A Verified Functional Implementation of Bachmair and Ganzinger's Ordered Resolution Prover

Schlichtkrull, Anders; Blanchette, Jasmin Christian; Traytel, Dmitriy
Published in:
Archive of Formal Proofs

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A., Blanchette, J. C., \& Traytel, D. (2018). A Verified Functional Implementation of Bachmair and Ganzinger's Ordered Resolution Prover. Archive of Formal Proofs, 1-60.

[^0]
A Verified Functional Implementation of Bachmair and Ganzinger's Ordered Resolution Prover

Anders Schlichtkrull, Jasmin Christian Blanchette, and Dmitriy Traytel

November 29, 2018

Abstract

This Isabelle/HOL formalization refines the abstract ordered resolution prover presented in Section 4.3 of Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the Handbook of Automated Reasoning. The result is a functional implementation of a first-order prover.

Contents

1 Introduction 1
2 A Fair Ordered Resolution Prover for First-Order Clauses with Weights 3
2.1 Library 3
2.2 Prover 4
3 A Deterministic Ordered Resolution Prover for First-Order Clauses 17
3.1 Library 17
3.2 Prover 18
4 Integration of IsaFoR Terms 45
5 An Executable Algorithm for Clause Subsumption 55
5.1 Naive Implementation of Clause Subsumption 55
5.2 Optimized Implementation of Clause Subsumption 59
5.3 Definition of Deterministic QuickSort 59

1 Introduction

Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the Handbook of Automated Reasoning is the standard reference on the topic. It defines a general framework for propositional and first-order resolution-based theorem proving. Resolution forms the basis for superposition, the calculus implemented in many popular automatic theorem provers.

This Isabelle/HOL formalization starts from an existing formalization of Bachmair and Ganzinger's chapter, up to and including Section 4.3. It refines the abstract ordered resolution prover presented in Section 4.3 to obtain an executable, functional implementation of a first-order prover. Figure 1 shows the corresponding Isabelle theory structure.

Due to a dependency on the Knuth-Bendix order from the IsaFoR library, which has not yet been moved to the AFP, the final part of our development is currently hosted in the IsaFoL repository. ${ }^{1}$

[^1]

Figure 1: Theory dependency graph

2 A Fair Ordered Resolution Prover for First-Order Clauses with Weights

The weighted_RP prover introduced below operates on finite multisets of clauses and organizes the multiset of processed clauses as a priority queue to ensure that inferences are performed in a fair manner, to guarantee completeness.

```
theory Weighted_FO_Ordered_Resolution_Prover
    imports Ordered_Resolution_Prover.FO_Ordered_Resolution_Prover
begin
```


2.1 Library

lemma ldrop_Suc_conv_ltl: ldrop (enat (Suc k)) xs =ltl (ldrop (enat k) xs) by (metis eSuc_enat ldrop_eSuc_conv_ltl)
lemma lhd_ldrop ${ }^{\prime}$:
assumes enat $k<$ llength xs
shows lhd (ldrop (enat k) xs) $=$ lnth $x s k$
using assms by (simp add: lhd_ldrop)
lemma filter_mset_empty_if_finite_and_filter_set_empty:
assumes
$\{x \in X . P x\}=\{ \}$ and
finite X
shows $\{\# x \in \#$ mset_set $X . P x \#\}=\{\#\}$
proof -
have empty_empty: ΛY. set_mset $Y=\{ \} \Longrightarrow Y=\{\#\}$
by auto
from assms have set_mset $\{\# x \in \#$ mset_set $X . P x \#\}=\{ \}$
by auto
then show ?thesis by (rule empty_empty)
qed

```
lemma inf_chain_ltl_chain: chain R xs \Longrightarrowllength xs = \infty chain R (ltl xs)
    unfolding chain.simps[of R xs] llength_eq_infty_conv_lfinite
    by (metis lfinite_code(1) lfinite_ltl llist.sel(3))
```

lemma inf_chain_ldrop_chain:
assumes
chain: chain R xs and
inf: \neg linite $x s$
shows chain R (ldrop (enat k) xs)
proof (induction k)
case 0
then show ?case
using zero_enat_def chain by auto
next
case (Suc k)
have llength (ldrop (enat k) xs) $=\infty$
using inf by (simp add: not_lfinite_llength)
with Suc have chain R (ltl (ldrop (enat k) xs))
using inf_chain_ltl_chain $[$ of $R(l d r o p(e n a t k) x s)]$ by auto
then show ?case
using ldrop_Suc_conv_ltl[of $k x s]$ by auto
qed

2.2 Prover

type-synonym 'a wclause $=$ ' a clause \times nat
type-synonym 'a wstate $=$ 'a wclause multiset \times 'a wclause multiset \times 'a wclause multiset \times nat

```
fun state_of_wstate :: ' \(a\) wstate \(\Rightarrow{ }^{\prime}\) 'a state where
    state_of_wstate \((N, P, Q, n)=\)
    (set_mset (image_mset fst \(N\) ), set_mset (image_mset fst \(P\) ), set_mset (image_mset fst \(Q\) ))
```

locale weighted_FO_resolution_prover $=$
FO_resolution_prover S subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm
for
$S::\left({ }^{\prime} a\right.$:: wellorder) clause \Rightarrow 'a clause and
subst_atm :: ' $a \Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a$ and
id_subst :: 's and
comp_subst $::$ ' $s \Rightarrow$ ' $s \Rightarrow$'s and
renamings_apart :: 'a clause list \Rightarrow 's list and
atm_of_atms :: ' a list \Rightarrow ' a and
$m g u::$ ' a set set \Rightarrow 's option and
less_atm :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool +
fixes
weight $::$ 'a clause \times nat \Rightarrow nat
assumes
weight_mono: $i<j \Longrightarrow$ weight $(C, i)<$ weight (C, j)
begin
abbreviation clss_of_wstate :: 'a wstate \Rightarrow 'a clause set where
clss_of_wstate St \equiv clss_of_state (state_of_wstate St)
abbreviation $N_{-} o f$ _wstate $::$ ' a wstate \Rightarrow ' a clause set where
$N_{-} o f _w s t a t e ~ S t \equiv N_{-}$_of_state (state_of_wstate St)
abbreviation $P_{\text {_of_wstate }}:$: ' a wstate \Rightarrow 'a clause set where
P_of_wstate St \equiv P_of_state (state_of_wstate St)
abbreviation Q _of_wstate :: 'a wstate \Rightarrow ' a clause set where
Q_of_wstate $S t \equiv$ Q_of_state (state_of_wstate St)
fun $w N_{\text {_of_wstate }}:: ~ ' a$ wstate $\Rightarrow{ }^{\prime} a$ wclause multiset where
$w N_{-} o f$ _wstate $(N, P, Q, n)=N$
fun $w P_{\text {_of_wstate }}:: ~ ' a$ wstate $\Rightarrow{ }^{\prime}$ ' wclause multiset where
$w P_{\text {_of_wstate }}(N, P, Q, n)=P$
fun $w Q_{\text {_of_wstate }}:: ~ ' a$ wstate \Rightarrow ' a wclause multiset where
$w Q _o f$ _wstate $(N, P, Q, n)=Q$
fun n_of_wstate :: 'a wstate \Rightarrow nat where
$n_{_} o f _w s t a t e(N, P, Q, n)=n$
lemma of_wstate_split $[$ simp]:
($\left.w N_{-} o f_{-} w s t a t e ~ S t, w P_{-} o f_{-} w s t a t e ~ S t, w Q_{-} o f_{-} w s t a t e ~ S t, n_{-} o f_{-} w s t a t e ~ S t\right)=S t$
by (cases St) auto
abbreviation grounding_of_wstate $::$ ' a wstate \Rightarrow ' a clause set where
grounding_of_wstate St \equiv grounding_of_state (state_of_wstate St)
abbreviation Liminf_wstate :: ' a wstate llist \Rightarrow ' a state where
Liminf_wstate Sts \equiv Liminf_state (lmap state_of_wstate Sts)
lemma timestamp_le_weight: $n \leq$ weight (C, n)
by (induct n, simp, metis weight_mono[of k Suc k for k] Suc_le_eq le_less le_trans)
inductive weighted_RP :: 'a wstate \Rightarrow 'a wstate \Rightarrow bool (infix \rightsquigarrow_{w} 50) where

```
    tautology_deletion: Neg A \in# C\Longrightarrow Pos A \in# C\Longrightarrow(N+{#(C,i)#}, P, Q,n) \rightsquigarroww (N,P,Q,n)
| forward_subsumption: D \in# image_mset fst (P+Q)\Longrightarrow subsumes D C \Longrightarrow
        (N+{#(C,i)#},P,Q,n) \rightsquigarroww (N,P,Q,n)
```



```
    strictly_subsumes D C\Longrightarrow(N,P,Q,n) \rightsquigarroww (N,{#(E,k)\in# P.E\not=C#},Q,n)
| backward_subsumption_Q:D }\in#\mathrm{ image_mset fst N \ strictly_subsumes D C 
        (N,P,Q+{#(C,i)#},n) \rightsquigarroww (N,P,Q,n)
| forward_reduction: D + {#L'#} \in# image_mset fst (P+Q)\Longrightarrow-L=L'l l \sigma\LongrightarrowD | ¢ \subseteq#C\Longrightarrow
        (N+{#(C+{#L#},i)#},P,Q,n)\mp@subsup{\rightsquigarrow}{w}{}(N+{#(C,i)#},P,Q,n)
| backward_reduction_P:D + {#L'#} \in# image_mset fst N\Longrightarrow-L=L'
        (\forallj.(C + {#L#},j) \in# P\longrightarrowj\leqi)\Longrightarrow
        (N,P+{#(C+{#L#},i)#},Q,n) \rightsquigarrowww}(N,P+{#(C,i)#},Q,n
```



```
        (N,P,Q + {#(C + {#L#},i)#}, n) \rightsquigarrowww (N,P+{#(C,i)#},Q,n)
| clause_processing: (N+{#(C,i)#},P,Q,n)}\mp@subsup{\rightsquigarrow}{w}{}(N,P+{#(C,i)#},Q,n
| inference_computation: }(\forall(D,j)\in#P\mathrm{ . weight (C,i) < weight (D,j)) >
        N = mset_set ((\lambdaD. (D,n))' concls_of
            (inference_system.inferences_between (ord_FO_\Gamma S) (set_mset (image_mset fst Q)) C)) \Longrightarrow
```



```
lemma weighted_RP_imp_RP:St }\mp@subsup{\rightsquigarrow>w}{w}{*}\mp@subsup{t}{}{\prime}\Longrightarrow\mathrm{ \state_of_wstate St }\rightsquigarrow\mathrm{ state_of_wstate St'
proof (induction rule: weighted_RP.induct)
    case (backward_subsumption_P D N C P Q n)
    show ?case
        by (rule arg_cong2[THEN iffD1, of _ _ - ( ( ), OF _ -
            RP.backward_subsumption_P[of D fst'set_mset N C fst' set_mset P - {C}
                fst 'set_mset Q]])
            (use backward_subsumption_P in auto)
next
    case (inference_computation P CiNnQ)
    show ?case
        by (rule arg_cong2[THEN iffD1, of _ _ _ ( }\rightsquigarrow)\mathrm{ , OF _ -
                RP.inference_computation[of fst ' set_mset N fst'set_mset Q C
                fst ' set_mset P - {C}]],
                    use inference_computation(2) finite_ord_FO_resolution_inferences_between in
                <auto simp: comp_def image_comp inference_system.inferences_between_def〉)
qed (use RP.intros in simp_all)
lemma final_weighted_RP:\neg ({#},{#}, Q,n)\rightsquigarroww St
    by (auto elim: weighted_RP.cases)
context
    fixes
        Sts :: 'a wstate llist
    assumes
        full_deriv: full_chain ( }\rightsquigarroww)\mathrm{ Sts and
        empty_P0: P_of_wstate (lhd Sts) = {} and
        empty_Q0: Q_of_wstate (lhd Sts)={}
begin
lemma finite_Sts0: finite (clss_of_wstate (lhd Sts))
    unfolding clss_of_state_def by (cases lhd Sts) auto
lemmas deriv = full_chain_imp_chain[OF full_deriv]
lemmas lhd_lmap_Sts = llist.map_sel(1)[OF chain_not_lnull[OF deriv]]
lemma deriv_RP: chain ( }\rightsquigarrow\mathrm{ ) (lmap state_of_wstate Sts)
    using deriv weighted_RP_imp_RP by (metis chain_lmap)
lemma finite_Sts0_RP: finite (clss_of_state (lhd (lmap state_of_wstate Sts)))
    using finite_Sts0 chain_length_pos[OF deriv] by auto
lemma empty_PO_RP: P_of_state (lhd (lmap state_of_wstate Sts)) = {}
```

using empty_P0 chain_length_pos[OF deriv] by auto
lemma empty_Q_RP: Q_{-}of_state (lhd (lmap state_of_wstate Sts) $)=\{ \}$
using empty_Q0 chain_length_pos[OF deriv] by auto
lemmas Sts_thms $=$ deriv_RP finite_Stso_RP empty_P $0_{-} R P$ empty- $Q 0_{-} R P$
theorem weighted_RP_model:
St $\rightsquigarrow_{w} S t^{\prime} \Longrightarrow I \models s$ grounding_of_wstate $S t^{\prime} \longleftrightarrow I \models$ s grounding_of_wstate $S t$
using $R P_{-}$model Sts_thms weighted_RP_imp_RP by (simp only: comp_def)
abbreviation $S_{-} g Q$:: 'a clause \Rightarrow 'a clause where
$S_{-} g Q \equiv S_{-} Q$ (lmap state_of_wstate Sts)
interpretation sq: selection $S _g Q$
unfolding $S_{-} Q_{-} d e f[O F$ deriv_RP empty_Qo_RP]
using S_M_selects_subseteq S_M_selects_neg_lits selection_axioms
by unfold_locales auto
interpretation gd: ground_resolution_with_selection $S_{-} g Q$
by unfold_locales
interpretation src: standard_redundancy_criterion_reductive gd.ord_ Γ by unfold_locales
interpretation src: standard_redundancy_criterion_counterex_reducing gd.ord_ Γ ground_resolution_with_selection.INTERP S_g Q
by unfold_locales
lemmas ord_Г_saturated_upto_def =src.saturated_upto_def
lemmas ord_Г_saturated_upto_complete = src.saturated_upto_complete
lemmas ord_Г_contradiction_Rf $=$ src.contradiction_Rf
theorem weighted_RP_sound:
assumes $\{\#\} \in$ clss_of_state (Liminf_wstate Sts)
shows \neg satisfiable (grounding_of_wstate (lhd Sts))
by (rule RP_sound[OF deriv_RP empty_Q0_RP assms, unfolded lhd_lmap_Sts])
abbreviation $R P$ _filtered_measure :: ('a wclause \Rightarrow bool) $\Rightarrow{ }^{\prime}{ }^{\prime}$ a wstate \Rightarrow nat \times nat \times nat where
$R P$ _filtered_measure $\equiv \lambda p(N, P, Q, n)$.
(sum_mset (image_mset $(\lambda(C, i)$. Suc (size C)) \{\#Di $\in \#+P+Q \cdot p$ Di\#\}), size $\{\# D i \in \# N . p D i \#\}$, size $\{\# D i \in \# P . p D i \#\})$
abbreviation RP_combined_measure :: nat $\Rightarrow{ }^{\prime}$ a wstate \Rightarrow nat $\times($ nat \times nat \times nat $) \times($ nat \times nat \times nat $)$ where $R P$ _combined_measure $\equiv \lambda w S t$. ($w+1$ - n_of_wstate St, RP_filtered_measure $(\lambda(C, i) . i \leq w) S t$, $R P_{-}$filtered_measure (λ Ci. True) St)
abbreviation (input) $R P_{-}$filtered_relation :: $(($nat \timesnat \timesnat $) \times($nat \timesnat \timesnat $))$set where
$R P_{-}$filtered_relation \equiv natLess $<* l e x *>$ natLess $<* l e x *>$ natLess
abbreviation (input) RP_combined_relation :: $(($ nat $\times(($ nat \times nat \times nat $) \times($ nat \times nat \times nat $))) \times$
$($ nat $\times(($ nat \times nat \times nat $) \times($ nat \times nat \times nat $))))$ set where
$R P_{-}$combined_relation \equiv natLess $<*$ lex $*>R P_{-}$filtered_relation $<* l e x *>R P_{-}$filtered_relation
abbreviation ($f_{s t} 3::{ }^{\prime} b *^{\prime} c *^{\prime} d \Rightarrow{ }^{\prime} b$) $\equiv f_{s t}$
abbreviation (snd3 :: ' $b *^{\prime} c *^{\prime} d \Rightarrow{ }^{\prime} c$) $\equiv \lambda x$. fst (snd x)
abbreviation ($\left.\operatorname{trd} 33::{ }^{\prime} b *^{\prime} c *^{\prime} d \Rightarrow{ }^{\prime} d\right) \equiv \lambda x$. snd $(\operatorname{snd} x)$

lemma

$w f$ _RP_filtered_relation: wf $R P_{-}$filtered_relation and
wf_RP_combined_relation: wf $R P_{-}$combined_relation unfolding natLess_def using wf_less wf_mult by auto

```
lemma multiset_sum_of_Suc_f_monotone: \(N \subset \# M \Longrightarrow\left(\sum x \in \# N . S u c(f x)\right)<\left(\sum x \in \# M\right.\). Suc \(\left.(f x)\right)\)
proof (induction \(N\) arbitrary: \(M\) )
    case empty
    then obtain \(y\) where \(y \in \# M\)
        by force
    then have \(\left(\sum x \in \# M .1\right)=\left(\sum x \in \# M-\{\# y \#\}+\{\# y \#\} .1\right)\)
        by auto
    also have \(\ldots=\left(\sum x \in \# M-\{\# y \#\} .1\right)+\left(\sum x \in \#\{\# y \#\}\right.\). 1 \()\)
        by (metis image_mset_union sum_mset.union)
    also have ... > ( 0 :: nat)
        by auto
    finally have \(0<\left(\sum x \in \#\right.\) M. Suc \(\left.(f x)\right)\)
        by (fastforce intro: gr_zeroI)
    then show? case
        using empty by auto
next
    case (add x N)
    from this(2) have ( \(\sum y \in \# N\). Suc ( \(\left.\left.f y\right)\right)<\left(\sum y \in \# M-\{\# x \#\}\right.\). Suc \(\left.(f y)\right)\)
        using add(1)[of \(M-\{\# x \#\}]\) by (simp add: insert_union_subset_iff)
    moreover have add_mset \(x\) (remove1_mset \(x M)=M\)
        by (meson add.prems add_mset_remove_trivial_If mset_subset_insertD)
    ultimately show ?case
        by (metis (no_types) add.commute add_less_cancel_right sum_mset.insert)
qed
lemma multiset_sum_monotone_f \({ }^{\prime}\) :
    assumes \(C C \subset \# D D\)
    shows \(\left(\sum(C, i) \in \# C C . \operatorname{Suc}(f C)\right)<\left(\sum(C, i) \in \# D D\right.\). Suc \(\left.(f C)\right)\)
    using multiset_sum_of_Suc_f_monotone \(\left[O F\right.\) assms, of \(\left.f \circ f_{s t}\right]\)
    by (metis (mono_tags) comp_apply image_mset_cong2 split_beta)
lemma filter_mset_strict_subset:
    assumes \(x \in \# M\) and \(\neg p x\)
    shows \(\{\# y \in \# M . p y \#\} \subset \# M\)
proof -
    have subseteq: \(\{\# E \in \# M . p E \#\} \subseteq \# M\)
        by auto
    have count \(\{\# E \in \# M . p E \#\} x=0\)
        using assms by auto
    moreover have \(0<\) count \(M x\)
        using assms by auto
    ultimately have lt_count: count \(\{\# y \in \# M . p y \#\} x<\) count \(M x\)
        by auto
    then show ?thesis
        using subseteq by (metis less_not_reft2 subset_mset.le_neq_trans)
qed
lemma weighted_RP_measure_decreasing_N:
    assumes \(S t \rightsquigarrow_{w} S t^{\prime}\) and \((C, l) \in \# w N_{-} o f_{-} w s t a t e ~ S t\)
    shows ( \(R P_{-}\)filtered_measure ( \(\lambda\) Ci. True) \(S t^{\prime}, R P_{-}\)filtered_measure ( \(\lambda C i\). True) \(S t\) )
        \(\in R P_{-}\)filtered_relation
using assms proof (induction rule: weighted_RP.induct)
    case (backward_subsumption_P \(D N C^{\prime} P Q n\) )
    then obtain \(i^{\prime}\) where \(\left(C^{\prime}, i^{\prime}\right) \in \# P\)
        by auto
    then have \(\left\{\#(E, k) \in \# P . E \neq C^{\prime} \#\right\} \subset \# P\)
        using filter_mset_strict_subset[of \(\left(C^{\prime}, i^{\prime}\right) P \lambda X\). \(\left.\neg f s t X=C^{\prime}\right]\)
        by (metis (mono_tags, lifting) filter_mset_cong fst_conv prod.case_eq_if)
    then have \(\left(\sum(C, i) \in \#\left\{\#(E, k) \in \# P . E \neq C^{\prime} \#\right\}\right.\). Suc (size \(\left.\left.C\right)\right)<\left(\sum(C, i) \in \# P\right.\). Suc (size \(\left.\left.C\right)\right)\)
        using multiset_sum_monotone_f \({ }^{\prime}\left[o f\left\{\#(E, k) \in \# P . E \neq C^{\prime} \#\right\} P\right.\) size \(]\) by metis
    then show? case
        unfolding natLess_def by auto
```

```
qed (auto simp: natLess_def)
lemma weighted_RP_measure_decreasing_P:
    assumes St }\mp@subsup{\rightsquigarrow~w}{w}{}S\mp@subsup{t}{}{\prime}\mathrm{ and (C,i) }\in#w\mp@subsup{P}{_}{\primeof_wstate St
    shows (RP_combined_measure (weight (C,i))St', RP_combined_measure (weight (C,i)) St)
        \inRP_combined_relation
using assms proof (induction rule: weighted_RP.induct)
    case (backward_subsumption_P D N C' P Q n)
    define St where St=(N,P,Q,n)
    define }\mp@subsup{P}{}{\prime}\mathrm{ where }\mp@subsup{P}{}{\prime}={#(E,k)\in#P.E\not=\mp@subsup{C}{}{\prime}#
    define St' where St'}=(N,\mp@subsup{P}{}{\prime},Q,n
    from backward_subsumption_P obtain }\mp@subsup{i}{}{\prime}\mathrm{ where ( }\mp@subsup{C}{}{\prime},\mp@subsup{i}{}{\prime})\in#
        by auto
    then have }\mp@subsup{P}{}{\prime}_su\mp@subsup{b}{_}{}P:\mp@subsup{P}{}{\prime}\subset#
    unfolding P'_def using filter_mset_strict_subset[of ( }\mp@subsup{C}{}{\prime},\mp@subsup{i}{}{\prime})P\Dj. fst Dj #= C'
    by (metis (no_types, lifting) filter_mset_cong fst_conv prod.case_eq_if)
    have }\mp@subsup{P}{}{\prime}\mp@subsup{}{-}{\prime}\mathrm{ subeq_P_filter:
        {#(Ca,ia)\in# P'.ia\leqweight (C,i)#}\subseteq#{#(Ca,ia)\in#P.ia\leqweight (C,i)#}
        using P'_sub_P by (auto intro: multiset_filter_mono)
    have fst3 (RP_combined_measure (weight (C,i)) St')
        \leqfst3 (RP_combined_measure (weight (C,i))St)
        unfolding St'_def St_def by auto
    moreover have (\sum(C,i)\in#{#(Ca,ia)\in# P'. ia \leq weight (C,i)#}.Suc (size C))
        \leq (\sumx \in# {#(Ca,ia) \in#P.ia\leqweight (C,i)#}. case x of (C,i) => Suc (size C))
        using P'_subeq_P_filter by (rule sum_image_mset_mono)
    then have fst3 (snd3 (RP_combined_measure (weight (C,i))St'))
    \leqfst3 (snd3 (RP_combined_measure (weight (C,i))St))
    unfolding St'_def St_def by auto
    moreover have snd3 (snd3 (RP_combined_measure (weight (C,i))St'))
    \leqsnd3 (snd3 (RP_combined_measure (weight (C,i)) St))
    unfolding St'_def St_def by auto
    moreover from P}\mp@subsup{P}{}{\prime}_\mathrm{ subeq_P_filter have size {# (Ca,ia) }\in# \mp@subsup{P}{}{\prime}. ia \leq weight (C,i)#
        \leq size {#(Ca,ia)\in#P. ia \leq weight (C,i)#}
        by (simp add: size_mset_mono)
    then have trd3 (snd3 (RP_combined_measure (weight (C,i))St'))
        \leqtrd3 (snd3 (RP_combined_measure (weight (C,i))St))
        unfolding St'_def St_def unfolding fst_def snd_def by auto
    moreover from P '_sub_P have (\sum(C,i)\in# P'.Suc (size C))< (\sum(C,i)\in# P. Suc (size C))
        using multiset_sum_monotone_f '[of {#(E,k)\in#P.E\not=\mp@subsup{C}{}{\prime}#} P size] unfolding P}\mp@subsup{P}{_}{\prime}\mathrm{ def by metis
    then have fst3 (trd3 (RP_combined_measure (weight (C,i))St'))
        < fst3 (trd3 (RP_combined_measure (weight (C,i)) St))
        unfolding }\mp@subsup{P}{}{\prime}_\mathrm{ def St'_def St_def by auto
    ultimately show ?case
        unfolding natLess_def P'_def St'_def St_def by auto
next
    case (inference_computation P C' i'N n Q)
    then show ?case
    proof (cases n \leq weight (C,i))
        case True
        then have weight (C,i)+1-n> weight (C,i)+1-Suc n
            by auto
        then show ?thesis
            unfolding natLess_def by auto
    next
        case n_nle_w: False
    define St :: 'a wstate where St = ({#},P + {#(C', i')#},Q,n)
```



```
    define concls :: 'a wclause set where
```

