 ∧MsgAna(α, z2, θ ∪ [sx 7→ s1])))

where z2 = z1 ∪ {|m3 7→ scrypt(k, concr [sx])|}.

Indeed, (α, β)-privacy holds, i.e., the intruder cannot determine x, so this gives
us strong secrecy. An example of violation of strong secrecy would be for instance
if the message had rather the form scrypt(concr [sb], . . .) (i.e., if a weak secret is
used to encrypt a message) or if we have hash-values like h(concr [sb], . . .) with
other guessable elements, since then the intruder can verify whether the message
was generated with s0 or s1, and thus obtain x. �

5.2 Modeling Guessing Attacks

Guessing attacks have been intensively studied in security protocol analysis, also
using static equivalence, e.g., [2, 26, 30] to name just a few works. We can use
also this example to show how flexible our (α,β)-privacy approach is: suppose
that we have an intruder who knows only a part of the password space (e.g.,
some users use good passwords, some use bad passwords). Let P = {p1, . . . , pk}
be the space of all passwords and let D = {p1, . . . , pl}, with l < k, be the
intruder’s dictionary. For concreteness, let us consider the classical example of
the MS CHAPv2 protocol [40], where the server sends a nonce ns and the client
c should produce nc, hx(nc, ns, c) for some client nonce nc, hash-MAC’ed with
the client’s password x. Then one reachable state could be:

α ≡ x ∈ {p1, . . . , pk}
β ≡ MsgAna(α, struct , θ)

where struct = {|m1 7→ p1,m2 7→ p2, . . . ,ml 7→ pl,ml+1 7→ ns,ml+2 7→ c,ml+3 7→
pair(nc, h(x, pair(nc, pair(ns, c))))|} and θ = {x 7→ p1}.

This is obviously the concrete state where x = p1, and the intruder can
find out that that is indeed the case. To that end, he uses the generable
terms s = h(m1, pair(proj1(ml+3), pair(ml+1,ml+2))) and t = proj2(ml+3), so
that concr [s] = concr [t] and thus struct [s] = struct [t]. Then

h(p1, pair(proj1(pair(nc, h(x , pair(nc, pair(ns, c))))), pair(ns, c))) =

proj2(pair(nc, h(x , pair(nc, pair(ns, c)))))
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and thus h(p1, pair(nc, pair(ns, c))) = h(x , pair(nc, pair(ns, c))). In the given Her-
brand universe (which depends on the algebraic theory), the only possible model
for x is x = p1, thus β |= x = p1.

Note that if we consider a trace where x = pn with l < n ≤ k, thus using a
password that the intruder does not have in his dictionary, then this attack is
not possible. However, the intruder can still derive x ∈ {pl+1, . . . , pk} since by
checking his entire dictionary, he can confirm that the password is not one of
those he knows. So, in fact, privacy is violated also in these cases, even though
most people would agree that this in itself is not a problem, at least for online
guessing: an interesting argument, in this case, is that even the best protocol
and the best password cannot prevent the intruder from trying out online a
few passwords and confirming that they are wrong guesses. Whereas in offline
guessing good password protocols don’t in fact allow the intruder to carry out
offline guesses, we can still consider transition systems in which the intruder can
actually send guesses to the server. We leave a more detailed investigation of
this for future work.

In fact, for this reason we suggest to see the password itself as a technical
information that encrypts the actual payload information we try to protect.
This is a simple way to say: we don’t care what the intruder finds out about
the password, but about the messages that are encrypted with it. This allows us
to circumvent all troubles with declassification of information or quantitative
aspects. Here is how this could look like, if the password pn is used to encrypt
a payload x that is, say, from a set of values {c1, . . . , cm}:

α ≡ x ∈ {c1, . . . , cm}
β ≡ MsgAna(α, struct , θ)

where struct = {|m1 7→ p1,m2 7→ p2, . . . ,ml 7→ pl,ml+1 7→ ns,ml+2 7→ c,ml+3 7→
pair(nc, h(pn, pair(nc, pair(ns, c)))),ml+4 7→ scrypt(pn, x )|} and θ = {x 7→ c7}.

This preserves privacy if l < n ≤ k (i.e., for a good password) and still
violates it for a bad password 1 ≤ n ≤ l. Note that when the password is
technical information, we do no longer use a variable for it, because it is not
part of the space we try to get information about.

5.3 Modeling E-Voting

An interesting field for privacy goals is of course electronic voting (e-voting),
which we already touched upon in the previous examples. In this paper, we do
not want to model and analyze a full voting protocol, as that is not the main
focus of our research, but rather only illustrate how (α,β)-privacy gives a new
and declarative way to formulate privacy goals and describe their analysis.

Let us first look at the most basic setting: the vote between two options 1
and 0 (e.g., representing “yes” or “no”, or the choice between two candidates).

