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Preface

This dissertation is written in order to partial fulfil the requirements for obtaining the

PhD degree at the Technical University of Denmark (DTU). The work, on which the thesis

is based, has been performed at the National Food Institute (DTU Food) in the period

from December 2012 to August 2017, including two maternity leaves. The work has been

been supervised by main supervisor senior scientist Morten Poulsen, and co-supervisors

senior scientist Sara M. Pires and senior scientist Maarten Nauta.

The work is fully funded by the Technical University of Denmark.

The main goal of the thesis is to discuss and develop the methodological framework

for estimating the disease burden caused by foodborne chemicals. It is my hope and

expectation that this thesis leads to future and more transparent studies of burden of

foodborne disease due to chemicals.

Lyngby, August 2017

Lea Sletting Jakobsen
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Summary

Foodborne diseases are caused by pathogenic microorganisms or harmful chemicals and

toxins present in the foods we consume. The harmful chemical substances may be added

deliberately, be natural occurring toxins or process contaminants, e.g. acrylamide and

benzo[a]pyrene which are mentioned in this dissertation. The impact that exposure to

unsafe foods has on public health can be expressed in terms of Disability Adjusted Life

Years, DALY, which in one metric combine information on disease duration and severity,

how many get the disease and how many die from it. One DALY is one year of healthy

life lost. In this way, DALYs can be used to compare the impact that foodborne diseases

have on public health across hazards.

The World Health Organization estimated in 2015 that foodborne diseases caused 33

million DALYs on a global level. However, most of the diseases accounted for in the

study by WHO were caused by pathogenic microorganisms. The disease burden of three

chemical hazards was included in the global estimates, and it is acknowledged that the

overall burden is underestimated due to the lack of estimates for foodborne chemicals and

toxins. Data on disease incidence caused by the foodborne hazard is a prerequisite for the

estimation of DALYs. For foodborne pathogens that often cause acute diarrhoeal disease,

incidence and mortality may be obtained from disease registries. However, most diseases

caused by foodborne chemicals are multicausal and the disease often occurs long time after

exposure. Therefore, it is often only theoretically possible by the use of evidence from

human observational studies or toxicological studies in experimental animals to allocate a

disease case to a given exposure. However, epidemiological evidence is lacking for a vast

majority of foodborne chemicals, and derivation of human disease incidence and mortality

must be based on toxicological data from animal studies.

The overall aim of this thesis was to develop models to estimate the burden of disease
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and apply the DALY methodology for foodborne chemicals, with a special focus on the

use of toxicological data.

The thesis consists of three studies which all apply a hazard- and incidence-based

approach to estimate the disease burden of chemicals. That is, the disease burden is

calculated for all new disease cases caused by a hazard in a given time period. In all

three studies, the incidence of cancer caused by dietary exposure to chemical carcinogens

is estimated via a risk assessment approach, which makes use of data from the Danish

national survey of dietary habits and physical activity, monitoring data on the chemi-

cal concentration in foods and dose response relationships from animal carcinogenicity

studies.

In paper 1 (Burden of disease of dietary exposure to acrylamide in Denmark) it was

evaluated how different methodological choices affect the final DALY estimate and an

overall model framework consisting of three modules was proposed to estimate the dis-

ease burden to foodborne chemicals. We estimated a disease burden of 0.003 and 1.8

DALY/100,000 inhabitants, depending on the methodological choices and assumptions.

We concluded that the assumptions and model approaches in the health outcome module,

have a higher impact on the final DALY estimates than does the model approaches taken

in the DALY module. In the health outcome module, health outcomes included in the

estimation are selected and the estimation of disease incidence is performed based on the

dose-response relationship from the animal studies.

The selection of hazard-health outcome pairs to account for in the study of foodborne

chemicals is a crucial step, which potentially has a large impact on the final DALY es-

timates. In manuscript 2 (”The sensitivity of a cohort study on acrylamide and risk of

cancer: using a simulation approach to evaluate the likelihood of a significant effect”) we

assessed the potential bias introduced into studies of disease burden of foodborne chem-

icals, if only the evidence from human observational studies are used as the criteria for

the selection of health outcomes. Using the risk of cancer caused by dietary exposure

to acrylamide derived in Paper 1, we simulated the probability of detecting a statistical

significant relative risk in a cohort study of ”standard” design. We concluded that the

lack of sensitivity in epidemiological studies should be taken into account when weighting

the evidence of a causal effect, and in turn selecting the hazard-health outcome pairs.

DALYs reduce complex information into a single number. For foodborne chemicals the
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knowledge base of the information is rarely complete and the uncertainty considerable,

when translating the evidence from animal studies into DALY. This uncertainty should be

quantified in order to be able to compare DALY estimates across hazards and direct future

research. Moreover, information about how the burden of disease is distributed in different

groups of the population is important and evaluated by describing the variation between

individuals. In manuscript 3 (”The Burden of disease of benzo[ a]pyrene in barbecued meat:

informing advice for different population groups”) we developed a model to account for

the variability between individuals and quantitatively propagate uncertainty along the

analysis. The disease burden we estimated was low: 9.91 × 10−8 DALY per 100,000

inhabitants with a 95% uncertainty interval of 3.11× 10−8− 1.49× 10−7. However, it was

also estimated that individuals in the population, characterized by gender and weight,

can reach an exposure that exceeds a limit that is associated with a high health risk by

only consuming few meals of barbecued meat per year. This illustrates the differences in

the purpose of disease burden studies and toxicological risk assessment, respectively.

This thesis contributes to the clarification of the impact of the different components

of the analysis of the disease burden, when toxicological data from animal studies are

applied. This information is important, if disease burden estimates are performed to assist

policy-makers to decide where to allocate food-safety resources. In this thesis models were

developed on case studies of two genotoxic carcinogens. Future research should extent

model development to chemicals of other toxic effects. Especially the models developed

in Manuscript 3 should be developed further and applied to other types and combinations

of chemicals.
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Sammendrag

Fødevareb̊arne sygdomme kan være for̊arsaget af sygdomsfremkaldende (patogene) mikro-

organismer. Andre årsager til at man kan blive syg af maden, kan f.eks. være forekomst

af tilsatte kemiske stoffer, naturligt forekommende giftstoffer eller procesforureninger,

stoffer dannet under madens tilberedning, som f.eks. akrylamid og benzo[a]pyren, som

omtales i denne afhandling. Fødevareb̊arne sygdommes p̊avirkning af folkesundheden, kan

udtrykkes ved hjælp af ”Disability Adjusted Life Years” (DALY), som i et tal kombinerer

information om sygdommes varighed, i hvilken grad sygdomme p̊avirker helbredet, hvor

mange, der f̊ar sygdommen og hvor mange, der dør af den. En DALY repræsenterer

tabet af ét sundt leve̊ar. P̊a den måde kan DALYs bruges til at sammenligne forskel-

lige fødevareb̊arne sygdommes p̊avirkning af folkesundheden p̊a tværs af farer (hazards).

I 2015 estimerede Verdenssundhedsorganisationen (WHO) sygdomsbyrden af sygdoms-

fremkaldende mikroorganismer og toksiske, kemiske stoffer i maden og kom frem til, at

den udgjorde 33 millioner DALYs p̊a globalt plan. De fleste af de sygdomme, der blev

redegjort for i WHO’s beregninger, var imidlertid for̊arsaget af patogene mikroorganis-

mer. I det globale skøn af sygdomsbyrden blev kun 3 kemiske stoffer medtaget. Det er

derfor anerkendt, at den samlede sygdomsbyrde er undervurderet p̊a grund af manglende

estimater for kemiske stoffer i maden. For at beregne DALYs er det nødvendigt at kende

antallet af nye sygdomstilfælde for̊arsaget af en given patogen mikroorganisme eller et

kemisk stof. For fødevareb̊arne patogener, der for eksempel kan for̊arsage akut diarre,

er antallet af sygdomstilfælde som regel tilgængelige fra sygdomsregistre. Mange af de

sygdomme, der kan for̊arsages af kemiske stoffer, kan imidlertid have mange forskellige

årsager, de er multi-kausale, og ofte opst̊ar sygdommen ogs̊a først lang tid efter eksponer-

ing. Derfor er det i mange tilfælde kun teoretisk muligt ved brug af data fra humane

observationsstudier eller toksikologiske studier i forsøgsdyr, at tildele et sygdomstilfælde
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til en given eksponering. Epidemiologiske data mangler dog for størstedelen af de kemiske

stoffer, vi indtager fra kosten. I stedet for må sygdomsincidensen for mennesker udledes

af dyreforsøg. Blandt andet derfor er der kun publiceret f̊a estimater af sygdomsbyrden

for̊arsaget af kemiske stoffer i maden.

Det overordnede mål med dette ph.d-projekt er at udvikle modeller til at estimere syg-

domsbyrden udtrykt i DALYs for toksiske, kemiske stoffer i maden med et særligt fokus

p̊a, hvordan man kan inddrage toksikologiske data fra dyreforsøg. Afhandlingen best̊ar

af tre studier, som alle estimerer sygdomsbyrden ved hjælp af en hazard- og incidens-

baseret metode. Det vil sige, at sygdomsbyrden beregnes for alle nye sygdomstilfælde,

der er for̊arsaget af en fare (hazard) i en given tidsperiode. I alle tre studier estimeres

forekomsten af kræft, for̊arsaget af eksponering for procesforureningerne via en risikovur-

deringsmetode. Der er blevet anvendt data fra ”Den nationale undersøgelse af danskernes

kost og fysiske aktivitet”, data fra danske monitorerings programmer for indhold af tok-

siske, kemiske stoffer i fødevarer, og data om stoffernes dosis-respons-forhold fra relevante

dyreforsøg.

Den første artikel (”Burden of disease of dietary exposure to acrylamide in Denmark”)

undersøgte, hvordan forskellige metodevalg p̊avirker det endelige DALY estimat for akry-

lamid. I artiklen foresl̊as desuden en overordnet modelramme, best̊aende af tre moduler,

til at beregne sygdomsbyrden af kemiske stoffer. Resultatet var, at akrylamid for̊arsager

0,003 eller 1,8 DALY per 100,000 indbyggere, afhængigt af den valgte metode. En vigtig

konklusion var, at de endelige DALY-estimater, var mere p̊avirket af antagelserne og

metoderne anvendt i ”Health Outcome-modulet” end modelvalget i ”DALY-modulet”.

I ”Health Outcome-modulet” udvælges hvilke sygdomme, der skal medtages i analysen,

og sygdomsforekomsten estimeres p̊a baggrund af sammenhængen mellem dosis-respons i

dyreforsøgene.

Udvælgelsen af sygdomme, der skal medtages i en sygdomsbyrdeberegning, er et

afgørende trin, der har stor indydelse p̊a det endelige DALY estimat. I manuskript 2

(”The sensitivity of a cohort study on acrylamide and risk of cancer: using a simula-

tion approach to evaluate the likelihood of a significant effect”) vurderedes den poten-

tielle bias (skævvridning af resultatet) der kan opst̊a, hvis humane observationsstudier

har den højeste prioritet i udvælgelsen af sygdomme. Sandsynligheden for at p̊avise en

statistisk signifikant relativ risiko i et kohortestudie, der følger et standard design blev



xiii

simuleret. Kræftrisikoen fra eksponeringen for akrylamid beregnet i den første artikel blev

anvendt. Konklusionen var, at følsomheden af et kohortestudie er begrænset, n̊ar der kan

være mange andre årsager til forekomsten af sygdommen, for eksempel kræft, end den

eksponering man undersøger, for eksempel akrylamid. Derfor kan humane observation-

sstudier ikke st̊a alene som kriterium for udvælgelsen af sygdomme, der skal medtages i

en sygdomsbyrde beregning.

I beregninger af DALYs bliver kompleks information reduceret til en enkel talværdi.

Videns grundlaget er ofte ufuldstændigt og usikkerheden derfor betydelig, n̊ar man om-

sætter sygdomme for̊arsaget af kemiske stoffer til DALYs. Denne usikkerhed bør kvan-

tificeres for at kunne sammenligne DALY estimater p̊a tværs af forskellige sygdomsrisici

fra f.eks. mikroorganismer og kemiske stoffer og for bedre at kunne fastsl̊a, hvor vi-

dens grundlaget er utilstrækkeligt. Desuden er omfanget af sygdomsbyrden i forskellige

grupper af befolkningen en vigtig oplysning og vurderes ved at beskrive forskelle mellem

individer i f.eks. køn, alder, vægt og gener samt livsstilsvaner og socioøkonomisk status.

I manuskript 3 (”The Burden of disease of benzo[a]pyrene in barbecued meat: informing

advice for different population groups”) blev der udviklet en model, der tager højde for

forskellen mellem individer og kvantificerer usikkerhed forbundet med de enkelte elementer

af analysen. Sygdomsbyrden for benzo[a]pyren var lav, 9, 91 × 10−8 DALY per 100,000

indbyggere med et 95% usikkerheds interval p̊a 3, 11 × 10−8 – 1, 49 × 10−7. Beregninger

p̊a de samme data viste, at individer i befolkningen, karakteriseret ved køn og vægt, kan

opn̊a en eksponering, der overskrider en sundhedsmæssigt begrundet grænseværdi, ved et

indtag af kun f̊a måltider med grillet kød om året. Dette illustrerer forskellen p̊a formålet

af sygdomsbyrde studier og toksikologisk risikovurdering.

Denne afhandling bidrager til at belyse betydningen af de enkelte dele, der indg̊ar i den

samlede analyse af sygdomsbyrden n̊ar toksikologiske data fra dyreforsøg er anvendt for en

bestemt type kemiske stoffer, procesforureninger i maden. Denne information er vigtig,

fordi det er foresl̊aet, at sygdomsbyrdeestimater kan være et vigtigt redskab og indg̊a

i beslutningsgrundlaget, n̊ar myndigheder der varetager fødevaresikkerheden skal vælge

hvilke omr̊ader, der skal prioriteres og tilføres ressourcer. I denne afhandling blev der

udviklet modeller for stoffer, der virker kræftfremkaldende ved en genotoksisk mekanisme.

Fremtidig forskning bør udvide modeludviklingen til kemiske stoffer med andre toksiske

virkninger. Specielt modellerne udviklet i Manuskript 3 bør afprøves p̊a andre typer og
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kombinationer af kemiske stoffer for at undersøge anvendeligheden af modellerne.
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Chapter 1

Introduction

1.1 The burden of foodborne disease

Foodborne diseases (FBD) are diseases in humans caused by pathogenic microorganisms

or harmful chemicals that are present in the foods we consume. Illnesses and deaths

caused by FBDs have a high public health impact, and pose a significant socioeconomic

burden, both nationally and globally [1]. For policy makers within food safety, the overall

goal is to protect the population from unsafe food and thereby promote public health and

limit economic losses. When resources are scarce, policy makers need objective evidence

in order to prioritize interventions or mitigation strategies with maximal public health

impact [2][3]. Incidence, prevalence or cause-specific mortality are all metrics commonly

applied to inform on the impact of a disease or the effect of an intervention on public

health. However, different hazards and risk factors in foods cause many different diseases

of different severity and likelihood to occur; some hazards may cause self-limiting diseases

of short duration, others may cause chronic diseases and even death, and some may

cause all. Therefore, incidence or mortality alone do not capture the full range of health

dimensions of a disease, and are thus not informative enough when the health impact of

a given food-hazard or risk factor is to be compared with others.

The Burden of Disease (BoD) is an estimation of the health impact of disease using

a summary measure of public health (SMPH), taking into account both mortality and

morbidity. Different metrics have been developed for the purpose, e.g. quality adjusted life

1
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years (QALY) [4] and health adjusted life expectancy (HALE)[5]. However the disability

adjusted life years (DALY) has been more widely used since its development for the first

Global Burden of Disease (GBD) project published in 1996 [6][7]. The DALY expresses

the years of life lost to premature death and years lived with a disability of given severity

and duration; one DALY is one lost year of healthy life [6]. In the GBD project, DALYs

are used to rank diseases nationally and globally. The GBD project, first institutionalized

under the World Health Organization (WHO) and then the Institute of Health Metrics

and Evaluation (IHME), has since 1996 undergone four comprehensive updates, which

makes it possible to observe shifts in disease burden over time, globally and nationally

[8][9][10].

The GBD project uses risk factor studies to attribute DALY to selected risk factors

including dietary risk factors [7][11][12][13]. However, the risk factor ’unsafe food’ is not

included, which motivated, by initiative of WHO, the establishment of the Global Burden

of Foodborne Disease (GBFD) project in 2006 [2], with the final report published in

2015 [14]. The primary goal was: ”To enable policy-makers to set appropriate, evidence-

based priorities in the area of food safety” [14][1]. The disease burden attributable to 31

foodborne hazards in 2010 was estimated: 17 enteric hazards, 11 parasitic hazards and

only 3 chemical hazards and toxins. The total burden of foodborne disease amounted

to 33 million DALYs ( 95% uncertainty interval: 25 million - 46 million DALY), and is

thereby comparable to each of the major infectious diseases: HIV/AIDS, malaria and

tuberculosis [1].

1.1.1 Why are chemicals a challenge?

At the initiation of the GBFD project, the foodborne disease burden epidemiology refer-

ence group (FERG) core group, which led the GBFD, developed a comprehensive universal

list of foodborne hazards that could be addressed in the project. From that list, selected

hazards were chosen, based on criteria of data availability to estimate incidence and the

likely magnitude of the disease burden attributed to the hazard [15][14]. For the chemicals

and toxins, the universal list included 11 groups of hazards (column 1 in table 1.1). It

was decided that disease burden estimates could be calculated for eight hazards (column

2 in table 1.1), but in the final report of the GBFD project, global estimates for only
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three hazards were approved by WHO and included (column 3 in table 1.1). Overall, the

GBFD project estimated that 900,000 DALYs were attributed chemicals and toxins, cor-

responding to 3% of the total foodborne disease burden estimated. But since only three

hazards were estimated, it is acknowledged that the disease burden attributed foodborne

chemicals is grossly underestimated [16][14].

Table 1.1: Lists of chemical hazards and toxins considered and included by the Global

Burden of Foodborne Disease project and amended by World Health Organization

Universal list of hazards Included hazards WHO amended hazards

Elemental contaminants
(e.g. lead, mercury, cadmium, man-
ganese, arsenic)

Aflatoxin Aflatoxin

Mycotoxins
(e.g. aflatoxins, ochratoxins, fumon-
isin, trochothocenes)

Arsenic Cassava cyanide

Food additives
(e.g. sulphites, nitrites/nitrates,
benzoic acid)

Cadmium Dioxin

Pesticides
(e.g. oorganophosphates, carba-
mates, DDT, Pyrethins)

Cassava cyanide (Peanut allergy only for the AMR
A, EUR A and WPR A regions,
and excluded from [14])

Organic industrial pollutants
(e.g. persistent organic pollutants)

Dioxin

Veterinary drugs/residues
(e.g. antibiotics, hormones-but not
antimicrobial residues)

Lead

Seafood toxins
(e.g. tetrodotoxin, ciguatera, shell-
fish toxins, histamines)

Methyl mercury

Process contaminants
(e.g. acrylamide, PAHs, chloro-
propanol)

Peanut allergens

Allergens
(e.g.peanuts)

Natural toxicants
(e.g. cyanide in cassava, aminogly-
cosides

Radionuclide and depleted uranium

So why was the list of included hazards not more extensive?
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Thousands of chemicals harmful to humans occur in foods, both as anthropogenic

contamination and as naturally occurring toxins in raw materials; as a result of production

processes or migration from for example packaging. The range of health effects caused

by these chemicals is wide, including, but not limited to: acute poisonings (e.g. vomiting

and diarrhea caused by lectins [17]), impaired cognitive development (e.g. caused by

heavy metals [18]), several types of cancers (e.g. caused by mycotoxins [19]), reduced

fertility (e.g. casued by bisphenol-A[20]) and immunosuppression (e.g. caused by dioxin

[21]). Additionally, one chemical can exert a spectrum of health effects adverse to human

health.

To estimate burden of foodborne disease in terms of DALYs, it is necessary to trace

disease cases and deaths back to the causative agents. The degree to which this is possible

varies for different chemicals depending on the nature of the associated health effects, dis-

ease epidemiology and exposure patterns (fig. 1.1, where the grey shaded area represents

the hypothetical fraction of cases to be traced back to the causative chemical exposure).

All chemicals exert an effect on the human body upon exposure, and a distinction

between adverse and non-adverse effects is a crucial step in chemical risk assessment [22].

Above the red dashed line in fig. 1.1 are the chemically induced health effects that are

considered adverse. Obviously, only the adverse health effects contribute to the disease

burden of foodborne chemicals.

A vast majority of adverse effects of foodborne chemicals and toxins can only be char-

acterized in toxicological test systems, e.g. in vitro assays and experimental animals, and

do not manifest themselves as clinical human cases [3]. For example, a chemically induced

morphological change in an animal organ is an adverse effect, but will not necessarily be

identified as a human clinical case (bottom, but above red dashed line of pyramid in fig.

1.1). The test systems are primarily used to support evidence for toxicological mode of

actions and to establish reference values applied in a regulatory process. The effects are

adverse, but rarely identified as human disease endpoints.

For frequent low level chronic exposures to chemicals that might cause various chronic

diseases, it is a great challenge to trace back and allocate cases. This is primarily due to

long lag times from exposure to the manifestation of symptoms as well as to the multi-

causality for a wide range of chronic diseases, e.g. physical inactivity, genetics and methyl

mercury may all contribute to development of cardiovascular disease (third from top of
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the pyramid in fig. 1.1).

If chronic diseases occur in populations exposed to high levels of specific food chemicals

or toxins, it may be possible to allocate cases to the causative agents; e.g. aflatoxin induced

liver cancer in certain African regions [23][24], and exposure to methyl mercury causing

developmental impairments in unborn and young children in populations with a high fish

consumption [25] (second from top of the pyramid in fig. 1.1).

Finally, as for foodborne microorganisms, identifiying a disease case due to chemical

exposure can (relatively easily) be done for cases of acute toxic effects or when the chemical

or toxin are the sole causative agents; e.g. peanut allergy or cyanogenic cassava induced

konzo, both included in the GBFD project [15](the top of the pyramid in fig. 1.1).

Fig. 1.1: Frequency and detection of health outcomes following exposure to foodborne

chemicals, adapted from Hollander (2009) and Pruss-Ustun (2011) [26][3]. From the top

and down of the pyramid illustrate an increased frequency of health outcomes. The grey-shaded area

indicates the (hypothetical) fraction of the disease cases that with certainty can be attributed to a

foodborne chemical as the causative agent. Above the red-dashed line are the health effects that manifest

themselves as harmful to humans, below the physiological changes that occur upon chemical exposure

but are of uncertain significance to human health.

Surveillance data in the form of registered prevalence or incidence of cases or deaths
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ascertained to the causative chemical is the most reliable data. However, as illustrated

by fig. 1.1, this type of data is not available or possible to extract for the vast majority of

health effects caused by foodborne chemicals. Most health effects associated with chem-

cial exposures are multi-causal and it may only theoretically be possible to trace back a

case to its source. To do this, data can be obtained from human observational studies in

terms of e.g. relative risks (RR) or from toxicological test systems e.g. experimental an-

imals. Statistical significant RRs are preferrable but usually only obtained from human

observational studies in (sub)populations where disease cases are associated with high

exposure levels compared to the controls [3]. Besides, it is not straight forward to extrap-

olate RRs estimated in one population to another, where distribution of confounders is

different than in the study population [27]. If data are derived from experimental ani-

mals, the health effects detected are caused solely by the chemical to which the animals

are exposed. However, the incidence observed in the animals must be extrapolated to an

incidence in humans, which is also not straight forward.

Thus, quantitative estimates of the disease incidence are for many chemical exposures

lacking or of varying strenght [3][15][26]. Depending on the strength and origin of the

evidence, i.e. epidemiological or toxicological studies, various degrees and sources of

uncertainty are associated with the estimates, which, in turn, hampers the reliability of

the disease burden estimate and complicates a comparative assessment across hazards.

Further, when incidence data are not available, high quality exposure data is needed,

but often also not available. Food consumption surveys (e.g. food frequency question-

naires (FFQ), 4-7 day food diaries, 24-hour dietary recall) and data on chemical concen-

trations are usually not designed to estimate exposure to chemicals and do not necessarily

reflect the foods on the market or take into account processing factors, both by the indus-

try and at consumer level. Biomonitoring data used in exposure assessments are prefer-

able, but are at present not available for many chemical hazards, and pose challenges of

attributing exposure to the different sources [28].

Due to these challenges, studies of burden of foodborne chemicals, using DALYs as a

common health metric, are of a limited number. Few other studies have been published

besides the estimation of burden of foodborne chemicals for the hazards in the GBFD-

project [29][30]. The majority of these studies are based on RRs from human observational

studies (inorganic arsenic in [29], aflatoxin in [15]), fewer on animal dose response data
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(dioxin in [15], acrylamide, PAH, nitrosamines in [30]). If the burden of foodborne disease

is to be estimated, more quantitative estimates of the disease burden due to chemical

exposures through food must be available. This calls for the need to further explore

this area of research, with a specific focus on applying toxicological data to theoretically

estimate the disease burden due to foodborne chemicals. It is relevant to investigate the

limitations and opportunities of using animal dose response data, with a special focus on

increasing transparency in the development of the main indicators, i.e. disease incidence

and DALYs.

1.2 Aims and objectives

The overall aim of this thesis was to develop models to estimate the burden of disease

and apply the DALY methodology for foodborne chemicals, with a special focus on the

use of toxicological data for the purpose. The specific objectives were:

• To investigate how methodological choices and assumptions affect the disease burden

estimates of chemical hazards.

• To assess the link between toxicological and epidemiological evidence on the causal

relation and size of effect between a hazard and health outcome, and discuss the

influence this has on the study on the disease burden of foodborne chemicals.

• To account for variability and uncertainty in the study on burden of disease of

foodborne chemicals.

• To discuss the applicability of disease burden studies in risk management.

Two chemical hazards were selected as case studies to address these objectives.

1.3 Outline of the thesis

The preceding Chapter 1 has introduced the overall concept of burden of foodborne

disease, the special challenge that estimating the disease burden due to foodborne chem-

icals presents and the aim and objectives of this thesis. Chapter 2 is a background
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section, which describe the approaches to estimate the burden of foodborne disease and

the framework for performing toxicological risk assessments, respectively. Chapter 3-5

represent the three manuscripts included in this thesis; Chapter 3 is a case study on

the burden of disease of dietary exposure to AA in Denmark, in which we investigated

how different methodological choices affect the final estimates; Chapter 4 is a simula-

tion of a prospective cohort study on AA and the risk of cancer, which investigates the

likelihood of detecting a significant relative risk (RR), and illustrates sources and size of

potential bias in BoFD studies; and Chapter 5 is a case study on the disease burden

of Benzo[a]pyrene (BaP) in barbecued meat, including variability in consumer behaviour

and individuals’ sensitivity to the chemical. Before each manuscript a prelude is given,

and after, a broader discussion presented. In Chapter 6, the main findings from each

manuscript are summarized, an overarching discussion is given with concluding remarks

and future perspectives are presented.



Chapter 2

Background

2.1 Approaches for estimating the burden of food-

borne disease

As stated in the Introduction, the DALY has become the widely used metric, both in

general BoD studies, e.g. the GBD, and in studies of specific risk factors including

environmental burden of disease (eBoD) [3][31] and BoFD [1]. Comparability between

studies is often hampered by different methodological choices used to estimate DALYs

[32][33][34][35]. Which method is applied depends on the question at hand and the origin

of the available data. However, even within same question and data frames, methodolo-

gies vary, along with how they are defined. In this chapter and in the rest of the thesis,

the methodologies (and their definitions) are referred to as described within the method-

ological framework of the GBFD-project [36]. In the first paper of this thesis, ”Burden

of disease of dietary exposure to acrylamide in Denmark” [37], the reader will notice dis-

crepancies in the definitions applied. However, a unified ”language” within the burden

of foodborne disease framework is important for its transparency, and these discrepancies

will be addressed in the following.

9
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2.1.1 Disability adjusted life years

The DALY is a health gap measure, meaning that it reflects the number of life years

lost due to bad health and premature death. It is assumed that each individual in a

population is born with the prospect of living a full life of perfect health. However, each

individual might during their life experience illnesses of shorter or longer duration and

various degrees of severity, and may even die from a disease at an earlier age than would

have been expected compared to an expected (reference) age. The time that an individual

lives with a disease (morbidity) and the time that an individual dies before the expected

age (mortality), is in the DALY combined and expressed as the total loss of healthy life

years. The loss of healthy life years may be attributed to different diseases, which again

may be caused by different risk factors or hazards, and the loss of healthy life years of a

population is estimated by summing over each individual in that population (Fig. 2.1).

2.1.1.1 How to calculate DALYs

The time living with disease is in DALY terminology referred to as the years lived with

disability (YLD) and is for a given health outcome in a population calculated by:

YLD = Nc × t× DW, (2.1)

where Nc is the number of cases of a given health outcome in a defined population, t is the

duration in years of the health outcome from disease onset to either remission or death,

and DW is the disability weight, which describes the severity of the health outcome on a

scale from 0 (perfect health) to 1 (death). Disability weights have been developed for the

GBD study [38] and the Dutch Burden of Disease study [39].