concls $=(\lambda D .(D, n))$ 'concls_of (inference_system.inferences_between (ord_FO_ S)
$(f s t$ ' set_mset $\left.Q) C^{\prime}\right)$
have fin: finite concls
unfolding concls_def using finite_ord_FO_resolution_inferences_between by auto
have $\{(D, i a) \in$ concls. $i a \leq$ weight $(C, i)\}=\{ \}$
unfolding concls_def using $n _n l e _w$ by auto
then have $\{\#(D, i a) \in \#$ mset_set concls. ia \leq weight $(C, i) \#\}=\{\#\}$ using fin filter_mset_empty_if_finite_and_filter_set_empty[of concls] by auto
then have $n_{-} l o w_{-} w e i g h t _e m p t y:\{\#(D, i a) \in \# N . i a \leq w e i g h t(C, i) \#\}=\{\#\}$
unfolding inference_computation unfolding concls_def by auto
have weight $\left(C^{\prime}, i^{\prime}\right) \leq$ weight (C, i)
using inference_computation by auto
then have $i^{\prime}{ }_{-} l e_{-} w_{-} C i: i^{\prime} \leq$ weight (C, i)
using timestamp_le_weight $\left[\right.$ of $\left.i^{\prime} C^{\prime}\right]$ by auto
have subs: $\left\{\#(D, i a) \in \# N+\left\{\#(D, j) \in \# P \cdot D \neq C^{\prime} \#\right\}+\left(Q+\left\{\#\left(C^{\prime}, i^{\prime}\right) \#\right\}\right)\right.$. ia \leq weight $\left.(C, i) \#\right\}$ $\subseteq \#\left\{\#(D, i a) \in \#\{\#\}+\left(P+\left\{\#\left(C^{\prime}, i^{\prime}\right) \#\right\}\right)+Q . i a \leq w e i g h t(C, i) \#\right\}$ using $n_{\text {_low_weight_empty }}$ by (auto simp: multiset_filter_mono)
have $f s t 3$ (R P_combined_measure (weight $(C, i)) S t^{\prime}$) $\leq f s t 3$ (R __combined_measure (weight $(C, i)) S t)$ unfolding $S t^{\prime}$ _def $S t$ _def by auto
moreover have fst (RP_filtered_measure $((\lambda(D, i a)$. ia \leq weight $\left.(C, i))) S t^{\prime}\right)=$ $\left(\sum(C, i) \in \#\left\{\#(D, i a) \in \# N+\left\{\#(D, j) \in \# P . D \neq C^{\prime} \#\right\}+\left(Q+\left\{\#\left(C^{\prime}, i^{\prime}\right) \#\right\}\right)\right.\right.$. $i a \leq$ weight $(C, i) \#\}$. Suc (size $C)$)
unfolding $S t^{\prime}$ _def by auto
also have $\ldots \leq\left(\sum(C, i) \in \#\left\{\#(D, i a) \in \#\{\#\}+\left(P+\left\{\#\left(C^{\prime}, i^{\prime}\right) \#\right\}\right)+Q\right.\right.$. ia \leq weight $\left.(C, i) \#\right\}$. Suc (size C))
using subs sum_image_mset_mono by blast
also have $\ldots=f s t\left(R P _\right.$_fltered_measure $(\lambda(D, i a)$. ia \leq weight $\left.(C, i)) S t\right)$ unfolding $S t _d e f$ by auto
finally have $f s t 3$ (snd3 (RP_combined_measure (weight $\left.(C, i)) S t^{\prime}\right)$) \leq fst3 (snd3 (RP_combined_measure (weight $(C, i)) S t)$) by auto
moreover have snd3 (snd3 (RP_combined_measure (weight $\left.\left.(C, i)) S t^{\prime}\right)\right)=$ snd3 (snd3 (RP_combined_measure (weight $(C, i))$ St))
unfolding $S t_{-} d e f S t^{\prime}$ _def using $n_{-} l o w_{-} w e i g h t _e m p t y ~ b y ~ a u t o ~$
moreover have trd3 (snd3 (R P_combined_measure (weight (C, i)) St')) < trd3 (snd3 (RP_combined_measure (weight $(C, i)) S t)$)
unfolding $S t _d e f S t^{\prime}{ }_{-} d e f$ using $i^{\prime}{ }_{-} l e_{-} w_{-} C i$
by (simp add: le_imp_less_Suc multiset_filter_mono size_mset_mono)
ultimately show ?thesis
unfolding natLess_def $S t^{\prime}$ _def St_def lex_prod_def by force
qed
qed (auto simp: natLess_def)
lemma preserve_min_or_delete_completely:
assumes $S t \rightsquigarrow_{w} S t^{\prime}(C, i) \in \# w P_{-} f_{-} w s t a t e ~ S t$
$\forall k .(C, k) \in \# w P _o f$ _wstate $S t \longrightarrow i \leq k$
shows $(C, i) \in \# w P_{-} o f_{-} w s t a t e S t^{\prime} \vee\left(\forall j .(C, j) \notin \# w P_{-} o f_{-} w s t a t e S t^{\prime}\right)$
using assms proof (induction rule: weighted_RP.induct)
case (backward_reduction_P $\left.D L^{\prime} N L \sigma C^{\prime} P i^{\prime} Q n\right)$
show ?case
proof (cases $\left.C=C^{\prime}+\{\# L \#\}\right)$
case True_outer: True
then have $C_{-} i_{-} i n:(C, i) \in \# P+\left\{\#\left(C, i^{\prime}\right) \#\right\}$
using backward_reduction_P by auto
then have $\max : \wedge k .(C, k) \in \# P+\left\{\#\left(C, i^{\prime}\right) \#\right\} \Longrightarrow k \leq i^{\prime}$
using backward_reduction_P unfolding True_outer[symmetric] by auto
then have count $\left(P+\left\{\#\left(C, i^{\prime}\right) \#\right\}\right)\left(C, i^{\prime}\right) \geq 1$

```
        by auto
    moreover
    {
        assume asm: count (P+{#(C,\mp@subsup{i}{}{\prime})#})(C,\mp@subsup{i}{}{\prime})=1
        then have nin_P:(C, i')\not\in# P
            using not_in_iff by force
        have ?thesis
        proof (cases (C,i)=(C, i'))
        case True
        then have i= i'
            by auto
        then have }\forallj.(C,j)\in#P+{#(C,\mp@subsup{i}{}{\prime})#}\longrightarrowj=\mp@subsup{i}{}{\prime
            using max backward_reduction_P(6) unfolding True_outer[symmetric] by force
        then show ?thesis
            using True_outer[symmetric] nin_P by auto
        next
        case False
        then show ?thesis
            using C_i_in by auto
        qed
    }
    moreover
    {
        assume count (P+{#(C,i')#})(C,i')>1
        then have ?thesis
        using C_i_in by auto
    }
    ultimately show ?thesis
    by (cases count (P+{#(C,i')#})(C,\mp@subsup{i}{}{\prime})=1) auto
    next
    case False
    then show ?thesis
        using backward_reduction_P by auto
    qed
qed auto
lemma preserve_min_P:
    assumes
        St \rightsquigarrow\mp@subsup{w}{}{\prime}S\mp@subsup{t}{}{\prime}(C,j)\in# wP_of_wstate St' and
        (C,i) \in# wP_of_wstate St and
        \forallk. (C,k) \in# wP_of_wstate St \longrightarrowi\leqk
    shows (C,i) \in# wP_of_wstate St'
    using assms preserve_min_or_delete_completely by blast
lemma preserve_min_P_Sts:
    assumes
        enat (Suc k) < llength Sts and
        (C,i) \in# wP_of_wstate (lnth Sts k) and
        (C,j) \in# wP_of_wstate (lnth Sts (Suc k)) and
        \forallj.(C,j)\in# wP_of_wstate (lnth Sts k)\longrightarrowi\leqj
    shows (C,i)\in# wP_of_wstate (lnth Sts (Suc k))
    using deriv assms chain_lnth_rel preserve_min_P by metis
lemma in_lnth_in_Supremum_ldrop:
    assumes i< llength xs and x\in# (lnth xs i)
    shows }x\in\mathrm{ Sup_llist (lmap set_mset (ldrop (enat i) xs))
    using assms by (metis (no_types) ldrop_eq_LConsD ldropn_0 llist.simps(13) contra_subsetD
        ldrop_enat ldropn_Suc_conv_ldropn lnth_0 lnth_lmap lnth_subset_Sup_llist)
lemma persistent_wclause_in_P_if_persistent_clause_in_P:
    assumes C \in Liminf_llist (lmap P_of_state (lmap state_of_wstate Sts))
    shows }\existsi.(C,i)\in\mathrm{ Liminf_llist (lmap (set_mset ○ wP_of_wstate) Sts)
proof -
```

```
obtain \(t_{-} C\) where \(t_{-} C_{-} p\) :
    enat \(t_{-} C<\) llength Sts
    \(\Lambda t . t_{-} C \leq t \Longrightarrow t<l l e n g t h\) Sts \(\Longrightarrow C \in P_{-}\)of_state (state_of_wstate (lnth Sts \(t\) ))
    using assms unfolding Liminf_llist_def by auto
then obtain \(i\) where \(i_{-} p\) :
    \((C, i) \in \# w P_{-} o f_{-} w s t a t e ~\left(l n t h ~ S t s ~ t_{-} C\right)\)
    using \(t_{-} C_{-} p\) by (cases lnth Sts \(t_{-} C\) ) force
    have Ci_in_nth_wP: \(\exists i .(C, i) \in \# w P_{-} o f_{-} w s t a t e\left(\right.\) lnth Sts \(\left.\left(t_{-} C+t\right)\right)\) if \(t_{-} C+t<\) llength Sts
    for \(t\)
    using that \(t_{-} C_{-} p(2)\left[\right.\) of \(t_{-} C+~_{~-~}\) by (cases lnth Sts \(\left(t_{-} C+t\right)\) ) force
    define in_Sup_w :: nat \(\Rightarrow\) bool where
    in_Sup_wP \(=\left(\lambda i .(C, i) \in\right.\) Sup_llist (lmap (set_mset \(\circ\) wP_of_wstate) \(\left.\left.\left(l d r o p ~ t \_C ~ S t s\right)\right)\right)\)
    have \(i n_{-}\)Sup_wP \(i\)
    using i_p assms(1) in_lnth_in_Supremum_ldrop[of t_C lmap wP_of_wstate Sts ( \(C, i)]\) t_C_p
    by (simp add: in_Sup_wP_def llist.map_comp)
then obtain \(j\) where \(j-p\) : is_least in_Sup_wP \(j\)
    unfolding in_Sup_wP_def [symmetric] using least_exists by metis
then have \(\forall i .(C, i) \in S u p_{-} l l i s t\left(l m a p\left(s e t \_m s e t \circ w P_{-} o f\right.\right.\) _wstate) \(\left.\left(l d r o p t_{-} C S t s\right)\right) \longrightarrow j \leq i\)
    unfolding is_least_def in_Sup_wP_def using not_less by blast
then have j_smallest:
    \(\bigwedge i t\). enat \(\left(t_{-} C+t\right)<\) llength Sts \(\Longrightarrow(C, i) \in \# w P_{-} o f_{-} w s t a t e\left(\right.\) lnth Sts \(\left.\left(t_{-} C+t\right)\right) \Longrightarrow j \leq i\)
    unfolding comp_def
    by (smt add.commute ldrop_enat ldrop_eq_LConsD ldrop_ldrop ldropn_Suc_conv_ldropn
        plus_enat_simps(1) lnth_ldropn Sup_llist_def UN_I ldrop_lmap llength_lmap lnth_lmap
        mem_Collect_eq)
from \(j_{-} p\) have \(\exists t_{-} C j . t_{-} C j<l l e n g t h\left(l d r o p\left(e n a t t_{-} C\right) S t s\right)\)
```



```
    unfolding in_Sup_wP_def Sup_llist_def is_least_def by simp
then obtain \(t_{-} C j\) where \(j_{-} p\) :
    \((C, j) \in \#\) wP_of_wstate (lnth Sts \(\left.\left(t_{-} C+t_{-} C j\right)\right)\)
    enat \(\left(t_{-} C+t_{-} C j\right)<\) llength Sts
    by (smt add.commute ldrop_enat ldrop_eq_LConsD ldrop_ldrop ldropn_Suc_conv_ldropn
        plus_enat_simps (1) lhd_ldropn)
    have Ci_stays:
    \(t_{-} C+t_{-} C j+t<\) llength Sts \(\Longrightarrow(C, j) \in \#\) wP_of_wstate (lnth Sts \(\left.\left(t_{-} C+t_{-} C j+t\right)\right)\) for \(t\)
proof (induction \(t\) )
    case 0
    then show? case
        using \(j-p\) by (simp add: add.commute)
next
    case (Suc t)
    have any_Ck_in_wP: \(j \leq k\) if \((C, k) \in \# w P_{-} o f_{-} w s t a t e ~\left(l n t h ~ S t s ~\left(~ t \_C+t_{-} C j+t\right)\right)\) for \(k\)
        using that j_p j_smallest Suc
        by (smt Suc_ile_eq add.commute add.left_commute add_Suc less_imp_le plus_enat_simps(1)
            the_enat.simps)
    from Suc have Cj_in_wP: \((C, j) \in \#\) wP_of_wstate (lnth Sts \(\left(t_{-} C+t_{-} C j+t\right)\) )
        by (metis (no_types, hide_lams) Suc_ile_eq add.commute add_Suc_right less_imp_le)
    moreover have \(C \in P_{-} o f_{-}\)state (state_of_wstate (lnth Sts \(\left.\left(S u c\left(t_{-} C+t_{-} C j+t\right)\right)\right)\) )
        using \(t_{-} C_{-} p(2)\) Suc.prems by auto
    then have \(\exists k\). \((C, k) \in \#\) w__of_wstate (lnth Sts \(\left(S u c\left(t \_C+t_{-} C j+t\right)\right)\) )
        by (smt Suc.prems Ci_in_nth_wP add.commute add.left_commute add_Suc_right enat_ord_code(4))
    ultimately have \((C, j) \in \#\) w \(P_{-}\)of_wstate (lnth Sts (Suc \(\left(t_{-} C+t_{-} C j+t\right)\) ))
        using preserve_min_P_Sts Cj_in_wP any_Ck_in_wP Suc.prems by force
    then have \((C, j) \in \#\) lnth (lmap wP_of_wstate Sts) (Suc \(\left(t_{-} C+t_{-} C j+t\right)\) )
        using Suc.prems by auto
    then show? case
        by (smt Suc.prems add.commute add_Suc_right lnth_lmap)
qed
then have \(\left(\bigwedge t . t_{-} C+t_{-} C j \leq t \Longrightarrow t<l l e n g t h\left(l m a p\left(s e t \_m s e t \circ w P \_o f-w s t a t e\right) S t s\right) \Longrightarrow\right.\)
    \((C, j) \in \#\) wP_of_wstate (lnth Sts t))
```

```
    using Ci_stays[of _ - (t_C + t_Cj)] by (metis le_add_diff_inverse llength_lmap)
    then have (C,j)\in Liminf_llist (lmap (set_mset o wP_of_wstate) Sts)
        unfolding Liminf_llist_def using j_p by auto
    then show \existsi.(C,i)\inLiminf_llist (lmap (set_mset \circ wP_of_wstate)Sts)
    by auto
qed
lemma lfinite_not_LNil_nth_llast:
    assumes lfinite Sts and Sts \not= LNil
    shows \existsi< llength Sts. lnth Sts i=llast Sts }\wedge(\forallj<llength Sts. j\leqi
using assms proof (induction rule: lfinite.induct)
    case(lfinite_LConsI xs x)
    then show ?case
    proof (cases xs = LNil)
        case True
        show ?thesis
            using True zero_enat_def by auto
    next
        case False
        then obtain i where
            i_p: enat i< llength xs ^ lnth xs i= llast xs }\wedge(\forallj<llength xs.j\leq enat i
            using lfinite_LConsI by auto
    then have enat (Suc i) < llength (LCons x xs)
        by (simp add: Suc_ile_eq)
        moreover from i_p have lnth (LCons x xs) (Suc i)=llast (LCons x xs)
            by (metis gr_implies_not_zero llast_LCons llength_lnull lnth_Suc_LCons)
            moreover from i_p have }\forallj<llength (LCons x xs). j\leq enat (Suc i
            by (metis antisym_conv2 eSuc_enat eSuc_ile_mono ileI1 iless_Suc_eq llength_LCons)
            ultimately show ?thesis
            by auto
    qed
qed auto
lemma fair_if_finite:
    assumes fin: lfinite Sts
    shows fair_state_seq (lmap state_of_wstate Sts)
proof (rule ccontr)
    assume unfair: \neg fair_state_seq (lmap state_of_wstate Sts)
    have no_inf_from_last: }\forally.\neg llast Sts \rightsquigarroww y
    using fin full_chain_iff_chain[of ( }~\mathrm{ w) Sts] full_deriv by auto
    from unfair obtain C where
    C \in Liminf_llist (lmap N_of_state (lmap state_of_wstate Sts))
        \cup Liminf_llist (lmap P_of_state (lmap state_of_wstate Sts))
    unfolding fair_state_seq_def Liminf_state_def by auto
    then obtain }i\mathrm{ where i_p:
        enat i<llength Sts
        \j.i\leqj\Longrightarrow enat j < llength Sts \Longrightarrow
        C \in N_of_state (state_of_wstate (lnth Sts j)) \cup P_of_state (state_of_wstate (lnth Sts j))
        unfolding Liminf_llist_def by auto
    have C_in_llast:
        C\inN_of_state (state_of_wstate (llast Sts)) \cup P_of_state (state_of_wstate (llast Sts))
    proof -
    obtain l where
        l_p: enat l < llength Sts ^ lnth Sts l = llast Sts }\wedge(\forallj<llength Sts. j\leq enat l
        using fin lfinite_not_LNil_nth_llast i_p(1) by fastforce
    then have
        C \in N_of_state (state_of_wstate (lnth Sts l)) \cup P_of_state (state_of_wstate (lnth Sts l))
        using i_p(1) i_p(2)[of l] by auto
    then show ?thesis
        using l_p by auto
```

```
qed
    define N :: 'a wclause multiset where N=wN_of_wstate (llast Sts)
    define P :: 'a wclause multiset where P =wP_of_wstate (llast Sts)
    define Q :: 'a wclause multiset where Q =wQ_of_wstate (llast Sts)
    define n :: nat where n= n_of_wstate (llast Sts)
    {
    assume N_of_state (state_of_wstate (llast Sts)) \not= {}
    then obtain D j where (D,j) \in#N
        unfolding N_def by (cases llast Sts) auto
    then have llast Sts }\mp@subsup{\rightsquigarrow}{w}{}(N-{#(D,j)#},P+{#(D,j)#},Q,n
        using weighted_RP.clause_processing[of N - {#(D,j)#} D j P Q n]
        unfolding N_def P_def Q_def n_def by auto
    then have }\existsS\mp@subsup{t}{}{\prime}\mathrm{ . llast Sts }\mp@subsup{\rightsquigarrow}{w}{}S\mp@subsup{t}{}{\prime
        by auto
}
moreover
{
    assume a: N_of_state (state_of_wstate (llast Sts)) = {}
    then have b:N={#}
        unfolding N_def by (cases llast Sts) auto
    from a have C \in P_of_state (state_of_wstate (llast Sts))
        using C_in_llast by auto
    then obtain D j where (D,j) \in# P
        unfolding P_def by (cases llast Sts) auto
    then have weight (D,j)\in weight' set_mset P
        by auto
    then have }\exists\textrm{w}\mathrm{ . is_least ( }\lambdaw.w\in(\mathrm{ weight'set_mset P)) w
        using least_exists by auto
    then have }\existsDj.(\forall(\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime})\in#P\mathrm{ . weight }(D,j)\leq\mathrm{ weight ( }\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime}))\wedge(D,j)\in#
        using assms linorder_not_less unfolding is_least_def by (auto 6 0)
    then obtain D j where
        min: (}\forall(\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime})\in#P\mathrm{ . weight }(D,j)\leq\mathrm{ weight ( }\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime}))\mathrm{ and
        Dj_in_p: (D,j) \in# P
        by auto
    from min have min: }(\forall(\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime})\in#P-{#(D,j)#}. weight (D,j)\leqweight ( D', j')
        using mset_subset_diff_self[OF Dj_in_p] by auto
    define N' where
        N'= mset_set ((\lambda\mp@subsup{D}{}{\prime}.(D',n))'concls_of (inference_system.inferences_between (ord_FO_\Gamma S)
            (set_mset (image_mset fst Q)) D))
    have llast Sts }\mp@subsup{\rightsquigarrow}{w}{}(\mp@subsup{N}{}{\prime},{#(\mp@subsup{D}{}{\prime},\mp@subsup{j}{}{\prime})\in#P-{#(D,j)#}. D'\not=D#},Q+{#(D,j)#}, Suc n
        using weighted_RP.inference_computation[of P-{#(D,j)#} Dj N' n Q,OF min N'_def]
            of_wstate_split[symmetric, of llast Sts] Dj_in_p
        unfolding N_def[symmetric] P_def[symmetric] Q_def[symmetric] n_def[symmetric] b by auto
    then have \existsSt'. llast Sts }\mp@subsup{\rightsquigarrow}{w}{}S\mp@subsup{t}{}{\prime
        by auto
    }
    ultimately have \existsSt'. llast Sts }\mp@subsup{\rightsquigarrow}{w}{}S\mp@subsup{t}{}{\prime
    by auto
    then show False
    using no_inf_from_last by metis
qed
lemma N_of_state_state_of_wstate_wN_of_wstate:
    assumes C\inN_of_state (state_of_wstate St)
    shows }\existsi.(C,i)\in# wN_of_wstate S
    by (smt N_of_state.elims assms eq_fst_iff fstI fst_conv image_iff of_wstate_split set_image_mset
        state_of_wstate.simps)
lemma in_wN_of_wstate_in_N_of_wstate: (C,i)\in# wN_of_wstate St \LongrightarrowC \in N_of_wstate St
```

by (metis (mono_guards_query_query) N_of_state.simps fst_conv image_eqI of_wstate_split set_image_mset state_of_wstate.simps)
lemma in_wP_of_wstate_in_P_of_wstate: $(C, i) \in \# w P_{-} o f_{-} w s t a t e S t \Longrightarrow C \in P_{-}$of_wstate St by (metis (mono_guards_query_query) P_of_state.simps fst_conv image_eqI of_wstate_split set_image_mset state_of_wstate.simps)
lemma in_wQ_of_wstate_in_Q_of_wstate: $(C, i) \in \# w Q_{-} o f_{-} w s t a t e S t \Longrightarrow C \in Q_{-}{ }^{\prime} f_{-} w s t a t e S t$ by (metis (mono_guards_query_query) Q_of_state.simps fst_conv image_eqI of_wstate_split set_image_mset state_of_wstate.simps)
lemma $n_{-} o f_{-} w s t a t e _w e i g h t e d_{-} R P_{-} i n c r e a s i n g: S t \rightsquigarrow_{w} S t^{\prime} \Longrightarrow n_{-} o f_{-} w s t a t e S t \leq n_{-} o f_{-} w s t a t e ~ S t^{\prime}$ by (induction rule: weighted_RP.induct) auto
lemma nth_of_wstate_monotonic:
assumes $j<$ llength Sts and $i \leq j$

using assms proof (induction $j-i$ arbitrary: i)
case (Suc x)
then have $x=j-(i+1)$ by auto
then have $n_{-} o f_{-} w s t a t e ~(l n t h ~ S t s ~(i+1)) \leq n _o f _w s t a t e ~(l n t h ~ S t s ~ j) ~$ using Suc by auto
moreover have $i<j$ using Suc by auto
then have Suc $i<$ llength Sts using Suc by (metis enat_ord_simps(2) le_less_Suc_eq less_le_trans not_le)
then have lnth Sts $i \not \rightsquigarrow_{w}$ lnth Sts (Suc i) using deriv chain_lnth_rel $\left[\right.$ of $\left(\rightsquigarrow_{w}\right)$ Sts $\left.i\right]$ by auto
then have $n_{-} o f_{-} w s t a t e ~(l n t h ~ S t s ~ i) \leq n_{-} o f_{-} w s t a t e ~(l n t h ~ S t s ~(i+1))$ using $n_{-} o f _w s t a t e _w e i g h t e d _R P_{-} i n c r e a s i n g[o f ~ l n t h ~ S t s ~ i ~ l n t h ~ S t s ~(i+1)] ~ b y ~ a u t o ~$
ultimately show ?case by auto
qed auto
lemma infinite_chain_relation_measure:
assumes

```
        measure_decreasing: \St St'. PSt \LongrightarrowR St St'\Longrightarrow }\LongrightarrowmS\mp@subsup{t}{}{\prime},mSt)\inmR and
```