Definition 12 (Binary Voting Privacy). Consider a voting system where the
choice is either 1 or 0. Let N be the number of cast votes and R be the number
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of votes for 1. Let Σ0 consist of the constant 0, the successor function s(·) and
the addition function +, and consider the axiom αax characterizing addition:

αax ≡ ∀x.∀y. x+ 0 = x ∧ x+ s(y) = s(x+ y)

The privacy goal for binary votes (namely releasing N and R) is then defined
by the following formula α:

α ≡ αax ∧ v1 ∈ {0, 1} ∧ . . . ∧ vN ∈ {0, 1} ∧ v1 + v2 + . . .+ vN = R ,

where v1, . . . , vN are variables. �

Note that, strictly speaking, α is not combinatoric, since Σ0 contains 0 and
s (so the Herbrand universe entails the natural numbers) and + is interpreted
as addition. There are however only finitely many models (with respect to the
free variables). In fact, there exists an (inefficient) encoding into a combinatoric
problem that works without a concept of natural numbers.

Example 10. For example, consider the trivial voting protocol, in which every
voter i sends their vote vi directly to a voting server, signed with their own
private key and encrypted with the server’s public key. This of course makes
the strong requirement that the server must be completely trusted by everybody
as it can see all votes and nobody can verify the correct tallying by the server.
Let θ be the true result of the vote (mapping each vi to 0 or 1); then we have
β = MsgAna(α, struct , θ) where

struct = {|m1 7→ crypt(pub(s), r1, sign(priv(1), ballot(v1))),
. . .
mN 7→ crypt(pub(s), rN , sign(priv(N), ballot(vN )))|}

and ballot is the ballot format of this vote, priv(i) is the private key of the ith
voter, pub(s) is the public key of the server, and the ri are random values to
make the encryption non-deterministic.

In this example, (α, β)-privacy holds, since the intruder cannot analyze any
messages and cannot compare them, thus every model of α can be extended to a
model of β. �

There are many works on electronic voting using the applied pi-calculus or
a similar calculus to model the protocol (see, e.g., [21, 7, 14, 15, 17, 19] to name
a few). The voting privacy goal is usually then expressed by the following trick:
consider two processes that differ only in the concrete vote of two (honest) voters
who swap their vote; then any such pair of processes must be indistinguishable.
More formally, let θ1 and θ2 be two substitutions with domain v1, . . . , vN and co-
domain {0, 1}. Then θ1 and θ2 are a vote swap of each other, if θ1(vi) = θ2(vj)
and θ1(vj) = θ2(vi) for some i, j ∈ {1, . . . , N} and θ1(vk) = θ2(vk) for all other
k. We show that this privacy definition based on vote swapping is actually in
some sense equivalent to the binary voting privacy goal:
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Theorem 4. Let α be the binary voting privacy goal from Definition 12, θ0

be a model of α, and β ≡ MsgAna(α, struct , θ0) for some frame struct be a
message-analysis problem. Then (α, β)-privacy holds iff θ1(struct) ∼ θ2(struct)
for any two models θ1 and θ2 of α that are a vote swap of each other.

Proof. Let Θ = {θ1, . . . , θn} be the models of α. By Theorem 3, (α,β)-privacy
holds iff θ1(struct) ∼ . . . ∼ θn(struct). The models of α can be characterized by
permutations: θ1, θ2 are models of α iff there is a permutation π of {1, . . . , N}
such that θ1(vi) = θ2(vπ(i)) for all i ∈ {1, . . . , N}. The theorem now follows from
the fact that all permutations can be obtained from each other by a sequence
of swaps, and ∼ is an equivalence relation. �

Example 11. Let us consider the setting of Definition 12 and Example 10 and
let, for concreteness, the number of cast votes be N = 3 and the number of votes
for 1 be R = 2. Then the privacy goal for binary votes is defined by

α ≡ αax ∧ v1 ∈ {0, 1} ∧ v2 ∈ {0, 1} ∧ v3 ∈ {0, 1} ∧ v1 + v2 + v3 = 2 ,

where v1, v2, v3 are variables and αax is the axiom characterizing addition. The
models of α are Θ = {θ1, θ2, θ3} with θ1 = {v1 7→ 1, v2 7→ 1, v3 7→ 0}, θ2 =
{v1 7→ 1, v2 7→ 0, v3 7→ 1} and θ3 = {v1 7→ 0, v2 7→ 1, v3 7→ 1}.

Let, without loss of generality, the true result of the vote be θ = θ1 = {v1 7→
1, v2 7→ 1, v3 7→ 0}, so that β = MsgAna(α, struct , θ) with

struct = {|m1 7→ crypt(pub(s), r1, sign(priv(1), ballot(v1))),
m2 7→ crypt(pub(s), r2, sign(priv(2), ballot(v2))),
m3 7→ crypt(pub(s), r3, sign(priv(3), ballot(v3))),
m4 7→ 0,m5 7→ 1,m6 7→ pub(s)|}

As we remarked above, (α, β)-privacy holds since the intruder cannot analyze
any messages and cannot compare them, thus every model of α can be extended
to a model of β. We can also use Theorem 4 (and Theorem 3) to argue that
(α, β)-privacy holds iff θ1(struct) ∼ θ2(struct) ∼ θ3(struct). It is easy to see
that the models of α are characterized by permutations of {1, 2, 3}, and that
all these permutations can be obtained from each other by a sequence of swaps.
Hence, we can conclude by the fact that ∼ is an equivalence relation. �

