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Summary

Various organizations claim that increasing attention should be put on an ef-
ficient use of healthcare resources. The internationally rising life expectancy
and population size is accompanied by hospitals that are relying more on short
admissions, and thus on limited bed capacity. The international World Health
Report published by the World Health Organization shows that 20-40% of all
healthcare resources are not being sufficiently utilized. Thus, tools that benefit
an efficient healthcare system is greatly relevant to the present society.

The goal of this thesis is to expand methods in the field of modeling and op-
timizing hospital patient flow with a view to provide management and planners
with a range of decision tools for improving the utilization of hospital resources.
We elaborate on a number of relevant hospital optimization problems which re-
late to decision making on both the strategic, tactical and operational level. In
addition, we focus on various types of patient flow, from inpatient to acute and
surgical admissions, which has led to four different research studies.

Methodologically we mainly focus on evaluating the different instances of
patient flow based on Markov chain modeling, and employing these models in
heuristic search procedures to optimize the configuration of the related hospi-
tal resources. We employ this general approach in three studies. Additionally,
the fourth study elaborates on a simulation-based Markov decision process.
All four studies have been validated with patient data from Danish hospitals.

The thesis consists of seven chapters which have been divided into four
different parts. The first part consists of two chapters, where Chapter 1 in-
troduces the reader to the concept of hospital patient flow, and presents the
motivation for modeling and optimizing the processes that are related hereto.
Next, Chapters 2 prepares the reader for the methods that have been em-
ployed in our research with particular focus on Markov chain modeling and
heuristic optimization.

Part II and III contain our contribution to the literature and comprise two
chapters each. In Part II we focus exclusively on inpatient flow. Here, Chapter
3 presents a Markov chain model for evaluating the flow of inpatients, and a
heuristic search procedure for deriving an improved distribution of the hospi-
tal’s bed resources. By employing a heuristic statistical test we find that our
approach adequately reflects the behavior of inpatient flow for a specific hos-
pital case, and through additional tests that patient relocations can be reduced
by 11.8% by re-distributing resources that are already available to the hospital.

Next, in Chapter 4 we extend the application of the Markov chain model by
introducing patient preferences for room types into the optimization problem.
That is, our goal is to maximize the number of patient preference-matches by
changing the configuration of room types for the hospital wards. To achieve
this we employ a randomized and interpolated search procedure, where so-
lutions are sampled based on an interpolation between the currently known
solutions in the search space. Numerical experiments show that this approach
is able to derive near-optimal solutions usually within a 1% relative gap from
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the optimum.
In Part III we focus on both acute and surgical patient flow. Chapter 5

presents a method for optimizing emergency department staffing by evaluat-
ing the patient flow as a Markov chain model. We employ this model in a
search procedure that exploits integer linear programming to minimize the to-
tal amount of staff by simultaneously accounting for the patient waiting time.
Simulation experiments indicate that our approach is fairly robust to our model
assumptions, and that the solutions perform well in emergency departments
with multiple triage-classes of patients.

Next, in Chapter 6 we present an approach for minimizing the long-term
costs related to day-to-day scheduling of surgical patients. Here, we account
for the inherent rolling horizon in the problem by employing a simulation-based
Markov decision process. By using data from a hospital case, we validate the
approach through various simulation experiments, which indicate that distinct
improvements can be achieved by employing our approach rather than per-
forming patient scheduling manually.

Finally, Part IV comprises a single chapter, namely Chapter 7, where we
summarize the findings from each of our studies in a final conclusion to the
thesis. In relation hereto, we provide the reader with our reflections and sug-
gestions for future work.
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Sammenfatning (Summary in Danish)

Flere organisationer hævder, at der skal være et større fokus på effektiv an-
vendelse af de ressourcer, som går til sundhed. Den verdensomspændende
voksende gennemsnitslevealder og det stigende befolkningstal er ledsaget af
hospitaler, som sætter deres lid til korte indlæggelser, og derved begrænset
sengekapacitet. I den internationale World Health Report som er udgivet af
World Health Organization, beskrives det, hvordan 20-40% af alle sundhed-
sressourcer ikke bliver tilstrækkeligt udnyttet. Derfor er alle værktøjer, som
kan bidrage til et effektivt sundhedssystem, i høj grad relevante for nutidens
samfund.

Målet med denne afhandling er at udbygge metoderne indenfor modeller-
ing og optimering af hospitalers patientflow med henblik på at tilvejebringe
en række beslutningsværktøjer, som kan benyttes af både ledelse og plan-
læggere til at forbedre hospitalernes ressourceudnyttelse. Vi går i dybden
med et antal relevante optimeringsproblemer, som relaterer sig til både det
strategiske, taktiske og operationelle niveau. Herudover fokuserer vi på flere
forskellige typer af patientflow fra langtidsindlæggelser til akutte og kirurgiske
indlæggelser, hvilket har ført til fire forskellige forskningsstudier.

Metodisk fokuserer vi hovedsageligt på at evaluere de forskellige eksem-
pler på patientflow med Markovkæder og dernæst at anvende disse modeller
i heuristiske søgeprocedurer for at optimere konfigurationen af de relaterede
hospitalsressourcer. Denne generelle tilgang bliver anvendt i tre studier. Her-
til beskriver det fjerde studie en simulationsbaseret Markovbeslutningsproces.
Alle fire studier er blevet valideret med patientdata fra danske hospitaler.

Afhandlingen består af syv kapitler, som er delt op i fire forskellige dele.
Den første del består af to kapitler, hvor kapitel 1 introducerer læseren til kon-
ceptet omkring hospitalernes patientflow og uddyber motivationen for at mod-
ellere og optimere de processer, som er relateret hertil. Herefter forbereder
kapitel 2 læseren på de metoder, som vi har anvendt i vores forskning med
særlig fokus på Markovkæder og heuristisk optimering.

Del II og III indeholder vores bidrag til litteraturen og omfatter hver to
kapitler. I del II fokuserer vi udelukkende på langtidsindlæggelser. Her præsen-
terer kapitel 3 en Markovkædemodel til at evaluere flowet for langtidsindlæg-
gelser og en heuristisk søgeprocedure til at udlede en forbedret fordeling af
hospitalers sengeressourcer. For et specifikt hospital viser vi ved hjælp af en
heuristisk statistisk test, at vores tilgang reflekterer patienternes flow og gen-
nem yderligere tests, at flytning af patienter kan reduceres med 11,8% ved at
omfordele de ressourcer, som allerede er tilgængelige for hospitalet.

Herefter udvider kapitel 4 anvendelsen af Markovkædemodellen ved at ind-
føre patienternes præferencer for rumtyper i optimeringsproblemet. Det vil
sige, målet er at maksimere antallet af patient-præference-par ved at ændre
konfigurationen af rumtyper for hospitalets sengeafsnit. For at opnå dette an-
vender vi en randomiseret og interpoleret søgeprocedure, hvor stikprøver af
løsninger bliver udtaget baseret på en interpolation mellem de løsninger, som
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allerede er kendt. Numeriske eksperimenter viser, at denne tilgang er i stand
til at udlede løsninger, som er tæt på optimale. Det vil sige med en relativ
forskel, som ofte er under 1% fra optimum.

I del III fokuserer vi på både akut og kirurgisk patientflow. kapitel 5 præsen-
terer en metode til at optimere bemandingen på en akutafdeling ved at eval-
uere patientflowet som en Markovkædemodel. Vi anvender denne model i en
søgeprocedure, der benytter lineær heltalsprogrammering til at minimere den
samlede bemanding ved at tage højde for patienternes ventetid på samme
tid. Eksperimenter med simulering indikerer, at vores tilgang er temmelig ro-
bust i forhold til vores modelantagelser, og at løsningerne yder udmærket i
akutafdelinger med flere triage-niveauer.

Herefter præsenterer kapitel 6 en tilgang til at minimere de langvarige
omkostninger, som relaterer sig til den daglige skedulering af kirurgiske pa-
tienter. Her tager vi højde for problemets iboende rullende planlægningsho-
risont ved at anvende en simulationsbaseret Markovbeslutningsproces. Ved
hjælp af data fra et hospital validerer vi tilgangen gennem forskellige eksperi-
menter med simulering, hvilke indikerer, at bemærkelsesværdige forbedringer
kan opnås ved at indføre vores tilgang fremfor at udføre patientskedulering
manuelt.

Endelig omfatter del IV et enkelt kapitel, nemlig kapitel 7, hvor vi opsum-
merer fundene fra hver af vores studier i afhandlingens endelige konklusion.
Herudover kommer vi med vores reflektioner og forslag til fremtidig forskning.
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Preface

This PhD thesis was carried out at the Department of Management Engineer-
ing at the Technical University of Denmark (DTU) and constitutes a collabo-
ration between the university and the Danish hospitals. The research in this
thesis has been co-funded by the governmental organization Region Sjælland,
which is the public provider of healthcare on Lolland, Falster and the western
part of Zealand, in Denmark. The organization manages seven public hospi-
tals, and strives to continually improve their processes by introducing the use
of mathematical modeling to both model and optimize their operations. For this
reason, Region Sjælland has been collaborating with DTU on several educa-
tional projects, including both Master’s thesis projects and full PhD educations,
since 2014. This thesis constitutes the first PhD thesis in this collaboration.

In Denmark, hospital processes are already assessed with a view to im-
prove both patient care and production rates. In Region Sjælland, one of the
main contributors to these improvements is the department of Production, Re-
search and Innovation (in Danish: Produktion, Forskning og Innovation) that
supports hospitals in gaining insight into their processes by providing various
analyses and decision support tools. A substantial amount of these analyses
are based on patient data, which is logged and stored for every arriving pa-
tient. Besides finance, the department has provided much of the data for this
thesis, which together with interviews and observations form the basis for the
hospital cases that were investigated.

As a result, we have been able to scope our research on expanding the
current literature on hospital planning, as well as solving problems that are
encountered by hospitals on a daily basis.

The thesis contains a total of seven chapters with research that has lead
to four journal articles. At this point, one article has been published, and one
is accepted for publication. The main supervisor of the thesis is Associate
Professor Thomas Jacob Riis Stidsen from the Department of Management
Engineering at the Technical University of Denmark, and the co-supervisors
are Professor Bo Friis Nielsen from the Department of Applied Mathematics
and Computer Science at the Technical University of Denmark, and Assis-
tant Professor Line Blander Reinhardt from the Department of Mechanical and
Manufacturing Engineering at Aalborg University.

We hope that this thesis provides a basis for further research, and that
it can be employed as support for management and planners in the hospital
industry.

Kongens Lyngby, June 30th 2018

Anders Reenberg Andersen

v





Acknowledgments

This thesis would not have been without the support of many helpful people.
First of all, the fundamental basis of this PhD project is the financial support
by Region Sjælland, and director Mahad Huniche who came up with the idea
of establishing a collaboration with the Technical University of Denmark.

Besides financial support, Region Sjælland provided the data and insight
that the research in this thesis is largely based upon. This data would not
have been employed if it were not for the talented people in the department
of Production, Research and Innovation (in Danish: Produktion, Forskning
og Innovation). Additionally, the staff at various hospital departments have
been helpful in providing detailed insight into the hospital processes, which
has been the basis of developing and validating the models in this thesis. In
particular, I would like to thank the staff at Slagelse hospital, and especially
the physicians and nurses at the emergency department for letting me ob-
serve their workflow.

In addition, I would like to thank my hosts at the KU Leuven Technology
Campus in Ghent for providing me with an interesting and educational stay.
I am thankful to have been under the supervision of Professor Greet Vanden
Berghe, and to have worked with Postdoctoral Researcher Wim Vancroonen-
burg. They are both very skilled researchers as well as thorough authors.

Last, but certainly not least, I would like to thank my three supervisors for
supporting me throughout my PhD education, and to have pushed me, but si-
multaneously given me sufficient space to choose the methods, the depth and
the direction that I wanted to aim for. My main supervisor Associate Professor
Thomas J. R. Stidsen has been supporting me with strategic decisions as well
as mediating between me and Region Sjælland, which has ensured a steady
flow in the project, and certainly limited my level of stress. Assistant Professor
Line B. Reinhardt has been essential in all aspects of this project, among other
things by making sure that the project was initialized to begin with, engaging
in my research, and setting me up with various contacts. The same applies to
Professor Bo F. Nielsen, who has been very engaged and detail-oriented with
respect to my research, and a thorough co-author. Bo supported me in my
Master’s thesis, and continued his support throughout my entire PhD project,
even though he was not added as an official supervisor until 2017. I am very
grateful to have been under the supervision of all three supervisors!

vi





Contents

Summary i

Sammenfatning (Summary in Danish) iii

Preface v

Acknowledgments vi

I Introduction 5

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Hospital Patient Flow: A Brief Introduction . . . . . . . . . . . . 8
1.3 Overview of Related Research . . . . . . . . . . . . . . . . . . 11

1.3.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Basics of Queues and Heuristic Optimization 17
2.1 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Markov Chains for Modeling Queues . . . . . . . . . . . 23
2.1.2 Discrete Event Simulation . . . . . . . . . . . . . . . . . 32

2.2 Heuristic Optimization . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Fundamental Heuristic Search Procedures . . . . . . . 41
2.2.2 Optimization of Queues with Integer Programming . . . 44

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 47

II Inpatient Flow 49

3 Optimization of Hospital Ward Resources with Patient Relocation
using Markov Chain Modeling 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Dynamics of the System . . . . . . . . . . . . . . . . . . 54
3.3 Modeling & Solution Approach . . . . . . . . . . . . . . . . . . 55

3.3.1 A Homogeneous Continuous-Time Markov Chain . . . . 56
3.3.2 A Heuristic Optimization Model . . . . . . . . . . . . . . 60

1



CONTENTS

3.4 Implementation & Results . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Case & Data Description . . . . . . . . . . . . . . . . . 63
3.4.2 Optimizing the Case-Hospital . . . . . . . . . . . . . . . 69
3.4.3 Case Testing . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . 72
3.5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Strategic Room Type Allocation for Nursing Wards Through Markov
Chain Modeling 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Modeling & Solution Approach . . . . . . . . . . . . . . . . . . 80

4.3.1 Randomized & Interpolated Search (RIS) heuristic . . . 80
4.3.2 Evaluating g(u) and f(u) . . . . . . . . . . . . . . . . . 81
4.3.3 The Surrogate Functions . . . . . . . . . . . . . . . . . 84
4.3.4 Sub-Optimal Room Configuration . . . . . . . . . . . . . 85

4.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Error of the Surrogate Function . . . . . . . . . . . . . . 88
4.4.3 Evaluating the RIS Heuristic Parameters . . . . . . . . . 90
4.4.4 Applying the RIS Heuristic . . . . . . . . . . . . . . . . . 92
4.4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III Acute and Surgical Flow 101

5 Staff Optimization for Time-Dependent Acute Patient Flow 103
5.1 Introduction & Literature Review . . . . . . . . . . . . . . . . . 103
5.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 System and Data Description . . . . . . . . . . . . . . . 107
5.3 Modeling & Solution Approach . . . . . . . . . . . . . . . . . . 111

5.3.1 Modeling Patient Waiting Time . . . . . . . . . . . . . . 112
5.3.2 Optimization Heuristic . . . . . . . . . . . . . . . . . . . 117

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.1 Evaluation of the CTMC Model . . . . . . . . . . . . . . 119
5.4.2 Evaluation of the RBA Heuristic . . . . . . . . . . . . . . 121
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . 125
5.5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 126

2



CONTENTS

6 Simulation-based Rolling Horizon Scheduling for Operating The-
atres 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Constraints & Dynamics of the Problem . . . . . . . . . 134
6.3 Modeling & Solution Approach . . . . . . . . . . . . . . . . . . 136

6.3.1 A Markov Decision Process . . . . . . . . . . . . . . . . 136
6.3.2 A Heuristic Approach . . . . . . . . . . . . . . . . . . . 140

6.4 Implementation & Results . . . . . . . . . . . . . . . . . . . . . 144
6.4.1 Case & Data Description . . . . . . . . . . . . . . . . . 146
6.4.2 Adjusting the Parameters . . . . . . . . . . . . . . . . . 148
6.4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . 150

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 154

IV Conclusion 155

7 Conclusion, Perspective & Future Work 157
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.1 Specific Findings . . . . . . . . . . . . . . . . . . . . . . 158
7.2 Perspective & Future Work . . . . . . . . . . . . . . . . . . . . 160

7.2.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 163

Appendices 173

A Appendix for Chapter 3 175
A.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B Appendix for Chapter 5 177
B.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3



CONTENTS

4



Part I

Introduction

5





Chapter 1

Introduction

1.1 Motivation

Expenses related to healthcare constitute an ever increasing fraction of the
Gross Domestic Product (GDP) for countries worldwide [55]. Statistics from
the Organisation for Economic Co-operation and Development (OECD) show
that the increasing investments are accompanied by a larger availability of
physicians, whereas other essential healthcare resources are becoming in-
creasingly more limited to the population. Furthermore, the average relative
bed availability has been drastically decreasing since 1980 for a correspond-
ing distinct increasing life expectancy and population size [55, 140]. For Den-
mark specifically, bed availability has been reduced by 50% during the last two
decades due to the hospitals relying on short admissions. In fact, the average
length of stay has dropped roughly 20% through the last two decades [55],
and in response hereto hospitals must continuously seek to improve their pro-
cesses in order to maintain a proper quality of care.

A conservative estimate from the World Health Report, published by the
World Health Organization (WHO) [98], shows that 20-40% of all the resources
that are dedicated to healthcare are being wasted. In order to reduce this
waste, the report emphasizes that not only must sufficient funds be raised, but
the efficiency and equity of the health system must be consolidated.

Returning to the utilization of resources in Danish healthcare, in 2014
Bloomberg published a list of the most efficient healthcare systems [26], where
Denmark is ranked as number 34 out of 51 countries. In comparison, the
neighboring country of Sweden is given a rank of 19, and Germany a rank of
23. In addition, a number of sources, of which some are healthcare profes-
sionals, state that the Danish healthcare system should be more in focus. In
Pedersen & Petersen, 2014 [101] a variety of steps to improve hospital patient
flow is described, and in Højgaard, 2017 [69] some of the essential problems
related to both hospital staff and patient treatment is elaborated. Both of these
sources are related to the Danish public healthcare sector. In addition hereto,
a number of recent sources discuss how the Danish system is currently man-
aged [70, 108, 86], thus all things considered indicating that development in
the areas of management, mathematical modeling and optimization of hospi-
tal processes are greatly relevant to the present society [22].
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CHAPTER 1. INTRODUCTION

Any hospital that is able to collect data that describes patient flow might be
able to devise a mathematical (or computational) understanding of the internal
processes, as well as how these can be modified to affect patient treatment.
Naturally, this greatly depends on the quality of the observations, and the foun-
dation unto which the collection-process is build [80]. For instance, if the data
is logged by hospital staff that simultaneously have to prioritize the treatment
of their patients, the credibility of the data might be affected.

In Denmark, collection of patient data have been mandatory through sev-
eral years, and despite criticism of the collection process [71, 18], this thesis
will show how patient data can be exploited to provide a valuable insight into
modeling and optimization of patient flow.

1.2 Hospital Patient Flow: A Brief Introduction

Patient flow is a diverse concept that features many different types of both
private and governmental organizations. Some of these include, but are not
confined to: General practitioners, rehabilitation in the municipalities, home
care for the elderly, and blood banking. In this thesis we direct our attention to
patient flow that relates to admissions or other visits at a hospital. By the term
flow, we refer to the notion of modeling the utilization of resources that are as-
sociated with the patients during their stay at the hospital. Because resources
are often utilized in a successive order they can also be interpreted as steps
forming a path for the patient. Certain steps in these paths are repeated a
substantial number of times yielding a pattern or system that yields the patient
flow.

In this thesis, we base our interpretation of hospital patient flow on obser-
vations and interviews from hospitals in Denmark. More specifically, we have
focused on hospitals that are managed in western Zealand by the governmen-
tal organization Region Sjælland [6]. The following will be based on Hall, 2006
[65] as well as our data from these hospitals.

Returning to the notion of patients "flowing through" the hospital. Notice
that in the context of this thesis, patient flow refers only to the utilization of
resources, and does not necessarily refer to a physical location shift. For in-
stance, a patient might be physically located in the same room during which
the patient have previously been examined by a physician, and is now waiting
for a treatment. Suppose these two steps are sufficient to discharge this pa-
tient. The associated patient flow can then be depicted as presented in Figure
1.1a. At the same time, hosting the patient at the hospital requires a room
and a bed. Thus, in the context of utilizing structural and physical resources
(omitting the equipment needed to conduct the examination and treatment),
we may consider the flow presented in Figure 1.1b.

8



CHAPTER 1. INTRODUCTION

Arrival

Examination

Treatment

Discharge

(a) Flow related to procedures dur-
ing the patient’s length of stay.

Arrival

Room & bed

Discharge

(b) Flow related to hosting the pa-
tient.

The resources associated with the flow presented in Figure 1.1a are es-
sentially independent of the flow presented in Figure 1.1b. Nonetheless, the
physical resources of Figure 1.1b are often related to the organizational struc-
ture of the hospital, which is further related to the required treatment, finally
leading to the procedures that a patient will be subject to, i.e. the flow in Fig-
ure 1.1a. However, there are exceptions to the relation between treatment and
which resources that are employed to host the patient — for instance, patients
that have been relocated due to insufficient bed capacity (cf. Chapter 3).

In order to control the progression of the different paths, hospitals use three
aggregated patient classifications [65, p. 14]. Patients are grouped into these
depending on their current state with a view to control the overall amount and
types of resources that are employed. These patient classifications are often
referred to as:

1. Inpatients

2. Outpatients

3. Emergency (Acute)

Inpatients Patients that stay at the hospital for more than one day and as
a result require a bed are considered inpatients. This type can constitute a
quite small fraction of the total number of patients that visit a hospital on a
daily basis, but conversely they account for the vast majority of the hospital
expenses.

Inpatients usually originate from the emergency department; otherwise
they are transferred from a different institution (e.g. another hospital), or from
the general community (e.g. a general practitioner). After arrival the inpatients
will be admitted in a ward, where they will receive care and treatment during
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their entire length of stay. Physically, inpatients will be located in a bed, and
a room (cf. Figure 1.1b) that may be private or shared with other inpatients.
From here, the patients will utilize both nursing and different ancillary services
that requires both staff and equipment resources. These services might in-
clude the department of radiology, a pharmacy, or a lab.

Another important element of inpatient flow is surgery. Usually, surgical pa-
tients arrive to the hospital either as elective patients, meaning that they have
been scheduled for an appointment, or as acute (through the emergency de-
partment), in which case they do not have an appointment, but require surgery
immediately. A dedicated unit will ensure that the surgical procedure is per-
formed after which a nursing ward or an intensive care unit (or both sequen-
tially) will care for and monitor the patient until discharge [65, p. 14].

Outpatients Patients that have to visit the hospital, but do not have to stay
overnight, are considered outpatients. This group may constitute the largest
number of patients that make a visit to the hospital on a daily basis, and at the
same time constitute an intermediate amount of the total hospital expenses.

Outpatients mainly originate from outside the hospital. That is, either they
are transferred from a different hospital or institution, or they have been re-
ferred after visiting a general practitioner. As a result hereof, outpatients are
often elective (scheduled) patients. Furthermore, as opposed to inpatients
that are hospitalized in a bed, outpatients are scheduled to arrive at a unit
referred to as an outpatient clinic. The hospital will comprise different types
of clinics in accordance with the medical services they can offer. A typical
path for an outpatient is a referral from a general practitioner, followed by the
scheduling of an appointment at the hospital, where an examination is per-
formed at an outpatient clinic. During the latter, the clinic will use resources
from either a dedicated or centralized ancillary service similar to an inpatient
path [65, p. 14].

Emergency Patients that require immediate care and, due to their condi-
tion, cannot wait for a scheduled appointment are considered emergency or
acute patients. This group may constitute a medium number of daily admis-
sions corresponding to about half of the outpatient arrivals. Additionally, acute
admissions may account for a relatively small fraction of the total hospital ex-
penses. Nonetheless, an efficient and well-functioning acute flow is essential
to treating patients both in their current state, if they are transferred to an in-
patient ward, or if they later return as an outpatient [99, 93, 72].

Acute patients originate from outside the hospital, either as walk-ins or by
ambulance. On arrival, they are referred to a dedicated hospital unit, i.e. the
Emergency Department (ED). According to our observations, the ED is some-
times notified of walk-ins in advance of the arrival, yielding a mix of both un-
known (but to some extend predictable) and known incoming flow of patients.
As a result of a mixed flow that contains patients of very different conditions,
all new arrivals must undergo an initial examination known as a triage. During
the triage, a member of the staff (e.g. a specialized triage nurse) evaluates
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the condition of the patient, and assigns a code that specifies how the pa-
tient should be prioritized later in its path. In other words, whether the patient
should be immediately attended by a physician or have to wait. To ensure
an efficient flow through this process, the department will have pre-defined
a number of parameters that govern exactly how the different triage codes
should be used, and how they will segment the patients.

The remaining of the path for the acute patients varies from case to case.
Some EDs rely on a single flow of patients, whereas others use parallel flows
to ensure that patients with short treatment times can be attended without
having to wait for the more severe cases. The literature sometimes refers to
this as fast track flow [100, 43, 65].

In general, EDs are characterized by their short length of stay during which
patients are stabilized and the remaining steps in their paths are determined.
Certain acute patients may need to stay overnight, in which case they will usu-
ally be transferred to an inpatient ward. Acute patients are further inclined to
return to the hospital at a later point as outpatients [65, p. 20].

All of the aforementioned patient types will be considered in different parts
of this thesis. Inpatient flow will be considered in Chapter 3 and 4, emergency
patients will be considered in Chapter 5, and in Chapter 6 we consider both
in- and outpatients as they are scheduled for a surgical operation.

1.3 Overview of Related Research

In order to improve the processes that govern hospital patient flow, one needs
to consider the methods that can be used to evaluate the system’s perfor-
mance, and in this regard, how the configuration of resources should be al-
tered to enhance this performance. In this scheme, mathematical modeling
and optimization plays a key role. In the remaining of this thesis, we will refer
to the modeling of patient flow as the concept of creating mathematical insight
into the behavior of the flow with a view to evaluate the system’s performance.
Conversely, the term optimization will be used in relation to deriving a solution
to the configuration of the hospital resources, for instance by interacting with
a model of the patient flow.

Naturally, patient flow modeling is an essential part of this thesis. A re-
view by Bhattacharjee & Ray, 2014 [22] shows that three overall classes of
approaches are used to model patient flow in the literature. Bhattacharjee &
Ray refer to these as:

• Analytical

• Simulation

• Statistical (empirical)

11
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The analytical class of approaches can be further divided into queueing
theoretic models, and different applications of Markov chain models. Each
of these methods attain different advantages depending on the nature of the
problem at hand.

Queueing theory is a classical approach that has been employed to gain
insight into hospital processes since the 1950s [17]. By queueing theory, we
refer to an evaluation of patient flow performance by employing one or more
analytical formulas. The specific measures that are usually considered are
patient waiting times, overcrowding, and staff idle-time [22]. Expressing these
measures as analytical formulas may seem beneficial, but there is a downside
to this approach. By employing queueing theoretic models, one may have to
consider a number of quite constraining assumptions. For instance, it may be
necessary to assume that the system is in steady-state, and that the evolution
of the process is Markovian [22]. We will elaborate more on these assumptions
in Chapter 2.

A few specific cases of queueing theory are Gorunescu et al., 2002 [59,
60] and Li et al., 2009 [83] that employ two phase-type queueing models,
M/PH/c/N and M/PH/c, to model mixed patient flows. In addition hereto,
Green, 2002 [62] employ an M/M/c model to evaluate the availability of beds
for a number of different hospital units. Lastly, open queueing networks are
employed by Cochran & Roche, 2009 [42] and Mayhew & Smith, 2008 [88] to
investigate how patient throughput can be increased.

Compared to the queueing theoretic models, the literature is scarce when
it comes to research in Markov chains for modeling patient flow [22]. Even
though Markov chain modeling is closely related to queueing theory, the ap-
proach has been widely used to replace statistical models, for instance by
modeling the length of stay for patients. Specifically, discrete-time Markov
chains have been employed by Bartolomeo et al., 2008 [19] to model the re-
admission probability of patients, and by Broyles et al., 2010 [29] to predict
the number of inpatients in a hospital. Furthermore, a continuous-time Markov
chain is used by Shaw & Marshall, 2007 [116] to model the length of stay for
heart-failure patients, whereas Wang et al., 2014 [135] evaluate the care de-
livery process of patients based on a closed network.

Computer simulations that are based on discrete event simulation, agent
based simulation, and system dynamics have been extensively employed to
model different types of healthcare systems, including patient flow [22]. Par-
ticular attention has been given to the unscheduled flows (e.g. acute patients),
and reviews conducted by Lim et al., 2012 [85], and Borgman, 2017 [27] show
that unscheduled patient flows are modeled by employing simulation in a sub-
stantially greater number of cases than the analytical methods. Bhattacharjee
& Ray notice that the reason why simulation is a suitable choice, is due to the
high complexity and time-dependent behavior of these specific flow types [22].

Specific applications of simulation include among others Khadem et al.,
2008 [76] where a new layout for an emergency department is assessed by
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employing a discrete event simulation, and Wang, 2009 [136] where different
triage and radiology procedure settings are evaluated by using an agent based
simulation.

The statistical, or empirical, models are only employed as the sole ap-
proach in few studies. Bhattacharjee & Ray characterize this group of models
as the methods that are entirely based on observations and system experi-
mentations with a view to analyze the dependencies in the patient flow [22].
They further state that this modeling approach is currently in its nascent stage.
Examples include Adeyemi & Chaussalet, 2008 [9] and Adeyemi et al., 2011
[8] where random effects models are used to identify patient pathways.

In this thesis, we generally focus on employing Markov chains to model
patient flow, and as we have shown in the above, as well as in our subsequent
literature reviews (cf. Chapter 3-5), the use of Markov chains to model pa-
tient flow is an uncommon approach. Furthermore, few studies seem to exist
where algorithmic optimization is conducted by employing the analytical meth-
ods, mentioned above, to evaluate the effects on the patients flow [85]. By
algorithmic optimization we refer to methods such as heuristic and matheuris-
tic search procedures. In fact, the studies that conduct optimization based on
this type of algorithms tend to rely on simulation [119, 30].