 non_infer_chain: chain \(R\) (ldrop (enat \(k\)) Sts) and
 inf: llength Sts \(=\infty\) and
 \(P: \bigwedge i . P(\ln t h(l d r o p(e n a t k) S t s) i)\)
 shows chain \((\lambda x y .(x, y) \in m R)^{-1-1}(\) lmap \(m(l d r o p(\) enat \(k) S t s))\)
 proof (rule lnth_rel_chain)
show \neg lnull (lmap m (ldrop (enat k) Sts))
using assms by auto
next
from inf have ldrop_inf: llength (ldrop (enat k)Sts) $=\infty \wedge \neg$ lfinite (ldrop (enat k) Sts)
using inf by (auto simp: llength_eq_infty_conv_lfinite)
\{
fix j :: nat
define $S t$ where $S t=\operatorname{lnth}(l d r o p($ enat $k) S t s) j$
define $S t^{\prime}$ where $S t^{\prime}=\ln t h(l d r o p($ enat $k) S t s)(j+1)$
have $P^{\prime}: P S t \wedge P S t^{\prime}$
unfolding $S t_{-} d e f S t^{\prime}{ }_{-}$def using P by auto
from $l d r o p_{-} i n f$ have $R S t S t^{\prime}$
unfolding $S t_{-}$def $S t^{\prime}{ }_{-}$def
using non_infer_chain infinite_chain_lnth_rel[of ldrop (enat k) Sts R j] by auto
then have $\left(m S t^{\prime}, m S t\right) \in m R$
using measure_decreasing P^{\prime} by auto
then have (lnth (lmap m (ldrop (enat $k)$ Sts $)$) $(j+1)$, lnth (lmap $m(l d r o p(e n a t ~ k) S t s)) j)$
$\in m R$
unfolding $S t_{-} d e f S t^{\prime}$ _def using $\operatorname{lnth} h_{-} l m a p$
by (smt enat.distinct(1) enat_add_left_cancel enat_ord_simps(4) inf ldrop_lmap llength_lmap

```
        lnth_ldrop plus_enat_simps(3))
    }
    then show }\forallj.\mathrm{ enat (j+1)<llength (lmap m (ldrop (enat k)Sts))}
    (\lambdaxy.(x,y)\inmR)
        (lnth (lmap m (ldrop (enat k)Sts)) (j+1))
    by blast
qed
theorem weighted_RP_fair: fair_state_seq (lmap state_of_wstate Sts)
proof (rule ccontr)
    assume asm: \neg fair_state_seq (lmap state_of_wstate Sts)
    then have inff: \neglfinite Sts using fair_if_finite
    by auto
then have inf: llength Sts = \infty
    using llength_eq_infty_conv_lfinite by auto
from asm obtain C where
    C\inLiminf_llist (lmap N_of_state (lmap state_of_wstate Sts))
        ULiminf_llist (lmap P_of_state (lmap state_of_wstate Sts))
    unfolding fair_state_seq_def Liminf_state_def by auto
then show False
proof
    assume C \in Liminf_llist (lmap N_of_state (lmap state_of_wstate Sts))
    then obtain x where enat x < llength Sts
        \forallxa.x\leqxa ^ enat xa<llength Sts }\longrightarrowC\inN_of_state (state_of_wstate (lnth Sts xa))
        unfolding Liminf_llist_def by auto
    then have }\existsk.\forallj.k\leqj\longrightarrow(\existsi.(C,i)\in#wN_of_wstate (lnth Sts j)
        unfolding Liminf_llist_def by (force simp add: inf N_of_state_state_of_wstate_wN_of_wstate)
    then obtain k where k-p
        \bigwedgej.k\leqj\Longrightarrow\existsi.(C,i)\in#wN_of_wstate (lnth Sts j)
        unfolding Liminf_llist_def
        by auto
    have chain_drop_Sts: chain ( }\mp@subsup{~}{w}{})\mathrm{ (ldrop k Sts)
        using deriv inf inff inf_chain_ldrop_chain by auto
    have in_N_j:\bigwedgej.\existsi.(C,i)\in# wN_of_wstate (lnth (ldrop k Sts) j)
        using }\mp@subsup{k}{-}{}p\mathrm{ by (simp add: add.commute inf)
    then have chain ( }\lambdaxy.(x,y)\inRP_filtered_relation) -1-1 (lmap (RP_filtered_measure ( \lambdaCi. True)
        (ldrop k Sts))
        using inff inf weighted_RP_measure_decreasing_N chain_drop_Sts
            infinite_chain_relation_measure[of \lambdaSt. \existsi. (C,i)\in# wN_of_wstate St (\rightsquigarroww)] by blast
    then show False
        using wfP_iff_no_infinite_down_chain_llist[of \lambdax y. (x,y) \in RP_filtered_relation]
            wf_RP_filtered_relation inff
        by (metis (no_types, lifting) inf_llist_lnth ldrop_enat_inf_llist lfinite_inf_llist
            lfinite_lmap wfPUNIVI wf_induct_rule)
next
    assume asm:C L Liminf_llist (lmap P_of_state (lmap state_of_wstate Sts))
    from asm obtain i where i_p:
        enat i< llength Sts
        \j.i < j ^ enat j < llength Sts \LongrightarrowC C P_of_state (state_of_wstate (lnth Sts j))
        unfolding Liminf_llist_def by auto
    then obtain i where (C,i) \in Liminf_llist (lmap (set_mset o wP_of_wstate) Sts)
        using persistent_wclause_in_P_if_persistent_clause_in_P[of C] using asm inf by auto
    then have }\existsl.\forallk\geql.(C,i)\in(set_mset o wP_of_wstate)(lnth Sts k
        unfolding Liminf_llist_def using inff inf by auto
    then obtain k where }\mp@subsup{k}{-}{}p\mathrm{ :
        (\forall\mp@subsup{k}{}{\prime}\geqk.(C,i)\in(set_mset o wP_of_wstate) (lnth Sts k}\mp@subsup{k}{}{\prime})
        by blast
    have Ci_in: }\forall\mp@subsup{k}{}{\prime}.(C,i)\in(set_mset o wP_of_wstate) (lnth (ldrop k Sts) k'
        using k_p lnth_ldrop[of k_Sts] inf inff by force
    then have Ci_inn: }\forall\mp@subsup{k}{}{\prime}.(C,i)\in# (w\mp@subsup{P}{-}{\prime}of_wstate) (lnth (ldrop k Sts) k'
        by auto
    have chain ( }\mp@subsup{~}{w}{})\mathrm{ (ldrop k Sts)
        using deriv inf_chain_ldrop_chain inf inff by auto
```

```
    then have chain }(\lambdaxy.(x,y)\inRP_combined_relation) - -1-1
        (lmap (RP_combined_measure (weight (C,i))) (ldrop k Sts))
        using inff inf Ci_in weighted_RP_measure_decreasing_P
            infinite_chain_relation_measure[of \lambdaSt. (C,i) \in# wP_of_wstate St ( }\rightsquigarroww
                RP_combined_measure (weight (C,i)) ]
    by auto
    then show False
    using wfP_iff_no_infinite_down_chain_llist[of \lambdax y. (x,y) \in RP_combined_relation]
        wf_RP_combined_relation inff
    by (smt inf_llist_lnth ldrop_enat_inf_llist lfinite_inf_llist lfinite_lmap wfPUNIVI
        wf_induct_rule)
    qed
qed
corollary weighted_RP_saturated: src.saturated_upto (Liminf_llist (lmap grounding_of_wstate Sts))
    using RP_saturated_if_fair[OF deriv_RP empty_QO_RP weighted_RP_fair, unfolded llist.map_comp]
    by simp
corollary weighted_RP_complete:
    \negsatisfiable (grounding_of_wstate (lhd Sts)) \Longrightarrow{#} \in Q_of_state (Liminf_wstate Sts)
    using RP_complete_if_fair[OF deriv_RP empty_Q\mp@subsup{O}{-}{\prime}RP weighted_RP_fair, simplified lhd_lmap_Sts]
    by simp
end
end
locale weighted_FO_resolution_prover_with_size_timestamp_factors =
    FO_resolution_prover S subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm
    for
        S :: (' }a::\mathrm{ wellorder) clause }=>\mp@subsup{}{}{\prime}'a clause and
        subst_atm :: '}a=>\mp@subsup{'}{}{\prime}s=>''a an
        id_subst :: 's and
```



```
        renamings_apart :: 'a literal multiset list }=>\mp@subsup{}{}{\prime}'s\mathrm{ list and
        atm_of_atms :: 'a list => 'a and
        mgu :: 'a set set }=>\mathrm{ ''s option and
        less_atm :: ' }a=>\mp@subsup{}{}{\prime}a=\mathrm{ bool +
    fixes
        size_atm :: ' }a=>\mathrm{ nat and
        size_factor :: nat and
        timestamp_factor :: nat
    assumes
    timestamp_factor_pos: timestamp_factor > 0
begin
fun weight :: 'a wclause }=>\mathrm{ nat where
    weight (C,i) = size_factor * size_multiset (size_literal size_atm) C + timestamp_factor * i
lemma weight_mono: i<j\Longrightarrow weight (C,i)< weight (C,j)
    using timestamp_factor_pos by simp
declare weight.simps [simp del]
sublocale wrp: weighted_FO_resolution_prover _ _ _ _ _ _ _ - weight
    by unfold_locales (rule weight_mono)
notation wrp.weighted_RP(infix }\mp@subsup{\rightsquigarrow~w}{w}{*}50
end
end
```


3 A Deterministic Ordered Resolution Prover for First-Order Clauses

The deterministic_RP prover introduced below is a deterministic program that works on finite lists, committing to a strategy for assigning priorities to clauses. However, it is not fully executable: It abstracts over operations on atoms and employs logical specifications instead of executable functions for auxiliary notions.

```
theory Deterministic_FO_Ordered_Resolution_Prover
    imports Polynomial_Factorization.Missing_List Weighted_FO_Ordered_Resolution_Prover
begin
```


3.1 Library

```
lemma apfst_fst_snd: apfst f x = (f (fst x), snd x)
    by (rule apfst_conv[of - fst x snd x for x, unfolded prod.collapse])
```

lemma apfst_comp_rpair_const: apfst $f \circ(\lambda x .(x, y))=(\lambda x .(x, y)) \circ f$
by (simp add: comp_def)
lemma length_remove1_less[termination_simp]: $x \in$ set $x s \Longrightarrow$ length (remove1 x xs) $<$ length $x s$
by (induct xs) auto
lemma subset_mset_imp_subset_add_mset: $A \subseteq \# B \Longrightarrow A \subseteq \#$ add_mset x B
by (metis add_mset_diff_bothsides diff_subset_eq_self multiset_inter_def subset_mset.inf.absorb2)

```
lemma subseq_mset_subseteq_mset: subseq xs ys \Longrightarrow mset xs \subseteq# mset ys
proof (induct xs arbitrary:ys)
    case (Cons x xs)
    note Outer_Cons = this
    then show ?case
    proof (induct ys)
        case (Cons y ys)
        have subseq xs ys
            by (metis Cons.prems(2) subseq_Cons' subseq_Cons2_iff)
        then show ?case
            using Cons by (metis mset.simps(2) mset_subset_eq_add_mset_cancel subseq_Cons2_iff
                subset_mset_imp_subset_add_mset)
    qed simp
qed simp
```

lemma map_filter_neq_eq_filter_map:
map $f($ filter $(\lambda y . f x \neq f y) x s)=$ filter $(\lambda z . f x \neq z)($ map $f x s)$
by (induct xs) auto
lemma mset_map_remdups_gen:
$\operatorname{mset}(\operatorname{map} f($ remdups_gen $f x s))=\operatorname{mset}($ remdups_gen $(\lambda x . x)(\operatorname{map} f x s))$
by (induct f xs rule: remdups_gen.induct) (auto simp: map_filter_neq_eq-filter_map)
lemma mset_remdups_gen_ident: mset (remdups_gen $(\lambda x . x) x s)=m s e t _s e t(s e t x s)$
proof -
have $f=(\lambda x, x) \Longrightarrow$ mset (remdups_gen $f x s)=$ mset_set (set xs) for f
proof (induct f xs rule: remdups_gen.induct)
case ($2 f x x s$)
note $i h=\operatorname{this}(1)$ and $f=\operatorname{this}(2)$
show ?case
unfolding f remdups_gen.simps ih $[$ OF f, unfolded $f]$ mset.simps
by (metis finite_set list.simps(15) mset_set.insert_remove removeAll_filter_not_eq
remove_code(1) remove_def)
qed simp
then show?thesis
by simp
qed
lemma wf_app: wf $r \Longrightarrow w f\{(x, y) .(f x, f y) \in r\}$
unfolding wfeq_minimal by (intro allI, drule spec $\left[o f_{-} f\right.$ ' Q for $\left.Q\right]$) auto

```
lemma wfP_app:wfP p\LongrightarrowwfP(\lambdaxy.p (f x) (fy))
    unfolding wfP_def by (rule wf_app[of {(x,y). p x y} f, simplified])
```

```
lemma funpow_fixpoint: \(f x=x \Longrightarrow\left(f^{\wedge \wedge} n\right) x=x\)
```

 by (induct \(n\)) auto
 lemma rtranclp_imp_eq_image: $(\forall x y . R x y \longrightarrow f x=f y) \Longrightarrow R^{* *} x y \Longrightarrow f x=f y$
by (erule rtranclp.induct) auto
lemma tranclp_imp_eq_image: $(\forall x y . R x y \longrightarrow f x=f y) \Longrightarrow R^{++} x y \Longrightarrow f x=f y$
by (erule tranclp.induct) auto

3.2 Prover

type-synonym 'a lclause $=$ 'a literal list
type-synonym 'a dclause $=$ 'a lclause \times nat
type-synonym 'a dstate $=$ ' a dclause list \times 'a dclause list \times 'a dclause list \times nat
locale deterministic_FO_resolution_prover $=$
weighted_FO_resolution_prover_with_size_timestamp_factors S subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm size_atm timestamp_factor size_factor

for

$S::\left({ }^{\prime} a::\right.$ wellorder $)$ clause \Rightarrow 'a clause and

$$
\text { subst_atm }:: ' a \Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a \text { and }
$$

id_subst :: 's and

 comp_subst $::$ ' $s \Rightarrow$ ' $s \Rightarrow$'s and renamings_apart :: 'a literal multiset list \Rightarrow 's list and atm_of_atms :: 'a list \Rightarrow ' a and $m g u$:: ' a set set \Rightarrow 's option and less_atm :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool and size_atm :: ' $a \Rightarrow$ nat and timestamp_factor :: nat and size_factor :: nat +
assumes

 S_empty: $S C=\{\#\}$begin
lemma less_atm_irrefl: \neg less_atm A A
using ex_ground_subst less_atm_ground less_atm_stable unfolding is_ground_subst_def by blast
fun wstate_of_dstate :: ' a dstate \Rightarrow 'a wstate where
wstate_of_dstate $(N, P, Q, n)=$
(mset (map (apfst mset) N), mset (map (apfst mset) P), mset (map (apfst mset) Q), n)
fun state_of_dstate :: 'a dstate \Rightarrow 'a state where
state_of_dstate $\left.(N, P, Q,)^{\prime}\right)=$ $($ set $($ map $(m s e t \circ f s t) N)$, set $(m a p(m s e t \circ f s t) P)$, set $(m a p(m s e t \circ f s t) Q))$
abbreviation clss_of_dstate :: ' a dstate \Rightarrow 'a clause set where
clss_of_dstate St \equiv clss_of_state (state_of_dstate St)
fun is_final_dstate :: ' a dstate \Rightarrow bool where
is_final_dstate $(N, P, Q, n) \longleftrightarrow N=[] \wedge P=[]$
declare is_final_dstate.simps [simp del]
abbreviation rtrancl_weighted_RP (infix $\left.\rightsquigarrow w^{*} 50\right)$ where

$$
\left(\rightsquigarrow w^{*}\right) \equiv(\rightsquigarrow w)^{* *}
$$

abbreviation trancl_weighted_RP (infix $\left.\rightsquigarrow_{w}{ }^{+} 50\right)$ where

$$
\left(\rightsquigarrow w^{+}\right) \equiv(\rightsquigarrow w)^{++}
$$

definition is_tautology :: 'a lclause \Rightarrow bool where

$$
\text { is_tautology } C \longleftrightarrow(\exists A \in \operatorname{set}(\text { map atm_of } C) . \text { Pos } A \in \operatorname{set} C \wedge N e g A \in \operatorname{set} C)
$$

definition subsume :: 'a lclause list \Rightarrow 'a lclause \Rightarrow bool where subsume $D s C \longleftrightarrow(\exists D \in$ set D s. subsumes (mset $D)($ mset $C))$
definition strictly_subsume $::$ 'a lclause list \Rightarrow 'a lclause \Rightarrow bool where strictly_subsume Ds $C \longleftrightarrow(\exists D \in$ set Ds.strictly_subsumes (mset $D)$ (mset $C))$
definition is_reducible_on :: 'a literal $\Rightarrow{ }^{\prime}$ a lclause $\Rightarrow{ }^{\prime}$ 'a literal \Rightarrow 'a lclause \Rightarrow bool where is_reducible_on $M D L C \longleftrightarrow$ subsumes $(\operatorname{mset} D+\{\#-M \#\})(\operatorname{mset} C+\{\# L \#\})$
definition is_reducible_lit :: 'a lclause list $\Rightarrow{ }^{\prime}$ 'a lclause $\Rightarrow{ }^{\prime}$ 'a literal \Rightarrow bool where is_reducible_lit Ds $C L \longleftrightarrow$

$$
\left(\exists D \in \operatorname{set} D s . \exists L^{\prime} \in \operatorname{set} D . \exists \sigma .-L=L^{\prime} \cdot l \sigma \wedge \text { mset }\left(\text { remove } 1 L^{\prime} D\right) \cdot \sigma \subseteq \# \text { mset } C\right)
$$

primrec reduce :: 'a lclause list \Rightarrow 'a lclause $\Rightarrow{ }^{\prime}$ a lclause \Rightarrow 'a lclause where reduce _ _ [] = []
| reduce Ds $C\left(L \# C^{\prime}\right)=$
(if is_reducible_lit $D s\left(C\right.$ @ $\left.C^{\prime}\right) L$ then reduce $D s C C^{\prime}$ else $L \#$ reduce $\left.D s(L \# C) C^{\prime}\right)$
abbreviation is_irreducible :: 'a lclause list $\Rightarrow{ }^{\prime}$ a lclause \Rightarrow bool where
is_irreducible Ds $C \equiv$ reduce Ds [] $C=C$
abbreviation is_reducible :: 'a lclause list $\Rightarrow{ }^{\prime}$ 'a lclause \Rightarrow bool where is_reducible Ds $C \equiv$ reduce Ds []$C \neq C$
definition reduce_all :: 'a lclause \Rightarrow ' a dclause list $\Rightarrow{ }^{\prime}$ ' a dclause list where reduce_all $D=\operatorname{map}(\operatorname{apfst}(r e d u c e[D][]))$
fun reduce_all2 :: 'a lclause $\Rightarrow{ }^{\prime}$ a dclause list $\Rightarrow{ }^{\prime}$ 'a dclause list \times ' a dclause list where reduce_all2 _ [] = ([], [])
| reduce_all2 $D(C i \# C s)=$ (let

$$
\begin{aligned}
& (C, i)=C i \\
& C^{\prime}=\text { reduce }[D][] C
\end{aligned}
$$

in
$\left(\right.$ if $C^{\prime}=C$ then apsnd else apfst) $\left(\operatorname{Cons}\left(C^{\prime}, i\right)\right)($ reduce_all2 D Cs))
fun remove_all :: 'b list $\Rightarrow{ }^{\prime} b$ list \Rightarrow ' b list where
remove_all $x s[]=x s$
$\mid r e m o v e _a l l x s(y \# y s)=($ if $y \in$ set $x s$ then remove_all (remove1 y xs) ys else remove_all xs ys)

```
lemma remove_all_mset_minus: mset ys \subseteq# mset xs \Longrightarrowmset (remove_all xs ys) = mset xs - mset ys
proof (induction ys arbitrary: xs)
    case (Cons y ys)
    show ?case
    proof (cases y \in set xs)
        case y_in: True
        then have subs: mset ys \subseteq# mset (remove1 y xs)
            using Cons(2) by (simp add: insert_subset_eq_iff)
        show ?thesis
            using y_in Cons subs by auto
    next
        case False
        then show ?thesis
            using Cons by auto
    qed
```

definition resolvent $::$ ' a lclause $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ lclause $\Rightarrow{ }^{\prime} a$ lclause $\Rightarrow{ }^{\prime} a$ lclause where
resolvent $D A C A L s=$
$\operatorname{map}(\lambda M . M \cdot l($ the $($ mgu $\{$ insert $A($ atms_of $(m s e t L s))\})))($ remove_all CA Ls @ $D)$
definition resolvable :: ' $a \Rightarrow$ 'a lclause \Rightarrow 'a lclause \Rightarrow 'a lclause \Rightarrow bool where
resolvable $A D C A L s \longleftrightarrow$
$($ let $\sigma=(m g u\{$ insert $A($ atms_of $(m s e t ~ L s))\})$ in
$\sigma \neq$ None
$\wedge L s \neq[]$
\wedge maximal_wrt $(A \cdot a$ the $\sigma)(($ add_mset $($ Neg $A)(m s e t D)) \cdot$ the $\sigma)$
\wedge strictly_maximal_wrt $(A \cdot a$ the $\sigma)((m s e t C A-m s e t L s) \cdot$ the $\sigma)$
$\wedge(\forall L \in$ set Ls. is_pos $L))$
definition resolve_on :: ' $a \Rightarrow$ ' a lclause \Rightarrow ' a lclause \Rightarrow ' a lclause list where
resolve_on $A D C A=\operatorname{map}($ resolvent $D A C A)($ filter $($ resolvable $A D C A)($ subseqs $C A))$
definition resolve :: 'a lclause \Rightarrow 'a lclause \Rightarrow 'a lclause list where
resolve $C D=$
concat (map (λ L.
(case L of
$\operatorname{Pos} A \Rightarrow[]$
| Neg $A \Rightarrow$
if maximal_wrt $A($ mset $D)$ then
resolve_on A (remove1 L D) C
else
[])) D)
definition resolve_rename :: 'a lclause \Rightarrow 'a lclause \Rightarrow 'a lclause list where
resolve_rename C $D=$
(let $\sigma s=$ renamings_apart $[$ mset D, mset $C]$ in
resolve $(\operatorname{map}(\lambda L . L \cdot l$ last $\sigma s) C)(\operatorname{map}(\lambda L . L \cdot l h d \sigma s) D))$
definition resolve_rename_either_way :: 'a lclause \Rightarrow ' a lclause \Rightarrow ' a lclause list where
resolve_rename_either_way $C D=$ resolve_rename $C D$ @ resolve_rename $D C$
fun select_min_weight_clause :: 'a dclause $\Rightarrow{ }^{\prime} a$ dclause list \Rightarrow ' a dclause where
select_min_weight_clause Ci []$=C i$
\mid select_min_weight_clause Ci $(D j \# D j s)=$
select_min_weight_clause
(if weight (apfst mset Dj) < weight (apfst mset Ci) then Dj else Ci) Djs
lemma select_min_weight_clause_in: select_min_weight_clause P0 $P \in \operatorname{set}(P 0 \# P)$
by (induct P arbitrary: P0) auto
function remdups_clss :: 'a dclause list $\Rightarrow{ }^{\prime}$ ' a dclause list where
remdups_clss [] = []
\mid remdups_clss $(C i \# C i s)=$
(let
$C i^{\prime}=$ select_min_weight_clause Ci Cis
in
$C i^{\prime} \#$ remdups_clss (filter $\left(\lambda\left(D,{ }^{\prime}\right)\right.$. mset $\left.\left.\left.D \neq \operatorname{mset}\left(f s t C i{ }^{\prime}\right)\right)(C i \# C i s)\right)\right)$
by pat_completeness auto
termination
apply (relation measure length)
apply (rule wf_measure)
by (metis (mono_tags) in_measure length_filter_less prod.case_eq_if select_min_weight_clause_in)
declare remdups_clss.simps(2) [simp del]
fun deterministic_RP_step :: 'a dstate $\Rightarrow{ }^{\prime}{ }^{\prime} a$ dstate where
deterministic_RP_step $(N, P, Q, n)=$

```
(if \(\exists C i \in \operatorname{set}(P @ Q)\).fst \(C i=[]\) then
    ([], [], remdups_clss \(P\) @ \(Q, n+\) length (remdups_clss \(P)\) )
else
    (case \(N\) of
        [] \(\Rightarrow\)
        (case \(P\) of
            []\(\Rightarrow(N, P, Q, n)\)
            \(P 0 \# P^{\prime} \Rightarrow\)
            let
                    \((C, i)=\) select_min_weight_clause P0 \(P^{\prime}\);
                    \(N=\operatorname{map}(\lambda D .(D, n))\) (remdups_gen mset (resolve_rename C C
                    @ concat (map (resolve_rename_either_way \(C \circ f s t) Q))\);
                \(P=\) filter \((\lambda(D, j)\). mset \(D \neq\) mset \(C) P\);
                    \(Q=(C, i) \# Q\);
                    \(n=S u c n\)
                in
                    \((N, P, Q, n))\)
    \(\mid(C, i) \# N \Rightarrow\)
        let
            \(C=\) reduce (map fst \((P\) @ \(Q)\) ) [] \(C\)
        in
            if \(C=[]\) then
                ([], [], [([], i)], Suc n)
            else if is_tautology \(C \vee\) subsume (map fst \((P\) @ \(Q)\) ) \(C\) then
            \((N, P, Q, n)\)
            else
                let
                    \(P=\) reduce_all \(C\);
                    (back_to_P, Q) = reduce_all2 C \(Q\);
                \(P=\) back_to_ \(P @ P\);
                \(Q=\) filter \((\) Not \(\circ\) strictly_subsume \([C] \circ f s t) Q\);
                \(P=\) filter \((\) Not \(\circ\) strictly_subsume \([C] \circ f s t) P\);
                    \(P=(C, i) \# P\)
                in
                    \((N, P, Q, n)))\)
declare deterministic_RP_step.simps [simp del]
partial-function (option) deterministic_RP :: 'a dstate \(\Rightarrow\) ' \(a\) lclause list option where
    deterministic_RP St \(=\)
    (if is_final_dstate St then
            let \(\left({ }_{-},,_{,}, Q,_{-}\right)=\)St in Some \(\left(\operatorname{map} f_{s t} Q\right)\)
        els
            deterministic_RP (deterministic_RP_step St))
lemma is_final_dstate_imp_not_weighted_RP: is_final_dstate \(S t \Longrightarrow \neg\) wstate_of_dstate \(S t \rightsquigarrow_{w} S t^{\prime}\)
    using wrp.final_weighted_RP
    by (cases St) (auto intro: wrp.final_weighted_RP simp: is_final_dstate.simps)
lemma is_final_dstate_funpow_imp_deterministic_RP_neq_None:
    is_final_dstate \(\left(\left(\right.\right.\) deterministic_RP_step \(\left.\left.{ }^{\wedge} k\right) S t\right) \Longrightarrow\) deterministic_RP St \(\neq\) None
proof (induct \(k\) arbitrary: St)
    case (Suc \(k\) )
    note \(i h=\) this(1) and final_Sk \(=\) this(2)[simplified, unfolded funpow_swap1]
    show ?case
        using ih[OF final_Sk] by (subst deterministic_RP.simps) (simp add: prod.case_eq_if)
qed (subst deterministic_RP.simps, simp add: prod.case_eq_if)
lemma is_reducible_lit_mono_cls:
    mset \(C \subseteq \#\) mset \(C^{\prime} \Longrightarrow\) is_reducible_lit Ds \(C L \Longrightarrow\) is_reducible_lit Ds \(C^{\prime} L\)
    unfolding is_reducible_lit_def by (blast intro: subset_mset.order.trans)
lemma is_reducible_lit_mset_iff:
```

```
    mset C = mset C' }\Longrightarrow\mathrm{ is_reducible_lit Ds C ' L }\longleftrightarrow is_reducible_lit Ds C L
    by (metis is_reducible_lit_mono_cls subset_mset.order_refl)
lemma is_reducible_lit_remove1_Cons_iff:
    assumes L}\in\mathrm{ set C'
    shows is_reducible_lit Ds (C @ remove1 L (M# C'))L\longleftrightarrow
        is_reducible_lit Ds (M # C @ remove1 L C') L
    using assms by (subst is_reducible_lit_mset_iff,auto)
lemma reduce_mset_eq: mset C = mset C' \Longrightarrowreduce Ds C E = reduce Ds C' E
proof (induct E arbitrary: C C')
    case (Cons L E)
    note ih = this(1) and mset_eq = this(2)
    have
        mset_lc_eq: mset (L#C) = mset (L# C') and
        mset_ce_eq:mset (C@E) = mset ( }\mp@subsup{C}{}{\prime}@E
        using mset_eq by simp+
    show ?case
        using ih[OF mset_eq] ih[OF mset_lc_eq] by (simp add: is_reducible_lit_mset_iff[OF mset_ce_eq])
qed simp
lemma reduce_rotate[simp]: reduce Ds (C @ [L]) E=reduce Ds (L#C)E
    by (rule reduce_mset_eq) simp
lemma mset_reduce_subset: mset (reduce Ds C E) \subseteq# mset E
    by (induct E arbitrary:C) (auto intro: subset_mset_imp_subset_add_mset)
lemma reduce_idem: reduce Ds C (reduce Ds C E) = reduce Ds C E
    by (induct E arbitrary:C)
        (auto intro!: mset_reduce_subset
            dest!: is_reducible_lit_mono_cls[of C @ reduce Ds (L#C) E C @ E Ds L for L E C,
                rotated])
lemma is_reducible_lit_imp_is_reducible:
    L\in set C' \Longrightarrow is_reducible_lit Ds (C @ remove1 L C')L\Longrightarrow reduce Ds C C'}=\mp@subsup{C}{}{\prime
proof (induct C' arbitrary:C)
    case (Cons M C')
    note ih = this(1) and l_in = this(2) and l_red = this(3)
    show ?case
    proof (cases is_reducible_lit Ds (C @ C')M)
        case True
        then show ?thesis
            by simp (metis mset.simps(2) mset_reduce_subset multi_self_add_other_not_self
                subset_mset.eq_iff subset_mset_imp_subset_add_mset)
    next
        case m_irred: False
        have
            L\in set C' and
            is_reducible_lit Ds (M # C @ remove1 L C') L
            using l_in l_red m_irred is_reducible_lit_remove1_Cons_iff by auto
        then show ?thesis
            by (simp add: ih[of M # C] m_irred)
    qed
qed simp
lemma is_reducible_imp_is_reducible_lit:
    reduce Ds C C'\not=\mp@subsup{C}{}{\prime}\Longrightarrow\existsL\in set C'. is_reducible_lit Ds (C @ remove1 L C')L
proof (induct C' arbitrary: C)
    case (Cons M C')
    note ih = this(1) and mc'_red = this(2)
    show ?case
```

```
    proof (cases is_reducible_lit Ds (C @ C')M)
    case m_irred: False
    show ?thesis
        using ih[of M # C] mc'_red[simplified, simplified m_irred, simplified] m_irred
            is_reducible_lit_remove1_Cons_iff
        by auto
    qed simp
qed simp
```