The time of death before an expected age is in DALY terminology referred to as the

years of life lost (YLL) and is calculated by:

YLL = Nd × LE, (2.2)

where Nd is the number of deaths associated with the health outcome in a defined pop-

ulation and LE is the residual life expectancy at the age of death, thus making YLL

age-dependent.
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Fig. 2.1: The concept of DALY The x, y dimensions of the graph represent a person’s contribution

to the loss of health life years in a population (z-dimension). The person is born with a prospect of

perfect health and live in this state (disability weight 0) until age 20. For five years he lives with a

disease of disability weight 0.2. He regains perfect health until age 40 where he lives 20 years with a

disease of disability weight 0.32, which progresses to worse at age 60 (disability weight 0.7), until he dies

from the disease at age 75, 17 years before his expected age of death at 92. Thus the total DALY is

0.2 × 5 + 0.32 × 20 + 0.7 × 15 + 17 = 34.9.

DALYs are the sum of YLDs and YLLs:

DALY = YLD + YLL. (2.3)

DALY can be presented as the absolute DALY for a given population; presented as

relative to the population size, e.g. per 100,000, and thus comparable across different

populations; or as DALY per case, which indicates the severity of a given health outcome

the individual level [40].

Different social weighting factors can be applied to the general DALY equation (eq.

2.3) [6][40]. In age-weighting, the social value of a healthy life year of young to middle-
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aged adult is higher than that of a young child or an elderly individual. It is based on

the presumption that young to middle-aged adults contribute more to than depending

on society. In discounting, the DALYs lost closer to present time is valued higher than

those lost in the future. Discounting of DALYs is based on the fact people seem to

prefer a healthy year of life immediately rather than a life lived in the future. Usually a

discounting rate of 3% is applied, meaning that a healthy life year gained 10 year from

now is worth 24% less than a year gained now [41]. The ethical aspects of age-weighting

and discounting (and of the DALY as a concept) has been debated [42][43], and since the

2010 GBD consensus has been that DALY estimates should be presented both with and

without the social weight factors [8].

2.1.1.2 Data needs

Every DALY calculation starts with the problem formulation. That is: which disease

burden do we want to estimate, in which population and within what time period? The

answers to these questions define the type of data needed and the methodologies applied.

To estimate the disease burden of specific health outcomes irrespective of their ae-

tiology, for example the total disease burden of a type of cancer, is referred to as the

outcome-based approach (Fig. 2.2). In this approach, the total number of cases and

deaths of the health outcome is needed. To estimate the burden due to a certain risk

factor, for example barbecuing which increases the risk of cancer mediated by exposure

to various carcinogenic compounds, is referred to as the risk factor-based approach.

This approach requires the number of cases and deaths of the health outcome attributed

the risk factor. Lastly, to estimate the disease burden caused by a hazard, for example

cancer caused by exposure to acrylamide, is referred to as the the hazard-based ap-

proach. Here the number of cases and deaths attributed the hazard is needed [44] (Fig.

2.2). For all three approaches, a disease model representing all possible health states of

the disease(s) accounted for, must be constructed. Additionally, information on duration,

the disability weight, and the age of onset of each health state is needed in the YLD cal-

culation; in the YLL calculation, information on the age of death and the life expectancy

at age of death of each health state are needed.

Regardless of the approach selected, the number of cases for a health outcome to
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Fig. 2.2: Approaches for estimation of disease burden. A risk factor-based approach estimates

number of disease cases due to a given risk factor; a hazard based-approach attributes number of disease

cases to a given hazard; a outcome-based approach estimate the number of disease cases irrespective to

its aetiology.

calculate YLD must be given either as the incidence or as the prevalence. The incidence

refers to the number of new cases per time period, whereas the prevalence is the number of

disease cases present at a given point in time. If an incidence based approach is used, the

future disease burden is ascribed to the incident cases in the specified year. If a prevalence

based approach is used, the disease burden in a given year is the burden experienced by

all the individuals living with the disease in that year [6][36][40][45]. As example, if the

disease burden of liver cancer is estimated in 2014, then by the incident-based approach

the disease burden of liver cancer is estimated as the burden that all patients with liver

cancer diagnosed in 2014 will experience in the future years. By the prevalence based

approach, the disease burden of 2014 will be the disease burden of all liver cancer patients

living with the disease in the various disease stages. If population age structure and

disease trends are constant over time, then the two approaches should yield the same

result [6][40].

If it is a population-based burden study, the population must be defined, e.g. the

Danish population, and often stratified by age and gender. DALYs are then calculated

for each stratum and summed for the whole population [40]. Finally, it can be of use to

know the disease burden in a given year, e.g. the burden of foodborne disease in 2010
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in the Danish population, thus making it possible to compare disease burdens over time

[46].

As BoFD is caused by a wide range of hazards, the hazard- and incidence-based

approach was adopted in the GBFD-project [36], and likewise in Paper 1 and Manuscript

3 in this thesis. The hazard-based approach is described in detail below.

2.1.2 Hazard-based approaches for foodborne chemicals

The hazard-based approach ”defines the burden of a specific foodborne hazard as that

resulting from the health states, i.e., symptoms and sequelae, including death, that are

causally related to the concerned hazard transmitted through food and which may become

manifest at different time scales or have different severity levels” [36]. Within the hazard-

based approach, the origin of the evidence to inform on the disease incidence has an impact

on: i) which disease(s) to account for in the burden estimate, ii) the construction of a

health outcome tree serving as the basis for the burden estimation and iii) the methodology

applied to calculate or attribute the disease incidences.

2.1.2.1 Selection of health outcomes

Different criteria may be applied in the selection of the health outcomes caused by a given

hazard (hazard-health outcome pair) and accounted for in the disease burden [12][36][15]

(fig. 2.3). Through structured literature searches, all identified health outcomes, their

symptoms and sequelae, are identified [36]. For foodborne chemicals, the structured lit-

erature review might be exempt if updated toxicological reviews or opinions are available

for the specific chemical from international organizations, e.g. the Joint FAO/WHO

Expert Committee on Food Additives (JECFA), International programme on chemical

safety (IPCS), International agency for research on cancer (IARC) and the European

food safety authority (EFSA). The toxicological reviews offered by the international or-

ganizations present thorough evaluations of the hazard-associated risks, by reviewing all

available data to be used in a chemical hazard assessment. The data include: human

data i.e. case reports, clinical and physiological investigations, volunteer studies, occupa-

tional studies, epidemiological studies and meta-analyses; experimental animal (in vivo)

data; In vitro data; and Non-testing data i.e. physico-chemical properties and quanti-



2.1 Approaches for estimating the burden of foodborne disease 15

tative structure-activity relationships (QSAR) [47]. If updated toxicological reviews do

not exist for the chemical of interest, the structured literature search should include all

published literature covering the above data sources.

To be accounted for in the disease burden, the identified hazard-health outcome pair

must be evaluated with regard to the strength of evidence of: i) the causal relationship,

and ii) the data to estimate the probability of the health outcome to occur in a human

population. Regarding i), the strength of evidence of the combined information from

several of the above mentioned data sources is evaluated. Effects observed in humans after

exposure to the given chemical must be supported by biological evidence on the mode

of action of the chemical in the human body from animal and in vitro data. Vice versa,

adverse effects of a chemical observed in animal and/or in vitro studies are investigated

for its human relevance in observational studies, where the findings from the test systems

are used to generate a null-hypothesis (i.e. chemical X is not associated with disease Y)

to be tested. The combined information is used to grade the strength of the evidence,

which is formally done for example for human carcinogens [48] (e.g. Box 1).

Box 1: IARC classification of carcinogens

Group 1: Carcinogenic to humans = sufficient ev-

idence of carcinogenicity in humans.

Group 2A: Probably carcinogenic to humans =

limited evidence of carcinogenicity in humans,

sufficient evidence of carcinogenicity in animals.

Group 2B: Possibly carcinogenic to humans =

limited evidence of carcinogenicity in humans and

less than sufficient evidence in experimental ani-

mals.

Group 3: Unclassifiable as to carcinogenicity in

humans = inadequate evidence in humans and

less than sufficient in experimental animals.

Group 4: Probably not carcinogenic in humans

= evidence suggesting lack of carcinogenicity in

humans and in experimental animals.

Regarding ii), when a hazard-

health outcome pair is found rel-

evant for humans, it is assessed

whether it is possible to estimate

the incidence based on the avail-

able data with an acceptable de-

gree of certainty. If a hazard-

outcome pair is supported by ev-

idence in the form of surveillance

data (rarely the case with chemi-

cal exposures) or from high qual-

ity human observational studies

reporting relative risks (RR) and

a dose-response relationship, the

task to calculate the incidence is

less complicated. However, if this type of data do not exist in the literature or if the

RR and dose-response relationship is not useful for extrapolation from one population to
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another [12], then the incidence must be calculated from other types of data, which is

not necessarily straight forward. To calculate the incidence from animal data is compli-

cated by the fact that the dose response relationships in animals have to be translated to

humans by factors that cover the cross-species differences.

A third criterion used to select hazard-outcome pairs, if surveillance data is not col-

lected, is the availability of exposure data [12]. The quality of the data-bases used for

assessing the human exposure to foodborne chemicals can vary greatly from chemical to

chemical. A fourth criterion is if disability weights are available for the health outcome

of interest. If not, disability weights of similar health outcomes may be adopted. The

criteria for including a health outcome associated with a hazard to estimate the disease

burden connected to that hazard is schematically presented in fig.2.3.

Other subjective criteria have been applied when including health outcomes for a given

hazard. If the severity of a potential health effect or the (theoretical) burden is assumed to

be low it might be excluded from the estimation [15]. Likewise, exposure levels assumed

too low to mediate a certain health outcome may be reason of exclusion. This was the

case in the first paper of this thesis, in which only cancer was included as health outcome

associated with acrylamide exposure; on the assumption that neurotoxic effects in humans

are only linked with occupational exposure, which are substantially higher than exposure

levels mediated by foods [49].

2.1.2.2 Incidence attribution for foodborne chemicals

Depending on the data available for calculating incidences, the hazard-based approach is

applied by either of the following three methodologies: categorial attribution in which

incident disease cases are directly identified as caused by the hazard; a counterfactual

analysis in which the population attributable fraction (PAF) is calculated and multiplied

with the total burden estimate for the specific health outcome (i.e. the total burden of

cancer in a population, also referred to as the disease envelope); or by a risk assess-

ment approach in which the incidence is calculated from the combination of a dose

response relationship and exposure data [36] (fig. 2.4). Overall, the approaches applying

surveillance data or observational studies are referred to as top-down approaches; a

risk assessment approach is referred to as a bottom-up approach.
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Fig. 2.3: Decision-tree for selection of hazard-health outcomes The identification of hazard-

health outcome pairs is done by reviewing the available scientific literature. To include the identified

hazard-health outcome pairs depends on at least 4 criteria: a) available evidence for a causal relationship,

b) available evidence for incidence estimation, c) available exposure data, d) available disability weights.

For foodborne chemicals, as stated before, it is rarely the case that surveillance data

to apply categorical attribution is available. Within categorical attribution, the obtained

incidence can be in the form of the direct incidence attributed to the hazard in question

(AI) or the incidence of an overall disease envelope (I). In the first, AI is multiplied with

the probability of developing the health state (i.e. the transitional model); in the latter, I

is multiplied with the attributable proportion (AP) of the hazard in question (top of fig.

2.4).

If RRs from observational studies or dose-response relationships from experimental

animal data (or both) are available, either counterfactual analysis or a risk assessment

approach can be applied. If a disease envelope for the selected health outcome is available,
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the PAF can be estimated from observational studies or animal dose response data. The

PAF is calculated from RRs and estimates the proportional reduction in disease if exposure

was removed or reduced (hence, a counterfactual analysis).

If an animal dose response relationship is available (risk assessment approach), a

”pseudo” PAF is calculated by combining the dose response with exposure data to esti-

mate the attributable incidence (AI), which is divided by the background incidence of the

health outcome [31]. Both the PAF and the ”pseudo” PAF are multiplied with the disease

envelope. If a disease envelope does not exist, an AI is calculated from the PAF multiplied

with the background incidence of the health outcome (counterfactual analysis) or from

animal dose-response data (risk assessment approach). According to the health outcome

tree, the AI may then be multiplied with the probability of developing the specific health

states (fig. 2.4).

2.1.2.3 The health outcome tree

For the selected hazard-health outcome pair(s), the various health states and possible

transmissions are schematically represented in a health outcome tree (or disease model).

This tree serves as a basis for the computation of the disease burden connected to a

hazard. With terminology adapted from Devleesschauwer et al. (2015), the outcome

tree consist of parent nodes representing either disease incidence, mortality or DALY

(seperated into YLD and YLL) rates, and child nodes representing the probabilities of

developing a specific disease stage or attributable proportions of the disease. The arrows

represent the connection between nodes [36]. Figure 2.5 shows the health outcome tree

applied in Paper 1 and Manuscript 3. It describes a non-specific cancer and its various

health states following exposure to AA or BaP (same outcome tree for both chemicals,

as we assume that a non-specific cancer case following AA exposure do not differ from

one following BaP exposure). In this outcome tree, the incidence of a non-specific cancer

represents the parent node. Each child node represent the probabilities of moving into

each disease stage, and the arrows represent the transitions between disease stages. All

green child nodes contribute to YLD, the red contribute to YLL and the grey do not

contribute directly to DALYs.
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Fig. 2.4: Incidence attribution for foodborne chemicals Overview of the modelling choices within

the hazard based approach, depending on the data source, adapted from Hanninen et al. (2014) [31].

Categorical attribution is used if surveillance data is available, either in the form of incidences (I) of the

overall health state or as an attributable incidence (AI). If epidemiological data is available, the population

attributable fraction (PAF) is derived from the relative risk (RR) estimated for the current exposure for

given fractions of the population. Depending on the availability of a disease envelope, disability adjusted

life years (DALY) are either calculated by multiplying with the DALY for the disease envelope, or used

to calculate the AI. If only toxicological data are available, the AI is estimated from a dose response

relationship and either used to calculate the PAF or used directly, if the disease envelope is available or

not, respectively.
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Fig. 2.5: Health outcome tree for cancer caused by acrylamide or benzo[a]pyreneThe parent

node (rectangle with thick border) represents the incidence of cancer caused by the hazards. Childnodes

(rectangles with rounded edges) represent the probability of moving from one disease stage to another.

Green childnodes contribute to YLD, red childnodes contribute to YLL and grey childnodes do not

contribute to DALYs. P1 = probability of being cured, P2 = probability of being cured without disability,

P=3 probability of being cured with disability, P4 = probability of dying from cancer.

2.2 Toxicological risk assessment in a disease burden

context

Epidemiological evidence is not available for a vast amount of the harmful chemicals

found in foods [50]. Therefore, to estimate the burden of foodborne chemicals, data

from animal toxicity studies must be used. Toxicological risk assessment of chemicals

is also most often based on information derived from studies on the harmful effect of

a chemical in experimental animals. Thus, estimates of burden of foodborne chemicals

build on existing methodology applied in toxicological risk assessments of chemicals using

animal data, i.e. the risk assessment approach. However, the objectives of toxicological
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risk assessment and risk assessments used for burden of disease are different. While a

toxcological risk assessment of chemicals provides evidence for policy makers to ensure

a high level of protection of human health. The disease burden of foodborne chemicals

provide evidence of the current impact that a given exposure to chemical hazards has on

human health. Despite the different purposes, the same animal data is applied. In the

following, the overall toxicological risk assessment framework is shortly described followed

by the risk assessment approach for two categories of chemical hazards, i.e. threshold and

non-threshold effects. Lastly, a probabilistic approach to risk assessment of chemicals

is presented and proposed as a methodology to be used in disease burden studies of

chemicals.

2.2.1 The risk assessment framework

A toxicological risk assessment consist of 4 elements; hazard identification, hazard char-

acterization, exposure assessment and risk characterization (Fig. 2.6). There are discrep-

ancies in the definitions of the elements, originating from the definition of a hazard. The

difinition of a chemical hazard according to IPCS and OECD, is ”the inherent property

of an agent or situation having the potential to cause adverse effects when an organism,

system or (sub)population is exposed to that agent” [51][52]. Thus, IPCS and OECD de-

fine the hazard as the adverse effect that an agent might cause and therefore an agent

may present many different hazards. The Codex Alimentarius definition covers hazards

of different origin and overall defines hazards as ”a biological, chemical or physical agent

in, or condition of, food with the potential to cause an adverse health effect” [53]. As the

Codex Alimentarius definition correspond to the definition of the hazard-based approach,

I will apply those definitions in this thesis, even though it differs from the traditional

chemical definitions.

Hazard identification

Hazard Identification is the first step of a risk assessment in which the chemical hazards

capable of causing adverse health effects and which may be present in a particular food or

foodgroups are identified [53]. Most often the health outcomes associated with the hazard

are also identified. For chemicals, this includes the information on toxicokinetics (i.e. the
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Fig. 2.6: Basic steps of a toxicological risk assessment (adapted from Codex Alimentarius

(2016) [53])

absorbtion, distribution, metabolism and excretion of the chemical in the animal/human

body) and toxicodynamics (i.e. the mode of action of the chemical i the animal/human

body) of the chemical.

Hazard characterization

In this step, the nature of the adverse health effects associated with the chemical hazard

present in food are qualitative and/or quantitative evaluated [53]. This includes informa-

tion on the magnitude of exposure and the related severity or frequency of the adverse

health effect provided from a dose-response relationship.

Exposure assessment

In this step, the likely exposure to the chemical via food or other relevant sources is

qualitatively or quantitatively evaluated [53]. The exposure assessment of foodborne

chemicals takes into account the occurrence and concentration of the chemical in foods

as well as the consumption patterns of the foods containing the chemicals.
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Risk characterization

In the risk characterization, the information from the 3 previous steps is integrated to

qualitatively or quantitatively estimate the risk, i.e. the probability of occurrence and

severity of an adverse health effect [53]. The resulting risk estimate is in the form of

expected number of diease cases or in the form of an estimate of whether the exposure of

a defined population is above or below a level of exposure considered ”safe” [54]. In the

risk characterization all uncertainties connected to each step in the the risk assessment

should be identified.

2.2.1.1 Hazard characterization of threshold effects

Threshold effects are health effects for which it is considered that the effect does not occur

below a given dose or concentration [51][52]. Most types of toxic effects are threshold ef-

fects, and include effects like neurological, reproductive, developmental and non-genotoxic

carcinogenicity [47].

For threshold effects, the aim of the risk assessment is to establish a health-based guid-

ance value (HBGV) and compare it with an estimate of the exposure to make inferences

of the population being above or below the guidance value, i.e. at risk of disease or not.

Depending on the chemical, the HBGV is termed differently. For substances intention-

ally added to foods, i.e. additives, pesticide residues and veterinary drugs, the HBGV is

termed the acceptable daily intake (ADI). For contaminants that are unavoidably present

in foods, e.g. environmental pollutants like dioxin and heavymetals, the HBGV is termed

the tolerable daily intake (TDI) or derivatives there of, i.e. provisional tolerable weekly

intake (PTWI). Both ADI and TDI are expressed as the dose of the compound that can be

ingested daily over a lifetime without appreciable health risk. For chemicals with effects

acute in nature, the HBGV is termed an acute reference dose (ARfD), and expressed as

the amount of compound that can be ingested in a period of 24 hours or less, without

appreciable health risk [55].

The HBGVs are derived from dose response modelling of data mostly from experimen-

tal animal studies. The dose response modelling is performed in the hazard characteriza-

tion step of the risk assessment, and its purpose is to derive a point of departure (POD)

(analogous to a reference point), which divided by extrapolation factors (EF) (analogous
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to uncertainty factor (UF) and safety factor (SF)) yields the HBGV:

HBGV =
POD

EF
(2.4)

Point of departure

The POD may be represented by the no-observed-adverse-effects-level (NOAEL), which

is the highest dose administered to the experimental animals where no treatment related

adverse effects are observed. The NOAEL is based on statistical tests comparing the

dose groups with the control, biological relevance and expert judgement. The NOAEL

is dependent on the doses which have been selected for the animal study and on the

statistical power of the study design [56].

To overcome this dependency and to make use of all datapoints from the dose re-

sponse data, the benchmark dose (BMD) approach was developed. The BMD is the dose

level associated with a specified change in response from the background, the bench-

mark response (BMR), estimated from fitting a model to the dose-response data. The

BMR agreed upon is 5% for continuous data (e.g. body weight, enzyme activity, organ

weight etc.) and 10% for quantal data (e.g. proportion of animals with tumors in a dose

group)[57]. In the BMD approach, the lower level of the 95% one-sided confidence interval

around the BMD, i.e. the BMDL, is used as the POD for the HBGV. Thus, the BMDL5%

is the dose where the change in response is likely to be smaller than 5% [57]. The type

of model fitted to the dose response data to derive the BMDL depends on whether the

data is continous or quantal. The models that are found appropriate from a biological

point of view, to describe the two types of data are implemented in software developed for

BMD-modelling, e.g. PROAST [58] or BMDS [59]. The software fits the range of models

to the dose response data. The models are evaluated by their goodness of fit to the data,

and generally the lowest BMDL obtained from the accepted models is used as the POD

[57]. However, to express the uncertainty in the POD it is recommended to apply model

averaging for estimation of the BMDL, though this method currently is not implemented

in the available software as a default option [57].
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Extrapolation factors

When animal data are used for setting the HBGV, the EFs applied cover an interspecies

extrapolation (from animal species to humans) and an intraspecies extrapolation (the

differences in response human to human). Traditionally, an overall EF of 100 has been

applied: an EF of 10 for interspecies differences, assuming that the human is less than

10 times more sensitive than the animal, and an EF of 10 for intraspecies differences,

assuming that the most sensitive individual is less than 10 times more sensitive than the

typical [60][61]. From the overall EF of 100, adjustments can be made depending on

e.g. the quality of data to derive the POD (poor data would require an increased EF),

the severity of the effect under consideration (if the effect is reversible, the EF might be

decreased), if effects are observed in a subchronic study design but applied to describe

chronic effects in humans (EF might be increased to account for this added uncertainty),

etc. [55]. Additionally, the default EF of 10×10 can be divided into subfactors, describing

the contribution to the overall EFs from toxicokinetic- and toxicodynamic domains of both

the inter- and intraspecies extrapolation (Table 2.1)[62].

Table 2.1: Default extrapolation factors applied in toxicological risk assessment of chemicals.

Adapted from [55].

toxicokinetic toxicodynamic combined

Interspecies extrapolation 4.0 2.5 10

Intraspecies extrapolation 3.16 3.16 10

Ideally, ADME data for the specific chemical should determine these subfactors, but

the data are rarely available. However, in the interspecies toxicodynamic domain, cor-

rection for bodysize differences between the experimental animal and the human can be

accounted for by allometric scaling [63]:

Allometric scaling =

(
mean human bodyweight

mean animal bodyweight

)1−0.7

, (2.5)

where the mean of the bodyweights of the human study population is used; the difference

in human bodyweight is taken into account in the intra-species extrapolation [64].
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2.2.1.2 Hazard characterization of non-threshold effects

Non-threshold effects are health effects that are assumed to occur at any dose or concentra-

tion down to zero, and include the health effects: sensitization, mutagenicity, genotoxicity

and genotoxic carcinogenicity [65][47].

For non-threshold effects, the aim of the risk assessment is not to establish a HBGV,

as any level of exposure could result in an adverse effect. For non-threshold contaminants

that are unavoidable in foods, the ”as-low-as-reasonable-achievable” (ALARA) principle

has been accepted, but for risk management purposes, this principle is not particularly

useful as it does not take potency into account. Instead, the margin of exposure (MOE)

was developed, which is the ratio between a POD and the estimated human exposure

[50][66][67] i.e.:

MOE =
POD

human exposure
(2.6)

A MOE of 10,000 or above is considered of low health concern, if the chemical is

a genotoxic carcinogen [68]. However, the interpretation of the MOE is in principle

analogous to identifying the dose at which the probability of effect is negligible, i.e. a

virtual safe dose. For genotoxic carcinogens, a virtually safe dose might be expressed as

a dose which results in a lifetime risk of 1 out of 1,000,000 (i.e. 10−6) or 1 out of 100,000

(i.e. 10−5). If the POD used to establish the MOE is the dose reflecting a change in

effect of 10%, then the dose corresponding to a 10−6 risk is obtained by dividing the POD

with 100,000, assuming a linear dose response curve at exposures relevant for humans

[55]. Thus, risk assessment of non-threshold effects can also provide a quantitative risk

estimate, i.e. what is the risk in a population at different exposure levels [67] [66].

Point of departure

In the MOE approach for genotoxic carcinogens, the BMDL associated with a BMR of

10% above the background response, i.e. BMDL10, is recommended as the POD. The

methodology for deriving the BMDL10 is the same as applied for threshold effects. If a

quantitative risk estimate is derived by linear extrapolation, the extrapolation takes place

from a POD, most often the BMDL10%.
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Extrapolation factors

EFs applied for non-threshold effects are applied to account for the uncertainty of: 1)

extrapolation from animal to human and human to human and 2) extrapolation to esti-

mate risk for exposures outside (lower than) the range of observation in animal studies. A

MOE of 10,000 or above is considered to cover the uncertainties, and thus be protective.

To derive a quantitative estimate of the risk requires extrapolation of the animal tumour

incidences observed at high doses down to the much lower doses, at which humans are

exposed. The tumour incidences estimated at the human relevant doses are greatly influ-

enced by the shape of the dose response relationship, which in principle is unknown. By

considering a no-threshold effect for genotoxic carcinogens, it is assumed that the mode of

action by which a chemical is causing cancer is stochastic, i.e. the exposure to one single

molecule can result in DNA damage in turn resulting i a tumour [50]. In that case, it

is assumed that the dose-response relationship at very low exposures is linear. However,

several biological arguments infer that the dose-response relationship is in fact sub-linear,

as several repair mechanisms take place upon DNA damage, and a linear dose response

relationship is in fact a conservative assumption. The inter- and intraspecies EFs applied

to derive a quantitative risk estimate are the same as for threshold-effects.

2.2.1.3 Exposure assessment

The exposure assessment of chemicals in foods make use of information on the concen-

tration of the chemical in the foods consumed and information on the amount of food

consumed by the population. The general equation for calculating the dietary exposure

to foodborne chemicals is the same for chronic and acute effects:

Dietary exposure =

∑
C × I

kg bodyweight
, (2.7)

where C is the concentration of the chemical in the food and I is the consumption of

the food. The exposure for chemicals is given per kg bodyweight of the consumer, and it

can be summed over all foods containing the chemical [28].

For chronic effects, the exposure over long time is estimated and given as an usual

exposure per day over a given time period, e.g. a lifetime. For acute exposure assessments,
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the exposure over a short period of time, e.g. 24 hours, or even per eating occasion, is

estimated [69].

The data source for chemical concentrations depends on the intention of the dietary

exposure assessment. If it is intended for substances that are not yet introduced to the

market place, regulatory maximal concentrations of the chemicals can be used to estimate

a potential worst case exposure assessment [28][70]. If the assessment is intended for chem-

icals that are already present in the food-supply or for natural or process contaminants,

concentration data are obtained from databases representing chemcial concentrations in

the foods on the market or at the manufacturer. Databases include chemical concentra-

tions from monitoring and surveillance programs installed by the food authorities targeted

to specific foods or sampled at random or from the food manufacturer [28]. For the study

of burden of disease of foodborne chemicals, the purpose is to estimate the disease burden

connected to the current (or past) foods consumed, and concentration data on the foods

on the market and at the point of consumption is required.

The data source for amount of food consumed by individuals in a population may

be collected from consumption surveys in the form of e.g. food diaries, FFQs or dietary

recalls, performed on an individual or household basis. All of these have the advan-

tage that they provide information on food consumption patterns at the individual level;

disadvantages include that people tend to over- and underreport healthy and unhealthy

eating, respectively, or otherwise change diet habits from their normal during the survey

[70]. In addition, these surveys seldom collect information on the preparation methods

of the foods consumed, which is a problem when the purpose is to estimate exposure to

for example process contaminants. In Denmark, information on the dietary patterns of

the Danish population is assessed in the Danish national survey of dietary habits and

physical activity (DANSDA). The survey has been performed 5 times since 1985 with the

latest from 2011-2013 [71], and for each cycle a new representative sample of approxi-

mately 4000 individuals aged 4-74 Danes is selected. Dietary data are collected by means

of a seven day food diary completed by the individuals. The food diary is structured

as a typical Danish meal pattern, comprising breakfast, lunch, dinner and three snack

meals, and individuals record the types and amounts of foods eaten per meal. Prior to

the food recording, information on smoking habits, physical activity, weight and height,

educational level and attitudes towards healthy eating habits is collected in face- to-face
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interview. After completion of the diaries, total intake of foods is calculated by use of

the software system GIES developed at the National Food Institute, which includes stan-

dard recipes, information on portion sizes and data from the Danish Food Composition

Database (http://frida.fooddata.dk/)[72]. Information on food consumption can also be

derived from food supply data informing on the amount of foods produced and changes

in stocks to estimate an average consumption of an average individual irrespective of age

or gender [70].