1.3.1 Contribution

Our contribution to the current literature on patient flow modeling and opti-
mization will be carefully clarified throughout Chapter 3-6. By summarizing,
we provide:

• A Markov chain for modeling inpatient flow that accounts for patient relo-
cation. We demonstrate how to cope with the "curse of dimensionality"
for this model by truncating the state space, and how to validate the
model using patient data.

• A heuristic and a matheuristic search procedure for optimizing bed and
room resources for inpatient flow, respectively. The first is based on a
hill climber heuristic, and the second on an interpolation of the known
solution samples in the search space. Later, we shall refer to the latter
as randomized and interpolated search. The solutions in both search
procedures are evaluated by employing a Markov chain model.

• A Markov chain for modeling time-dependent acute patient flow. We
validate the model by comparing to a number of simulations that feature
different service time distributions as well as patient classes.

• A matheuristic search procedure for optimizing the staffing of an emer-
gency department. In this search procedure, we recursively allocate
staff to the department by using an integer linear programming model.
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The search procedure ensures not to violate any constraints on patient
waiting time by employing a Markov chain model of the system.

• A simulation-based Markov decision process for optimizing the schedul-
ing of surgical patients with a rolling horizon. We demonstrate the perfor-
mance of the model under different conditions, and compare our results
to a number of other scheduling policies.

1.4 Thesis Outline

The content of this thesis is divided into four parts. The current Part I, intro-
duces the reader to the area of patient flow modeling and optimization, and
consists of two chapters. Furthermore, Part II and III contain our contribution
to the literature and comprise four articles. Part II is dedicated to long-term
admissions, or inpatient flow, and Part III is dedicated to more short-term ad-
mission, i.e. acute and surgical flow. Each of these parts contains two chap-
ters, where each chapter represent a specific hospital problem. Lastly, Part IV
contains a single chapter with a final conclusion to the current thesis.

In the following, we present a brief description of the content of each re-
maining chapter.

Chapter 2 introduces the methods that have been used to both model and
optimize patient flow throughout this thesis. More specifically, the chapter will
be divided into two sections: The first section contains a description of the
methods related to modeling the behavior of patient flow, i.e. a brief intro-
duction to the fundamentals of queueing theory followed by an introduction
to Markov chain modeling. The second section contains an introduction to
heuristic optimization, where a number of basic concepts are presented, fol-
lowed by a few specific examples of the matheuristic search procedures that
have been employed in this thesis. The purpose of this chapter is to prepare
readers with various backgrounds for the subsequent chapters.

Chapter 3 presents a method for modeling inpatient flow and optimizing the
associated distribution of bed resources. More specifically, in this chapter
we consider a hospital problem featuring a set of wards and corresponding
set of patient types that continuously require admission at the hospital. On
arrival, each type is dedicated to a specific ward in the system, unless the bed
capacity of the ward has been depleted. If the latter is the case, then patients
will either be lost from the system, or relocated to an alternative ward in the set
of wards. We employ a continuous-time Markov chain to model this behavior,
and a hill climber heuristic to optimize the distribution of resources for so to
minimize the number of patients that are relocated (or lost) on arrival.

This chapter has been published in the European Journal of Operational
Research with the title Optimization of hospital ward resources with patient
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relocation using Markov chain modeling. The authors of the article are Anders
Reenberg Andersen1, Bo Friis Nielsen2 and Line Blander Reinhardt3 [13].

Chapter 4 extends the application of the Markov chain model from Chapter
3 by introducing room types to the optimization problem. That is, we consider
a setting where patients are not only dedicated to a specific ward, but have
preferences regarding the type of room that they are admitted to. We do not
introduce any changes to the Markov chain, but exploit the occupancy distri-
butions resulting from the model to define an objective function that accounts
for the expected amount of patient preference-matches from the room con-
figuration. We then maximize this function by employing a search procedure
that recursively conducts random samples from the search space based on
an interpolation between the currently known solutions.

This chapter has been submitted to Artificial Intelligence in Medicine with
the title Strategic room type allocation for nursing wards through Markov chain
modeling. The authors of the article are Anders Reenberg Andersen1, Wim
Vancroonenburg4 and Greet Vanden Berghe4.

Chapter 5 presents a method for optimizing the allocation of staff resources
to an emergency department. More specifically, our aim is to derive the mini-
mum amount of staff that is required to operate the department by simultane-
ously accounting for constraints on the patient waiting time. To achieve this,
we model the occupancy of patients in the department as an open queueing
network by employing a continuous-time Markov chain. Here, time-dependent
behavior is evaluated by using the uniformization method. From the result-
ing state probability distribution, we evaluate the waiting time in each node
of the network, which is then used as a constraint in a matheuristic search
procedure. Furthermore, we validate our approach by comparing to several
simulations of the associated system.

This chapter has been accepted for publication in the European Journal of
Operational Research with the title Staff optimization for time-dependent acute
patient flow. The authors of the article are Anders Reenberg Andersen1, Bo
Friis Nielsen2, Line Blander Reinhardt3 and Thomas Jacob Riis Stidsen1.

Chapter 6 differs from the aforementioned Chapter 3-5 in the sense that we
do not consider a queueing system, but instead the flow of surgical appoint-
ments. That is, in this chapter we investigate a method for scheduling appoint-
ments to specific dates and operating rooms, and simultaneously account for
future surgical requests by modeling the problem with a rolling planning hori-
zon. Specifically, our aim is to minimize the total long-term expected costs of

1Department of Management Engineering, Technical University of Denmark, Kongens Lyngby,
Denmark

2Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Kongens Lyngby, Denmark

3Department of Mechanical and Manufacturing Engineering, Aalborg University, Copenhagen,
Denmark

4Department of Computer Science, KU Leuven, Ghent, Belgium
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scheduling patients for a surgical operation, ensuring that patients can receive
an appointment immediately, and that the procedure is conducted within a lim-
ited number of days. To achieve this, we employ a simulation-based Markov
decision process in an online scheme which we refer to as rollout. Further-
more, since the action space is often intractable, we use a heuristic search
procedure to construct an action, resulting in an allocation of the patients to
the schedule. We compare this approach to a number of simple and advanced
scheduling policies.

This chapter has been submitted to Annals of Operations Research with
the title Simulation-based rolling horizon scheduling for operating theatres.
The authors of the article are Anders Reenberg Andersen1, Thomas Jacob
Riis Stidsen1 and Line Blander Reinhardt3.

Chapter 7 summarizes the findings from each of the previous chapters in a
final conclusion to the thesis. In addition, we provide the reader with our reflec-
tions and suggestions for future research in the area of patient flow modeling
and optimization.
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Chapter 2

Basics of Queues and
Heuristic Optimization

2.1 Queues

To properly understand the behavior of hospital patient flow, we must distin-
guish between the situations in which patients are "in process" (e.g. examined,
treated, recovering, etc.) and the situations in which they are simply waiting
for some resource to become available. Often the paths that patients follow
through a hospital can be viewed as a system, where the patients are either in
a state of service or waiting. Patients might wait for a nurse upon arrival at the
emergency department, or upon admission they might wait for a laboratory
technician to collect a blood sample. If surgery is required, the patients will
have to wait for an open slot in the calendar. In other words, patient flow is in
many situations a system of queues that work as a network where nodes af-
fect each other as patients switch between them. Performance measures such
as length-of-stay and ward occupancy are a result of the underlying queueing
network, and a function of the amount of available staff, the behavior of the
staff, and the condition and rate at which patients arrive to the hospital. For
this reason, understanding and modeling queues is an essential tool in this
thesis.

In the following, we will present some of the fundamental elements of
queueing theory, along with some of the elementary, but sometimes quite use-
ful, queueing models. Next, in Section 2.1.1 and 2.1.2 we will present some
of the more advanced methods that will be used to both model and validate
queueing networks throughout this thesis.

Consider a stream of entities arriving at a node, within which they are pro-
cessed, and then removed from the system (cf. Figure 2.1). The node can
only take a certain number of entities and process them at the same time. For
this reason, any entity that arrives when the capacity of the node is depleted
has to wait, resulting in a queue emerging in front of the node. In some cases,
the queue itself has a limited capacity causing the entities to be rejected. The
reader might notice how the description of this system resembles a super-
market or a call-center, and for this reason standard theory [63, 123] often
refers to the node as a service facility, the capacity of the node as servers,
and the arriving entities as customers. In fact, queueing theory has been ap-
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Served entitiesArriving entities

Queue Service
Node

Figure 2.1: The basic structure of a queue.

plied extensively in these fields. For instance, the Danish mathematician and
engineer Agner Krarup Erlang (1878-1929) is recognized for his pioneering
research while working at the Telephone Company in Copenhagen [3]. Notice
that the arriving entities might as well be patients, and the servers could be
physicians.

The characteristics of a queueing system is to the most part determined
by the following components:

• The behavior of the arriving patients.

• The behavior of the servers.

• The capacity of the system including the number of parallel servers.

• The queueing discipline.

The latter could be according to priority, such as in an emergency depart-
ment where patients are triaged, and then examined according to their code.
In addition, some hospital queueing systems treat patients (and other tasks)
according to their time of arrival, which is known as First-In-First-Out (FIFO).

Arrival and Server Behavior

In order to model the arriving patients, we must consider the process that
generates them. In this thesis, arrivals are always stochastic and generated
according to a Poisson process. Thus, by letting k ∈ N0 define the number of
arrivals in a time-interval of size t ∈ R≥0, we have that

Prob{k within t} = pk(t) = e−λt
(λt)k

k!
(2.1)

where λ ∈ R>0 is the constant rate at which patients are arriving to the
system. We now present some basic properties [123, p. 389] of (2.1).

Let N(t) ∈ N0 define the number of patients that arrive within the time-
interval t; then for a Poisson process we have that N(0) = 0, patients arrive
with independent increments, and the number of patients k depends only on
the size of t and not on the past history of the system. Furthermore, for an
increment of size ∆ ∈ R>0, we have that

• Prob{k = 0 within (t, t+ ∆]} = 1− λ∆ + o(∆)
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• Prob{k = 1 within (t, t+ ∆]} = λ∆ + o(∆)

• Prob{k > 1 within (t, t+ ∆]} = o(∆)

where o(∆) is a quantity that becomes negligible as ∆→ 0 such that

lim
∆→0

o(∆)

∆
= 0 (2.2)

In the following we will demonstrate that a Poisson process results in an ex-
ponentially distributed time between each successive arrival. Consider p0(t+
∆), namely the probability that no arrivals have occurred in the interval (0, t+
∆]. Then, p0(t+∆) = p0(t) ·Prob{k = 0 within (t, t+∆]} which from the above
yields

p0(t+ ∆) = p0(t) · (1− λ∆ + o(∆))

⇔

p0(t+ ∆)− p0(t) = −p0(t)λ∆ + p0(t)o(∆)

⇔

p0(t+ ∆)− p0(t)

∆
= −p0(t)λ+ p0(t)

o(∆)

∆

which in the limit as ∆→ 0 leads to

dp0(t)

dt
= −λp0(t)⇔ dp0(t)

dt
+ λp0(t) = 0 (2.3)

according to (2.2). For a differential equation of the form dy(x)
dx +Φ(x)y(x) =

Ψ(x), the solution is [63, p. 25],

y(x) = Ce−
∫

Φ(x)dx + e−
∫

Φ(x)dx

∫
e
∫

Φ(x)dxΨ(x)dx

which by substituting with the elements of (2.3) leads to

p0(t) = Ce−
∫
λdt + e−

∫
λdt

∫
e
∫
λdt · 0 · dt = Ce−λt

Applying the boundary condition p0(0) = 1 we get C = 1, and thus,

p0(t) = e−λt (2.4)

Now, let the random variable X ∈ R>0 define the inter-arrival time of the
patients with Cumulative Distribution Function (CDF) F (t) = Prob{X ≤ t} =
1− Prob{X > t}, corresponding to

F (t) = 1− p0(t)

Thus from (2.4), we finally get
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F (t) = 1− e−λt

which is the CDF for the exponential distribution. This type of distribution
is memoryless [63, p. 29], also known as the Markovian property (from Andrei
Andreevich Markov (1856-1922)), meaning that the time until the next arrival
of a patient is independent of the time that has passed since the latest arrival.

In Kendall’s notation [74], inter-arrival times that are exponentially dis-
tributed are defined by an M (referring to the Markovian property of the dis-
tribution). Thus, for a multi-server queueing system that has both exponential
inter-arrival and inter-service times, we write M/M/c, which in short yields the
distribution between first the arrivals, then the finished services, and last the
number of parallel servers, c ∈ N>0. Naturally, real-life queueing systems can
have many different types of distributions, such as deterministic (D), phase-
type (PH), Erlang of type k (Ek), and general independent (GI or G).

Probability Distributions

A queue of the type M/M/c can be viewed as a birth-death process. That
is, a continuous-time Markov chain where the system can only change to the
state s ∈ {0, 1, 2, . . . ,∞} through state s − 1 or s + 1. We elaborate more on
Markov chains in Section 2.1.1. For the time being consider the process de-
picted in Figure 2.2, showing the transitions between states for the birth-death
process associated with the M/M/c queue, where each node represents the
total number of patients that are either in queue or service. In other words, s
denotes the number of patients in the system. This number increases with a
rate corresponding to the arrival rate λ, and decreases with the rate µs = sµ,
where µ ∈ R>0 is the rate at which patients are treated at each server (i.e. the
reciprocal of the mean inter-service time). However, this only applies as long
as s ≤ c; otherwise the rate is bounded at µs = cµ.

0 1 · · · c− 1 c c+ 1 · · ·

λ λ λ λ λ λ

µ 2µ (c− 1)µ cµ cµ cµ

Figure 2.2: The state transitions associated with the M/M/c queue.

In other words, for the rate at which the number of patients are discharged
in the system, we have

µs =

{
sµ, 1 ≤ s ≤ c
cµ, s ≥ c

}
This system is only stable if ρ = λ/(cµ) < 1, at which point the probability

of k patients occurring in the system is [123, p. 420],
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pk = p0

k∏
s=1

λ

µs

Thus by employing our definition of rate µs, this leads to

pk = p0

k∏
s=1

λ

sµ
= p0

(
λ

µ

)k
1

k!
if 1 ≤ k ≤ c

and

pk = p0

c∏
s=1

λ

sµ

k∏
s=c+1

λ

cµ
= p0

(
λ

µ

)k
1

c!

(
1

c

)k−c
if k ≥ c

We can simplify the above by employing the expression ρ = λ/(cµ), sub-
stituting λ/µ with cρ. This leads to the final steady-state probabilities for the
M/M/c queue,

pk = p0
(cρ)k

k!
if 1 ≤ k ≤ c (2.5)

and

pk = p0
(cρ)k

ck−cc!
= p0

ρkcc

c!
if k ≥ c (2.6)

In order to apply the above, we still need to derive p0. Therefore, consider
that we in general have that

∞∑
k=0

pk = p0 +

∞∑
k=1

pk = 1

Thus from expression (2.5) and (2.6), we can derive

p0

(
1 +

c−1∑
k=1

(cρ)k

k!
+

∞∑
k=c

ρkcc

c!

)
= 1

⇔

p0 =

(
1 +

c−1∑
k=1

(cρ)k

k!
+

∞∑
k=c

ρkcc

c!

)−1

Furthermore, we can rewrite the infinite series

∞∑
k=c

ρkcc

c!
=

1

c!

∞∑
k=c

ρkcc =
(cρ)c

c!

∞∑
k=c

ρk−c

which now yields the form
∑∞
i=0 ax

i = a/(1− x); hence
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(cρ)c

c!

∞∑
k=c

ρk−c =
(cρ)c

c!

1

1− ρ

and therefore

p0 =

(
1 +

c−1∑
k=1

(cρ)k

k!
+

(cρ)c

c!

1

1− ρ

)−1

(2.7)

Together, equation (2.5)-(2.7) yield the entire steady-state probability distri-
bution of the M/M/c queue. The upside of this simple queueing model is that
it accounts for many real-life characteristics, such as multiple servers, Poisson
generated arrivals, and inter-service time variability. However, it might occur to
the reader that many queueing systems do not have exponential inter-service
times (rather gamma or log-normal), in which case the M/M/c might be inad-
equate to describe the behavior of the queueing system.

Consider a system that has a capacity-limit such that patients are lost from
the system if all servers are occupied on arrival. That is, a queue of the type
M/M/c/c, where the last c indicates that the capacity of the system is equal
to the number of servers. In practice, this type of system occurs whenever
patients do not wait for a resource (e.g. a nurse or a physician), but instead
are relocated to a location where capacity is still available. Thus, the total
number of patients in the system is defined as s ∈ {0, 1, . . . , c − 1, c}, so the
associated birth-death process comprises a finite number of states. For this
type of queueing system, the steady-state probabilities are [123, p. 434]

pk =
(λ/µ)k/k!∑c
i=0(λ/µ)i/i!

for 0 ≤ k ≤ c (2.8)

If k = c, then (2.8) yields the fraction of time that all the servers are oc-
cupied, or correspondingly the probability that an arriving patient is lost. In
this case, the expression is also known as the Erlang’s loss formula, which
generalizes to any service-time distribution [123, p. 434]. In other words, the
M/G/c/c queue. For this reason, the M/M/c/c queue is a fairly robust model
that can be employed to evaluate a system directly, or as a surrogate for a
much larger model. Through Part II we will demonstrate the robustness of
this simple queue, and how the model can be employed in different contexts
including both flow evaluation and optimization.

Due to the simple structure of both the M/M/c and M/M/c/c queueing
models they are quite "easy" to apply in practice. Furthermore, even though
they do not account for a large range of characteristics of a real-life queueing
system, they might still yield its general behavior. For instance, the potential
of assigning a new physician to a task, or routing more patients to a specific
ward, which can be useful in deciding on a scope for a more adequate model.
On the other hand, one of the characteristics that define patient flow is the
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network of processes that must come together to properly treat the patients.
Another characteristic is time-dependency. The amount of staff and the rate
at which patients arrive at the hospital might fluctuate over time. Especially in
an emergency context.

In the following section, we will elaborate on employing continuous-time
Markov chains for modeling patient flow in a network of queues. In addition,
we touch upon modeling these networks with time-dependency, which is oth-
erwise elaborated in Chapter 5.

2.1.1 Markov Chains for Modeling Queues

Markov chains are stochastic processes that are based on the notion that
a system can be defined by a set of states referred to as the state space,
S. The process can only attain a single state s ∈ S at a time, but in return
change (or transition) between the states as the process evolves. Further, the
name Markov is derived from the Markovian property of the process, meaning
that if at time tk the process is in state sk, then a transition at time tk+1 to
a new state sk+1 is only dependent on sk, and not on the past history of the
system. Say we let X(t) ∈ S define a stochastic process that evolves over
time t ≥ 0, and further that this process attains the states in a sequence
t0 < t1 < · · · < tk−1 < tk < tk+1, where k ∈ N0 is the index of the sequence,
then for a Markov chain [123, p. 252]

Prob{X(tk+1) = sk+1|X(tk) = sk, X(tk−1) = sk−1, . . . , X(t0) = s0}
= Prob{X(tk+1) = sk+1|X(tk) = sk}

Consider for instance the birth-death process for the aforementionedM/M/c
queue in Figure 2.2. The number of patients in the system is either due to a
recent arrival or discharge. Furthermore, because the inter-arrival and inter-
service times follow a continuous distribution, a transition can occur at any
point in time; hence t ∈ R0. In this section, we limit our scope to exactly this
type of models, namely the Continuous-Time Markov Chains (CTMCs).

The queueing systems we have considered so far are time-homogeneous
in terms of their associated CTMC. For the remaining of this section, let s ∈ S
and s∗ ∈ S define the current and a subsequent state in the chain, respectively.
Further, let p(τ)ss∗ define the state transition probability of changing from state
s to the new state s∗ over the time-interval τ ∈ R0. Then, for a homogeneous
CTMC the probability pss∗(τ) = Prob{X(t+ τ) = s∗|X(t) = s} where t can be
any point in time. In addition, for any value of τ , the probability is conserved, so∑
s∗∈S pss∗(τ) = 1. On the contrary, if the CTMC is time-inhomogeneous, then

pss∗(t, t
∗) = Prob{X(t∗) = s∗|X(t) = s}. Thus, the probability of the transition

from s to s∗ depends on both the time, t, at which point the process is in the
current state, s, and the time, t∗, at which point the process has changed to
the new state, s∗.
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As these state-transitions occur in continuous time it is convenient to define
the CTMC based on the rates at which the transitions occur instead of their
probability. Let qss∗(t) denote the rate at which the process changes from the
current state s to a new state s∗ at time t. In the setting of Stewart, 2009 [123,
p. 254], this is defined as

qss∗(t) = lim
∆→0

pss∗(t, t+ ∆)

∆
(2.9)

where s 6= s∗, and for homogeneous CTMCs (that are independent of t)

qss∗ = lim
∆→0

pss∗(∆)

∆

once again given that s 6= s∗. Now, for the rates where s = s∗, namely
qss(t), we have that

qss(t) = −
∑

s∗∈S\{s}

qss∗(t) (2.10)

so the rate associated with the process staying in the current state is in
other words constrained by qss(t) ≤ 0, where qss(t) = 0 makes s an absorbing
state since qss∗(t) = 0 ∀s∗ ∈ S\{s}. This applies if the CTMC is homogeneous
in time as well. Together, qss∗(t) ∀s, s∗ ∈ S make up an |S| × |S| matrix Q(t),
which we refer to as the transition rate matrix. On matrix-form we have that

Q(t) = lim
∆→0

P (t, t+ ∆)− I
∆

where P (t, t + ∆) is the probability transition matrix associated with the
probabilities pss∗(t, t + ∆) and I the identity matrix. Notice that due to (2.10)
every row in the transition rate matrix, Q(t), must sum to zero.

Consider the M/M/c/c queue. That is, a queue where arriving patients
are lost if all of the c servers are occupied. The arrivals are further generated
according to a Poisson process with rate λ, and the inter-service times are ex-
ponentially distributed corresponding to a discharge rate of µ. All parameters
are independent of time, and theM/M/c/c queue is therefore a homogeneous
CTMC with finite state space S = {0, 1, . . . , c− 1, c}. The transition rate matrix
that corresponds to this type of queue is

Q =



−λ λ 0 · · · 0
µ −(µ+ λ) λ 0 · · ·

0 2µ −(2µ+ λ) λ
...

. . .
... 0

(c− 1)µ −((c− 1)µ+ λ) λ
0 · · · 0 cµ −cµ
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showing that the state (number of patients in the system) increases with
a rate of λ, and decreases with a rate of sµ. The diagonal elements, qss, are
therefore−(sµ+λ) to ensure that

∑
s∗∈S qss∗ = 0 for all states s ∈ S. Naturally,

for larger and more complex systems this way of presenting the structure of
Q can quickly become immense and therefore confusing. For this reason, we
usually present the transition rate matrix on the form

qss∗ =

{
λ if s∗ = s+ 1

sµ if s∗ = s− 1

where all other transition rates qss∗ = 0 for s 6= s∗, and qss = −
∑
s∗∈S\{s} qss∗

for s = s∗. As we will show in the following (and throughout Part II and III of
this thesis), the CTMC can be used to model more advanced system charac-
teristics based on the structure of transition rate matrix Q.

Example of a Queueing System

Consider a geriatric nursing ward that always features n ∈ N>0 inpatients.
Furthermore, assume that m ∈ N>0 nurses are always assigned to this ward
of which u ∈ N0 nurses are students, and m− u nurses have completed their
education and as a result are more experienced. Suppose, that w ∈ N0 pa-
tients have almost recovered enough to be discharged, whereas n−w patients
are in such a bad shape that they can only be attended by the experienced
nurses. For this reason, management has decided that the w recovered pa-
tients should always be attended by a student nurse; unless none of the stu-
dents are available, at which point the patients will be attended by an expe-
rienced nurse. If none of the experienced nurses are available, we assume
for simplicity that the patients do not have to wait, but additional nurses can
be summoned from a different nursing ward. An overview of the relations be-
tween patients and nurses is depicted in Figure 2.3.

Recovered

Sick

Students

Experienced

relocatedPatients Nurses

Figure 2.3: Allocation of two types of patients (recovered and sick ) to two types of
nurses (students and experienced).

Let I = {recovered, sick} define the set of the two patient types, and J =
{students, experienced} define the set of the two nurse types, respectively.
Then, to sum up the problem, we have:
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• A total of n ∈ N>0 patients of two types, I = {recovered, sick}.

• w ∈ N0 (almost) recovered patients, where w ≤ n.

• A total of m ∈ N>0 nurses of two types, J = {students, experienced}.

• u ∈ N0 student nurses, where u ≤ m.

In order to model the problem as a Markov chain we further require a def-
inition of state s ∈ S, with state space of the system S. Let xij ∈ N0 define
the number of patients of type i ∈ I that are attended by nurses of type j ∈ J .
Notice, because we assume that patients do not have to wait for a nurse, xij
only has to account for the patients that are attended. The student nurses are
then subject to

xsick,students = 0

and

xrecovered,students ≤ min{w − xrecovered,experienced, u}

Correspondingly, for the experienced nurses we have that

xrecovered,experienced ≤ min{max{w − u, 0},
m− u− xsick,experienced}

and

xsick,experienced ≤ min{n− w,m− u− xrecovered,experienced}

Thus, xij can be employed to define the state, s ∈ S, of the system at any
time. That is,

s = (xrecovered,students, xrecovered,experienced, xsick,experienced)

which based on the aforementioned constraints yield a state space of size

|S| = (min{u,w}+ 1)

(
1 + min{max{w − u, 0},m− u}+

min{max{w−u,0},m−u}∑
i=0

min{n− w,m− u− i}
)

Assume that the ward contains a total of n = 25 patients of which w = 3
patients are almost recovered. Furthermore, assume that a total of m = 5
nurses are assigned to the ward, and that u = 1 of these nurses is a student.
Thus, the state space contains a total of |S| = 24 states.
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Now, let λi ∈ R0 define the rate at which patients of type i ∈ I require
attention from a nurse, and assume that all patients require attention according
to a Poisson process. Furthermore, let µij ∈ R0 define the service rate for a
nurse of type j ∈ J that attends a patient of type i ∈ I, and assume that
inter-service times follow an exponential distribution. Thus, the problem can
be modeled as a homogeneous continuous-time Markov chain. Let qss∗ ∈ R
define the rate at which the system changes from a current state s ∈ S to a
new state s∗ ∈ S. Then,

qss∗ =



λrecovered if s∗ = (xrecovered,students + 1, . . . ) and xrecovered,students < u,∑
j∈J xrecovered,j < w

λrecovered if s∗ = (. . . , xrecovered,experienced + 1, . . . ) and xrecovered,students = u,∑
i∈I xi,experienced < m− u,

∑
j∈J xrecovered,j < w

λsick if s∗ = (. . . , xsick,experienced + 1) and
∑
i∈I xi,experienced < m− u,

xsick,expeienced < n− w

xijµij if s∗ = (. . . , xij − 1, . . . ) and xij > 0 ∀i, j ∈ I, J

where all other transition rates qss∗ = 0 for s 6= s∗, and qss = −
∑
s∗∈S\{s} qss∗

for s = s∗.

In the above, any expression that follows an "and" defines a constraint that
is associated with the rate, qss∗ , and the state-change that has been specified
for s∗. Notice that for all of the arrival rates, λi, we firstly have to make sure
that there is a sufficient number of nurses available. For instance, if the rate
qss∗ = λsick, then we must make sure that

∑
i∈I xi,experienced < m− u, where

m− u is the total number of experienced nurses and
∑
i∈I xi,experienced is the

total number of experienced nurses that are currently attending a patient for
state s ∈ S. Secondly, since the ward can only take a finite number of both
patient types, we have to specify that only this finite number of patients can be
attended, and not more. Hence, we add the constraint xsick,expeienced < n−w,
where n − w is the total number of sick patients, and xsick,expeienced is the
number of sick patients that are currently being attended by a nurse.

To illustrate, say n = 25, w = 3, m = 5, and u = 1. Then, the transition
s = (0, 0, 2)→ s∗ = (1, 0, 2) occurs with a rate of qss∗ = λrecovered. This is the
same for the transition s = (1, 0, 2) → s∗ = (1,1, 2). However, the transition
s = (0, 0, 2) → s∗ = (0,1, 2) is not allowed, because xrecovered,students = u
is violated, and the transition therefore occurs with a rate of qss∗ = 0. Lastly,
s = (1, 1, 2) → s∗ = (1, 1,3) occurs with qss∗ = λsick, at which point m = 5;
hence any further arrivals are not allowed.

Regarding the service rates, the only dependency is the current number of
patients of type i ∈ I that are attended by nurses of type j ∈ J , which has
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to be positive. That is, xij > 0 ∀i, j ∈ I, J . Further, notice that the resulting
service rates are governed by the product between µij and the number of
patients that are currently being attended, leading to xijµij .

Consider the state s∗ = (0, 1, 2). Even though, s = (0, 0, 2)→ s∗ = (0,1, 2)
is not allowed, the system can still attain this state through the transition s =
(1, 1, 2)→ s∗ = (0, 1, 2) with a rate of qss∗ = 1 · µrecovered,students.

Probability Distributions

Consider a time-interval of size t + ∆ during which a homogeneous CTMC
changes from a state s ∈ S to a new state s∗ ∈ S, and during this transition
passes through the state k ∈ S after time t. Then we have that [123, p. 257]

pss∗(t+ ∆) =
∑
k∈S

psk(t)pks∗(∆) =
∑

k∈S\{s∗}

psk(t)pks∗(∆) + pss∗(t)ps∗s∗(∆)

where t,∆ ∈ R0. From the above it can be shown that [123, p. 258]

dpss∗(t)

dt
=
∑
k∈S

psk(t)qks∗ ∀s, s∗ ∈ S

or in matrix form

dP (t)

dt
= P (t)Q

also known as the Kolmogorov forward equations. The solution to these
differential equations are

P (t) = eQt (2.11)

which yields the relationship between probability matrix P (t) of any transi-
tion s ∈ S to s∗ ∈ S, transition rate matrix Q, and the interval of observation
t [123, p. 258]. Thus, starting from an arbitrary state s ∈ S, the expression
(2.11) is useful for describing the evolution of the homogeneous CTMC over
time, which may converge into steady-state as t→∞. We will elaborate more
on the definition of the resulting state probability distribution in what follows.