lemma is_irreducible_iff_nexists_is_reducible_lit:
reduce $D s C C^{\prime}=C^{\prime} \longleftrightarrow \neg\left(\exists L \in\right.$ set C^{\prime}. is_reducible_lit Ds $\left(C\right.$ @ remove1 $\left.\left.L C^{\prime}\right) L\right)$
using is_reducible_imp_is_reducible_lit is_reducible_lit_imp_is_reducible by blast
lemma is_irreducible_mset_iff: mset $E=$ mset $E^{\prime} \Longrightarrow$ reduce $D s C E=E \longleftrightarrow$ reduce Ds $C E^{\prime}=E^{\prime}$
unfolding is_irreducible_iff_nexists_is_reducible_lit
by (metis (full_types) is_reducible_lit_mset_iff mset_remove1 set_mset_mset union_code)
lemma select_min_weight_clause_min_weight:
assumes Ci $=$ select_min_weight_clause P0 P
shows weight $($ apfst mset Ci $)=\operatorname{Min}(($ weight \circ apfst mset $)$ 'set $(P 0 \# P))$
using assms
proof (induct P arbitrary: P0 Ci)
case (Cons P1 P)
note $i h=\operatorname{this}(1)$ and $c i=t h i s(2)$
show ?case
proof (cases weight (apfst mset P1) < weight (apfst mset P0))
case True
then have min: Min $(($ weight \circ apfst mset $)$ ' $\operatorname{set}(P 0 \# P 1 \# P))=$ Min ((weight \circ apfst mset)'set (P1 \# P)) by (simp add: min_def)
show ?thesis unfolding min by (rule ih[of Ci P1]) (simp add: ih[of Ci P1] ci True)
next
case False
have Min $(($ weight \circ apfst mset)'set $(P 0 \# P 1 \# P))=$ Min ((weight \circ apfst mset)' set (P1 \# P0 \# P))
by (rule arg_cong[of _ _ Min]) auto
then have min: Min $(($ weight \circ apfst mset $)$ ' $\operatorname{set}(P 0 \# P 1 \# P))=$ Min ((weight o apfst mset)' set (P0 \# P)) by (simp add: min_def) (use False eq_iff in fastforce)
show ?thesis
unfolding min by (rule ih[of Ci P0]) (simp add: ih[of Ci P1] ci False)
qed
qed simp
lemma remdups_clss_Nil_iff: remdups_clss Cs $=[] \longleftrightarrow C s=[]$
by (cases Cs, simp, hypsubst, subst remdups_clss.simps(2), simp add: Let_def)
lemma empty_N_if_Nil_in_P_or_Q:
assumes nil_in: []$\in f_{s t}$ ' $\operatorname{set}(P @ Q)$
shows wstate_of_dstate (N, P, Q, n) $\rightsquigarrow_{w}{ }^{*}$ wstate_of_dstate ([]$, P, Q, n$)
proof (induct N)
case ih: (Cons NO N)
have wstate_of_dstate ($N 0 \# N, P, Q, n$) \rightsquigarrow_{w} wstate_of_dstate $(N, P, Q, n$)
by (rule arg_cong2[THEN iffD1, of _ _ $\left(\rightsquigarrow_{w}\right)$, OF _
wrp.forward_subsumption $[$ of \{\#\} mset (map (apfst mset) P) mset (map (apfst mset) Q) mset (fst NO) mset (map (apfst mset) N) snd NO n]])
(use nil_in in 〈force simp: image_def apfst_fst_snd〉)+
then show? case using ih by (rule converse_rtranclp_into_rtranclp)
qed simp

```
lemma remove_strictly_subsumed_clauses_in_P:
    assumes
        c_in: \(C \in f_{s t}\) 'set \(N\) and
        p_nsubs: \(\forall D \in f s t\) 'set \(P\). \(\neg\) strictly_subsume \([C] D\)
    shows wstate_of_dstate ( \(N, P\) @ \(P^{\prime}, Q, n\) )
        \(\rightsquigarrow w^{*}\) wstate_of_dstate (N, P @ filter (Not o strictly_subsume \(\left.[C] \circ f s t\right) P^{\prime}, Q, n\) )
    using p_nsubs
proof (induct length \(P^{\prime}\) arbitrary: \(P P^{\prime}\) rule: less_induct)
    case less
    note \(i h=\) this(1) and \(p\) _nsubs \(=\) this(2)
    show ?case
    proof (cases length \(P^{\prime}\) )
        case Suc
        let \(? \mathrm{Dj}=h d P^{\prime}\)
        let ? \(P^{\prime \prime}=t l P^{\prime}\)
        have \(p^{\prime}: P^{\prime}=h d P^{\prime} \# t l P^{\prime}\)
            using Suc by (metis length_Suc_conv list.distinct(1) list.exhaust_sel)
    show ?thesis
    proof (cases strictly_subsume [C] (fst ?Dj))
        case subs: True
            have \(p_{-}\)filtered: \(\{\#(E, k) \in \#\) image_mset (apfst mset) (mset P). \(E \neq\) mset (fst ?Dj) \#\} \(=\)
            image_mset (apfst mset) (mset P)
            by (rule filter_mset_cong[OF refl, of _ _ \(\lambda_{-}\). True, simplified],
                use subs p_nsubs in (auto simp: strictly_subsume_def〉)
            have \(\left\{\#(E, k) \in \#\right.\) image_mset (apfst mset) \(\left(\right.\) mset \(\left.P^{\prime}\right) . E \neq \operatorname{mset}(f s t\) ?Dj \(\left.) \#\right\}=\)
                \(\left\{\#(E, k) \in \#\right.\) image_mset (apfst mset) (mset ? \(P^{\prime \prime}\) ). \(\left.E \neq \operatorname{mset}(f s t ? D j) \#\right\}\)
                by (subst (2) \(p^{\prime}\) ) (simp add: case_prod_beta)
            also have \(\ldots=\)
                image_mset \(\left(\right.\) apfst mset) \(\left(\right.\) mset \(\left(\right.\) filter \((\lambda(E, l)\). mset \(E \neq \operatorname{mset}(f s t ? D j))\) ? \(\left.\left.P^{\prime \prime}\right)\right)\)
                by (auto simp: image_mset_filter_swap[symmetric] mset_filter case_prod_beta)
            finally have \(p^{\prime}\)-filtered:
                \(\left\{\#(E, k) \in \#\right.\) image_mset (apfst mset) (mset \(\left.\left.P^{\prime}\right) . E \neq \operatorname{mset}(f s t ? D j) \#\right\}=\)
                image_mset (apfst mset) (mset (filter \((\lambda(E, l)\). mset \(\left.\left.E \neq \operatorname{mset}(f s t ? D j)) ? P^{\prime \prime}\right)\right)\)
                        -
            have wstate_of_dstate ( \(N, P\) @ \(P^{\prime}, Q, n\) )
                \(\rightsquigarrow_{w}\) wstate_of_dstate ( \(N, P\) @ filter \(\left(\lambda(E, l)\right.\). mset \(\left.\left.E \neq \operatorname{mset}\left(f_{s t} ? D j\right)\right) ? P^{\prime \prime}, Q, n\right)\)
                by (rule arg_cong2[THEN iffD 1 , of \(\ldots\left(\rightsquigarrow_{w}\right)\), OF \(\ldots\)
                    wrp.backward_subsumption_P[of mset C mset (map (apfst mset) N) mset (fst ?Dj)
                        mset (map (apfst mset) ( \(\left.P^{(@ 1} P^{\prime}\right)\) mset (map (apfst mset) Q) n]],
                use c_in subs in <auto simp add: p_filtered \(p^{\prime}\) _filtered arg_cong[OF \(p^{\prime}\), of set]
                        strictly_subsume_def〉)
        also have ...
            \(\rightsquigarrow w^{*}\) wstate_of_dstate (N, P @ filter (Not ○ strictly_subsume \(\left.\left.[C] \circ f s t\right) P^{\prime}, Q, n\right)\)
            apply (rule arg_cong2[THEN iffD1, of \(-\ldots\left(\rightsquigarrow w^{*}\right)\), OF - -
                    ih \(\left[\right.\) of filter \((\lambda(E, l)\). mset \(E \neq \operatorname{mset}(f s t ? D j))\) ?P \(\left.\left.\left.P^{\prime \prime} P\right]\right]\right)\)
                    apply simp_all
                apply (subst (3) \(p^{\prime}\) )
            using subs
                apply (simp add: case_prod_beta)
                apply (rule arg_cong[of _ _ \(\lambda f\). image_mset (apfst mset) (mset (filter f \(\left.\left(t l P^{\prime}\right)\right)\) )])
                apply (rule ext)
                apply (simp add: comp_def strictly_subsume_def)
                apply force
                apply (subst (3) \(p^{\prime}\) )
                apply (subst list.size)
                apply (metis (no_types, lifting) less_Suc0 less_add_same_cancel1 linorder_neqE_nat
                not_add_less1 sum_length_filter_compl trans_less_add1)
            using \(p \_n s u b s\) by fast
```

```
        ultimately show ?thesis
        by (rule converse_rtranclp_into_rtranclp)
    next
        case nsubs: False
        show ?thesis
        apply (rule arg_cong2[THEN iffD1, of _ _ _ (\rightsquigarroww**), OF _ _
                ih[of ?P'/ P @ [?Dj]]])
        using nsubs p_nsubs
            apply (simp_all add: arg_cong[OF p',of mset] arg_cong[OF p', of filter f for f])
        apply (subst (1 2) p')
        by simp
    qed
    qed simp
qed
lemma remove_strictly_subsumed_clauses_in_Q:
    assumes c_in: C f fst'set N
    shows wstate_of_dstate ( }N,P,Q@\mp@subsup{Q}{}{\prime},n
        \rightsquigarroww*}\mp@subsup{}{}{*}\mathrm{ wstate_of_dstate (N,P,Q @ filter (Not ○ strictly_subsume [C]。fst) }\mp@subsup{Q}{}{\prime},n
proof (induct Q' arbitrary:Q)
    case ih:(Cons Dj Q')
    have wstate_of_dstate ( N, P,Q @ Dj # Q Q',n) \rightsquigarrowww
        wstate_of_dstate (N,P,Q @ filter (Not ○ strictly_subsume [C]\circfst) [Dj] @ Q',n)
    proof (cases strictly_subsume [C] (fst Dj))
        case subs: True
        have wstate_of_dstate ( N, P, Q @ Dj # Q ', n) \rightsquigarroww wstate_of_dstate ( N, P, Q @ Q', n)
            by (rule arg_cong2[THEN iffD1, of _ . ( ( ~w),OF _ _
                    wrp.backward_subsumption_Q[of mset C mset (map (apfst mset) N) mset (fst Dj)
                        mset (map (apfst mset) P) mset (map (apfst mset) (Q @ Q')) snd Dj n]])
                (use c_in subs in \auto simp: apfst_fst_snd strictly_subsume_def`)
        then show ?thesis
            by auto
    qed simp
    then show ?case
        using ih[of Q @ filter (Not ○ strictly_subsume [C]\circfst) [Dj]] by force
qed simp
lemma reduce_clause_in_P:
    assumes
        c_in:C G fst' set N and
        p_irred: }\forall(E,k)\in\operatorname{set}(P@\mp@subsup{P}{}{\prime}).k>j\longrightarrowis_irreducible [C]E
    shows wstate_of_dstate ( N,P @ (D @ D', j) # P ', Q,n)
        \rightsquigarroww*
proof (induct D' arbitrary: D)
    case ih:(Cons L D')
    show ?case
    proof (cases is_reducible_lit [C](D@ D')L)
        case l_red:True
        then obtain }\mp@subsup{L}{}{\prime}::= 'a literal and \sigma:: 's wher
            l'_in: L' }\mp@subsup{L}{}{\prime}\in\mathrm{ set C and
            not_l: - L = L' 'l \sigma and
            subs:mset (remove1 L' C) · \sigma\subseteq# mset (D @ D')
            unfolding is_reducible_lit_def by force
        have ldd'_red: is_reducible [C] (L # D @ D')
            apply (rule is_reducible_lit_imp_is_reducible)
            using l_red by auto
        have lt_imp_neq: }\forall(E,k)\in\operatorname{set}(P@\mp@subsup{P}{}{\prime}).j<k\longrightarrow\operatorname{mset}E\not=mset (L#D@ D'
            using p_irred ldd'_red is_irreducible_mset_iff by fast
        have wstate_of_dstate (N,P@ (D @L # D',
            \rightsquigarroww wstate_of_dstate ( N, P@ (D @ D', j) # P ', Q,n)
```

apply (rule arg_cong2[THEN iffD1, of _ . _ $(\rightsquigarrow w)$, OF _
wrp.backward_reduction_P[of mset $C-\left\{\# L^{\prime} \#\right\} L^{\prime}$ mset (map (apfst mset) N) L σ $\operatorname{mset}\left(D\right.$ @ $\left.\left.D^{\prime}\right) \operatorname{mset}\left(\operatorname{map}(\operatorname{apfst} m s e t)\left(P @ P^{\prime}\right)\right) j \operatorname{mset}(\operatorname{map}(\operatorname{apfst} m s e t) Q) n\right]$)
using l^{\prime} _in not_l subs c_in lt_imp_neq by (simp_all add: case_prod_beta) force+
then show ?thesis
using $i h[$ of $D]$ l_red by simp
next
case False
then show?thesis
using ih[of D @ [L]] by simp
qed
qed simp
lemma reduce_clause_in_ Q :