If a validated biomarker exist for a chemcial, the exposure assessment may be per-

formed via collection of samples of body fluids or tissue, rather than relaying on equation

2.7, data availability and quality. The biomarker is often the chemical itself or a metabo-

lite and is therefore a direct indication on the individual’s exposure level [70]. However,

biomarkers also have their limitations; as an example, the biomarker of acrylamide ex-

posure, the acrylamide-haemoglobin (AA-Hb) adduct, is a good indicator for an individ-

ual’s average exposure to acrylamide, but only for the 4 months that is the lifetime of

an erythrocyte [73]. Thus, the AA-Hb does not relay better information on the longterm

exposure to acrylamide than does a food diary. Another disadvantage of biomarkers is

that it is not possible to distinguish between sources of exposure [70].

2.2.2 Risk characterization vs. disease burden

To summarize: a POD is derived and EFs applied in the hazard characterization to: i)

determine a level of exposure, the HBGV, that protects the most sensitive individuals

in the population, ii) to estimate the MOE; or iii) as starting point for a quantitative

risk estimation. In the risk characterization, the PODs are combined with estimates of

current (or expected) population exposure to the chemical, to derive evidence for the

(potential) population risk. For this purpose, both POD and EFs are chosen to represent

conservative or worst case estimates to take uncertainty into account.

To estimate the burden of disease, a quantitative risk estimate is needed, i.e. the

fraction of a population experiencing the health effect. This quantitative risk estimation

is not derived in the traditional HBGV approach. In the MOE approach, the quantitative

risk estimate is indirectly derived, i.e. a MOE of 25,000 is equivalent to a risk of cancer

no higher than 4 cases out of 1 million using BMDL10% as POD and assuming linear
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extrapolation [50][67]. This is similar to deriving risk by extrapolating linearly from

incidences in the observable regions in animal studies to lower ranges of human exposures.

In disease burden studies, the POD must reflect the dose that separates effect from no

effect rather than assuring a margin of safety. EFs are applied to inform on the uncertainty

of the extrapolation between species and the variation in the sensitivity among humans,

rather than with the purpose to protect the most sensitive individuals.

The results of a risk assessment provide evidence to be used in the risk-management

process of securing a high level of protection, e.g. establishing and enforcing maximum

limits of harmful chemicals in foods. Indeed, if risk mitigation strategies are effective, the

disease burden due to the chemicals should be low.

In some situations, the HBGV and MOE do not present sufficient information to act

on. As an example; if a risk assessment concludes that exposure is above the HBGV or

MOE is below 10,000, then risk of disease in the popualtion cannot be excluded. If a

quantitative estimate of the risk is not available, and at the same time a reduction in

exposure is challenging (expensive for producers, practically impossible etc.), no informa-

tion can be derived regarding the health benefits of reducing exposure contra its costs

[74][75][61].

For this purpose, several proabilistic apporaches to toxicological risk assessment have

been proposed, where the hazard characterization and/or the exposure assessment has

been performed probabilistically, i.e. describing input parameters by probability distribu-

tions and combine them by Monte Carlo simulations. In the integrated probabilistic risk

assessment (IPRA) methodology proposed by Slob and van der Voet (2007) [74], both

the hazard characterization and exposure assessment are described probabilistically and

combined to provide estimates of the population risk, i.e. the fraction of a population

experiencing a health effect. This approach quantitatively takes into account the variation

in individual’s exposure and sensitivity to a chemical and the associated uncertainties.

Thus, IPRA is a methodology that can be used to derive disease incidence following ex-

posure to most chemicals for which the strenght of evidence allows for a dose response

relation, as well as quantify the associated uncertainties, which is necessary for the com-

parison of disease burden across hazards. The IPRA methodology was applied to estimate

the global disease burden of dioxin in the GBFD project [15]. The IPRA methodology is

described for non-carcinogens and carcinogens below.
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2.2.3 Probabilistic risk assessment of chemicals

In IPRA two distributions are derived: a distribution of the doses above which an effect

occur in individuals (”critical effect doses”) and a distribution of the dietary exposure of

individuals in a population. The two distributions are combined by draws of a random

value from each distribution to assess, for a sufficient number of draws, the fraction of

individuals for which the exposure exceeds the critical effect dose (fig 2.7)[74][64][76].

Fig. 2.7: Overview of the integrated probabilistic risk assessment (IPRA) approach The

distribution of critical effect doses in humans (CEDhuman) are combined with the distribution of individual

exposures (EXPhuman) to estimate the probability of a critical effect (Pr(effect)) (adapted from van Der

Voet (2009) [77])

.

The distribution of critical effect doses reflects that individuals have a different sensi-

tivity to the same chemical, and thus one person might not experience the adverse health

effect at a dose where another person does. The distribution of critical effect doses is

derived from a POD from animal studies and inter- and intraspecies EFs [74]. How-

ever, instead of deterministic worst case estimates, the POD and EFs are described by

probability distributions reflecting the plausible range of each factor. In principle, the

worst case EFs applied in the traditional deterministic approach should numerically be
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similar to the upper bounds of the distributions replacing the EF-point estimates [74].

Likewise, the exposure distribution describes the range of individual exposures in a popu-

lation. Distributions are combined probabilistically by Monte Carlo simulation, in which

the calculation is repeated many times (iterations). In each iteration, a value from each

distribution is sampled, where the shape of the distribution determines the frequency of

a given value is being sampled. When enough iterations are performed, a probability

distribution of the outcome is obtained [78].

Variability and uncertainty

When input parameters in a toxicological risk assessment are applied as point estimates,

variability and uncertainty are not distinquished from each other. However, uncertainty

and variability are two separate concepts. Variability describes the irreducible variation

or heterogeneity of the subjects in a population. If the bodyweight of all individuals in

a human population or the concentration of a chemical in all foods eaten is measured,

then the distribution of all measurements only reflects the variation in the population.

However, it is most often the case that input parameters of the risk assessment are derived

from samples that are more or less representative of the population. Therefore, the input

parameters do not only represent variation but also uncertainty. Uncertainty can be

reduced if more information is gathered about the uncertain parameter [79]. Variability

and uncertainty need to be handled separately in second order Monte Carlo simulations

[80][81].

In IPRA, variability is taken into account in the exposure and in the intraspecies ex-

trapolation. Uncertainty is accounted for in the exposure assessment, the dose response

model, POD and the inter- and intra species extrapolation factors. The distributions de-

scribing the inter- and intraspecies extrapolation may be derived specifically for a chemical

if data exist. However, generic distributions assumed to cover all chemicals have been de-

rived from historical data and described in the literature [63][77]. The generic distributions

are shown in table 2.2.

Thus, the result of the IPRA is an estimate of the fraction of a population experiencing

a health effect, i.e. the probability that the exposure exceeds the critical effect dose given

the variation of both in the population, and additionally the uncertainty in that estimate.
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Table 2.2: Generic distributions for extrapolation factors applied in an integrated proba-

bilistic risk assessment of chemicals. Adapted from Bokkers et al. (2007, 2009), van der

Voet et al. (2009) and Slob et al. (2014) [63][64][77][76]

.
Distributional assumption Parameter values Reference

Allometric power N(µ, σ) µ = 0.7,σ = 0.033 [76]

Interspecies extrapolation for
TKTD

logN(GM,GSD) GM = 1,GSD = 2 [63][64]

Intraspecies extrapolation logN(GM,GSD) GM = 1,GSD = 3.6 [75][76]

Uncertainty in intraspecies
extrapolation

χ2 df = 21 [77]

IPRA for non-carcinogens

The distribution of critical effect doses are for non carcinogens derived similarly to deriving

a HBGV. The POD is derived from the BMD-approach, though the BMR is not 5% by

default, by fitting the appropriate models to the animal data. Rather, the POD from

animal studies is the dose that separates adverse from non-adverse health effects. For

continous effects it must be specified which percent change in the response relative to the

response in the controls is considered adverse [64]. For quantal effects, the ED50 can be

used as POD, which is the dose where half of the animals under study experience the

adverse effect, under the assumption that if all experimental error and variation between

animals was removed from the study, the dose response relationship would be a step

function separating affected animals from non-affected [64].

The average animal POD, PODave,animal is extrapolated to an average human POD,

PoDave,human by:

PoDave,human =
PODave,animal

EFinter

, (2.8)

where the PODave,animal is described by a distribution which reflects the uncertainty

in the dose response model, rather than using the POD derived from the most sensi-

tive model. The model uncertainty is evaluated by bootstrapping of the POD from each

accepted model, and the boostrapped PODs are combined in an overall empirical POD

distribution [74][63]. Likewise, the EFinter is the product of two parametric distribu-

tions: i) allometric scaling (equation 2.5), where the allometric factor (0.7 in equation
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2.5) is considered uncertain and described by an normal distribution [74][64],[76]; and

ii) uncertainty in the toxicodynamic and toxicokinetic differences between the average

experimental animal and the average human [63](Table 2.2). The allometric power is

assumed to be uncertain, but in the range of 0.65-0.75. To express this uncertainty, a

normal distribution with a mean and standard deviation is defined so that its 5th and

95th percentiles reflect this range. The uncertainty distribution for allometric scaling

covers a larger range than the standard (deterministic) scaling factors that are used to

adjust by either a caloric requirement or body surface area approach [82]. The remaining

TKTD difference after allometric scaling is described probabilistically by a log normal

distribution, where the 5th and 95th percentiles are 0.3 and 2.99, respectively [63][64].

For comparison, the default deterministic EF used is 2.5 (table 2.1).

The distribution of the individual critical effect doses in the population, PoDi,human,

is from the POD distribution of the average human derived by:

PoDi,human =
PODave,human

EFintra

, (2.9)

where the EFintra in IPRA is a log-normal distribution, with a geometric mean of 1, mean-

ing that 50% of the population is more sensitive and 50% of the population less sensitive,

and a geometric standard deviation, which is decided upon depending on an assumption

about how much more sensitive the most sensitive individual is compared to the median

individual, i.e. it might be assumed that the most sensitive (e.g. 95t̂h percentile individ-

ual) is between 5 to 20 times more sensitive than the median individual, which results

in a geometric standard deviation of 3.6 [74]. The uncertainty in the geometric standard

deviation is then expressed by a Chi-square distribution with 21 degrees of freedom [76].

Finally, the distribution of the critical effect doses in humans is by Monte Carlo sim-

ulation divided by the distribution of individual human exposures, i.e. for a sufficient

number of iterations, a random value from each distribution is sampled and divided, re-

sulting in a distribution of the ratios between the individual critical effect dose and the

individual exposure. The fraction of the simulated population for which the ratio is below

1, equals the fraction of the population experiencing an effect. As described above, in the

combination of the probability distributions, the distributions describing variability and

uncertainty must be handled separately in second order Monte Carlo simulation. The
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result is the fraction of the population experiencing the adverse effect, resulting from the

distributions describing variability, and an associated uncertainty interval, resulting from

the distributions describing the uncertainty.

IPRA of carcinogens

The majority of carcinogenicity studies in animals report the incidence of tumors in the

studied dose groups and are therefore quantal data [64]. The ED50 might be used as POD

like quantal data of non-carcinogens (i.e the ED50 is the tolerance dose to exceed in order

to get cancer), however, for carcinogens another interpretation of the quantal data is also

possible. In this interpretation, it is assumed that the probability of developing cancer

is a stochastic process, i.e. it is a matter of chance if a carcinogenic molecule hits the

DNA in a gene that is relevant in developing cancer (or other critical events in the cancer

process occur). In this case the entire dose response relation informs on an individual’s

risk of developing cancer at various exposures.

In this case, the IPRA is reversed. Dose response modelling is performed as usual,

but the exposure of individuals in the human population, EXPi,human is extrapolated to

an equivalent animal exposure, EXPi,animal by:

EXPi,animal = EXPi,human × EFinter × EFintra, (2.10)

and combined with the dose response model. EFinter and EFintra are the same probability

distributions as applied for non-carcinogens. By Monte Carlo simulation the EXPi,animal

is combined with each of the accepted dose response models and parameter values to esti-

mate the fraction of the population developing cancer, and an estimate of the uncertainty

around that estimate [76]. This approach is in IPRA referred to as model extrapolation.

2.2.4 In summary and perspectives

A hazard- and incidence based approach is applied to estimate DALYs for foodborne

hazards, including foodborne chemicals. Data from either human observational or toxi-

cological studies are most often used to derive disease incidence, as surveillance data are

rarely available for diseases caused by foodborne chemicals. Hazard-health outcome pairs

are identified by review of the scientific literature, and the selection is based on at least 4
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criteria; available evidence for a causal effect, available evidence for deriving dose response

relationship, available evidence for exposure assessment, and available disability weight.

In Manuscript 2 (chapter 4), we assess how the criteria for the strength of evidence of a

causal effect might influence the selection of hazard-health outcome pairs.

A counterfactual analysis is used if RRs are available. A risk assessment approach is

used if a dose response relationship is derived from studies in experimental animals. If

disease envelopes are available, PAFs are estimated to attribute DALYs to the foodborne

chemical. If disease envelopes are not available, the usual parameters are used to estimate

YLD and YLL. For each hazard-health outcome pair, a health outcome tree is designed,

in which the various health states and transmissions between them, are schematically

presented and the outcome tree informs on how each health state contributes to the

overall DALY.

Information on a dose response relationship is for many chemicals only available from

studies in experimental animals. A risk assessment approach is applied with methodolo-

gies derived from toxicological risk assessment. However, the purpose of toxicological risk

assessment differ from the purpose of disease burden studies. In toxicological risk assess-

ments, the population exposure is compared with a HBGV or a MOE is derived, to assess

if the population is sufficiently protected. For burden of disease studies, a quantitative

risk estimate is needed, i.e. the fraction of a population experiencing the health outcome.

A quantitative estimate of the risk posed by a genotoxic carcinogen may be derived by

linear extrapolation as a conservative approach. A probabilistic approach can be applied

to derive a quantitative risk estimate for both threshold and non-threshold effects, which

also allows for propagation of the uncertainty in the exposure assessment, dose response

models, and in the extrapolation from the experimental animal to humans.

In Paper 1 (chapter 3) and Manuscript 3 (chapter 5), we estimate the disease burden

of dietary exposure to AA and BAP in barbecued meat, respectively. We apply a hazard-

and incidence-based approach. The disease incidence in both studies is derived from

animal data using a risk assessment approach. In Paper 1, the risk assessment approach

is referred to as an exposure-based approach. The exposure assessments in all 3 studies

make use of concentration data obtained from the Danish monitoring program of chemicals

and, in the case of benzo[a]pyrene, data found in the literature. The consumption data

are obtained from DANSDA. In Paper 1, we estimate the incidence of cancer from a linear
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extrapolation; in Manuscript 3, we apply the probabilistic model-extrapolation. In Paper

1, we estimate DALY both with and without a disease envelope, in the paper referred

to as the indirect and direct approach, respectively; in Manuscript 3, we estimate DALY

without a disease envelope.
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Chapter 3

Paper I

3.1 Prelude

The first study of the PhD project was undertaken as a case study with the purpose

of assessing the applicability of existing BoD methodology to estimate the incidence of

disease due to exposure to a foodborne chemical using animal studies. The objectives

were to apply the approaches to estimate DALY (identified in chapter 2) and evaluate

how the methodological choices affect the final DALY estimate. To estimate the burden

of disease of dietary exposure to AA was decided, as AA has received a lot of attention

due to its widespread occurrence in a range of commonly consumed food products, and

the margin of exposure was estimated to be low and thus considered a health concern.

[49].
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a b s t r a c t

Acrylamide (AA) is a process-contaminant that potentially increases the risk of developing cancer in
humans. AA is formed during heat treatment of starchy foods and detected in a wide range of commonly
consumed products. Increased focus on risk ranking and prioritization of major causes of disease makes
it relevant to estimate the impact that exposure to chemical contaminants and other hazards in food
have on health. In this study, we estimated the burden of disease (BoD) caused by dietary exposure to AA,
using disability adjusted life years (DALY) as health metric.

We applied an exposure-based approach and proposed a model of three components: an exposure,
health-outcome, and DALY-module. We estimated BoD using two approaches for estimating cancer risk
based on toxicological data and two approaches for estimating DALY.

In Denmark, 1.8 healthy life years per 100.000 inhabitants are lost each year due to exposure to AA
through foods, as estimated by the most conservative approach.

This result should be used to inform risk management decisions and for comparison with BoD of other
food-borne hazards for prioritizing policies. However, our study shows that careful evaluation of
methodological choices and assumptions used in BoD studies is necessary before use in policy making.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Acrylamide (AA) is a food-process contaminant and classified as
a ‘probable human carcinogen’ (IARC, 1994). Long-term carcino-
genicity studies in rats and mice have shown that oral AA exposure
may lead to tumors inmultiple organs of the rodents (Johnson et al.,
1986; Friedman et al., 1995; Beland et al., 2013; FDA, 2012). These
findings strongly support mechanistic studies that have shown that
AA is a genotoxic carcinogen by its metabolic activation to glyci-
damide (GA), which is reactive towards DNA and proteins (Fennell
et al., 2005; Beland et al., 2013). AA is produced during high tem-
perature processing (>120 �C) of commonly consumed starchy
foods, and the relationship between dietary intake of AA and the
risk of cancer in humans has been evaluated in several epidemio-
logical studies. A borderline significant increase in risk of cancer of
the kidneys (RR ¼ 1.20, CI95: 1.00e1.45), endometrium (RR ¼ 1.23

(1.00e1.51)), and ovaries (RR¼ 1.39 (0.97e2.00)) was identified in a
recent meta-analysis (Pelucchi et al., 2015). Additionally, a signifi-
cantly increased risk of estrogen receptor-positive breast cancer
and mortality has been identified in a study using biomarkers for
AA exposure (Olsen et al., 2012; Thonning Olesen et al., 2008). On
this basis, EFSA reconfirmed that ‘AA in food potentially increases
the risk of developing cancer for consumers of all age groups’ (EFSA,
2015), and therefore it is of relevance to investigate the contribu-
tion of dietary AA to the disease burden of cancer.

Burden of disease (BoD) is the impact that a disease has on so-
ciety in terms of mortality, morbidity and disability. Several mea-
sures have been developed to estimate BoD; one of these is the
Disability Adjusted Life Year (DALY), which integrates disease
incidence, severity, duration, and mortality (Murray and Lopez,
2013). Estimation of BoD using DALYs is a useful tool to compare
the health impact of various diseases, and evaluate the contribution
of the risk factor(s) to the disease burden. BoD studies have been
conducted for environmental risk factors (e.g. Hanninen et al.,
2014), nutritional factors (e.g. Lim et al., 2013), and foodborne
pathogens (e.g. Havelaar et al., 2012; Kretzschmar et al., 2012).

For risk ranking purposes and inclusion in risk-benefit
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assessments, it is of interest to estimate the burden of disease
attributed to exposure to chemicals through foods, using DALY as a
health metric. The risk due to exposure to the chemical needs to be
quantified and expressed as an annual incidence of the given health
effect caused by the chemical. The risk quantification can be based
on toxicological data, epidemiological data or both, depending on
data availability for the chemical.

The aims of this studywere to estimate the burden of cancer due
to dietary exposure to AA in Denmark in terms of DALYs, and to
estimate the contribution of different foods to this disease burden.
We applied an exposure-based approach based on toxicological
data, and evaluated the impact of different models to quantify the
human cancer risk, as well as the impact of different approaches to
calculate DALY.

2. Method and materials

To estimate the disease burden, we built a model consisting of
three components: an exposure-, health outcome- and DALY
module (Fig. 1). In the exposure module we estimated the lifetime
mean daily exposure to AA of the Danish population. This estimate
was integrated with the health-outcome module, in which the
probability of occurrence of the selected health outcomes following
exposure to AA was estimated based on doseeresponse relation-
ships from animal studies. In the third module, we used the
probability of occurrence of the health ouctomes, estimates of life
expectancy, disease duration and disability weights to calculate the
BoD in terms of DALYs. A more detailed description of the model
follows.

2.1. Exposure assessment module

We defined exposure as the mean daily intake over a lifetime of
mg AA per kg body weight, y, calculated by:

y ¼
PNindi

i¼1
PNfood

j¼1
IijCj

bwi

Nindi
(1)

where Nindi is the total number of individuals in the model, Nfood is
the total number of food types in the model, Iij is the mean intake
over seven days by individual i of food j in g/day, Cj is the mean
concentration of AA in food j in mg/kg, and bwi is the bodyweight of

individual i in kg.

2.1.1. Concentration data
Concentrations of AA in various food types have been investi-

gated in Denmark since 2003. Data for the analysis was obtained
from Danish surveys on specific food types and from the general
monitoring program (Petersen et al., 2013).1 We used all available
concentration data from 2003 to 2013, as no substantial change
over time in concentrations in the investigated foods was observed.
The food types, mean concentrations and standard deviations are
shown in Table 1.

2.1.2. Consumption data
The consumption data were obtained from the Danish National

Survey of Diet and Physical Activity, a national-wide, cross-
sectional survey in a representative sample of the Danish popula-
tion (Biltoft-Jensen et al., 2009). Diet is assessed by seven day pre-
coded food records, and intake of foods and nutrients estimated by
use of the Danish food composition tables (www.foodcomp.dk) and
the software system GIES developed at DTU Food. Data applied in
this study were collected in 2005e2008 from 2700 individuals. To
adjust for potential skewness in the study population, weighting
factors constructed on the basis of age, gender and education were
applied.

2.2. Health-outcome module

2.2.1. Choice of health effects
The pivotal effects in humans following exposure to AA are

neurotoxicity and carcinogenicity (Beland et al., 2013; Burek et al.,
1980; Friedman et al., 1995; Johnson et al., 1986). In this study we
selected cancer as the health effect to be accounted for in the
model, as neurotoxicity is assumed to be caused by higher levels of
exposure experienced for example in occupational settings rather
than through diet (EFSA, 2015). The cancer types with a (border-
line) statistically significant association with AA estimated by
Pelucchi et al. (2015), and cancer types identified using biomarkers
in exposure assessment of AA by Thonning Olesen et al. (2008) and
Olsen et al. (2012) were selected. The following four health out-
comes were included in the model: kidney cancer, ovarian cancer,
endometrial cancer and breast cancer. In parallel, we accounted for
total cancer in the model, recognizing that AA is a multi-site
carcinogen (Beland et al., 2013; EFSA, 2015; US EPA, 2010) and
assuming that the carcinogenic potency of AA is similarly in all
tissues.

2.2.2. Dose-response modeling
We applied two different doseeresponsemodels to estimate the

slope factor (SF). SF is the slope of a straight line drawn from a dose
on the doseeresponse curve in the observable tumor range (the
point of departure (PoD)) to the origin (0,0) in order to estimate
effects in the low dose range. SF expresses the increase in the risk of
cancer per daily unit of exposure to the carcinogen throughout
lifetime (US EPA, 2005). We applied; 1) a model proposed by the US
EPA in the toxicological review of AA (US EPA, 2010), and 2) a model
proposed by Dybing and Sanner (2003). Both models use extrap-
olation from the same PoD, but the approach and order of inter- and
intra-species extrapolation steps differ. These differences are
detailed in Fig. 2.

The data used for the interspecies extrapolation also differ be-
tween the models. US EPA used toxicokinetic data based on

Exposure module 

Health-outcome 
module 

DALY module 

Life expectancy 

Disability weights 

Disease duration 

Dose response 

Health outcomes 

Consumption 

Concentration 

Fig. 1. Framework of model used to estimate the burden of disease of dietary exposure
to acrylamide.

1 Also including the 2011-13 monitoring data, not published in Petersen et al.
(2013).
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comparable levels of AA and GA in blood between rat and human
relative to their respective administered doses (EFSA, 2015; US EPA,
2010), and Dybing & Sanner used allometric scaling by: (BWhuman/
BWrat)0,25 (Dybing and Sanner, 2003). To express the range of the
possible BMD10 given the doseeresponse data, we defined PoD as
the upper (BMDU10) or lower (BMDL10) 95%-confidence bounds
(one-sided) of the dose associated with a 10% response (BMD10)
adjusted for background. BMDU10 and BMDL10 were modeled on
the statistically significant tumor sites in the National Toxicology
Program AA oral carcinogenicity study in F433/N rats (Beland et al.,
2013; FDA, 2012). We used PROAST vers. 38.9 for the BMD-
modeling. Only the tumor sites with data informative enough to
derive a PoD were included, i.e. where the BMDU/BMDL for indi-
vidual models was small and BMDL among models were similar
(EFSA, 2011) (Table 2).

The SF is not specific for each of the cancer sites accounted for in
the model. If using the same SF for each of the four cancer sites, the
proportion of cases attributed AA would be higher for rarely
occurring cancer types (e.g. endometrial cancer) than more com-
mon occurring (e.g. breast cancer). This could be interpreted as AA
being more potent in the endometrium than in the breast. Under
the assumption that the distribution of the cancers caused by AA is
the same as the distribution of the reported incidence, we therefore
scaled SF, by:

SFscaled;ep ¼ SF
Incep
Inctotal

(2)

where, SFscaled,ep is the scaled SF for a given human cancer
endpoint, Incep is the incidence in Denmark for the same endpoint
and Inctotal is the total incidence for all cancers in Denmark. SFsca-
led,ep and cancer incidences in Denmark are given in Table 3.

The SF and SFscaled,ep estimated by the two models are shown in
Table 3. The difference between SFs obtained from the two models

is constant by a factor of 5.3.

2.2.3. Cancer risk estimation
The cancer risk from dietary AA exposure in a given population,

expressed as the annual number of cases (AC), was calculated by
multiplying the exposure of that population with the SF for a given
cancer endpoint, the population size and divided by the life ex-
pectancy of the same population:

AC ¼ Npop � y � SF
LEpop

(3)

where Npop is the size of the exposed population, y is the lifelong
mean daily exposure of AA in mg/kg bw, SF is the slope factor, and
LEpop the life expectancy of the exposed population.

2.3. DALY model

DALYs are calculated as the sum of Years Lived with Disability
(YLD) and Years of Lost Life due to premature death (YLL) due to a
given health outcome.

We estimated DALY using two approaches; the direct- and in-
direct. The direct approach accounted for specific cancer sites and
“total cancer”, while the indirect accounted for “total cancer” only.
Because we have also applied two approaches to model the SF (i.e.
the US EPA and the Dybing&Sanner approach), we applied six
different modeling combinations to estimate DALYs attributed to
the dietary exposure of AA (Fig. 3).

2.3.1. Direct DALY approach
In the direct approach, we used national health statistics and

WHO disability weights (dw) to estimate the average DALY per
cancer case in Denmark by:

Table 1
Concentration of acrylamide in foods accounted for in the exposure assessment, 2003e2013.

Food group Food type Sample size Mean concentration (mg/kg) S.D.

Bread Wheat Bread, fine 20 12.6 11.5
Wheat Bread, coarse 7 10.2 12.2
Ryebread 28 9.6 7.5
Crispbread 22 90.4 52.5
Crackers/biscuits 24 296.8 238.2

Crisps/Chocolate Crisps/snacks 76 458.9 418.4
Chocolate 18 92.2 78.1
Chocolate spread 2 46.9 32.2
Nutsa 14 61.0 N.A.
Peanuts 5 28.6 40.1
Popcorn 7 482.6 434.2
Pretzels 2 100.0 22.6
Dried fruits 5 46.3 22.6

Coffee/Cocoa Coffee/Instant coffee 91 8.1 3.0
Cakes Cake 18 18.3 58.0

Pastries 9 5.5 4.8
Cookies 25 140.4 146.4
Pancakes 1 15.0

Potato products Fried potato incl. French fries 97 512.7 390.4
Convenience food Burger 3 6.7 6.6

Spring roll 3 16.7 7.7
Pita bread 2 3.6 1.6
Toast 2 3.7 0.6
Pizza 2 7.8 7.0

Breakfast cereals Rye mixture 5 31.0 33.9
Cornflakes, Oat-puffs, Special K 22 74.2 46.7
Other cereals 32 201.0 241.2
Oats 14 3.6 4.6
Musli 30 28.5 41.8
Rye porridge 2 0.9 0.5

a Data extracted from Amrein et al. (2005).
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DALYave=case ¼
�
tf � dwf � pf

�
þ
�
tnf � dwnf � pnf

�

þ
�
YLL� pf

�
(4)

where tf is the duration of disease of fatal cancer in years, dwf is the
disability weight of fatal cancer, pf is the probability of a cancer

being fatal, tnf is the duration of disease of non-fatal cancer in years,
dwnf is the disability weight non-fatal cancer, pnf is the probability
of a cancer being non-fatal and YLL is the life years lost due to
premature death to a fatal cancer. YLDf and YLDnf are given by the
first and second terms in equation (4), respectively. Parameters
inserted in equation (4) are shown in Table 4.

DALY attributed to AA per year per cancer type or total cancer
was calculated by:

DALYAA;direct ¼ ACAA;ep � DALYave=case (5)

where ACAA,ep is the annual cancer cases per endpoint or total
cancer due to AA exposure (eq. (3)).