Theorem 4 shows that (α,β)-privacy is actually a declarative logical charac-
terization of the privacy goals, in contrast to the more technical vote-swapping
formulation. Note also that privacy for some more advanced voting systems
cannot be characterized by vote swapping, but such systems have a declarative
specification using (α,β)-privacy. For example, consider the following general-
ization of voting privacy:

Definition 13 (General Vote Privacy). Consider a voting system with K can-
didates {c1, . . . , cK} and N voters, and such that every voter has L votes (one
can give multiple votes to candidates). We use a binary interpreted function
symbol v[·][·] as follows: v[i][cj ] is the number of votes that voter i has given to
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candidate cj. Then, publishing the total number of votes R1, . . . , RK for each
candidate gives rise to the following privacy goal:

α ≡ αax′ ∧ v[1][c1] + . . .+ v[1][cK ] = L ∧ . . . ∧ v[N ][c1] + . . .+ v[N ][cK ] = L
∧ v[1][c1] + . . .+ v[N ][c1] = R1 ∧ . . . ∧ v[1][cK ] + . . .+ v[N ][cK ] = RK

�

This shows that (α,β)-privacy indeed provides us with a new and declarative
way to formulate privacy goals also in the context of e-voting, and sets the basis
for the modeling and analysis of full voting protocols, which will also require us
to consider (α,β)-privacy in the context of transition systems.

6 (α, β)-privacy in Transition Systems

We now briefly show how we can extend (α,β)-privacy to transition systems.
Given that transition systems are not the main focus of this paper (and will be
investigated in detail in future work) we here only discuss the key idea and a
detailed example of two security protocols for private authentication.

The key idea is that we can define a state as a triple (α, β, γ) of formulae,
where γ represents the “truth”. Then we can specify transition systems for this
kind of states, and privacy is the question whether (α,β)-privacy holds in every
reachable state (α, β, γ). Formally, with Σ, Σ0 ⊆ Σ, V and ≈ as before:

Definition 14 (Transition systems). A state is a triple (α, β, γ), where α and
β are as before and γ ∈ LΣ0

(V) is such that γ |= α and γ is true in exactly one
model of α (with respect to Σ0 and the free variables of α). We also call γ the
truth and may also apply it to Σ0-terms like a substitution.

Let S denote the set of all states. A transition system is a pair (I,R) where
I ∈ S and R ⊆ S × S. As is standard, the set of reachable states is the
smallest set that contains I and that is closed under R, i.e.: if S is reachable
and (S, S′) ∈ R, then also S′ is reachable.

We say that a transition system satisfies privacy iff (α, β)-privacy holds in
every reachable state (α, β, γ). �

Example 12. As an example of privacy as reachability, consider a simple
transition system with an initial state that has no information, and four suc-
cessor states Si,j with i, j ∈ {0, 1} depending on two independent choices i
and j of the user. In all four states, we have α ≡ x ∈ {0, 1}. Let now
βi,j ≡ MsgAna(α, struct , θ) where struct = {|m1 7→ scrypt(kj , x),m2 7→ k1|},
kj are new constants, and θ = {x 7→ i}.

In the states with j = 0, the intruder cannot deduce anything interesting as
he does not have the key needed for decryption, but in the states with j = 1, we
have βi,1 |= x = i. So, there are reachable states in which the intruder can find
out more than he is supposed to. �
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For an entire protocol one would not say that it satisfies its privacy goals if in
every state (α,β)-privacy holds; one may then, by slight abuse of notation, say
(α,β)-privacy holds for the protocol (referring to (α,β)-privacy as a concept,
not with respect to a concrete pair of formulas α and β). That both α and β
may grow over time should not be surprising, since the information that the
intruder gathers may increase over time. For instance, at the beginning of a
voting process, the result is not published yet (even if all voters have at this
point already made up their mind how they want to vote). Moreover, a violation
in an intermediate state of a system does not necessarily entail a violation in
the end (votes are actually released at the end but must be protected while the
election is being carried out).

Let us now consider two more sophisticated examples.

6.1 Analysis of Two Example Protocols

To illustrate further the expressiveness and strength of (α,β)-privacy in transi-
tion systems, we consider two protocols proposed by Abadi and Fournet in [5].
The protocols are supposed to establish shared secrets between two agents A
and B. As they write: “The first protocol uses digital signatures and requires
that principals have loosely synchronized clocks. The second protocol uses only
encryption and avoids the synchronization requirement, at the cost of an extra
message. The second protocol draws attention to difficulties in achieving pri-
vacy against an active adversary.” More information on the protocols can be
found in [5]; here, we will focus only on what is needed to show (α,β)-privacy
at work.

We adopt, whenever possible, Abadi and Fournet’s notions and notations
but introduce our own when needed. Consider a set of agents Agent and sets of
agents SA for every A ∈ Agent, representing the set of agents that A is willing
to talk to. In contrast to Abadi and Fournet, we write pub(A) and priv(A) for
the public and private key of agent A, respectively.