Assume we observe the progression of a CTMC during time t, and let
πs(t) = Prob{X(t) = s} be the probability that the system is in state s ∈ S
after time t. Furthermore, let π(t) define a vector of size |S| that comprises
πs(t) ∀s ∈ S. In other words, the probability distribution of the |S| states in the
CTMC after time t. For π(t) we have that [123, p. 262]

π(t) = π(0)eQt (2.12)

where π(0) is the probability distribution at t = 0.
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Consider a homogeneous CTMC that at t = 0 attains a particular state
probability distribution π(0) — e.g. if the process starts in a specific state,
such that π(0) = (1, 0, 0, . . . , 0). Then as time progresses, the process evolves
from this state and does so in accordance with (2.12). If the CTMC is not in
steady-state at time t, then the process is still transient, and the value of π(t)
changes as function of t. In this case [123, p. 263],

dπ(t)

dt
= π(t)Q (2.13)

If the distribution π(t) converges after a sufficient amount of time, such that
dπ(t)/dt = 0, then (2.13) can be reduced to

πQ = 0 (2.14)

where π represents the limiting state probability distribution of the CTMC.
Notice that ‖π‖1 = 1. If the CTMC is finite and irreducible, meaning that
the process does not have a closed subset of states in S, then the limiting
distribution, π, always exists [123, p. 263].

The expression in (2.14) is referred to as the global balance equations,
and serve as the basis for obtaining the state distribution for a homogeneous
CTMC that has attained steady-state.

Solution Approach

The transition rate matrixQ, provides a tool for modeling many advanced char-
acteristics of a queueing system, and by employing this matrix to the system
of equations in (2.14), we are theoretically able to solve the steady-state prob-
ability distribution. We should emphasize the word theoretically, because a
queueing system (e.g. a network of queues) of realistic size can easily yield
a huge state space, which can be quite computationally expensive for many
standard solution methods. Thus, in order to solve (2.14), we propose a nu-
merical approach that derives π within some predefined tolerance limit.

To specify, we consider a problem f(x) = 0 that represents a linear system
of equations of the type Ax−b = 0. An iterative form is then derived by chang-
ing this to xk+1 = g(xk), where xk defines the solution at the k’th iteration. In
our case, we consider the system of equations πQ = 0, cf. (2.14), which after
transposing becomes QTπT = 0. We then employ the recursive formulation
πk+1 = g(πk), with some initial value π0, until convergence.

Some of the iterative methods for defining the function g(πk) are Jacobi,
Gauss-Seidel and Successive Over-Relaxation (SOR) [123, p. 305]. These
methods are all characterized by employing the recursive form

πk+1 = Hπk

where H is referred to as the iteration matrix, which is defined differently
in each method. In this thesis, we have relied on SOR to derive the steady-
state distribution, and for this reason we will elaborate on how to employ this
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method in the following.

Consider the system QTπT = 0, and observe that QT = D−L−U , where
D defines a diagonal matrix, L a strictly lower triangular matrix, and U a strictly
upper triangular matrix. For SOR the iteration matrix is defined as

Hω = (D − ωL)−1[(1− ω)D + ωU ] (2.15)
where ω ∈ R is a parameter that can be adjusted to control the conver-

gence of the method. In this regard, convergence can only be attained in
the range 0 < ω < 2. Furthermore, the optimal convergence-rate of SOR is
achieved by choosing ω such that the difference between the unit eigenvalue
and the subdominant eigenvalue of matrix Hω is maximized [123, p. 312].
Thus, prior to solving for the probability distribution, π, it might be profitable
to conduct a number tests with different values of ω, where Hw is constructed
through the expression in (2.15), and subsequently deriving the associated
eigenvalues. Literature on the optimal value of ω, given a specific structure of
the problem, includes Young, 1954 [145] and Varga, 1959 [133]. Alternatively,
a heuristic search procedure can be employed to derive a "good" value for ω.
If the CTMC is used in a setup where the values in Q can change, then it might
be preferable to conduct a range of experiments with different representative
structures of Q to find a value for ω that performs well for most cases. This
approach is particularly useful if the performance of SOR is insensitive to the
value of ω, and thus, this is the approach that have been employed in this
thesis.

Substituting (2.15) with matrix H in πk+1 = Hπk, yields

πk+1 = (D − ωL)−1[(1− ω)D + ωU ]πk (2.16)
which is used to solve for the steady-state distribution, π. Regarding, the

application of this approach, the reader may notice that the expression in
(2.16) is rather computationally expensive if applied in its current form. Fortu-
nately, that does not have to be the case.

Returning to the general form, Ax − b = 0, SOR can be computationally
implemented by employing the expression [123, p. 315]

xk+1
i = (1− ω)xki +

ω

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)
where xi, bi and aij are elements associated with the vectors x and b; and

the matrix A, respectively. Further, n is the number of equations as well as
unknowns in the system; hence n = |S| . We can reduce this expression by
firstly recalling that bi = 0 for all i elements, and secondly by scaling the matrix
A in each row so the diagonal elements aii = 1. Thus,

xk+1
i = (1− ω)xki − ω

(
i−1∑
j=1

aijx
k+1
j +

n∑
j=i+1

aijx
k
j

)
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which further leads to [123, p. 316]

xk+1
i = xki − ω

(
i−1∑
j=1

aijx
k+1
j + xki +

n∑
j=i+1

aijx
k
j

)
. (2.17)

In our next step, we assume that transition rate matrix Q ⇔ QT = A is
sparse such that the matrix can be saved in a much more compact format
than what is immediately available from standard matrix-form. In this format,
referred to as the Harwell-Boeing format [123, p. 315], we only save the non-
zero values of A and does so in a one-dimensional array. Moreover, to keep
track of the original location of each element, we further require two arrays
that contain information about the row and column indices of each element.
Let α[k] = aij and β[k] = j define arrays that contain the value aij and the
corresponding column index j, respectively. Assume that the elements in each
of these arrays are sorted in ascending order according to their rows (but not
necessarily according to their columns). Furthermore, let γ[i] = k define an
array of length n + 1 that states the position of the first element (in the arrays
α and β) for row i. In other words, the non-zero elements of row i are placed
in the range γ[i] ≤ k < γ[i + 1], and the number of non-zero elements in this
row is γ[i+ 1]− γ[i].

Suppose we employ the Harwell-Boeing format to store each non-zero el-
ement of A. Then, expression (2.17) leads to the computationally "friendly"
version of SOR, presented in Algorithm 1.

Algorithm 1 A single iteration of successive over-relaxation using the Harwell-
Boeing format for matrix A [123, p. 316].

1: x← initialize()
2: for i = 1 to n do
3: sum← 0
4: initial← γ[i] . Get range of row elements
5: last← γ[i+ 1]− 1
6: for j = initial to last do . Calculate the sum
7: sum← sum+ α[j] · x[β[j]]
8: end for
9: x[i]← x[i]− ω · sum . Update the i’th element of x

10: end for
return x

Here, the array x is initialized using an arbitrary vector with a 1-norm equal
to 1, for instance based on an estimate of the steady-state distribution.

Algorithm 1 shows a single iteration of SOR, and thus line 2-10 needs
to be run a (possible large) number of times to attain convergence within a
predefined tolerance, ε. So, the question is how to detect convergence and
avoid terminating the recursion too early. Recall that πk defines the probability
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distribution at iteration k, and π the true probability distribution. Thus, as k →
∞, πk → π.

One approach is to calculate the maximum difference between each suc-
cessive iteration, and terminate when

max
s∈S
{|πks − πk−1

s |} < ε

whereas, if the elements of πk are small, this should be replaced with the
relative measure

max
s∈S

{
|πks − πk−1

s |
|πks |

}
< ε (2.18)

which is the case for many large state spaces. Notice that because the
above methods evaluate successive iterates, they are mostly useful if conver-
gence occurs rather fast. Suppose instead that the process converges at a
slow rate, such that the change between each iteration is smaller than ε, but
the true distribution, π, is still far off. In this case, terminating the process pre-
maturely will result in a violation of ε if convergence is evaluated over a larger
number of iterations. That is, (2.18) should be changed to

max
s∈S

{
|πks − πk−ms |
|πks |

}
< ε (2.19)

where m ∈ N. Moreover, notice that (2.19) can substitute (2.18) entirely if
parameter m is employed as a function of the convergence rate, such that m
starts small, but increases as the process starts to slow down, and more iter-
ations become available [123, p. 318]. The exact definition of such a function
would then depend on the specific problem instance. Throughout this thesis,
we have determined this function experimentally.

The reader may notice that we have paid particular attention to the in-
stances where the CTMC is homogeneous and in steady-state. However, if
the process is transient, so π(t) changes as a function of the time of observa-
tion t, then recall that the process is governed by

π(t) = π(0)eQt.

The question is how to calculate the matrix exponential for large state
spaces. In Chapter 5 we will elaborate on how to achieve this by employing
the method of uniformization [61] for a specific hospital problem.

2.1.2 Discrete Event Simulation
The CTMC provides an analytical approach for modeling queueing systems
with many real-life characteristics. These include network behavior with prob-
abilistic or state-dependent routing, relocation upon insufficient capacity, time-
and state-dependent rates, and so on. Despite the advantages of the CTMC
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presented throughout Section 2.1.1, the reader may have noticed that we al-
ways require a state space of tangible size. That is, even though we might be
able to model a patient flow system mathematically, the computations can be
quite intractable — as we will demonstrate throughout Part II and III. A so-
lution to this problem is to reduce and then validate the model by conducting
samples from a simulation of the system; or merely employing the simulation
model as the only evaluator. The latter is quite a popular approach, as shown
in our literature reviews (cf. Chapter 1, 3, and 5).

The field of computer simulation covers a wide range of methods including
systems with continuous flow, such as system dynamics simulations [122], to
systems where definite integrals are evaluated, i.e. Monte Carlo simulations
[77]. Notice that even though patients may flow through a queueing system
in continuous time, the changes, also denoted events, are indivisible. That
is, the patient flow that we consider in this study is always interpreted as a
sequence of discrete events, where the system transitions from one state to
the next. Therefore, this section introduces a type of simulation known as
Discrete Event Simulation (DES); a type of simulations that aim at modeling
exactly this kind of flow behavior. We have used DES to validate our models
throughout Part II and III. Much more elaborate theory and introductions to the
field can be found in Allen, 2011 [12] and Stewart, 2009 [123]. Additionally,
more general overviews have been provided by Schriber et al., 2015 [112] and
Sanchez, 2007 [110]

A DES is characterized by a sequence of discrete events that govern the
entire behavior of the system throughout the simulation period. For a queue-
ing system, these events will occur in continuous time, and upon their occur-
rence, update the system, possibly followed by a scheduling of new events.
As regards a computer implementation of a DES, the exact structure may vary
between cases due to the differences in problem structure. However, an im-
plementation of DES will comprise the following two phases:

• An Entity Movement Phase (EMP)

• A Clock Update Phase (CUP)

In general, the program will loop between these phases until a stopping
criteria is met, for instance after a pre-defined number of entities have been
processed, or when the simulated time exceeds a certain limit. During the
EMP an event is executed which yields a change of the system (usually the
movement of an entity). Upon completion of the event, the simulation "clock" is
then advanced for the next EMP. This update is referred to as the CUP [112].

In this thesis, the simulated entities are patients, and thus, in an EMP the
entities are moved between a range of nodes that simulate either a queue or
a schedule. Further, the CUP must ensure that the time between successive
events reflects the delays in the system that are governed by the distribution
of service- and inter-arrival times.
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During the EMP, entities will be subject to a range of different states. Again,
the range and nature of these states, will be greatly dependent on the system
that is simulated. Even so, most implementations of DES comprise the follow-
ing five categories [112]:

1. Active

As long as an entity is being altered (e.g. when a patient is moved from
one queue to the next), the entity is in an active state. Only one entity
can be altered at a time, and upon completion the entity will change to
one of the following four inactive states.

2. Ready

Even though the simulation is only able to change one entity at a time,
there may be a range of entities that are neither waiting nor being pro-
cessed, but simply in a state where they are ready to become active.

3. Time-delayed

At some point during their life-time, entities will have to become deliber-
ately delayed within a randomly sampled amount of time to simulate that
the entity is being processed. In simulations of hospital patients flow,
this will usually correspond to the time during which a patient is treated
by a physician, triaged by a nurse, or occupying an operating room.

4. Condition-delayed

Some entities might be delayed due to some other condition in the model.
That is, instead of employing a pre-defined delay, the entity might have
to wait for a condition in the model to change. For instance, this state oc-
curs if the simulation has to account for physical entities that are queued
due to insufficient capacity, which in hospital patient flow corresponds to
the patients waiting for a resource to become available.

5. Dormant

Besides the pre-defined time-delays, or conditional delays, entities might
be delayed because they cannot become ready until some user-provided
logic has changed. If that is the case, the entities are in a dormant
state. Thus, dormant entities are closely related to the condition-delayed
entities because they have to wait for a specific update in the system.
However, the entities cannot be automatically transfered from this state
upon a change in the model conditions.

The simulations conducted throughout this thesis do not generally consider
all five entity states at the same time. For instance, the simulation conducted
in Chapter 3 requires entity states of type 1-3 and chapter 5 requires entity
states of type 1-4.
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In order to organize the entities as they move through the simulation, we
require a storing of the entities on a number of lists, depending on their re-
spective states. These event-lists are used to track and manage the entities
throughout their entire life-time. A DES will typically comprise the following
four types of lists [112]:

1. Current Events

The list of current events include any entity that has attained the ready
state. Thus, during the EMP the simulation will run through each of
the elements on this list making sure that each of the ready entities are
treated by altering their state or removing them from the system.

2. Future Events

Entities that are deliberately delayed (e.g. due to treatment) are trans-
fered to a dedicated list. Here, any known future event in the simulation
is stored. Besides tracking the entities, this list must further include the
exact points in time at which the entities will end their delay. Thus, when
an entity is moved from a time-delayed to a ready state, the CUP uses
the time-stamps on this list to advance the "clock" of the simulation. Be-
cause this list depicts much of the future progression of the simulation, it
is convenient to always keep the elements sorted according to their time
of event.

3. Delays

Similar to the future events list, any entity that has been delayed due to
the model conditions is stored on a separate list. In order to attain a
proper tracking of the entities, several lists might be needed for this type
of delay, and all of these lists are maintained automatically by the model.
Say we want to simulate the flow of patients through an emergency room.
The currently treated patients will be stored on the aforementioned fu-
ture events list, whereas all of the waiting patients are tracked on a delay
list. Here, they will stay until a physician becomes idle, and when this
happens, one of the patient entities (depending on the queueing disci-
pline) will be transferred to the current events list, and then later move
on to the future events list to simulate that the patient is under treatment.

4. User-Managed

Lastly, a DES may contain a number of lists storing the entities that have
been put into the dormant state. Since the model cannot transfer these
entities automatically (cf. the definition of the dormant state), these lists
must be managed by the user, meaning that the model requires a user-
provided logic in order to transfer entities to and from these lists.

There exists a number of commercial softwares which provide the basis for
simulating complex systems by modeling the systems as DESs. A few exam-
ples of these are: Arena by Rockwell Automation [1], and Plant Simulation by
Siemens [5]. Even so, in order to gain sufficient insight into the progression

35



CHAPTER 2. BASICS OF QUEUES AND HEURISTIC OPTIMIZATION

of the simulation it is sometimes useful to implement the simulation in a pro-
gramming language, such as Java or Matlab, which is the approach that we
have used in this thesis. In the following, we will present a few examples of
our approach.

Time-dependent Arrivals

Consider a simulation of a queueing system, which is open to new arrivals, and
that the simulation stops when an event occurs after a pre-defined amount of
time. If the arrival process is known, stationary and independent of the specific
condition of the system, then we can generate all the arrivals that the simu-
lation will ever need in advance, and add them to the aforementioned future
events list. In practice, we employ a function that conducts pseudo-random
samples from a distribution that corresponds to the arrival process. Suppose
arrivals are generated by a Poisson process, then we require a function that
conducts samples from the associated exponential distribution (cf. beginning
of Section 2.1). For a Matlab implementation, this would be exprnd(). The
program can now generate arrivals, as presented in Algorithm 2, by declaring
a time-variable, say t, and perform a loop where samples from the pseudo-
random function are added to t until the simulation time-limit is exceeded. If
the queueing system must account for different entity types (e.g. patients of
different classes, such as recovered, sick and acute) that have different inter-
arrival times, then successive runs can be conducted where the input param-
eter for the pseudo-random function is changed correspondingly. The patients
must then be sorted in accordance with their time of arrival.

Algorithm 2 A Poisson process arrival-generator (with mean inter-arrival time
1/λ) for a single class of entities.

1: L← ∅ . Initialize
2: t← 0
3: while t < T do . Run until time-limit T is exceeded
4: δ ← sampleExponential(1/λ)
5: t← t+ δ
6: L← add(L, t) . Add new arrival to the list
7: end while

return L

Arrivals can be generated quite easily as long as the process is station-
ary by using the above approach. Assume that the arrival process is time-
dependent such that the rate, λ(τ), at which entities arrive to the system is a
function of time, τ ∈ T , where T can be cyclically ordered. To clarify, con-
sider the arrival of patients to an emergency department. This process can be
highly time-dependent (cf. Chapter 5), and governed by a rate that increases
during the day and then starts to decrease around late afternoon, following a
weekly cyclical pattern.
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In our simulation, we accommodate this behavior by employing the same
structure as previously by generating entities at a rate corresponding to maxτ∈T {λ(τ)}.
However, instead of adding every new entity to the list, we accept entities that
are generated at time τ with a probability of p = λ(τ)/maxτ∈T {λ(τ)}. As a
result, the arrival rate governs the probability of accepting the entities to the
list, resulting in fewer arrivals when the arrival rate is low, and correspondingly
more arrivals when the arrival rate is high.

Extending the structure of Algorithm 2 with time-dependent arrivals, we get
the arrival-generator presented in Algorithm 3. Notice that we account for a
cyclical pattern using the variable τ , and the overall length of the simulation
using the variable t. Moreover, since τ can be used to model a cyclical pattern,
we must employ a function, adjust(), to track when to reset τ in accordance
with T . Otherwise, τ is updated similar to t.

Algorithm 3 Extension of Algorithm 2 with time-dependent arrivals.

1: L← ∅ . Initialize
2: t← 0
3: τ ← 0
4: y ← max(λ(τ)) . Maximum arrival rate for all τ
5: while t < T do
6: δ ← sampleExponential(1/y)
7: τ ← adjust(τ, δ, T ) . Advance the cyclical time
8: t← t+ δ . Advance the simulation time
9: r ← sample(0, 1)

10: p← λ(τ)/y
11: if r ≤ p then . Accept with probability p
12: L← add(L, t)
13: end if
14: end while

return L

In Chapter 5, the method presented in Algorithm 3 has been used to gen-
erate arrivals in a DES of an emergency department. In this simulation, we
account for time-dependent arrivals of multiple classes that occur according to
a Poisson process following a weekly cyclical pattern.

Example of a DES Queueing System

Consider a simulation of an Emergency Department (ED) for which all future
arriving patients have been generated by employing Algorithm 3. In addition,
assume that the ED triage their patients and that each triage-level occurs with
an independent pattern. To accommodate this, Algorithm 3 has been run a
successive number of times, where the arrival function has been changed for
each triage-level. The resulting list is then sorted such that arrivals occur in
ascending order.
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Now, assume that the arriving patients can only be triaged by a specialized
nurse. Upon completion of the triage, patients are transferred to a physician
for examination, after which they may be discharged, or re-triaged and treated
by a specialized physician. There is a limited number of each staff type avail-
able which fluctuate in accordance with a weekly working-pattern, similar to
the arrival rate.

This system may be modeled as a DES by employing Algorithm 4. In this
implementation, all known events are stored on the list L along with informa-
tion about the type of each event. Furthermore, a list, Q, is used to store all
of the entities that are waiting for an idle member of the staff. For simplicity,
Algorithm 4 focuses on the patient flow, and does not show the simultaneous
tracking of staff capacity.

The simulation initializes by resetting the simulation "clock", t, and queues
in the system Q. Further, all patients that are needed throughout the simu-
lation period are generated in advance and stored in L. The simulation then
loops by selecting the first event in L, where the event type is checked, along
with the current simulation time, t. Next, a series of actions are conducted
depending on whether the event is an arrival, routing, or a complete discharge
from the system. If the event is either an arrival or routing, then the patient will
require attendance from a member of the staff. The simulation must therefore
decide on an appropriate staff type for the patient, and whether this particular
type is idle at the moment. This is handled in line 8. If a member of the staff is
idle, then an event, specifying when the service (e.g. treatment) is finished, is
added to L (cf. line 9); otherwise the patient is added to the queue associated
with the staff type in Q (cf. line 11). Here, the queueing discipline is respected
by sorting patients according to their time of arrival and respective triage-level.

In addition to moving a patient, the simulation has to make sure that pa-
tients are transferred from queue to service when a staff member becomes
idle, which is the case if the recent event is either a routing or discharge. The
simulation checks this in line 14, after which line 15 checks for any waiting
patients in the queue associated with the idle staff member.

Lastly, notice that if the event is a discharge, the simulation does not add
a new event to L, but merely changes a staff member to idle (which is not
shown in Algorithm 4), and then checks the associated queue for any waiting
patients.

2.2 Heuristic Optimization

In the previous section we elaborated on a number of mathematical and com-
putational tools that can be employed to model the behavior of patient flow.
Hospital management may wish to exploit these tools in order to evaluate the
effect of procuring or reallocating resources. However, suppose that a hospital
department is subject to a budget cut, but still needs to increase performance
in order to attain the department targets. Targets that may even be set by
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Algorithm 4 An example of a DES implementation for an emergency depart-
ment.

1: t← 0
2: Q← ∅
3: L← generateArrivals(T ) . Pre-generate all arrivals
4: while t < T do
5: eType← getType(L[1]) . Get type of the event
6: t← getT ime(L[1])

7: if isArrival(eType) or isRouting(eType) then . Inflow of patients
8: if staffIdle(eType) then
9: L← addServiceEvent(t, eType, L)

10: else
11: Q← addToQueue(eType,Q)
12: end if
13: end if

14: if isRouting(eType) or isDischarge(eType) then . Update queue
15: if notEmpty(eType,Q) then
16: Q← removeFromQueue(eType,Q)
17: L← addServiceEvent(t, eType, L) . From queue to service
18: end if
19: end if

20: L← removeEvent(L[1])
21: L← sort(L)
22: end while
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the government. Then, even though the department may be able to model its
patient flow mathematically, such queueing model would not provide an im-
mediate answer as to how resources should be re-configured so performance
is maximized without violating any budget constraints. Furthermore, suppose
the queueing model has a structure, such that the exact optimum cannot be
derived without complete enumeration. Then, one approach might be to test a
number of manually designed solutions, evaluate their effect, and then simply
apply the best one. Another approach would be to apply an algorithm that au-
tomatically searches partial areas of the feasible solution space, and returns
the best known solution to the decision maker. This type of algorithm is also
referred to as a heuristic [75], whereas in this thesis, we will often use the con-
vention heuristic search procedure, or merely search procedure, to distinguish
these algorithms from the other heuristic methods that we apply.

In the following we will briefly present the basic concepts of a heuristic
search procedure, and present some of the well-known algorithms. Specifi-
cally, we will focus on a branch of algorithms known as local search proce-
dures that will be widely applied to optimize patient flow throughout this thesis.
Lastly, we will elaborate on some algorithm structures that we have found par-
ticular useful for evaluating patient flow based on the methods in Chapter 2.1.

Once again, consider the aforementioned hospital optimization problem.
In order to conduct any form of optimization, we require a tangible measure
of the performance that the department management aims to optimize. Let
g(x) define a function that yield this measure, e.g. the expected number of
patients that can be examined by a physician per day, where x is a vector that
governs the performance of the system. Let the set I account for all variables
that affect the performance of the system such that |I| is the size of x and the
i’th element, xi, are defined by i ∈ I. Furthermore, let fj(x) define a function
that induces a cost of type j ∈ J , where J is a set that constitutes all cost
types. Lastly, let bj define a budget constraint of type j ∈ J . The optimization
problem can then be stated on the form

Maximize g(x) (2.20)

Subject to fj(x) ≤ bj ∀j ∈ J (2.21)
x ∈ N0 (2.22)

which represents the most general form of the problem. We have included
constraint (2.22), since nonnegative integers are often a requirement [75].
Otherwise, the vector x can contain elements that are real, or a mixture of
both real and integer.

If the optimization problem can be formulated as a system of linear inequal-
ities, we can change (2.20)-(2.22) to the form
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Maximize cx (2.23)

Subject to Ax ≤ b (2.24)
x ∈ N0 (2.25)

where c is a vector of coefficients of size |I|, b is a vector of size |J | con-
taining element bj for all j ∈ J , and A is a matrix of size |J |× |I| of coefficients
that relate to the |I| problem variables and |J | cost types. However, the linear
form is inadequate if the patient flow is evaluated by directly employing the
methods from Section 2.1.1. Therefore, throughout Part II and III we often
require a combined form. For instance,

Maximize g(x) (2.26)

Subject to Ax ≤ b (2.27)
x ∈ N0 (2.28)

where g(x) is a function that cannot be expressed linearly.

2.2.1 Fundamental Heuristic Search Procedures
From this point we will refer to the vector x as the solution to the optimiza-
tion problem. Further, by letting polyhedron X define the space of feasible
solutions, according to (2.27) and (2.28), we shall refer to X as the search
space. A heuristic search procedure is defined by a strategy that selects and
evaluates different solutions, x, constraint by X, based on the objective func-
tion g(x). The strategy does not have to rely on a mathematical model, other
than the model required to calculate the objective value. However, if that is
the case, for instance if sub-optimal conditions are exploited by solving a part
of the problem using integer linear programing, we refer to the algorithm as a
matheuristic search procedure.

Similar to DES (cf. Section 2.1.2), a successful implementation of a heuris-
tic search procedure depends very much on the given problem. However,
there is a number of general metaheuristic structures that can be exploited to
form an efficient heuristic for a wide variety of problems. In the following, we
will present the metaheuristic structures that have been employed throughout
this thesis:

Hill Climber Consider the optimization problem in (2.26)-(2.28) and let xk

define a feasible solution to the problem at iteration k ∈ N. Further, let N (xk)
yield a set of "neighboring" potential replacements to xk, also known as the
neighborhood to xk. In a hill climber heuristic, each iteration is initialized by
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considering the current neighborhood. Solutions are recursively collected from
this neighborhood and evaluated using g(xk). If a neighboring solution yields
a better (i.e. for the current problem, higher) objective value than xk, then
the next iteration commences by using this particular solution as basis for a
new neighborhood, N (xk+1), which the algorithm then starts to evaluate in a
similar fashion [75, p. 9]. The notion of the hill climber is to keep introducing
small changes until the objective value stops improving, at which point the
algorithm is terminated. Otherwise, the algorithm can be terminated if the
elapsed time exceeds a pre-defined limit.

The exact definition of the neighborhood depends greatly on the problem
at hand, and there may even be several equally suitable definitions for the
same problem, which may have to be determined experimentally. Further-
more, as regards a strategy for choosing a solution from the neighborhood,
several approaches exist. If the neighborhood is large, it may be beneficial to
sort the solutions in random order, and then move to a new solution, xk+1, on
a first-best basis. On the other hand, for small neighborhoods the overall best
solution can be obtained by conducting a complete enumeration of N (xk).

In general, the hill climber results in an intensive search relative to the
initial solution, x0. However, since the hill climber is forced to terminate as
soon as the first local optimum is discovered, the algorithm lacks substantial
diversification.

Tabu Search The metaheuristic known as tabu search was originally pro-
posed by Glover, 1986 [57], and has been applied in a substantial number of
papers since then [75, p. 243]. In tabu search, the problem of becoming stuck
in a local optimum is solved by allowing the algorithm to keep evaluating new
solutions, even if the best known solution cannot be updated in every iteration.
Tabu search does this by distinguishing between the global best known solu-
tion, x∗, and the current best solution arg maxx′∈Ñ (xk){g(x′)}, where Ñ (xk) is
defined as an admissible subset of the neighborhood N (xk). To clarify, the al-
gorithm must choose the best solution that it can currently find, but to prevent
the algorithm from cycling, certain attributes are marked tabu, such that the
algorithm does not immediately revisit any currently known solutions. Thus,
in the beginning of each iteration, the set of solutions that the algorithm is al-
lowed to evaluate has become reduced, leading to the set Ñ (xk). Hence, we
have that Ñ (xk) ⊂ N (xk).

All prohibited attributes are stored in a list, referred to as the tabu list, T . In
the most basic implementation of tabu search, the entries are sorted accord-
ing to their order of occurrence, and the oldest entry is removed whenever the
number of elements in T exceeds a pre-defined limit. In each iteration, the
algorithm defines Ñ (xk) based on T , and then conducts a complete enumer-
ation to derive a new solution xk+1. If xk+1 yields a better objective value than
x∗, the solution is stored as the new global best known solution. The algorithm
then updates the tabu list, and continues the recursion until the termination cri-
teria is satisfied.

To overcome the computational challenges of performing a complete enu-
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meration of large neighborhoods, it can be beneficial to employ a method that
only evaluates the most promising elements, such as a candidate list [75,
p. 174].

Similar to the hill climber, tabu search generally yields an intensive search,
but the algorithm is simultaneously able to escape from local optima and there-
fore less dependent on the choice of the initial solution, x0.

GRASP The reader may have noticed that neither the hill climber nor tabu
search accounts for the choice of the initial solution, x0. Depending on how the
neighborhood as well as the other algorithm elements are defined, the initial
solution may have a great impact on the performance of the heuristic. An
approach to this problem can be to store the best known solution, and simply
restart the heuristic several times during runtime by using different values of
x0. Obviously, a convenient approach is to generate x0 for each new run of the
heuristic automatically. This type of nested heuristic structure is exploited in
the Greedy Randomized Adaptive Search Procedure (GRASP) by recursively
conducting local search, and initializing each run with a greedy randomized
solution. This approach was originally proposed by Feo & Resende, 1989
[54].