2.3.2. Indirect DALY approach
In the indirect method the total disease burden for a health

effect (i.e. at the population level) as estimated by the Global
Burden of Disease (GBD) 2010 project by WHO (2014), (WHOBoD),
wasmultiplied by the fraction of cancer cases caused by AA (AF) out
of all cancer cases to estimate the disease burden attributed to AA.
Because GBD DALY estimates for each specific cancer type
accounted for in this study were not available, we only accounted
for total cancer in the indirect DALY approach.

The AF was estimated by:

AF ¼ ACAA;ep
Incep

(6)

where ACAA,ep is given by eq. (3) and Incep is the actual incidence of
cancer.

Thus, DALY attributed to AA per year is given by:

DALYAA;indirect ¼ AF �WHOBoD (7)

Again, the two methods differ by a fixed ratio given by:

DALYAA;direct
DALYAA;indirect

¼ DALYave=case � Incep
WHOBoD

¼ 0:5 (8)

Parameters used in equations (6) and (7)are given in Table 4.

3. Results

3.1. Exposure assessment

The estimated lifetime daily exposure per kg body-weight of AA
through food in the Danish population is 0.36 mg/kg bw/day and
0.27 mg/kg bw/day for males and females, respectively (Table 5).
The relative contribution of food groups did not differ considerably
between genders, and we estimated that the food group “fried
potatoes/French-fries” contributes to nearly half of the total expo-
sure of acrylamide (Fig. 4).

3.2. Burden of disease

The estimated number of cases of specific cancers and DALYs
attributed to AA exposure through foods as estimated by the direct
DALY approach are given in Table 6. When applying the US EPA

SF=0.1/HBMD10

HBMD10
-5

10-5

SF=10-5/HBMD10
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Fig. 2. Overview of the two extrapolation models applied. Red circles: Point of De-
parture (PoD); Blue circles: Human Benchmark Dose (HBMD). A) US EPA model:
interspecies extrapolation is applied to the PoD to obtain a human equivalent PoD
(HBMD10), fromwhich linear extrapolation is performed. SF is obtained by 0.1/HBMD10.
B) Dybing&Sanner model: PoD is linearly extrapolated to low risk (10�5) animal PoD to
which interspecies extrapolation is applied to obtain HBMD10

�5. By knowing the human
dose (HBMD10

�5) at a risk of 10�5, SF is obtained by 10�5/HBMD10
�5. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2
BMDL10 and BMDU10 (mg AA/kg bw/day) for the tumor sites with statistically significant doseeresponse and informative data to derive a PoD in F433/N rats. The overall lowest
and highest BMDL10 and BMDU10 (highlighted) were used as PoD.

Species Sex Tumor BMDL10 (model) BMDU10 (model)

Rat male Thyroid gland follicular cell adenoma or carcinoma 0.887 (Gamma) 3.74 (Log-probit)
Rat male Mesothelioma of the epididymis or testes tunica vaginalis 1.21 (Log-probit) 7.38 (Log-probit)
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model, we estimated a total of 0.3 annual cancer cases and 1.4
DALY; applying the Dybing&Sannermethod, we estimated a total of
1.3 cases and 7.2 DALY (Table 6). We present here only the lower
95% confidence bound i.e. the value estimated with PoD¼ BMDL10.

Breast cancer in females contributes more than 70% to the total
disease burden, which is a consequence of the relatively higher
incidence of the considered cancer. Assuming that the current
incidence of the specific cancer types (Table 3) is including the
cancer risk due to dietary exposure to AA, then 0.005% of the
combined incidence for the specific cancer types is attributed to
dietary AA if calculated by the US EPA approach. Using the
Dybing&Sanner approach, 0.03% is attributed to dietary AA
exposure.

Table 7 presents the estimated AA attributed cases and DALYs of
total cancer obtained with the direct and indirect approaches. The
burden of total cancer attributed to dietary AA estimated by the US
EPA-direct DALY approach was 1.7 cases and 9.6 DALYs. Applying
the Dybing&Sanner-indirect DALY approach, the estimated burden
was more than 8 times higher (90.0 DALYs) (Table 7). The latter

Table 3
Reported cancer incidence per year in Denmark, SF and scaled SFs (SFscaled,ep) i.e. the life time cancer risk per 1 mg AA/kg bw/day, for the two model approaches. Ranges
represent the lower and upper bound of the 90% CI around the BMD10.

Cancer site Incidencea SF model

US EPA Dybing&Sanner

SF both 36,846 1.0 � 10�5 e 8.7 � 10�5 5.5 � 10�5 e 4.6 � 10�4

male 18,778
female 18,068

SFscaled,endometrium female 23 1.3 � 10�8 e 1.1 � 10�7 7.1 � 10�8 e 5.9 � 10�7

SFscaled,ovaries female 572 3.3 � 10�7 e 2.8 � 10�6 1.8 � 10�6 e 1.5 � 10�5

SFscaled,breast male 31 1.7 � 10�8 e 1.4 � 10�7 9.2 � 10�8 e 7.6 � 10�7

female 4910 2.8 � 10�6 e 2.4 � 10�5 1.5 � 10�5 e 1.3 � 10�4

SFscaled,kidney male 464 2.6 � 10�7 e 2.1 � 10�6 1.4 � 10�6 e 1.1 � 10�5

female 250 1.4 � 10�7 e 1.2 � 10�6 7.7 � 10�7 e 6.4 � 10�6

a Mean cancer incidence per year of 2008e2012 (www.esundhed.dk).
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Fig. 3. Overview of the different model approaches applied.

Table 4
Parameters used for DALY calculation by the direct and indirect approaches.

Endpoint tn
(yrs)a

tnf (yrs)a Ave. age of diag.b dwnf
c dwf

c pnf
d WHODALY

e WHOYLL
e WHOYLD

e Populationf LEg (yrs)

Ovarian cancer 3 16 65 0.20 0.47 0.38
Endometrial cancer 3 14 68 0.20 0.47 0.38
Breast cancer male 3 6 68 0.32 0.56 0.58
Breast cancer female 3 19 63 0.12 0.56 0.85
Kidney cancer male 3 6 64 0.20 0.38 0.57
Kidney cancer female 3 6 66 0.20 0.38 0.57
Total cancer male 3 6 67 0.26 0.49 0.58 196,083 190,545 5538
Total cancer female 3 6 66 0.26 0.49 0.61 177,390 171,203 6187
Male 2,478,614 78
Female 2,516,681 81.9

a Time lived with non-fatal disease (tnf), calculated as the sum of durations of the disease stages: diagnosis and primary therapy, stage after intentionally curative primary
therapy, rest of life to expected age of death. tnf for total cancer is assumed on average to be 6 years neglecting rest of life disability after cure. tf is assumed 3 years for all
cancers. Adapted from Australian Burden of Disease and Injury study 1999 (Mathers et al., 1999).

b Calculated as the average age of diagnosis weighted by the number of new cancer cases for each age for each cancer, from www.esundhed.dk.
c Disability weight, fatal (dwf) and non-fatal (dwnf) from WHO GBD 2004 Update (WHO, 2004) and Australian Burden of Disease and Injury study (1999) (Mathers et al.,

1999).
d Obtained from the age-standardized relative survival after 5 years and pf ¼ 1 e pnf (Engholm et al., 2014).
e WHO estimates of DALY (WHODALY), YLL (WHOYLL) and YLD (WHOYLD) for cancer in Denmark for the year 2012 (WHO, 2014).
f Population size of ethnic Danish origin per January 1st 2013, from Statistics Denmark, www.dst.dk.
g Life expectancy at birth in Denmark, from Statistics Denmark, www.dst.dk.

Table 5
Lifetime daily exposure to AA in Denmark (mean and percentiles).

AA exposure (mg/kg bwa/day)

Male Female All

Mean 0.36 0.27 0.31
P50 0.26 0.19 0.22
P95 1.01 0.71 0.83
P99 1.50 1.35 1.42

a bw: body weight.
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estimate represents 0.02% of the total incidence of cancer in
Denmark (Table 3).

Fig. 5 shows the DALYs of total cancer attributed to the specific
food groups. Depending on the methods applied, between 0.09 and
0.8 DALY/100,000, could be prevented if the exposure to acrylamide
through the food-group that contributes the most to exposure
(fried potatoes/French fries) was to be eliminated.

4. Discussion

These are the first estimates of the burden of disease attributed
dietary exposure to AA in Denmark. We concluded that elimination
of AA through the diet would prevent a health loss of 0.003 DALY/
100,000 as estimated by the least conservative approach (using
BMDU10 as PoD, results not shown), and 1.8 DALY/100,000 as
estimated by the most conservative approach (Table 7). We based
our estimations on themost recent long-term carcinogenicity study
of AA in F433/N rats (Beland et al., 2013; FDA, 2012) and on robust
food consumption and food contamination data from Danish offi-
cial surveys. To our knowledge, the disease burden attributed to AA
in foods had been estimated previously only in The Netherlands, in
a study that estimated a burden of 2e4 DALY/100,000 (Van Kreijl
et al., 2006), a higher estimate than we obtained with either of
our methods. This estimate was based on a higher extra annual
cases of cancer due to AA (75e130; Konings et al., 2003) and the
assumption that all cases are fatal with an average loss of 5 life-
years per case (Van Kreijl et al., 2006). Another recent study has
estimated the global and regional burden of disease caused by
other chemicals in foods and has obtained estimates for the Euro-
pean region in the same range as our results: 0.5 DALY/100,000 for
aflatoxin causing liver cancer, and 1 DALY/100,000 for dioxins
causing hypothyroidy and decreased sperm count (Gibb et al.,
2015).

We developed a BoD model with three components: an expo-
sure module, health-outcome module, and DALY module, and in
each of these made assumptions and addressed limitations. In the
health-outcome model, we estimated a mean daily dietary expo-
sure to AA through a lifetime in Denmark of 0.36 and 0.27 mg/
kg bw/day for males and females, respectively. This is slightly lower
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Fig. 4. Contribution of food groups for the mean daily dietary lifetime exposure to AA
in Denmark (both genders).

Table 6
Mean incidence per year and disease burden of specific cancers due to AA exposure in Denmark using US EPA and Dybing&Sanner approach and direct DALYa calculation. Only
estimates using the lower 95% confidence level of BMD (BMDL10) as PoDb are presented. DALY/case is independent of the dose responsemodels and is estimated from estimates
of disease duration, severity and time of onset of disease (eq. (4)); .

Cancer sites Endometrial Ovarian Breast Kidney Sum

Female Female Male Female Male Female

DALY per case 9.0 10.5 4.8 4.6 6.1 6.5
US EPA
ACAAc) 9.1 � 10�4 2.3 � 10�2 1.6 � 10�3 1.9 � 10�1 2.4 � 10�2 9.9 � 10�3 0.3
DALY total 8.2 � 10�3 2.4 � 10�1 7.8 � 10�3 9.0 � 10�1 1.5 � 10�1 6.5 � 10�2 1.4
DALY/100,000 3.3 � 10�4 9.4 � 10�3 3.1 � 10�4 3.6 � 10�2 5.9 � 10�3 2.6 � 10�3 2.7 � 10�2

Dybing&Sanner
ACAA 4.8 � 10�3 1.2 � 10�1 8.6 � 10�3 1.0 1.3 � 10�1 5.2 � 10�2 1.3
DALY total 4.3 � 10�2 1.3 4.1 � 10�2 4.8 7.8 � 10�1 3.4 � 10�1 7.2
DALY/100,000 1.7 � 10�3 5.0 � 10�2 1.7 � 10�3 1.9 � 10�1 5.9 � 10�3 1.4 � 10�2 1.4 � 10�1

a DALY: Disability adjusted life years.
b PoD: Point of departure.
c ACAA: Annual cases of cancer attributable to exposure to acrylamide through foods.

Table 7
Mean incidence per year and disease burden estimates for total cancer in Denmark using US EPA and Dybing&Sanner approach and the direct and indirect model for DALY
calculation. Only estimates using BMDL10 as PoD are presented.

Cancer sites Direct DALY model Indirect DALY model

Male Female Sum Male Female Sum

DALY per case 4.7 6.7 10.4 9.8
US EPA
ACAA 9.8 � 10�1 7.1 � 10�1 1.7 9.8 � 10�1 7.1 � 10�1 1.7
DALY total 4.6 4.8 9.6 10.0 7.0 17.0
DALY/100,000 1.9 � 10�1 1.9 � 10�1 1.9 � 10�1 4.1 � 10�1 2.8 � 10�1 3.4 � 10�1

Dybing&Sanner
ACAA 5.2 3.8 8.9 5.2 3.8 8.9
DALY total 25.0 25.0 50.0 55.0 37.0 90.0
DALY/100,000 9.9 � 10�1 1.0 1.0 2.2 1.5 1.8
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than earlier assessments of AA exposure in the Dutch population,
where a mean exposure of 0.48 mg/kg bw/day (median ¼ 0.2 mg/
kg bw/day) (Konings et al., 2003) and a median exposure of 0.5 mg/
kg bw/day (Boon et al., 2005), were reported. Similarly, in the US
the estimated mean AA exposure was 0.44 mg/kg bw/day (Doerge
et al., 2008). We found that french-fries/fried potatoes contrib-
uted with 45e48% of the total exposure, with coffee (~15%) and
chips (14e17%) as the second and third largest contributors. Others
reported these food-groups as the largest contributors as well,
though fried potato products contributed to a lesser extent (Boon
et al., 2005; Doerge et al., 2008; Dybing and Sanner, 2003;
Svensson et al., 2003). Overall, estimating exposure to AA
through the diet is hampered by large variation in the AA content,
both within and between food-types, and between home-prepared
and commercial foods (EFSA, 2015, 2012).

We applied two different approaches to estimate the annual
extra cancer risk attributable to exposure to AA through foods, and
concluded that the Dybing&Sanner approach resulted in risks
approximately 5 times larger than the US EPA approach (Table 3).
However, these are only two of many approaches, all resulting in
different lifetime cancer risk estimates (Chen et al., 2012; Doerge
et al., 2008; Dybing and Sanner, 2003; T€ornqvist et al., 2008). The
highest lifetime risk identified in the literature is 16 � 10�3 (16 out
of 1000 individuals) per mg/kg bw/day (T€ornqvist et al., 2008),
which is around 35 times higher than the highest lifetime risk
estimated in our study (4.6� 10�4, i.e.4.6 out of 10,000 individuals)
per mg/kg bw/day. It is of general agreement that it is preferable to
utilize toxicokinetic/toxicodynamic data on specific substances, like
AA, in the interspecies extrapolation, which is the case in the US
EPA model.

In order to reflect the range of possible BMD10 given the dose
response data, we calculated risk using both the overall BMDL10 and
BMDU10 of the endpoints showing a statistically significant dos-
eeresponse relationship, and with data informative enough to
derive a PoD (EFSA, 2011). In EFSA (2015), harderian gland tumors
in mice are the suggested endpoint for PoD estimations, however,
we disregard in this study endpoints in mice, as the toxicokinetic
data used in the US EPA approach (US EPA, 2010) relate humans and
rats. Mammary gland tumors in rats have likewise been suggested
as endpoint for PoD estimations (JECFA, 2010). However, our BMD
modeling suggested that the mammary gland tumor data in Beland
et al. (2013) was not informative enough to derive a PoD, and we
refrained from using restricted benchmark dose models to further
treat the data.

Assuming that AA causes cancer through a genotoxic mode of

action, we applied linear extrapolation from the observable tumor
range to low human dose levels to estimate the SF. This is generally
an approach considered conservative, as biological protection
mechanisms likely act in the low dose regions, and as a conse-
quence the actual doseeresponse curve is sub-linear and the risk is
overestimated (Boobis et al., 2013; Dybing and Sanner, 2003;
O'Brien et al., 2006; US EPA, 2005). Additionally, the approach
has been criticized for the large uncertainty of the shape of dos-
eeresponse relationship at doses relevant for human exposure
(Barlow et al., 2006). This implies that our results may likewise be
overestimated, or at least that the uncertainty is considerable.

The SF estimates the absolute number of cases that are expected
at a certain exposure independent of the background disease rate,
as the toxicological tumor data reflect only tumors caused by the
given chemical (Hanninen et al., 2014; US EPA, 2005). Therefore, in
this study we do not account for other carcinogenic hazards and
risk factors. However, validation of the estimated extra cancer cases
is very difficult due to the chronicity and multi-causality of cancer,
and because exposure can take place a long time before the onset of
disease.

Recognizing that AA is a multi-site carcinogen (Beland et al.,
2013; EFSA, 2015; US EPA, 2010) and under the assumption that
the cancer potency of AA is similar in all tissues, we estimated the
disease burden of total cancer. When accounting for total cancer,
cancer sites that are not associated with dietary exposures are
included, which will lead to an overestimation of the disease
burden of total cancer attributed to AA. The assumption that AA has
the same potency in all tissues is challenged by animal studies,
which show that different tissues vary in sensitivity to AA exposure,
ranging from tumors occurring in the low-dose groups to tumor-
free tissues (Beland et al., 2013; Friedman et al., 1995; Johnson
et al., 1986). To minimize the impact of this assumption, both
BMDL10 and BMDU10 modeled from all statistically significant
endpoints were used as PoD, and are therefore believed to cover the
sensitivity of the tumor sites identified in the animal studies. On the
other hand, the burden calculated for the specific cancers does not
account for cancer sites potentially associated with AA that have
not been detected in currently available epidemiological studies,
which can lead to an underestimation of the burden attributed AA.
To improve the estimation of disease burden caused by AA, more
research on toxicological data that inform the link of AA exposure
to specific human relevant tumor sites/health effects is needed (e.g.
QSAR and PBTK models).

Calculating DALYs for total cancer with the indirect approach
resulted in approximately twice as large estimates than with the
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Fig. 5. Attribution of DALYs of total cancer to food groups in Denmark as estimated by different methodological approaches. Only estimates using BMDL10 as PoD are presented.
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direct approach. Both methods used the same AA-attributed cancer
cases (AC) and health register data for DALY estimations. The main
reasons for the discrepancy lie in the parameters used for calcula-
tion of DALY/case; in the use of average age of death in estimation of
YLL in the direct approach and of life-tables by WHO (i.e. indirect);
and in the use of prevalence data (direct) or incidence data (indi-
rect) to calculate YLD (WHO, 2013). Even though the WHO esti-
mates are country-specific, the parameters used in the estimates
are standardized to be comparable across nations (Schram-Bijkerk
et al., 2013; WHO, 2013). In a national BoD study, it is preferable to
use original incidence data, as used in the direct DALY approach in
the current study. However, choosing one approach over the other
will depend on data availability.

We did not include information on time-to-tumor in our DALY
calculation, and have disregarded - individuals with a high expo-
sure i.e. the 99th percentile, who might have an earlier disease
onset. Time-to-tumor data is rarely available, but should ideally be
included in the DALY calculation (Bokkers et al., 2012).

Our estimates of disease burden of AA exposure through foods
provide a valuable basis for comparison with disease burden of
other food chemicals, environmental chemicals and even of other
hazards and risk factors e.g. of biological or nutritional origin. Still,
our results shows that all methodological choices and underlying
assumptions of a burden of disease model need to be carefully
considered when interpreting DALYs and utilizing the estimates for
comparison across risk factors.

5. Conclusion

We estimated that exposure to AA through food causes a disease
burden of 0.003 DALY/100,000 per year in Denmark as estimated by
the least conservative approach, and 1.8 DALY/100,000 as estimated
by the most conservative approach, which corresponds to 0.3 (i.e.
approximately one case every three years) and 9 annual cases of
cancer in the population, respectively. This range reflects the un-
certainty of the available doseeresponse data and the impact of the
chosen modeling approach. By developing a method to estimate
the burden of foodborne AA, we have paved the way for similar
estimations of other chemical hazards, in Denmark and in other
countries with representative food-exposure data. Models to esti-
mate the burden of disease of chemicals transmitted through foods
would be greatly improved by toxicological data on human health
effects following exposure to these chemicals, as well as by the
identification and quantification of the sources of uncertainty
connected to themodel components, including the inter- and intra-
species extrapolation steps and the exposure assessment.

Transparency document

Transparency document related to this article can be found
online at http://dx.doi.org/10.1016/j.fct.2016.01.021
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3.3 Discussion

We applied the risk assessment approach (referred to as an exposure based-approach in

the paper), to estimate the incidence of cancer caused by dietary exposure to AA. To

estimate the disease burden requires integration of data from many different sources.

We proposed an overall model-framework consisting of three modules (i.e. the exposure,

health outcome and DALY modules), to which each data integration and modelling step

can be referred to. Structuring the model in components allows for a transparent overview

of the different data needs and modelling steps in the development of the indicators of

interest (i.e. the exposure estimates, the population risk estimates and the final DALY

estimate), as well as the assumptions and modelling choices applied within each module.

Furthermore, the impact of assumptions on the final estimates can easily be allocated to

a specific module, as can the sources of uncertainty from input parameters and model

assumptions.

We assessed the impact of selection of health outcomes and selection of dose response

models on the population risk and on the final DALY estimates in the health outcome

module. In the DALY module, we assessed the impact of using, within the risk assess-

ment approach, two different approaches to estimate DALY, as illustrated in fig. 2.4.

The impact assessment was done by scenario analysis, i.e. two scenarios for inclusion of

health outcomes, two scenarios for dose response modelling and two scenarios for DALY

estimation (fig. 3 in the paper). The scenario analyses and the resulting ranges of DALY

estimates are not per se describing the uncertainty in the estimates. Rather, they assess

how sensitive the overall model is to the input parameters, e.g. is the impact of the differ-

ent scenarios on the final DALY estimates largest for assumptions in the health outcome

module or in the DALY module?

In the health outcome module, the strength of the evidence is evaluated in order to

select which health outcomes to account for, and to define a dose response relationship.

The selection of the health outcomes to account for is a crucial step in the burden es-

timation of a given hazard. The total burden incurred by a chemical is of course only

reflecting the health outcomes for which the incidence is calculated.

The adverse health effects associated with AA exposure from different sources include,

beside cancer, neurotoxicity observed in both experimental animals and humans [83][84],
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reproductive impairments observed in experimental animals [85], developmental effects

observed in experimental animals and humans [86][87][88] and immunological effects ob-

served in humans [89]. In our study, we excluded neurological effects by the argument that

exposure from the diet are of considerable lower magnitude than the exposure experienced

in occupational settings, where case reports about neurological effects exist [49]. Repro-

ductive effects have been detected in animal studies, but not reported for humans or found

in epidemiological studies. EFSA considered reduced sperm count and testis morphology

as critical effects and relevant for humans and identified a NOAEL relevant for reproduc-

tive toxicity [49]. In birth-cohort studies, AA exposure of the mother was associated with

a low birth weight for gestational age of her child [90][88]. EFSA concluded that based on

the two birth-cohort studies available, a cause-effect relationship could not be established,

supported by a lack of biological explanation for the association [49]. EFSA did in its 2015

scientific opinion not consider immunotoxic effects [49], however a recent cohort study in-

vestigated and found an association between AA exposure and allergy-related outcomes.

All of the above mentioned health effects are possibly relevant for humans, however, the

evidence available to establish a cause effect relationship is missing, especially relating

the developmental (low birth weight) and immunotoxic (allergy related) effects. A low

birth weight is an established predictor of adverse health outcomes in adulthood including

morbidity and mortality related to cardiovascular diseases (CVD)[91]. CVD accounts for

14% of the total disease burden of all diseases in Denmark in 2015; asthma (in relation

to allergy related effects) account for 1% of the total disease burden [92]. The disease

burden of CVD and allergy attributed AA may potentially be considerable, and thus ex-

cluding the health outcomes potentially underestimates the total disease burden of AA.

On the other hand, the disease burden of male infertility (the manifestation of disability

in humans from reduced sperm count) in Denmark in 2015, was estimated to account for

maximum 0.1% of the disease burden from all causes. This may suggest that including

this health effect do not have a major impact on the DALYs attributed AA.

The inclusion of the health effects are likewise depending on the data available for

informing a dose response relationship. Bokkers et. al (2009) [64] evaluated the available

scientific evidence on non-carcinogenic AA toxicity to calculate the fraction of the popula-

tion affected via the IPRA methodology, and found the data suitable for BMD-modelling

for the effects: neurotoxicity as measured by grip strength [93] and developmental and
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systemic effects as measured by number of life pubs per litter and loss of bodyweight

[93][86]. As mentioned, neurotoxic effects were excluded based on the expected magni-

tude of dietary exposure. It was not investigated whether the dose-response data were

available for other adverse effects.

The disease burden of dietary AA-induced cancer was evaluated. The strength of

evidence on the cause-effect relationship is not completely established and acrylamide is

classified as probably carcinogenic to humans [49], as the animal carcinogenicity studies

on AA exposure are not supported by convincing evidence in human observational studies.

Because of the inconclusiveness in the cohort studies, we assessed the impact on the DALY

estimates of accounting for 4 specific types of cancer or the cancer cases attributed to AA

out of all different types of cancer. Accounting for total cancer yielded a DALY estimate

7 times higher than accounting only for the 4 specific cancers. As for AA and cancer, the

causal evidence between AA and low birth weight and allergy related outcomes is lacking.

It would be relevant to investigate how much the disease burden would increase if these

outcomes were accounted for.

The strength of evidence that informs the dose response relationship depends on how

well the model and its parameters describe the true biological disease models. We assumed

that a linear relationship between the probability of developing cancer and a human

relevant dose accurately yield the incidence of cancer caused by AA. This assumption is

discussed in the paper. We evaluated the range of uncertainty in the POD (by the BMDL

and BMDU) given the fitted dose response models and assessed two different models to

inform on the toxicodynamic and -kinetic differences between a median human and the

experimental animals, i.e. the US EPA [94] and Dybing and Sanner [95] approach. The

DALY estimates of the combined most and least conservative combination of scenarios

differed by a factor of approximately 43. However, the range of uncertainty might be

larger, as the chosen scenarios possibly do not comprehensively describe the true disease

models, not least taking into account that the difference between human individual’s

sensitivity to AA is not described.

All of the points above illustrate that the uncertainty connected to which health out-

comes to include, as well as how well the chosen dose-response model describe the disease

model is considerable.

In the DALY-module we assessed the impact on the final DALY estimates of using a
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disease envelope for the health outcome. The scenarios assessed suggested that estimat-

ing the disease burden attributable to AA via the GBD disease envelope for cancer in

Denmark, yielded twice as large estimates than estimating DALYs directly from Danish

health statistics. It would have been relevant to also assess DALYs via a disease envelope

internally estimated in Denmark, had it been available. Litterature reviews of disease

burden studies have illustrated that a range of different approaches and parameters have

been applied to estimate DALYs [34]. Thus, the two scenarios studied here do not cover

the full range of approaches. The chosen methodology should be decided depending on

the applicability of the study. If the disease burden for a foodborne hazard is estimated

to be representative globally, then the GBD disease envelopes should be used if available;

alternatively, health statistics should be standardised across nations. Likewise, if the dis-

ease burden is applied in a national context, national health statistics or disease envelopes

should be used.

In summary; the scenarios we assessed were chosen mostly based on the available

data; i.e. the two scenarios for health outcomes were selected based on evidence from

epidemiological studies (i.e. the specific cancers) and on the information of AA being

a multi-site carcinogenic (i.e. total cancer); the two scenarios for application of linear

extrapolation and extrapolation factors to inform of the dose response relationship were

obtained from literature searches; and the two scenarios for DALY computation were

decided upon based on the available disease envelopes. Overall, the scenarios assessed in

the health outcome module had a considerable larger impact on the final DALY estimates

than the scenarios investigated in the DALY module. Even though we can not be sure that

the scenarios we have assessed represent the upper and lower bounds of the uncertainty

ranges, we argue that the assumptions and model approaches in the health outcome

modules have a higher impact on the final DALY estimates than does the assumptions

and model approaches taken in the DALY module. Therefore, one can conclude that to

optimize confidence in the disease burden estimates on foodborne chemicals, effort should

be put into refining the input parameters and model assumptions in the health outcome

module, rather than in the DALY module.



54 Paper I



Chapter 4

Manuscript II

4.1 Prelude

In Paper 1 we estimated a lifetime extra cancer risk due to dietary exposure to AA of

4.6×10−4, or approximately 9 cancer cases per year in Denmark, which would represent

only 0.02% out of the total cancer incidence in Denmark in 2014. At the same time, the

collection of human observational studies is inconclusive with regard to the association be-

tween AA and the wide range of cancer cites studied [96]. However, evidence from human

observational studies are normally given the heaviest weight when causal relationships

between a risk factor, or hazards, and a health outcome is established [97]. Therefore we

found it relevant to investigate the sensitivity of a prospective cohort study under various

study conditions. We assess the potential bias introduced into studies of disease burden

of foodborne chemicals if human observational studies are given the highest priority in

selection of health outcomes. Also, we inform on the potential bias introduced if epidemi-

ological evidence is used to derive the dose response relationship (the top down approach)

compared to using data from studies in experimental animals to derive the dose response

relationship (the bottom up approach). Quantitative information on both sources of bias

are important to allow for comparability across foodborne disease burdens estimated from

different streams of evidence.
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Abstract 

Observational human studies such as prospective cohort studies are important tools to 

establish a causal relationship between exposure to hazards or risk factors and the risk 

of chronic disease e.g. cancer. However, the statistical strength inherent in the design 

of epidemiological studies often requires either large effects or large cohorts to show 

a significant relative risk. In this paper, we perform computer simulations of a 

prospective cohort study to evaluate under which conditions such a study identifies 

significant relative risks (RR). We use the case of dietary acrylamide (AA) exposure 

and the risk of cancer, where the probability of cancer given AA exposure is 

extrapolated from animal studies, to simulate a prospective cohort study of a realistic 

design. We apply Monte Carlo simulation to assess the likelihood of detecting a 

statistical significant RR given the study conditions. Our simulations suggest that in 

the case of AA, in a feasible cohort study, the likelihood of finding a statistical 

significant RR is as low as 2.4%. We find that to reach at least 50% probability of 

detecting a RR of statistical significance, the background probability of cancer should 

be no larger than six times the probability of disease mediated by the chemical. 