assumes

c_in: $C \in f s t$ ' set N and
p_{-}irred: $\forall(E, k) \in \operatorname{set} P . k>j \longrightarrow$ is_irreducible $[C] E$ and d^{\prime} _red: reduce $[C] D D^{\prime} \neq D^{\prime}$
shows wstate_of_dstate $\left(N, P, Q @\left(D @ D^{\prime}, j\right) \# Q^{\prime}, n\right)$
$\rightsquigarrow_{w^{*}}$ wstate_of_dstate $\left(N,\left(D\right.\right.$ @ reduce $\left.[C] D D^{\prime}, j\right) \# P, Q$ @ $\left.Q^{\prime}, n\right)$
using d^{\prime} _red
proof (induct D^{\prime} arbitrary: D)
case (Cons L D^{\prime})
note $i h=$ this (1) and $l d^{\prime}$ _red $=$ this(2)
then show ?case
proof (cases is_reducible_lit [C] (D @ D^{\prime}) L)
case l_red: True
then obtain $L^{\prime}::$ 'a literal and $\sigma::$'s where
$l^{\prime} _i n: L^{\prime} \in$ set C and
not_l: $-L=L^{\prime} \cdot l \sigma$ and
subs: mset (remove1 $\left.L^{\prime} C\right) \cdot \sigma \subseteq \# \operatorname{mset}\left(D\right.$ @ $\left.D^{\prime}\right)$
unfolding is_reducible_lit_def by force
have wstate_of_dstate $\left(N, P, Q @\left(D @ L \# D^{\prime}, j\right) \# Q^{\prime}, n\right)$
\rightsquigarrow_{w} wstate_of_dstate $\left(N,\left(D\right.\right.$ @ $\left.\left.D^{\prime}, j\right) \# P, Q @ Q^{\prime}, n\right)$
by (rule arg_cong2[THEN iffD1, of _ _ - $\left(\rightsquigarrow \rightsquigarrow_{w}\right)$, OF -
wrp.backward_reduction_Q[of mset $C-\left\{\# L^{\prime} \#\right\} L^{\prime}$ mset (map (apfst mset) N) L σ mset (D @ D^{\prime}) mset (map (apfst mset) P) mset (map (apfst mset) $\left(Q\right.$ @ $\left.\left.\left.Q^{\prime}\right)\right) j n\right]$, use l^{\prime} _in not_l subs c_in in auto)
then show?thesis
using l_red p_irred reduce_clause_in_P[OF c_in, of [] PjD D Q @ $\left.Q^{\prime} n\right]$ by simp
next
case l_nred: False
then have d^{\prime} _red: reduce $[C](D @[L]) D^{\prime} \neq D^{\prime}$ using $l d^{\prime}$ _red by simp
show ?thesis
using $i h\left[\right.$ OF $d^{\prime} _$red $] \quad l _n r e d ~ b y ~ s i m p ~$
qed
qed simp
lemma reduce_clauses_in_P:
assumes
c_in: $C \in f_{s t}$ ' set N and
p_{-}irred: $\forall(E, k) \in \operatorname{set} P$. is_irreducible $[C] E$
shows wstate_of_dstate $\left(N, P @ P^{\prime}, Q, n\right) \rightsquigarrow_{w}{ }^{*}$ wstate_of_dstate $\left(N, P @ r e d u c e _a l l ~ C P^{\prime}, Q, n\right)$
unfolding reduce_all_def
using p_irred
proof (induct length P^{\prime} arbitrary: $P P^{\prime}$)
case (Suc l)
note $i h=$ this(1) and suc_l $=$ this(2) and p_{-}irred $=t h i s(3)$
have $p^{\prime} _n n i l: P^{\prime} \neq[]$
using suc_l by auto

```
define j :: nat where
    j= Max (snd'set P')
obtain Dj :: 'a dclause where
    dj_in: Dj \in set P' and
    snd_dj: snd Dj = j
    using Max_in[of snd ' set P', unfolded image_def, simplified]
    by (metis image_def j_def length_Suc_conv list.set_intros(1) suc_l)
have }\forallk\in\mathrm{ snd ' set P'. k}\leq
    unfolding j_def using po_nnil by simp
then have j_max: }\forall(E,k)\in\mathrm{ set }\mp@subsup{P}{}{\prime}.j\geq
    unfolding image_def by fastforce
obtain P1' P2' :: 'a dclause list where
    p}\mp@subsup{}{}{\prime}:\mp@subsup{P}{}{\prime}=P\mp@subsup{1}{}{\prime}@Dj # P\mp@subsup{2}{}{\prime
    using split_list[OF dj_in] by blast
have wstate_of_dstate (N,P @ P1'@ Dj # P2',}Q,n
    \rightsquigarroww*}\mathrm{ wstate_of_dstate (N, P @ P1'@ apfst (reduce [C] []) Dj # P2',}Q,n
    unfolding append_assoc[symmetric]
    apply (subst (1 2) surjective_pairing[of Dj, unfolded snd_dj])
    apply (simp only: apfst_conv)
    apply (rule reduce_clause_in_P[of_ _ - [], unfolded append_Nil, OF c_in])
    using p_irred j_max[unfolded p] by (force simp: case_prod_beta)
    moreover have wstate_of_dstate(N,P @ P1'@ apfst (reduce [C] []) Dj # P2', Q,n)
        \rightsquigarroww*}\mathrm{ wstate_of_dstate (N, P @ map (apfst (reduce [C] [])) (P1'@ Dj # P2'), Q, n)
    apply (rule arg_cong2[THEN iffD1, of _ _ _ (\rightsquigarroww**), OF _ -
                ih[of P1'@ P2' apfst (reduce [C] []) Dj # P]])
    using suc_l reduce_idem p_irred unfolding p' by (auto simp:case_prod_beta)
    ultimately show ?case
    unfolding p' by simp
qed simp
lemma reduce_clauses_in_Q:
    assumes
        c_in:C}\in\mp@subsup{f}{st}{\prime}'set N and
        p_irred:}\forall(E,k)\in\mathrm{ set P. is_irreducible [C]E
    shows wstate_of_dstate (N,P,Q @ Q',n)
        \rightsquigarroww*
    using p_irred
proof (induct Q' arbitrary: P Q)
    case (Cons Dj Q')
    note ih = this(1) and p_irred = this(2)
    show ?case
    proof (cases is_irreducible [C] (fst Dj))
        case True
        then show ?thesis
        using ih[of _ Q @ [Dj]] p_irred by (simp add: case_prod_beta)
    next
        case d_red: False
        have wstate_of_dstate ( }N,P,Q\mathrm{ @ Dj # Q ', n)
        \rightsquigarroww*}\mp@subsup{}{*}{*}\mathrm{ wstate_of_dstate (N,(reduce [C] [] (fst Dj), snd Dj) # P,Q @ Q', n)
        using p_irred reduce_clause_in_Q[of _ P snd Dj [] _ Q Q' n, OF c_in _ d_red]
        by (cases Dj) force
        then show ?thesis
        using ih[of (reduce [C] [] (fst Dj), snd Dj) # P Q] d_red p_irred reduce_idem
        by (force simp: case_prod_beta)
    qed
qed simp
lemma eligible_iff:
```

```
eligible S \sigma As DA\longleftrightarrowAs=[] V length As=1 ^ maximal_wrt (hd As a a \sigma) (DA\cdot\sigma)
unfolding eligible.simps S_empty by (fastforce dest: hd_conv_nth)
lemma ord_resolve_one_side_prem:
    ord_resolve S CAs DA AAs As \sigma E\Longrightarrowlength CAs = 1 ^ length AAs=1}\wedge length As = 1
    by (force elim!: ord_resolve.cases simp: eligible_iff)
lemma ord_resolve_rename_one_side_prem:
    ord_resolve_rename S CAs DA AAs As \sigma E\Longrightarrowlength CAs=1 ^length AAs=1^ length As = 1
    by (force elim!: ord_resolve_rename.cases dest: ord_resolve_one_side_prem)
abbreviation Bin_ord_resolve :: 'a clause }=>\mathrm{ ' 'a clause }=>\mathrm{ ' 'a clause set where
    Bin_ord_resolve C D \equiv{E.\existsAA A \sigma. ord_resolve S[C]D[AA][A]\sigma E}
abbreviation Bin_ord_resolve_rename :: 'a clause = ' a clause }=>\mathrm{ ' 'a clause set where
    Bin_ord_resolve_rename C D \equiv{E.\existsAA A \sigma. ord_resolve_rename S [C] D [AA][A]\sigma E}
lemma resolve_on_eq_UNION_Bin_ord_resolve:
    mset'set (resolve_on A D CA) =
        {E. \existsAA\sigma. ord_resolve S [mset CA] ({#Neg A#} + mset D)[AA][A]\sigma E}
proof
    {
        fix E :: 'a literal list
        assume E \in set (resolve_on A D CA)
        then have E\in resolvent D A CA'{Ls. subseq Ls CA^ resolvable A D CALs}
            unfolding resolve_on_def by simp
        then obtain Ls where Ls_p: resolvent DACALs=E subseq Ls CA ^ resolvable A D CA Ls
        by auto
        define \sigma where \sigma= the (mgu {insert A (atms_of (mset Ls))})
        then have }\mp@subsup{\sigma}{-}{}p\mathrm{ :
            mgu {insert A (atms_of (mset Ls))}=Some \sigma
            Ls\not= []
            eligible S \sigma [A] (add_mset (Neg A) (mset D))
            strictly_maximal_wrt (A a \sigma) ((mset CA - mset Ls) \cdot\sigma)
            \forallL\in set Ls. is_pos L
            using Ls_p unfolding resolvable_def unfolding Let_def eligible.simps using S_empty by auto
            from }\mp@subsup{\sigma}{-}{\prime}p\mathrm{ have }\mp@subsup{\sigma}{-}{\prime}p2: the (mgu {insert A (atms_of (mset Ls))})=
                by auto
            have Ls_sub_CA:mset Ls\subseteq# mset CA
                using subseq_mset_subseteq_mset Ls_p by auto
            then have mset (resolvent D A CA Ls) = sum_list [mset CA - mset Ls] \cdot \sigma + mset D | \sigma
                unfolding resolvent_def \sigma_p2 subst_cls_def using remove_all_mset_minus[of Ls CA] by auto
    moreover
    have length [mset CA - mset Ls] = Suc 0
                by auto
    moreover
    have }\forallL\in\mathrm{ set Ls. is_pos L
                using }\mp@subsup{\sigma}{-}{}p(5) list_all_iff[of is_pos] by aut
    then have {#Pos (atm_of x). x\in# mset Ls#} = mset Ls
        by (induction Ls) auto
```



```
        using Ls_su\mp@subsup{_}{-}{}CA by auto
    moreover
    have Ls\not=[]
        using }\mp@subsup{\sigma}{-}{}p\mathrm{ by -
    moreover
    have Some \sigma = mgu {insert A (atm_of'set Ls)}
        using \sigma_p unfolding atms_of_def by auto
    moreover
    have eligible S \sigma[A](add_mset (Neg A) (mset D))
        using }\mp@subsup{\sigma}{-}{}p\mathrm{ by -
    moreover
    have strictly_maximal_wrt (A\cdota \sigma)([mset CA - mset Ls]! 0 | \sigma)
```

```
        using }\sigma_p(4) by aut
    moreover have S (mset CA)={#}
        by (simp add: S_empty)
    ultimately have \existsCs. mset (resolvent D A CA Ls) = sum_list Cs \cdot\sigma + mset D · \sigma
        ^length Cs = Suc 0 ^ mset CA=Cs!0 + {#Pos(atm_of x). x \in# mset Ls#}
        Ls\not=[]^ Some \sigma=mgu {insert A (atm_of'set Ls)}
        ^ eligible S \sigma [A] (add_mset (Neg A) (mset D))^ strictly_maximal_wrt (A\cdota \sigma) (Cs!0 0 \sigma)
        \wedge S (mset CA) = {#}
        by blast
    then have ord_resolve S [mset CA] (add_mset (Neg A) (mset D)) [image_mset atm_of (mset Ls)] [A]
        \sigma (mset (resolvent D A CA Ls))
        unfolding ord_resolve.simps by auto
    then have \existsAA \sigma. ord_resolve S [mset CA] (add_mset (Neg A) (mset D)) [AA][A]\sigma(mset E)
        using Ls_p by auto
    }
    then show mset 'set (resolve_on A D CA)
    \subseteq{E.\existsAA\sigma. ord_resolve S [mset CA] ({#Neg A#} + mset D) [AA][A]\sigma E}
    by auto
next
    {
    fix EAA\sigma
    assume ord_resolve S [mset CA] (add_mset (Neg A) (mset D)) [AA] [A] \sigma E
    then obtain Cs where res': E = sum_list Cs }\sigma+\mathrm{ mset D | }
        length Cs = Suc 0
        mset CA = Cs! 0 + poss AA
        AA = {#}
        Some \sigma=mgu {insert A (set_mset AA)}
        eligible S \sigma [A] (add_mset (Neg A) (mset D))
        strictly_maximal_wrt (A a \sigma) (Cs!0 | \sigma)
        S(Cs!0 + poss AA)={#}
        unfolding ord_resolve.simps by auto
    moreover define C where C=Cs!0
    ultimately have res:
        E= sum_list Cs \cdot \sigma + mset D · \sigma
        mset CA=C+ poss AA
        AA\not={#}
        Some \sigma = mgu {insert A (set_mset AA)}
        eligible S \sigma[A] (add_mset (Neg A) (mset D))
        strictly_maximal_wrt (A\cdota\sigma)(C\cdot\sigma)
        S(C+ poss AA)}={#
        unfolding ord_resolve.simps by auto
    from this(1) have
        E=C}\cdot\sigma+mset D \cdot\sigma
        unfolding C_def using res'(2) by (cases Cs) auto
    note res' = this res(2-7)
    have \existsAl. mset Al=AA\wedge subseq (map Pos Al)CA
        using res(2)
    proof (induction CA arbitrary: AA C)
    case Nil
    then show ?case by auto
    next
    case (Cons L CA)
    then show ?case
    proof (cases L\in# poss AA )
        case True
        then have pos_L: is_pos L
            by auto
            have rem: }\\mp@subsup{A}{}{\prime}.\mathrm{ . Pos }\mp@subsup{A}{}{\prime}\in# poss AA
                remove1_mset (Pos A')(C+ poss AA) = C + poss (remove1_mset A' AA)
                by (induct AA) auto
            have mset CA = C + (poss (AA - {#atm_of L#}))
            using True Cons(2)
            by (metis add_mset_remove_trivial rem literal.collapse(1) mset.simps(2) pos_L)
```

```
    then have \existsAl.mset Al= remove1_mset (atm_of L) AA ^ subseq (map Pos Al) CA
        using Cons(1)[of _ ((AA - {#atm_of L#}))] by metis
    then obtain Al where
        mset Al=remove1_mset (atm_of L) AA ^ subseq (map Pos Al) CA
        by auto
    then have
        mset (atm_of L # Al) = AA and
        subseq (map Pos (atm_of L # Al)) (L # CA)
        using True by (auto simp add: pos_L)
    then show ?thesis
        by blast
    next
    case False
    then have mset CA = remove1_mset L C + poss AA
        using Cons(2)
        by (metis Un_iff add_mset_remove_trivial mset.simps(2) set_mset_union single_subset_iff
            subset_mset.add_diff_assoc2 union_single_eq_member)
    then have }\existsAl\mathrm{ . mset Al=AA^ subseq (map Pos Al) CA
        using Cons(1)[of C-{#L#} AA] Cons(2) by auto
    then show ?thesis
        by auto
    qed
qed
then obtain Al where Al_p:mset Al=AA subseq (map Pos Al)CA
    by auto
define Ls :: 'a lclause where Ls = map Pos Al
have diff:mset CA - mset Ls = C
    unfolding Ls_def using res(2) Al_p(1) by auto
have ls_subq_ca: subseq Ls CA
    unfolding Ls_def using Al_p by -
moreover
{
    have }\existsy.mgu{\mathrm{ insert A (atms_of (mset Ls))} = Some y
        unfolding Ls_def using res(4) Al_p by (metis atms_of_poss mset_map)
    moreover have Ls\not=[]
        using Al_p(1) Ls_def res'(3) by auto
    moreover have \mp@subsup{\sigma}{_}{\prime}p: the (mgu {insert A (set Al)})=\sigma
        using res'(4) Al_p(1) by (metis option.sel set_mset_mset)
    then have eligible S (the (mgu {insert A (atms_of (mset Ls))})) [A]
        (add_mset (Neg A) (mset D))
        unfolding Ls_def using res by auto
    moreover have strictly_maximal_wrt (A a the (mgu {insert A (atms_of (mset Ls))}))
        ((mset CA - mset Ls) . the (mgu {insert A (atms_of (mset Ls))}))
        unfolding Ls_def using res \mp@subsup{\sigma}{_}{}p\mathrm{ Al_p by auto}
    moreover have }\forallL\in\mathrm{ set Ls. is_pos L
        by (simp add: Ls_def)
    ultimately have resolvable A D CA Ls
        unfolding resolvable_def unfolding eligible.simps using S_empty by simp
}
moreover have ls_sub_ca: mset Ls \subseteq# mset CA
    using ls_subq_ca subseq_mset_subseteq_mset[of Ls CA] by simp
```



```
    using diff unfolding subst_cls_def by simp
then have {#x l l \sigma. x \in# mset CA - mset Ls#} + {#M l \sigma.M \in# mset D#} = E
    using res'(1) by auto
```



```
    using remove_all_mset_minus[of Ls CA] ls_sub_ca by auto
then have mset (resolvent DACALs)=E
    unfolding resolvable_def Let_def resolvent_def using Al_p(1) Ls_def atms_of_poss res'(4)
    by (metis image_mset_union mset_append mset_map option.sel)
ultimately have E E mset'set (resolve_on A D CA)
    unfolding resolve_on_def by auto
```

```
}
then show {E.\existsAA \sigma. ord_resolve S [mset CA]({#Neg A#} + mset D)[AA][A]\sigma E}
    \subseteq m s e t ' s e t ~ ( r e s o l v e \_ o n ~ A ~ D ~ C A ) ~
    by auto
qed
lemma set_resolve_eq_UNION_set_resolve_on:
    set (resolve C D)=
    (\bigcupL\in set D.
        (case L of
            Pos - }=>{
        | Neg A = if maximal_wrt A (mset D) then set (resolve_on A (remove1 L D) C) else {}))
    unfolding resolve_def by (fastforce split: literal.splits if_splits)
lemma resolve_eq_Bin_ord_resolve: mset'set (resolve C D) = Bin_ord_resolve (mset C) (mset D)
    unfolding set_resolve_eq_UNION_set_resolve_on
    apply (unfold image_UN literal.case_distrib if_distrib)
    apply (subst resolve_on_eq_UNION_Bin_ord_resolve)
    apply (rule order_antisym)
    apply (force split:literal.splits if_splits)
    apply (clarsimp split: literal.splits if_splits)
    apply (rule_tac x = Neg A in bexI)
    apply (rule conjI)
        apply blast
        apply clarify
        apply (rule conjI)
        apply clarify
        apply (rule_tac x = AA in exI)
        apply (rule_tac x = \sigma in exI)
        apply (frule ord_resolve.simps[THEN iffD1])
        apply force
        apply (drule ord_resolve.simps[THEN iffD1])
        apply (clarsimp simp: eligible_iff simp del: subst_cls_add_mset subst_cls_union)
        apply (drule maximal_wrt_subst)
    apply sat
    apply (drule ord_resolve.simps[THEN iffD1])
    using set_mset_mset by fastforce
lemma poss_in_map_clauseD:
    poss AA\subseteq# map_clause f C \Longrightarrow #A0. poss AA0\subseteq# C^AA={#f A. A\in# AA0#}
proof (induct AA arbitrary: C)
    case (add A AA)
    note ih = this(1) and aaa_sub = this(2)
    have Pos A \in# map_clause f C
        using aaa_sub by auto
    then obtain A0 where
        pa0_in: Pos AO \in#C and
        a:A = f A0
        by clarify (metis literal.distinct(1) literal.exhaust literal.inject(1) literal.simps(9,10))
    have poss AA\subseteq# map_clause f (C - {#Pos A0#})
        using pa0_in aaa_sub[unfolded a] by (simp add: image_mset_remove1_mset_if insert_subset_eq_iff)
    then obtain AAO where
        paa0_sub: poss AA0\subseteq#C - {#Pos A0#} and
        aa: AA = image_mset f AAO
        using ih by meson
    have poss (add_mset A0 AA0)\subseteq#C
        using pa0_in paa0_sub by (simp add: insert_subset_eq_iff)
    moreover have add_mset A AA = image_mset f (add_mset A0 AA0)
        unfolding a aa by simp
    ultimately show ?case
```

by blast
qed simp
lemma poss_subset_filterD:
poss $A A \subseteq \#\{\# L \cdot l \varrho . L \in \#$ mset $C \#\} \Longrightarrow \exists A A 0 \cdot$ poss $A A 0 \subseteq \#$ mset $C \wedge A A=A A 0 \cdot a m \varrho$ unfolding subst_atm_mset_def subst_lit_def by (rule poss_in_map_clauseD)
lemma neg_in_map_literalD: Neg $A \in$ map_literal f ' $D \Longrightarrow \exists A 0$. Neg $A 0 \in D \wedge A=f A 0$
unfolding image_def by (clarify, case_tac x, auto)
lemma neg_in_filterD: Neg $A \in \#\left\{\# L \cdot l \varrho^{\prime} \cdot L \in \#\right.$ mset $\left.D \#\right\} \Longrightarrow \exists A 0$. Neg A0 $\in \#$ mset $D \wedge A=A 0 \cdot a \varrho^{\prime}$ unfolding subst_lit_def image_def by (rule neg_in_map_literalD) simp
lemma resolve_rename_eq_Bin_ord_resolve_rename:
mset ' set (resolve_rename C D) $=$ Bin_ord_resolve_rename (mset C) (mset D)
proof (intro order_antisym subsetI)
let $? \varrho s=$ renamings_apart $[$ mset D, mset $C]$
define $\varrho^{\prime}::$'s where $\varrho^{\prime}=h d ? \varrho s$
define ϱ :: ' s where
$\varrho=$ last ? ϱs
have $t l _\varrho s: t l ? \varrho s=[\varrho]$
unfolding ϱ_{-}def
using renamings_apart_length Nitpick.size_list_simp(2) Suc_length_conv last.simps
by (smt length_greater_0_conv list.sel(3))
\{
fix E
assume $e_{\text {_in }}: E \in$ mset'set (resolve_rename $C D$)
from e_{-}in obtain $A A::{ }^{\prime} a$ multiset and $A:{ }^{\prime} a$ and $\sigma::{ }^{\prime} s$ where
aa_sub: poss $A A \subseteq \#$ mset $C \cdot \varrho$ and
a_in: Neg $A \in \#$ mset $D \cdot \varrho^{\prime}$ and
res_e: ord_resolve $S[$ mset $C \cdot \varrho]\left\{\# L \cdot l \varrho^{\prime} . L \in \#\right.$ mset $\left.D \#\right\}[A A][A] \sigma E$
unfolding ϱ^{\prime} _def $\varrho_{-} d e f$
apply atomize_elim
using e_in unfolding resolve_rename_def Let_def resolve_eq_Bin_ord_resolve
apply clarsimp
apply (frule ord_resolve_one_side_prem)
apply (frule ord_resolve.simps[THEN iffD1])
apply (rule_tac $x=A A$ in exI)
apply (clarsimp simp: subst_cls_def)
apply (rule_tac $x=A$ in exI)
by (metis (full_types) Melem_subst_cls set_mset_mset subst_cls_def union_single_eq_member)
obtain $A A 0$:: 'a multiset where aa0_sub: poss $A A 0 \subseteq \#$ mset C and
$a a: A A=A A O \cdot a m \varrho$
using aa_sub
apply atomize_elim
apply (rule ord_resolve.cases[OF res_e])
by (rule poss_subset_filterD[OF aa_sub[unfolded subst_cls_def]])
obtain $A 0$:: ' a where
a0_in: Neg $A 0 \in$ set D and
$a: A=A 0 \cdot a \varrho^{\prime}$
apply atomize_elim
apply (rule ord_resolve.cases[OF res_e])
using neg_in_filterD[OF a_in[unfolded subst_cls_def]] by simp
show $E \in$ Bin_ord_resolve_rename (mset $C)(m s e t D)$
unfolding ord_resolve_rename.simps

```
        using res_e
        apply clarsimp
        apply (rule_tac x = AA0 in exI)
        apply (intro conjI)
            apply (rule aa0_sub)
            apply (rule_tac x = A0 in exI)
            apply (intro conjI)
            apply (rule a0_in)
            apply (rule_tac x = \sigma in exI)
            unfolding aa a \varrho @_def[symmetric] @_def[symmetric] tl_@s by (simp add: subst_cls_def)
}
{
    fix }
    assume e_in: E \in Bin_ord_resolve_rename (mset C) (mset D)
    show E mset'set (resolve_rename C D)
        using e_in
        unfolding resolve_rename_def Let_def resolve_eq_Bin_ord_resolve ord_resolve_rename.simps
        apply clarsimp
        apply (rule_tac x = AA am \varrho in exI)
        apply (rule_tac x = A \cdota \varrho' in exI)
        apply (rule_tac x =\sigma in exI)
        unfolding tl_\varrhos \varrho \varrho_def \varrho_def by (simp add: subst_cls_def subst_cls_lists_def)
    }
qed
lemma bin_ord_FO_\Gamma_def:
    ord_FO_\Gamma S = {Infer {#CA#} DA E|CA DA AA A \sigma E. ord_resolve_rename S [CA] DA [AA][A]\sigma E}
    unfolding ord_FO_\Gamma_def
    apply (rule order.antisym)
    apply clarify
    apply (frule ord_resolve_rename_one_side_prem)
    apply simp
    apply (metis Suc_length_conv length_0_conv)
    by blast
lemma ord_FO_\Gamma_side_prem: }\gamma\in\mathrm{ ord_FO_Г S C side_prems_of }\gamma={#THE D. D\in# side_prems_of \gamma#
    unfolding bin_ord_FO_\Gamma_def by clarsimp
lemma ord_FO_\Gamma_infer_from_Collect_eq:
    {\gamma\in ord_FO_\Gamma S. infer_from (DD\cup{C}) \gamma}\wedgeC\in# prems_of \gamma} =
    {\gamma\in ord_FO_\Gamma S.\existsD\inDD\cup{C}.prems_of \gamma = {#C,D#}}
    unfolding infer_from_def
    apply (rule set_eq_subset[THEN iffD2])
    apply (rule conjI)
    apply clarify
    apply (subst (asm) (1 2) ord_FO_\Gamma_side_prem, assumption, assumption)
    apply (subst (1) ord_FO_\Gamma_side_prem, assumption)
    apply force
    apply clarify
    apply (subst (asm) (1) ord_FO_\Gamma_side_prem, assumption)
    apply (subst (1 2) ord_FO_\Gamma_side_prem, assumption)
    by force
lemma inferences_between_eq_UNION: inference_system.inferences_between(ord_FO_\Gamma S) Q C=
    inference_system.inferences_between (ord_FO_\Gamma S) {C} C
    U(\bigcupD\inQ. inference_system.inferences_between(ord_FO_\Gamma S) {D}C)
    unfolding ord_FO_\Gamma_infer_from_Collect_eq inference_system.inferences_between_def by auto
lemma concls_of_inferences_between_singleton_eq_Bin_ord_resolve_rename:
concls_of (inference_system.inferences_between (ord_FO_Г S) \{D\}C)=
Bin_ord_resolve_rename C C \(\cup\) Bin_ord_resolve_rename C D \(\cup\) Bin_ord_resolve_rename D C
proof (intro order_antisym subsetI)
fix \(E\)
```

assume $e _i n: E \in$ concls_of (inference_system.inferences_between (ord_FO_ ΓS) $\{D\} C$)
then show $E \in$ Bin_ord_resolve_rename $C C \cup$ Bin_ord_resolve_rename $C D$
\cup Bin_ord_resolve_rename $D C$
unfolding inference_system.inferences_between_def ord_FO_Г_infer_from_Collect_eq bin_ord_FO_Г_def infer_from_def by (fastforce simp: add_mset_eq_add_mset)
qed (force simp: inference_system.inferences_between_def infer_from_def ord_FO_Г_def)
lemma concls_of_inferences_between_eq_Bin_ord_resolve_rename:
concls_of (inference_system.inferences_between (ord_FO_Г S) Q C) =
Bin_ord_resolve_rename $C C \cup(\bigcup D \in Q$. Bin_ord_resolve_rename $C D \cup$ Bin_ord_resolve_rename $D C)$ by (subst inferences_between_eq_UNION)
(auto simp: image_Un image_UN concls_of_inferences_between_singleton_eq_Bin_ord_resolve_rename)
lemma resolve_rename_either_way_eq_congls_of_inferences_between:
mset ' set (resolve_rename $C C) \cup(\bigcup D \in Q$. mset'set (resolve_rename_either_way $C D))=$ concls_of (inference_system.inferences_between (ord_FO_Г S) (mset ' Q) (mset C))
by (simp add: resolve_rename_either_way_def image_Un resolve_rename_eq_Bin_ord_resolve_rename concls_of_inferences_between_eq_Bin_ord_resolve_rename UN_Un_distrib)
lemma compute_inferences:

assumes

ci_in: $(C, i) \in$ set P and
ci_min: $\forall(D, j) \in \#$ mset (map (apfst mset) P). weight (mset $C, i) \leq$ weight (D, j)
shows
wstate_of_dstate $([], P, Q, n) \rightsquigarrow_{w}$
wstate_of_dstate (map $(\lambda D .(D, n))$ (remdups_gen mset (resolve_rename C C @
concat (map (resolve_rename_either_way $C \circ f s t) Q)$), filter $(\lambda(D, j)$. mset $D \neq \operatorname{mset} C) P,(C, i) \# Q$, Suc $n)$
(is _ \rightsquigarrow_{w} wstate_of_dstate (?N, -))
proof -
have ms_ci_in: (mset $C, i) \in \#$ image_mset (apfst mset) (mset P)
using ci_in by force
show ?thesis
apply (rule arg_cong2[THEN iffD1, of _ _ _ $\left(\rightsquigarrow_{w}\right)$, OF _
wrp.inference_computation $[$ of mset (map (apfst mset) $P)-\{\#($ mset $C, i) \#\}$ mset $C i$
mset (map (apfst mset) ?N) n mset (map (apfst mset) Q)]])
apply (simp add: add_mset_remove_trivial_eq[THEN iffD2, OF ms_ci_in, symmetric])
using ms_ci_in
apply (simp add: ci_in image_mset_remove1_mset_if)
apply (smt apfst_conv case_prodE case_prodI2 case_prod_conv filter_mset_cong
image_mset_filter_swap mset_filter)
apply (metis ci_min in_diffD)
apply (simp only: list.map_comp apfst_comp_rpair_const)
apply (simp only: list.map_comp[symmetric])
apply (subst mset_map)
apply (unfold mset_map_remdups_gen mset_remdups_gen_ident)
apply (subst image_mset_mset_set)
apply (simp add: inj_on_def)
apply (subst mset_set_eq_iff)
apply simp
apply (simp add: finite_ord_FO_resolution_inferences_between)
apply (rule arg_cong $\left[\right.$ of $\left.\left.__{-} \lambda N .(\lambda D .(D, n)) ' N\right]\right)$
apply (simp only: map_concat list.map_comp image_comp)
using resolve_rename_either_way_eq_congls_of_inferences_between[of C fst'set Q, symmetric]
by (simp add: image_comp comp_def image_UN)
qed
lemma nonfinal_deterministic_RP_step:

assumes

nonfinal: $\neg i s_{-}$final_dstate St and
step: St ${ }^{\prime}=$ deterministic_RP_step St
shows wstate_of_dstate $S t \rightsquigarrow_{w}{ }^{+}$wstate_of_dstate $S t^{\prime}$

```
proof -
    obtain N P Q :: 'a dclause list and n :: nat where
        st:St=(N,P,Q,n)
        by (cases St) blast
    note step = step[unfolded st deterministic_RP_step.simps, simplified]
    show ?thesis
    proof (cases \existsCi}\in\mathrm{ set P set Q. fst Ci= [])
        case nil_in: True
        note step = step[simplified nil_in, simplified]
        have nil_in': [] \in fst' set (P @ Q)
        using nil_in by (force simp: image_def)
    have star: [] f fst'set (P@ Q)\Longrightarrow
        wstate_of_dstate ( N, P,Q,n)
        \rightsquigarroww*
        proof (induct length (remdups_clss P) arbitrary: N P Q n)
            case 0
            note len_p = this(1) and nil_in' = this(2)
            have p_nil: P = []
                using len_p remdups_clss_Nil_iff by simp
            have wstate_of_dstate ( N, [], Q, n) \rightsquigarroww** wstate_of_dstate ([], [],Q,n)
                by (rule empty_N_if_Nil_in_P_or_Q[OF nil_in'[unfolded p_nil]])
            then show ?case
                unfolding p_nil by simp
    next
            case (Suc k)
            note ih = this(1) and suc_k = this(2) and nil_in' = this(3)
            have P}\not=[
                using suc_k remdups_clss_Nil_iff by force
            hence p_cons: P = hd P # tl P
                by simp
            obtain C :: 'a lclause and i :: nat where
                ci:(C,i)= select_min_weight_clause (hd P) (tl P)
                by (metis prod.exhaust)
            have ci_in: (C,i) \in set P
                unfolding ci using p_cons select_min_weight_clause_in[of hd P tl P] by simp
            have ci_min: }\forall(D,j)\in# mset (map (apfst mset) P). weight (mset C, i) \leq weight ( D, j
                by (subst p_cons) (simp add: select_min_weight_clause_min_weight[OF ci, simplified])
            let ? }\mp@subsup{P}{}{\prime}=\operatorname{filter ( }\lambda(D,j).mset D\not= mset C)
            have ms_p'_ci_q_eq: mset (remdups_clss ?P' @ (C,i)# Q)=mset (remdups_clss P @ Q)
                apply (subst (2) p_cons)
                apply (subst remdups_clss.simps(2))
                by (auto simp: Let_def case_prod_beta p_cons[symmetric] ci[symmetric])
            then have len_p: length (remdups_clss P) = length (remdups_clss ?P') + 1
                by (smt Suc_eq_plus1_left add.assoc add_right_cancel length_Cons length_append
                    mset_eq_length)
        have wstate_of_dstate ( }N,P,Q,n)\rightsquigarrow\mp@subsup{w}{*}{*}\mathrm{ wstate_of_dstate ([], P, Q,n)
                by (rule empty_N_if_Nil_in_P_or_Q[OF nil_in ])
            also obtain }\mp@subsup{N}{}{\prime}:: 'a dclause list wher
                ... \rightsquigarrowwwwstate_of_dstate ( }\mp@subsup{N}{}{\prime},??\mp@subsup{P}{}{\prime},(C,i)#Q, Suc n
                by (atomize_elim, rule exI, rule compute_inferences[OF ci_in], use ci_min in fastforce)
            also have ... \rightsquigarrow \rightsquigarroww** wstate_of_dstate ([], [], remdups_clss P @ Q, n + length (remdups_clss P))
                apply (rule arg_cong2[THEN iffD1, of _ _ ( (\rightsquigarroww*), OF _ -
                    ih[of ?P'}(C,i)#Q N'Suc n], OF refl]
```

```
    using ms_p__ci_q_eq suc_k nil_in' ci_in
        apply (simp_all add: len_p)
        apply (metis (no_types) apfst_conv image_mset_add_mset)
    by force
    finally show?case
    qed
    show ?thesis
    unfolding st step using star[OF nil_in'] nonfinal[unfolded st is_final_dstate.simps]
    by cases simp_all
next
    case nil_ni: False
    note step = step[simplified nil_ni, simplified]
    show ?thesis
    proof (cases N)
    case n_nil: Nil
    note step = step[unfolded n_nil, simplified]
    show ?thesis
    proof (cases P)
        case Nil
        then have False
            using n_nil nonfinal[unfolded st] by (simp add: is_final_dstate.simps)
        then show ?thesis
            using step by simp
    next
        case p_cons: (Cons P0 P')
        note step = step[unfolded p_cons list.case, folded p_cons]
        obtain C :: 'a lclause and i :: nat where
            ci:(C,i) = select_min_weight_clause P0 P'
            by (metis prod.exhaust)
        note step = step[unfolded select, simplified]
        have ci_in: (C,i) \in set P
            by (rule select_min_weight_clause_in[of P0 P', folded ci p_cons])
        show ?thesis
            unfolding st n_nil step p_cons[symmetric] ci[symmetric] prod.case
            by (rule tranclp.r_into_trancl, rule compute_inferences[OF ci_in])
            (simp add: select_min_weight_clause_min_weight[OF ci, simplified] p_cons)
    qed
next
    case n_cons:(Cons Ci N')
    note step = step[unfolded n_cons, simplified]
    obtain C ::' 'a lclause and i :: nat where
        ci:Ci=(C,i)
        by (cases Ci) simp
    note step = step[unfolded ci, simplified]
    define C' :: 'a lclause where
        C'= reduce (map fst P @ map fst Q) [] C
    note step = step[unfolded ci C'_def[symmetric], simplified]
    have wstate_of_dstate ((E @ C, i) # N', P, Q,n)
        \rightsquigarroww*}\mp@subsup{}{}{*}\mathrm{ wstate_of_dstate ((E @ reduce (map fst P @ map fst Q) E C, i) # N', P, Q,n) for E
        unfolding C'_def
    proof (induct C arbitrary: E)
    case (Cons L C)
    note ih = this(1)
    show ?case
    proof (cases is_reducible_lit (map fst P @ map fst Q) (E @ C) L)
        case l_red: True
```

```
    then have red_lc:
        reduce (map fst P @ map fst Q) E (L # C) = reduce (map fst P @ map fst Q) E C
    by simp
    obtain D D' :: 'a literal list and L' :: 'a literal and \sigma :: 's where
        D \in set (map fst P @ map fst Q) and
        D' = remove1 L L'D and
        L'\in set D and
        - L = L'}\cdotl\sigma an
        mset D' }\mp@subsup{D}{}{\prime}\sigma\subseteq#mset (E@C
        using l_red unfolding is_reducible_lit_def comp_def by blast
    then have }\sigma\mathrm{ :
        mset D' 
        - L = L''l \sigma^ mset D' }\cdot\sigma\subseteq#mset (E@C
        unfolding is_reducible_lit_def by (auto simp: comp_def)
    have wstate_of_dstate ((E @ L# C,i)# N',}P,Q,n
        \rightsquigarroww wstate_of_dstate ((E@ C,i) # N',}P,Q,n
    by (rule arg_cong2[THEN iffD1, of _ - _ ( }\mp@subsup{~}{w}{})\mathrm{ ),OF _ _
            wrp.forward_reduction[of mset D' L' mset (map (apfst mset) P)
                        mset (map (apfst mset) Q)L\sigma mset (E @ C) mset (map (apfst mset) N')
            i n]])
        (use \sigma in 〈auto simp: comp_def`)
    then show ?thesis
    unfolding red_lc using ih[of E] by (rule converse_rtranclp_into_rtranclp)
next
    case False
    then show ?thesis
        using ih[of L # E] by simp
    qed
qed simp
then have red_C:
    wstate_of_dstate ((C,i)# N', P,Q,n) \rightsquigarroww* wstate_of_dstate ((C', i) # N', P,Q,n)
    unfolding C'_def by (metis self_append_conv2)
have proc_C:wstate_of_dstate (( }\mp@subsup{C}{}{\prime},i)#\mp@subsup{N}{}{\prime},\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime},n'
    \rightsquigarroww}\mathrm{ wstate_of_dstate ( }\mp@subsup{N}{}{\prime},(\mp@subsup{C}{}{\prime},i)#\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime},\mp@subsup{n}{}{\prime})\mathrm{ for }\mp@subsup{P}{}{\prime}\mp@subsup{Q}{}{\prime}\mp@subsup{n}{}{\prime
    by (rule arg_cong2[THEN iffD1, of _ _ _ ( }\mp@subsup{\rightsquigarrow~w)}{*}{\prime}),OF _ -
        wrp.clause_processing[of mset (map (apfst mset) N') mset C' i
            mset (map (apfst mset) P') mset (map (apfst mset) Q') n\],
        simp+)
show ?thesis
proof (cases C' = [])
    case True
    note c'_nil = this
    note step = step[simplified c'_nil, simplified]
```