6.1.1 The First Protocol (AF1)

The first protocol, which we call AF1, is as follows:

A→ B : [hello, crypt(pub(B), [hello, pub(A), sign(priv(A), [pub(A), pub(B),K, T ])])]

where hello is a tag, K is a symmetric key freshly generated by A, T is a
timestamp (we assume that B buffers all messages as long as their timestamp
is considered recent, so replays can be detected) and [t1, . . . , tn] denotes the
pairing pair(t1, pair(t2, pair(. . . , tn))).

Upon receipt of the message, the recipient B tries to decrypt the second
component using its private key priv(B). If the decryption yields a key pub(A)
and a signed statement of the form sign(priv(A), [pub(A), pub(B),K, T ])]), then
B extracts pub(A) and K, verifies the signature using pub(A), ensures that the
message is not a replay using the timestamp T and checks that A ∈ SB . If
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• the form does not check out (it is not encrypted with pub(B), etc.),

• the message is a replay, or

• A /∈ SB (i.e., B is not willing to talk to A),

then B should simply discard the message.
The encryptions are assumed to be which-key concealing, i.e., an intruder

cannot tell which public key a message is encrypted with (unless he has the
private key).

6.1.2 The Second Protocol (AF2)

The second protocol, which we call AF2, consists of two steps:

A→ B : [hello, crypt(pub(B), [hello, NA, pub(A)])]
B → A : if valid then [ack, crypt(pub(A), [ack, NA, NB , pub(B)])] else [ack, R]

where NA and NB are nonces and ack is an acknowledgment tag. We use an
if-then-else to express that there is an error handling. B checks that the message
(that apparently comes from A) is not a replay and tries to decrypt the second
component using its private key. If the decryption succeeds, then B extracts
the nonce NA and key pub(A), and checks that A ∈ SB . If all these succeed,
then the message is valid and B generates a nonce NB , and sends a reply to
A. If B receives an ill-formed message, then it will reply anyway, but with the
second message in the “else” branch where R is a random value. Note that the
original paper has here encryption of a new nonce with another public key of B,
but the point is simply that without knowing priv(A), one should not be able
to tell whether a given message was produced by the “then” or by the “else”
branch. We thus assume here something even slightly stronger than which-key-
concealing: that also a random value is indistinguishable from the ciphertext, a
property that at least holds in our algebraic model.9

Abadi and Fournet consider, among others, the following goal. If A wishes
to communicate with B, but not vice versa, then the intruder should not learn
anything. Thus, a run between the two agents A and B should be indistinguish-
able from a run between two other agents A′ and B′ under some hypotheses.
These hypotheses should include that B is not the intruder and what can happen
outside the protocol, i.e., what the agents can do besides running the protocol,
which can result in leaks not caused by the protocol itself (see [5]).

6.1.3 Formalization of AF1 with (α, β)-privacy

In order to formalize AF1 with (α,β)-privacy, let the payload alphabet Σ0

consist of

9If one wants to model that ciphertexts are recognizable, one can simply introduce a
new operator vciph with the algebraic property vciph(crypt(k,m)) ≈ >. Similarly one
can model that a cipher is which-key-revealing with an operator vkey and the property
vkey(k, crypt(k,m)) ≈ >.

34



• a set of agent names (finite or countably infinite),

• a binary relation talk(a, b) representing that a is willing to talk to b (in
the notation of Abadi and Fournet: b ∈ Sa), and

• a unary predicate honest(a) to identify a subset of agents a that are honest
(and thus follow the protocol entirely); all other (dishonest) agents are just
marionettes of the intruder.

In the previous sections, we have used a substitution θ to characterize an
arbitrary model of α. Now we also have to interpret the predicates honest
and talk , and therefore use a Σ0-formula γ instead of θ. We will also use γ
sometimes as a substitution; by construction we will ensure that whenever α in
a state contains a variable x, then γ implies x = a for some a ∈ Σ0.

Definition 15. Let γ0 be a closed Σ0-formula with exactly one model (i.e.,
an arbitrary interpretation for the predicates honest and talk). The initial
state (α0, β0, γ0) of the transition system is as follows. Let M0 = {a | a ∈
Σ0} ∪ {pub(a) | a ∈ Σ0} ∪ {priv(d) | γ0 6|= honest(d)} be the set of ground mes-
sages initially known by the intruder. Let struct0 = {|m1 7→ t1, . . .ml 7→ tl|} if
t1, . . . , tn are the elements of M0. Define

α0 ≡
∧
{talk(a, b) | γ0 |= talk(a, b) ∧ ¬honest(a)}∧∧
{¬talk(a, b) | γ0 |= ¬talk(a, b) ∧ ¬honest(a)}

β ≡ MsgAna(α0, struct0, γ0)

Note that α0 is ground.

Observe that the initial state preserves (α,β)-privacy, since there are no
variables, and struct ∼ γ0(struct) in all models, thus it is consistent for all
models of α.