Observational studies are given a high priority in the evidence of risk of disease and 

when guidelines are formulated to promote human health, thus the lack of sensitivity 

should be taken into account. We conclude that simulations of observational studies 

are a valuable tool to evaluate the sensitivity of a study, both to optimize study design 

and/or to decide whether to conduct such a study.   

 

Keywords: Monte Carlo simulation, epidemiology, relative risk, acrylamide, 

prospective cohort study; cancer 
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Introduction 

Chronic diseases such as ischemic heart disease and cancer cause high diseases 

burdens, not only in Western societies, but also worldwide [1]. To identify effective 

disease prevention measures, increased focus is given to the causes of these diseases 

and especially to the associations between these diseases and the diet. However, 

establishing associations or even causal relationships between dietary risk factors or 

hazards and health effects is not a trivial task. To investigate these associations, 

several types of studies are used, including animal studies, mechanistic in vitro/vivo 

studies and observational studies. Observational studies are often preferred to obtain 

measures of direct associations in humans. These studies include randomized 

controlled trials, prospective cohort studies and meta-analyses of the latter, and 

estimate the risk of disease based on the exposure to a given risk factor or hazard 

(e.g. smoking or aflatoxins in food) and the occurrence of a specific health outcome, 

(e.g. lung cancer (smoking) or liver cancer (aflatoxin)). Well performed observational 

studies are assigned the “heaviest” weight of evidence in the determination or 

classification of a hazard’s or risk factor’s effect on human health. For the evidence 

of a causal relationship to be convincing according to the World Cancer Research 

Fund (WCRF), it needs to be based on “evidence from more than one study type” but 

“at least two independent cohort studies” with “no substantial unexplained 

heterogeneity within or between study types or in different populations relating to the 

presence or absence of an association, or direction of effect” [2]. Further, convincing 

causal relationship forms the base on which goals and recommendations to reduce the 

incidence of cancer are designed. Thus, epidemiological studies are crucial and 

emphasized in the formulation of food safety policy and dietary guidelines [2]. 

However, these studies are difficult to perform because the statistical strength 

inherent in the design of epidemiological studies often requires either very large 

effects or very large cohorts or study populations to show a significant relative risk 
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(RR). As scientific evidence for an association between exposure and disease needs 

to be available for a hazard or risk factor to be regarded as relevant by the health 

authorities and other parties within food-safety, the lack of power in population 

studies may impact the extent to which certain foodborne risk factors or hazards are 

included in mitigation initiatives.  

Chemical substances are placed into categories of different likelihood of 

carcinogenicity in humans on the basis of the strength of the evidence of the causal 

relationship. Acrylamide (AA) is a process contaminant formed during heat treatment 

of starchy foods, detected in a wide range of commonly consumed products (e.g. 

breakfast cereals, coffee, fried potatoes) and categorized as a group 2A carcinogen: 

probably carcinogenic to humans [3][4]. Animal and mechanistic studies on the 

toxicological effect of (oral) exposure to AA show clear evidence that AA is 

carcinogenic through a genotoxic mode of action [5–8]. However, epidemiological 

studies that investigate the association between dietary exposure to acrylamide and 

cancer are more ambiguous. The majority of epidemiological studies do not show a 

statistical significant association between AA and various cancer types e.g [9–11], 

whereas a few studies show a statistical significance [12,13]. This trend is also 

observed in a recent meta-analysis [14], where no association was found with most 

cancer types, except a few where the association was borderline significant. 

In a recent study [3], a risk assessment approach using animal data was used to 

estimate the disease burden caused by dietary exposure to AA in Denmark. The 

authors assessed several scenarios and found that in the most conservative approach, 

the disease burden amounted up to 9 annual cancer cases or 1.8 DALY/100.000 

attributed dietary AA, or approximately 0,02% of the total cancer incidence in 

Denmark. With an incidence in this order of magnitude it is unlikely that an 

epidemiological study, e.g. case-control or prospective cohort study will comprise the 

power to detect a statistical significant effect, which is also illustrated by the 
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inconclusiveness of the above mentioned evidence. Likewise, Törnqvist et al. [15] 

have argued that RRs translated from toxicological data are of magnitudes that will 

not be detected in epidemiological study designs. 

In this study we performed computer simulations of a prospective cohort study to 

evaluate under which conditions such a study would identify significant cancer risks. 

We tested the hypothesis that epidemiological studies are sensitive enough to detect 

statistically significant associations between hazards, for which toxicological risk 

assessments suggest low incidence of a given health effect, using the case of dietary 

AA exposure and the risk of cancer. A set of simulations of the cohort study yields a 

distribution of RRs that might be obtained from these studies. This distribution 

provides the likelihood of getting a RR that is statistically significant larger than 1 

and thus the likelihood of reaching the conclusion that AA is a significant risk factor. 

We investigated which variables might influence the significance of the association, 

as well as which variables might be optimized to improve the sensitivity of the 

epidemiological study. 

Method and Materials 

In prospective cohort studies, information of exposure to a hazard of initially healthy 

individuals is collected when individuals enter the cohort. The individuals are then 

followed for several years to collect information on eventual diagnosis of disease, i.e. 

cancer, to allow for comparison of disease incidence between individuals of low and 

high exposure. Usually, the exposure-disease association is modeled by comparing 

disease incidence in fixed categories of exposure, i.e. quartiles. In a simulated cohort 

study, we are able to study perfect study conditions including a complete follow-up 

and exact knowledge on the characteristics of individuals, e.g. level of exposure. 

Thus, we defined a cohort study considering perfect knowledge of the study 

population and a realistic set up. We simulated the cohort study with a closed 
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population of 30,000 persons with an individual entry-age into the cohort of 40-64 

years, and a follow-up period of 10 years. We assumed that the age of individuals 

entering was evenly distributed across the cohort and that each individual entering the 

cohort did not have a cancer diagnosis prior to entry. All competing illnesses and 

causes of death were ignored. The outcome of the cohort study was an estimate of the 

RR between individuals in groups of high and low AA exposure (i.e. the first and 

fourth quartile), based on incidence proportions (IP). An overview of the simulation 

strategy of the epidemiological study is given in Fig 1. 

 

Fig 1. Overview of the simulation model. 

Strategy for the simulation of a prospective cohort study on the association between dietary acrylamide 

exposure and the risk of cancer.  

 

Simulation model 

We hypothesized that an individual’s probability, ri, of developing cancer within the 

10 year follow-up period depended partly on the risk, p, associated with the dietary 

exposure to AA and partly on the background cancer risk, q, from other hazards and 
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risk factors. The background cancer risk, q, was calculated by the cumulative 

incidence proportion (CIP), i.e. the proportion of the population that gets cancer 

within a specified time-period, using cancer incidences and population size from 

2013 published by the Danish Cancer Registry and Statistics Denmark (Table 1). 

Table 1 Cancer incidence and population size in Denmark in 2013, calculated incidence rate (IR) per 

year per 100,000 inhabitants and cumulated incidence proportion (CIP) for each 10-year age-groups. 

Age 40-49 45-54 50-59 55-64 60-69 65-74 

Incidence (/yr)
a)

  2,350 3,676 5,254 7,541 10,967 12,286 

Population size
b) 

714,133 714,133 654,474 631,747 633,924 541,363 

IR (/100.000/yr) 329 515 803 1,194 1,730 2,269 

CIP 0.032 0.050 0.077 0.112 0.159 0.203 

a
 The Cancer Register, www.esundhed.dk/sundhedsregistre/CAR/Sider/Cancerregisteret.aspx 

b 
Statistics Denmark, www.statistikbanken.dk/FOLK2 

 

CIP for a time-period of 10 years was calculated for the age groups shown in Table 1, 

by:  

𝐶𝐼𝑃𝑎𝑔 = 1 − exp(−𝐼𝑅𝑎𝑔 ∙ ∆𝑡) (Eq 1),  

where 𝐼𝑅𝑎𝑔  is the incidence rate of age group, ag, per year per 100,000 and ∆𝑡  is the 

follow-up time (i.e. 10 years) [16]. The risk of cancer increases with age and the 10-

year background cancer risk, qa, of a person with age a (a = 40-64 years) when 

entering the cohort, was given by the best fit of a (pragmatically chosen) 2
nd

 degree 

polynomial trend-line fitted to the CIPs calculated for each age group (see Fig 2A).  
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Fig. 2 Cancer risk and age 

A) 10-year background total cancer risk, q, as a function of age, a; B) 10-year cancer risk caused by dietary 

exposure to acrylamide, p, as a function of age, a.  

 

For example, CIP40-49 gives the probability of a person of age 40 getting cancer within 

the next 10 years of his/her life and by the fit of the 2
nd

 degree polynomial to the 10 

year risk of each of the age groups (Table 1), the 10-year background risk of cancer 

given age a, was given by: 

𝑞𝑎 = 0.00014𝑎2 − 0.0076𝑎 + 0.12 (Eq 2). 

The lifetime risk of cancer caused by dietary exposure to 1 μg AA/kg bw/day 

throughout a lifetime i.e. the cancer slope factor (SF) for dietary AA, is reported in 

Jakobsen et al. [3]. This cancer risk model is based on carcinogenicity studies in rats 

orally exposed to AA. In the study, two different approaches are used to extrapolate 

the cancer risk in the rat to humans. Here we use the mean SF of the two approaches 

(Table 2).   

Table 2 Input parameters in the baseline simulation model 

 Description Unit Distributional  
assumption  

Value Reference 

Cohort size Number of participants 
entering the cohort 

 Point estimate 30,000   

Follow-up Duration of study period years Point estimate 10   
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time 

SF Lifetime cancer risk due 
to acrylamide 

(μg/kg bw/day)
-1

 Point estimate 1.09x10
-4

  [3] 

ql Background risk of 
cancer  
(probability of cancer 
before age 75) 

 Point estimate 0.34  [26] 

ai Age of the individual 
entering the cohort 

years U(a,b) a=40 b=64  

di Individual exposure 
dose of acrylamide  

μg/kg bw/day Lognormal(μ,σ) μ=0.34 σ=0.39  

 

To relate the AA lifetime cancer risk,𝑆𝐹, to the AA cancer risk per age, pa, we 

assumed that the risk of cancer caused by AA follows the same relation with age as 

the background cancer risk, by: 

𝑆𝐹

𝑞𝑙
∙ 𝑞𝑎 =𝑝𝑎  (Eq 3) 

where, 𝑞𝑙 (=0.34) is the CIP0-75 (Table 2), here assumed to represent the lifetime risk 

of cancer. The relation was given by:  

𝑝𝑎 = 4.4 ∙ 10−8𝑎2 − 2.4 ∙ 10−6𝑎 + 43.8 ∙ 10−5 (Eq 4), 

and shown in Fig 2 B. 

We aimed to simulate the probability ri that individual i gets cancer, which, as 

described above, will depend on the individual’s age, ai and exposure to a lifelong 

mean daily dose of AA, di. We assumed a uniform distribution for a, i.e. the 

distribution of age at entry into the cohort is uniform, given by: ai ~ U(40, 64) (Table 

2), where ~represents “is a sample from”. The AA dietary exposure in μg AA/kg 

bw/day of the Danish population is based on the Danish National Survey of Diet and 

Physical Activity comprising approximately 2500 individuals [3]. A lognormal 

distribution was fitted to the AA exposure data, using @Risk version 6 (AIC = -

950.02), to describe the probability distribution of an individual’s exposure to a dose 

of AA, di ~ Lognorm(0.34, 0.39), shown in Fig 3 and Table 2.  
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Fig 3. The fit of a lognormal distribution to the Acrylamide exposure.  

Fit comparison of the lognormal distribution with mean = 0.34 and standard deviation = 0.39 to the actual AA 

exposure distribution. Exposure (ug AA/kg bw/day) of the individuals entering the cohort is sampled from the 

lognormal distribution to obtain the risk of the individual given AA exposure and age. AA = acrylamide.  

 

Simulating a study where four exposure categories are compared, the probability 

distribution of di was split into quartiles, in order to simulate the probability of cancer 

for individuals in each quartile, n=1..4. Let di,n represent a random sample for the 

exposure distribution falling in the n
th
 quartile. Then, an individual i’s probability of 

getting cancer within the 10-year follow-up from entering the cohort at age a when 

being in exposure quartile n, was given by:    

𝑟𝑖,𝑛=𝑟(𝑎𝑖 ,𝑑𝑖,𝑛)=1-(1-𝑝(𝑎𝑖) ∙ 𝑑𝑖,𝑛)(1-𝑞(𝑎𝑖))   (Eq 5) 

To characterize the exposure distribution, we simulated ri,n for 50,000 individuals i  

per exposure quartile n by Monte Carlo technique. The resulting probability 

distribution was then used to estimate the number of cases in each quartile after the 

10-year follow-up period. Acknowledging that ri is not necessarily linearly related to 
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the exposure, so that the mean for each ri,n may not be representative, we further split 

up the probability distributions of ri,n  into m = 10 quantiles each, per quartile n, and 

calculated the median risk rmed,n,m of each quantile.  To estimate the number of cases 

in each quantile m, we sampled from the binomial distribution, Binomial(Nm, rmed,n,m), 

where Nm is the number of individuals in quantile m (= one fourtieth of the total 

number of participants in the cohort study Ntot). The sum of cases from each quantile 

m equals the total number of cases, Nc,n, in each quartile n of the exposure 

distribution, after a 10 year follow-up.  

 A total of Ntot = 30,000 individuals entered the cohort, and we assumed that the 

participants were evenly distributed in the quartiles of the exposure distribution, 

hence 7,500 in each (Nm =750 per quantile).  

The incidence proportion for each quartile, IPn, was estimated by:  

𝐼𝑃𝑛 =
𝑁𝑐,𝑛

𝑁𝑐,𝑛+𝑁𝑛𝑐,𝑛
   (Eq 6), 

where Nnc,n is the number of individuals in the n’th quartile with-out cancer after the 

10-year follow-up period. RRs were calculated relative to the incidence proportion of 

the 1
st
 quartile,𝐼𝑃1, e.g.𝑅𝑅4 =

𝐼𝑃4

𝐼𝑃1
. The 95% confidence interval (CI) of the RRs 

were calculated and significance tests performed by χ
2
-test, to test whether the 

simulated study would give a statistically significant result.  

We simulated the cohort study 100,000 times (100,000 iterations), resulting in the 

probability distribution of RRs that might be obtained, if the cohort study was 

conducted in reality.  

All input parameters, point estimates and assumed distributions are shown in Table 2. 

Monte Carlo simulations were performed in @Risk version 6 (Palisade Corporations) 

as an add-in for Microsoft Excel. 
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Scenarios 

In addition to investigating how often a statistical significant effect is expected with 

the conditions given (baseline model), we defined different scenarios to investigate: 

1) How model parameters influence the significance of an association, and 2) Which 

parameters can be optimized in a realistic setting to improve the sensitivity of the 

epidemiological study. To address the first, we investigated different values of the SF 

and the effect of change in the variation, e.g. the standard deviation (SD) of the 

exposure distribution. To address the second, we investigated the influence of the 

number of participants entering the cohort and the length of the follow-up time. 

Lastly we simulated a combination of a set of realistic scenario values. Table 4 shows 

the parameter values of each scenario. 

Table 4 Parameter values and simulation results of the baseline model and scenarios. Results 

reported as the probability (%) that the relative risk (RR) >1, that the lower bound (LB) of the 95% 

confidence interval around RR >1 and that the upper bound (UB) of the 95 % confidence interval 

around RR<1, of the base scenario and the alternative scenarios. Only simulation results of the 4
th

 

vs.1
st

 quartile is presented.  

No Scenario RR>1  LB>1  UB<1 

1 Base scenario  49.64 2.34 2.33 

2 SFx10 51.14 2.60 2.08 

3 SFx10
2
 65.34 5.68 0.86 

4 SFx10
3
 99.97 96.07 0.00 

5 SFx10
4
 100.00 100.00 0.00 

6 SFTørnqvist 71.82 8.31 0.52 

7 SD = 0.5 49.59 2.44 2.27 

8 SD = 0.75 49.49 2.42 2.38 

9 SD = 1.0 49.39 2.47 2.30 

10 SD = 10 49.71 2.41 2.28 

11 Cohort sizex2 49.93 2.38 2.28 

12 Cohort sizex10 50.21 2.38 2.26 

13 Cohort sizex10
2 

51.42 2.62 2.16 

14 Cohort sizex200 52.24 2.62 2.07 

15 Cohort sizex300 52.42 2.77 1.99 

16 Cohort sizex10
3
 54.80 3.12 1.78 

17 Cohort sizex10
5 

88.37 21.09 0.07 

18 follow-up = 20 years 49.65 2.44 2.31 
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19 Combination 98.58 57.77 0.00 

 

The SF and the SD of the exposure distribution are parameters that cannot be 

influenced in the study design; however, the parameters may vary from hazard to 

hazard. Therefore, in scenario 2-6, we investigated how different (larger) values of 

SF influence the significance, including a SF reported by Törnqvist et al. [15] 

(scenario 6), which to our knowledge is the largest SF for AA reported in the 

literature, and about 150 times the size of the baseline SF. By increasing SF, we 

increased the probability of getting cancer due to AA. In scenario 7-10, we 

investigated how an increasing SD of the exposure distribution affects the 

significance. The larger the SD, the more spread towards low and high end of the 

distribution, so the difference between the extremes of the exposure distribution is 

larger.  

Parameters that can be modified in the study design to increase its sensitivity include 

the size of the cohort and the follow-up time. In scenario 11-17 we investigated how 

an increasing size of the cohort impacted the likelihood of detecting a statistical 

significant effect. The larger the cohort, the more cancer cases are included to 

calculate RRs. In scenario 18 we investigated how increasing the follow-up time from 

10 years to 20 years affected the significance. A longer follow-up time will increase 

the probability of cancer (which increases with age), thus include more cancer cases 

in the study.  

Because some of the scenarios investigated are unrealistic (e.g. a cohort size of 3 

billion individuals), we chose to investigate a combination of scenarios of larger, but 

potentially realistic parameter values. In scenario 19 we investigate the combined 

impact of a cohort size of 300,000, a follow-up of 20 years and the SF reported by 

Törnqvist et al. [15] (e.g. scenario 6, 12 and 18 combined).    
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Results 

We tested the null hypothesis that there is no difference in the risk of cancer of the 

individuals in the different quartiles of exposure relative to the lowest quartile, e.g 

RR = 1. If RR = 1 is included in the 95% confidence interval, we cannot reject the 

null hypothesis that the risk in the different quartiles are equal. In the 100.000 

iterations of the baseline and scenario models, we assessed how often we can expect 

to reject the null hypothesis, hence we assessed how often the 2.5% lower bound 

(LB) and 97.5% upper bound (UB) of the 95% confidence interval is larger than 1 

(LB > 1) and smaller than 1 (UB < 1), respectively, using the @RiskTarget function.  

Baseline model 

The mean AA exposure, mean number of cases and mean RR of 100.000 iterations of 

the baseline-model simulation for each quartile are shown in Table 3. The mean daily 

exposure in the lowest and highest quartile was 0.07 ug/kg bodyweight and 0.80 

ug/kg bodyweight, respectively. The mean RR of the 4
th

 quartile was 1.0014 with 

associated means of the 2.5% lower- and 97.5% upper bounds of the 95% confidence 

interval of 0.9080 and 1.1044, respectively. The total mean of cancer cases amounted 

to 2899.62 among 30,000 study participants during the simulated 10 year follow-up.  

Table 3 Mean acrylamide exposure, number of cases and relative risk of 100,000 simulated cohort studies by 

quartiles of acrylamide exposure (95% confidence intervals represented by the mean of the 2.5 % and 97.5% 

bounds of 100,000 simulated cohort studies) in the baseline model.   

Quartile, n, of acrylamide exposure,  
mean (min-max) in ug/kg/day 

Cases RR(95% CI) 

n1 0.073 (0.002 - 0.118) 724.854 1.00000 (reference) 

n2 0.165 (0.118 - 0.219) 724.874 1.00125 (0.90786-1.10424) 

n3 0.300 (0.219 – 0.408) 724.905 1.00129 (0.90791-1.10429) 

n4 0.804 (0.408- 20.318) 724.988 1.00141 (0.90801-1.10441) 
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In the simulation of the baseline scenario we found that the probability of finding RR 

> 1 in a cohort study is 0.495. The probability of finding a statistical significant 

positive RR (e.g. LB > 1) was 0.023, the same was the probability of finding a 

significant negative RR (e.g UB < 1) (Table 4). The relation between the RR, LB and 

UB is shown in Fig 4 by their cumulative probability distributions of the 4
th
 quartile. 

The median of the RR-distribution is 1 and it is seen that only the right tail of the LB 

distribution is above 1; likewise the left tail of the UB distribution is below 1.  

 

Fig 4. The simulated distributions of RR, LB and UB.  

The variation in relative risks (RR - solid curve), 2.5% lower bounds (2.5% LB – dotted curve) and 97.5% 

upper bounds (97.5% UB- dashed curve) of the of 95% confidence interval around the relative risk of 

100,000 iterations of the baseline model.  

 

Scenario Analyses 

With increasing SF, the probability that RR > 1 increases, and with SF being 1000-

10000 times the size in the base scenario, the probability is 1 (Table 4). With SFx10 

the likelihood of RR being statistical significant in either direction is almost equal 
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(similar to the base scenario); however, with increasing SF the probability of the 

2.5% LB > 1 approaches 1 and the probability of the 97.5% UB < 1 approaches 0 

(Table 4 and Fig 5). With SF 1000-10000 times higher than the baseline model, one 

would always expect to detect a statistical significant risk, when performing a cohort 

study with the baseline characteristics.  

 

Fig 5. The relation between the likelihood of a statistical significant relative risk and the size of the 

slope factor 

Change in the probability that the lower bound (LB) and upper bound (UB) of the 95% confidence interval 

around the relative risk is < 1 and > 1, respectively, by scenario of increasing slope factor. Only simulation 

results for the 4
th
 vs.1

st
 quartile is shown.  

The mean of the RR probability distributions is above 1 for SFx10
2
, SFx10

3
, SFx10

4 

and SFtörnqvist (Fig 6).  However, the mean of the LB probability distribution is above 1 

for only SFx10
3
 and SFx10

4 
with ~ 4% of the simulated LBs for SFx10

3
 is below 1 

and none for SFx10
4 
(Fig 6, Table 4).  
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Fig 6. The simulated relative risk by scenario of increasing slope factor.  

The mean relative risk of the 100,000 simulations in the baseline models and scenarios of increasing slope 

factor. Error bars represent the mean of lower- and upper bound probability distributions of the 95% 

confidence interval around the relative risk. Only simulation results of 4
th
 vs. 1

st
 quartile are shown.  

 

Increasing SD of the exposure distribution from baseline of 0.335 to 10 does not 

affect the likelihood of detecting a statistical significance in a cohort study (Table 4). 

Increasing the follow-up time from 10 to 20 years does not affect the likelihood of 

detecting a statistical significant RR either. Increasing the size of the cohort increased 

the likelihood of a statistical significant RR, with the most extreme scenario with a 

cohort size of 3x10
9
 giving a 21% chance of finding a statistical significant RR 

(Table 4). Fig 7 shows the relation between cohort size, slope factor and the 

probability of detecting a positive statistical significant RR (LB >1). With increasing 

SF, the cohort size needed to improve the likelihood of LB>1 decreases. Simulation 

of the combination of scenario 6, 12 and 18 gave probabilities of RR>1, LB>1 and 

UB<1 of 0.98, 0.58 and 0.00, respectively.  
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Fig 7. Relationship between slope factor, cohort size and the probability of a significant effect. 

Contour plot of the relationship between the slope factor, cohort size and the probability (in %) that the 2.5% 

lower bound (LB) of the 95% confidence interval around the relative risk is above 1.  

Discussion 

Our simulation results suggest that the chance of finding a statistical significant 

association between a contaminant with carcinogenic potential of AA in a prospective 

cohort study is low: 2.3%. In fact, the chance of finding a significant adverse effect of 

AA in an epidemiological study is the same as of finding a significant protective one. 

Likewise, the variation in RR shows that it is almost as likely to find a RR above 1 as 

below. The fact that our simulations do not show RR > 1 exactly 50% of the times is 

due to RR=1 in some of the iterations. Based on the simulation results it is therefore 

not surprising that most epidemiological studies do not show a statistical significant 

association between dietary AA exposure and cancer [13,12,17].  

Of the variables investigated, increasing the SF had the largest effect on the statistical 

significance of the association, where SF times 1,000-10,000
 

ensure a 100% 

likelihood of finding a statistical significant RR if performing a cohort study. 

Intuitively this makes sense, as the size of the SF in the baseline model (1.09 cases 

out of 10,000) is approximately 3400 times smaller than the lifetime background risk 
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of cancer, ql (3400 cases out of 10,000). Only when pa is approaching the size of qa, 

the likelihood of a statistical significant RR is approaching 100%. We applied the SF 

of 16x10
-3

 reported by Törnqvist et al. [15], to our knowledge the highest slope factor 

reported in the literature, which resulted in a 8.3% likelihood of detecting a 

significant RR. The authors state that despite their relatively high risk estimate, 

validation of this estimate in an observational study is unlikely. They argue that this 

is mainly because AA constitutes a limited range of exposure as the chemical is 

present in many commonly consumed foods. However, in our simulation we 

investigated the effect of increasing the range of the exposure by increasing the SD of 

the exposure distribution. This did not affect the likelihood of finding a statistical 

significant RR, simply because the background risk of cancer so greatly outweighs 

the probability of cancer mediated by AA itself.   

Neither the SF nor the SD are parameters that can be influenced in a study design. 

However, if information on the potency of the chemical (i.e. the SF) or risk factor 

under study and range of exposure is available, computer simulations can be used as a 

tool to assess the impact of these on the sensitivity of a proposed study design, in 

advance of performing the study. For example, our simulations show that to obtain a 

50% chance of finding a statistical significant RR between the 1
st
 and 4

th
 quartiles of 

the exposure distribution, the cancer potency of the chemical needs to be at least 500 

times larger than the slope factor applied in the base-line model. That is, the 

background probability of cancer should be no larger than approximately 6 times the 

probability of cancer arising from the chemical exposure to, with 50% likelihood, 

detect a statistical significant RR.  

On the other hand, both the size of the cohort and the time of follow-up are variable 

parameters in the study design of an observational study. We investigated the impact 

of cohort sizes ranging from 30,000 individuals (baseline model) to 3 billion. A 

cohort size of 3 billion is unrealistic, but was added to illustrate that the cohort size, 
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in this case, do not greatly improve the likelihood of a statistical significant RR as a 

cohort of 3 billion yields only 21% chance. Hagmar and Törnqvist (2003) [18] also 

discussed the cohort size and number of cases needed to detect a statistical significant 

RR of 1.05 of the association between AA exposure and the risk of cancer. The RR 

was theoretically extrapolated from animal experiments and an assumption of 18% 

background risk. Based on exposure estimates from the case-control study by Mucci 

et al (2003) [19], the authors estimated that 470,000 cancer cases with half the 

number of controls are needed to detect a significant effect, a number farfetched from 

what is obtainable in reality. The examples above suggest that the size of the cohort is 

of limited importance when the potency of a chemical on a given disease is negligible 

compared to all other causes (the background risk) of the same disease. The relation 

between the potency of the chemical, the cohort size and the sensitivity of a cohort 

study is given in Fig 7. This information is valuable to use in the design of a study 

when theoretical information on the size of the risk posed by a hazard can be derived, 

i.e. from animal studies. 

Increasing the follow-up time to 20 years did not have an impact on the likelihood of 

a statistical significant relative risk either. Intuitively this makes sense as we assume 

that the probability of cancer mediated by AA follows the same relation with age as 

the background probability of cancer, thus the two are proportional to each other. The 

combination of a follow-up of 20 years, a cohort size of 300,000 and the SF reported 

by Törnqvist et al., increased the likelihood of a statistical significant RR to 57.7 %. 

These three scenarios are considered “realistic” in the case of AA 

It is relevant to discuss how the study design of our simulated cohort study compares 

the characteristics of the prospective cohort studies performed in real life. In the 

baseline model, we simulated a cohort size of 30,000 which resulted in a mean total 

of 2899.62 cases, with a ratio of cases to number of participants in the cohort of ~10. 