have

```
filter_p: filter (Not \(\circ\) strictly_subsume [[]] \(\circ\) fst) \(P=[]\) and
filter_q: filter (Not ○ strictly_subsume [[]] \(\circ\) fst) \(Q=[]\)
using nil_ni unfolding strictly_subsume_def filter_empty_conv find_None_iff by force+
note red_C[unfolded \(c^{\prime}\) _nil]
also have wstate_of_dstate \(\left(([], i) \# N^{\prime}, P, Q, n\right)\)
\(\rightsquigarrow w^{*}\) wstate_of_dstate (( \(\left.[\mathrm{l}, i) \# N^{\prime},[], Q, n\right)\)
by (rule arg_cong2[THEN iffD1, of \(-\ldots\left(\rightsquigarrow w^{*}\right)\), OF remove_strictly_subsumed_clauses_in_P[of [] - [], unfolded append_Nil], OF refl])
(auto simp: filter_p)
also have \(\ldots \rightsquigarrow_{w}{ }^{*}\) wstate_of_dstate \(\left(([], i) \# N^{\prime},[],[], n\right)\)
```



```
remove_strictly_subsumed_clauses_in_Q[of [] - - [], unfolded append_Nil], OF refl])
( auto simp: filter_q)
```

also note proc_C[unfolded $c^{\prime} _$nil, THEN tranclp.r_into_trancl $[$of $\left.(\rightsquigarrow w)]\right]$
also have wstate_of_dstate ($\left.N^{\prime},[([], i)],[], n\right)$
$\rightsquigarrow_{w}{ }^{*}$ wstate_of_dstate ([], [([], i)], [], n)
by (rule empty_N_if_Nil_in_P_or_Q) simp
also have $\ldots \rightsquigarrow_{w}$ wstate_of_dstate ([], [], [([], i)], Suc n)
by (rule arg_cong2[THEN iffD1, of $\ldots\left(\rightsquigarrow_{w}\right)$, OF \ldots wrp.inference_computation[of $\{\#\}\{\#\} i\{\#\} n\{\#\}]])$
(auto simp: ord_FO_resolution_inferences_between_empty_empty)
finally show ?thesis
unfolding step st n_cons ci .
next
case $c^{\prime} _n n i l:$ False
note step $=$ step $\left[\right.$ simplified c^{\prime} - n nill, simplified]
show ?thesis
proof (cases is_tautology $C^{\prime} \vee$ subsume (map fst P @ map fst Q) C^{\prime})
case taut_or_subs: True
note step $=$ step[simplified taut_or_subs, simplified]
have wstate_of_dstate $\left(\left(C^{\prime}, i\right) \# N^{\prime}, P, Q, n\right) \rightsquigarrow_{w}$ wstate_of_dstate $\left(N^{\prime}, P, Q, n\right)$
proof (cases is_tautology C^{\prime})
case True
then obtain $A::{ }^{\prime} a$ where
neg_a: Neg $A \in \operatorname{set} C^{\prime}$ and pos_a: Pos $A \in \operatorname{set} C^{\prime}$ unfolding is_tautology_def by blast
show ?thesis by (rule arg_cong2[THEN iffD1, of _ . . $\left(\rightsquigarrow_{w}\right)$, OF _ wrp.tautology_deletion[of A mset C^{\prime} mset (map (apfst mset) N^{\prime}) i mset (map (apfst mset) P) mset (map (apfst mset) Q) n]])
(use neg_a pos_a in simp_all)
next

case False

then have subsume (map fst P @ map fst Q) C^{\prime} using taut_or_subs by blast
then obtain $D::$ 'a lclause where d_in: $D \in \operatorname{set}(m a p f s t P$ @ map fst $Q)$ and subs: subsumes (mset $D)\left(m s e t C^{\prime}\right)$ unfolding subsume_def by blast
show ?thesis

wrp.forward_subsumption[of mset D mset (map (apfst mset) P) mset (map (apfst mset) Q) mset C^{\prime} mset (map (apfst mset) N^{\prime}) in]], use d_in subs in (auto simp: subsume_def〉)
qed
then show ?thesis
unfolding step st n_cons ci using red_C by (rule rtranclp_into_tranclp1[rotated])
next
case not_taut_or_subs: False
note step $=$ step $\left[\right.$ simplified $n o t _t a u t _o r_{-} s u b s$, simplified $]$
define $P^{\prime}::\left({ }^{\prime}\right.$ a literal list \times nat) list where $P^{\prime}=$ reduce_all $C^{\prime} P$
obtain back_to_P Q^{\prime} :: 'a dclause list where
red_ $Q:\left(\right.$ back_to_ $\left.P, Q^{\prime}\right)=$ reduce_all2 $C^{\prime} Q$
by (metis prod.exhaust)
note step $=$ step [unfolded red_ $Q[$ symmetric], simplified $]$
define $Q^{\prime \prime}::($ (a literal list \times nat) list where
$Q^{\prime \prime}=$ filter $\left(\right.$ Not \circ strictly_subsume $\left[C^{\prime}\right] \circ f$ st $) Q^{\prime}$
define $P^{\prime \prime}::($ ('a literal list \times nat) list where
$P^{\prime \prime}=$ filter $\left(\right.$ Not \circ strictly_subsume $\left.\left[C^{\prime}\right] \circ f s t\right)\left(\right.$ back_to_ $\left.P @ P^{\prime}\right)$
note step $=$ step $\left[\right.$ unfolded $P^{\prime}{ }_{-}$def $[$symmetric $] Q^{\prime \prime}{ }_{\text {_def }}[$ symmetric $] P^{\prime \prime}{ }_{\text {_def }}[$ symmetric $]$, simplified]

```
            note red_C
            also have wstate_of_dstate (( ( ', i) # N',}P,Q,n
                \rightsquigarroww*
                    unfolding P'_def by (rule reduce_clauses_in_P[of _ _ [], unfolded append_Nil]) simp+
                    also have ... \rightsquigarrowww}\mp@subsup{w}{}{*}\mathrm{ wstate_of_dstate ((C',i)# N
                    unfolding P'_def
                    by (rule reduce_clauses_in_Q[of C' - - [] Q, folded red_Q,
                        unfolded append_Nil prod.sel])
                (auto intro: reduce_idem simp: reduce_all_def)
                    also have ... \rightsquigarrowww}\mp@subsup{w}{}{*}\mathrm{ wstate_of_dstate (( }\mp@subsup{C}{}{\prime},i)#\mp@subsup{N}{}{\prime},\mathrm{ back_to_P @ P', Q',}n
                    unfolding }\mp@subsup{Q}{}{\prime\prime}\mp@subsup{}{\mathrm{ _def}}{
                    by (rule remove_strictly_subsumed_clauses_in_Q[of - - - [], unfolded append_Nil])
                    simp
                    also have ... \rightsquigarrow\mp@subsup{w}{}{*}\mathrm{ wstate_of_dstate (( }\mp@subsup{C}{}{\prime},i)#\mp@subsup{N}{}{\prime},\mp@subsup{P}{}{\prime\prime},\mp@subsup{Q}{}{\prime\prime},n)
                    unfolding P '/_def
                    by (rule remove_strictly_subsumed_clauses_in_P[of _ - [], unfolded append_Nil]) auto
                    also note proc_C[THEN tranclp.r_into_trancl[of ( }~~w)]
            finally show ?thesis
                    unfolding step st n_cons ci P 'I_def by simp
            qed
        qed
        qed
    qed
qed
lemma final_deterministic_RP_step: is_final_dstate St \Longrightarrow deterministic_RP_step St = St
    by (cases St) (auto simp: deterministic_RP_step.simps is__inal_dstate.simps)
lemma deterministic_RP_SomeD:
    assumes deterministic_RP (N,P,Q,n)=Some R
```



```
        ^is_final_dstate ( }\mp@subsup{N}{}{\prime},\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime},\mp@subsup{n}{}{\prime})\wedgeR=\mathrm{ map fst }\mp@subsup{Q}{}{\prime
proof (induct rule: deterministic_RP.raw_induct[OF _ assms])
    case (1 self_call St R)
    note ih = this(1) and step = this(2)
    obtain N P Q :: 'a dclause list and n :: nat where
        st:St=(N,P,Q,n)
        by (cases St) blast
    note step = step[unfolded st, simplified]
    show ?case
    proof (cases is_final_dstate ( }N,P,Q,n)
        case True
        then have (deterministic_RP_step ^^ 0) (N,P,Q,n) =(N,P,Q,n)
            \is_final_dstate ( }N,P,Q,n)\wedgeR=\mathrm{ map fst Q
            using step by simp
        then show ?thesis
            unfolding st by blast
    next
        case nonfinal: False
        note step = step[simplified nonfinal, simplified]
        obtain N' 的' Q':: 'a dclause list and n' k :: nat where
        (deterministic_RP_step `^ k) (deterministic_RP_step (N,P,Q,n)) = (N', P', Q', n') and
        is_final_dstate ( }\mp@subsup{N}{}{\prime},\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime},n'
        R=map fst }\mp@subsup{Q}{}{\prime
        using ih[OF step] by blast
        then show ?thesis
        unfolding st funpow_Suc_right[symmetric, THEN fun_cong, unfolded comp_apply] by blast
    qed
qed
```

```
context
    fixes
        NO :: 'a dclause list and
        n0 :: nat and
        R :: 'a lclause list
begin
abbreviation St0 :: 'a dstate where
    St0 \equiv(N0, [], [],n0)
abbreviation grounded_NO where
    grounded_NO \equivgrounding_of_clss (set (map (mset \circfst) NO))
abbreviation grounded_R :: 'a clause set where
    grounded_R \equiv grounding_of_clss (set (map mset R))
primcorec derivation_from :: 'a dstate = ' 'a dstate llist where
    derivation_from St =
        LCons St (if is_final_dstate St then LNil else derivation_from (deterministic_RP_step St))
abbreviation Sts :: 'a dstate llist where
    Sts \equivderivation_from St0
abbreviation wSts :: 'a wstate llist where
    wSts \equivlmap wstate_of_dstate Sts
lemma full_deriv_wSts_trancl_weighted_RP: full_chain ( }\rightsquigarrow\mp@subsup{w}{}{+})\mathrm{ wSts
proof -
    have Sts' = derivation_from St0' \Longrightarrow full_chain ( }\mp@subsup{~~w}{w}{+})(\mathrm{ lmap wstate_of_dstate Sts')
        for St0' Sts'
    proof (coinduction arbitrary:St0' Sts' rule: full_chain.coinduct)
        case sts': full_chain
        show ?case
        proof (cases is_final_dstate St0')
            case True
            then have ltl (lmap wstate_of_dstate Sts') = LNil
            unfolding sts' by simp
            then have lmap wstate_of_dstate Sts' = LCons (wstate_of_dstate St0') LNil
                unfolding sts' by (subst derivation_from.code, subst (asm) derivation_from.code, auto)
            moreover have \SSt'.. ᄀ wstate_of_dstate St0' }\mp@subsup{\rightsquigarrow}{w}{}S\mp@subsup{t}{}{\prime\prime
            using True by (rule is_final_dstate_imp_not_weighted_RP)
            ultimately show?thesis
            by (meson tranclpD)
        next
            case nfinal: False
            have lmap wstate_of_dstate Sts' =
                LCons (wstate_of_dstate St0') (lmap wstate_of_dstate (ltl Sts'))
                unfolding sts' by (subst derivation_from.code) simp
            moreover have ltl Sts' = derivation_from (deterministic_RP_step St0')
                unfolding sts' using nfinal by (subst derivation_from.code) simp
            moreover have wstate_of_dstate St0' }\mp@subsup{\rightsquigarrow}{w}{}\mp@subsup{}{}{+}\mathrm{ wstate_of_dstate (lhd (ltl Sts'))
                unfolding sts' using nonfinal_deterministic_RP_step[OF nfinal refl] nfinal
                by (subst derivation_from.code) simp
            ultimately show ?thesis
                by fastforce
        qed
    qed
    then show ?thesis
        by blast
qed
```

lemmas deriv_wSts_trancl_weighted_RP $=$ full_chain_imp_chain[OF full_deriv_wSts_trancl_weighted_RP]

```
definition sswSts :: 'a wstate llist where
    sswSts = (SOME wSts'.
        full_chain ( }~\mp@subsup{w}{w}{})w\mathrm{ wSts' }^ emb wSts wSts' ^ lhd wSts' = lhd wSts ^ llast wSts' = llast wSts
lemma sswSts:
    full_chain ( }~w)\mathrm{ sswSts ^ emb wSts sswSts ^ lhd sswSts = lhd wSts ^ llast sswSts = llast wSts
    unfolding sswSts_def
    by (rule someI_ex[OF full_chain_tranclp_imp_exists_full_chain[OF
        full_deriv_wSts_trancl_weighted_RP]])
lemmas full_deriv_sswSts_weighted_RP = sswSts[THEN conjunct1]
lemmas emb_sswSts = sswSts[THEN conjunct2, THEN conjunct1]
lemmas lfinite_sswSts_iff = emb_lfinite[OF emb_sswSts]
lemmas lhd_sswSts = sswSts[THEN conjunct2, THEN conjunct2, THEN conjunct1]
lemmas llast_sswSts = sswSts[THEN conjunct2, THEN conjunct2, THEN conjunct2]
lemmas deriv_sswSts_weighted_RP = full_chain_imp_chain[OF full_deriv_sswSts_weighted_RP]
lemma not_lnull_sswSts: ᄀ lnull sswSts
    using deriv_sswSts_weighted_RP by (cases rule: chain.cases) auto
lemma empty_ssgP0:wrp.P_of_wstate (lhd sswSts) = {}
    unfolding lhd_sswSts by (subst derivation_from.code) simp
lemma empty_ssgQ0:wrp.Q_of_wstate (lhd sswSts) = {}
    unfolding lhd_sswSts by (subst derivation_from.code) simp
lemmas sswSts_thms = full_deriv_sswSts_weighted_RP empty_ssgP0 empty_ssgQ0
abbreviation S_ssgQ :: 'a clause => 'a clause where
    S_ssgQ \equiv wrp.S_gQ sswSts
abbreviation ord_\Gamma :: 'a inference set where
    ord_\Gamma \equivground_resolution_with_selection.ord_\Gamma S_ssgQ
abbreviation Rf :: 'a clause set = 'a clause set where
    Rf\equiv standard_redundancy_criterion.Rf
abbreviation Ri :: 'a clause set => 'a inference set where
    Ri\equiv standard_redundancy_criterion.Ri ord_\Gamma
abbreviation saturated_upto :: 'a clause set }=>\mathrm{ bool where
    saturated_upto \equiv redundancy_criterion.saturated_upto ord_\Gamma Rf Ri
context
    assumes drp_some: deterministic_RP St0 = Some R
begin
lemma lfinite_Sts:lfinite Sts
proof (induct rule: deterministic_RP.raw_induct[OF _ drp_some])
    case (1 self_call St St')
    note ih = this(1) and step = this(2)
    show ?case
        using step by (subst derivation_from.code, auto intro: ih)
qed
lemma lfinite_wSts: lfinite wSts
    by (rule lfinite_lmap[THEN iffD2,OF lfinite_Sts])
lemmas lfinite_sswSts = lfinite_sswSts_iff[THEN iffD2,OF lfinite_wSts]
theorem
```

```
deterministic_RP_saturated: saturated_upto grounded_R (is ?saturated) and
deterministic_RP_model: }I=s\mathrm{ grounded_NO }\longleftrightarrowI\modelss grounded_R (is ?model)
proof -
obtain }\mp@subsup{N}{}{\prime}\mp@subsup{P}{}{\prime}\mp@subsup{Q}{}{\prime}:: ' a dclause list and n' k :: nat wher
    k_steps:(deterministic_RP_step ^^ k) St0 = ( N', P', Q', n') (is _ = ?Stk) and
    final: is_final_dstate ( }\mp@subsup{N}{}{\prime},\mp@subsup{P}{}{\prime},\mp@subsup{Q}{}{\prime},\mp@subsup{n}{}{\prime})\mathrm{ and
    r:R = map fst Q 
    using deterministic_RP_SomeD[OF drp_some] by blast
have wrp:wstate_of_dstate St0 }\rightsquigarrow\mp@subsup{w}{}{*}\mathrm{ wstate_of_dstate (llast Sts)
    using lfinite_chain_imp_rtranclp_lhd_llast
    by (metis (no_types) deriv_sswSts_weighted_RP derivation_from.disc_iff derivation_from.simps(2)
        lfinite_Sts lfinite_sswSts llast_lmap llist.map_sel(1) sswSts)
have last_sts: llast Sts = ?Stk
proof -
    have (deterministic_RP_step ^^ k})\mathrm{ )St0' = ?Stk " llast (derivation_from St0') = ?Stk
        for St0' k'
    proof (induct k' arbitrary: St0')
        case 0
        then show ?case
            using final by (subst derivation_from.code) simp
    next
        case (Suc k')
        note ih = this(1) and suc_k'_steps = this(2)
        show ?case
        proof (cases is_final_dstate St0')
            case True
            then show ?thesis
                using ih[of deterministic_RP_step StO ] suc_k'_steps final_deterministic_RP_step
                    funpow_fixpoint[of deterministic_RP_step]
                by auto
        next
            case False
            then show ?thesis
                using ih[of deterministic_RP_step StO` suc_k'_steps
                by (subst derivation_from.code) (simp add:llast_LCons funpow_swap1[symmetric])
        qed
    qed
    then show ?thesis
        using k_steps by blast
qed
have fin_gr_fgsts: lfinite (lmap wrp.grounding_of_wstate sswSts)
    by (rule lfinite_lmap[THEN iffD2,OF lfinite_sswSts])
have lim_last: Liminf_llist (lmap wrp.grounding_of_wstate sswSts) =
    wrp.grounding_of_wstate (llast sswSts)
    unfolding lfinite_Liminf_llist[OF fin_gr_fgsts] llast_lmap[OF lfinite_sswSts not_lnull_sswSts]
    using not_lnull_sswSts by simp
have gr_st0:wrp.grounding_of_wstate (wstate_of_dstate St0) = grounded_NO
    by (simp add: clss_of_state_def comp_def)
have ?saturated ^ ?model
proof (cases [] \in set R)
    case True
    then have emp_in: {#}\in grounded_R
        unfolding grounding_of_clss_def grounding_of_cls_def by (auto intro: ex_ground_subst)
    have grounded_R\subseteqwrp.grounding_of_wstate (llast sswSts)
        unfolding r llast_sswSts
        by (simp add: last_sts llast_lmap[OF lfinite_Sts] clss_of_state_def grounding_of_clss_def)
```

```
    then have gr_last_st: grounded_R \subseteqwrp.grounding_of_wstate (wstate_of_dstate (llast Sts))
        by (simp add: lfinite_Sts llast_lmap llast_sswSts)
    have gr_r_fls: }~|=s grounded_
        using emp_in unfolding true_clss_def by force
    then have gr_last_fls:\negI\modelss wrp.grounding_of_wstate (wstate_of_dstate (llast Sts))
        using gr_last_st unfolding true_clss_def by auto
    have ?saturated
        unfolding wrp.ord_\Gamma_saturated_upto_def[OF sswSts_thms]
        wrp.ord_\Gamma_contradiction_Rf[OF sswSts_thms emp_in] inference_system.inferences_from_def
        by auto
    moreover have ?model
    unfolding gr_r_fls[THEN eq_False[THEN iffD2]]
        by (rule rtranclp_imp_eq_image[of (}\mp@subsup{\rightsquigarrow}{w}{})\lambdaSt.I =s wrp.grounding_of_wstate St,OF _ wrp
            unfolded gr_st0 gr_last_fls[THEN eq_False[THEN iffD2]]])
        (use wrp.weighted_RP_model[OF sswSts_thms] in blast)
    ultimately show ?thesis
        by blast
    next
    case False
    then have gr_last: wrp.grounding_of_wstate (llast sswSts) = grounded_R
        using final unfolding r llast_sswSts
        by (simp add: last_sts llast_lmap[OF lfinite_Sts] clss_of_state_def comp_def
            is_final_dstate.simps)
    then have gr_last_st: wrp.grounding_of_wstate (wstate_of_dstate (llast Sts)) = grounded_R
        by (simp add: lfinite_Sts llast_lmap llast_sswSts)
    have ?saturated
        using wrp.weighted_RP_saturated[OF sswSts_thms, unfolded gr_last lim_last] by auto
    moreover have ?model
        by (rule rtranclp_imp_eq_image[of (}\mp@subsup{\rightsquigarrow}{w}{})\lambdaSt.I \modelss wrp.grounding_of_wstate St,OF_wrp
                    unfolded gr_st0 gr_last_st])
            (use wrp.weighted_RP_model[OF sswSts_thms] in blast)
    ultimately show ?thesis
        by blast
    qed
    then show ?saturated and ?model
        by blast+
qed
corollary deterministic_RP_refutation:
    \negsatisfiable grounded_NO \longleftrightarrow < #} G grounded_R (is ?lhs \longleftrightarrow ?rhs)
proof
    assume ?rhs
    then have }\neg\mathrm{ satisfiable grounded_R
        unfolding true_clss_def true_cls_def by force
    then show ?lhs
        using deterministic_RP_model[THEN iffD1] by blast
next
    assume ?lhs
    then have }\neg\mathrm{ satisfiable grounded_R
        using deterministic_RP_model[THEN iffD2] by blast
    then show ?rhs
        unfolding wrp.ord_\Gamma_saturated_upto_complete[OF sswSts_thms deterministic_RP_saturated].
qed
end
context
    assumes drp_none: deterministic_RP St0 = None
begin
```

```
theorem deterministic_RP_complete: satisfiable grounded_NO
proof (rule ccontr)
    assume unsat: ᄀ satisfiable grounded_NO
    have unsat_wSts0: ᄀ satisfiable (wrp.grounding_of_wstate (lhd wSts))
        using unsat by (subst derivation_from.code) (simp add: clss_of_state_def comp_def)
    have bot_in_ss: {#} \in Q_of_state (wrp.Liminf_wstate sswSts)
        by (rule wrp.weighted_RP_complete[OF sswSts_thms unsat_wSts0[folded lhd_sswSts]])
    have bot_in_lim: {#} \in Q_of_state (wrp.Liminf_wstate wSts)
    proof (cases lfinite Sts)
        case fin:True
        have wrp.Liminf_wstate sswSts = wrp.Liminf_wstate wSts
        by (rule Liminf_state_fin, simp_all add: fin lfinite_sswSts_iff not_lnull_sswSts,
            subst (1 2) llast_lmap,
                simp_all add: lfinite_sswSts_iff fin not_lnull_sswSts llast_sswSts)
    then show ?thesis
        using bot_in_ss by simp
    next
    case False
    then show ?thesis
        using bot_in_ss Q_of_Liminf_state_inf[OF _ emb_lmap[OF emb_sswSts]] by auto
    qed
    then obtain k :: nat where
        k_lt: enat k<llength Sts and
        emp_in: {#} \in wrp.Q_of_wstate (lnth wSts k)
        unfolding Liminf_state_def Liminf_llist_def by auto
    have emp_in: {#} \in Q_of_state (state_of_dstate ((deterministic_RP_step ^^ k) St0))
    proof -
        have enat k< llength Sts' \Longrightarrow Sts' = derivation_from St0' }
            {#} \in wrp.Q_of_wstate (lnth (lmap wstate_of_dstate Sts') k)\Longrightarrow
            {#} \in Q_of_state (state_of_dstate ((deterministic_RP_step `^ k) St0')) for St0' Sts' k
        proof (induction k arbitrary: St0' Sts')
            case 0
            then show ?case
                by (subst (asm) derivation_from.code, cases St0', auto simp: comp_def)
    next
        case (Suc k)
        note ih = this(1) and sk_lt = this(2) and sts' = this(3) and emp_in_sk = this(4)
        have k_lt: enat k < llength (ltl Sts')
            using sk_lt by (cases Sts') (auto simp:Suc_ile_eq)
            moreover have ltl Sts' = derivation_from (deterministic_RP_step St0')
                using sts' k_lt by (cases Sts') auto
            moreover have {#} \in wrp.Q_of_wstate (lnth (lmap wstate_of_dstate (ltl Sts')) k)
                using emp_in_sk k_lt by (cases Sts') auto
            ultimately show ?case
                using ih[of ltl Sts' deterministic_RP_step St0'] by (simp add: funpow_swap1)
    qed
    then show ?thesis
            using k_lt emp_in by blast
    qed
    have deterministic_RP St0 }=\mathrm{ None
        by (rule is_final_dstate_funpow_imp_deterministic_RP_neq_None[of Suc k],
            cases (deterministic_RP_step `^ k) St0,
            use emp_in in 〈force simp: deterministic_RP_step.simps is_final_dstate.simps〉)
    then show False
    using drp_none ..
qed
end
end
```