There is only one kind of transition:

Definition 16. The reachable states of AF1 are the least set of states that
include the initial state and that are closed under the following transition rule.
We use as an invariant that β in every reachable state is a message-analysis
problem. If (α, β, γ) is a reachable state with β = MsgAna(α, struct , γ), then
also the following state (α′, β′, γ′) is reachable. Let a and b be any agents in Σ0

such that γ |= talk(a, b)∧ honest(a). Let x and y be two fresh variables (that do
not occur in α and β). Let k and t be arbitrary new uninterpreted constants of
Σ \ Σ0, and

struct ′ = struct ∪
{|ml+1 7→ [hello, crypt(pub(y), [hello, pub(x), sign(priv(x), [pub(x), pub(y), k, t])])]|} ,

where l is the length of the frame struct. Define

γ′ ≡ γ ∧ x = a ∧ y = b

α′ ≡ α ∧ talk(x, y) ∧

{∧
{y 6= c | γ |= ¬honest(c)} if γ |= honest(b)

x = a ∧ y = b otherwise

β′ ≡ MsgAna(α′, struct ′, γ′) �
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Note that we describe only transitions that are made by honest agents (since
the other agents are just intruder marionettes). That is, the intruder learns
that there is an agent x who is willing to talk to y and has started a session;
additionally, if y, i.e. b, is dishonest, then the intruder knows who x and y
are; if y is honest, however, then the intruder only learns that y is none of the
dishonest agents. In order to generate an (α,β)-privacy transition system we
could, among other options, augment a process calculus notation in a suitable
way. Then, to connect a process calculus notation with (α,β)-privacy here (for
this transition) we would need to explicitly denote in the process calculus which
information is released at this point, namely that talk(x, y) is released to the
public (i.e., to all) for arbitrary x and y, and x = a and y = b is released to y if
x or y is dishonest. All the other information could be generated automatically
in the process calculus notation.

Since (α,β)-privacy is not based on distinguishability, but rather a reacha-
bility problem, the proof of privacy is in fact a pretty straightforward induction
proof:

Lemma 4. Every reachable state of AF1 preserves (α, β)-privacy.

Proof. First note that in no state the intruder learns the private key of an
honest agent. The initial state preserves privacy as already noted. Let (α, β, γ)
be any state in which privacy already holds and (α′, β′, γ′) be any state that can
be reached by one transition according to Definition 16. By the property of a
reachable state, γ describes a single model of α. Moreover, x and y are exactly
the new variables of α′ and talk(a, b) holds. Thus, γ′ describes a single model
of α′.

To see that β′ is consistent for every model, we distinguish whether b is hon-
est or not. If γ |= honest(y), then the intruder does not know priv(b) (respec-
tively priv(y)). Hence, the only check he can make (using the vcrypt function)
is that the encrypted part cannot be decrypted with the private key of any dis-
honest agent, and thus that y 6= c for any dishonest c. Since that is part of α′,
this cannot produce an inconsistency.

If γ |= ¬honest(y), then α′ already implies x = a and y = b and therefore
β′ |= concr [l + 1] = struct [l + 1] where concr = γ(struct). Thus, the addition
to β′ cannot produce an inconsistency either and (α,β)-privacy is preserved by
every reachable state of AF1. �

6.1.4 Formalization of AF2 with (α, β)-privacy

For AF2, we have the same setup and initial state; only the transitions are
different. The first transition rule is as follows.

Definition 17. If (α, β, γ) is a reachable state with β = MsgAna(α, struct , γ),
then also the following state (α′, β′, γ′) is reachable. Let a and b be any agents
in Σ0 such that γ |= talk(a, b) ∧ honest(a). Let x and y be two fresh variables
(that do not occur in α and β) and na be a fresh constant. Let

struct ′ = struct ∪ {|ml+1 7→ [hello, crypt(pub(y), [hello, na, pub(x)])]|} ,
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where l is the length of the frame struct. Define

γ′ ≡ γ ∧ x = a ∧ y = b

α′ ≡ α ∧ talk(x, y) ∧

{∧
{y 6= c | γ |= ¬honest(c)} if γ |= honest(b)

x = a ∧ y = b otherwise

β′ ≡ MsgAna(α′, struct ′, γ′)

�

In a process calculus notation, here we would as before need to make explicit
how α′ extends α by the information that is released explicitly in this transition,
namely talk(x, y) is released to the public (i.e., to all) for arbitrary x and y, and
x = a and y = b is released to y if y is dishonest, and otherwise, the intruder
only learns that y is none of the dishonest agents. All the other information
could be generated automatically in the process calculus notation.

One may argue that b cannot be sure at this point that it is really a who
contacted it here. However, we do not model that several dishonest agents cheat
each other, but that they all work together as the intruder. Hence, our model
shall simply not include a dishonest a talking to a dishonest b trying to cheat
about its identity. Thus, it is safe to assume that whenever b is dishonest and
is apparently being contacted by a, it is indeed a (being either honest or an
accomplice).

We now have a second transition where some message is received by an agent
b and met with a reply (either the standard or the decoy message). We may
assume that the message received by b has a proper form, namely

[hello, crypt(pub(B), [hello, NA, pub(A)])]

for some agents A and B and some term NA. This message is either constructed
by the intruder or a replay of a message the intruder has seen before. A priori,
the intruder does not know whether the agent is actually b or somebody else
(he can only guess; we assume the agent names to be all public). Thus, b will
also answer with a decoy message if B 6= b or if ¬talk(B,A).