The greedy randomized solution is constructed by defining and ranking a
number of candidates to a solution. That is, suppose we are faced with the
problem of assigning a fixed number of physicians to a fixed number of time-
slots in a schedule. In the initial solution to this problem, x0, each physician
is assigned to a specific time-slot. To achieve this, a greedy approach would
be to loop through and determine the largest contribution of each physician to
the objective value, then rank them according to their contribution, and lastly
assign each of them in descending order, making sure to recalculate the rank
after each assignment. This would immediately yield a deterministic initial
solution, which the algorithm overcomes by performing a random selection
from a subset of the most promising candidates on the list, which is also known
as the restricted candidate list.

After the greedy randomized solution has been constructed, the search
can be intensified by employing the local search procedure, e.g. a hill climber
or tabu search heuristic. For this process, the algorithm requires a termination
criteria to ensure that the process is restarted a sufficient number of times,
resulting in a thorough exploration of the most promising regions of the search
space. Several criteria may be useful in this regard. For instance, an upper
limit on the elapsed time or iterations; or whenever a number of iterations have
been conducted without any improvement to the best known solution. For the
criteria that terminates the GRASP completely, an upper limit on time is usually
beneficial.

Due to the balance between intensification and diversification, the GRASP
can be quite useful as a basis for many different types of heuristics. That
said, in order to succeed in making an efficient implementation of GRASP, one
needs to make quite a few decisions as regards termination criteria, structure
of the local search procedure, and setting of all parameters that are related
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hereto.

More elaborate descriptions of various useful metaheuristics are presented
in Kendall & Burke, 2005 [75].

2.2.2 Optimization of Queues with Integer Programming
The aforementioned metaheuristics provide an excellent basis for deriving so-
lutions of high quality due to their inherent adaptability. Nonetheless, in opti-
mization of queueing systems there are situations where the problem can be
exploited to form heuristics beyond these fundamental algorithm structures.
As we have shown in our literature reviews, cf. Chapter 1, 3 and 5, the litera-
ture on optimization of patient flow using queueing theory is far from abundant.
However, the amount becomes more considerable if we include other applica-
tion areas as well. See for instance the survey by Bitran & Morabity, 1996 [24]
on optimization of manufacturing systems, or more recently Andriansyah et al.,
2010 [14] on optimization of open zero-buffer multi-server queueing networks,
and Randhawa, 2016 [105] on optimality gaps.

In the following we will focus on problems that relate directly to optimization
of patient flow, and describe how we have exploited these problem structures
to derive near-optimal heuristic solutions based on matheuristic models. The
aim in this section, is to prepare the reader for the subsequent chapters as
well as to demonstrate that these methods are generalizable.

Optimization with Waiting Time Constraints

Once again, suppose a hospital department is subject to budget-cuts and
therefore have decided to minimize their expenditures by investigating the po-
tential for reducing the amount of staff. Assume that the department’s total
monthly cost is a linear function of the employed staff types, I, such that the
objective function can be expressed on the form cx, similar to (2.23), where c
defines the monthly cost and x the number of each staff type, respectively.
Minimizing this function will ultimately lead to an increased patient waiting
time, since fewer resources will be available to serve the patients. For this
reason, the department have identified a set of nodes in the patient’s path, de-
noted J , where the waiting time should not exceed a certain limit for a fraction
of the patients. The department has additionally identified a relation between
the number of each employed staff type and the fraction of patients that exceed
this limit, which can be modeled by a function Wj(x) for all j ∈ J . Additionally,
function Wj(x) is constrained by a lower bound denoted bj for all j ∈ J . Fur-
ther, assume that all staff types are subject to a number of departmental rules,
union settlements, and practical limitations which can be modeled by the sys-
tem of linear inequalities Ax ≥ β, where β is a vector of length |K|, A is a
|K| × |I| matrix, and K is a set that comprise all necessary staff-constraints.
For the convenience of this example, we assume that these constraints can be
expressed by employing x directly without introducing any further dimensions
to the vector, hereby finally yielding the optimization problem
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Minimize cx (2.29)

Subject to Wj(x) ≥ bj ∀j ∈ J (2.30)
Ax ≥ β (2.31)
x ∈ N0 (2.32)

Due to the complexity of the waiting time functions, Wj(x) j ∈ J , we
assume that optimality cannot be proven for (2.29)-(2.32) by employing any
known solution approach.

Any of the aforementioned metaheuristics would be applicable to this prob-
lem. However, assuming that Ax ≥ β is solvable by any commercial linear
solver, and we can replace the intractable constraints in (2.30) with a "good"
linear estimate; then a near-optimal heuristic solution can be derived by solv-
ing the resulting system of linear inequalities by using the commercial linear
solver.

In order to derive the estimate for (2.30) several approaches might be use-
ful. In this thesis, we use a recursive formulation, where the linear model is
solved, followed by an adjustment of the estimate based on an evaluation of
the waiting time functions Wj(x) j ∈ J . Let Y k define the estimated space at
iteration k ∈ N0. The aim is then to choose an initialization where X ⊂ Y 0,
and to have Y k approach X during the recursion. We elaborate more on this
modeling approach in Chapter 5.

Room Allocation with Sub-Optimality

In this example, we consider an optimization problem where the objective func-
tion attains a complexity such that optimality cannot be proven, similar to the
aforementioned case. On the other hand, all constraints that are related to
the problem can be expressed by using a system of linear inequalities. As we
will show in Chapter 4, this structure applies to the problem of allocating room
types among a set of nursing wards.

That is, assume a hospital setting where a fraction of the arriving patients
prefer admission to a private room, and the remaining patients have no prefer-
ence as to whether they are admitted to a private or shared room. Moreover,
assume that each of the hospital nursing wards are subject to a limited bed
capacity, such that if the capacity is depleted, arriving patients will be relo-
cated to an alternative nursing ward. Notice that even though patients might
be relocated, they still maintain their preferences. In order to ensure a high
level of service, hospital management has decided to maximize the expected
matching between patients and their preferred room type by altering the con-
figuration of the currently available room types. For the convenience of this
example, we assume that the resulting number of relocated patients can be
disregarded.
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Let g(x) yield the total expected number of patient matches as function of
room configuration x. Here, xi is an element to the vector x and i ∈ I, where
I = R×W. In addition, R is the set of all room types, andW is the set of all
wards. Moreover, let Ax ≤ b comprise the constraints necessary to ensure at
least one bed per ward, and that the number of available room types remains
fixed, resulting in the optimization problem

Maximize g(x) (2.33)

Subject to Ax ≤ b (2.34)
x ∈ N0 (2.35)

Just as previously, any of the aforementioned metaheuristics may be ap-
plied to (2.33)-(2.35) by searching through the room configurations, x. How-
ever, suppose that g(x) can be evaluated by using the following steps:

1. Determine the total amount of patients arriving to each ward (including
relocations) by employing a function H(x), which results in a bed occu-
pancy probability distribution πw for each ward w ∈ W.

2. Employ the aforementioned distributions to derive the expected number
of private room matches for each ward w ∈ W through the function
hw(πw,x).

As previously described, a relocation occurs whenever the capacity of a
ward is depleted, regardless of the specific room types. In other words, H(x)
can be evaluated using only the aggregated ward capacity. Thus, if hw(πw,x)
can be expressed as a formula that can be evaluated in negligible time com-
pared to H(x), then we may enumerate hw(πw,x) for each potential num-
ber of private rooms j ∈ Jw that ward w ∈ W can receive. Here, Jw =
{0, 1, . . . ,Mw}, and Mw is the aggregated capacity of ward w ∈ W. Let the
coefficients cwj ∀w, j ∈ W,Jw yield the result of this enumeration. Then, the
optimal configuration of rooms can be solved by maximizing

∑
w∈W hw(πw,x)

and employing the linear form

Maximize
∑
w∈W

∑
j∈Jw cwjzwj (2.36)

Subject to A′z ≤ b′ (2.37)
z ∈ {0, 1} (2.38)

where zwj = 1 if j private rooms are assigned to ward w, and z is a vector
that constitutes the element zwj ∀w, j ∈ W,Jw. Moreover, A′z ≤ b′ extends
the constraints of Ax ≤ b by ensuring that the aggregated capacity is con-
stant, and that

∑
j∈Jw zwj = 1 ∀w ∈ W. Further, we assume that (2.36)-(2.38)

is tractable and can be solved using standard theory, or a commercial linear
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solver. Thus, by solving the model formulation in (2.36)-(2.38) to optimality,
we can be content with designing a heuristic search procedure for the aggre-
gated capacity, which essentially reduces the size of the search space. We
elaborate more on this modeling approach in Chapter 4.

2.3 Concluding Remarks

Throughout this chapter we have provided a basis for modeling and optimizing
advanced patient flow systems. In order to achieve this, we have provided the-
ory within two general areas: Firstly, the mathematical and numerical methods
that are necessary to understand and to evaluate the performance of hospi-
tal patient flow. In particular, we have focused on systems that have attained
steady-state and how to model these based on theory in Markov chain mod-
eling. In this regard, we have elaborated on how to derive the state probability
distribution of the system, but left the calculations of the specific performance
measures for the more case-specific chapters. Secondly, we have briefly de-
scribed a variety of meta- and matheuristic methods that are useful for deriv-
ing good heuristic solutions to certain optimization problems. The methods
for modeling patient flow can be employed in these optimization algorithms to
serve as both constraints and objective functions.

In this regard, the reader should notice that both Markov chains and simulation-
based methods are applicable in a heuristic optimization scheme. However,
the two approaches comprise very different characteristics which should be
accounted for when the search procedure is developed. The most important
difference is probably that the output from a DES is random, and for this rea-
son the input into the search procedure, whether it is a constraint or objective
function, will be random as well. Thus, if variability is not accounted for, we
might accept the bad solutions falsely, and correspondingly some of the good
solutions might be rejected. The same goes for the solution feasibility. In ad-
dition, since simulation does not provide an analytical understanding of the
system, solving the optimization problem to proven optimality is quite difficult,
if not entirely ruled out.

Returning to the notion of conducting a heuristic search by employing the
methods from Section 2.1. Here, any required information about the system
will become immediately available to the search procedure, without the need
for sampling. Even though simulation provides a basis for obtaining sufficient
samples to attain high accuracy, the necessary runtime can (depending on
the specific case and computational implementation) exceed that of the asso-
ciated CTMC calculations.

Simulation provides a basis for modeling a wide range of advanced char-
acteristics, and is sometimes the only available (adequate) approach for eval-
uating a flow system. In addition, commercial simulation software has made
DES an accessible modeling approach to users that are not familiar with the
underlying theory. As a result DES is being used in many application areas.
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However, note that from a research perspective, simulations generally provide
a poor basis for reproducing results, and that sufficient data may not always
be available to account for all attributes of a complex simulation model.

Research into analytical methods is greatly beneficial in the context of opti-
mization, among other things due to the presence of an analytical understand-
ing of the system, and a solid basis for reproducing results. In addition, as the
computational capacity gradually increases, so does the relevance and poten-
tial of Markov chains that feature large state spaces, which ultimately leads to
greater complexities and more realistic system evaluations.
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Chapter 3

Optimization of Hospital Ward
Resources with Patient Relocation
using Markov Chain Modeling1

Anders Reenberg Andersen, Bo Friis Nielsen
and Line Blander Reinhardt

Abstract Overcrowding of hospital wards is a well known and often revisited
problem in the literature, yet it appears in many different variations. In this
study, we present a mathematical model to solve the problem of ensuring suf-
ficient beds to hospital wards by re-distributing beds that are already available
to the hospital. Patient flow is modeled using a homogeneous continuous-time
Markov chain and optimization is conducted using a local search heuristic. Our
model accounts for patient relocation, which has not been done analytically in
literature with similar scope. The study objective is to ensure that patient oc-
cupancy is reflected by our Markov chain model, and that a local optimum can
be derived within a reasonable runtime.

Using a Danish hospital as our case study, the Markov chain model is
statistically found to reflect occupancy of hospital beds by patients as a func-
tion of how hospital beds are distributed. Furthermore, our heuristic is found
to efficiently derive the optimal solution. Applying our model to the hospital
case, we found that relocation of daily arrivals can be reduced by 11.7% by
re-distributing beds that are already available to the hospital.

3.1 Introduction

Overcrowding of hospital wards is a well known problem in the Danish health
care sector. A report from the Ministry of Health [97] indicates that most re-
gions of Denmark experience problems with overcrowding of hospital wards.
In addition, the patient organization Danish Patients in corporation with Danish
Nurses Organization and the Danish Medical Association reports that patient
admission in hallways and depots is a recurrent necessity for a range of hos-
pitals [4], and in which case both objective and subjective quality of care may
suffer a great decrease [2, 119]. Hence, in order to provide patients with the

1Published in the European Journal of Operational Research [13]
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best possible treatment, overcrowding should be reduced as much as possi-
ble.

An increasing number of Danish hospitals are developing methods to cope
with overcrowding through capacity balancing, where patient relocation, is co-
ordinated using daily capacity meetings, as well as dedicated staff for patient
flow coordination [7]. Using such methods, some hospitals have succeeded
in significantly decreasing the number of patients hospitalized to alternative
locations. The hospitals relocate patients from wards with overcrowding to
wards where sufficient nursing resources are still available, and thus match
resources with demand. However, we conducted interviews with a specific
hospital and found that this approach entails costs for both planning, reloca-
tion of patients and some decrease in quality of care. In this case, quality of
care is decreased due to a mismatch between the optimal type of care and
what type of care is alternatively offered to the patient. Hence, a problem
arises containing two different types of penalty for the hospital management
to consider. First, there is the tangible cost of spending man hours on defining
and implementing a plan, and secondly, management have to consider the
risk of inducing a lower quality of care, either through placing patients in buffer
beds or relocating patients to other wards.

The objective of this study, is to provide hospital management with a tac-
tical decision tool, capable of optimizing the match between resources and
demand. We focus on a specific case where patients are always relocated
whenever ward resources are depleted. The main methodological approach
will be mathematical modeling. More specifically, we model bed occupancy
using a homogeneous continuous-time Markov chain, and optimize the re-
sponse using a local search heuristic.

In Section 3.2 we present the specific problem of this study. In Section 3.3
our solution approach is presented, divided into two parts. The first part de-
scribes the Markov chain, we use to model patient flow behavior. The second
part connects this Markov chain model to a local search heuristic. Section
3.4 demonstrates the usability of our solution approach for a specific hospital
case, and tests on a number of different parameter settings are presented.
Lastly, we present our conclusion in Section 3.5.

3.1.1 Literature Review

Modeling and optimization of hospital bed utilization is a recurrent topic dating
back to Newsholme, 1932 [94]. The specific problem structure differs from
one study to another, however, all focus on one of three major objectives: (1)
Testing scenarios [58, 11], (2) deriving the required number of beds for one or
more wards [67, 103, 146, 59, 60, 62, 102], or (3) balancing beds with demand
[41, 40, 83]. In achieving these, two methodological aspects are considered:
(1) The methods used to model the system in focus, and (2) the methods used
to study and optimize the system.
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Different approaches of modeling the system are known from the litera-
ture. These are usually either simulation [58, 67, 146], queueing theoretic
approaches [59, 60, 62, 102, 83, 40], or a mixture of these [11, 103, 41].

In Goldman et al., 1968[58], utilization and costs are tested for various
bed allocation policies using a simulation model. Harris, 1984 [67], develops
a simulation model to assist decision making in the area of operating theatre
time tables and the resultant bed requirements. Lastly, Zeraati et al., 2005
[146], use a statistical simulation to estimate the number of required beds for
an obstetrics ward.

In the area of queueing theoretic models, two studies by Gorunescu et
al., 2002, and Li et al., 2009 [59, 60, 83], exploit M/PH/c/N and M/PH/c
models, to assess a mixture of patient flow. Furthermore, Green, 2002 [62],
use an M/M/s model to estimate bed availability in different intensive care
and obstetrics units, and Pendergast et al. 1988 [102], use clinical judgment
and basic probability theory to derive future hospital bed requirements. Lastly,
Cochran et al., 2008 [40], develops a queueing network model that is imple-
mented as a capacity balancing tool between different hospital units.

Exploiting the use of both simulation and queueing theory, Cochran et al.,
2006 [41], use queueing networks to assess the flow between units of an
obstetrics hospital, and define utilization targets. A Discrete-event-simulation
model is then used to maximize the flow. A related approach is used in Akker-
man et al., 2009 [11], where Markov chain theory and simulation is used to
evaluate a number of different management scenarios. This specific Markov
chain model is found to produce useful insight into the theoretical number of
required beds, but a simulation model is required to derive the amount of pa-
tient rejections.

The second methodological aspect that is considered in most studies, is
studying and optimizing the system in focus. Naturally, scenario testing is
more straightforward, whereas bed requirement or capacity balancing would
suggest the application of a more elaborate approach. Here, we found only
a few studies [103, 83] that exploit advantages of heuristic or mathematical
programming elaborately, leaving this area rather unexploited. In Pinto et al.,
2014 [103], a simulation-optimization model is developed to analyze dynamic
features of the system and find the best configuration of beds. Moreover, Li et
al., 2009 [83], applied a M/PH/c model from Gorunescu et al., 2002 [59] in a
multi-objective goal programming model to reallocate beds.

Two studies in the area of capacity balancing that are rather similar to
this paper, are uncovered [41, 40]. However, in case of overcrowding, none
of these studies modeled the effect of patients being relocated to alternative
locations. In this paper, we present an approach to balance capacity in a
system of queues, where patients are relocated when capacity is insufficient.
To achieve this, we use a homogeneous continuous-time Markov chain model.

A range of studies, using Markov chains to model patient flow, have already
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been conducted [19, 29, 48, 142, 147]. As relevant examples, Broyles et al.,
2010 [29], predicts distribution and expected admissions, and Bartolomeo et
al., 2008 [19], determines the probabilities of readmission for two different
patient categories. However, none of these exploit the advantages of Markov
chains, to model patient relocation, and subsequently use these models to
optimize the system.

3.2 Problem Description

In this study, we consider a Danish hospital where an organizational structure
for patient relocation has been fully implemented.

That is, even though minor changes in the distribution of resources might
take place on a daily basis, most actions to avoid overcrowding are performed
using patient relocation. Any greater changes in the distribution of resources
are not practical if they occur too frequently, and are thus considered more as
a tactical decision. Deciding on the best allocation of resources, is therefore
an important decision, as the result will affect how patients are hospitalized,
and the hereto related costs, through a period of several months.

For this reason, the decision this study will focus upon, is how resources
should be allocated among the hospital wards. As hospitalizations are usually
dependent on a range of different resources, we assume that one hospital-
ization can only take place when one "sufficiently" staffed and equipped bed
is available. That is, we disregard the possibility that a hospitalization may in
some instances take place without sufficient staff or equipment. Thus, if an
entrance to a ward is restricted by the lack of resource units, we assume that
an alternative ward always exists somewhere else. We have found through
interviews with hospital employees that this is a reasonable assumption.

Taking all of the above considerations into account, the overall goal of this
study, is to develop a mathematical model that can be used to efficiently mini-
mize the number of rejections at preferred wards, by changing the distribution
of bed resources.

For the remaining of this paper, a patient hospitalization at a preferred
ward, will be denoted as a primary hospitalization. A patient relocation to
an alternative ward, will be denoted as a secondary hospitalization. In the
same way, patient blocking at a preferred ward, is denoted a primary rejection,
as well as patient blocking at the alternative ward is denoted a secondary
rejection.

3.2.1 Dynamics of the System

As mentioned above, wards have limited resources, and as a result, arriving
patients are relocated whenever resources have been depleted (no staffed and
equipped beds are available). During such a relocation, patient characteristics
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w1

w2 w3

P1

P2 P3

(a) All wards are available.

w1

w2 w3

P1

P2 P3

(b) Ward 1 is blocked.

Figure 3.1: Graphical representation of the hospitalization procedure. Patient types
are P1, P2 and P3 for which the preferred hospitalization is at ward w1, w2 and w3,
respectively. (a) represents the system under regular load, and (b) the result if ward 1
was to be fully loaded.

are required to match with the specialization of the alternative ward. Thus,
relocating a patient to an arbitrary free ward, is not always a feasible solution.

We interpret these hospitalization operations as a queueing system with N
different patient types, arriving at N parallel service stations. The number of
servers at each station is equal to the number of staffed and equipped beds
at each ward. If all servers are occupied at a station the station is blocked, but
a queue is not created. Instead, arrivals will be distributed with a probability
to other stations, or disappear from the system entirely. This is illustrated in
Figure 3.1, where a system of N = 3 patient types and wards is (a) under
regular load, and (b), blocked for ward 1.

Due to these system operations, resources allocated to a ward will not
only affect the amount of primary rejections, but also the amount of secondary
hospitalizations at that ward. Moreover, notice that treatment time is tied to the
patient type, and therefore independent of the ward in which hospitalization
takes place. Wards will therefore experience a mixture of different patients
with different lengths of stay.

3.3 Modeling & Solution Approach

To solve the problem of optimizing the distribution of beds, we model the ward
occupancy density functions using a homogeneous continuous-time Markov
chain. This model approach, is presented in Section 3.3.1. From the density
functions, we derive the specific probabilities of wards blocking, followed by the
overall expected number of arriving patients experiencing a primary rejection.
This is used as our objective value, as the system is optimized using a local
search heuristic. The specific heuristic we use, is presented in Section 3.3.2.
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3.3.1 A Homogeneous Continuous-Time Markov Chain

As mentioned in Section 3.2, we consider N patient types, i ∈ {1, 2, · · · , N},
as well as N ward types, j ∈ {1, 2, · · · , N}. To model the ward occupancy
density functions for each ward, we introduce a homogeneous continuous-
time Markov chain (CTMC) model with state s = (w11, w21, · · · , wij , · · · , wNN )
and state space S, where wij is the number of type i patients hospitalized in
ward j. Let Mj define the amount of allocated beds to ward j. Hence, Mj is
the maximum amount of patients that may be hospitalized in ward j. Further,
let fj be the number of free beds at ward j, so fj = Mj −

∑
i∈I wij . For

the purpose of presenting our modeling approach, we include fj in the state
representation to get:

s =



w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN

 , (f1, f2, · · · , fN )

 ∈ S

Note that fj is otherwise redundant to the model. Now, λi is the arrival rate
of patient type i, and µi the service rate of patient type i. We assume patients
arrive according to a Poisson process and that inter-service time distributions
are exponentially distributed. The reader should notice that if the latter does
not hold, rejection systems, such as this, are in general robust to the distri-
bution of inter-service times [28, p. 121]. In addition, we statistically test the
CTMC model fit for a specific case-hospital in Section 3.4.1.

Let p(f1, f2, · · · , fN )ij define the fraction of patients of type i that are hos-
pitalized in ward j as function of the number of free beds at all wards in the
system, f1, f2, . . . and fN . Let Q define the transition rate matrix of the CTMC,
with qss∗ the transition rate from a current state s ∈ S to a new state s∗ ∈ S.
In the following, p(fi = 0, fj > 0, · · · , fN > 0) is abbreviated p(fi = 0), just as
p(fi = 0, fk = 0, fj > 0, · · · , fN > 0) is abbreviated p(fi = 0, fk = 0), and so
on. Moreover, we refer to a new state s∗ = (· · · , wij+1, · · · , fj−1, · · · ) to indi-
cate the arrival of a patient i to a ward j, and s∗ = (· · · , wij−1, · · · , fj +1, · · · )
for a corresponding discharge. The transition rates are then,

qss∗ =



λi if s∗ = (· · · , wii + 1, · · · , fi − 1, · · · ) and fi > 0 ∀i ∈ I
λip(fi = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fj > 0 ∀i, j ∈ I, i 6= j

λip(fi = 0, fk = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, fj > 0 ∀i, j, k ∈ I, i 6= j 6= k
...

...
λip(fi = 0, fk = 0, · · · , fl = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, · · · , fl = 0, fj > 0

∀i, j, k · · · l ∈ I, i 6= j 6= k 6= · · · 6= l

µiwij if s∗ = (· · · , wij − 1, · · · , fj + 1, · · · ) and wij > 0 ∀i, j ∈ I

where all other transition rates, qss∗ , are 0.
Notice, as treatment times differ between patient types, the state definition

contains an element for every combination of patient type and ward. The
variables wii count primary hospitalizations, whereas the variables wij count
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secondary hospitalizations. The model can only jump to a state, where the
number of secondary hospitalizations is increased, if capacity is full at the
preferred ward. For instance if N = 3 and M1 = 10, M2 = 15 and M3 =
20, s = (w11, w21, w31, w12, w22, w32, w13, w23, w33) = (7, 2, 1, 1, 4, 2, 3, 2, 10) →
s∗ = (7, 2, 1,2, 4, 2, 3, 2, 10) is allowed, because ward 1 is full. However, s =
(7, 2, 1, 1, 4, 2, 3, 2, 10)→ s∗ = (7, 2, 1, 1, 4, 2, 3,3, 10) is not possible, as ward 2
is still open.

The transition rate depends on how many other wards are blocked. s =
(7, 2, 1, 1, 4, 2, 3, 2, 10) → s∗ = (7, 2, 1,2, 4, 2, 3, 2, 10) has rate qss∗ = λ1p(f1 =
0)12, as only ward 1 is blocked. Now, s = (7, 2, 1, 1, 4, 2, 3, 2, 15) → s∗ =
(7, 2, 1,2, 4, 2, 3, 2, 15) has rate qss∗ = λ1p(f1 = 0, f3 = 0)12, as both ward 1
and ward 3 are blocked.

The total state space size, |S|, of the CTMC is the product ofN polynomials
of the order N , as shown in (3.1).

|S| =
N∏
j=1

(
1

N !
·
N∏
i=1

(Mj + i)

)
(3.1)

Let us consider a case where N = 3, and M1 = 27, M2 = 23 and M3 = 24.
Then, from (3.1), the state space, S, has a size of |S| = 30, 876, 300, 000 states
– which is rather difficult to cope with computationally. Thus, in order for our
CTMC to be applicable for even small cases, a rather large fraction of the state
space needs to be truncated. To attain this, we use two recursive procedures
presented in the following Section 3.3.1.

The Truncation Procedures

Let uij be an upper bound on the number of patients of type i that is hospital-
ized in ward j (wij) for i 6= j, so

∑Mj

k=uij+1 Prob{wij = k} is sufficiently small,
where Prob{wij = k} is the probability of attaining a state where wij = k.
Taking this idea further, we also let Lj and Uj define the lower and upper
bounds on the total amount of patients hospitalized in ward j. In this case, Lj
and Uj are chosen so

∑Uj
k=Lj

Prob{
∑
i wij = k} is sufficiently large, but the

number of truncated states are maximized. Here, Prob{
∑
i wij = k} is the

probability of attaining a state where the sum of patients in ward j is equal to
k. Let φj be the number of free slots at ward j in the truncated system, then
φj = Uj −

∑
i wij . Thus as Uj ≤Mj , we have that φj ≤ fj .

Our goal is then to adjust uij , Lj and Uj , so reasonable accuracy is main-
tained, within the practical limits of computing the probability distribution. To
attain this, we notice that the hospitalization of patients at each ward is closely
related to an M/M/c/c queueing system, cf. Figure 3.2. That is, a queueing
system with capacity equal to the number of beds. The probability that there
are n beds occupied in such a system can be derived using (3.2),

pn =
(λ/µ)n/n!∑c
i=0(λ/µ)i/i!

(3.2)
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where λ is the arrival rate, µ the service rate, and c the number of beds in
the system [28, p. 121]. We use (3.2) to determine bounds on the total amount
of occupied beds at each ward, Lj and Uj , as well as for each secondary hos-
pitalization pair, uij . For the latter, consider that wij is stochastically smaller
or equal to the occupancy in an M/M/c/c system where the arrival rate is the
maximum fraction of arriving type i patients to ward j, λi · max{p(·)ij}, and
service rate µi. The probability mass of such a system, derived using (3.2),
will be at least as shifted in positive direction as the marginal probability mass
of wij in the CTMC. We refer to this M/M/c/c system as the right-shifted dis-
tribution. Letting τ (0 ≤ τ ≤ 1) define a truncation tolerance, the upper bound,
uij , is derived using Algorithm 5.

wjj· · · · · · wij · · ·Arriving patients

Ward j

Pj

Pi

Figure 3.2: Graphical representation of patients hospitalized in ward j. Patients of
different types are hospitalized as long as

∑
i wij < Mj , where Mj corresponds to the

parameter c in (3.2).

Algorithm 5 Procedure for deriving uij for i 6= j

1: lamdba← λi ·max{p(·)ij} . Initialize
2: mu← µi
3: c←Mj

4: right← erlangB(c, lambda,mu) . Calculate distribution using (3.2) and save
as an array

5: st← length(right)
6: while sum(right) ≥ 1− τ do
7: right[st]← 0
8: st← st− 1
9: end while

10: u← st+ 1 . The final bound is the number of non-zero elements plus 1
return u

Here, right represents the right-shifted distribution for wij . The upper
bound, uij , is then determined by recursively truncating right starting at the
highest occupancy, and lastly adding one to ensure that the least probability
mass larger or equal to 1− τ is left.

In deriving Lj and Uj we consider both a lower and an upper bound of oc-
cupancy in ward j. Therefore, in order to ensure sufficient probability mass in
the CTMC, and derive the maximum number of states that may be truncated
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from ward j, we have to consider both a left-shifted and right-shifted distribu-
tion at the same time. The procedure we use to derive Lj and Uj , is presented
below:

1. Determine the minimum service rates in ward j: µMIN ← mini∈I{µi}.

2. Determine the maximum arrival rate to ward j: λMAX ← λj+
∑
i∈I\{j} λi·

max{p(·)ij}.

3. Calculate left- and right-shifted distributions using (3.2).

(a) right← erlangB(Mj , λMAX , µMIN ).

(b) left← erlangB(Mj , λj , µj).

4. Truncate states constrained by τ : Lj , Uj ← ipmodel(right, left, τ).

Notice that our procedure lastly takes an Integer Programming model,
ipmodel(), to maximize the number of truncated states. We propose to for-
mulate this as a Knapsack Problem variation, minimizing the number of states
in the truncated system constrained by the probability mass tolerance τ .

This concludes the approach we use to derive uij , Lj and Uj . Notice, how
the resulting transition rate matrix, Q, will be dependent on whether Uj < Mj

or Uj = Mj , leading to different representations of the matrix.