end
end

4 Integration of IsaFoR Terms

This theory implements the abstract interface for atoms and substitutions using the IsaFoR library (part of the AFP entry First_Order_Terms).

```
theory IsaFoR_Term
    imports
        Deriving.Derive
        Ordered_Resolution_Prover.Abstract_Substitution
        First_Order_Terms.Unification
        First_Order_Terms.Subsumption
        HOL-Cardinals.Wellorder_Extension
        Open_Induction.Restricted_Predicates
begin
```

hide-const (open) mgu
abbreviation subst_apply_literal ::
$\left(^{\prime} f,{ }^{\prime} v\right)$ term literal $\Rightarrow\left(' f,^{\prime} v,^{\prime} w\right)$ gsubst $\Rightarrow\left(' f,{ }^{\prime} w\right)$ term literal (infixl \cdot lit 60$)$ where
$L \cdot$ lit $\sigma \equiv$ map_literal $(\lambda A . A \cdot \sigma) L$
definition subst_apply_clause ::
$\left({ }^{\prime} f, ' v\right)$ term clause $\Rightarrow\left({ }^{\prime} f,^{\prime} v,^{\prime} w\right)$ gsubst $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} w\right)$ term clause (infixl \cdot cls 60$)$ where
$C \cdot$ cls $\sigma=$ image_mset $(\lambda L . L \cdot l i t \sigma) C$
abbreviation vars_lit $::\left({ }^{\prime} f,^{\prime} v\right)$ term literal $\Rightarrow{ }^{\prime} v$ set where
vars_lit $L \equiv$ vars_term (atm_of L)
definition vars_clause :: ('f, 'v) term clause \Rightarrow 'v set where
vars_clause $C=$ Union (set_mset (image_mset vars_lit C))
definition vars_clause_list :: ('f, 'v) term clause list \Rightarrow 'v set where
vars_clause_list $C s=$ Union (vars_clause'set Cs)
definition vars_partitioned $::($ ' $f, ' v)$ term clause list \Rightarrow bool where
vars_partitioned $C s \longleftrightarrow$
$\left(\forall i<\right.$ length Cs. $\forall j<$ length Cs. $i \neq j \longrightarrow\left(\right.$ vars_clause $\left.\left.(C s!i) \cap \operatorname{vars_ clause~}(C s!j)\right)=\{ \}\right)$
lemma vars_clause_mono: $S \subseteq \# C \Longrightarrow$ vars_clause $S \subseteq$ vars_clause C
unfolding vars_clause_def by auto
interpretation substitution_ops (•) Var $\left(\mathrm{o}_{s}\right)$.
lemma is_ground_atm_is_ground_on_var:
assumes is_ground_atm $(A \cdot \sigma)$ and $v \in$ vars_term A
shows is_ground_atm (σv)
using assms proof (induction A)
case (Var x)
then show ? case by auto
next
case (Fun fts)
then show ?case unfolding is_ground_atm_def
by auto
qed
lemma is_ground_lit_is_ground_on_var:
assumes ground_lit: is_ground_lit (subst_lit $L \sigma$) and $v_{-} i n_{-} L: v \in$ vars_lit L
shows is_ground_atm (σ v)

```
proof -
    let ?A = atm_of L
    from v_in_L have A_p:v\in vars_term ?A
        by auto
    then have is_ground_atm (?A \cdot\sigma)
        using ground_lit unfolding is_ground_lit_def by auto
    then show ?thesis
        using A_p is_ground_atm_is_ground_on_var by metis
qed
lemma is_ground_cls_is_ground_on_var:
    assumes
        ground_clause: is_ground_cls (subst_cls C \sigma) and
```



```
    shows is_ground_atm ( }\sigmav\mathrm{ v)
proof -
    from v_in_C obtain L where L_p:L\in# C v \in vars_lit L
        unfolding vars_clause_def by auto
    then have is_ground_lit (subst_lit L \sigma)
        using ground_clause unfolding is_ground_cls_def subst_cls_def by auto
    then show ?thesis
        using L_p is_ground_lit_is_ground_on_var by metis
qed
lemma is_ground_cls_list_is_ground_on_var:
    assumes ground_list: is_ground_cls_list (subst_cls_list Cs \sigma)
        and v_in_Cs:v vars_clause_list Cs
    shows is_ground_atm ( }\sigmav
proof -
    from v_in_Cs obtain C where C_p:C\in set Cs v\in vars_clause C
        unfolding vars_clause_list_def by auto
    then have is_ground_cls (subst_cls C \sigma)
        using ground_list unfolding is_ground_cls_list_def subst_cls_list_def by auto
    then show ?thesis
        using C_p is_ground_cls_is_ground_on_var by metis
qed
lemma same_on_vars_lit:
    assumes }\forallv\in\mathrm{ vars_lit L. }\sigmav=\tau
    shows subst_lit L \sigma = subst_lit L \tau
    using assms
proof (induction L)
    case (Pos x)
    then have }\forallv\in\mathrm{ vars_term x. }\sigmav=\tauv\Longrightarrow\mathrm{ subst_atm_abbrev x }\sigma=\mathrm{ subst_atm_abbrev x }
        using term_subst_eq by metis+
    then show ?case
        unfolding subst_lit_def using Pos by auto
next
    case (Neg x)
    then have }\forallv\in\mathrm{ vars_term x. }\sigmav=\tauv\Longrightarrow\mathrm{ subst_atm_abbrev x }\sigma=\mathrm{ subst_atm_abbrev x }
        using term_subst_eq by metis+
    then show ?case
        unfolding subst_lit_def using Neg by auto
qed
lemma in_list_of_mset_in_S:
    assumes i < length (list_of_mset S)
    shows list_of_mset S!i\in#S
proof -
    from assms have list_of_mset S!i\in set (list_of_mset S)
        by auto
    then have list_of_mset S!i\in# mset (list_of_mset S)
        by (meson in_multiset_in_set)
```

```
    then show ?thesis
    by auto
qed
lemma same_on_vars_clause:
    assumes }\forallv\in\mathrm{ vars_clause S. }\sigmav=\tau
    shows subst_cls S \sigma = subst_cls S \tau
    by (smt assms image_eqI image_mset_cong2 mem_simps(9) same_on_vars_lit set_image_mset
        subst_cls_def vars_clause_def)
lemma vars_partitioned_var_disjoint:
    assumes vars_partitioned Cs
    shows var_disjoint Cs
    unfolding var_disjoint_def
proof (intro allI impI)
    fix }\sigmas::\('b=>('a,'b) term) list
    assume length }\sigmas=l=length C
    with assms[unfolded vars_partitioned_def] Fun_More.fun_merge[of map vars_clause Cs nth \sigmas]
    obtain }\sigma\mathrm{ where
        \sigma_p: \foralli<length (map vars_clause Cs). \forallx m map vars_clause Cs!i. \sigma x = (\sigmas!i) x
        by auto
    have \foralli< length Cs.}\forallS.S\subseteq#Cs!i\longrightarrow subst_cls S (\sigmas!i)=subst_cls S \sigma
    proof (rule, rule, rule, rule)
        fix }i:: nat and S::(' 'a,'b) term literal multise
        assume
            i< length Cs and
            S\subseteq#Cs!i
        then have }\forallv\in\mathrm{ vars_clause S.( }\sigmas!i)v=\sigma
            using vars_clause_mono[of S Cs!i] \sigma_p by auto
        then show subst_cls S (\sigmas!i)= subst_cls S \sigma
            using same_on_vars_clause by auto
    qed
    then show }\exists\tau.\foralli<length Cs.\forallS.S\subseteq#Cs!i\longrightarrow subst_cls S (\sigmas!i)=subst_cls S \tau
        by auto
qed
lemma vars_in_instance_in_range_term:
    vars_term (subst_atm_abbrev A \sigma)\subseteq Union (image vars_term (range \sigma))
    by (induction A) auto
lemma vars_in_instance_in_range_lit: vars_lit (subst_lit L \sigma)\subseteqUnion(image vars_term (range \sigma))
proof (induction L)
    case (Pos A)
    have vars_term (A\cdot\sigma)\subseteq Union (image vars_term (range \sigma))
        using vars_in_instance_in_range_term[of A \sigma] by blast
    then show ?case by auto
next
    case (Neg A)
    have vars_term (A\cdot\sigma)\subseteq Union (image vars_term (range \sigma))
        using vars_in_instance_in_range_term[of A \sigma] by blast
    then show ?case by auto
qed
lemma vars_in_instance_in_range_cls:
    vars_clause (subst_cls C \sigma)\subseteq Union (image vars_term (range \sigma))
    unfolding vars_clause_def subst_cls_def using vars_in_instance_in_range_lit[of _ \sigma] by auto
primrec renamings_apart :: ('f, nat) term clause list }=>\mathrm{ (('f, nat) subst) list where
    renamings_apart [] = []
| renamings_apart (C # Cs)=
    (let \sigmas = renamings_apart Cs in
            (\lambdav. Var (v + Max (vars_clause_list (subst_cls_lists Cs \sigmas) \cup{0}) + 1)) # \sigmas)
```

```
definition var_map_of_subst :: ('f, nat) subst }=>\mathrm{ nat }=>\mathrm{ nat where
    var_map_of_subst \sigma v = the_Var (\sigma v)
lemma len_renamings_apart: length (renamings_apart Cs) = length Cs
    by (induction Cs) (auto simp: Let_def)
lemma renamings_apart_is_Var: }\forall\sigma\in\mathrm{ set (renamings_apart Cs). }\forallx.is_Var (\sigma x
    by (induction Cs) (auto simp: Let_def)
lemma renamings_apart_inj: }\forall\sigma\in\mathrm{ set (renamings_apart Cs). inj }
proof (induction Cs)
    case (Cons a Cs)
    then have inj ( }\lambdav.\operatorname{Var (Suc ( v + Max (vars_clause_list
                (subst_cls_lists Cs (renamings_apart Cs)) \cup {0}))))
        by (meson add_right_imp_eq injI nat.inject term.inject(1))
    then show ?case
        using Cons by (auto simp: Let_def)
qed auto
lemma finite_vars_clause[simp]: finite (vars_clause x)
    unfolding vars_clause_def by auto
lemma finite_vars_clause_list[simp]: finite (vars_clause_list Cs)
    unfolding vars_clause_list_def by (induction Cs) auto
lemma Suc_Max_notin_set: finite X \Longrightarrow Suc (v + Max (insert 0 X)) &X
    by (metis Max.boundedE Suc_n_not_le_n empty_iff finite.insertI le_add2 vimageE vimageI
        vimage_Suc_insert_0)
lemma vars_partitioned_Nil[simp]: vars_partitioned []
    unfolding vars_partitioned_def by auto
lemma subst_cls_lists_Nil[simp]: subst_cls_lists Cs [] = []
    unfolding subst_cls_lists_def by auto
lemma vars_clause_hd_partitioned_from_tl:
    assumes Cs \not=[]
    shows vars_clause (hd (subst_cls_lists Cs (renamings_apart Cs)))
        ~vars_clause_list (tl (subst_cls_lists Cs (renamings_apart Cs))) = {}
    using assms
proof (induction Cs)
    case (Cons C Cs)
    define }\mp@subsup{\sigma}{}{\prime}:: nat => na
        where }\mp@subsup{\sigma}{}{\prime}=(\lambdav.(Suc (v + Max ((vars_clause_list (subst_cls_lists Cs
                                    (renamings_apart Cs))) \cup{0}))))
    define \sigma :: nat => ('a, nat) term
        where }\sigma=(\lambdav.\operatorname{Var}(\mp@subsup{\sigma}{}{\prime}v)
    have vars_clause (subst_cls C \sigma)\subseteqUNION (range \sigma) vars_term
        using vars_in_instance_in_range_cls[of C hd (renamings_apart (C # Cs))] \sigma_def \sigma'_def
        by (auto simp: Let_def)
    moreover have UNION (range \sigma) vars_term
        \cap vars_clause_list (subst_cls_lists Cs (renamings_apart Cs)) = {}
    proof -
        have range \sigma'\cap vars_clause_list (subst_cls_lists Cs (renamings_apart Cs)) ={}
            unfolding \mp@subsup{\sigma}{}{\prime}_def using Suc_Max_notin_set by auto
        then show ?thesis
                unfolding }\mp@subsup{\sigma}{-}{}\mathrm{ def }\mp@subsup{\sigma}{}{\prime}_def by aut
    qed
    ultimately have vars_clause (subst_cls C \sigma)
        \cap vars_clause_list (subst_cls_lists Cs (renamings_apart Cs)) = {}
        by auto
    then show ?case
```

unfolding σ_{-}def σ^{\prime} _def unfolding subst_cls_lists_def
by (simp add: Let_def subst_cls_lists_def)
qed auto
lemma vars_partitioned_renamings_apart: vars_partitioned (subst_cls_lists Cs (renamings_apart Cs))
proof (induction Cs)
case (Cons C Cs)
\{
fix $i::$ nat and j :: nat
assume $i j$:
$i<$ Suc (length Cs)
$j<i$
have vars_clause (subst_cls_lists (C \# Cs) (renamings_apart (C \# Cs))!i) \cap vars_clause (subst_cls_lists (C \# Cs) (renamings_apart $(C \# C s))!j)=$ \{\}
proof (cases i; cases j)
fix j^{\prime} :: nat
assume $i^{\prime} j^{\prime}$:
$i=0$
$j=$ Suc j^{\prime}
then show vars_clause (subst_cls_lists (C \# Cs) (renamings_apart $(C \# C s))!i) \cap$ vars_clause (subst_cls_lists (C \# Cs) (renamings_apart $(C \# C s))!j)=$ \{\}
using $i j$ by auto
next
fix $i^{\prime}::$ nat
assume $i^{\prime} j^{\prime}$:
$i=S u c i^{\prime}$
$j=0$
have disjoin_C_Cs: vars_clause (subst_cls_lists $(C$ \# Cs) (renamings_apart $(C \# C s))!0) \cap$ vars_clause_list ((subst_cls_lists Cs (renamings_apart Cs))) $=\{ \}$
using vars_clause_hd_partitioned_from_tl[of C \# Cs]
by (simp add: Let_def subst_cls_lists_def)
\{
fix x
assume asm: $x \in$ vars_clause (subst_cls_lists Cs (renamings_apart Cs)! i^{\prime})
then have (subst_cls_lists Cs (renamings_apart Cs)! i^{\prime})
\in set (subst_cls_lists Cs (renamings_apart Cs))
using $i^{\prime} j^{\prime}$ ij unfolding subst_cls_lists_def
by (metis Suc_less_SucD length_map len_renamings_apart length_zip min_less_iff_conj nth_mem)
moreover from asm have
$x \in$ vars_clause (subst_cls_lists Cs (renamings_apart Cs)! i^{\prime})
using $i^{\prime} j^{\prime} i j$
unfolding subst_cls_lists_def by simp
ultimately have $\exists D \in$ set (subst_cls_lists Cs (renamings_apart Cs)). $x \in$ vars_clause D by auto
\}
then have vars_clause (subst_cls_lists Cs (renamings_apart Cs)! i^{\prime})
$\subseteq U n i o n($ set (map vars_clause $(($ subst_cls_lists Cs (renamings_apart Cs) $))))$ by auto
then have vars_clause (subst_cls_lists (C \# Cs) (renamings_apart (C \# Cs))!0) \cap vars_clause (subst_cls_lists Cs (renamings_apart Cs) ! i^{\prime}) = \{\} using disjoin_C_Cs unfolding vars_clause_list_def by auto
moreover
have subst_cls_lists Cs (renamings_apart Cs) ! $i^{\prime}=$
subst_cls_lists (C \# Cs) (renamings_apart (C \# Cs)) ! i
using $i^{\prime} j^{\prime}$ ij unfolding subst_cls_lists_def by (simp add: Let_def)

ultimately

show vars_clause (subst_cls_lists $(C$ \# Cs) (renamings_apart $(C \# C s))!i) \cap$
vars_clause (subst_cls_lists (C \# Cs) (renamings_apart (C \# Cs $)$) ! j) $=$
\{\}
using $i^{\prime} j^{\prime}$ by (simp add: Int_commute)

```
    next
    fix }\mp@subsup{i}{}{\prime}:: nat and j' :: na
    assume i'j':
        i=Suc i'
        j=Suc j'
    have i'<length (subst_cls_lists Cs (renamings_apart Cs))
        using ij i'j' unfolding subst_cls_lists_def by (auto simp:len_renamings_apart)
    moreover
    have j'<length (subst_cls_lists Cs (renamings_apart Cs))
        using ij i'j' unfolding subst_cls_lists_def by (auto simp: len_renamings_apart)
    moreover
    have i'}\mp@subsup{i}{}{\prime
        using \langlei=Suc i}\mp@subsup{i}{}{\prime}\langlej=Suc j`\rangle ij by blas
    ultimately
    have vars_clause (subst_cls_lists Cs (renamings_apart Cs)! i})
                vars_clause (subst_cls_lists Cs (renamings_apart Cs)! ' ')}
                {}
            using Cons unfolding vars_partitioned_def by auto
    then show vars_clause (subst_cls_lists (C # Cs) (renamings_apart (C # Cs))!i) \cap
        vars_clause (subst_cls_lists (C # Cs) (renamings_apart (C # Cs))!j)=
        {}
        unfolding i'j'
        by (simp add: subst_cls_lists_def Let_def)
    next
        assume
            <i=0\rangle and
        <j=0\rangle
    then show <vars_clause (subst_cls_lists (C # Cs) (renamings_apart (C # Cs))!i) \cap
        vars_clause (subst_cls_lists (C # Cs) (renamings_apart (C # Cs))! j)=
        {}> using ij by auto
    qed
}
then show ?case
    unfolding vars_partitioned_def
    by (metis (no_types,lifting) Int_commute Suc_lessI len_renamings_apart length_map
        length_nth_simps(2) length_zip min.idem nat.inject not_less_eq subst_cls_lists_def)
qed auto
interpretation substitution (\cdot) Var :: _ = ('f,nat) term (os) renamings_apart Fun undefined
proof (standard)
    show }\A.A\cdotVar=
        by auto
next
    show }\bigwedgeA\tau\sigma.A\cdot\tau \mp@subsup{O}{s}{}\sigma=A\cdot\tau\cdot
        by auto
next
    show }\bigwedge\sigma\tau.(\bigwedgeA.A\cdot\sigma=A\cdot\tau)\Longrightarrow\sigma=
        by (simp add: subst_term_eqI)
next
    fix C ::('f,nat) term clause
    fix }
    assume is_ground_cls (subst_cls C \sigma)
    then have ground_atms_\sigma: \v.v \in vars_clause C \Longrightarrowis_ground_atm ( }\sigmav\mathrm{ v)
        by (meson is_ground_cls_is_ground_on_var)
    define some_ground_trm :: ('f,nat) term where some_ground_trm = (Fun undefined [])
    have ground_trm: is_ground_atm some_ground_trm
        unfolding is_ground_atm_def some_ground_trm_def by auto
    define }\tau\mathrm{ where }\tau=(\lambdav. if v\invars_clause C then \sigma v else some_ground_trm
    then have }\mp@subsup{\tau}{-}{}\sigma:\forallv\in\mathrm{ vars_clause C. }\sigmav=\tau
        unfolding }\mp@subsup{\tau}{-}{\prime}\mathrm{ def by auto
    have all_ground_\tau: is_ground_atm ( }\tauv\mathrm{ ) for v
```

```
    proof (cases v\in vars_clause C)
    case True
    then show ?thesis
        using ground_atms_\sigma \tau_\sigma by auto
    next
    case False
    then show ?thesis
        unfolding }\mp@subsup{\tau}{_}{\prime}\mathrm{ def using ground_trm by auto
    qed
    have is_ground_subst \tau
    unfolding is_ground_subst_def
    proof
    fix }
    show is_ground_atm (subst_atm_abbrev A \tau)
    proof (induction A)
        case (Var v)
        then show ?case using all_ground_\tau by auto
    next
        case (Funf As)
        then show ?case using all_ground_\tau
            by (simp add: is_ground_atm_def)
    qed
    qed
    moreover have }\forallv\in\mathrm{ vars_clause C. }\sigmav=\tau
        using \tau_\sigma unfolding vars_clause_list_def
        by blast
    then have subst_cls C \sigma = subst_cls C \tau
        using same_on_vars_clause by auto
    ultimately show }\exists\tau\mathrm{ . is_ground_subst }\tau\wedge\mathrm{ subst_cls C }\tau=\mathrm{ subst_cls C }
        by auto
next
    fix Cs :: (' }f\mathrm{ , nat) term clause list
    show length (renamings_apart Cs) = length Cs
        using len_renamings_apart by auto
next
    fix Cs :: ('f, nat) term clause list
    fix \varrho :: nat => ('f, nat) Term.term
    assume \varrho_renaming: \varrho \in set (renamings_apart Cs)
    {
        have inj_is_renaming:
            \\sigma:: ('f, nat) subst. (\x. is_Var (\sigmax))\Longrightarrow inj \sigma\Longrightarrow is_renaming \sigma
        proof -
            fix \sigma :: ('f, nat) subst
            fix }
            assume is_var_\sigma: \x. is_Var ( }\sigmax\mathrm{ )
            assume inj_\sigma: inj \sigma
            define }\mp@subsup{\sigma}{}{\prime}\mathrm{ where }\mp@subsup{\sigma}{}{\prime}=var_map_of_subst 
            have}\sigma:\sigma=\operatorname{Var}\circ\mp@subsup{\sigma}{}{\prime
                unfolding }\mp@subsup{\sigma}{}{\prime}_def var_map_of_subst_def using is_var_\sigma by aut
            from is_var_\sigma inj_\sigma have inj \sigma'
                unfolding is_renaming_def unfolding subst_domain_def inj_on_def \sigma'_def var_map_of_subst_def
                by (metis term.collapse(1))
            then have inv \mp@subsup{\sigma}{}{\prime}\circ\mp@subsup{\sigma}{}{\prime}=id
                using inv_o_cancel[of \sigma'] by simp
            then have Var}\circ(\mathrm{ inv 的埕)
                by simp
            then have }\forallx.(Var\circ(inv \mp@subsup{\sigma}{}{\prime}\circ\mp@subsup{\sigma}{}{\prime}))x=\operatorname{Var}
                by metis
            then have }\forallx.((Var\circ\mp@subsup{\sigma}{}{\prime})\mp@subsup{O}{s}{}(\operatorname{Var}\circ(\mathrm{ inv }\mp@subsup{\sigma}{}{\prime})))x=\operatorname{Var}
                unfolding subst_compose_def by auto
            then have }\sigma\mp@subsup{\circ}{s}{}(\operatorname{Var}\circ(\mathrm{ inv }\mp@subsup{\sigma}{}{\prime}))=\operatorname{Var
                using }\sigma\mathrm{ by auto
```

```
        then show is_renaming \sigma
            unfolding is_renaming_def by blast
        qed
        then have }\forall\sigma\in(\mathrm{ set (renamings_apart Cs)). is_renaming }
        using renamings_apart_is_Var renamings_apart_inj by blast
    }
    then show is_renaming \varrho
    using \varrho_renaming by auto
next
    fix Cs :: ('f, nat) term clause list
    have vars_partitioned (subst_cls_lists Cs (renamings_apart Cs))
        using vars_partitioned_renamings_apart by auto
    then show var_disjoint (subst_cls_lists Cs (renamings_apart Cs))
        using vars_partitioned_var_disjoint by auto
next
    show }\\sigma\mathrm{ As Bs. Fun undefined As}\cdot\sigma=\mathrm{ Fun undefined Bs }\longleftrightarrow\operatorname{map}(\lambdaA.A\cdot\sigma)As=B
        by simp
next
    show wfP (strictly_generalizes_atm :: ('f,'v) term = _ = _)
        unfolding wfP_def
        by (rule wf_subset[OF wf_subsumes])
            (auto simp:strictly_generalizes_atm_def generalizes_atm_def term_subsumable.subsumes_def
                subsumeseq_term.simps)
qed
fun pairs :: 'a list => (' }a\times\mp@subsup{}{}{\prime
    pairs (x#y#xs)=(x,y)# pairs (y#xs)|
    pairs _ = []
derive compare term
derive compare literal
lemma class_linorder_compare: class.linorder (le_of_comp compare) (lt_of_comp compare)
    apply standard
        apply (simp_all add:lt_of_comp_def le_of_comp_def split: order.splits)
        apply (metis comparator.sym comparator_compare invert_order.simps(1) order.distinct(5))
        apply (metis comparator_compare comparator_def order.distinct(5))
    apply (metis comparator.sym comparator_compare invert_order.simps(1) order.distinct(5))
    by (metis comparator.sym comparator_compare invert_order.simps(2) order.distinct(5))
```