Definition 18. If (α, β, γ) is a reachable state with β = MsgAna(α, struct , γ),
where l is the length of the frame struct, then also the following state (α′, β′, γ)
is reachable. Let rp be any recipe such that

β |= gen(rp) ∧ struct [rp] = [hello, crypt(pub(B), [hello, NA, pub(A)])]

for some terms A, B and NA, where A and B are either constants of Σ0 or free
variables of α. Let further b ∈ Σ0 with γ |= honest(b), and r and nb be fresh
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constants (that do not appear in β). Then:

α′ ≡ α ∧

{
B = b ∧ talk(B,A) if γ |= B = b ∧ talk(B,A) ∧ ¬honest(A)

true otherwise

β′ ≡ ∃s. MsgAna(α, struct ∪ {|ml+1 7→ s|}, γ′ ∪ {s 7→ t})
∧ (B = b ∧ talk(B,A) ⇐⇒ s = [ack, crypt(pub(A), [ack, NA, nb, pub(B)])])
∧ (B 6= b ∨ ¬talk(B,A) ⇐⇒ s = [ack, r])

t =

{
[ack, crypt(pub(γ(A)), [ack, NA, nb, pub(γ(B))])] if γ |= B = b ∧ talk(B,A)

[ack, r] otherwise

�

First note the difference in how the “case split” is handled: while the concrete
message t is either the concrete answer message or the concrete decoy message
(depending on the condition B = b∧ talk(B,A)), for the structural information
s we literally include the case split into the formula β, i.e., the intruder does not
know the structure of the new message a priori, but he knows that the structure
is either the regular message (if the condition B = b∧ talk(B,A) holds true), or
the decoy message, otherwise.10

The formula α′ permits the intruder to learn that B = b and talk(B,A)
if that is the case and A is a dishonest agent.11 Otherwise, i.e., if B 6= b
or ¬talk(B,A), the intruder shall learn nothing. The answer from b is thus
either the normal message or the decoy message, depending on whether B =
b ∧ talk(B,A).

Observe that, if A is dishonest, then the intruder has composed the input
message to B himself. Then the intruder knows priv(A) and can thus check
whether the second part of the new message is (concretely) encrypted with
pub(A). If that is the case, then it cannot be the decoy message, i.e., the intruder
can derive B = b∧ talk(B,A) because of φz1∼z2 , but all this information is also
part of α′.

If the decryption check fails, then it must be the decoy message and because
of φz1∼z2

, B 6= b ∨ ¬talk(B,A). This formula does not follow from α′ in
general (since we can take this transition in the initial state) and we thus have
a violation of (α,β)-privacy. Actually, we cannot guarantee that the A does not
learn anything here; it must be that one of two things is the case: A has guessed
wrongly who B is, or B does not want to talk to A. In fact, repeating this, A
can guess a number of possible agent names and thus either find out who B is
or find out (if an exhaustive search is possible) that ¬talk(B,A).

10Note that we do not specify transitions in Herbrand logic (just the states of the transi-
tion system are characterized by formulas in Herbrand logic), and so here we specified the
transitions “by hand”. Here we have modeled the case that the intruder uses a message for
which he knows it has the right structure. This is clearly the case when he constructs such
a message himself or if he uses one that was produced by an honest agent for the first step
(because there is no decoy there). Sending any other message here necessarily would lead to
a decoy and that is pointless for the intruder, so we omitted that here.

11In a process calculus notation, here we would need to make explicit how α′ extends α
by the information that is released explicitly in this transition, namely that the information
B = b and talk(B,A) is released to the dishonest agent A.
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As far as we can see the only way to correct this is to release this information
in α′:

Definition 19. Consider the second transition with this alternative α′:

α′ ≡ α ∧


B = b ∧ talk(B,A) if γ |= B = b ∧ talk(B,A) ∧ ¬honest(A)

B 6= b ∨ ¬talk(B,A) if γ |= (B 6= b ∨ ¬talk(B,A)) ∧ ¬honest(A)

true otherwise

�

Compare this with a different but similar situation: if the intruder tries to
use online guessing for a login. We cannot entirely prevent it (we can only
limit the number of passwords he can try within a given time) and also cannot
prevent that with every failed attempt the intruder learns that the password he
tried was not correct. With (α,β)-privacy we have a declarative way to express
that: each failed guess leads to an augmentation of α.

Thus, (α,β)-privacy forces us to make explicit that we are leaking here a
bit of information (which may be tolerable) and may lead to the awareness that
we should protect the agent responding. In online guessing, it is common that
after a failed attempt, one must wait a few seconds before a new attempt can
be made. Similarly, here, B should pause a few seconds after any message. It
is necessary to do so also in the successful case, since when A is honest it shall
not be observable for the intruder whether a message was successful.

Lemma 5. Every reachable state of AF2 with the modification of Definition 19
satisfies (α, β)-privacy.