From the collection of cohort studies included in the meta-analysis of Pelucchi et al. 
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[14], the size of the cohorts are in the range of 27,111 – 301,113 persons [10,12,20–

23]. The ratio of cases to number participants in the cohorts ranged from 16-480. The 

studies, where the number of cohort participants per case is low, are the studies of the 

association with high-prevalent cancers (i.e. breast and prostate cancer [12,21]). In 

our study, we simulated the association of dietary AA to total cancer rather than a 

specific cancer, which is rarely seen in real-life cohorts. This was chosen, as the SF is 

not estimated for any particular type of cancer. As a case-study, our simulation on 

AA and total cancer is an example of a highly prevalent type cancer or of a sub-

population with higher cancer prevalence. In our model, we simulated the probability 

of a person getting cancer within his/hers following 10 life-years from age of entry to 

estimate the prevalence of cancer cases in that time period. This is similar to a closed 

cohort, but where all participants remain for the length of the study period, which is 

most likely not feasible in real life. Further, in the real-life cohort studies, RRs are 

usually calculated on incidence rates using person years, e.g. the number of years that 

a person is “at risk” in the cohort from entry date until diagnosis, death (or exit by 

other cause) or closing of the cohort. The follow-up times in real-life cohort studies 

are therefore reported as either a mean follow-up time or as the duration of the study, 

thus not entirely comparable to the 10-year follow-up in our model. However, in the 

studies collected by Pelucchi et al. follow-up times reported range from 10 years to 

27 years, which indicate that a 10-year follow-up (and the scenario of 20-year follow-

up) both are in the range of study durations in real-life.  

One of the important arguments regarding the apparent inconclusiveness of the 

findings in observational studies of the association between dietary exposures and 

cancer is that they suffer from misclassification bias which attenuates the RR [24]. 

Epidemiological studies of the association between cancer and dietary AA is 

especially prone to misclassification. Estimating exposure of individuals is usually 

done by food frequency questionnaires (FFQ), however, the AA content of given 
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foods are highly variable both between brands of the food type and between 

preparation styles, which FFQs do not necessarily capture. Besides, people’s eating 

patterns change over the course of life (or cohort follow-up time), which neither is 

captured in a once in time FFQ. However, the advantage of simulating cohort studies 

is that we simulate “perfect knowledge” on for example the exposure i.e. a cancer 

case in the fourth quartile is actually a cancer case with that exposure. Another 

prerequisite for the design of an epidemiological study is that there are sufficient 

subjects with high exposures [18]. This is also controlled in our simulation model, 

where the number of individuals in each exposure category is equal, despite the 

cohort size.  Likewise, residual confounding is not influencing the simulation results, 

as we solely consider the probability of disease given the action of the chemical. 

Therefore, the simulation results actually yield the maximal expected chance of 

finding statistical significant result in an actually performed study, as they will 

always be influenced by misclassification, residual confounding etc.  

Our results show that the sensitivity of a prospective cohort study is limited when 

studying the association between a chemical contaminant and the risk of cancer. 

Thus, an observational study cannot prove that a contaminant do not pose a health 

risk; only inform on an upper level of the adverse effect associated with an exposure 

[25]. We argue that this should be taken into account in the weight of evidence that 

observational studies have on the classification of carcinogens, and further in the 

formulation of guidelines and interventions promoting human health. We argue that 

simulation of observational studies using probabilities of disease derived from for 

example toxicological data and a relevant exposure distribution is a useful tool to 

estimate the possible achievable RRs and the likelihood of observing a statistical 

significant RR, given the study conditions (follow-up time and cohort size), in 

advance of actually performing the study. In our view, it would be relevant to define 

a level of the acceptable probability of detecting a statistical significant RR, before it 
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is considered worth the resources to undertake an observational study. This 

acceptable probability could then be used in a simulation of the study to optimize the 

study design and/or decide whether the study should be conducted or not.  

Conclusion 

Based on our simulation model, we conclude that the sensitivity of a prospective 

cohort study on the association between acrylamide and the risk of cancer is limited. 

Our simulation model shows that when the expected potency of a chemical or risk 

factor is small compared to the risk of the disease from all other causes, the 

likelihood that an observational study will detect a statistical significant effect is very 

low. This also accounts for observational studies of very large cohorts or long follow-

up time. We argue that this should be taken into account in health policies informed 

on currently available epidemiological evidence. A simulation model of an 

observational study is not prone to bias that attenuates the relative risk, and we 

suggest that simulation of observational studies is a powerful tool to evaluate the 

sensitivity of given study design before it is conducted, both to optimize the design 

and to decide on its justification.    
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4.3 Discussion

As discussed earlier, the collected weight of evidence of a causal effect of a hazard-health

outcome pair has an influence on which health outcomes are accounted for in a disease

burden study, which in turn is a crucial determinant of the overall burden estimate. In

the risk factor studies of the GBD project [12][13], the risk-outcome pairs are chosen

by meeting the World Cancer Research Fund’s grades of convincing and probable evi-

dence [97]. In this framework, convincing evidence consists of biological explanations for

the causal effect between exposure and disease established from multiple epidemiological

studies in different populations. The collected evidence should be substantial and include

relevant prospective observational studies and randomized controlled trials (RCTs), all

showing consistent results. If the evidence is probable, the findings in epidemiological

studies should still be consistent, but the understanding of the biological explanation for

the causal effect is incomplete. Thus, the evidence for the causal effect of a risk factor, or

hazard, should mainly come from human observational studies.

In this simulation study, we find that the likelihood of detecting a statistically signif-

icant effect is small when there are many other causes for the disease. We simulate that

the background risk should be no larger than approximately 6 times the probability of

developing cancer arising from the hazard to detect a statistical significant RR with 50%

likelihood.

Not discussed in the paper is the assumption that the risk of developing cancer from

AA is additive to the risk from other factors, as given by equation 5, i.e. that each

hazard or factor causing disease is independent of each other. The opposite assumption

would be that hazards or factors causing the disease are proportional to each other, i.e.

multiplicative[98]. Different assumptions will result in different risk estimates and have

an impact on the result of the simulations of the sensitivity of the studies. Another

assumption not discussed is that we estimate the background risk by the cumulative

incidence proportion (CIP) using the incidence of cancer in Denmark of different age-

groups. Assuming that the current cancer incidence also reflects the cancer cases caused

by AA, we account for AA cancer cases twice in our simulation. We argue that when the

cancer risk from AA is negligible compared to the background risk, this will not impact

the simulation results. However, if the risk from the hazard at hand is considerably larger,
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then this would impact the likelihood of detecting a significant RR. Thus, in the scenarios

where the risk from AA is increased, this may have an impact, and if taken into account,

the cohort study would likely be more sensitive as the background risk would decrease.

The findings of our study suggests that in the case of burden of disease of foodborne

chemicals, the weight of evidence used to select health outcomes should take into account

the (lack of) sensitivity of human observational studies, especially when the background

risk of disease is likeli substantial. If relying only on the evidence from human obser-

vational studies as criteria for selection of health outcomes, i.e. as the final convincing

evidence on a causal effect, a risk of bias is systematically introduced in the disease burden

estimates for foodborne chemicals. Epidemiological evidence is not sufficient to exclude

the possibility that a chemical hazard poses a risk in a population. The evidence may

only inform on the upper level of an adverse effect associated with an exposure [99].

The preferred evidence for risk estimation of hazards is that obtained from human

observational studies. Our study suggests why this evidence is not available for many

foodborne chemicals. The disease considered apparently have a large impact on whether

convincing evidence for a causal relationship exist or not. Cancer has many causes (haz-

ards) and if each hazard is studied one by one, the rest is always more frequent and

the evidence for a causal effect is unlikely to be obtained. It will therefore be a disad-

vantage for the hazards that cause diseases that are multicausal to base the selection of

hazard-health outcome pairs on evidence obtained in human observational studies.

Lastly, if epidemiological evidence is available and used to calculate the disease burden

by counterfactual analysis (fig. 2.4, with or without a disease envelope available, the

simulation approach provides a way to inform on the likely discrepancy of the results

obtained from this top-down approach, compared to results of the bottom-up and risk

assessment approach.
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Chapter 5

Manuscript III

5.1 Prelude

In Paper 1 and Manuscript 2, we investigated how different scenarios or modelling assump-

tions may impact the magnitude of the final burden estimates. The aim of Manuscript

3 was to develop a method to account for variability in risk between individuals, and to

derive the uncertainty bounds around the relevant descriptor of the population risk given

this variability. A quantitative estimate of the uncertainty of a burden estimate is impor-

tant when comparing disease burden across hazards, especially if the methods applied and

strength of evidence to inform model parameters are not compatible. In addition, taking

the variability into account also allows for health impact estimation of different popu-

lation sub-groups, determined by different variables e.g. sex and socio-economic status.

The supporting material to the Manuscript can be found in the appendix.
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Abstract 

Background Consumption of meat prepared by barbecuing is associated with risk of 

colorectal cancer due to the formation of carcinogenic compounds including 

Benzo[a]pyrene (BaP). Assessment of a population’s burden of disease as well as an 

individual’s probability of disease given specific characteristics and consumer 

behavior may direct food safety strategies and focus available resources to where 

impact on public health is largest. The aim of this study was to estimate the disease 

burden of cancer caused by exposure to BaP from barbecued meat in Denmark in 

terms of disability adjusted life years (DALYs), as well as to estimate the probability 

of exceeding an exposure considered a health concern, given consumer behavior.  

Methods  We developed probabilistic models taking into account consumer exposure 

patterns given age and sex and the variation in individual’s sensitivity to BaP, using 

the Danish dietary consumption survey, monitoring data of chemical concentrations, 

data on consumer behavior regarding frequency of barbecuing of meat and animal 

dose response data.  

Findings We estimated 1.24x10
-6 

cancer cases per year in Denmark, resulting in a 

total disease burden of 4.32x10
-6 

DALY (95% uncertainty interval [UI], 1.70x10
-6

-

8.14x10
-6

). At the same time, we estimated that a man of low bodyweight who 

consumes barbecued meat 14 times per year over a lifetime has a 50 % probability of 

exceeding an exposure level considered a health concern.  

Interpretation Our study suggests that even at a low disease burden, individuals in a 

population may exceed levels of exposure to benzo[a]pyrene, considered a health 

concern. We propose that our model is useful as a tool to assess the disease burden of 

foodborne chemicals in subgroups of the population, thus guiding intervention 

strategies and design advice for specific consumer groups.   

Keywords: Benzo[a]pyrene, meat, probabilistic risk assessment, Burden of Disease, 

DALY, Monte Carlo simulation.   
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1. Introduction 

Based on an assessment of the available scientific literature, the International Agency 

for Research on Cancer (IARC) concluded in 2015 that consumption of processed 

meat increases the risk of cancer in humans [1]. Processing of meat refers to 

production or cooking practices in which meat has been transformed to enhance 

organoleptic properties, digestibility and preservation including smoking, curing and 

various heat treatments. The compounds that are considered responsible for the 

carcinogenicity of processed meat are formed during these processes [2]. Polycyclic 

aromatic hydrocarbons (PAHs) constitute a large group of compounds that are 

formed during incomplete combustion of organic matter. If meat is prepared over 

open flame (e.g. barbecuing), fat or meat-juice drips onto the hot coals, wood, etc., 

and PAHs, formed in the smoke, adhere to the surface of the meat [3]. Sixteen PAHs 

have been found to be genotoxic/mutagenic and/or carcinogenic in toxicological 

studies [4–6], benzo[a]pyrene (BaP) being the most studied PAH and classified as 

carcinogenic to humans (group 1) by a genotoxic mode of action [7].  

Food safety strategies aim to limit the population’s exposure to harmful substances 

present in foods, including chemicals such as PAHs. Strategies can include the 

establishment of legally enforced maximum contamination levels in certain food 

types, surveillance of contamination in industrial food-processing, and guidance to 

both industry and the consumers on how to adjust processing practices to limit 

contamination. Finally, dietary guidelines are issued to motivate the consumers to 

decrease consumption of foods containing harmful substances.  

To limit the population’s exposure to BaP and other carcinogenic PAHs from 

barbecued meats, the European Commission (EC) has implemented official 

mitigation strategies that include a legally enforced maximum limit of 5 μg/kg in 

commercial prepared heat treated meat [8], monitoring of concentration of PAH in 

meat barbecued in restaurants or other commercially settings followed by guidance 
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on how to adjust processing to decrease contamination. Furthermore, the Danish 

National food Authority advises the population to limit consumption of barbecued 

meat and if barbecuing, to avoid charred meat [9].  

Assessment of the public health impact of an intervention strategy to limit exposure 

to harmful chemical substances in food requires quantification of the associated 

disease burden. This may help direct food safety strategies and focus available 

resources on initiatives that result in the greatest increase in public health [10]. 

Likewise, assessment of the probability of disease given specific food preparation 

practices may direct food-safety strategies to those consumer-groups that are at 

higher risk due to preparation and consumption practices. Additionally, consumers, 

who are ultimately their own risk managers, will be able to make more informed 

choices on food consumption behavior by having access to information on the 

probability of a harmful effect given their food consumption patterns [11]. 

In risk assessment of chemicals, deterministic worst-case scenarios are traditionally 

performed to provide risk managers with the information to act to protect the overall 

population. These assessments typically estimate risk for an “average individual”, 

building on average consumption patterns and mean values of exposure. We argue 

that to provide evidence for risk managers to act with precision, the variability 

between consumers in a population needs to be described, and the impact that this 

variability has on public health quantified. Our objectives were to i) estimate the 

overall population burden of disease of cancer caused by exposure to BaP from 

barbecued meat in Denmark, using disability adjusted life years (DALY) as a 

common health metric, and ii) estimate the probability of developing cancer in sub-

groups of the population with different consumption patterns of barbecued-meats. To 

address these, we built probabilistic models taking into account the variation in 

consumer exposure patterns and the variation in individual’s sensitivity to the 
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chemical. The information derived may be used to assess the overall impact of 

strategies implemented to improve public health.  

2. Method and Materials  

We built two probabilistic models; i) a population-level model to estimate the burden 

of disease of cancer due to exposure to BaP through barbecued meat in terms of 

DALY, and ii) a subgroup model to estimate the probability of developing cancer 

given consumer differences in frequency of consumption of  barbecued meat. In both 

models, we applied an event-based simulation scheme for the exposure assessment 

and a model extrapolation approach for the probability of effect. Fig 1 presents an 

overview of the model structures. Both models are based on the same datasets. Below 

are first the datasets described followed by description of the two models.  

 

Fig 1. Conceptual overview of the population and subgroup models. In the population model (A) the 

frequency of consuming barbecued meat was translated into the lifetime exposure to benzo[a]pyrene and 

extrapolated to an equivalent animal exposure which was combined with a dose-response relationship to 

estimate probability of developing cancer in humans. Based on this, disability adjusted life years were 

estimated. In the subgroup model (B), the exposure corresponding to a fixed risk level was determined from 

the same dose-response relationship and extrapolated to an equivalent human exposure, which was compared 

to the lifetime exposure experienced by an individual consuming barbecued meat and fish with a given 

frequency. 
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2.1. Data 

2.1.1. Demographics data  

To generate the distribution of individual lifetime exposures to BaP from barbecued 

meat in the population model, the sex and age distribution of the Danish population 

aged 16-75 years were derived from the official statistics for the 1st quarter of 2017 

(S1 Figure) [12].  

2.1.2. Consumption data 

Both meat and fish consumption was included in the exposure assessment; however, 

for simplicity we only refer to barbecued meat. Meat consumption data were obtained 

from the Danish National Survey on Diet and Physical Activity (DANSDA) from 

2011-2013 [13], consisting of 7 day food-records from 3,804 individuals, along with 

sex, age (4-74 years old) and bodyweight for each individual. In our study we 

considered the food consumption of the adult population, i.e. from 16 years old and 

up; a total of 1,461 men and 1,572 women. Individual meat consumptions in 

DANSDA are given for 6 meals per day, but we only considered meat consumptions 

from dinner-eating occasions as we assumed that consumption of barbecued meat 

mostly occur for dinner. Each individual in the survey was assigned to a weight-class 

based on the 33
rd

 and 67
th

 quantiles of the observed bodyweights in the consumption 

survey (Table 1). For each weight-class, a distinct gamma distribution of meat 

consumption was described, informed by the consumption in g/meal of each 

individual (S1 Table). The empirical and fitted censored gamma cumulative density 

functions of each meat type are shown in Fig 2. To allocate a simulated individual to 

a weight-class, the relation between age, sex and bodyweight was evaluated based on 

the data in DANSDA. Different options for the relation were evaluated and the 

following selected:  
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weight = 𝛽1 ∗ 𝑠𝑒𝑥 + 𝛽2 ∗ ln(𝑎𝑔𝑒) + 𝛽12 ∗ 𝑠𝑒𝑥 ∗ ln (𝑎𝑔𝑒), (1) 

where 𝛽1 =  35.846, 𝛽2 = 25.835 and 𝛽12 =  −13.191 (adjusted R-squared is 0.969 

and residual standard error is 13.764). The weight of an individual was simulated 

though Eq. (1), with the variance of the error term, ε, in the regression formula 

estimated by the residual standard error. 

Table 1. Classes of bodyweight (in kg). 

Weight 

class* 

Man bodyweight in kg 

(median of weight class) 

Woman bodyweight in kg 

(median of weight class) 

Low  < 76  (71) < 62 (58) 

Medium  77 - 87 (82) 63 - 72 (67) 

High > 88 (96) > 73 (80) 

*Weight classes as defined by the 33
rd

 and 67
th
 quantiles of the bodyweight of individuals aged 16-74 in the 

consumption survey [13]. The median of each weight class is given in parentheses.   

 

Fig 2. Empirical and theoretical cumulative density functions of meat consumption for each sex and 

weight class. The marks represent each observation of consumption in g/meal of each sex in each weight 

class. The lines represent the fitted gamma distributions.  
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2.1.3. Data on combination of meats consumed 

For each barbecue event, we assumed that one individual would eat a maximum of 

two different meat types. In order to derive the frequency of type of meat consumed 

if only one meat is consumed (S2 Table) or the possible meat combinations, as well 

as the partial consumption when two meat types are consumed (S3 Table), the 

consumption data were coupled with a survey conducted by Coop Denmark A/S in 

2013 with 1,009 Danish respondents aged between 15 and 74 years [14].  

2.1.4. Data on frequency of barbecuing  

We assumed that all individuals in the Danish population who eat meat eat barbecued 

meat at least once a year. Thus, the fraction of the population never consuming 

barbecued meat is the same as that of never eating meat, which was estimated to be 

4% based on a consumer survey by Coop Denmark A/S [15]. We obtained 

information on the frequency of consuming barbecued meat from a consumer survey 

of 76 Danish households, which we translated into an annual number of consumption 

events [16]. The scenarios for barbecuing behavior that we considered for the Danish 

population were: 1) less than once per month, i.e. 1-11 times per year; 2) at least once 

per month but less than once per week, i.e. 12-51 times per year; 3) at least once per 

week, i.e. 52-365 times per year. The median value for each scenario was selected to 

represent the scenario. The fraction of the 76 families in each scenario was used to 

inform on the fraction of the Danish population in the same scenario (Table 2).  

Table 2. Frequency of events of consuming barbecued meat per year for fractions of the 

Danish population derived from consumer surveys in Denmark [15,16]. 

 Frequency of consuming barbecued meat and fish 

(events per year) 

0 9 25 63 

Fraction of population 0.04 0.265 0.455 0.24 
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2.1.5. Concentration data  

The concentration of BaP in meat after barbecuing (in µg/kg) was obtained for 407 

samples of meat (242 from Denmark obtained from Petersen et al. (2013) [17] and 

from unpublished monitoring data of commercially barbecued meat from 2012-2015; 

136 from UK [18,19]; and 29 from Sweden [20]). Eight meat and fish types were 

considered: beef (including veal), minced beef (burger patty), pork, pork sausages, 

lamb, poultry (mainly chicken), fish (mainly salmon) and shellfish. The concentration 

data from each country were combined for each food type, assuming that the data 

then reflects the variation in concentration of BaP under different conditions. Values 

for many samples were below the limit of detection (LOD) of the analytical method 

applied. After barbecuing all foods will be contaminated with BaP [21]. Therefore, 

apparent zeros were not regarded as “true zeros”, but rather as an expression of a low 

level of contamination between 0 µg/kg and the LOD. The BaP concentrations for 

each food type was consequently censored and described by a log-normal distribution 

(Fig 3) (S4 Table).  

2.1.6. Dose-response data 

To derive the relationship between exposure to BaP and the risk of developing 

cancer, we used data on tumor formation in mice orally exposed to either of two coal 

tar mixtures [22]. The BaP content measured in the coal tar mixtures [23] was used as 

the dose. The number of all tumor bearing animals (TBA) was used as response 

variable (S5 Table). Hence, we assumed that the composition of the PAH mixture 

present in barbecued meat is similar to the composition of PAH in the coal tar 

mixture, and subsequently that BaP is a surrogate for the total potency of all PAHs 

present in the coal tar mixtures.  We performed dose-response modelling on the data 

using PROAST version 60.1 [24] developed in R [25]. A set of models were fitted to 
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the data and their fit was accepted based on the log-likelihoods using the likelihood 

ratio test. 

 

Fig 3. Empirical and theoretical cumulative density functions for concentration of Benzo[a]pyrene in 

each meat type. The black dots in each graph represent the censored concentration of benzo[a]pyrene (in 

µg/kg) of each sample of each meat type. The red lines represent the log normal distributions fitted to the 

censored concentrations.  

We chose the most sensitive model to estimate the extra lifetime risk associated with 

the lifetime exposure to BaP, i.e. the model yielding the lowest BMDL10 (the dose 
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associated with the lower limit of the 95% confidence interval around the dose at 

which 10% of the study animals get a tumor), which was the two-stage model (Fig 4):  

𝐸𝑅𝐵𝑎𝑃 = 1 − (𝑒
−(

𝑒𝑥𝑝𝑎𝑛𝑖𝑚𝑎𝑙
𝑏

)−𝑐(
𝑒𝑥𝑝𝑎𝑛𝑖𝑚𝑎𝑙

𝑏
)

2

)   (2), 

where ERBaP is the extra lifetime risk of cancer due to BaP, expBaP is the animal 

exposure,  b is the potency parameter and c is the shape parameter (Table 3). The 

values of b and c were obtained and the uncertainty in b and c was propagated by 

bootstrapping with replacement 1,000 samples in PROAST. In Fig 4, the two stage 

model is fitted including the background parameter, a, representing the fraction of 

animals with tumor in the control group. To estimate the extra lifetime risk of cancer 

from equation 2, the background fraction is omitted.  

 
Fig 4. Dose response model. The two stage model fitted in PROAST [24] to the fraction of tumor 

bearing animals (TBA) per dose group [22,23] to obtain the relation between dose of 

benzo[a]pyrene (ug/kgbw/year)  and the extra lifetime risk of cancer (ERBaP). The graph shown is 

fitted with the background parameter representing the fraction of animals with tumors in the control 

group.    
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2.1.7. Extrapolation factors 

We used probability distributions to extrapolate between human and animal, i.e.  

taking the interspecies- and intra species difference between animals and humans into 

account. The interspecies difference relates to the toxicodynamic and toxicokinetic 

difference between the experimental animal and the average human, which is 

uncertain. The interspecies difference is performed in two steps; 1) allometric scaling 

to account for differences in bodysize (EFinter,allometric) by:  

  𝐸𝐹inter,allometric = (
bodyweighthuman

bodyweightanimal
)1−𝐴𝑃  (3),  

where AP is the allometric power, which is uncertain; and 2) an extrapolation factor 

(EFinter,TKTD) to account for the remaining uncertainty in interspecies difference. The 

intraspecies extrapolation factor (EFintra) accounts for the variation in sensitivity to the 

chemical between individuals. Due to lack of substance specific estimates, default 

probability distributions for AP, EFinter,TKTD and EFintra was applied [26] (table 3). 

Table 3. Model parameters and distributional assumptions for the two stage dose response model and 

extrapolation factors. 

 Description Unit Distributional  

assumption 

Distribution 

parameters 

Value if 

point 

estimate 

AP
1 Uncertainty in the 

allometric power 

 
Normal(µ,σ) µ = 0.7 σ = 0.033 0.7

2 

EFinter,TKTD
1 

Uncertainty in TKTD 

difference between 

human and animal 

 

Lognormal(GM,GSD) GM =1 GSD=2 1.27
3 

EFintra
1 

Variation in  

sensitivity to the 

chemical between 

individuals  

 

Lognormal(GM,GSD) GM =1 GSD =3.6  

GSDEFintra
1 Uncertainty in the 

GSD of EFintra 

 
Chi-squared(df) df = 21   

bwhuman Human bodyweight kg    70 

bwanimal Animal bodyweight kg  
  

0.03 

b 
Potency parameter of 

the two stage model 

 
Bootstrapped 

  
848500 

c 
Shape parameter of 

the two stage model 

 
Bootstrapped   8.299 
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1
Default distributions used, when no chemical specific information is available [26]. 

 

2
Mean of the AP normal distribution

 

3
Mean of the EFinter,TKTD

 
lognormal distribution

 

2.1.8. Data for DALY calculation  

To estimate DALYs, we developed a disease model consisting of 4 stages of cancer 

[27,28] and used data on the duration and DWs of each cancer state, mortality 

estimates, and the life expectancy in the population (Table 4). The Danish population 

in 2015 of individuals above the age of 15 was 4,697,060. We used the life table of 

the WHO frontier life expectancy [29] 

Table 4. Parameters for DALY calculation for non-specific cancer.  

Cancer 

stages
1 

Age of 

diagnosis 

(years) 

DW
3 

Mortality
4 Treatment 

proportion
5 

Duration 

(years)
6 

Age at 

death 

 
mean min max 

    
Diagnosis and 

primary care 
67.38

2 
0.288 0.193 0.339 

 
1 1 

 

In remission 68.38 
 

0.18 0.47 
 

1 5 
 

Disseminated 

carcinoma 
73.38 0.451 0.307 0.6 

 
1 1 

 

Terminal 

phase 
74.38 0.54 0.377 0.687 0.385 1 0.083 74.46 

1
Cancer disease stages accounted for in the DALY calculation adapted from [30] and [28]. 

2
Age of diagnosis calculated as the weighted average of number of new cancer cases in 2015 per age group 

in Denmark (http://esundhed.dk/sundhedsregistre/CAR/Sider/Cancerregisteret.aspx). Age of onset of the 

other cancer stages is derived by adding the duration of each cancer stage the age of onset of diagnosis.  
3
DW: Disability weights for each disease stage obtained from [10] except for “In remission” which is 

obtained from [30].  
4
 Mortality expressed as 1 – the 5 year age-standardized survival rate for 2010-2014 [31] 

5
Assumed that all cancer cases and associated disease stages in Denmark are treated.  

6 
Duration of disease stages are assumed to represent the mean duration of each disease stage adapted from 

Mathers et al. (1998) [30]. 

2.2. Population model  

To estimate the disease burden we applied a model consisting of 3 components: an 

exposure, a health-outcome and a DALY-module [32]. In the exposure module, we 

estimated the lifetime exposure to BaP through barbecued meat, taking into account 

the variation in the consumer behavior and in the concentration of BaP in meat. The 
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estimated exposure distribution was integrated with the dose-response model to 

estimate the probability of disease (health-outcome module). In the third module, 

DALY was calculated using the probability of disease, health statistics and disability 

weights. A more detailed description of each module is given below. 

2.2.1. Exposure module 

We estimated the yearly BaP exposure through simulation of barbecue events per 

individual within the population by: 

𝑦𝑖 =  
1

𝑤𝑖
∑ ∑ 𝑥𝑖𝑘

𝑏 𝐶𝑘
𝐾𝑏
𝑘=1

𝐵
𝑏=1    (4), 

 

where 𝑦𝑖  is the yearly exposure to BaP of individual i, 𝑏 is a BBQ event with values 

in {1, …, 𝐵} and 𝐵 is the total number of BBQ events per year; 𝐾𝑏 is the total number 

of meats consumed for a BBQ event b; 𝑥𝑖𝑘
𝑏  is the amount of meat k consumed by 

individual i at event b; 𝐶𝑘 is the concentration of BaP in meat k and 𝑤𝑖 is the 

bodyweight of individual i. To simulate the Danish population, we generated the sex 

and age of individuals from the demographics data (S1 Figure). The bodyweight of 

the individuals was estimated through the regression model (equation 1) and the 

individuals were assigned to a weight class (Table 1). For each individual, a number 

of barbecue events among the possible scenarios was simulated (Table 2). For each 

barbecue event the consumed meat types and their partial consumption (S2 Table and 

S3 Table) were simulated independently of the individual’s weight class, while the 

total meat consumption was generated from the gamma distribution (Fig 2, S1 Table) 

defined for the weight class of the individual. The BaP concentration was randomly 

sampled from the log-normal distribution of the consumed meat types (Fig 3, S4 

Table). We simulated the exposure of 10,000 individuals to make up the population 

exposure distribution. Simulations were performed in R [25] (for simulation details 

see supporting material section 3.1.). 
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2.2.2. Health outcome module 

Because the carcinogenicity studies in animals showed a wide variety of tumor sites, 

we chose total cancer as the health outcome associated with exposure to BaP [22,33]. 