Computing the State Probability Distribution

We have derived a method for reducing the state space as a function of the
tolerance τ , and are therefore set to generate the transition rate matrix Q. We
assume that most non-acute wards will have long expected length of stay rel-
ative to the respective fluctuations in arrival rate. We further assume that most
arrivals and discharges occur during the day, causing the system to be "inac-
tive" during the night, so any remaining time-dependency will be negligible in
the scope of deriving a long-term allocation of beds for the hospital. Thus, we
consider the CTMC as a steady-state process. Now let π define the steady-
state probability distribution of the CTMC. Then, we are faced with solving the
global balance equations in (3.3),

πQ = 0 (3.3)

where ‖π‖1 = 1. We have found that a solution to (3.3) can be derived
within reasonable runtime using the method of successive overrelaxation [123,
p. 311]. That is, (3.3) is written on the form Ax = b by transposing, so we get:
QTπT = 0. Further, QTπT = (D −X − Y )πT = 0, where D, X and Y are the
diagonal, lower- and upper- strictly triangular matrices of QT . Let xk be the
k′th iteration solution to πT . Then we can recursively derive πT , using (3.4),

xk+1 = (1− ω)xk + ω{D−1(Xxk+1 + Y xk)} (3.4)
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until convergence. The relaxation parameter, ω, may be adjusted to ensure
the fastest rate of convergence. As our case is dependent on different repre-
sentations of Q, and we want our implementation to be flexible, we chose to
conduct a range of tests to search for a fixed relaxation parameter that would
result in a reasonable convergence time for "most" cases. We calculated the
iteration matrix Hw = (D − ωX)−1[(1 − ω)D + ωY ]. We then adjusted ω to
maximize the distance between the unit dominant and subdominant eigen-
value of Hw, with a view to maximize the convergence rate. It was found that
a high distance could be obtained with a relatively high relaxation parameter
– usually around 1.7 to 1.8. Thus for the remaining of this paper, ω = 1.75.

Regarding the question of when convergence has occurred, we decided
to check this on the largest relative tolerance δ = maxi(

∣∣xki − xk−mi

∣∣ / ∣∣xki ∣∣).
Where m is set to increase as δ decreases – recall limδ→0 x

k = πT , and thus
the rate of convergence is expected to decrease as xk is closing in on πT .

To assess our approach, we conducted a series of tests for N = 3, M1 =
27, M2 = 23 and M3 = 24, and different settings of the truncation parameter
τ . In Table 3.1, the total runtime of our approach implemented in Java, along
with state space sizes, are presented for τ = 0.05, 0.01 and 0.001.

Each of these settings were assessed by comparing the respective marginal
distributions of π – that is, the distribution of how many beds are expected to
be occupied for each ward. Obviously, the tails approach zero as the trun-
cation is relaxed. However, the algorithm only takes 69 seconds to finish for
τ = 0.05, against 1,947 seconds for τ = 0.001. Additionally, in case we are
only interested in the blocking probabilities, we would be able to make do with
the largest truncation value – given that we always end up with a CTMC model
representation where Uj = Mj ∀j ∈ I. However, to gain a more generic use
of our model, we find it more appropriate to use τ = 0.01.

τ Total Runtime (s) |S|
0.05 69 517,000
0.01 483 1,358,760

0.001 1,947 3,563,520

Table 3.1: Results from adjustment of τ .

3.3.2 A Heuristic Optimization Model

In Section 3.3.1 we presented an approach to model the ward occupancy for
N wards and correspondingly N patient types. We now consider the number
of beds, available to ward i, Mi, as a decision variable that may be adjusted to
optimize the overall system performance. In general, we consider the following
optimization problem:
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min. f(M) (3.5a)
s.t. ∑

i∈IMi = Θ (3.5b)
Mi ≥ 1 ∀i ∈ I (3.5c)

Mi ∈ N

Where, as previously defined, I is the set of wards. Here, (3.5b) ensures
that all available resources, Θ, are utilized. Moreover, (3.5c) ensures that
wards contain at least one bed. The objective function (3.5a) evaluates the
system performance as a function of M = (M1 M2 · · · MN )T , where in this
case, a large value indicates a poor performance. As shown in the following,
the objective function can easily be replaced and customized to the specific
hospital preferences. In this study, we propose an objective value that in-
creases as more "work" is spent on relocating patients. Consider f(M) =∑
i∈I π

B
i (M), where πBi (M) is the probability of all beds being occupied in

ward i, with beds distributed as in M . In this case, we would get some kind
of measure for the total amount of work – recall when πBi (M) increases, so
does the amount of relocated patients from ward i. However, the expression
does not incorporate the weight of patient types arriving with different rates.
So we insert λi, to get (3.6), the total expected number of primary rejections.

f(M) =
∑
i∈I

λiπ
B
i (M) (3.6)

Returning to the idea that (3.2) can be used to approximate the occupancy
at a single ward, we have a way to estimate f(M). Specifically, we use (3.2)
to estimate πBi (M), by calculating the blocking probability pc = B(c, λ/µ) –
known as the Erlang-B formula.

Inserting B(c, λ/µ) into (3.6), we are now able to derive an estimate of the
objective value using (3.7). Doing so, gives us the opportunity to derive an
estimate of the optimal solution in a few seconds.

f̂(M) =
∑
i∈I

λiB(Mi, λi/µi) (3.7)

Now, from (3.5b) we have that
∑
i∈IMi = Θ. Therefore, MN = Θ −∑

i∈I\{N}Mi, reducing (3.7) to a function ofN − 1 variables, f̂(M1,M2, · · · ,MN−1).
Let f̂Mi

(·) be the i’th partial derivative of f̂(M1,M2, · · · ,MN−1), with the deriva-
tive ofB(Mi, λi/µi) presented in (A.1) in Appendix A.1. The horizontal tangent
plane of f̂(M1,M2, · · · ,MN−1) can then be found from the system of equa-
tions: f̂M1

(·) = 0 ∧ f̂M2
(·) = 0 ∧ · · · ∧ f̂MN−1

(·) = 0. We solve this, using the
Newton-Raphson method.

Now, recall that the difference between (3.6) and (3.7), is the relocation of
patients from fully occupied to free wards. Therefore, as the probabilities p(·)ij
from the CTMC model decrease, (3.6) approaches (3.7). In other words, an
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optimal solution derived using (3.7) is likely close to the optimal solution using
(3.6). To locate the optimal solution to the optimization problem (3.5a)-(3.5c),
an idea would therefore be to slowly change the solution configuration, start-
ing with an initial guess derived from the estimate (3.7).

Let N(M) define the "neighborhood" of the bed distribution M , and still
consider that MN = Θ −

∑
i∈I\{N}Mi, so now M = (M1 M2 · · · MN−1)T .

Then, (M + ν) ∈ N(M), where ‖ν‖ = 1 and the elements νi ∈ {0,−1, 1}.
This leads to a maximum neighborhood size of |N(M)| = N2 − 1 or O(N2).
Hence, in case N = 3, |N(M)| = 32 − 1 = 8 solutions.

Consider if M∗ is the currently best known solution to (3.5a)-(3.5c), then
an idea would be to systematically check N(M∗) for an even better solution,
and updateM∗ in case such a solution is found. This leads to the local search
heuristic presented in Algorithm 6.

Algorithm 6 Heuristic to optimize the bed requirements problem in (3.5).

1: M∗ ← init(M0) . Initialize using the horizontal tangent plane of (3.7)
2: f∗ ← objval(M∗)
3: N ← generateneigh(M∗) . Generate list of neighborhood in random order
4: C ← ∅
5: j ← 0
6: while j < length(N) and elapsedtime < timelimit do
7: j ← j + 1
8: M ← N [j]
9: if checkbanned(C,M) == false then . Check banned or constraint

violation.
10: C ← add(C,M) . Add M to the list of banned solutions.
11: f ← objval(M)
12: if f < f∗ then
13: f∗ ← f . Update values
14: M∗ ←M
15: N ← generateneigh(M∗) . Generate the new neighborhood, again

in random order
16: j ← 0
17: end if
18: end if
19: end while
20:

The heuristic progresses by firstly generating an initial solution from the
horizontal tangent plane of (3.7). This is conducted using the function init()
that, based on the Newton-Raphson method, takes an initial guess M0. The
"raw" output is most likely not integral, so we round to the integer solution
yielding the lowest objective value. Next, the currently best known objective
value, f∗, is calculated.
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Then, generateneigh() is used to generate a list of the entire neighbor-
hood. For larger cases, a probabilistic candidate list might be more appropri-
ate, choosing a random fraction of the solutions in N(M). Elements of the list
should in any case be placed in random order.

Due to the local progression of the heuristic, and a relatively long function
evaluation time, we further introduce a list of banned solutions, C. As the
heuristic can only move one step at a time, there will always be an overlap
between the neighborhood of iteration k and k+ 1. For this reason, we add all
previously evaluated solutions to a list (line 10, Algorithm 6), to ensure that we
do not spend time on evaluating a solution more than once.

3.4 Implementation & Results

In this section, we directly implement the methods from Section 3.3 to obtain
an improved distribution of beds for a case-hospital. In modeling the system
behavior, we have limited our scope to the hospitalization of patients to the
medical area of the hospital. More specifically, we focus on patient flow in
gastrology, pneumology, endocrinology and geriatrics, respectively. For the
case hospital, these areas make up three different wards and correspondingly
three different patient types.

In Section 3.4.1, we present the data obtained from the case-hospital
and statistically test our homogeneous continuous-time Markov chain (CTMC)
model. Next, Section 3.4.2 presents the implementation of our solution ap-
proach. Lastly, we assess the robustness of Algorithm 6, and investigate the
solution behavior when the CTMC model parameters are adjusted. This is
presented in Section 3.4.3.

3.4.1 Case & Data Description

The patient flow was investigated through interviews with hospital staff. Fur-
thermore, we retrieved data from the period of 01-05-2014 to 30-04-2015 on
patient arrival and discharge times. From this, we were able to categorize pa-
tients on diagnosis and thus also treatment type, giving us the opportunity to
determine preferred and alternative wards.

Arrival Rates

Patient hospitalization data was used to derive hourly arrival rates for each of
the three patient types, showing clear repetitive patterns on a weekly scale of
the hourly arrival rate. In Figure 3.3, the empirical hourly arrival rates are pre-
sented for all patient types. As expected for non-acute wards, most patients
are hospitalized during the daytime, whereas an almost negligible fraction of
patients arrive during the night. Further, the arrival rates seem to slightly de-
crease during the weekend, and regain its level starting Monday. The empirical
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average arrival rates were estimated to λ1 = 5.42, λ2 = 3.96, λ3 = 2.52 pa-
tients per day, respectively.
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Figure 3.3: Empirical hourly arrival rate. Presented for each of the three patient types.

Service Rates

To derive service rates for each of the three patient types, we calculated the
Length of Stay (LOS) using the same patient hospitalization data, as was used
to derive the arrival rates. Time-dependency was checked on a daily level by
deriving the average hourly LOS from time of arrival. Performing a graphical
representation showed no signs of seasonality, neither did an estimate of the
autocorrelation function. Regarding load-dependency, we did not obtain suffi-
cient data to confirm nor reject such behavior. For the case-hospital, capacity
meetings are often held to ensure that patients are immediately relocated upon
blocking. As a result, neither LOS increase nor early-discharge due to over-
crowding is rarely the case. The overall distribution of LOS was investigated
graphically, where the patient type 1 and 2 distributions show close similarity
to an exponential distribution (See Figure 3.4). With a longer average LOS,
the patient type 3 distribution has probability mass that is moved more to the
right, quite similar to a gamma distribution.

Due to the similarities that was found between patient type 1 and 2, we
tested their difference in mean LOS using a Wilcoxon rank-sum test [139].
With a p-value of 0.2105, we found no significant difference in mean LOS be-
tween the two patient types. Figure 3.4 suggests that there is no difference
in statistical distribution either. For patient type i ∈ {1, 2, 3}, the resulting
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service rate (1/LOSi = µi) was estimated based on an empirical average to
µ1 = µ2 = 0.19 and µ3 = 0.11 patients per day, respectively.
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Figure 3.4: Empirical distribution of length of stay, measured in number of days. Pre-
sented for each of the three patient types.

Relocations

We investigated the secondary hospitalization options for each of the three pa-
tient types. From data, we obtained the 80% most common diagnoses for each
patient type, and for each of these diagnoses, hospital staff identified the alter-
native locations they would usually offer to these patients. This allowed us to
draw a picture of how relocated patient are usually distributed. Here, we found
that patients have secondary hospitalization options both within and outside
the three wards; hence, in case of blocking, a fraction of patient will always be
lost from the system. Moreover, we found that patients would usually have a
third hospitalization options – however, for this case, we found it reasonable to
assume that a third hospitalization options is always situated outside the sys-
tem. The resulting relocation probabilities are presented in Table 3.2, showing
that a reasonably large fraction of patients has to be relocated elsewhere.

Other Characteristics of the System

From the distinct fluctuating arrival rate, one would naturally expect the level of
hospitalized patients to be fluctuating as well. Figure 3.5 shows the empirical
probability of a patient being discharge as function of hour of the week. As
expected for non-acute patients, discharges mainly occur on weekdays during
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Pi/wj 1 2 3 Other
1 - 0.05 0.23 0.72
2 0.10 - 0.27 0.63
3 0.06 0.00 - 0.94

Table 3.2: Probability that patient type i ∈ {1, 2, 3} (Pi), is relocated to ward j ∈
{1, 2, 3} (wi), in case ward i is blocked.

the daytime, with a negligible number of patients discharged during the night.
Comparing with the arrival rates in Figure 3.4, we notice that the system is
mainly "active" between 07:00 and 23:00.
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Figure 3.5: Empirical probability of a patient being discharged as function of hour of
the week. Presented for each of the three wards.

Observations from 14-09-2015 to 31-10-2015 were obtained to investigate
the time-dependent behavior of ward occupancy in the system. Figure 3.6
shows the average number of occupied beds every 8’th hour during the week.
From here, we notice some time-dependent behavior as the occupancy is usu-
ally lower during the middle of the day. This behavior repeats on a daily basis,
with a small overall decrease during the weekend for ward 2 and 3. Taking
the time-dependency of hourly arrival rate and discharge hour into account
might be necessary for purposes of accurately predicting the occupancy for
each specific hour of the week. However, as our aim is to derive a long-term
allocation of beds for the hospital, we consider the observed fluctuations as
negligible for this case.
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Figure 3.6: Empirical average number of occupied beds for each of the three wards.
Observations were obtained for every 8’th hour of the week.

Truncation of the CTMC

For practical reasons we are often required to truncate the CTMC prior to
implementation. We start this process by firstly considering the data obtained
from the case-hospital. In Section 3.4.1 we found that µ1 = µ2; hence the
number of patients of type 1 and 2, can be contained in only two "bins" of the
state space. In other words, w11 and w12 are merged into w121, as well as
w21 and w22 are merged into w122. Moreover, from Table 3.2, we have that
p(f1, f2, f3)32 = 0 in all cases, so w32 can be neglected. This results in the
state representation:

s =

w121 − w13

− w122 w23

w31 − w33

 , (f1, f2, f3)

 ∈ S

Now we apply the truncation procedures described in Section 3.3.1. We
use the truncation parameter τ = 0.01, as proposed in Section 3.3.1. For the
case-hospital, the total number of beds Θ = 74, so we calculate uij , Lj and
Uj for any feasible value of Mj ∈ {0, 1, · · · ,Θ− (N − 1)} ∀j ∈ J = {1, 2, 3}.

To illustrate the resulting truncation, the total state space size, |S|, for a
non-truncated model with N = 3 wards, where M1 = 27, M2 = 23 and
M3 = 24 has |S| = 30, 876, 300, 000 states. The truncated model, with the
same settings, has |S|= (

∑u31

i (U1 − i − max{L1 − 1; 0} + 1))(U2 − L2 +

1)(
∑u13

j=0

∑min{U3−i;u23}
k=0 (U3 − j − k − max{L3 − i − j; 0} + 1)) = 1, 358, 760

states — a substantial reduction of the state space.
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Statistical Testing of the CTMC

We conducted a statistical test to assess the CTMC model fitness with ob-
servations on ward occupancy. To our knowledge, there exists no standard
technique to test the fitness of a CTMC with a complexity as considered in this
study. Thus in this section we present a heuristic approach that combines a
simulation of the CTMC behavior and compare this to hospital data on ward
occupancy.

To begin with, our null-hypothesis is that the observed values are gener-
ated by the CTMC process. If that is the case, we would expect the observed
frequency of occupied beds to be quite similar to the marginal distributions of
π for each ward. A standard approach would be to test the observed frequen-
cies against the corresponding expected frequencies from the CTMC using a
chi-squared test. However, such as test would require each of the observed
values to be independent, which is not the case here.

Let ωj be the expected number of occupied beds from the CTMC for ward
j ∈ J , where J = {1, 2, 3}. Then ωj =

∑Mj

k=0 k ·πkj , where πkj is the probability
that ward j ∈ J has k occupied beds. Further, let oij and eij be the observed
and expected frequency of i occupied beds in ward j. Then, we define our
test statistic as (3.8),

T =
∑
j∈J

∑
i∈I

(oij − eij)2/ωj (3.8)

where I = {0, 1, 2, · · · ,Mj} is the set of beds that can be occupied, and
J = {1, 2, 3} the set of wards. In order to quantify the fit of our CTMC model,
we require a measure of how (3.8) relates to the model noise. For this reason,
we introduce the simulated model residual (3.9), where yij is the simulated
frequency of i occupied beds in ward j. Thus, by replicating (3.9), we deter-
mine the distribution of noise that is expected by our CTMC model, and then
compare our results from (3.8) hereto.

z =
∑
j∈J

∑
i∈I

(yij − eij)2/ωj (3.9)

We implemented the simulation of the CTMC model as a Discrete-Event-
Simulation using Matlab. Replications of (3.9) were conducted n = 30, 000
times (Appendices, Figure A.1).

A total of 432 (144 pr. ward) observations were obtained from the period of
14-09-2015 to 31-10-2015. Using these, we calculated T = 0.45. A fraction of
32.03% simulated residuals, scoring higher than T , were found. Thus, with a
significance level of α = 0.05, we accept the null-hypothesis.

The power of our test was evaluated by conducting a range of experiments
where model parameters were adjusted until under 5% significance would be
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obtained. Specifically, we adjusted the arrival rates proportionally with 10%
increment at the same time.

Results are presented in Table 3.3, showing a 10% increase (Test 1) and
20% decrease (Test 3), were sufficient adjustments to gain less than 5% sig-
nificance.

# Change λ1 λ2 λ3 p-value
0 1.0 5.42 3.96 2.52 0.32
1 1.1 5.96 4.36 2.77 0.01
2 0.9 4.88 3.56 2.27 0.56
3 0.8 4.34 3.17 2.02 0.02

Table 3.3: Assessment of the power of our test. Conducted by proportionally changing
the three arrival rate parameters (λi) and evaluating the resulting simulated p-value (p).

3.4.2 Optimizing the Case-Hospital
We now consider the heuristic in Algorithm 6 applied to the case-hospital. We
initialize the heuristic, by handing M0 = (27 23)T to init(). From the Newton-
Raphson method, we get M1 = 31.80 and M2 = 23.50. The rounded integer
solutions are then: (1) f(bM0

1 c, bM0
2 c) = 1.473, (2) f(dM0

1 e, dM0
2 e) = 1.468,

(3) f(bM0
1 c, dM0

2 e) = 1.470 and (4) f(dM0
1 e, bM0

2 c) = 1.467. (4) returns the
lowest value, so we set M∗ = (32 23)T , and proceed. The initial objective
value is then f∗ = 1.603 patients per day, and initial neighborhood N =
{(33 23), (31 23), (32 24), (32 22), (33 24), (31 22), (31 24), (33 22)}. As the in-
tention is to use our method as a tactical decision tool, a maximum time-limit
of 4 hours is considered reasonable. The entire heuristic and its components
are implemented in Java.

Each iteration is presented below, showing all function evaluations and how
the list of banned solutions is updated progressively:

• Iteration 1 – Checking: f(31, 22) = 1.641 and f(33, 23) = 1.600. f(33, 23) =
1.600 < f∗(32, 23) = 1.603, so we update, f∗ ← f , to f∗ = 1.600. The
list of banned solutions is now: C = {(32 23), (31 22)}.

• Iteration 2 – Checking: f(34, 24) = 1.606, f(32, 22) = 1.623, f(34, 22) =
1.624, f(33, 22) = 1.620 and f(32, 24) = 1.592. f(32, 24) = 1.592 <
f∗(33, 23) = 1.600, so we update, f∗ ← f , to f∗ = 1.592. The list of
banned solutions is now:
C = {(32 23), (31 22), (34 24), (32 22), (34 22), (33 22), (32 24)}.

• Iteration 3 – Checking: f(31, 25) = 1.607, f(33, 24) = 1.596, f(31, 23) =
1.617, f(33, 25) = 1.603, f(32, 25) = 1.600 and f(31, 24) = 1.606. Af-
ter checking all available solutions in the neighborhood, f∗ was not im-
proved, so we stop and conclude that M1 = 32, M2 = 24 and M3 =
Θ − (M1 + M2) = 18 is at least a local optimum. The total runtime was
1791.12 seconds (≈ 30 min.).
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Notice, the final solution, M∗ = (32 24)T , is actually an element in the
initial neighborhood, and could have been selected by chance during the first
iteration. Moreover, in generating the initial solution, (32 24)T would have been
obtained by simply rounding to nearest integer.

Now, consider that the search space for three wards has a total size of
n =

∑Θ−2
i=1 (Θ − 1 − i) = (1/2)Θ2 − (3/2)Θ + 1. Thus for Θ = 74, n = 2628

solutions. As n is reasonably low for this case, a complete enumeration of
the search space is possible. To investigate how results from the heuristic
relates to the optimal solution, we conducted a complete enumeration with
the result presented in Appendices, Figure A.2. Interestingly, the objective
function contains only a single extrema – a global minimum in M1 = 32 and
M2 = 24. Hence, we can conclude that the solution found from the heuris-
tic, M∗ = (32 24)T , is in fact the global optimal solution to the problem. We
ask the reader to notice that the procedure of complete enumeration spend
464,212.02 seconds (≈ 5 days and 9 hours) to complete. Thus, even though
the procedure is possible, it is certainly not practical. The heuristic in Algo-
rithm 6, solved the problem in just under 30 min. That is, 99.6% faster.

The optimal solution is compared to the current distribution of beds in Table
3.4. As for the current distribution, f(M) = 1.804 patients per day, the optimal
solution yields a 11.77% reduction in number of primary rejections. We notice
for the current case, the highest probability of ward blocking, πBi , takes place
in ward 1. Unfortunately, we find that patient type 1 has the highest arrival
rate of 5.42 patients per day as well. Thus, it would be expected, in order
to minimize f(M), additional resources has to be pushed to ward 1 with a
view to decrease πB1 . Conversely, patient type 3 has the lowest arrival rate of
2.52 patients per day, and with πB3 = 0.161, ward 3 is expected to reject 0.41
patients per day – 0.56 patients fewer than for ward 1. Turning to the optimal
solution, we find the probability of rejection has been vastly increased for ward
3, but decreased for both ward 1 and 2. Further, we find that maxi∈I{λiπBi }
has been decreased from 0.969 to 0.803 patients per day, and mini∈I{λiπBi }
decreased from 0.405 to 0.335 patients per day.

Current Optimal
Ward Mi πBi λiπ

B
i Mi πBi λiπ

B
i

1 27 0.178 0.969 32 0.083 0.454
2 23 0.109 0.430 24 0.084 0.335
3 24 0.161 0.405 18 0.318 0.803

f(M) - - 1.804 - - 1.592

Table 3.4: The optimal solution compared to the current distribution of beds. Presented
with objective values, f(M), beds Mi and blocking probabilities πBi . The product λiπBi
shows the expected daily amount of primary rejections for each ward.
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3.4.3 Case Testing

With a view to investigate the solution behavior of our heuristic, we conducted
a series of tests with various parameter adjustments. The hospital is planning
to introduce a number of organizational changes, with the result of increased
patient arrival rate, but additional overall bed capacity. Thus in our last test,
we demonstrate how our approach may be used as a tool to assess future
changes to the organization.

We conducted a total of five different basic tests, where patient flow or
available resources were changed. In Table 3.5 the parameters that were
subject to change are presented in bold font, the rest are from the hospital
case.

The results for each of Test 1-5 are presented in Table 3.6, with firstly
the initial solution, then the optimal solution, and lastly data on the heuristic
progression. The total number of function evaluations that are avoided as a
result of the list of banned solutions are presented in the second last column.

Giving the five tests a closer look, we expect for Test 1-3 that an increase
in arrival rate results in a corresponding increase in allocated resources. This
behavior is found for each of the three tests, where resources are allocated to
respond to the increased demand for primary hospitalizations.

In Test 4 nothing was changed but the total amount of available beds Θ.
We conducted this test, to assess the potential improvements caused by a
relatively small increase in resources. We find that, as more resources are
available in the system, additional surplus is created and the fractional distri-
bution of beds between the wards is more balanced. In the original hospital
case, the optimal fractional distribution was 43.2%, 32.4% and 24.3% for ward
1, 2 and 3, respectively. In Test 4 with Θ = 80, this distribution changes to
42.5%, 31.3% and 26.3%. More importantly, as all wards receive more bed re-
sources, the objective value is reduced correspondingly. Adding six additional
beds yields a 38.9% reduction in the number of primary rejections.

Test 5 was conducted to assess the effect from relocation in the system
on the optimal solution. To emphasize, we increased the demand for sec-
ondary hospitalizations in ward 3 substantially, by maximizing p(f1 = 0)13 and
p(f2 = 0)23, keeping all other parameters fixed. Through these adjustments,
we expect to increase the distance from initial to optimal solution. Moreover,
we clarify how the optimal solution relates to a large probability of relocation
within the system. Interestingly, it might seem natural to allocate beds to the
ward with an increased demand (ward 3), however the optimal solution reveals
the objective value is minimized by moving beds to ward 1 and 2, and avoiding
relocation in the first place.
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# λ1 λ2 λ3 Θ p13 p23

1 6.775 3.96 2.52 74 0.23 0.27
2 5.42 4.95 2.52 74 0.23 0.27
3 5.42 3.96 3.15 74 0.23 0.27
4 5.42 3.96 2.52 80 0.23 0.27
5 5.42 3.96 2.52 74 0.95 0.73

Table 3.5: Test parameters used to assess Algorithm 6. Parameters subject to change
are presented in bold font.

Initial Optimal
# M1 M2 M3 f(M) M∗1 M∗2 M∗3 f∗(M) Iter. Eval. A. Eval. Runtime (s)
1 38 22 14 2.376 39 23 12 2.354 4 12 5 368.27
2 31 28 15 2.165 32 29 13 2.158 3 12 5 686.39
3 31 23 20 2.180 32 23 19 2.175 3 11 6 1757.23
4 33 25 22 1.106 34 25 21 1.103 2 11 6 3925.02
5 32 23 19 1.733 33 25 16 1.688 7 21 4 3253.00

Table 3.6: Results from the five parameter adjustment tests. Both initial and optimal
solutions are presented. Information on the heuristic progression is presented in the
last four columns.

Assessment of Expected Hospital Changes

For our last test, we consider a number of organizational changes planned to
be introduced in the spring of 2016. Patients of another organizational region
are to be rerouted to the case-hospital. As a result, patient arrival rate is ex-
pected to increase. Moreover, the case hospital are given additional resources
to cope with the increase in demand, and for the area of gastrology, pneumol-
ogy, endocrinology and geriatrics, available resources will increase from 74 to
93 beds. Patient arrival rate of type 1 and 2 are now expected at 9.84 and 3.44
patients per day, respectively.

Just as previously, we generate the initial solution, starting with M0 =
(27 23)T . Rounding to the smallest estimated objective value, we set M∗ =
(56 20)T and initial objective value f∗ = 1.965. After 4 iterations we find the
new distribution of beds at M1 = 56, M2 = 21 and M3 = 16, with an objective
value of f∗ = 1.958 patients per day. The total number of function evaluations
is 9 with an overall runtime of 961.35 seconds.

3.5 Conclusion & Future Work

With a view to optimizing the distribution of bed resources, we presented a
solution approach consisting of two main components. The first was a homo-
geneous continuous-time Markov chain (CTMC) used to evaluate the patient
flow behavior. The second incorporated the Markov chain model in a heuristic
to optimize the distribution of bed resources. For a specific hospital case, our
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approach was used to find a 11.8% reduction in number of primary rejections
– that is, the number of patients rejected on first arrival to the hospital. In
addition, we found that a relatively small (≈ 8%) increase in bed resources to
the medical area has a potential to reduce this rejection rate from the current
configuration with 38.9% fewer patients per day. Regarding this, hospital man-
agement should consider how the increase in resources relates to the overall
cost, and if a potential increase in cost is compensated by the increased ser-
vice level.

We collected data for the case-hospital by conducting interviews with hos-
pital staff, and using patient data already registered in the hospital system.
During this process we found dependencies in the flow system that stretches
toward far more wards than were resources to include in this study. On the
other hand, we found it reasonable to assume the medical area as an iso-
lated system with patients going out, rather than in from other wards. Hourly
arrival rate was found to be time-dependent, but with discharges mainly oc-
curing during the day, the time-dependent behavior could be neglected, as
was confirmed from observations of ward occupancy. Additionally, we found it
reasonable to assume that patient length of stay was independent of the sys-
tem load. However, for other applications where load-dependency cannot be
neglected, such behavior can be implemented by defining service rates of the
CTMC as function of the ward occupancy.

We statistically tested the CTMC model by replicating simulations of the
CTMC itself. These were compared to hospital observations, and a simulated
p-value of p = 0.32 was derived. We concluded that the CTMC model is not
significantly different from the observed ward occupancy.

The local search heuristic was evaluated using a range of different tests.
Firstly, the case-hospital result was checked by conducting a complete enu-
meration of the search space. Here, we found the heuristic solution was in
fact the global optimal solution to the problem. However, as complete enu-
meration is foreseeable for this problem size, it is certainly not practical as
a decision tool. Even though global optimality cannot be proven without, we
propose to use our approach, with a 99.6% reduction in runtime. Secondly,
we tested our local search heuristic conducting five tests with different param-
eter adjustments, and one additional test resembling a future organizational
change. The local search heuristic performed well in all tests.