Proof. Let (α, β, γ) a reachable state in which (α,β)-privacy holds. Let (α′, β′, γ′)
be state reached with one transition of Definition 17. First, γ′ describes one
single model of α′. Like in the first protocol, either b is honest or it is dishonest.
If b is honest, then the intruder does not know priv(b) and cannot check the en-
crypted part of the message, and thus does not learn anything. If b is dishonest,
then β′ |= concr [l + 1] = struct [l + 1] for the new position l + 1 (where again
concr = γ(struct)) and thus it cannot lead to inconsistencies.

Let (α′, β′, γ′) be a state reached with one transition of Definition 18 with
the fix of Definition 19. We note again that γ′ describes one single model of α′.
If A is honest, then the intruder does not know priv(A) and thus cannot check
whether the second part of the message at position l+1 is encrypted with pub(A)
or is a decoy. Thus, the augmentation of β′ is consistent. Otherwise, regardless
of whether γ |= B = b ∧ talk(B,A), we have β′ |= struct [l + 1] = concr [l + 1],
and thus β′ cannot introduce any inconsistencies with any model of α′. �

In future work, we will provide a more detailed account of (α,β)-privacy in
transition systems, but we believe that these detailed examples already provide
for a convincing case.
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7 Background Knowledge

One may wonder what happens if the intruder can make use of some background
knowledge that is outside our formal model. Consider the following simplistic
example. In a small rural village, everybody votes for the conservative party
until one day a young couple moves to the village, and in the next election there
are two left-wing votes. It does not take much imagination to figure out who was
it (at least with high probability). Thus, with a bit of background information
(and in fact common sense) one may be able to deduce information that was not
deliberately released and in fact invade privacy. However note that this “attack”
does not depend on the voting system: the best voting system cannot prevent
this to happen since the system has been actually designed to release the total
number of votes each candidate or party received. Of course, we cannot prevent
an intruder from combining all the knowledge that is available to him, and thus,
the voting system is not to blame as long as it does not release more information
than specified in α.

The subtle question is however: given that we have verified a system to have
(α, β)-privacy, but the intruder has some additional background knowledge α0

that the formal model does not take into account, what guarantees do we have in
the system then? Obviously, the intruder can derive anything that is implied by
α∧α0—the best system cannot prevent that. But could it be that the intruder
can actually derive even more by some subtle combination of the information in
β and α0? We now show that this is not the case: our notion of (α,β)-privacy
is stable under an arbitrary consistent intruder background knowledge, i.e., the
intruder cannot derive more than α ∧ α0:

Theorem 5. Consider a pair (α, β) according to Definition 7 and let the in-
truder’s background knowledge be any formula α0 ∈ LΣ0(fv(α)) such that β∧α0

is consistent. If (α, β)-privacy holds, then also (α ∧ α0, β ∧ α0)-privacy holds.

Proof. Suppose it were not the case, i.e., consider

• a pair (α, β) such that (α, β)-privacy holds,

• a background knowledge α0 ∈ LΣ0(fv(α)) such that β ∧ α0 is consistent,
and

• an α′ ∈ LΣ0
(fv(α)) such that β ∧α0 |= α′ but α∧α0 6|= α′. (Thus, α′ is a

witness that (α ∧ α0, β ∧ α0)-privacy does not hold.)

By Definition 7, β must have the form β ≡ α ∧ β0 for some β0. We can thus
rewrite β ∧ α0 |= α′ as β0 |= ¬α ∨ ¬α0 ∨ α′. Now

• β0 |= ¬α is absurd, since then β would be inconsistent;

• β0 |= ¬α0 is also absurd, since β ∧ α0 must be consistent; and

• β0 |= α′ would entail a violation of (α, β)-privacy as α∧α0 6|= α′ and thus
α 6|= α′. �
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One may remark here that this also indicates why we get a reasonable model
of privacy in quantitative systems without actually considering quantitative
measures or probabilities: for a good voting system, for instance, it simply does
not matter how likely the different outcomes are, the cryptography should treat
them all the same, only the background knowledge may be biased, but that does
not really matter for the system and its privacy properties then.

8 Concluding Remarks

We have introduced (α,β)-privacy as, we believe, a simple and declarative way
to specify privacy goals and reason about them: the intruder should not be
able to derive any “non-technical” statement from the technical information β
that he cannot derive from the intentionally released information α already. We
have given a variety of concrete examples that describe how (α,β)-privacy can
be used in practice.

Above we have already compared extensively with static equivalence: we
have described the simplicity of specifying properties via the declarative ap-
proach of (α,β)-privacy with respect to the more tricky specifications in the
static equivalence approach, and we have investigated formally the close rela-
tionship of (α,β)-privacy to static equivalence, proving in particular the equiv-
alence of message-analysis problems with a corresponding finite set of static
equivalence problems. This result entails that we can use existing methods for
deciding static equivalence for a given algebraic theory also for deciding the
message-analysis fragment of (α,β)-privacy for that theory.