To derive the probability of developing cancer over a lifetime due to exposure to BaP 

through barbecued meat, we applied the model extrapolation approach based on the 

integrated probabilistic risk assessment (IPRA) methodology for carcinogens 

proposed by Slob et al. (2011, 2014) [26,34]. In this approach, the human exposure 𝑦𝑖  

is extrapolated to an equivalent animal exposure by:  

𝑒𝑥𝑝i,animal =  𝑦𝑖 × 𝐸𝐹inter,allometric × 𝐸𝐹inter,TKTD × 𝐸𝐹intra   (5), 

where 𝑒𝑥𝑝i,animal is the animal exposure. To simulate the distribution of animal 

exposure corresponding to the distribution of human exposure, we generated a value 

from the human exposure distribution and multiplied it with a random value from 

each of the probability distributions describing the extrapolation factors (Table 3). 

We then generated a random value from the resulting animal exposure distribution 

and combined it with the two stage model (equation 2) to derive the distribution of 

lifetime risk of cancer from BaP, ERBaP, in the Danish population. As the human 

exposure distribution and 𝐸𝐹intra represent variability but 𝐸𝐹inter,allometric, 𝐸𝐹inter,TKTD 

and two stage model parameters, b and c represent uncertainty, two dimensional 

Monte Carlo simulation was performed using the mc2d package in R [35], to separate 

variability from uncertainty. We simulated with 10,000 iterations in the variability 

domain and 1000 iterations in the uncertainty domain (for simulation details see 

supporting material section 3.2.2.). 

2.2.3. DALY module 

DALYs are the healthy life years lost in a defined population calculated by adding 

the number of years lived with disability (YLD) and the number of years lost due to 
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premature death (YLL), i.e. DALY = YLD + YLL. We express DALYs on an annual 

basis, but express the disease burden that the incident cases in a given year will bear 

into the future [36,37]. Therefore, we calculated the annual incidence of BaP-

associated cancer, by dividing the mean of the population distribution of lifetime risk 

of cancer, ERBaP with 92, which is the projected frontier life expectancy at birth for 

the year 2050for both males and females [29]. We applied a probabilistic model to 

propagate the uncertainty in the parameters, using the DALY Calculator interface 

developed in R [38], adapting data from the Global Burden of Disease study, national 

statistics and literature (Table 4). 

 

2.3. Subgroup model  

In the subgroup model, we reversed the population model and estimated the lifetime 

exposure to BaP from barbecued meat that corresponds to a risk level considered 

acceptable, i.e. the “virtually safe dose” (vsd). As risk level, we chose 1 cancer case 

out of million (10
-6

) in a lifetime, which by international organizations is considered 

the maximum acceptable extra lifetime cancer risk from a specified exposure [5]. We 

specified the exposure as the lifetime exposure to BaP from barbecued meat. The 

outcome of the model was an estimate of an individual’s probability of exceeding the 

virtual safe dose, if barbecuing with a given yearly frequency over a lifetime.  

Uncertainty in the parameters was excluded for practical reasons.  

2.3.1. Exposure module 

The lifetime exposure of a “typical” individual of each weight class was simulated by 

the event-based approach (equation 4), but where B is the total number of barbecue 

events in a year but summed over a lifetime of 60 years. For a “typical” individual of 

each weight class, we simulated the lifetime exposure if barbecuing from 1 to 365 

times per year (i.e. 60 – 21,900 times over a lifetime). The median bodyweight of 
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each weight class (Table 2) was used to represent the body weight of the individual. 

For a given weight class and each barbecue event, the total meat consumption of the 

individual was generated from the appropriate Gamma distribution (Fig 2), along 

with the consumed meat types and their partial consumption. The BaP exposure was 

calculated after having sampled the BaP concentration from the appropriate log-

normal distribution (Fig 3). The lifetime exposure was simulated for 1,000 

individuals of each weight class and B from 60 – 21,900 (for simulation details see 

supporting material section 4.1.).  

2.3.2. Health outcome module 

We estimated the animal exposure corresponding to a 10
-6 

risk, using the two stage 

dose response model also applied in the population model (equation 2), but solved for 

expanimal:  

expanimal  =  √(
𝑏2

4𝑐2) − (
𝑏2

𝑐
) × log(1 − ERBaP)   −  

𝑏

2𝑐
  (6),  

where ERBaP is 10
-6

. The model parameters, b and c were represented by point 

estimates (table 3). We then extrapolated expanimal to an equivalent human exposure, 

the vsd, by: 

vsd =  
𝑒𝑥𝑝animal

(𝐸𝐹intra ∙ 𝐸𝐹inter,allometric ∙ 𝐸𝐹inter,TKTD)
   (7), 

where EFinter,allometric and EFinter,TKTD are point estimates representing the uncertainty, 

and EFintra the distribution representing variation (Table 3). Thus, the resulting 

distribution of vsd reflects the variation of equipotent doses in the human population. 

For each of the simulated individuals in the exposure module, a random value from 

the distribution of vsd was sampled and compared with the individual’s exposure 

from barbecuing at a given frequency. The probability of exceeding the virtual safe 
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dose was estimated based on fraction of the 1000 individuals exceeding the vsd (for 

simulation details see supporting material section 4.2.).  

3. Results 

3.1. Population model 

The estimated yearly exposure to BaP though consumption of barbecued meat in the 

Danish population varied substantially between individuals, with a median of 0.065 

μg/kg bodyweight per year, and 95
th

 percentile of 0.47 μg/kg bodyweight (Fig 5). The 

best estimate of the mean lifetime risk of cancer from BaP in barbecued meat, ERBaP, 

in the Danish population lies within a 95% uncertainty interval of 1.39x10
-5

 to 

3.93x10
-4  

with a median of 6.91x10
-5 

(Table 5).  

 

Fig 5. Population exposure to benzo[a]pyrene (in μg per kg bodyweight) from barbecued meat in 

Denmark. These exposure estimates result from the event-based simulation scheme modelling the yearly 

exposure to BaP through meat consumed at barbecue events.  
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Table 5. Population lifetime risk of cancer from benzo[a]pyrene in barbecued meat.   

Uncertainty  Mean lifetime risk  Median lifetime risk  

median 6.91x10
-05 

1.08x10
-05 

mean  1.06x10
-04

 1.55x10
-05

 

2.50% 1.39x10
-05

 2.39x10
-06

 

97.50% 3.93x10
-04

 5.61x10
-05

 

Estimates of the mean and median lifetime of cancer in the population presented by the descriptors of the 

uncertainty distributions: median, mean and 95% uncertainty interval.  

The estimated mean annual incidence of cancer cases in Denmark caused by BaP 

exposure from barbecued meat was 1.24x10
-6

, and the disease burden that these cases 

cause was estimated to be 4.32x10
-6 DALY (Table 6). On average, each cancer case 

causes 3.49 DALY. 44% of DALYs are life lost due to premature death (YLL), while 

56 % are years lived with disease (YLD). The 95% confidence interval describes the 

uncertainty expressed in the extrapolation factors, EFintra, EFinter,allometric, and 

EFinter,TKTD, the parameters of the two stage model, b and c, and in parameters used to 

calculate DALY.   

Table 6. Burden of disease of cancer in Denmark due to benzo[a]pyrene exposure from barbecuing of 

meat.  

 Mean 95% CI 

Annual Cases
1
  1.24x10

-06
 2.59x10

-07
-2.76x10

-06
 

Annual Cases per 100,000 2.27x10
-08

 4.74x10
-09

-
 
5.05x10

-08
 

DALY 4.32x10
-06

 1.70x10
-06

-8.14x10
-06

 

DALY per 100,000 9.91x10
-08

 3.11x10
-08

-1.49x10
-07

 

DALY per case
2 

3.49  

YLL  1.88x10
-06

 3.95x10
-07

-4.26x10
-06

 

YLD 2.44x10
-06

 7.25x10
-07

-5.64x10
-06

 

Annual number of cases of cancer and disability adjusted life years (DALY), years of lost life (YLL) and 

years lived with disability (YLD) caused by benzo[a]pyrene from barbecued meat in Denmark.  
1
Annual cases reported are the number of cases of diagnosis and primary care (i.e. the first cancer stage in 

the disease outcome tree of cancer).  
2
Annual cases used to calculate the DALY per case are the number of cases of diagnosis and primary care 
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(i.e. the first cancer stage in the disease outcome tree of cancer).    

 

3.2. Subgroup model 

The lifetime exposure to BaP from barbecued meat depending on a yearly frequency 

of barbecuing maintained for a lifetime, varied between sexes and weight classes (Fig 

6). Both men and women of low bodyweight have a higher lifetime exposure for the 

same barbecue frequency than individuals of medium and high bodyweight. This is 

due to a higher consumption of meat per kg bodyweight by the individuals of low 

bodyweight.  
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Fig 6. Relation between lifetime exposure, barbecue events per year and risk of cancer. The lifetime 

exposure to benzo[a]pyrene as a function of number of barbecue events per year over a 60 year lifetime 

given for each sex (A: men, B: women) and bodyweight classes: low = red dot, medium = blue triangle,  and 

high =  purple diamonds.  The lower horizontal line represents the median of the distribution of virtual safe 

doses, i.e. the lifetime exposure corresponding to lifetime extra risk of 10
-6

, and the upper horizontal line 

represents the median lifetime exposure corresponding to an extra risk of 10
-5

 (distribution not shown).  

 
Fig 7. Distribution of virtual doses in the population in (ng/kg bw/lifetime). The distribution reflects the 

variation, due to differences in the sensitivity to BaP,  in the lifetime exposure of individuals in the 

population corresponding to the same lifetime risk, i.e. 10
-6

. 

The distribution of vsd, i.e. the individual lifetime exposures in ng per kg bodyweight 

corresponding to a 1 in a million risk is shown in Figure 7. The annual frequency of 

consuming barbecued meat needed to reach the vsd, i.e. the lower horizontal line in 

Fig 6 represented by the median of the distribution in Fig 7, is 15 and 17 for low 

bodyweight men and women, respectively (147 and 169, respectively for a 10
-5 

risk).  

For both sexes and all weight groups, one event of consuming barbecued meat per 

year over a lifetime of 60 years, is associated with the probability to exceed the vsd, 

i.e. 10
-6 

risk (Fig 8). However, women and men of low bodyweight have a higher 

probability at lower consumption frequencies compared to the medium and high 
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weight classes. To exceed the vsd with 100% likelihood, an annual frequency of more 

than 100 events over a lifetime is required.  

 

Fig 8. Cumulative probability of exceeding a lifetime exposure corresponding to a fixed lifetime risks 

per number of barbecue events per year over a lifetime. 

In Table 7, the annual number of barbecue events for a 50% likelihood of exceeding 

the l0
-6 

lifetime cancer risk is presented, for each sex and weight class. 

Table 7. Number of barbecue events needed for a 50% probability of exceeding an exposure 

corresponding to a cancer lifetime risk of 10
-6

, i.e. the virtual safe dose.   

 Men Women 

Low 14 18 

Medium 16 20 

High 17 20 
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4. Discussion 

We estimated that the disease burden caused by BaP in barbecued meat in the Danish 

population is low, even considering the large uncertainty interval. This means that the 

health gains at the population level of removing the exposure to BaP from barbecued 

meat and fish are negligible. However, our study also shows that the probability of 

exceeding an exposure considered a health concern might be high for consumers that 

barbecue frequently. 

To our knowledge, this study is the first to present the disease burden due to BaP in 

barbecued meat. Several exposure and risk assessments of BaP in barbecued meat 

have been performed, amongst which two Scandinavian studies estimated the yearly 

exposure to BaP from barbecued meat to be 6.25 ng/kg bodyweight [21] and 2664.5 

ng/kg bw/year [39]. These assessments were assuming frequencies of 10 and 30 

barbecue events per year, respectively. The high estimate is a worst case estimate; 

besides from assuming 30 barbecue-events per year, the authors also considered the 

highest concentrations of BaP found in barbecued meat. We estimated a mean 

population exposure of 65 ng/kg bodyweight per year, which is comparable to a 

Middle-Eastern study, which considered also other foods than meat and fish and 

estimated an exposure of 42 ng/kg bodyweight per year [40].  Each of the three 

studies reported lifetime cancer risks associated to the exposure of less than 10
-6

, 

7.3x10
-6

 and 9.3x10
-7

, respectively. These were all deterministic assessments, and the 

different assumptions applied in the studies’ lead to the relatively large variation in 

both the exposure and risk assessments. We applied a probabilistic approach, i.e. an 

event-based simulation scheme for the exposure estimation combined with a model 

extrapolation approach for the hazard characterization adapted from IPRA for 

carcinogens [26,34]. Our model takes into account the variation in the exposure and 

sensitivity to BaP in the population, and quantifies the uncertainties associated with 

the hazard characterization and the parameters for calculating DALYs. This 
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quantification of uncertainties is an important strength of this approach, since it 

enables transparent comparisons between the disease burden across hazards [41]. 

Besides, cancer risk is assumed to vary between individuals, both as a result of 

different exposure levels and different sensitivity to a chemical, so quantitatively 

describing this variation allows for the estimation of the fraction of a (sub)population 

that is subject to a specific risk level [34]. In our study, we applied this to estimate the 

probability that an individual in a specific subgroup (defined by sex and weight) by a 

given frequency of barbequing will exceed a lifetime risk of cancer of 10
-6

.  

Other disease burden studies for foodborne chemicals have been conducted in 

Denmark or at regional and global level. For example, exposure to acrylamide (also a 

process contaminant) through French fries/fried potatoes is estimated to cause a 

disease burden of 0.09 DALY/100,000 inhabitants in Denmark [32]; in same order of 

magnitude, inorganic arsenic in rice was estimated to cause a disease burden of 0.09 

DALY/100,000 in the WHO GEMS cluster that Denmark belongs to [42]. Both 

estimates are the lower bounds, i.e. least conservative estimates, but still considerably 

larger than the upper bound of our 95% uncertainty interval of 1.49x10
-7 

DALY per 

100,000.  

Due to lack of data, several assumptions were made, which may influence the 

representativeness of the input distributions, but are not translated into a quantitative 

estimate of uncertainty. All assumptions are listed in Table 8, as is the potential 

impact these assumption may have on the estimations.  

Besides the listed assumptions, our study suffered from various limitations. An 

important limitation of the population study is the data used to inform on the 

barbecue frequency in the Danish population. This data is only based on information 

from 76 families and is likely not representative of the total Danish population. For 

comparison, a Norwegian survey on barbecue behavior including 1,003 participants 
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reported 26% barbecuing > 17 times/year, 34% barbecuing 6-17 times/year and 27% 

barbecuing < 6 times per year [39]. If we assume that Danes behave similar to 

Norwegians, our data seem to overestimate the barbecuing frequency. However, this 

will not change the conclusion that the disease burden attributed barbecued meat is 

low.  

Table 8. List of assumptions and potential impact on the estimates. 

Data source Assumption Potential impact on final 

estimates 

Reference 

Concentration 

data 

[BaP] is independent on the weight of 

meat consumed. However, high weight 

of meat eaten = long barbecue time = 

high [BaP]  

Likely underestimation of 

[BaP] in large portion sizes  

 

[BaP] is independent on the fat content. 

However, high fat content = high [BaP]  

Likely underestimation of 

[BaP] in fatty meats [16,18,20] 

Type of and distance to heating source 

affect the [BaP], but is unknown. 

Unknown if leading to 

under- or overestimation 

of [BaP] 
[16,18,20] 

Consumption 

data 

People eat the same amount of meat 

when barbecuing compared to a non-

barbecue eating occasion.  

Likely underestimation of 

the meat consumption [14] 

Dose-response 

data 

The total potency of the cumulative 

effect of all PAHs in the coal-tar 

mixtures is the same as for BaP 

Likely overestimation of 

the potency of BaP [23] 

Two stage model describe the dose 

response relationship 

Likely overestimation in 

lifetime cancer risk and 

exposure associated with a 

10
-6 

risk   

 

DALY 

parameters 

Cancer survivors live without disability  Likely underestimation of 

DALYs 
[28] 

List of assumptions made along the assessment together with their potential impact on the various input 

parameters and final estimates.  

Another important limitation is the lack of information on the dose dependence of the 

age of onset of disease, i.e. the higher exposure of an individual, the earlier onset of 

disease [43]. In the DALY module of the population model we assume that the 

weighted average of the age of diagnosis of cancer is representative of the onset of 

disease of the cancer cases caused by exposure to BaP from barbecued meat. This 

leads to an underestimation of the DALY from the contribution from YLL.  
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Our models suffered from the challenge of combining data from a vast range of 

sources. This inflicts inconsistency e.g. in the categorization of meat types consumed 

and meat types sampled for BaP content. Also, this combination of datasets adds to 

the overall uncertainty of the final estimates. 

We only considered BaP in this study. However other carcinogenic PAHs are formed 

during barbecuing, together with other carcinogenic compounds, and thus the disease 

burden due to consumption of barbecued meat is likely higher and the frequency of 

barbecuing to reach a level of health concern likely lower than estimated in our study. 

Likewise, we did not consider BaP (or other PAH) exposures from other sources, 

neither other foods nor the environment. If an acceptable lifetime risk of 1 in a 

million is referring to the aggregate BaP exposure from all sources, it would highly 

impact our conclusion on the number of barbecue-events per subgroup needed to 

reach an exposure considered a health concern.      

It is important to highlight that our results do not suggest that PAHs are not a health 

concern. The main sources of BaP and other PAHs from foods in Denmark are 

cereals, vegetables and milk; the mean exposure from all food sources is 1,413.1 

ng/kg bodyweight per year, assuming a 70 kg bodyweight [17]. Smoking and air 

pollution [44] are other major sources of BaP exposure. If individuals in the 

subgroups considered in this study are high consumers of the most predominant food 

sources, smokers or highly exposed to air pollution, this would have a significant 

impact on the frequency of barbecuing “allowed” (though, it may also imply that the 

BaP exposure from barbecued meat is of little importance compared to other 

sources). In quantitative risk assessments of genotoxic carcinogens, the interpretation 

of the accepted risk level of 10
-6

 is often based on exposure to the chemical from 

single or small groups of food types, simply due to practical reasons. When referring 

to a determined risk level, the exposure assumption should be specified [5]. However, 

an assessment of the aggregate exposure to BaP from other food sources in the 
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defined subgroups via our proposed event-based simulation approach would greatly 

improve our study.   

The low disease burden to BaP from barbecued meat that this study suggests does not 

give support to the efforts put into mitigation of exposure by food authorities, even if 

the concentration of BaP in some meats exceeds the maximum limit (Fig 3). 

However, there are several reasons why we are cautious to suggest a change in policy 

priorities. First of all, our study shows that some individuals may experience 

exposures that exceed a level of health concern. Secondly, health risk perception in 

the population and risk management go hand in hand. The food authorities cannot 

disregard substances of potential health concern, even though the population burden 

is low, as this could compromise consumer trust [45–47].  

To our knowledge, no other study has attempted to estimate the probability of 

exceeding a lifetime exposure considered a health concern given different food 

consumption and preparation behavior, as well as individual’s susceptibility to the 

effect of an agent. We argue that this information is very useful for consumers that 

can identify themselves in one of our defined subgroups (on the basis of sex, weight 

and consumer behavior) and derive the likelihood of being at risk. Best practice for 

an effective risk communication includes customizing the communication to specific 

consumer groups taking into account their current behaviors [11,48]. To advise 

people to limit barbecuing, as is the practice in e.g. Denmark, does not take into 

account the current behavior of the recipient of the advice. Our approach can be 

applied to assess the disease burden and risk of other chemical hazards in foods. It 

allows for individuals to compare and assess their current behavior (in this case 

barbecuing) and the associated probability of an adverse health effect. Furthermore, 

in this study we defined subgroups according to sex and bodyweight, determining the 

amount meat consumed at barbecue events. However, this approach can be adapted to 
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define subgroups based on other characteristics (e.g. socio-economics status, 

genetics, etc.) in which mitigation strategies can be more effective to prevent disease.  

5. Conclusion 

We show that the disease burden due to exposure to BaP through barbecued meat is 

Denmark is low. Nevertheless, we also show that the probability of exceeding an 

exposure considered a health concern is high for certain consumer groups for a 

relatively low annual frequency of consuming barbecued meat. The model suffered 

from lack of data, especially informing on the frequency of consumption of 

barbecued meat. However, the developed stochastic model allows for identifying 

consumer groups who contribute the most to the disease burden. This model can be 

applied to estimate the health impact of other chemical contaminants in food, and 

derived information is valuable to direct mitigation strategies to improve public 

health.  
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5.3 Discussion

The first objective of the study was to estimate the disease burden taking into account

the variability in the exposure and sensitivity between individuals to the chemical, and

to express the uncertainty in the final DALY estimates.

We applied, like in Paper 1, a risk assessment approach to estimate DALYs; however, in

this study we applied the integrated probabilistic risk assessment approach for carcinogens

as a proof of concept for its utility in the study of burden of disease of foodborne chemicals.

We developed a stochastic model to estimate the population exposure to BaP from

consumption of barbecued meat and fish. The resulting distribution reflects the variation

in exposure in the Danish population, as it was derived from probability distributions

describing the variation in the amount meat consumed and concentration of BaP in the

meats. The number of barbecue events per year were simulated from frequency scenarios,

as was the type and combinations of meat consumed at an event. At this stage, the

uncertainty in the probability distributions of amount meat and chemical concentration

was not accounted for, neither was the uncertainty in the frequency scenarios despite the

fact that the quality of the data from which they were derived is questionable.

We focused on assessing the uncertainty in the factors used to extrapolate the human

exposure distribution to an equivalent animal exposure distribution, which was propagated

to the final DALY estimate. As mentioned, in a risk assessment context these extrap-

olation factors are applied to protect the human population when establishing HBGVs.

In the context of disease burden, we apply the factors to express the actual interspecies

difference between animals and humans. As this knowledge is uncertain, the distributions

applied reflect the range and probability of the plausible values that may describe the

species differences in sensitivity to a chemical.

As mice were used in the carcinogenicity study of BaP, the allometric scaling was between

an animal bodyweight of 30 g and a human bodyweight of 70 kg. The 5th and 95th per-

centile of the distribution of the true (but uncertain) scaling factor was 6.43 aand 15.64,

respectively. For the other EFs, we applied the generic distributions [63][64] (table 2.2).

In Paper 1, we used a linear extrapolation, i.e. a worst case scenario approach, to

derive probability of cancer at human relevant doses. Estimation of the risk at human

relevant doses is a major source of uncertainty, and the linear extrapolation method does
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not allow for quantification of uncertainty [75][76]. In Manuscript 3, we applied a model

extrapolation approach adapted from the IPRA methodology for carcinogens to estimate

the uncertainty in the fitted dose response curve at low doses. The uncertainty was propa-

gated by expressing the parameter uncertainty of the selected model. In the dose response

modelling, several models were accepted to fit the animal data. We chose the most sensi-

tive model; the two stage model. However, a preferable approach would be to take model

uncertainty into account. This was not done due to time constrains, but it would improve

the study to include the model uncertainty. The uncertainty of the potency parameter, b,

i.e. the shift of the dose response curve along the x-axis, is the second largest contributor

to the uncertainty of the mean population risk. Including the model uncertainty would

likely increase the range of uncertainty of the potency of the chemical.

In the DALY module, we propagated the uncertainty in the incidence (derived from

the health outcome module), disability weights and mortality. The other parameters was

kept as point estimates. In the DALY calculator, the indicators of interest (i.e. number

of cases, DALY, YLL and YLD) are calculated per disease stage [100]. The number of

cases per disease stage do not intuitively make sense, as a cancer patient do not count

as a new case when going through each disease stage. However, the DALY of each dis-

ease stage represent the total burden that each cancer patient carries. Therefore, when

reporting the number of DALY per case, we divided the total DALY with the number of

cases diagnosed with cancer. For comparison, the approach to calculate DALYs is similar

to the direct approach in Paper 1.

Compared to the deterministic approach applied in Paper 1, the benefit of applying the

IPRA methodology to carcinogens is that the uncertainty in the estimated incidence of

cancer due to exposure to the chemicals is quantified and thus can be taken into account

in the DALY module. Even though we did not carry out a full IPRA as the uncertainty in

the exposure estimation and dose-response model was not quantified, we argue that this

approach is valuable to inform on the uncertainty originating from the health outcome

module of the DALY estimate. An uncertainty analysis inform on how much each quan-

tified uncertainty distribution contribute to the overall credibility interval of the DALY

estimate. Unfortunately, the information on the contribution of uncertainty distribution

applied prior to the DALY calculation can not, at the moment, be carried along in the
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DALY calculator. The uncertainty propagated from each module of the calculation is

valuable information, both to direct further initiatives to improve the estimation, but

also to make apparent to e.g. risk managers which components of the analysis are the

most important limitations to the credibility of the final disease burden estimate.

Notwithstanding the limitations stated above and considering that the upper bound of

the 95% confidence interval might be higher, the disease burden of BaP in barbecued meat

is low compared to other estimated disease burdens of foodborne chemicals (e.g. Paper

1 and Gibb et al. (2016) [16]), and indeed burden of foodborne pathogens and parasites

[1]. With a burden this low, it can be argued that any resources spent on BaP in meat

could be better spent to increase public health elsewhere. It can be speculated that the

disease burden is low because the present mitigation strategies are effective in ensuring

low concentrations in the foods consumed. However, the probability distributions from

which the concentrations are sampled, allows for sampling at concentrations higher than

the maximum concentration limits, and yet the disease burden is low.

Our stochastic exposure model allows for estimating the contribution of each of the

stratified subgroups to the overall disease burden. We did not perform these calcula-

tions for the manuscript, since the overall disease burden was very low and the estimation

seemed redundant. Besides, each subgroup was characterized by sex, age and bodyweight,

which in turn determined the distributions of amount meat consumed per event, but the

difference between the distributions of meat consumption of each subgroup was not con-

siderable. However, to proof the concept, case studies should be investigated where other

variables, beside age, sex and bodyweight, could be determinants for the consumption of

given food types that are vehicles for exposure to harmful chemicals. The identification

of variables should be used to inform on whom in the population carry the disease burden

and thus direct mitigation strategies.

Finally, manuscript 3 illustrates the schism between disease burden studies and the

purpose of toxicological risk assessments. Benzo[a]pyrene is a human carcinogen by a

genotoxic mode of action and thus the ALARA principle is of relevance [48]. For regu-

latory purposes this is not practical and therefore either the MOE of 10000 or above or

a risk level of considered ”acceptable”, i.e. 1 cancer case out of 1 million, are used to

evaluate whether an exposure is constituting a health risk higher than accepted. In the

population model we estimated a mean lifetime risk higher than the ”accepted” lifetime
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risk of 1 out of a million cases. And indeed, the subgroup model shows that it is probable

that individuals consuming barbecued meat 1 time per year over a lifetime exceed an

exposure considered a health concern. In the discussion in the manuscript we consider,

why, despite the low disease burden, it is not necessarily straight forward to abolish miti-

gation strategies to reduce exposure to BaP in barbecued meat and fish. Rather, we argue

how the stochastic exposure model allows for informing the individual consumers on how

a change in behaviour may adjust the individual’s probability of exceeding an exposure

considered of health concern.

In summary; the IPRA methodolgy allows for propagating the variability influencing

the population risk as well as the uncertainty around the indicators of interest. This is

valuable for two reasons: 1) propagation of the uncertainty can direct future research

to improve the credibility of the final DALY estimate, but also valuable in order to

make the limitations in the knowledge of the true values and models applied in each

module transparent for the potential user of the burden estimate. 2) taking variability

into account in the stochastic exposure model allows for identifying how disease burden

to foodborne chemicals is distributed in subgroups of the population, thus providing

evidence for targeting mitigation strategies to the groups that attribute the most to the

burden. Finally, the manuscript highlights the schism between the purpose of disease

burden studies and toxicological risk assessment. However, even if the disease burden is

low, we show that individuals in the population experience exposures that are considered

a health concern.
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Chapter 6

General discussion

In the following, the main findings of the paper and manuscripts in chapter 3, 4 and 5

are summarized, followed by a general discussion, fitting these findings into the overall

context of burden of disease of foodborne chemicals.

6.1 Overview

The main achievements and findings of each study are summarized below:

Paper 1

• We proposed a model framework consisting of three modules, i.e. the exposure,

health outcome and DALY-modules, to allow for a structured development of each

indicator of interest, and increasing transparency in modelling assumptions and

uncertainty.

• The scenarios investigated in the study suggest that the health outcome module

attributes more uncertainty to the final DALY estimates than the DALY module,

even if the assessed scenarios do not cover the full range of uncertainty.

Manuscript 2

• We developed a simulation approach, which can inform on the possible bias intro-

duced into DALY estimates, for whichever approach is used to estimate the incidence

123
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of disease (i.e. top down or bottom-up).

• The study suggests, that bias might be introduced in the selection of hazard-health

outcome pairs if only human observational studies are used as evidence for a cause-

effect relationship.