3.5.1 Future Work

For future work, a larger number of wards should be considered. We notice
that such an expansion would require a substantial increase in state space,
possibly reducing the practical use of our modeling approach. It should be
considered how other methods could help to support the CTMC model ap-
proach with a view to decrease runtime spend on function evaluations. More-
over, as the problem complexity grows, other local search techniques, such as
Tabu Search, might be more suitable approaches.
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Lastly, to further support our modeling approach, simulation experiments
should be conducted to assess the nature of the system under different pa-
rameter settings, as well as the CTMC robustness to different inter-arrival and
service time distributions.
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Chapter 4

Strategic Room Type Allocation for
Nursing Wards Through Markov Chain
Modeling1

Anders Reenberg Andersen, Wim Vancroonenburg
and Greet Vanden Berghe

Abstract Providing patients with the best possible care is the most essen-
tial function of any hospital. In an increasing number of countries hospitals
are governed by the number of patients they are able to attract and the corre-
sponding services they provide for patients. One such service, which is often
of significant importance for patients, is the option to choose their room type.

Hospital decision makers would benefit from a strategic method for opti-
mizing the configuration of room types among nursing wards by distinguishing
between patients who prefer private rooms and those who have no preference
concerning whether they are assigned to a private or shared room. Such a de-
cision support method is currently non-existent, therefore the goal of this study
is to provide a methodology for hospital management. Specifically, a mixed
modeling approach is proposed which evaluates the patient flow behavior by
applying a Continuous-Time Markov Chain within a heuristic search proce-
dure. This procedure recursively improves a configuration of rooms among
the wards by sampling from a gradually improved interpolation of the objective
function.

Based on patient data obtained from both a Danish and Belgian hospi-
tal, the performance and robustness of the proposed approach is validated
through various numerical experiments, demonstrating that solutions within a
relative gap of 1% from the optimum are attained in most cases.

4.1 Introduction

Rising public expenditure concerning health care systems has led many gov-
ernments to apply budgetary pressure on hospitals to rationalize their spend-
ing [45]. At the same time, competition in hospital services is employed in
many countries as a mechanism to motivate hospitals to reduce costs in order

1Submitted to Artificial Intelligence in Medicine
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to remain competitive [95]. Since patients may be offered freedom-of-choice
regarding their hospital admission, hospitals therefore compete against one
another to attract more patients. Not only do they compete on the basis of the
medical services they provide, but also with regard to amenities that increase
patient comfort during their stay. One such service of importance is the option
for admitted patients (also referred to as inpatients) to choose their preferred
room type. Many different room types may be distinguished in nursing wards,
varying in capacity (examples include ward room, double room and private
room) and amenities (in maternity wards some rooms may provide a shower
or an extra bed for a spouse). There are significant financial incentives for
hospitals to meet patients’ room type preferences: for example, hospitals in
Belgium may charge room supplements when meeting private room demands
and physicians may even charge honorarium supplements (hospital bills may
be up to five times more expensive for private rooms than for shared) if such
preferences are met [89]. However, when a patient does not have such a room
preference, but is still admitted to a private room due to lack of room availability
of different cheaper room types, such supplements cannot be charged. A sur-
vey in Belgian hospitals by Verhelst, 2009 [134] further shows how preferred
room type unavailability may even be a cause for postponing admissions. It
is therefore of considerable importance for hospital administrators to address
these concerns by matching the availability of different room types with the
respective demand by patients in order to maximize revenue.

This study focuses on the decision problem of hospital administrators who
wish to address this issue by reallocating existing room infrastructure between
different nursing wards belonging to different hospital units such as different
surgical disciplines. These units may have different patient arrival patterns,
length-of-stay (LOS) distributions and room preference profiles that, for his-
torical or organizational reasons, do not match their currently-allocated in-
frastructure. Hence, reallocation may be necessary to match current patient
preferences. Currently, a methodology for finding a suitable reallocation is
non-existent.

To this end, an approach is presented which accounts for the patient flow
behavior using a Continuous-Time Markov Chain (CTMC) model. This model
assesses the allocation of rooms in a heuristic search procedure, where the
solution is gradually improved by sampling randomly from an interpolation of
the objective function. Based on hospital data obtained from both a Danish
and Belgian hospital, the performance of the proposed approach is validated
with a range of numerical experiments.

The remainder of this paper is organized as follows. First, the present work
is positioned in the context of the relevant literature in Section 4.1.1. In Sec-
tion 4.2, the specific assumptions and problem details of this study are elab-
orated upon. Section 4.3 present the proposed solution approach followed by
Section 4.4 which applies the approach by way of computational experimen-
tation. Lastly, in Section 4.5 conclusions and future research directions are
presented.
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4.1.1 Literature Review

The number of operations research methods that specifically address room
capacity optimization in nursing wards, as opposed to solely considering bed
capacity, is limited. Those studies that do consider this specific aspect gen-
erally concern decision problems at an operational decision level, where such
details regarding room infrastructure cannot be ignored. Notably, Demeester
et al., 2010 [47] formulated and studied a patient admission scheduling prob-
lem that addresses the assignment of admitted patients to beds over a given,
short-term, planning horizon, considering room type and equipment. The con-
sideration of gender conflicts in shared rooms and room type preferences
by patients requires explicit modeling of room infrastructure. Given that De-
meester et al., 2010 formulated a challenging combinatorial optimization prob-
lem along with problem instances, they triggered a series of different stud-
ies further investigating algorithm development [23, 33, 107], different model-
ing aspects [34, 131, 35], and complexity [132]; all of which include the ex-
plicit consideration of room infrastructure. Most of these studies apply meta-
heuristic optimization techniques to deal with problems of realistic size. Nev-
ertheless, three studies apply Mixed Integer Linear Programming (MILP) to
models of reduced size [132], in a dynamic setting [131] (where sub-problems
are typically smaller) or combined with column generation [107] to improve
lower and upper bounds. Other studies in this area, though not derived from
the formulation of Demeester et al., 2010, demonstrate that considering room
infrastructure is necessary for the practical implementation of systems. Ba-
chouch et al., 2012 [16] presented a hospital bed management problem where
patient admissions are scheduled while considering no-mixed gender rooms,
isolation of contagious patients in single rooms or alone in double rooms, and
incompatibilities between pathologies. A MILP model is formulated which is
subsequently applied to different solvers in a computational comparative study.
Schmidt et al., 2013 [111] also presented a decision support model for admis-
sion planning and assignment to wards. Their model also explicitly accounts
for the availability of beds in either private or shared rooms, depending on the
planned patients’ preferences. Both an exact approach, using a MILP formu-
lation, and heuristic approaches compared in a computational study.

The application of Markov Chains to model patient flow is an uncommon
approach compared to, for example, simulation-based modeling methods [22,
85]. Nonetheless, Markov Chains have been successfully applied in a variety
of different cases in the last few years. Bartolomeo et al., 2008 [19] applied a
Discrete-Time Markov Chain (DTMC) model to assess the readmission prob-
ability of patients. Further, Broyles et al., 2010 [29] applied a DTMC to predict
the number of inpatients, demonstrating how their model attains superior pre-
dictability compared to a seasonal Autoregressive Integrated Moving Average
model.

Concerning CTMCs, both He et al., 2017 [68] and Shao et al., 2013,
[115] developed a model to assess and identify bottlenecks with regard to the
colonoscopy screening process and surgical operations in an emergency de-
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partment, respectively. Furthermore, Wang et al., 2014 [135] apply a CTMC to
model care delivery to patients in rooms by modeling the system as a closed
network. Lastly, Shaw & Marshall, 2007 [116] evaluate the LOS for heart-
failure patients, demonstrating how the Coxian phase-type distribution is ade-
quate in this regard. The focus of all these studies is on modeling patient flow,
while none of them utilize their approach to optimize the system. Only Ander-
sen et al., 2017 [13] model patient hospitalization and relocation to multiple
wards and employ a heuristic to optimize ward capacity. However, their study
only considers capacity on an aggregated level and does not account for room
infrastructure.

4.1.2 Contribution

Interestingly, most studies considering room infrastructure availability have
done so only at an operational decision level, where this aspect cannot be ig-
nored. However, matching infrastructure availability to demand is of strategic
importance for hospitals in the context of maximizing revenue and providing
enhanced service to patients. Currently, no existing methodology for strategic
room/bed (re)allocation considers the aspect of room types. This study pro-
poses a CTMC model combined with a heuristic search procedure to address
this aspect at the strategic decision level, where capacity and infrastructure
can be reallocated between hospital units to better match individual demand
patterns. To our knowledge, this is the first analytical approach that accounts
for patient arrivals, relocation, and room type preferences; and, furthermore,
where room configuration is optimized.

4.2 Problem Description

The decision problem studied in this paper involves the allocation of room
types to nursing units of different medical specialisms. In this setting, the most
differentiating characteristic between room types, namely being either private
(one bed per room) or shared (two or more beds per room), is scrutinized. It
is assumed that the total availability of private and shared rooms is fixed, but
that room types may be reassigned between units. Such situations may occur,
for example, when different nursing units occupying a single, physical area
are reorganized or when patient characteristics such as LOS distributions or
private room preferences have changed, necessitating a reallocation in order
to realign available room infrastructure with demand.

Patients are assumed to arrive at the hospital according to a time-homogeneous
process where both inter-arrival time and LOS are random. Furthermore, pa-
tients can be grouped into types such that each type prefers admission to a
specific nursing ward. However, when capacity is insufficient, patients must
not be made to wait for a bed, but be relocated to a ward where capacity is
available. In addition, a certain fraction of the patients prefer admission to a
private room, whereas the remaining patients have no preference concerning
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whether their room is private or shared. These assumptions are elaborated
upon at greater length later in Section 4.3.2.

Formal Definition
Formally, a hospital setting is considered which features a set of wards W,
|W| types of patients, with each type preferring admission to a unique ward
i ∈ W, and a set of room types R. Let uir ∈ N0 define the number of rooms
of type r ∈ R that have been allocated to ward i ∈ W and br ∈ N0 define the
capacity associated with each room type. Further, let set R feature a subset
of room types for which br > 1, and a private room type where br = 1. Finally,
let Nr ∈ N0 define the available number of rooms of type r ∈ R, and Mi ∈ N0

define the aggregated capacity of each ward i ∈ W. Then,∑
i∈W

uir = Nr ∀r ∈ R (4.1)

and, ∑
r∈R

uirbr = Mi ∀i ∈ W (4.2)

Now, let u define a matrix of the elements uir ∀i ∈ W, r ∈ R, and consider
that:

• f(u) yields the expected total number of patients relocated to an alter-
native ward per day, an alternative ward being defined as a ward having
spare capacity.

• g(u) yields the expected total number of patients who prefer a private
room and are correspondingly assigned to one.

Let τ ∈ R>0 denote an upper bound on f(u) ensuring that a substantial
number of patients will receive their preferred care. The objective of this study
is therefore to derive a configuration of the room types, uir, that fulfills,

Maximize g(u) (4.3)

Subject to f(u) ≤ τ (4.4)∑
i∈W uir = Nr ∀r ∈ R (4.5)∑
r∈R uirbr ≥ 1 ∀i ∈ W (4.6)

uir ∈ N0 ∀i, r ∈ W,R (4.7)

The aim of formulation (4.3)-(4.7) is to attain the maximum expected number
of patient-room preference matches, subject to a limited number of relocated
patients (Constraint 4.4), a fixed capacity of each room type (Constraint 4.5)
and an assignment of minimum one room per ward (Constraint 4.6).
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4.3 Modeling & Solution Approach

The evaluation of g(u) and f(u) depends on an explicit modeling of the ad-
mission process’ related queueing system that arises from the random arrival
and room occupation of patients in nursing wards. Due to the complexity of
this queueing system (cf. Section 4.3.2), optimization problem (4.3)-(4.7) can-
not be solved to optimum without complete enumeration. Therefore, this study
proposes a heuristic search procedure.

The Randomized & Interpolated Search (RIS) heuristic proposed in this
study applies an iterative procedure to sample good solutions from the solution
space of (4.3)-(4.7), where in each iteration a new solution is selected based
on an interpolation of scattered samples from the solution space. The overall
structure of this approach is detailed in Section 4.3.1. To evaluate the behav-
ior of the queueing system associated to each solution, a time-homogeneous
CTMC model proposed by Andersen et al., 2017 [13] is employed to derive
the expected room occupancy. The CTMC model will be presented in Section
4.3.2. Since the CTMC is computationally expensive, Section 4.3.3 presents a
core element of our heuristic search procedure, an approximative, fast, surro-
gate objective function. Finally, given that patient behavior is considered to be
exclusively dependent upon aggregated ward capacity, the room configuration
can be derived with Integer Linear Programming (ILP). The precise means by
which this is achieved is detailed throughout Section 4.3.4

4.3.1 Randomized & Interpolated Search (RIS) heuristic
Consider a given room configuration u and recall capacity constraints (4.5)
and (4.6). Now, consider the solution space U resulting from these constraints,
and let Yf (u) and Yg(u) yield an estimate of f(u) and g(u) based on an inter-
polation of some known solutions in this space, respectively. Let x define the
set of these known solutions and Z(u) define a Probability Density Function
(PDF) that corresponds proportionally to Yg(u) and sums to unity. Then, in or-
der to approach the configuration of rooms that attains the maximum of g(u),
the following stepwise procedure is considered:

1. Select a range of initial solutions for x.

2. Calculate g(u) and f(u) based on x.

3. Derive Yf (u) and Yg(u) by interpolating between the known solutions in
x.

4. Derive Z(u) in accordance with Yg(u).

5. Add a new configuration, u′, to x by sampling from PDF Z(u), con-
strained by Yf (u) ≤ τ in accordance with (4.4), and calculate g(u′) and
f(u′).

6. If the elapsed time exceeds the fixed time limit then stop; otherwise
return to step 3.
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The procedure is initialized by requiring that x contains the |W| extreme
points in which all room types have been moved to a single ward, respecting
lower capacity bound (4.6), and thus ensuring that all room configurations
are included in the interpolation. Next, x is expanded and a basis for the
interpolation is created by sampling uniformly from U .

By applying this procedure, Yg(u) recursively approaches g(u) in the space
constrained by (4.4)-(4.7). Notice how the interpolations Yg(u) and Yf (u) are
gradually improved based on the solution samples x where Yg(u) is employed
to focus the search through PDF Z(u) and Yf (u) is employed to estimate the
feasible space.

When the sampling based on Yg(u) is rather widespread, the probability
mass is concentrated upon the promising regions by performing the conver-
sion Ỹg(u) = Yg(u)β , thereby amplifying the curvature of the interpolation.
However, this still requires an initialization of Yg(u) based on uniformly dis-
tributed solution-evaluations throughout U . In other words, runtime is poten-
tially wasted in regions that are not relevant to the objective. To overcome
this, let f̃(u) and g̃(u) define surrogates of functions f(u) and g(u) that have
similar optima, but shorter evaluation times. Thus, by conducting the initializa-
tion using the surrogate g̃(u) and then switching to the true objective function,
g(u), for the remaining steps, the true, and slower, solution-evaluations are
only performed in the most promising region of the search space.

Let x̃ define the set of configurations that have been evaluated using the
aforementioned surrogate function. Then, as the search procedure progresses,
the interpolation will be derived on the basis of x̃ as well as the gradually in-
creasing set x. Now, to ensure that x can replace x̃ in a limited number of
iterations, a proximity tolerance ξ is defined such that if the euclidean distance√∑

i∈W(Mi − M̃i)2 is smaller than or equal to ξ, where Mi and M̃i is the ag-
gregated capacity of an element in x and x̃, respectively, then the surrogate
solution associated with M̃i is removed from x̃. The final search procedure is
documented in Algorithm 7. The implications of varying β and ξ are elaborated
upon in Section 4.4.

4.3.2 Evaluating g(u) and f(u)

Recall the system presented in Section 4.2, featuring a set of patient types
requiring assignment to a set of wards, where in case of insufficient capacity
patients are either moved to an alternative ward or admitted to a location that
is not included in the model, i.e. lost from the system. To model this behavior,
a CTMC approach [13] is employed.

Consider a time-homogeneous CTMC with state space S and state defi-
nition s = (w11, w21, · · · , wij , · · · , w|W||W|), where wij is the number of type i
patients hospitalized in ward j, with i, j ∈ {1, 2, · · · , |W|}. Let fj define the
number of free beds in ward j, so fj = Mj −

∑
i∈I wij , where Mj is the ag-
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Algorithm 7 The RIS heuristic.

1: x̃← uniformSampling() . Initialize and evaluate surrogate sampling
2: x← ∅
3: while elapsedT ime < timeLimit do
4: Y ← interpolate(x̃,x)
5: Ỹ ← exponentiate(Y ) . Exponentiate the interpolation
6: Z ← convertToPDF (Ỹ )
7: x← addNewSample(Z,x) . Add and evaluate new sample
8: x̃← remove(x, x̃) . Check and remove proximate surrogate samples
9: end while

10: u∗ ← getBest(x)
return u∗

gregated capacity of each ward. Additionally, let λi define the arrival rate of
patient type i and that all patient arrivals, regardless of their type, are gener-
ated according to a Poisson process. Moreover, let µi define the service rate of
patient type i, assuming that inter-service times are exponentially distributed.
Furthermore, let p(f1, f2, · · · , f|W|)ij define the fraction type i patients hospi-
talized in ward j, governed by the number of free beds in each ward; f1, f2,
. . . and f|W|.

Let qss∗ define the rate at which the system transitions from a current state
s ∈ S to a new state s∗ ∈ S. Then,

qss∗ =



λi if s∗ = (· · · , wii + 1, · · · , fi − 1, · · · ) and fi > 0 ∀i ∈ I
λip(fi = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fj > 0 ∀i, j ∈ I, i 6= j

λip(fi = 0, fk = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, fj > 0 ∀i, j, k ∈ I, i 6= j 6= k
...

...
λip(fi = 0, fk = 0, · · · , fl = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, · · · , fl = 0, fj > 0

∀i, j, k · · · l ∈ I, i 6= j 6= k 6= · · · 6= l

µiwij if s∗ = (· · · , wij − 1, · · · , fj + 1, · · · ) and wij > 0 ∀i, j ∈ I

where p(fi = 0, fk = 0, fj > 0, · · · , fN > 0) is abbreviated p(fi = 0, fk =
0), s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) indicates the arrival of patient i to a
ward j, and s∗ = (· · · , wij − 1, · · · , fj + 1, · · · ) a corresponding discharge.
Let Q define the transition rate matrix of rates qss∗ ∀s, s∗ ∈ S. To derive state
distribution π, S is truncated and the global balance equations πQ = 0 are
solved using successive overrelaxation [123, p. 311] with a relaxation param-
eter equal to 1.75 and convergence measured on the largest relative difference
between successive iterations in accordance with Andersen et al., 2017 [13].

Let πi(n) define the probability of exactly n ∈ N0 patients being hospitalized
in ward i ∈ W; 0 ≤ n ≤ Mi. πi(n) is consequently a marginal distribution to
the state distribution of the CTMC. Recall that all patients may be categorized
as one of two types: patients who prefer a private room, X, and patients
that have no preference concerning whether they are assigned to a shared or
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private room. In general, the probability that a patient prefers a private bed
is ψ ∈ R0≤ψ≤1. Now, let Pi(x, y) define the probability that exactly x patients
preferring a private bed, and n− x = y patients who do not care whether their
room is shared or private, are hospitalized in ward i ∈ W. Then,

Pi(x, y) = b(x;x+ y, ψ) · πi(x+ y) (4.8)

where b(x;n, ψ) = Prob(X = x) is the probability mass function of the bino-
mial distribution with n = x + y trials, and success probability ψ. Further, let
ρi(x) define the probability that exactly x beds are occupied by patients who
prefer a private bed. Then,

ρi(x) =

Mi−x∑
y=0

Pi(x, y) (4.9)

which from (4.8) results in:

ρi(x) =

Mi−x∑
y=0

(
b(x;x+ y, ψ) · πi(x+ y)

)
(4.10)

Function ρi(x) is essential to both the definition of f(u) and g(u), as will be
demonstrated in what follows.

Assume the following ordering of patients as they are hospitalized:

1. Whenever patients who prefer private beds are hospitalized, they will
always be assigned to a private room if one is available.

2. Patients who have no preference regarding room types, are only as-
signed to a private room if no shared room capacity is available.

By observing an arbitrary ward i ∈ W, the expected number of patients who
prefer a private room and are correspondingly assigned to one is

∑ui,private
x=0 (x·

ρi(x)) +
∑Mi

x=ui,private+1(ui,private · ρi(x)), resulting in the following objective
function:

g(u) =
∑
i∈W

(
ui,private∑
x=0

(x · ρi(x)) +

Mi∑
x=ui,private+1

(ui,private · ρi(x))

)
(4.11)

where ui,private is the number of private rooms allocated to ward i ∈ W. Notice
that g(u) is, in essence, independent of the characteristics of the shared room
types. Regarding f(u), which ensures an upper bound on the number of
relocated patients through (4.4), the overall flow of patients into the hospital is
of more concern. Consider blocking probability πBi = πi(Mi) of ward i ∈ W,
then
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f(u) =
∑
i∈W

λiπ
B
i (4.12)

denotes the total expected number of patients who are rejected and corre-
spondingly relocated upon arrival. Figure 4.1 depicts the dependencies be-
tween the CTMC and Expressions (4.11) and (4.12), respectively. Notice that
the behavior of the system, as evaluated by the CTMC, depends only on the
aggregated capacity. This feature will be exploited in the search procedure
using ILP modeling introduced in Section 4.3.4.

Mi Evaluate CTMC πi

ρi

uir

g(u)

f(u)

Figure 4.1: Dependencies in evaluating g(u) and f(u).

4.3.3 The Surrogate Functions

Consider the flow of patients into a single ward, as depicted in Figure 4.2.
From this perspective one notices that the system approaches an M/M/c/c
queueing model as the number of arriving relocated patients decrease. That
is, a queue where the capacity of the entire system equals the number of
servers. For the M/M/c/c model,

π̃i(n) =
(λi/µi)

n/n!∑Mi

k=0(λi/µi)k/k!
(4.13)

where π̃i(n) is the probability that exactly n ∈ N0 patients are hospitalized in
ward i ∈ W [123, p. 434]. Equation (4.13) is therefore an approximation
of πi(n), which accuracy decreases as more patients are relocated within the
system. Correspondingly, if all patients are lost from the system on arrival,
then Equation (4.13) substitutes for πi(n) exactly. f(u) may therefore be ap-
proximated by:

f̃(u) =
∑
i∈W

λiπ̃
B
i (4.14)
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where π̃Bi = π̃i(Mi). Similarly, in the surrogate for g(u), π̃i(n) is employed to
approximate (4.10) by,

ρ̃i(x) =

Mi−x∑
y=0

(
b(x;x+ y, ψ) · π̃i(x+ y)

)
(4.15)

which is then used to substitute ρi(x) in Equation (4.11), leading to g̃(u). No-
tice that when (4.13) replaces πi(n) from the CTMC, the computational effort
of setting-up and applying successive over-relaxation is avoided which is the
proposed approach to the global balance equations, πQ = 0 [13]. As a result,
the search procedure is scoped rather quickly by creating an initial outline of
both f(u) and g(u).

Arriving
patients Ward Discharges

Relocations

Relocations

Figure 4.2: Flow of patients to and from a single ward.

4.3.4 Sub-Optimal Room Configuration
Recall the dependencies in deriving functions f(u) and g(u), depicted in Fig-
ure 4.1. We only require the aggregated capacity Mi to evaluate the system
through the CTMC. Not until then is the room configuration u applied to the
patient occupancy distribution ρi to derive the objective value g(u). Hence, by
assuming a fixed aggregated capacity the problem of maximizing g(u) reduces
to the following ILP model:

Maximize
∑
i∈W

∑
j∈Ji xijwij (4.16)

Subject to
∑
j∈Ji xij = 1 ∀i ∈ W (4.17)∑

j∈Ji xij · j +
∑
r∈R′ yirbr = M∗i ∀i ∈ W (4.18)∑

i∈W
∑
j∈Ji xij · j ≤ Nprivate (4.19)∑
i∈W yirbr ≤ Nr ∀r ∈ R′ (4.20)
xij ∈ {0, 1} ∀i, j ∈ W,Ji (4.21)
yir ∈ N0 ∀i, r ∈ W,R′ (4.22)
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LetR′ define the set of shared room types. That is,R′ ⊂ R and |R′| = |R|−1.
Further, let set Ji = {0, 1, 2, . . . ,Mi} account for the number of beds that can
be assigned to private rooms in each ward i ∈ W.

Additionally, let the decision variable xij ∈ {0, 1} equal 1 whenever ward
i ∈ W is assigned j private beds, where j ∈ Ji; and otherwise 0. Further, let
parameter wij ∈ R≥0 define the expected number of patients who both prefer
and are also assigned to private beds in ward i ∈ W, given that j private beds
are available in this ward. That is, following the convention in Equation (4.11),

wij =

j∑
k=0

(
k · ρi(k)

)
+

Mi∑
k=j+1

(
j · ρi(k)

)
(4.23)

where as before ρi(k) is derived using Equation (4.10), resulting in the ob-
jective function

∑
i∈W

∑
j∈Ji xijwij , which yields exactly the same result as

Equation (4.11).
Lastly, parameter yir ∈ N0 defines the number of shared room types r ∈ R′

assigned to ward i ∈ W.

Constraints (4.17)-(4.20) are defined as follows:

• (4.17) ensures that each ward receives a fixed amount of private beds.

• (4.18) ensures that the distribution of the aggregated capacity is main-
tained, keeping the parameter wij valid.

• Finally, (4.19) and (4.20) restrict the maximum occurrence of each room
type. Recall that Nr defines the total number of room types r ∈ R avail-
able to the hospital.

By evaluating g(u) and f(u), using the aforementioned CTMC, ILP formu-
lation (4.16)-(4.22) can be employed to yield the optimum room configuration
conditioned by the distribution of the aggregated capacity. Therefore, instead
of evaluating based on the room configuration directly, this feature is exploited
in our heuristic search procedure by applying aggregated capacity Mi as the
decision variable.

Recall Algorithm 7, where x and x̃ contain the samples for which the true
and surrogate functions have been evaluated, respectively. By adding the
aggregated capacity to x and x̃, the associated room configuration is derived
as follows:

1. Evaluate g(u) and f(u) as per Sections 4.3.2 and 4.3.3.

2. Derive the sub-optimal room configuration by ILP formulation (4.16)-
(4.22).
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4.4 Numerical Study

In this section, the RIS heuristic presented in Section 4.3 is evaluated in a
range of numerical experiments to assess its performance. These experi-
ments are conducted on hospital data introduced by Andersen et al., 2017
[13], and room infrastructure data from a Belgian hospital. All experiments
are implemented in Java, including the CTMC from Section 4.3.2. To derive
Yg(u) and Yf (u) natural neighbor interpolation [117] is employed using the
SibsonInterpolator2 class of the Java Mines Toolkit2. Lastly, the ILP model
presented in Section 4.3.4 is solved using IBM ILOG CPLEX 12.7.1.

4.4.1 Data Description

The data for our subsequent experiments is based on three different datasets
which are obtained from the study by Andersen et al., 2017 [13]. The data
accounts for three different wards and consists of patient arrival rates and
length of stay distributions; the respective routing probabilities in the system,
and lastly the total bed capacity. No data was obtained specifically with regard
to the number of room types for this case. However, data from a Belgian
hospital3 suggests that the number of private rooms may easily constitute half
of the total bed capacity. This proportion will serve as the basis for the three
sets. Furthermore, even though the presented approach may be generalized
to any capacity configuration for the shared room types, only a single shared
room type consisting of two beds is considered, next to a single private room
type (i.e. |R| = 2).

All experiments primarily consider a dataset referred to as the original set,
which is based solely on true patient data. Two additional sets, high arrival
rate and high relocation, are derived from the original data by adjusting the
arrival rate and routing probability parameters, respectively. These additional
sets are included to assess the potential changes in patient characteristics.
In addition, since no data was obtained concerning the proportion of private
patients, a value of ψ = 0.2 is assumed, unless otherwise stated.

The parameters associated with each dataset are presented in Tables 4.1
and 4.2. Furthermore, the initialization of the RIS heuristic includes a mini-
mization of the expected number of relocated patients, f(u) from Andersen
et al., 2017 [13]. Each minimization, denoted as min{f(u)}, is presented in
Table 4.3.

2Java Mines Toolkit on interpolation and gridding - http://dhale.github.io/jtk/api/edu/
mines/jtk/interp/package-summary.html

3Data supplied by hospital AZ Maria Middelares, based in Gent, Belgium, in the
context of iMinds ICON project AORTA - https://www.imec-int.com/nl/imec-icon/
research-portfolio/aorta
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Dataset λ1 λ2 λ3 µ1 µ2 µ3 Total Beds Nprivate Ndouble
Original 5.42 3.96 2.52 0.19 0.19 0.11 74 36 19

High Arrival Rate 6.78 3.96 2.52 0.19 0.19 0.11 74 36 19
High Relocation 5.42 3.96 2.52 0.19 0.19 0.11 74 36 19

Table 4.1: Rates and capacities associated with each of the three datasets. All rates
and the total bed capacity are obtained from Andersen et al., 2017 [13], whereas the
ratio of private to shared rooms, Nprivate

Ndouble
is based on data from a Belgian hospital3.

Dataset p11 p12 p13 p21 p22 p23 p31 p32 p33

Original - 0.05 0.23 0.10 - 0.27 0.06 0.00 -
High Arrival Rate - 0.05 0.23 0.10 - 0.27 0.06 0.00 -
High Relocation - 0.05 0.95 0.10 - 0.90 0.06 0.00 -

Table 4.2: The routing probabilities associated with each of the three datasets, respec-
tively. All parameter values have been obtained from Andersen et al., 2017 [13].

Dataset min{f(u)} M1 M2 M3

Original 1.592 32 24 18
High Arrival Rate 2.354 39 23 12
High Relocation 1.688 33 25 16

Table 4.3: Each minimization, min{f(u)}, obtained from Andersen et al., 2017 [13].
The associated distribution of beds for each dataset is provided.

4.4.2 Error of the Surrogate Function
Prior to evaluating the heuristic search procedure, an assessment of the error
of both surrogate functions was performed by conducting a full enumeration
of the search space. In order to accommodate this, room availability was
limited to Nprivate = 20 private and Ndouble = 10 shared double rooms for the
high arrival rate and high relocation datasets. Otherwise, the full availability of
rooms for the original dataset was employed. The enumeration was conducted
using the parameters from all three datasets (Table 4.1 and 4.2) on both the
true functions g(u) and f(u), and surrogate functions g̃(u) and f̃(u).