context begin

```
interpretation compare_linorder: linorder
    le_of_comp compare
    lt_of_comp compare
    by (rule class_linorder_compare)
```


definition Pairs where

```
Pairs \(A A A=\) concat (compare_linorder.sorted_list_of_set
(( pairs o compare_linorder.sorted_list_of_set)'AAA))
lemma unifies_all_pairs_iff:
\((\forall p \in \operatorname{set}(\) pairs xs \()\). fst \(p \cdot \sigma=\) snd \(p \cdot \sigma) \longleftrightarrow(\forall a \in\) set xs. \(\forall b \in\) set xs. \(a \cdot \sigma=b \cdot \sigma)\)
proof (induct xs rule: pairs.induct)
case (1 \(x\) y \(x s\) )
then show? case
unfolding pairs.simps list.set ball_Un ball_simps simp_thms fst_conv snd_conv by metis qed simp_all
lemma in_pair_in_set:
assumes \((A, B) \in \operatorname{set}((\) pairs As \())\)
shows \(A \in\) set \(A s \wedge B \in\) set \(A s\)
using assms
proof (induction As)
```

```
    case (Cons A As)
    note Cons_outer = this
    show ?case
    proof (cases As)
    case Nil
    then show ?thesis
        using Cons_outer by auto
    next
    case (Cons B As')
    then show ?thesis using Cons_outer by auto
    qed
qed auto
lemma in_pairs_sorted_list_of_set_in_set:
    assumes
        finite AAA
        AA\in AAA. finite AA
        AB_pairs \in (pairs o compare_linorder.sorted_list_of_set)'AAA and
        (A :: _ :: compare, B) \in set AB_pairs
    shows \existsAA. AA\inAAA\wedgeA\inAA\wedgeB\inAA
proof -
    from assms have AB_pairs \in (pairs o compare_linorder.sorted_list_of_set)' AAA
        by auto
    then obtain }AA\mathrm{ where
        AA_p:AA\inAAA ^(pairs ○ compare_linorder.sorted_list_of_set) AA = AB_pairs
        by auto
    have (A,B)\in set (pairs (compare_linorder.sorted_list_of_set AA))
        using AA_p[] assms(4) by auto
    then have A \in set (compare_linorder.sorted_list_of_set AA) and
        B \in set (compare_linorder.sorted_list_of_set AA)
        using in_pair_in_set[of A] by auto
    then show ?thesis
        using assms(2) AA_p by auto
qed
lemma unifiers_Pairs:
    assumes
        finite AAA and
        \forallA \inAAA. finite AA
    shows unifiers (set (Pairs AAA))}={\sigma\mathrm{ . is_unifiers }\sigma\mathrm{ AAA }
proof (rule; rule)
    fix \sigma :: ('a, 'b) subst
    assume asm: \sigma\in unifiers (set (Pairs AAA))
    have }\AA.AA\inAAA\Longrightarrow\operatorname{card}(AA\cdot\mathrm{ set }\sigma)\leq\mathrm{ Suc 0
    proof -
        fix AA :: ('a, 'b) term set
        assume asm': AA \inAAA
        then have }\forallp\in\mathrm{ set (pairs (compare_linorder.sorted_list_of_set AA)).
            subst_atm_abbrev (fst p) \sigma= subst_atm_abbrev (snd p) \sigma
            using assms asm unfolding Pairs_def by auto
        then have }\forallA\inAA.\forallB\inAA. subst_atm_abbrev A \sigma= subst_atm_abbrev B \sigma
            using assms asm' unfolding unifies_all_pairs_iff
            using compare_linorder.sorted_list_of_set by blast
        then show card (AA set \sigma)\leqSuc 0
            by (smt imageE card.empty card_Suc_eq card_mono finite.intros(1) finite_insert le_SucI
                    singletonI subsetI)
    qed
    then show }\sigma\in{\sigma\mathrm{ . is_unifiers }\sigma\mathrm{ AAA}
        using assms by (auto simp: is_unifiers_def is_unifier_def subst_atms_def)
next
    fix \sigma :: ('a, 'b) subst
    assume asm: }\sigma\in{\sigma.\mathrm{ is_unifiers }\sigmaAAA
```

```
    {
        fix AB_pairs A B
        assume
            AB_pairs \in set (compare_linorder.sorted_list_of_set
            ((pairs ○ compare_linorder.sorted_list_of_set) ' AAA)) and
        (A,B) 的 AB_pairs
    then have \existsAA. AA\inAAA\wedgeA\inAA\wedgeB\inAA
        using assms by (simp add: in_pairs_sorted_list_of_set_in_set)
    then obtain }AA\mathrm{ where
        a:AA\inAAA A GAA B\inAA
        by blast
        from a assms asm have card_AA_\sigma: card (AA *set \sigma) \leqSuc 0
        unfolding is_unifiers_def is_unifier_def subst_atms_def by auto
    have subst_atm_abbrev A \sigma = subst_atm_abbrev B \sigma
    proof (cases card (AA\cdotset \sigma)=Suc 0)
        case True
        moreover
        have subst_atm_abbrev A \sigma\inAA 'set }
            using a assms asm card_AA_\sigma by auto
        moreover
        have subst_atm_abbrev B \sigma\inAA set }
            using a assms asm card_AA_\sigma by auto
        ultimately
        show ?thesis
            using a assms asm card_AA_\sigma by (metis (no_types, lifting) card_Suc_eq singletonD)
        next
        case False
        then have card (AA set \sigma)=0
            using a assms asm card_AA_\sigma
            by arith
        then show ?thesis
            using a assms asm card_AA_\sigma by auto
        qed
    }
    then show }\sigma\in\mathrm{ unifiers (set (Pairs AAA))
        unfolding Pairs_def unifiers_def by auto
qed
end
definition mgu_sets AAA = map_option subst_of (unify (Pairs AAA) [])
interpretation mgu (.) Var :: _ = ('f :: compare, nat) term (os) Fun undefined
    renamings_apart mgu_sets
proof
    fix AAA :: ('a :: compare, nat) term set set and \sigma :: ('a, nat) subst
    assume fin: finite AAA\forallAA\inAAA. finite AA and mgu_sets AAA = Some \sigma
    then have is_imgu \sigma (set (Pairs AAA))
        using unify_sound unfolding mgu_sets_def by blast
    then show is_mgu \sigma AAA
        unfolding is_imgu_def is_mgu_def unifiers_Pairs[OF fin] by auto
next
    fix AAA :: (' ' :: compare, nat) term set set and \sigma :: (' a, nat) subst
    assume fin: finite AAA}\forallAA\inAAA. finite AA and is_unifiers \sigmaAA
    then have \sigma\inunifiers (set (Pairs AAA))
        unfolding is_mgu_def unifiers_Pairs[OF fin] by auto
    then show }\exists\tau\mathrm{ . mgu_sets AAA=Some }
        using unify_complete unfolding mgu_sets_def by blast
qed
derive linorder prod
derive linorder list
```


5 An Executable Algorithm for Clause Subsumption

This theory provides a functional implementation of clause subsumption, building on the IsaFoR library (part of the AFP entry First_Order_Terms).
theory Executable_Subsumption
imports IsaFoR_Term First_Order_Terms.Matching
begin

5.1 Naive Implementation of Clause Subsumption

```
fun subsumes_list where
    subsumes_list [] Ks \sigma = True
| subsumes_list (L # Ls) Ks \sigma=
    (\existsK set Ks.is_pos K = is_pos L ^
        (case match_term_list [(atm_of L,atm_of K)] \sigma of
                None = False
            Some \varrho # subsumes_list Ls (remove1 K Ks) \varrho))
lemma atm_of_map_literal[simp]: atm_of (map_literal f l) =f (atm_of l)
    by (cases l; simp)
definition extends_subst \sigma \tau=(\forallx\indom \sigma.\sigma x = \tau x)
lemma extends_subst_refl[simp]: extends_subst \sigma \sigma
    unfolding extends_subst_def by auto
lemma extends_subst_trans: extends_subst \sigma \tau \Longrightarrow extends_subst \tau \varrho \Longrightarrow extends_subst \sigma \varrho
    unfolding extends_subst_def dom_def by (metis mem_Collect_eq)
lemma extends_subst_dom: extends_subst \sigma \tau\Longrightarrowdom \sigma\subseteqdom \tau
    unfolding extends_subst_def dom_def by auto
lemma extends_subst_extends: extends_subst \sigma \tau \Longrightarrowx\indom \sigma \Longrightarrow < x = \sigma x
    unfolding extends_subst_def dom_def by auto
lemma extends_subst_fun_upd_new:
    \sigmax=None \Longrightarrow extends_subst (\sigma(x\mapstot))\tau\longleftrightarrow extends_subst \sigma \tau\wedge\tau x = Some t
    unfolding extends_subst_def dom_fun_upd subst_of_map_def
    by (force simp add: dom_def split: option.splits)
lemma extends_subst_fun_upd_matching:
    \sigmax=Some t < extends_subst ( }\sigma(x\mapstot))\tau\longleftrightarrow\mathrm{ extends_subst }\sigma
    unfolding extends_subst_def dom_fun_upd subst_of_map_def
    by (auto simp add: dom_def split: option.splits)
lemma extends_subst_empty[simp]: extends_subst Map.empty \tau
    unfolding extends_subst_def by auto
lemma extends_subst_cong_term:
    extends_subst \sigma \tau\Longrightarrow vars_term t\subseteqdom \sigma\Longrightarrowt subst_of_map Var \sigma = t . subst_of_map Var }
    by (force simp: extends_subst_def subst_of_map_def split: option.splits intro!: term_subst_eq)
```

lemma extends_subst_cong_lit:
extends_subst $\sigma \tau \Longrightarrow$ vars_lit $L \subseteq$ dom $\sigma \Longrightarrow L$ •lit subst_of_map Var $\sigma=L$ •lit subst_of_map Var τ
by (cases L) (auto simp: extends_subst_cong_term)
definition subsumes_modulo $C D \sigma=$
$(\exists \tau$. dom $\tau=$ vars_clause $C \cup$ dom $\sigma \wedge$ extends_subst $\sigma \tau \wedge$ subst_cls C (subst_of_map Var $\tau) \subseteq \# D)$
abbreviation subsumes_list_modulo where

```
subsumes_list_modulo Ls Ks \sigma \equiv subsumes_modulo (mset Ls) (mset Ks) \sigma
lemma vars_clause_add_mset[simp]: vars_clause (add_mset L C) = vars_lit L U vars_clause C
    unfolding vars_clause_def by auto
lemma subsumes_list_modulo_Cons: subsumes_list_modulo (L# Ls) Ks \sigma\longleftrightarrow
    ( \existsK\in set Ks. \exists\tau. extends_subst \sigma\tau\wedge dom \tau= vars_lit L Udom \sigma^L lit (subst_of_map Var }\tau)=
        ^ subsumes_list_modulo Ls (remove1 K Ks) \tau)
    unfolding subsumes_modulo_def
proof (safe, goal_cases left_right right_left)
    case (left_right \tau)
    then show ?case
        by (intro bexI[of _ L .lit subst_of_map Var \tau]
        exI[of _ \lambdax. if x vars_lit L \cup dom \sigma then \tau x else None], intro conjI exI[of _ \tau])
        (auto 0 3 simp: extends_subst_def dom_def split: if_splits
        simp: insert_subset_eq_iff subst_lit_def intro!: extends_subst_cong_lit)
next
    case (right_left K \tau \tau
    then show ?case
        by (intro bexI[of_L lit subst_of_map Var \tau] exI[of _ \tau'], intro conjI exI[of _ \tau])
            (auto simp: insert_subset_eq_iff subst_lit_def extends_subst_cong_lit
                intro: extends_subst_trans)
qed
lemma decompose_Some_var_terms: decompose (Funf ss) (Fungts)=Some eqs \Longrightarrow
    f=g^ length ss = length ts ^ eqs = zip ss ts }
    (U(t,u)\inset ((Fun f ss, Fun g ts) # P). vars_term t)=
    (U(t,u)\inset (eqs @ P).vars_term t)
    by (drule decompose_Some)
        (fastforce simp: in_set_zip in_set_conv_nth Bex_def image_iff)
lemma match_term_list_sound: match_term_list tus \sigma=Some \tau \Longrightarrow
    extends_subst \sigma \tau ^dom \tau=(\bigcup(t,u)\inset tus. vars_term t) \cup dom \sigma^
    (\forall(t,u)\inset tus. t \cdot subst_of_map Var }\tau=u
proof (induct tus \sigma rule: match_term_list.induct)
    case (2 xt P \sigma)
    then show ?case
        by (auto 0 3 simp: extends_subst_fun_upd_new extends_subst_fun_upd_matching
            subst_of_map_def dest: extends_subst_extends simp del: fun_upd_apply
            split: if_splits option.splits)
next
    case (3 f ss gts P \sigma
    from 3(2) obtain eqs where decompose (Fun f ss) (Fungts)=Some eqs
        match_term_list (eqs @ P) \sigma=Some \tau by (auto split:option.splits)
    with 3(1)[OF this] show ?case
    proof (elim decompose_Some_var_terms[where P = P, elim_format] conjE, intro conjI, goal_cases extend dom
subst)
        case subst
        from subst(3,5,6,7) show ?case
            by (auto 0 6 simp: in_set_conv_nth list_eq_iff_nth_eq Ball_def)
    qed auto
qed auto
lemma match_term_list_complete: match_term_list tus \sigma=None \Longrightarrow
    extends_subst \sigma \tau\Longrightarrowdom \tau=(\bigcup(t,u)\inset tus. vars_term t)\cup dom \sigma\Longrightarrow
        ( }\exists(t,u)\in\mathrm{ set tus. }t\cdot\mathrm{ subst_of_map Var }\tau\not=u
proof (induct tus \sigma arbitrary: \tau rule: match_term_list.induct)
    case (2 x t P \sigma)
    then show ?case
        by (auto simp: extends_subst_fun_upd_new extends_subst_fun_upd_matching
            subst_of_map_def dest: extends_subst_extends simp del: fun_upd_apply
            split: if_splits option.splits)
next
```

```
    case (3 f ss gts P \sigma)
    show ?case
    proof (cases decompose (Funf ss) (Fungts)=None)
    case False
    with 3(2) obtain eqs where decompose (Funf ss) (Fung ts) = Some eqs
        match_term_list (eqs @ P) \sigma=None by (auto split:option.splits)
    with 3(1)[OF this 3(3) trans[OF 3(4) arg_cong[of _ - \lambdax. x \cup dom \sigma]]] show ?thesis
    proof (elim decompose_Some_var_terms[where P = P, elim_format] conjE,goal_cases subst)
        case subst
        from subst(1)[OF subst(6)] subst(4,5) show ?case
            by (auto 0 3 simp: in_set_conv_nth list_eq_iff_nth_eq Ball_def)
    qed
qed auto
qed auto
lemma unique_extends_subst:
    assumes extends: extends_subst \sigma \tau extends_subst \sigma \varrho and
        dom: dom \tau = vars_term t U dom \sigma dom \varrho = vars_term t Udom \sigma and
        eq: t . subst_of_map Var \varrho=t subst_of_map Var \tau
    shows }\varrho=
proof
    fix }
    consider (a) x\indom \sigma|(b) x\in vars_term t | (c) x\not\indom \tau using assms by auto
    then show \varrho x = \tau x
    proof cases
        case a
        then show ?thesis using extends unfolding extends_subst_def by auto
    next
        case b
        with eq show ?thesis
        proof (induct t)
            case (Var x)
            with trans[OF dom(1) dom(2)[symmetric]] show ?case
            by (auto simp: subst_of_map_def split:option.splits)
        qed auto
    next
        case c
        then have \varrho x=None \tau x = None using dom by auto
        then show ?thesis by simp
    qed
qed
lemma subsumes_list_alt:
    subsumes_list Ls Ks \sigma\longleftrightarrow subsumes_list_modulo Ls Ks \sigma
proof (induction Ls Ks \sigma rule: subsumes_list.induct[case_names Nil Cons])
    case (Cons L Ls Ks \sigma)
    show ?case
        unfolding subsumes_list_modulo_Cons subsumes_list.simps
    proof ((intro bex_cong[OF refl] ext iffI; elim exE conjE), goal_cases LR RL)
        case (LR K)
        show ?case
            by (insert LR; cases K; cases L; auto simp: Cons.IH split: option.splits dest!: match_term_list_sound)
    next
        case (RL K \tau)
        then show ?case
        proof (cases match_term_list [(atm_of L, atm_of K)] \sigma)
        case None
        with RL show ?thesis
            by (auto simp: Cons.IH dest!: match_term_list_complete)
        next
        case (Some \tau')
        with RL show ?thesis
            using unique_extends_subst[of \sigma \tau 生 atm_of L]
```

```
        by (auto simp: Cons.IH dest!: match_term_list_sound)
    qed
    qed
qed (auto simp: subsumes_modulo_def subst_cls_def vars_clause_def intro: extends_subst_refl)
lemma subsumes_subsumes_list[code_unfold]:
    subsumes (mset Ls) (mset Ks) = subsumes_list Ls Ks Map.empty
unfolding subsumes_list_alt[of Ls Ks Map.empty]
proof
    assume subsumes (mset Ls) (mset Ks)
    then obtain \sigma where subst_cls (mset Ls) \sigma\subseteq# mset Ks unfolding subsumes_def by blast
    moreover define }\tau\mathrm{ where }\tau=(\lambdax\mathrm{ . if x f vars_clause (mset Ls) then Some ( }\sigmax\mathrm{ () else None)
    ultimately show subsumes_list_modulo Ls Ks Map.empty
        unfolding subsumes_modulo_def
        by (subst (asm) same_on_vars_clause[of _ \sigma subst_of_map Var \tau])
            (auto intro!: exI[of _ \tau] simp: subst_of_map_def[abs_def] split: if_splits)
qed (auto simp: subsumes_modulo_def subst_lit_def subsumes_def)
lemma strictly_subsumes_subsumes_list[code_unfold]:
    strictly_subsumes (mset Ls) (mset Ks)=
        (subsumes_list Ls Ks Map.empty ^ ᄀ subsumes_list Ks Ls Map.empty)
    unfolding strictly_subsumes_def subsumes_subsumes_list by simp
lemma subsumes_list_filterD: subsumes_list Ls (filter P Ks) \sigma\Longrightarrow subsumes_list Ls Ks \sigma
proof (induction Ls arbitrary:Ks \sigma)
    case (Cons L Ls)
    from Cons.prems show ?case
        by (auto dest!: Cons.IH simp: filter_remove1[symmetric] split: option.splits)
qed simp
lemma subsumes_list_filterI:
    assumes match: (\LK \sigma \tau.L\in set Ls \Longrightarrow
        match_term_list [(atm_of L, atm_of K)] \sigma=Some \tau\Longrightarrow is_pos L = is_pos K\LongrightarrowP K)
    shows subsumes_list Ls Ks \sigma\Longrightarrow subsumes_list Ls (filter P Ks) \sigma
using assms proof (induction Ls Ks \sigma rule: subsumes_list.induct[case_names Nil Cons])
    case (Cons L Ls Ks \sigma)
    from Cons.prems show ?case
        unfolding subsumes_list.simps set_filter bex_simps conj_assoc
        by (elim bexE conjE)
            (rule exI, rule conjI, assumption,
            auto split:option.splits simp: filter_remove1 [symmetric] intro!: Cons.IH)
qed simp
lemma subsumes_list_Cons_filter_iff:
    assumes sorted_wrt: sorted_wrt leq (L# Ls) and trans: transp leq
    and match: (\L K \sigma \tau.
        match_term_list [(atm_of L, atm_of K)] \sigma=Some \tau\Longrightarrow is_pos L = is_pos K \Longrightarrowleq L K)
shows subsumes_list (L#Ls) (filter (leq L) Ks) \sigma\longleftrightarrow subsumes_list (L# Ls)Ks \sigma
    apply (rule iffI[OF subsumes_list_filterD subsumes_list_filterI]; assumption?)
    unfolding list.set insert_iff
    apply (elim disjE)
    subgoal by (auto split: option.splits elim!: match)
    subgoal for L K \sigma\tau
        using sorted_wrt unfolding List.sorted_wrt.simps(2)
        apply (elim conjE)
        apply (drule bspec, assumption)
        apply (erule transpD[OF trans])
        apply (erule match)
        by auto
    done
definition leq_head :: ('f::linorder,'v) term =>('f,'v) term }=>\mathrm{ bool where
    leq_head t u = (case (root t, root u) of
```

```
    (None, _) => True
|(-, None) }=>\mathrm{ False
    (Some f, Some g) =>f\leqg)
definition leq_lit L K = (case (K,L) of
    (Neg _, Pos _) => True
    (Pos _, Neg _) => False
    | _ l leq_head (atm_of L) (atm_of K))
```

lemma transp_leq_lit[simp]: transp leq_lit
unfolding transp_def leq_lit_def leq_head_def by (force split: option.splits literal.splits)
lemma reflp_leq_lit[simp]: reflp_on leq_lit A
unfolding reflp_on_def leq_lit_def leq_head_def by (auto split: option.splits literal.splits)
lemma total_leq_lit[simp]: total_on leq_lit A
unfolding total_on_def leq_lit_def leq_head_def by (auto split: option.splits literal.splits)
lemma leq_head_subst[simp]: leq_head $t(t \cdot \sigma)$
by (induct t) (auto simp: leq_head_def)
lemma leq_lit_match:
fixes $L K$:: ('f :: linorder, 'v) term literal
shows match_term_list $\left[\left(a t m _o f ~ L, ~ a t m _o f ~ K\right)\right] ~ \sigma=S o m e ~ \tau \Longrightarrow ~ i s _p o s ~ L=i s _p o s ~ K ~ l e q-l i t ~ L ~ K ~$
by (cases L; cases K)
(auto simp: leq_lit_def dest!: match_term_list_sound split: option.splits)

5.2 Optimized Implementation of Clause Subsumption

```
fun subsumes_list_filter where
    subsumes_list_filter [] Ks \sigma = True
| subsumes_list_filter (L# Ls) Ks \sigma =
        (let Ks = filter (leq_lit L) Ks in
        ( \existsK\in set Ks. is_pos K}=is_pos L^
            (case match_term_list [(atm_of L, atm_of K)] \sigma of
                None }=>\mathrm{ False
            | Some \varrho = subsumes_list_filter Ls (remove1 K Ks) @)))
lemma sorted_wrt_subsumes_list_subsumes_list_filter:
    sorted_wrt leq_lit Ls \Longrightarrow subsumes_list Ls Ks \sigma = subsumes_list_filter Ls Ks \sigma
proof (induction Ls arbitrary: Ks \sigma)
    case (Cons L Ls)
    from Cons.prems have subsumes_list (L# Ls) Ks \sigma = subsumes_list (L # Ls) (filter (leq_lit L) Ks) \sigma
        by (intro subsumes_list_Cons_filter_iff[symmetric]) (auto dest: leq_lit_match)
    also have subsumes_list (L# Ls) (filter (leq_lit L) Ks) \sigma = subsumes_list_fiter (L # Ls) Ks \sigma
        using Cons.prems by (auto simp: Cons.IH split:option.splits)
    finally show ?case.
qed simp
```


5.3 Definition of Deterministic QuickSort

This is the functional description of the standard variant of deterministic QuickSort that always chooses the first list element as the pivot as given by Hoare in 1962. For a list that is already sorted, this leads to $n(n-1)$ comparisons, but as is well known, the average case is much better.
The code below is adapted from Manuel Eberl's Quick_Sort_Cost AFP entry, but without invoking probability theory and using a predicate instead of a set.
fun quicksort :: (' $a \Rightarrow^{\prime} a \Rightarrow$ bool $) \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list where
quicksort - [] = []
| quicksort $R(x \# x s)=$
quicksort $R($ filter $(\lambda y . R y x) x s) @[x]$ @ quicksort $R($ filter $(\lambda y . \neg R y x) x s)$
We can easily show that this QuickSort is correct:
theorem mset_quicksort [simp]: mset (quicksort R xs) $=$ mset $x s$
by (induction R xs rule: quicksort.induct) simp_all
corollary set_quicksort [simp]: set (quicksort R xs) $=$ set $x s$
by (induction R xs rule: quicksort.induct) auto
theorem sorted_wrt_quicksort:
assumes transp R and total_on R (set $x s$) and reflp_on R (set $x s$)
shows sorted_wrt R (quicksort R xs)
using assms
proof (induction R xs rule: quicksort.induct)
case (2 $R x x s$)
have total: $R a b$ if $\neg R b a a \in \operatorname{set}(x \# x s) b \in \operatorname{set}(x \# x s)$ for $a b$ using 2.prems that unfolding total_on_def reflp_on_def by (cases $a=b$) auto
have sorted_wrt R (quicksort R (filter $(\lambda y . R$ y $x) x s)$) sorted_wrt R (quicksort R (filter $(\lambda y . \neg R y x) x s)$)
using 2.prems by (intro 2.IH; auto simp: total_on_def reflp_on_def)+
then show? case
by (auto simp: sorted_wrt_append 〈transp R 〉 intro: transp $D[O F\langle$ transp $R\rangle]$ dest!: total)
qed auto
End of the material adapted from Eberl's Quick_Sort_Cost.
lemma subsumes_list_subsumes_list_filter[abs_def, code_unfold]:
subsumes_list Ls Ks $\sigma=$ subsumes_list_filter (quicksort leq_lit Ls) Ks σ
by (rule trans[OF box_equals[OF _ subsumes_list_alt[symmetric] subsumes_list_alt[symmetric]] sorted_wrt_subsumes_list_subsumes_list_filter])
(auto simp: sorted_wrt_quicksort)
end

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
 owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: ${ }^{1}$ https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_Resolution_Prover/