(α,β)-privacy is course also related to observational equivalence (see, e.g.,
[8] as well as works on trace equivalence [12, 13, 16, 20]). In this approach,
one typically considers labeled bi-similarity of two processes, checking that ev-
ery transition of one process can be simulated by the other so that they are
still bi-similar and so that their intruder knowledges are statically equivalent.
This is difficult to automate but there are tricks that can be employed, such
as turning it into a reachability problem by restricting the two processes to be
the left and right variant of a bi-process. In contrast, thanks to the expres-
siveness of (α,β)-privacy, we have a way to formulate privacy as a reachability
problem while not being limited by bi-processes and the like. We believe that
this gives opportunities for novel techniques for the automated verification of
privacy goals.

(α,β)-privacy bears some similarities also with the non-interference ap-
proach and related works in information-flow and language-based security (see,
e.g., [24, 35, 32, 33]). Non-interference distinguishes (at least) two levels of
information, usually low-level and high-variables. These are, however, funda-
mentally different from our payload α and technical information β since they
are formulae that express relations between values (rather than directly being
public or private values). We actually do not mind that the intruder gets hold
of (some) technical information as long as he cannot use it to obtain anything
interesting besides the payload.
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Privacy has also been studied in the area of statistical databases, building on
database abstractions, in which records may contain identifiers, quasi-identifiers
and sensitive attributes. Approaches in this field (such as k-anonymity, `-
diversity, t-closeness and differential privacy) aim at quantifying privacy in or-
der to capture privacy loss and thus analyze the minimal information disclosure
inherent in a system. k-anonymity [36, 38] seeks to protect against identity dis-
closure by ensuring that a record is indistinguishable from k − 1 other records
on quasi-identifiers, usually replaying quasi-identifiers with equivalence classes
of appropriate size. Hence, an intruder must be unable to reduce the anonymity
set below a threshold of k users. It is known that k-anonymity does not protect
against attribute disclosure, which led to the development of `-diversity [31],
i.e., the requirement that each equivalence class contains at least ` representa-
tions of a sensitive attribute. The work on t-closeness [29] observed that there
are still attribute disclosures possible in `-diverse datasets, in particular, when
the distribution of a sensitive attribute in an equivalence class is different from
its distribution in the whole database, where this new notion stipulates that
the distance between equivalence class and table distribution is at most t. Let
us differentiate which statements over these three notions can be modeled in
(α,β)-privacy.

For k-anonymity, we observe that the property that α has at least k models,
and that the intruder cannot deduce an α′ with less choices, is in principle en-
codable in (α,β)-privacy, which means that (α,β)-privacy can express identity
disclosure, although a full-fledged encoding of k-anonymity in (α,β)-privacy will
be subject of future work.

Our argument can be applied recursively to equivalence classes: for each
equivalence class for any sensitive attribute, there are ` models, and the intruder
cannot deduce an α′ with less choices for any equivalence class. Hence, the
argument suggests also an (α,β)-privacy encoding for the main definition of
distinct `-diversity. However, (α,β)-privacy does not have a notion of entropy
and thus cannot encode entropy `-diversity.

Similarly, (α,β)-privacy cannot encode directly t-closeness, which relies on
distance of probability distributions (using variational distance or the Kuhlback-
Leibler distance on entropies as measure).

Finally, let us consider differential privacy [22], which asks whether an in-
truder can detect significant changes in a probability distribution on statistical
data released by a curator on data sets differing in one element. As differen-
tial privacy is a property established on the information release function of the
curator, a relation to our notion is not straightforward.

We have already mentioned above and in the previous sections a few direc-
tions for future work. In addition to these, we have already started to consider
further examples than those discussed here, in particular examples that fall out-
side the message-analysis problem. To that end, we will need to generalize the
definition of combinatoric α and to generalize our decidability results to larger
fragments of (α,β)-privacy. In fact, many interesting issues in e-voting fall
outside the message-analysis fragment (and of the static equivalence approach).

We also plan to extend our formalization to a full-fledged specification of
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(α,β)-privacy in transition systems. It will also be interesting to investigate
how (α,β)-privacy, which is a purely qualitative and possibilistic approach, can
be extended to consider quantitative aspects of privacy such as: probabilities,
time and cost of the private information.
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Be Easy. In Logic for Programming, Artificial Intelligence, and Reason-
ing - 19th International Conference, LPAR-19, Stellenbosch, South Africa,
December 14-19, 2013. Proceedings, LNCS 8312, pages 619–635. Springer,
2013.

[35] P. Y. Ryan and S. Schneider. Process algebra and non-interference. In Pro-
ceedings of the Computer Security Foundations Workshop (CSFW). IEEE
CS Pr., 1999.

[36] P. Samarati. Protecting Respondents’ Identities in Microdata Re-
lease. IEEE Transactions on Knowledge and Data Engineering (TKDE),
13(6):1010–1027, 2001.

[37] P. Selinger. Models for an Adversary-Centric Protocol Logic. ENTCS,
55(1):69–84, 2003.

[38] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[39] C. Weidenbach. Towards an Automatic Analysis of Security Protocols in
First-Order Logic. In Automated Deduction, CADE-16, 16th International
Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Pro-
ceedings, LNCS 1632, pages 314–328. Springer, 1999.

[40] G. Zorn. RFC 2759: Microsoft PPP CHAP Extensions, Version 2, jan.
2000, 2000. Status: Informational.

46