Results were evaluated by calculating the error and comparing each func-
tions’ optimum. Table 4.4 presents the euclidean distance between the optima
of g(u) and g̃(u). Notice that this is measured on the distribution of the ag-
gregated capacity given how this is the primary decision variable. Table 4.4
includes the relative error concerning the optimum of the surrogate function.
Lastly, Figure 4.3 shows the error of the original data, namely g(u) − g̃(u).
The figure also illustrates the optima of both the true and surrogate objective
function.

Recall from Section 4.4.2 that the surrogate functions are based onM/M/c/c
model (4.13) which does not account for the hospitalization of relocated pa-
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tients. It is therefore expected that the surrogate functions will lose accuracy
as the number of relocated patients increases. That is, either when general
routing probabilities are high, or if the wards lack capacity. The latter situation
is reflected in Figure 4.3, showing that the error is smaller when the capacity
is more evenly distributed, thereby resulting in fewer relocated patients.

Regarding the routing probabilities, Table 4.4 demonstrates how the rel-
ative error is fairly robust with regard to the changes between the original
and high relocation datasets. However, the optima have changed substan-
tially from a euclidean distance of approximately 1.4 to 20.8 beds; therefore,
demonstrating that when a substantial number of patients are relocated within
the system, one must rely on the RIS heuristic being able to adapt interpo-
lation Yg(u) to objective function g(u), despite the accuracy of the surrogate
function.

Dataset
√∑

i∈W(M∗i − M̃∗i )2 (g(ũg)/g̃(ũg))− 1 (f(ũf )/f̃(ũf ))− 1

Original 1.414 0.016 0.092
High Arrival Rate 6.164 0.010 0.050
High Relocation 20.833 0.018 0.053

Table 4.4: The euclidean distance between the optima of g(u) and g̃(u), and the rel-
ative error at the optimum, ũg and ũf , of each surrogate function g̃(u) and f̃(u), re-
spectively.
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Figure 4.3: The error of surrogate objective function g̃(u) on the original dataset, de-
fined as g(u) − g̃(u), and derived by enumerating all solutions; showing, additionally,
the optimum of g(u) (black) and g̃(u) (gray).
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4.4.3 Evaluating the RIS Heuristic Parameters

The implications of adjusting the essential parameters are now explored. That
is, the number of initial surrogate samples from the search space, the size of
the exponent β, and the proximity tolerance ξ. All these parameters have been
tested sequentially on the original data.

The results from adjusting the initial surrogate sampling is presented in
Figure 4.4, showing the resulting interpolated estimate, Yg(u), and the asso-
ciated runtimes based on 5, 20, 35 and 50 samples from the search space.
Surrogate sampling is uniformly distributed and it is therefore expected that
Yg(u) converges to the true function g(u) when the sample size increases. In-
terestingly, the general shape of g(u) can be determined fairly early, as shown
in the experiment with only 5 samples.

By considering the strategic application of the RIS heuristic, we deem that
the associated runtimes are fairly negligible, and since the apparent optimum
does not change substantially after obtaining more than 20 samples, we deem
that this is an adequate number of samples for our later optimization experi-
ments.

Exponent β was assessed based on values of 1, 8 and 16. In accordance
with the RIS heuristic, these experiments were conducted by first obtaining
20 uniformly distributed samples, followed by 20 samples according to the
recursively-updated density function Z(u). The surrogate objective function
was again employed to conserve the runtime of the experiments. Results are
presented in Figure 4.5, showing that the search intensifies around the ap-
parent optimum as a function of β. Notice that the experiment where β = 1,
corresponding to a complete omission of the conversion, demonstrates the
usefulness of this approach as the sampling is almost uniformly distributed.
In the experiment where β = 8, samples are generally close to the optimum,
whereas in the last experiment, where β = 16, samples are concentrated on
the apparent optimum with only a few outliers. Based on these experiments,
a value of β = 8 is employed to focus on the most promising region of the
search space, but still attains some diversification.

Lastly, the effect of adjusting the proximity tolerance, ξ, was assessed us-
ing values of 1, 4 and 8. The experiments were conducted by applying the full
RIS heuristic using 20 initial surrogate samples, an exponent of β = 8, and an
upper bound on the permitted number of relocated patients of τ = 1.9. Each
experiment was conducted using a runtime of 30 minutes.

Results of these experiments yielded almost identical performance in each
case. This might have been caused by the choice of τ , which results in a
rather limited sample space. Consequently, the proximity tolerance is rather
arbitrarily set to ξ = 4 during the subsequent optimization experiments.
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Figure 4.4: The result of gradually increasing the number of surrogate samples on the
interpolated estimate Yg(u). Yg(u) does not change substantially upon applying more
than 20 samples.
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Figure 4.5: Interpolation Yg(u) resulting from a gradually increasing exponent, β. Each
experiment is conducted by initializing with 20 uniform surrogate samples, followed by
20 samples based on Z(u) (crosses).

4.4.4 Applying the RIS Heuristic
The full RIS heuristic is applied to the data presented in Section 4.4.1 based
on the tests from Section 4.4.3. We begin by presenting an example of a
single heuristic run, where gradually-obtained solutions are compared against
the true optimum.

Overall performance is assessed by way of a number of experiments which
compare the heuristic’s solutions to the true optimum. Since no data was
obtained concerning preference for private rooms, proportion ψ is investigated
using three different levels. Furthermore, the robustness to changes in the
patient arrival rates and relocation probabilities is of interest. Experiments will
therefore be conducted on all three datasets (cf. Table 4.1 to 4.3).

A Single Run

Figure 4.6 illustrates the progression of the RIS heuristic on the original dataset
for a runtime of 60 minutes and a bound of τ = min{f(u)} · 1.20 = 1.91. Dur-
ing this time 21 iterations were conducted. The figure shows the interpolation
Yg(u), samples x and x̂, the optimum obtained by enumeration, and finally the
estimated and true feasible search space defined by τ .

The heuristic initializes with 20 surrogate samples, as shown in the upper
left corner. At this stage, the apparent optimum is already close to the true op-
timum, which is immediately included within the search space. The remaining
three graphs show the sampled solutions for iteration 5, 10 and 20. Notice that
the estimated search space initially violates the true search space (in Figure
4.6, iteration 1 and 5: bottom-left solid line - estimated search space - exceeds
dotted line - true search space), but then converges to the true search space
near the optimum. At iteration 20 the estimated search space attains high ac-
curacy near the true optimum, which decreases as more capacity is allocated
to wards 1 and 2. Notice that samples are almost uniformly distributed due to
the low slope near the optimum.
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This example demonstrates the advantage of sampling from an interpola-
tion based on a mix of both fast surrogate and slower true evaluations to deter-
mine the most promising region for an objective function of complex structure.
The general performance of this approach for different parameter variations is
investigated in the following section.
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Figure 4.6: Progression of the RIS heuristic. Shows the interpolation, Yg(u), samples
x (dots) and x̃ (crosses) and the optimum (triangle). The true and estimated feasible
search space is depicted with dotted and solid line, respectively.

Overall Performance

The overall RIS heuristic performance was assessed in two parts. Firstly, two
runs were conducted on the original dataset for each of three levels of the
private patient poportion ψ = 0.2, 0.5 and 0.7, with a fixed runtime of 60
minutes. To properly assess the heuristic solutions, results were compared
against the true optima obtained by enumerating the search space.

Furthermore, since robustness regarding changes in the patient character-
istics is of particular interest, similar runs were conducted for the high arrival
rate and high relocation datasets. However, in order to determine the optima
for these additional tests, the room availability was limited to Nprivate = 20 and
Ndouble = 10 rooms. Due to the reduction of feasible ward capacity configu-
rations, the relocation bound to yield the maximal search space was omitted,
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and the runtime decreased to 10 minutes.

The results for the original dataset are presented in Table 4.5, featuring
the heuristic room configuration, iterations corresponding to the number of
solution-evaluations conducted using the true objective function, the heuris-
tic objective value, the objective value for the optimum, and finally the gap
between the best obtained solution and the optimum.

As expected, capacity is distributed among the wards according to the ar-
rival rate of the three patient types. That is, with respect to both private and
shared double rooms. By contrast, the fraction of private patients arriving, ψ,
appears to have little effect on the distribution of private rooms, since the solu-
tions are similar across all runs. This is potentially a result of the relative differ-
ence between the arrival rates of each patient type, which shall be assessed
in the last part of this section, where the arrival rate has been increased for
ward 1.

In general, the experiments presented in Table 4.5 yield excellent results,
as the relative gap between the heuristic and true optimum is consistently be-
low 1%. The reader should notice that these results have been obtained after
a runtime of 1 hour, whereas the complete enumeration of the search space to
determine the true optimum finished only after approximately 3 weeks runtime.

Heuristic Optimal
ψ Rep. u1,pr. u2,pr. u3,pr. u1,do. u2,do. u3,do. Iter. Obj. val. Obj. val. Gap (%)

0.2 1 13 11 12 8 6 5 28 12.68 12.75 0.55
0.2 2 15 10 11 8 5 6 20 12.71 12.75 0.31
0.5 1 15 11 10 8 5 6 23 30.09 30.28 0.63
0.5 2 15 10 11 7 6 6 29 30.18 30.28 0.33
0.7 1 15 10 11 7 6 6 20 35.21 35.23 0.06
0.7 2 14 10 12 8 5 6 27 35.20 35.23 0.09

Table 4.5: Result of optimizing the room configuration by applying our RIS heuristic.
Each run has been replicated twice employing three different levels of the private pa-
tient fraction, ψ. The percent-wise difference from the optimum is shown in the last
column.

Table 4.6 provides further results, showing the heuristic solutions for the
high arrival rate and high relocation datasets. For the high arrival rate, the
system is found to be more sensitive to changes in the private patient fraction
since increasing the fraction results in more private rooms to be allocated
to ward 1. Otherwise, the obtained solutions attain a small relative gap that
consistently stays below 1%, showing that increasing the number of arriving
patients does not affect the search procedure’s performance.

Next, for a substantially larger number of relocated patients it is expected
that more iterations are required to adapt the interpolation and obtain useful
solutions, due to the lower accuracy of the surrogate objective function. Re-
call how it was previously determined that a substantial distance is present
between the true and surrogate optima for the high relocation dataset in Sec-
tion 4.4.2. The experiments indicate that this is only the case for a medium
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Heuristic Optimal
Dataset ψ Rep. u1,pr. u2,pr. u3,pr. u1,do. u2,do. u3,do. Iter. Obj. val. Obj. val. Gap (%)
High Arr. 0.2 1 9 5 6 7 2 1 53 7.57 7.62 0.66
High Arr. 0.2 2 9 5 6 7 2 1 64 7.57 7.62 0.66
High Arr. 0.5 1 9 2 9 5 1 4 74 17.35 17.45 0.57
High Arr. 0.5 2 11 2 7 5 1 4 78 17.36 17.45 0.52
High Arr. 0.7 1 14 1 5 6 1 3 70 19.76 19.77 0.05
High Arr. 0.7 2 12 0 8 5 1 4 83 19.76 19.77 0.05
High Rel. 0.2 1 5 4 11 3 0 7 44 7.70 7.73 0.39
High Rel. 0.2 2 5 3 12 1 1 8 18 7.72 7.73 0.13
High Rel. 0.5 1 2 8 10 1 4 5 3 17.30 17.71 2.32
High Rel. 0.5 2 8 1 1 4 1 5 34 17.45 17.71 1.47
High Rel. 0.7 1 6 0 14 3 1 6 11 19.82 19.85 0.15
High Rel. 0.7 2 1 2 17 2 2 6 2 19.76 19.85 0.45

Table 4.6: Results of applying our RIS heuristic to the high arrival rate and high reloca-
tion datasets. The availability of rooms were limited to Nprivate = 20 and Ndouble = 10.
Due to the limited search space, all runs were conducted without the relocation bound
and a runtime of 10 minutes.

private patient fraction of ψ = 0.5 since the relative gap has increased a few
percentage points. The other levels remain relatively unchanged, and even
slightly improved for ψ = 0.2. Thus, these experiments indicate that good so-
lutions are derived for a large number of relocated patients as well.

4.4.5 Validation

Finally, this section validates the assumption that an improved room configu-
ration leads to better operational efficiency for inpatient admissions. An initial,
poor quality, room configuration (RC1) is compared with an optimized room
configuration (RC2, determined as a result of the RIS heuristic) in a day-to-
day scheduling simulation. The simulation begins from an initial, empty set of
wards with given room configuration (either RC1 or RC2). As the simulation
time progresses, inpatients arrive according to the arrival rates determined by
Table 4.1. At the start of each day a simplified version of the reactive ILP model
[131] is solved. This results in the patient-to-room and -ward assignments for
the considered day, and patients will stay in their assigned room until they are
discharged.

The ILP model can be defined as follows. Let binary decision variable xpr
equal 1 if patient p (which either arrived on the current day, or is still present
from previous admission) is admitted to room r. Let binary decision variable
yrt equal 1 if on day t the room is assigned to male patients or 0 if assigned
to female patients. Finally let r = ∅ denote a dummy room, where xp∅ =
1 indicates a patient being refused (or being relocated to a ward which is
not considered in the current problem). Also note that this section redefines
variables/indices used in the previous sections.
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Then the ILP optimization model can be formulated as:

Minimize
∑
p∈P

∑
r∈R

cpr · elos(p) · xpr (4.24)

Subject to (4.25)∑
r∈R

xpr + xp∅ = 1 ∀p ∈ P (4.26)∑
p∈P :

t<ad(p)+elos(p)

xpr ≤ br ∀r ∈ R, t = d, . . . ,D (4.27)

∑
p∈P :

t<ad(p)+elos(p)
p=male

xpr ≤ br · yrt ∀r ∈ R, t = d, . . . ,D (4.28)

∑
p∈P :

t<ad(p)+elos(p)
p=female

xpr ≤ br · (1− yrt) ∀r ∈ R, t = d, . . . ,D (4.29)

xpr ∈ {0, 1} ∀p ∈ P, r ∈ R ∪ ∅ (4.30)
yrt ∈ {0, 1} ∀r ∈ R, t = d, . . . ,D (4.31)

with R denoting the set of rooms available from the wards inW. br denotes
the capacity of each room r ∈ R, i.e. in the current dataset br ∈ {1, 2} (private
or shared). P denotes the set of patients currently arriving for admission or still
present after admission on an earlier day in the simulation. ad(p) and elos(p)
denote the arrival day and expected length of stay (available from Table 4.1,
1/µ parameter for each patient type) in days. D denotes an upper bound on
the planning horizon (in days), which is restricted by either the length of the
simulation time horizon or the maximum remaining expected length of stay
among patients p ∈ P . Finally, cpr denotes a cost matrix, attributing a per-
ceived penalty of admitting a patient p to a room r for one day. The elements
cpr, defined for each room (including the dummy) and patient combination, are
given by the sum of:

• wpref, a room preference penalty if the assigned room does not meet the
patients preference (i.e. a shared room when the patient prefers private),

• (1 − pij) · wreloc, a relocation penalty if the assigned room is not in the
preferred ward (refer to Table 4.2 for values of pij),

• w∅, a refusal penalty if the patient is not admitted to a room from wards
W.

The simulation was run on the three datasets described in Section 4.4.14.
Room configurations RC1 and RC2 depend on the dataset, and are con-
structed as described in Table 4.7. Furthermore, the fraction of male patients

4The above formulation does not include the constraint that prevents previously admitted pa-
tients from being re-allocated. However, this constraint is included in the simulation experiments.
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Dataset Room config. Ward 1 Ward 2 Ward 3 Obj. val
# Private # Shared # Private # Shared # Private # Shared

Original RC1 5 5 25 4 6 10 26.1
Original RC2 15 7 10 3 11 6 35.2
High Arr. RC1 5 5 25 4 6 10 26.3
High Arr. RC2 18 8 9 6 9 5 35.5
High Rel. RC1 5 5 25 4 6 10 26.0
High Rel. RC2 14 8 11 6 11 5 35.2

Table 4.7: Room configurations for each dataset applied in the simulation.

Dataset φ Avg. diff. room pref. Avg. diff. reloc. Avg. diff. refusal Avg. diff p-value
Original 0.3 339.672 1714.919 -0.156 1524482.324 0.000003
Original 0.4 335.76 1714.122 0.342 1573963.133 0.000003
Original 0.45 333.636 1716.732 -1.312 1410879.453 0.000011
Original 0.5 330.499 1714.839 -0.212 1519234.307 0.000003
Original 0.55 328.462 1714.334 -0.05 1535030.136 0.000002
Original 0.6 330.563 1713.348 -0.117 1527145.516 0.000003
Original 0.7 335.4 1715.605 -0.794 1461706.145 0.000009
High Arr. 0.3 209.789 2327.362 -0.655 1978448.163 0.004524
High Arr. 0.4 209.705 2328.767 -0.753 1969645.429 0.004796
High Arr. 0.45 209.596 2324.194 2.314 2272155.253 0.000699
High Arr. 0.5 208.725 2331.665 -3.023 1745265.698 0.013875
High Arr. 0.55 209.611 2327.468 -0.056 2038268.366 0.003074
High Arr. 0.6 210.234 2327.527 -1.443 1899492.767 0.007611
High Arr. 0.7 211.017 2326.236 -0.516 1991301.962 0.004637
High Rel. 0.3 313.305 1835.305 -0.142 1066569.388 0.001142
High Rel. 0.4 308.111 1837.001 -1.632 918296.2456 0.003782
High Rel. 0.45 307.47 1835.729 -1.371 943633.4047 0.002924
High Rel. 0.5 309.619 1833.69 -0.969 983328.3526 0.003197
High Rel. 0.55 307.042 1834.621 -0.642 1016144.088 0.001414
High Rel. 0.6 311.93 1834.392 -1.098 970200.3081 0.003658
High Rel. 0.7 312.194 1836.225 -1.501 931214.4434 0.003905

Table 4.8: Simulation results (averaged over 1000 replications) for each dataset and
male patient fraction.

among all patients (other patients being female) is considered as an additional
parameter (denoted by φ) since this fraction may be ward-dependent. The
simulation runs over 120 simulation days during which arrivals are generated.
For each combination of the considered parameters (fraction of male patients,
dataset and room configuration), we ran 1000 simulation replications.

The results (averaged over 1000 replications) are summarized in Table
4.8, showing for each dataset and male patient-fraction, the difference be-
tween RC1 and RC2 (value larger than 0 if RC2 is better) in respectively room
preference penalties, patient relocations to other wards, patient refusals, and
the global objective value as defined by Equation (4.24) calculated over the
simulation horizon of 120 simulation days. Finally, the difference is statisti-
cally significant by a p-value from the Wilcoxon Rank Sum Test. Notice that all
p-values are indeed smaller than 0.05.

These results show that RC2, while having a marginally higher number of
patient refusals, the penalties of mismatched room preferences (our primary
concern) and patient relocations greatly improves over RC1. This validates the
assumption that an improved room configuration (i.e. RC2 over RC1) leads to
improved operational efficiency for inpatient admissions.
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4.5 Conclusion

The ability to choose a private room over a shared room is becoming an in-
creasingly important factor for patients to choose a hospital for admission.
Being able to meet those requests is of strategic importance to hospitals, both
in increasing patient comfort and satisfaction but also in generating extra rev-
enue from charging room/honorarium supplements. However, existing infras-
tructure may not be adequately allocated between nursing wards to meet the
current demand.

This study sought to provide hospital decision makers with a strategic tool
for improving the allocation of room types among hospital wards. More specif-
ically, the aim was to accommodate patients who prefer private room assign-
ments, by first assuming a fixed number of room types, and second that these
room types can be reallocated among the wards.

The proposed approach is based on a continuous-time Markov chain model
that derives the patient occupancy distributions, and a heuristic search proce-
dure referred to as Randomized and Interpolated Search (RIS) that searches
for the best possible room configuration. RIS recursively improves an initial
solution by sampling from the search space based on a gradually improved
interpolation of the objective function. The fact that occupancy distributions
are fixed for an unchanged aggregated capacity is exploited in order to de-
rive the sub-optimal room type configuration using integer linear programming.
Consequently, aggregated capacity allocations form the primary decision vari-
ables for the proposed RIS heuristic to operate on. This results in reducing
the search space for the RIS heuristic by omitting room type configuration de-
cision variables.

Based on data from both a Danish and Belgian hospital, the applicability
and effectiveness of the approach was demonstrated through various exper-
iments which vary the fraction of patients who prefer private hospitalization,
the overall arrival rate, and lastly the number of patients relocated within the
system. In a computational study, it is shown that the RIS heuristic has the
potential to derive near-optimal solutions that attain relative gaps below 1%
within short runtimes which make the method applicable in practice. More-
over, it was demonstrated how configuring room resources on a strategic level
benefits the day-to-day decisions of assigning patients to rooms through sim-
ulation.

Finally, the reader should notice that the proposed approach is not only ap-
plicable to the specific case of optimizing the room configurations in a hospital
setup, but to any queueing problem where jobs are serviced among differ-
ent nodes and may prefer a specific, but limited resource. Examples of such
similar environments vary from manufacturing setups where products are pro-
cessed at different stations and may require a specific tool, to call centers
where customers may prefer an operator of a specific skill set.

The study comprised various experiments, including different parameter
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variations as well as input datasets that demonstrate the performance and the
robustness of the approach. However the analysis was restricted to a specific
hospital case featuring a fairly limited number of wards. More complex cases
should be assessed, preferably with a greater number of disposable rooms
and room types. Additionally, future experiments should consider that patient
scheduling is not only constrained by room preferences but also gender, and
that this mix can be a function of the preferred ward for the patient.
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Chapter 5

Staff Optimization for Time-Dependent
Acute Patient Flow1

Anders Reenberg Andersen, Bo Friis Nielsen,
Line Blander Reinhardt and Thomas Jacob Riis Stidsen

Abstract The emergency department is a key element of acute patient flow,
but due to high demand and an alternating rate of arriving patients, the de-
partment is often challenged by insufficient capacity. Proper allocation of re-
sources to match demand is, therefore, a vital task for many emergency de-
partments.

Constrained by targets on patient waiting time, we consider the problem
of minimizing the total amount of staff-resources allocated to an emergency
department. We test a matheuristic approach to this problem, accounting for
both patient flow and staff scheduling restrictions. Using a continuous-time
Markov chain, patient flow is modeled as a time-dependent queueing network
where inhomogeneous behavior is evaluated using the uniformization method.
Based on this modeling approach, we recursively evaluate and allocate staff
to the system using integer linear programming until the waiting time targets
are respected in all queues of the network. By comparing to discrete-event
simulations of the associated system, we show that this approach is adequate
for both modeling and optimizing the patient flow. In addition, we demonstrate
robustness to the service time distribution and the associated system with
multiple classes of patients.

5.1 Introduction

In this study, we consider the well-known problem of optimizing the patient
flow for an Emergency Department (ED). With many hospitalizations on a daily
basis, the ED is often considered a vital element to the hospital compared to
other hospital departments. ED hospitalizations are further characterized by
a large variety of different diagnoses, requiring staff from a range of different
specializations around the clock.

A report from the Danish Ministry of Health [97] places Denmark below the
average lifespan for countries in the Organization for Economic Co-operation

1Accepted for publication in the European Journal of Operational Research
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and Development (OECD), but above the average on fraction of Gross Do-
mestic Product (GDP) used on public health care; hence suggesting that a
general increase in the utilization of resources is required. In this study, we ad-
dress this issue by providing hospital management with a method for deriving
the minimum required staff for an ED constrained by targets on patient wait-
ing time. Such method is especially relevant for hospitals that are governed
by their efficiency, and therefore seek to rearrange the excess resources for
instance by validating the difference between the minimum required and cur-
rently available resources.

Operations Research literature related to Emergency Department (ED)
planning and dimensioning is relatively unexplored as regards analytical mod-
eling of acute patient flow combined with optimization.

Lim et al., 2012 [85] conducted an elaborate survey on the use of math-
ematical modeling of ED patient waiting times and found 29 relevant studies.
From these, four overall modeling techniques were uncovered: (1) Queueing
Theoretic (QT) models covered a total of four different studies, (2) Discrete
Event Simulation (DES) covered 22 different studies, (3) System Dynamics
(SD) covered two studies and (4) Agent-Based Modeling (ABM) covered two
studies likewise. Substantial weight is obviously given to the three simulation-
related approaches as only four studies were conducted using QT modeling.

Lim et al., 2012 further found that a recurrent objective is to use the model
to test one or more scenarios and rarely to optimize the system. Examples
in QT modeling are Cochran & Roche, 2009 [42] and Mayhew & Smith, 2008
[88], where open queueing network models are developed with a view to in-
vestigate how to increase patient throughput. In the area of DES, Medeiros
et al., 2008 [91] tested an approach named Provider Directed Queueing for
improving ED performance. Additionally, Khadem et al., 2008 [76] assessed a
new layout for an ED and found the new layout to reduce patient waiting time
by a substantial amount. In SD modelling, Storrow et al., 2008 [124] assessed
the effect of decreasing lab turnaround times, focusing on emergency medical
services, patient throughput and length of stay. Lane et al., 2000 [81] assessed
changes in waiting times as bed capacity is changed. Further, in the area of
ABM, Wang, 2009 [136] evaluated different settings of triage and radiology
procedures. Lastly, some studies combine different modeling approaches to
attain their objective. Laskowski et al., 2009 [82] evaluated patient flow using
two different models. One based on ABM and the second based on queueing
theory. In their study, the two models are applied and compared by using a
number of relatively simple scenarios.

Getting an understanding of acute patient flow based on simulation seems
well explored. However, Lim et al., 2012 only obtained two studies that use
modeling of patient flow in an actual optimization scheme. The first is Yeh &
Lin, 2007 [143] where schedules are adjusted for a fixed amount of nurses by
using a combination of DES and a Genetic Algorithm (GA). The aim was to find
the configuration of schedules that minimizes patient waiting time. Secondly,
Ahmed & Alkhamis, 2009 [10] combined DES with a local search heuristic by
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applying statistical hypothesis testing. The goal was to determine the optimal
number of different staff types by maximizing the throughput of patients con-
strained by department budgets.

Besides the studies in Lim et al., 2012 we were able to identify four stud-
ies where optimization is conducted in the context of acute patient flow. Firstly,
Sinreich et al., 2012 [119] use a DES model together with Mixed Integer Linear
Programming (MILP) to derive two different heuristics with the aim of determin-
ing efficient work-shift schedules that minimize patient waiting time. Further,
Daldoul et al., 2015 [44] determined the optimal amount of staff and equipment
by using a MILP model. Interestingly, system stochasticity was not incorpo-
rated in this model. In addition, Cabrera et al., 2012 [30] used ABM and ex-
haustive search to optimize the configuration of different staff types, and lastly,
Wang, 2013 [137] used a modeling approach known as Separated Continuous
Linear Programming to determine the level of staffing that would minimize the
overall cost of the ED.
Now, when we consider studies that focus only on queueing theoretic model-
ing, then queues with non-homogeneous Poisson arrivals or even processes
with more general time dependent arrivals has received substantial interest.
See e.g. Schwarz et al., 2016 [113] and Defreye & Inneke, 2016 [46] for
two recent review papers. The literature on time dependent queuing networks
specifically is less abundant, but see Armony et al., 2015 [15] for a data-based
analysis of ED’s viewed through the lens of a queueing scientist.

Moving to different application areas, in manufacturing Bitran & Morabito,
1994 [24] conducted a survey on stationary open queueing networks, pre-
senting both exact and approximate solutions to a range of different problem
structures. Related to our study, the problem of minimizing cost by allocating
machines, constrained by an upper bound on a Work-In-Progress (WIP) level,
may be solved approximately by a heuristic. However, if the number of ma-
chines is fixed, and the objective is to minimize the WIP level, then an exact
solution can be derived.

Further, on optimizing stationary queueing networks, Smith et al., 2010
[120] present an exact solution to the machine allocation problem for a finite
queueing network by using Powell’s algorithm. For a general open queue-
ing network, Giloni, 2001 [56] derives conditions under which the problem is
reduced to solving a concave or convex problem. Additionally, Seshadri &
Pinedo, 1999 [114] exploit an approach where a heuristic is used to minimize
the WIP level. Lastly, Yoneda et al., 1992 [144] apply simulated annealing to
optimize their system.

In the area of call center staffing, several studies have been conducted con-
sidering both time-varying arrivals and staff optimization. For single queues,
Feldman et al., 2004 [53] investigate three different methods for deriving the
minimal time-dependent staffing level, st, to maintain time-stable performance.
The study proposes a simulation-based algorithm, along with an extension of
the square-root-staffing formula [73]. Lastly, for queues with customer aban-

105



CHAPTER 5. STAFF OPTIMIZATION FOR TIME-DEPENDENT ACUTE
PATIENT FLOW

donments, Mt/M/st + M , they show for a certain setting that staffing can be
adjusted to match the expected load in the associated infinite-server system.
Related hereto, Whitt, 2006 [138] maximizes the revenue of an M/GI/s+GI
queue by firstly modeling the system as a deterministic fluid model, and sec-
ondly as the associated M/M/s+M(n) model. The optimization is conducted
by adjusting the number of servers in the system. Further, Sze, 1984 [125] fo-
cuses on choosing an adequate M/G/s model for staffing purposes, taking
arrival variability into account.

Turning to queueing networks in call center staffing, Tipper & Sundare-
shan, 1990, [127] consider a network of single-server queues with time-varying
arrival rate, using two models. The first is based on Chapman-Kolmogorov dif-
ferential equations, and the next on non-linear differential equations modeling
the mean queue lengths in the network. We have noticed that neither in this
study nor the proceeding three studies on single queues is emphasis put on
incorporating staff in more complex shift structures. Liao et al., 2012 [84] de-
rives the optimal staffing level of a single queue, incorporating back-office jobs,
by using both stochastic and robust programming, respectively, but assumes
a single-shift structure.

We acknowledge that modeling of queueing networks is an extensive field
covering many other applications as have not been mentioned above. In this
review, we mainly focus on the literature covering optimization of acute patient
flow, and two related application areas. In the area of manufacturing, non-
stationary cases seem to be rarely considered, whereas for call center model-
ing and staffing, limited emphasis is put on optimizing staff with more elaborate
shift structures. In the area of modeling flow for acute patients queueing theory
combined with optimization is in general an uncommon approach.