Manuscript 3

• We proved the concept of the applicability of an integrated probabilistic risk assess-

ment approach for the disease burden study of carcinogenic chemicals taking into

account variability and uncertainty.

• The study was an illustration of the schism between the purpose of toxicological risk

assessment and of disease burden studies and the implication for risk management

options.

6.1.1 On the uncertainty in the estimates of disease burden of

foodborne chemicals

DALYs reduce complex information into a single number, and every DALY estimate

is a result of the input data, model selection and parameters used in the calculation.

Rarely the knowledge base is complete and ranges of uncertainty in many elements of the

calculation are attached to the DALY estimates [35][101].

In the estimation of the burden of foodborne chemicals by toxicological data from animal

studies, the health outcome module contributes considerably to the overall uncertainty

in the DALY estimate, as illustrated in the studies included in this thesis. Even though

disease burden estimates relying on incidence data from surveillance sources and health

registries are also hampered by assumptions and uncertainties, a theoretical estimation of

incidence by the use of either animal or human observational studies incur considerable

added uncertainty. By use of either source of data, the main issue is connected to that the

probability of disease is derived in one population but must be extrapolated to another.

Relative risks can be derived based on a cohort in one population where the distribution

of exposure, mediators and confounders might not be similar to the population of interest.
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The probability of disease derived from animal dose response data must be extrapolated to

humans and even between humans. Study designs, experimental error etc. of course add

to the uncertainty of how well the data describe the true disease models. If the quality of

the data available for a given foodborne chemical is found inadequate, the disease burden

may not be estimated and left unknown.

It is therefore relevant to identify an acceptable level of the quality of the data that

a DALY estimate is based on. That level is difficult to quantify or standardize among

hazards, both chemical and microbial. Nonetheless it has an impact; both on the assess-

ment of the disease burden of a single hazard (i.e. which health outcomes are accounted

for) and on an overall estimate of the burden of foodborne disease (i.e. the burden of

foodborne disease is only as large as the hazard-health outcome pairs included). If for

example the criteria for the quality of the knowledge base is strict, many hazard-outcome

pairs might be excluded. If many hazard-outcome pairs are excluded, the impression on

hazards ranked by health impact might be distorted. In the end, the risk assessors should

not decide on which hazard-outcome pairs should be included in final DALY estimates

(and eventually in a hazard ranking). Rather they should supply risk managers with a

full account of the database for arriving at the estimates [35].

Knol et al. (2009) identified the need for a structured approach to identify and com-

municate the uncertainties associated with environmental burden of disease assessments

[35]. They suggest a typology, adapted from existing uncertainty typologies, to be used to

increase the transparency of how indicators are derived. Our proposed model framework

consisting of the three modules presented in Paper 1 combined with the typology adapted

from Knol et al. 2009 [35] provides a structured approach facilitating transparency. Tabel

6.1 presents an overview of the components of the analysis, the data sources and charac-

teristics of the associated uncertainty in each module of an hazard-incidence based risk

assessment approach.
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The first three columns in table 6.1, describe the modules in terms of which compo-

nents of the analysis are in each module (column 2) and the data that might be used in

each component (column 3). The next two columns describe the uncertainty associated

with each component and the data. Four sources of uncertainty are distinguished; con-

textual uncertainty, model structure uncertainty, parameter uncertainty and data-input

uncertainty (column 4). Each source of uncertainty can be expressed either statistically

(e.g. by a 95% uncertainty interval) or by scenarios (e.g. worst or best case scenarios),

depending on the component of the analysis and data source (column 5). In addition, a

column in the table could be inserted to descripe how each source of uncertainty drives

the overall uncertainty expressed either quantitatively or semi-quantitatively [35].

The source of uncertainty refers to where in the assessment the uncertainty originates.

Contextual uncertainty originates from how the bounds of the assessment are determined.

In terms of the burden of a foodborne chemical hazard, contextual uncertainty is the

uncertainty originating from the selection of the health outcomes accounted for. The

uncertainty depends on the strength of the evidence of the causal effect, but cannot be

evaluated in a statistical manner. Rather, the contextual uncertainty can be evaluated

by scenarios, i.e. how does the disease burden of a hazard change depending on which

health outcomes are accounted for. The contextual uncertainty was evaluated in Paper 1

by estimating the disease burden for total cancer in one scenario and 4 specific cancers in

another. The contextual uncertainty in terms of the overall burden of foodborne disease,

stems from the definitions used in the assessment (not shown in table), e.g. if water is

considered a food, or if dietary risk factors are within the bounds of foodborne disease.

Thus, the contextual uncertainty has a great impact on the comparability between studies

on the same hazards or overall categories of disease burden.

Model structure uncertainty is introduced in several of the components of the analysis.

It concerns how well the chosen models describe the real causal structures which are

modelled. When the disease burden of foodborne chemicals is calculated via the risk

assessment approach, model uncertainty is introduced in each of the three modules. In

the exposure module, uncertainty is connected to how well a model applied describe the

population exposure, e.g. the models describing the lifetime exposure to acrylamide in

Paper 1 and Manuscript 3. In the health outcome module, it is uncertain how well the

chosen dose response model describe the dose response relationship in the population of
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interest. For example, it is uncertain whether a linear extrapolation or the two stage

model best describe the dose response relationship between the probability of developing

cancer and the exposure to AA and BaP, respectively. Likewise it is uncertain whether it

is correct to assume an additive, as done for AA and BaP in this thesis, or a multiplicative

risk model. In the DALY module, the overall disease model, or health outcome tree, might

be uncertain. It is for example uncertain how well the disease outcome trees applied for

cancer in Paper 1 and Manuscript 3, describe the disease stages of cancer cases in the

population of interest. The model structure uncertainty may be assessed by scenario-

analysis.

Parameter uncertainty describes the uncertainty in the relation between variables,

and is introduced in the health outcome module and the DALY module. This uncertainty

can usually be described statistically, as done in Manuscript 3 for the two stage model

parameters, EFs and disability weights.

Input data uncertainty relates to the quality of the data used, reflecting lack of data

and inaccuracy of the measurement methods. Depending on the data available, the input

data uncertainty can be evaluated both statistically and by scenarios. Data are used to

derive all indicators of a burden estimation, and the quality of the data is an important

driver of the quality of the final DALY estimates. The estimation of the uncertainty in

the input data and their relative contribution to the overall uncertainty is thus important

to inform on which data source is most important to improve.

In Paper 1, we assessed model structure uncertainty by evaluating the sensitivity of

different scenarios on the final DALY estimates; in Manuscript 3, we statistically propa-

gated parameter and input data uncertainty. In Manuscript 2, we investigated how the

contextual uncertainty is depending on the strength of evidence of the causal effect of a

chemical.

To tabulate all components of an analysis, for example as suggested in table 6.1,

provides an overview of the complex information going into the DALY metric. Of course,

if all time and resources are available, a full account of the uncertainty should be presented,

i.e. the final DALY estimate should be presented with uncertainty intervals representing

all sources of uncertainty that can be statistically derived. It is however rarely the case

that this is possible, and also in that case, an overview an full account of the uncertainty

propagated along the analysis is an advantage. Likewise, if the uncertainty in a component
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of the analysis can not be described statistically, an account of which components are

evaluated by (extreme) scenarios should be given. Lastly, the impact of the uncertainty of

each component of the analysis on the final estimate should be described. Information on

the components contributing most to the uncertainty is valuable, both to direct research

initiatives to improve the estimates, but also for the recipients of the disease burden study

to be informed on the greatest limitations of the study.

6.1.2 On the usefulness of burden of disease of foodborne chem-

icals

The difference between the purpose of a study of the disease burden of a foodborne

chemical hazard and toxicological risk assessment of the same chemical was highlighted in

chapter 2. The added value of the information obtained from a disease burden study can be

illustrated by comparing the answers to the questions that can be posed in either context.

A toxicological risk assessment attempts to answer the question at which exposure it

is expected that no disease in the population will occur, and further evaluate if the

population exceed that exposure or not. The information obtained in a disease burden

context can answer a wide variety of questions, accounted for below.

The obvious question is which foodborne chemicals generate the largest impact on

public health. The internal ranking of chemical hazards are usually done by comparing

hazard ratios, i.e. the ratio between the estimated exposure to a chemical and the highest

dose associated with no effect (the HBGV). In a report performed for the Danish environ-

mental protection agency, such hazard ratios were calculated for a selection of chemicals

whose effects are found to be hormone disrupting and/or neurotoxic [102]. For several

of the chemicals, the hazard ratios were found to be above 1, even by several orders of

magnitude. However, in a public health perspective, this information is of limited value,

as the severity of each chemical is not taken into account. The results from the report

indicated that the exposure to neurotoxic substances are most critical (i.e. the combined

hazard ratio is largest for neurotoxic substances). However, the conclusion could be dif-

ferent, if the impact of exposure to neurotoxic versus hormone disrupting chemicals on

health, in terms of DALYs, was estimated. Also, several of the chemicals assessed exert

both health effects, and a burden estimation would allow for a quantitative evaluation of
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the relative impact of the different chemicals across health effects.

Information of studies on the burden of foodborne chemicals can also prove its value in

planning and evaluation of implementation of interventions. In a risk assessment approach

and a counterfactual analysis, it is inherent, that the disease burden estimated is also what

would be prevented if exposure was removed or reduced to a minimum. In both Paper

1 and Manuscript 3 of this thesis, the estimated disease burden is equal to the health

gain if exposure was removed. Several strategies to reduce the formation of acrylamide

during processing have been investigated, and some also implemented in the industry to

reduce the AA content in commercial food products [103]. The health impact of each

of these strategies can be evaluated by disease burden estimation. Acknowledging that

implementation of these intervention strategies often comes with a cost, both to the

manufacturer who needs to allocate resources for the implementation and to the food-

authorities who needs to allocate resources to control if the chemical concentration is

below regulatory limits, disease burden studies can be used in a cost-effectiveness analysis

e.g. by the analysis of the cost of the intervention per unit reduction in DALY. This can

of course be applied to all types of chemicals and interventions to assess the cheapest way

to achieve a given reduction in DALY [104].

The incidence-based approach assesses the future burden of disease experienced by

the incident disease cases in the year of study. However, the estimation of disease burden

of foodborne chemicals can also be used to predict future disease burden by assessing

different exposure scenarios driven by factors external to food-safety, e.g. the effect of

climate change on exposure to foodborne chemicals [105].

All of this highlights why national studies of the burden of disease of foodborne chem-

icals are advocated, and why further research should be put into improving the estimates

by improving the data and models needed. However, as illustrated by this thesis, it is not

always straight forward to estimate the disease burden of foodborne chemicals. Addition-

ally, the DALY as a metric should be objective, but subjective value choices regarding

the disability weights, and, if applied, age-weighting and time-discounting, restrict the

objectiveness of the DALY [101]. Besides, the DALY reflects the disability experienced

by the diseased individuals, but not the stress of e.g. the relatives of a cancer patient or

a child with severe peanut allergy [106]. This may underestimate the disease burden of

the more severe diseases, for example associated with foodborne chemical exposures, com-
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pared to the less severe, self-limiting diseases, for example associated with some foodborne

pathogens.

Two major disadvantages of the DALY in connection with foodborne chemicals have

been identified. One disadvantage is that for many health effects associated with food-

borne chemicals, disability weights do not exist. In some cases, disability weights may

be extrapolated from diseases considered of similar severity, however, in other cases the

chemically induced effect do not manifest itself as a clinical case in humans, why no

disability weight can be applied [77]. Another disadvantage is that information on the

dose dependence on the age of onset of disease often cannot be derived from studies in

experimental animals [107]. In both Paper 1 and manuscript 3, we used the weighted

averages of the age of onset of disease from health statistics, ignoring that the highly

exposed individuals might get the disease at an earlier age. Referring to table 6.1, the

impact of age of onset of disease can be evaluated in a scenario-based manner. To which

extent it is the case for foodborne chemicals that neither the severity of effect or the onset

of disease can be translated into the human situations is unknown. Owens et al. (2002)

evaluated 117 high production organic chemicals through the integrated risk information

system (IRIS) database and found no means of estimating the severity of effects or the

age of onset of disease in humans for any of the chemicals [108]. This also stress the need

to assess the knowledge base chemical by chemical, for estimating the disease burden to

foodborne chemcials on a national level.

6.2 Concluding remarks

The work presented in this thesis shows that the challenges of estimating the disease

burden of foodborne chemicals can to a certain degree be overcome. The proposed model

framework, as well as the probabilistic approach developed for the last case study can

be used for other chemical hazards and other populations/countries, thereby allowing for

increased evidence on the burden of foodborne chemicals in the near future.

We concluded that estimating the health impact of chemicals in foods is the component

of the analyses with highest uncertainty due to the difficulty in linking exposure and

development of disease. The uncertainty that the health outcome module inflicts to the

overall DALY estimate is a reflection of the impact that the strength of evidence has
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on both the selection of health outcomes that are accounted for a given chemical, and

the ability to estimate the theoretical incidence of disease. We also concluded that, as

an overall approach, the integrated probabilistic risk assessment should be applied to

estimate disease burden, as it allows for propagating the uncertainty in the estimation of

the incidence in the health outcome module.

Disease burden estimates are essential to inform policy-makers and allocate food-safety

resources. However, when the disease burden estimate is presented to policy makers, all

inherent uncertainties should be stated transparently; in the end, an estimate of the

disease burden with a large concealed uncertainty can wrongly direct political initiatives.

We showed that in an industrialized country like Denmark, where foodborne chemicals

are relatively well regulated, the population disease burden due to chemicals may be

low. However, we also demonstrated that individuals in the population may experience

exposures considered adverse to health depending on food consumption patterns (in this

case amount meat eaten per kilogram bodyweight). In this context, it may be relevant to

identify subpopulations characterized by factors such as diet, lifestyle and susceptibility

to disease that are at higher risk and bear a higher disease burden. Information on the

contribution of the disease burden on these subpopulations to the population-level health

impact is valuable to direct food-safety initiatives.

6.3 Perspectives

Further research should be directed to the development of methods for estimation of the

disease burden of foodborne chemicals. Several components of the models, including the

data, can be improved. To address the remaining challenges and large uncertainties in

the health outcome model, the assessment of the strength of the evidence should be done

chemical by chemical. However, several chemicals lead to the same health effects, and

developing a common approach to groups of chemicals will be of great value.

In this PhD project the integrated probabilistic risk assessment was only applied to

BaP, a genotoxic carcinogen. The IPRA approach should be applied to more chemicals

to prove that it is the best method to quantitatively derive disease incidence via the risk

assessment approach for both threshold and non-threshold effects, and that it allows for

propagation of the uncertainty in the estimation of the incidence in the health outcome
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module.

In this PhD project we identified that the strength of evidence is a strong determinant

of which health outcomes to account for in burden estimation. Meeting the World Cancer

Research Funds grades of convincing evidence is a questionable approach for foodborne

chemicals, and there is a need to define a weight of evidence approach for the study

of disease burden of foodborne chemicals. This approach should be designed to take

into account that even if evidence is weak, the impact of the chemical might still be

considerable (but uncertain). In turn, as a form of uncertainty analysis, this identifies the

most important knowledge gaps, and where focus should be in collecting more evidence.

Last but not least, future research should be aimed at developing models to estimate

the disease burden of subpopulations characterized in terms of diet, lifestyle, susceptibility

to disease etc. Individuals overall dietary patterns determine their level of exposure to a

chemical, and it would be relevant to define clusters in the population which are hotspots

for exposure and estimate the associated disease burden. This may be done not only for

single chemicals, but for several chemicals which exert the same adverse health effects.

Machine learning techniques have been developed to identify associations within large

clinical data sets, but have to our knowledge not been applied to identify clusters of

chemical exposures from food. In Denmark, we can apply the methodology to and across

large databases that include information on diet, socio-economic status and even genes,

which is a unique opportunity.
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1. Figures 
 

 

S1 Figure. Demographics of the Danish population. Age and sex distribution of the Danish population in 
the first quarter of 2015.  

2. Tables  
 

S1 Table. Parameters for the gamma distributions of meat consumption.  

Weight class Men Women 
Low  (2.551, 0.016) (2.483, 0.022) 
Medium  (2.549, 0.015) (2.649, 0.022) 
High (2.513, 0.014) (2.829, 0.022) 
Gamma distributions, Gamma(ɑ, β), with shape parameter ɑ, and rate parameter β, i.e. (ɑ, β) from which the 
consumption in g/meal of meat is derived.  

 

S2 Table. Probability of type of meat consumed, if one meat per meal is consumed.  

Meat type beef burger   pork sausages   lamb poultry    fish shellfish 
Frequency 0.1285 0.1186    0.1839 0.3448 0.023   0.1609 0.0266     0.0137 
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S4 Table. Parameters for the log-normal distributions of censored concentration of BaP in barbequed 
meat.  

 

Censored log-normal distributions with mean, µ, and standard deviation, σ, from which the concentration of 
BaP in µg/kg in each meat type after barbecuing is derived.  

S5 Table. Dose response data.  

Coal tar mixture BaP dose 
(mg/kg bw/day) 

Number of tumor bearing animals Sample size 

1 0 5 48 
1 0.027 12 48 
1 0.079 14 48 
1 0.266 12 48 
1 0.789 40 48 
2 0.121 17 48 
2 0.44 23 48 
2 1.12 44 48 

Dose response data of BaP in mg/kg bodyweight/day in coal tar mixtures in mice from Culp et al. (1998) [1] 
as reported by Schneider et al. (2002) [2] and by EFSA (2008) [3] 

  

Meat samples <LODs >LODs µ σ 
Beef 87 44 43 -2.326 1.626 
Burger  78 28 50 -0.783 3.125 
Pork 70 39 31 -2.932 2.419 
Sausages 58 8 50 -1.141 1.991 
Lamb 15 2 13 -0.712 1.484 
Poultry 53 23 30 -2.134 1.368 
Fish 42 13 29 -1.518 1.599 
Shellfish 4 0 4 -1.783 0.575 
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3. Population model 

3.1. Exposure module 

3.1.1. Simulation algorithm 
 

 

 

3.2. Health outcome module 

3.2.1. Dose response modeling: 
• Data from a study on tumor formation in rats based from exposure to two coal tar mixes 

(Culp et al. 1998).  
• Concentrations of BaP in the two coal tar mixes were estimated by Schneider et al. (2002) 

and exposure to animals expressed as mg BaP/kg bw/day (S7 Table).   
• Concentrations are in the dose response modelling expressed as μg BaP/kg bw/year.  

Dose response modelling on the data performed in PROAST:  

bap ,  ER :  

model   No.par   log-likelihood   accepted   BMD   BMDL   
BMDU 

null   1   -262.9   --   NA   NA   NA  

full   8   -198.82   --   NA   NA   NA  

two.stage   3   -204.03   yes   57300   28100   92700  
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log.logist   3   -203.89   yes   106000   71100   142000  

Weibull   3   -204.3   yes   75500   35700   118000  

log.prob   3   -204.02   yes   110000   77500   143000  

gamma   3   -204.27   yes   97000   45300   138000  

logistic   2   -203.92   yes   48500   42100   55900  

LVM_Exp   2   -203.96   yes   47100   41400   53700  

LVM_Hill   3   -204.12   yes   89400   50300   129000  

no covariate 

 BMR: 0.1 extra risk 

 constraint: no 

P-value GoF: 0.05 

 

3.2.2. Population model in mc2d:  
 
𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢               ~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑    

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢,𝐺𝐺𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢𝐺𝐺       ~ 𝜒𝜒212   

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢                   ~ 𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙�log(1) , log(3.6) ∙ �21 𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢,𝐺𝐺𝐺𝐺𝐺𝐺𝑢𝑢𝑢𝑢𝐺𝐺⁄ �  

𝑑𝑑𝑏𝑏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢                = 70 𝑘𝑘𝑙𝑙  

𝑑𝑑𝑏𝑏𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖                = 0.03 𝑘𝑘𝑙𝑙  

𝐴𝐴𝐸𝐸                           ~ 𝑙𝑙(0.7, 0.033) 

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖𝑎𝑎𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺  =  �𝑏𝑏𝑏𝑏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑎𝑎𝑢𝑢𝑢𝑢𝑎𝑎

�
1−𝐴𝐴𝐴𝐴

  

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖.𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺           ~ 𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙(1, 2)  

𝑒𝑒𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖              =  𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∙  𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢  ∙  𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖𝑎𝑎𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺  ∙  𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺  

𝑑𝑑                              ~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑 𝑒𝑒𝑜𝑜 𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑠𝑠𝑑𝑑 𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠  

𝑐𝑐                              ~  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑 𝑒𝑒𝑜𝑜 𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑠𝑠𝑑𝑑 𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠  

𝐸𝐸𝐸𝐸𝐵𝐵𝑢𝑢𝐵𝐵                   = 1 − �𝑒𝑒−�
𝑖𝑖𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑎𝑎𝑢𝑢𝑢𝑢𝑎𝑎

𝑏𝑏 �−𝐺𝐺�𝑖𝑖𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑎𝑎𝑢𝑢𝑢𝑢𝑎𝑎
𝑏𝑏 �

2

� 

 

3.2.2.1. mc2d model output: 
 
exp_human : 

       mean   sd Min 2.5%    25%    50%   75% 97.5% Max   nsv Na's 

NoUnc 0.184 3.03   0    0 0.0245 0.0643 0.149 0.464 136 10000    0 
 

EF_intra : 

       mean    sd      Min   2.5%   25%   50%  75% 97.5%    Max   nsv Na's 

median 2.34  4.86 0.006724 0.0776 0.415 1.000 2.41 12.94  149.6 10000    0 
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mean   2.59  6.88 0.008658 0.0809 0.413 1.000 2.47 14.76  291.0 10000    0 

2.5%   1.58  1.93 0.000772 0.0303 0.298 0.968 1.91  6.49   34.6 10000    0 
97.5%  4.98 23.62 0.026277 0.1511 0.527 1.033 3.34 33.05 1527.3 10000    0 

 

EF_intra_unc : 

       NoVar 
median  20.1 

mean    21.2 

2.5%    10.9 

97.5%   37.7 
 

AF : 

       NoVar 

median 0.700 
mean   0.699 

2.5%   0.633 

97.5%  0.768 

 
EF_inter_allometric : 

       NoVar 

median 10.24 

mean   10.65 
2.5%    6.04 

97.5%  17.19 

 

EF_inter_TKTD : 
       NoVar 

median 0.939 

mean   1.188 

2.5%   0.260 
97.5%  3.397 

 

b : 

       NoVar 
median 57643 

mean   57576 

2.5%   25112 

97.5%  90652 
 

c : 

          NoVar 

median 9.01e+00 
mean   1.95e+11 

2.5%   1.31e-01 

97.5%  1.00e+12 

 
exp_animal : 

         mean    sd Min 2.5%    25%   50%  75% 97.5%   Max   nsv Na's 

median  4.283  81.8   0    0 0.1456 0.560 1.94 18.24  6326 10000    0 

mean    5.748 145.5   0    0 0.1918 0.736 2.56 24.32 12719 10000    0 
2.5%    0.925  11.8   0    0 0.0361 0.147 0.51  4.33   794 10000    0 

97.5%  19.958 648.9   0    0 0.6037 2.291 7.87 80.93 62000 10000    0 

 

ER_BaP 
           mean       sd Min 2.5%      25%      50%      75%    97.5%    Max   nsv Na's 

median 6.91e-05 0.001163   0    0 2.84e-06 1.08e-05 3.77e-05 3.30e-04 0.0937 10000    0 

mean   1.06e-04 0.002153   0    0 4.02e-06 1.55e-05 5.41e-05 5.20e-04 0.1853 10000    0 

2.5%   1.39e-05 0.000149   0    0 5.86e-07 2.39e-06 8.38e-06 6.45e-05 0.0107 10000    0 
97.5%  3.93e-04 0.009953   0    0 1.39e-05 5.61e-05 1.92e-04 1.98e-03 0.9142 10000    0 
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3.3. DALY module 

3.3.1. Output from the DALY calculator 
> x <- getDALY() 

> print(x, digits = 10) 

 
DALY Calculator:  Cancer  

 

             Mean     Median       2.5%      97.5% 

DALY   4.2843e-06 4.0850e-06 1.6831e-06 7.9842e-06 
YLD    2.4158e-06 2.1473e-06 7.1530e-07 5.5685e-06 

YLL    1.8685e-06 1.7006e-06 3.9800e-07 4.2543e-06 

cases  2.7712e-06 2.6816e-06 1.1676e-06 4.8616e-06 

deaths 1.5400e-07 1.4010e-07 3.2800e-08 3.5050e-07 
 

YLD/DALY = 56% 

YLL/DALY = 44%  
 

#Total DALY per 1000 

> x <- getDALY() 

> print(x, relative = TRUE, digits = 20) 
 

DALY Calculator:  Cancer  

 

Total population:  5461964  
 

               Mean       Median         2.5%        97.5% 

DALY   7.883316e-10 7.560989e-10 3.081722e-10 1.460836e-09 

YLD    4.445591e-10 3.970259e-10 1.309945e-10 1.010905e-09 
YLL    3.437725e-10 3.124775e-10 7.112159e-11 7.801863e-10 

cases  5.077396e-10 4.906157e-10 2.126596e-10 9.009855e-10 

deaths 2.832434e-11 2.574586e-11 5.859898e-12 6.428164e-11 
 

#DALY for each outcome 

> x <- getDALY() 

> print(x, outcomes = TRUE, digits = 10) 

 
DALY Calculator:  Cancer  

 

Diagnosis and primary care  

             Mean     Median      2.5%      97.5% 
DALY   3.4640e-07 3.1340e-07 7.230e-08 7.9510e-07 

YLD    3.4640e-07 3.1340e-07 7.230e-08 7.9510e-07 

YLL    0.0000e+00 0.0000e+00 0.000e+00 0.0000e+00 

cases  1.2336e-06 1.1228e-06 2.584e-07 2.7826e-06 
deaths 0.0000e+00 0.0000e+00 0.000e+00 0.0000e+00 

 

In remission  

             Mean     Median      2.5%      97.5% 
DALY   1.9929e-06 1.7164e-06 3.767e-07 5.1154e-06 

YLD    1.9929e-06 1.7164e-06 3.767e-07 5.1154e-06 

YLL    0.0000e+00 0.0000e+00 0.000e+00 0.0000e+00 

cases  1.2302e-06 1.1128e-06 2.583e-07 2.7937e-06 
deaths 0.0000e+00 0.0000e+00 0.000e+00 0.0000e+00 
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Disseminated carcinoma  

            Mean    Median     2.5%     97.5% 
DALY   6.980e-08 6.240e-08 1.43e-08 1.621e-07 

YLD    6.980e-08 6.240e-08 1.43e-08 1.621e-07 

YLL    0.000e+00 0.000e+00 0.00e+00 0.000e+00 

cases  1.544e-07 1.391e-07 3.19e-08 3.514e-07 
deaths 0.000e+00 0.000e+00 0.00e+00 0.000e+00 

 

Terminal phase  

             Mean     Median      2.5%      97.5% 
DALY   1.8808e-06 1.7126e-06 3.978e-07 4.2686e-06 

YLD    6.9000e-09 6.2000e-09 1.400e-09 1.5900e-08 

YLL    1.8740e-06 1.7062e-06 3.910e-07 4.2633e-06 

cases  1.5320e-07 1.3930e-07 3.210e-08 3.4700e-07 
deaths 1.5440e-07 1.4060e-07 3.220e-08 3.5130e-07 
 

4. Subgroup model 
 

4.1. Exposure module 

4.1.1. Simulation algorithm 
 

 

4.2. Health outcome module  

4.2.1. Subgroup model in mc2d:  
 

𝑑𝑑                            = 848500  

𝑐𝑐                            = 8.299 
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𝐸𝐸𝐸𝐸                        = 10−6   

𝑒𝑒𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖             =  ��
𝑑𝑑2

4𝑐𝑐2
� − �

𝑑𝑑2

𝑐𝑐
� ∗ log(1 − 𝐸𝐸𝐸𝐸)   −  

𝑑𝑑
2𝑐𝑐

 

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢                  ~ 𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙(log(1) , log(3.6))  

𝑑𝑑𝑏𝑏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢               = 70 𝑘𝑘𝑙𝑙  

𝑑𝑑𝑏𝑏𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖               = 0.03 𝑘𝑘𝑙𝑙  

𝐴𝐴𝐸𝐸                        = 0.7 

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖𝑎𝑎𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺 =  �𝑏𝑏𝑏𝑏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑎𝑎𝑢𝑢𝑢𝑢𝑎𝑎

�
1−𝐴𝐴𝐴𝐴

  

𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖.𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺        =  1.27  

𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢             =  
𝑒𝑒𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖

�𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢  ∙  𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖𝑎𝑎𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺  ∙  𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺�
 

4.2.2. mc2d model output 
 
EF_intra : 
      mean   sd     Min   2.5%  25%   50%  75% 97.5% Max   nsv Na's 
NoUnc 2.22 4.45 0.00869 0.0809 0.43 0.996 2.37  11.6 154 10000    0 
 
exp_human : 
       mean   sd      Min    2.5%    25%    50%   75% 97.5% Max   nsv Na's 
NoUnc 0.147 0.29 0.000422 0.00564 0.0276 0.0655 0.152 0.807 7.5 10000    0 
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