In our study, we present an approach based on a continuous-time Markov
chain (CTMC) for modeling the time-dependent behavior of acute patient wait-
ing time, and the interaction of this approach with an Integer Linear Program-
ming (ILP) model. The ILP will serve as the method we use to efficiently
allocate staff to specific working-patterns, as has been proven adequate by
other studies [39]. We combine the CTMC and ILP in a matheuristic search
procedure with the objective of minimizing the total amount of staff that is allo-
cated to the ED. This heuristic procedure is further divided into two variations,
yielding two models for our numeric experiments. Further, we have used a
Danish ED as the basis for our study and have constructed a representation
of patient flow as well as conducted tests based on data from this ED.

Specifically, our contribution to the area of acute patient modeling and op-
timization is:

• Applying an analytical approach for modeling time-dependent flow for
acute patients, going from triage to specialized treatment. Specifically,
we employ a numerical method for modeling the system as an open
queueing network.
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• Combining the queueing network with an ILP model in a simple and gen-
eralizable matheuristic procedure for minimizing staff, taking constraints
on patient waiting time, as well as staff working-patterns into account.

In Section 5.2 we elaborate on the specific problem and data at hand.
In Section 5.3, we present the CTMC model that is used to evaluate patient
waiting time and the structure of the matheuristic incorporating both CTMC
and ILP modeling. In Section 5.4 we evaluate our CTMC approach, present
how the tuning of parameters is conducted, and demonstrate the performance
of our matheuristic. Lastly, we present our conclusion in Section 5.5.

5.2 Problem Description

Any patient who is admitted to an Emergency Department (ED) will be de-
pendent on a range of different resources. Upon arrival, the patient is firstly
triaged to determine the severity of the patient’s condition. Next, an examina-
tion is conducted by a physician to determine whether a more in-depth treat-
ment is required. If there is no need for this, the patient can be discharged
immediately; otherwise, a specialized physician is further required.

Obviously, the admission of a patient involves the use of a range of many
different resources. In case one or more of these resources are absent, the
treatment quality will decrease accordingly. Still, like any other organization
the ED is subject to a limited capacity and is thus faced with the problem of
balancing quality of care against the department expenditures. Being able to
make clear objectives and utilize resources accordingly is, therefore, a core
responsibility of the department.

Our objective is to contribute to the methodology related to balancing ED
capacity against service, by minimizing the total amount of staff allocated to
the department taking the resulting effect on treatment quality into account. As
waiting time has been shown to directly influence the treatment quality of acute
patients [99, 72, 93], the total amount of allocated staff will be constrained by
targets on patient waiting time. Due to union settlements, we further consider
that staff resources are constrained by a number of fixed working patterns.

5.2.1 System and Data Description

We consider patients of a single class arriving according to a process with
time-varying intensity to an ED. Upon arrival, the patients are physically admit-
ted to a bed, where they will stay until discharged. During this time, however,
the patients require attention from a range of different staff types depending
on their diagnosis. Each staff type is drawn from a "pool" of limited capacity
and will attend the patients for a random amount of time. Thus, we assume
that the stay of a patient can be modeled as an open queueing network, where
the change in required attention between staff types corresponds to moving
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from one network node to the next. Due to this approach, we assume that a
patient can only be treated by a single care-provider at a time.

In case a patient requires attention from a pool of staff where all mem-
bers are occupied, a queue is created, and the patient will receive attention
according to a first-come first-served (FCFS) discipline. To represent the di-
versity of diagnoses and need, the routing of patients from one queue to the
next occurs randomly, but with known probability. Additionally, in case a patient
requires attention from the same care-provider more than once, the patient is
looped back to the same node. Specifically, we interpret the patient flow as the
queueing network presented in Figure 5.1. Here, each queue of the network
represents the following five staff types (by queue number):

1. Triage Nurses

2. Basic Physicians

3. Specialized Medical Physicians

4. Organ Surgeons

5. Orthopedic Surgeons

1

2

4 53

Discharge

p24

p25p23

p2d

p22

p5d

p55

p4d

p44

p3d

p33

Figure 5.1: The stay of patients modeled as a network of queues. Each node repre-
sents a single queue with servers of only one staff type. Staff types by queue number
are: (1) Triage Nurses, (2) Basic Physicians, (3) Specialized Medical Physicians, (4)
Organ Surgeons and (5) Orthopedic Surgeons. The parameter, pij , defines the routing
probability.
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Patient Data

We obtained one year of patient data from a Danish ED, showing the exact ar-
rival time and triage level of each patient. Our case-ED uses four triage levels
between which patients are initially distributed (in ascending priority) with 9%
on level 1, 63% on level 2, 25% on level 3, and 3% on level 4. Furthermore,
we naturally found that all patients were triaged on arrival, but then have their
priority level adjusted after the first examination by a physician. That is, after
the examination about 72% of the patients on level 3 were re-evaluated to level
2, essentially changing the distribution to 81% of the patients on level 2 and
only 7% on level 3 for the remaining queues in the network.

Based on the ED data, we further investigated the patient inter-arrival time
by modeling the arrival rate as the Poisson regression, shown in (5.1),

log(λij(u)) = α+βu+θu2 +γj+δi+φju+ζju
2 +ψiu+ξiu

2 +ρij+ηiju+ωiju
2

(5.1)
where λij(u) is the expected number of arrivals on hour of the day {u ∈

R|0 ≤ u ≤ 24}, on the day of the week j ∈ {Monday, Tuesday, . . . , Sunday}
for patients of triage priority i ∈ {1, 2, 3, 4}. We used explanatory variables to
model the effect of day of the week, j, and triage priority i. Due to the limited
amount of data obtained, we modeled the effect from time of the day, u, as a
second order polynomial. The resulting modeled arrival rate is demonstrated
in Figure 5.2, showing both the modeled and empirical rates for patients of
triage level 2 and 3, respectively.

We evaluated our model by examining the distribution of ε = (y − λ̂)/
√
λ̂,

where λ̂ is the model fit and y the observations. In addition, we conducted a
graphical test where the model was fitted to the first six months of data and
then compared to the last six months. Lastly, we estimated the dispersion pa-
rameter at φ̂ = 0.82, and conducted a Pearson’s goodness-of-fit based on a
model deviance of 41346 with 50274 degrees of freedom, yielding a right-tailed
probability of p = 1. Thus, a very large p-value. From these both graphical and
quantifiable measures we have found Poisson behavior to fit the data well.

As patients are admitted to the ED, they will require attention from a range
of different staff types, which we interpret as the service times of the queueing
network. For the case ED, we were not able to obtain reliable data on time
spent on patients. Therefore, in our subsequent modeling we will assume for
convenience that service times are exponentially distributed, even though we
acknowledge that such distribution might not fit real-life inter-service times of
an ED. Later, in Section 5.4.1, we elaborate more on the robustness of this
assumption. The specific parameters that we have used for our service time
distributions are presented in Appendix B.1, Table B.1. These were estimated
based on interviews with hospital staff.

Lastly, regarding the use of prioritizes, recall that a fairly large fraction of
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Figure 5.2: The modeled, according to (5.1), and empirical time-varying arrival rate for
patients of triage level 2 and 3 respectively.

patients are prioritized on triage level 2, especially after the examination by
a physician. Therefore, to ensure computational tractability of our modeling
approach, we will only be considering a single class of patients with arrival
rate corresponding to the sum of triage level 2 and 3. Since we only consider
this single class, we may drop the index on triage level, such that the arrival
rate simplifies to λj(u). Later, in Section 5.3.1, we will refer to the arrival rate
as λ(ξ), where ξ is any continuous point in time within one week. We elaborate
more on the implications of this assumption in Section 5.4.2.

Besides the arrival rates derived from (5.1), we test two additional arrival
patterns for our optimization experiments, gj(u) = λj(u) · 0.9 and hj(u) =
λj(u) · 0.92, depicted in Figure 5.3.

Routing

Depending on condition and diagnosis, any patient arriving at the ED will have
a unique need for care, and as a result, there is a large range of different com-
binations of services to account for in the patient flow. From the perspective of
our queueing network, the necessary care will be reflected in the patient being
routed to either a specialized physician, looped to the current care provider,
or discharged. The question is whether such routing occurs randomly or de-
pends on some underlying policy. For instance, in situations of overcrowding
at the optimal care resource, it might be worth to consider an alternative op-
tion for the patient. However, our interviews with the ED staff indicated that the
patients are provided with the care optimal to each patient, in which case rout-
ing occurs randomly in accordance with the random occurrence of condition
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Figure 5.3: The three arrival rate patterns used to test the performance of our
matheuristic approach.

and diagnosis. Furthermore, we found that patients require care resources
according to some distribution. Let pij define the probability of being served
by staff type j ∈ C successive to i ∈ C, and let pid define the probability of
being discharged and leaving the system upon completion of i ∈ C, as shown
in Figure 5.1. To derive the value of these, we obtained patient data showing
the specific staff resources that were required during each patient’s stay. The
result is presented in Appendix B.1, Table B.2.

5.3 Modeling & Solution Approach

In this section we present an approach for the problem of minimizing the to-
tal amount of staff allocated to the ED, constrained by targets on the patient
waiting time. We consider a set of staff types, C, subject to a limited set of
working-patterns, J , and that patient waiting time is a non-linear function of
the available capacity in the department. This leads to the master problem
shown in equation (5.2a)-(5.2d),

min.
∑
c∈C

∑
j∈J xcj (5.2a)

s.t.
Lct(Z) ≥ τ ∀t ∈ T , c ∈ C, where zct =

∑
j∈J acjtxcj (5.2b)∑

j∈J acjtxcj ≥ βct ∀t ∈ T , c ∈ C (5.2c)
xcj ∈ N0 ∀j ∈ J , c ∈ C (5.2d)
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where xcj is the amount of staff type c ∈ C assigned to working-pattern
j ∈ J . Thus, (5.2a) is the total amount of staff allocated to the department.
Furthermore, Lct(Z) is the fraction of patients waiting for staff type c ∈ C below
a predefined time, in time period t ∈ T , where T is a discrete set of the weekly
hours T = {1, 2, . . . , 168}. Here, Z is a |T |×|C| matrix defining the resulting
allocation of each staff type for each time period in the entire planning period.
Let zct be an element of Z, and let acjt ∈ {0, 1} be equal to 1 if working-
pattern j ∈ J assigns staff type c ∈ C to time period t ∈ T ; otherwise 0. Then,
zct =

∑
j∈J acjtxcj , is the amount of staff type c ∈ C allocated to time period

t ∈ T . Since {τ ∈ R|0 < τ < 1}, (5.2b) constraints the fraction of patients with
a waiting time below a predefined amount of time.

Lastly, we assume that the system has a limit for each staff type c ∈ C
and time period t ∈ T , βct, after which the system is no longer operative.
Constraints (5.2c) is introduced to ensure that the staff limit is never violated.

We evaluate Lct(Z) by using a continuous-time Markov chain, presented
in Section 5.3.1. Due to the non-linear and complex structure of Lct(Z) there
exists, to our knowledge, no standard approach to solve (5.2a)-(5.2d). We
present a heuristic approach in Section 5.3.2.

5.3.1 Modeling Patient Waiting Time

As previously mentioned, we consider five staff types, C = {1, 2, . . . , 5} inter-
preted as five different nodes in a queueing network. To model the occupancy
and flow between these queues, we introduce a continuous-time Markov chain
(CTMC) with state definition s = {k1, k2, . . . , k5}, where ki is the number of
patients waiting for or in service by staff type i ∈ C. We further consider a
truncation of the patient capacity, Mi ≥ ki, and choose this so the probability
of having Mi patients waiting for or being served by staff i ∈ C has negligi-
ble effect on the behavior of the system. Then the CTMC has state space
S = {0, . . . ,M1}×{0, . . . ,M2}× · · ·×{0, . . . ,M5} of size |S| =

∏
i∈C(Mi+ 1).

Furthermore, let λ(ξ) define the arrival rate of a single class of patients at
time ξ. In addition, let µi define the service rate of staff type i ∈ C. Moreover,
let wi define the number of servers of staff type i ∈ C, and assume that
wi < Mi.

Let Q define the transition rate matrix of the CTMC, with qss∗ the transition
rate from the current state s ∈ S to a new state s∗ ∈ S. Then we have,

qss∗ =



λ(ξ) if s∗ = (k1 + 1, k2, . . . , k5) and k1 < M1

µ1k1 if s∗ = (k1 − 1, k2 + 1, . . . , k5) and k1 > 0, k2 < M2, k1 ≤ w1

µ1w1 if s∗ = (k1 − 1, k2 + 1, . . . , k5) and k1 > 0, k2 < M2, k1 ≥ w1

µ2k2p2j if s∗ = (k1, k2 − 1, . . . , kj + 1, . . . ) and k2 > 0, kj < Mj , k2 ≤ w2 ∀j ∈ C \ {1, 2}
µ2w2p2j if s∗ = (k1, k2 − 1, . . . , kj + 1, . . . ) and k2 > 0, kj < Mj , k2 ≥ w2 ∀j ∈ C \ {1, 2}
µikipid if s∗ = (k1, . . . , ki − 1, . . . ) and ki > 0, ki ≤ wi ∀i ∈ C \ {1}
µiwipid if s∗ = (k1, . . . , ki − 1, . . . ) and ki > 0, ki ≥ wi ∀i ∈ C \ {1}

where all other transition rates, qss∗, are 0.
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All patients arrive at the first node of the network, and therefore only k1

is subject to increase by a rate of λ(ξ). Consider a case where M1 = 10.
Then the transition s = (k1, k2, k3, k4, k5) = (5, 10, 2, 3, 2)→ s∗ = (6, 10, 2, 3, 2)
occurs with a rate of λ(ξ). Internal flows of the network occurs from either
node 1 or 2, and all discharges from either node 2, 3, 4 or 5. These are all
dependent on both service rates, assigned staff and the routing probabilities
of the node where the patient has just completed service. Thus if M3 = 5 and
w2 = 2, s = (6, 10, 2, 3, 2) → s∗ = (6,9,3, 3, 2) occurs with a rate of µ2w2p23,
and if w3 = 4, s = (6, 9, 3, 3, 2) → s∗ = (6, 9,2, 3, 2) occurs with a rate of
µ3k3p3d.

Time-Dependent Behavior

To derive the waiting times from the queueing network, we do not only have
to take the assigned staff into account, but also the effect of the time-varying
arrival rate, as was defined in Section 5.2. The approach we follow could be
classified as a piecewise transient model according to Schwarz et al., 2016
[113] and the solution method we apply is uniformization [123], also denoted
randomization.

Notice that, as the arrival rate is weekly cyclical and if the working-patterns
are weekly cyclical as well, then the process eventually stabilizes with the dis-
tribution given as a weekly-periodic vector function, f(ξ). We make a numeri-
cal approximation to this distribution by first assuming that the change in arrival
rate is negligible within some limited time interval, for instance, one hour. We
denote the length of these time intervals by δ such that the length of the pe-
riod, of one week, τweek is an integer multiple of δ. Now, let λ(ξ) define the
arrival rate of patients at time ξ, and assume there exists a negligible change
|λ(ξ)−λ(ξ+δ)|, so λ(ξ) can be discretized into a vector λ of size τweek/δ ∈ N+.

Let πi(t) define the i’th segment of the stabilized distribution a function of t
with {t ∈ R|0 ≤ t ≤ δ}. Furthermore, let Υ = {ξ ∈ R|0 ≤ ξ ≤ τweek} and t = 0
represent the beginning of a segment, i, on the time line of Υ, and t > 0 the
duration of time spent in such a segment, so πi(t) can be determined on any
ξ ∈ Υ using both i and t, as illustrated in Figure 5.4.

Then, (5.3) represents the time-dependent state distribution of the process
for any point in time of the week, ξ ∈ Υ, where all entries in the vector function
f(ξ) are piecewise constant.

f(ξ) = πi(t), i =
⌈
ξ/δ
⌉
∧ t = ξ − (i− 1) · δ (5.3)

where πi−1(δ) = πi(0).

0 δ 2δ 3δ · · · τweek

i = 1 i = 2 i = 3 · · · i = τweek/δ

Figure 5.4: The segmented time-line of length τweeks. Applied in the modelling of the
time-dependent state distribution, f(ξ).
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For each of the τweek/δ time-intervals, illustrated in Figure 5.4, we require
a method for deriving the time-inhomogeneous state distributions, πi(t), from
which we derive the entire weekly behavior of the process.

From standard theory we have,

πi(t) = πi(0)eQit (5.4)

where Qi is the transition rate matrix containing the element λi from λ
corresponding to the i’th segment. We use uniformization as presented below
to calculate the matrix exponential.

Let γi be at least as large numerically as the largest diagonal element of
Qi. We then write,

Pi = Qi/γi + I (5.5)

where Pi is a transition probability matrix, with each element defining the
probability of going from a state s ∈ S to a new state s∗ ∈ S, and I the identity
matrix. Then, from an initial distribution πi(0), the distribution at time t, in
segment i, πi(t), can be derived using (5.6) [123].

πi(t) =

∞∑
k=0

πi(0)P k
(γit)

k

k!
e−γit (5.6)

The transformation of Qi into Pi, allows us to interpret our CTMC as an
embedded Markov chain with a random number of transitions. The number of
state changes in the embedded Markov chain, Pi, has probability e−γit(γit)k/k!
according to a Poisson distribution with parameter γit, and thus depends on
the time t. From πi(0)P k, the state distribution after exactly k changes is de-
termined, so by using e−γit(γit)k/k! we may weigh each of these distributions,
according to time t and form the resulting state distribution πi(t). In imple-
menting (5.6), we computationally use a recursive formulation to approach
πi(t) until convergence.

Let K be the minimum number of terms in (5.6) required to attain an accu-
racy of ε, then the following statement has to be satisfied [123]:

σK =

K∑
k=0

(γit)
k

k!
≥ (1− ε)eγit (5.7)

From (5.7), a recursive formulation to determine K can be established –
presented below:

1. Initialize setting ζ ← σ ← 1 and K ← 0.

2. If σ ≥ (1− ε)eγit, then stop; otherwise continue.

3. Set ζ ← ζ γit
K+1 and σ ← σ + ζ.

4. Set K ← K + 1 and go to 2.
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The stabilized distribution of the segment i, πi(t), can then be computed
by using the recursion:

1. Initialize setting y ← π ← πi(0), and k ← 0.

2. If k = K, then stop as πi(t) ≈ e−γitπ with an accuracy of ε. Otherwise
set k ← k + 1 and continue.

3. Set y ← y
(
Pi

γit
k

)
, π = π + y and go to 2.

This concludes the approach we use to derive the state distribution at time
t in segment i, πi(t). Our implementation of the step function, f(ξ), containing
the state distribution at every point in time of the week, is derived recursively
by using Algorithm 8, as is presented in the following Section 5.3.1.

Waiting Times

In the above, we have presented an approach to obtain the occupancy distri-
bution for a duration of time t in a segment i, denoted πi(t), given the initial
value πi(0). The entries of the transition rate matrix in each segment, Qi, is
determined by λ(ξ), along with the allocation of staff to each queue of the net-
work. Through (5.3), πi(t) is used to determine the state distribution for the
entire week, f(ξ). Though f(ξ) specifies how many patients are expected to
be present in each queue, the measure does not directly reflect the resulting
waiting times.

Let W denote the waiting time at a queue with w servers, and let k define
the number of patients present at the queue at the time of arrival. Then W = 0
if k ≤ w− 1. For exponential service times and k ≥ w we have W =

∑k
i=w Zi,

where Zi are independent exponential random variables of rate w times the
service rate of each server. Our aim is to derive the fraction of patients waiting
below a specific target as function of time of the week, ξ. That is, L(ξ) =
Prob{W (ξ) ≤ ν}, where ν is the target upper waiting time and W (ξ) the time-
dependent waiting time distribution. Letting K(ξ) define the random number of
patients present at the queue at time ξ, we assume the time-inhomogeneous
behavior within a segment is negligible so,

Prob{W (ξ) ≤ ν} =

Mc∑
k=0

Prob{W (ξ) ≤ ν|K(ξ) = k} · Prob{K(ξ) = k} (5.8)

and therefore, by letting fci(ξ) =
∑
j∈J Prob{s = (. . . , kc = i, . . . )} de-

fine the marginal time-dependent state distribution obtained in Section 5.3.1,
where J = S \ {s = (. . . , kc 6= i, . . . )} — that is, the probability that queue
c ∈ C is occupied by i patients, we get

Prob{Wc(ξ) ≤ νc} =

wc−1∑
i=0

fci(ξ) +

Mc∑
k=wc

fck(ξ) · Prob

(
k∑
i=1

zi ≤ νc

)
∀c ∈ C

(5.9)
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from [78]. The first term of (5.9) accounts for the probability that there is no
waiting time on arrival – namely when at least one of the servers is free. The
second term contains the probability that the queue is occupied by wc or more
patients, and the probability that the sum of service times for these patients is
equal to or less than the queue dependent target νc. Furthermore, as

Prob

(
k∑
i=1

zi ≤ νc

)
=

∫ µcwcνc

0

uk−1

(k − 1)!
· e−udu = 1−

k−1∑
j=0

(µcwcνc)
j

j!
· e−µcwcνc

(5.10)
this allows us to write (5.9) on the form,

Lc(ξ) =

wc−1∑
i=0

fci(ξ) +

Mc∑
k=w

fck(ξ) ·

1−
k−1∑
j=0

(µcwcνc)
j

j!
· e−µcwcνc

 ∀c ∈ C

(5.11)

where Lc(ξ) is the fraction of patients waiting for staff type c ∈ C be-
low the target νc at time ξ. Let t define an hour of the week in the set
T = {1, 2, . . . , 168}, then for the remaining of this study, we refer to (5.11)
as the function Ltc(Z), presented in the master problem (5.2a)-(5.2d). The
time targets for staff type c ∈ C, νc, are presented in Appendix B.1, Table B.3.
Finally, we apply (5.11) based on the time-dependent distribution, f(ξ), using
Algorithm 8.

Algorithm 8 Algorithm for evaluating the system over a full week.

1: π0 ← (1, 0, 0, . . . , 0)T

2: L0 ←WAITINGTIME(π0)
3: while d > tol do . Run until tolerance is satisfied
4: i← 1
5: while i < 169 do
6: πi ← UNIFORMIZE(πi−1) . Uniformize at the end of the i’th hour
7: Li ←WAITINGTIME(πi) . Evaluate waiting times in network using

(5.11)
8: i← i+ 1
9: end while

10: d← RELATIV ETOL(L168, L0) . d = maxc∈C(L168,c − L0,c))/L0,c

11: π0 ← π168

12: L0 ← L168

13: end while
return L

Notice, as we are only concerned with the instance where t = 0, we sup-
press the dependency on t, and let πi(0) = πi. Further, for convenience in
Algorithm 8 we let Li define a vector of the elements Ltc(Z) for all c ∈ C with
time index t corresponding to the i’th segment.
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We initialize the algorithm by an empty system, setting π0 ← (1, 0, 0, . . . , 0)T .
We then discretize to form τweek/δ = 168 time-intervals – one for each hour of
the week. Next, we evaluate the system in each time interval by uniformizing
the process at the end of the hour, using the preceding hour as input. After all
hours have been evaluated, the maximum relative difference in waiting time
from the beginning, L0, to the end of the week, L168, is used as stopping crite-
ria. Notice, for a slightly faster algorithm, the evaluation of Li for the remaining
segments of the week can be postponed until d ≤ tol.

5.3.2 Optimization Heuristic
In Section 5.3.1 we have presented how to model ED patient flow using a
continuous-time Markov chain (CTMC) and derive the time-dependent behav-
ior of the system by recursively uniformize the model until convergence. This
approach yields a complex non-linear relation between assigning staff and the
resulting patient waiting time.

Now, consider again the master problem (5.2a)-(5.2d). Let bct define a
lower bound on staff of type c ∈ C in time period t ∈ T which is required to
respect (5.2b) and (5.2c). Then (5.2a)-(5.2d) may be re-written in the form
of an Integer Linear Programming (ILP) problem presented in (5.12a)-(5.12c)
– which we can solve in reasonable time by applying a standard commercial
solver software.

min.
∑
c∈C

∑
j∈J xcj (5.12a)

s.t. ∑
j∈J acjtxcj ≥ bct ∀t ∈ T , c ∈ C (5.12b)
xcj ∈ N0 ∀j ∈ J , c ∈ C (5.12c)

Still, we are faced with the problem of deriving bct in (5.12b), in order to re-
spect the master problem. Sinreich et al. 2012, [119] presented two recursive
heuristic algorithms, combining both simulation and mixed integer program-
ming. Their simulation model, which is developed by Sinreich & Marmor, 2005
[118], accounts for many different patient pathways upon which their heuris-
tics have been developed. Their overall approach is to minimize the length
of stay for patients by recursively identifying and removing bottlenecks in the
system. In our study, the representation of the ED is more simple, as we
consider only a single class of patients and queues consisting only of one
staff type. Our matheuristic approach reflects this representation by recur-
sively assigning staff to the queues of the network constrained by a fixed set
of working-patterns and the waiting time distributions evaluated by (5.11). We
elaborate more on this matheuristic in the following section.

Recursive Bound Adaptation

In this section we present a matheuristic search procedure, where working-
patterns and constraints on waiting time are incorporated in a recursive man-
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ner until a solution is derived. The heuristic has two stages: First a solution
is constructed by recursively solving (5.12a)-(5.12c) and evaluating the result-
ing solution through the CTMC. The progressing of this first step constructs
a feasible solution to x∗cj in a greedy manner. Next, in the second stage, the
meta-heuristic approach known as Tabu Search (TS) is used to search for an
improved solution by further minimizing

∑
c∈C

∑
j∈J xcj . We refer to this opti-

mization strategy as Recursive Bound Adaptation (RBA).

The first stage consists of two parts:

1. Optimization. Let bkct be a lower bound on required staff of type c ∈ C in
time period t ∈ T for iteration k. Initializing with b0ct = βct, solve the ILP
problem (5.12a)-(5.12c).

2. Evaluation. Starting from the solution, x∗cj , derive the resulting alloca-
tion of staff c ∈ C in time period t ∈ T , through zct =

∑
j∈J acjtx

∗
cj . Then,

evaluate the waiting times Lct(Z) ∀t ∈ T, c ∈ C by using the CTMC. Let
Uc ⊆ T be the set of time periods for staff type c ∈ C for which, (5.2b),
the waiting time constraint is violated. That is, Lct(Z) < τ . Then, if
Uc 6= ∅, make the adjustment: bk+1

ct = 1 +
∑
j∈J acjtx

∗
cj ∀t ∈ Uc, c ∈ C,

and bk+1
ct = bkct ∀t ∈ T \ Uc, c ∈ C. Then, go to step 1 to generate a

new allocation of staff, using bk+1
ct as the new lower bound for (5.12b).

Otherwise, if Uc = ∅, stop.

This recursive procedure ensures to not only derive a feasible solution to
the master problem, but additionally as b0ct = βct, and bkct is subsequently in-
creased by 1, only in the time periods where Lct(Z) < τ , ensures that x∗cj is
derived based on a tight lower bound. This solution should, therefore, serve
as a promising input for the second stage. Here, we use a classic TS heuris-
tic structure consisting of a neighborhood adjacent to the current solution,
N(xcj), the admissible subset of the neighborhood, Ñ(xcj), as well as a "tabu
list" L of length |L| = l.

Furthermore, we consider two variations of the neighborhood definition. In
the first, a probabilistic set of pattern-staff pairs is chosen from the total set
J × C. Here, a fraction, pf , of the pairs are already used in the solution xcj .
For each of the chosen pairs, a random number r ∈ {−1, 1} is generated, so
that the neighborhood to be tested is xcj + r. In the remaining of this paper,
we refer to this definition as add-remove.

In the second variation, a probabilistic set of pattern-staff pairs are chosen
from the set J × C again. However, all pairs must be used in the solution xcj .
Then, instead of adding additional staff to the solution, we consider that staff
can be moved to another pattern that may, or may not, be used by xcj already.
Thus, a move is defined by the change xcj−1 followed by xci+1, where j ∈ Zc
is the set of patterns that is used by staff type c ∈ C, and i 6= j ∈ Jc, where
Jc is the set of all patterns that can be used by staff type c ∈ C. To make
sure that

∑
c∈C

∑
j∈J xcj is minimized, moves are a fraction of size pf of all
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elements in the neighborhood, where the rest are pure removals, as in the first
neighborhood definition. Thus, we refer to this definition as move-remove.

Lastly, in order to evaluate the elements of the neighborhood, let y ∈ R+ be
a "large" number which defines the penalty of violating (5.2b), so that the total
penalty a solution generates is

∑
c∈C

∑
t∈Uc y(τ − Lct(Z)). The function from

which we evaluate each solution in the neighborhood is then
∑
j∈J

∑
c∈C xcj+∑

c∈C
∑
t∈Uc y(τ − Lct(Z)).

Our TS heuristic is presented in Appendix B.2. The overall structure of the
RBA heuristic is presented in Algorithm 9.

Algorithm 9 The overall structure of the Recursive Bound Adaptation heuris-
tic.

1: bct ← βct . Initialize
2: xcj ← SOLV E(bct)
3: Uc ← EV ALUATE(xcj)
4: while Uc 6= ∅ ∀c ∈ C do . Adjust bound bct until xcj is feasible cf. (5.2b)
5: bct ← 1 +

∑
j∈J acjtxcj ∀t ∈ Uc, c ∈ C

6: xcj ← SOLV E(bct)
7: Uc ← EV ALUATE(xcj)
8: end while
9: x∗cj ← xcj

10: while elapsedtime < maxtime do . Attempt to improve the solution by using
tabu search

11: x∗cj ← TABUSEARCH(x∗cj)
12: end while

return x∗cj

5.4 Results

In this section, we test and apply the continuous-time Markov Chain (CTMC),
as well as the Recursive Bound Adaptation (RBA) matheuristic presented in
Section 5.3. Firstly, we derive the truncation of the CTMC and evaluate the
model by comparing to a simulation of the associated system. This is pre-
sented in Section 5.4.1. In Section 5.4.2 we demonstrate the RBA matheuristic
by firstly tuning the parameter setting, and subsequently conducting optimiza-
tions experiments for a number of different input datasets. We then evaluate
our approach by comparing to a simulation, taking all patient classes into ac-
count.

5.4.1 Evaluation of the CTMC Model

Recall from Section 5.3.1 that our modeling approach assumes a finite upper
bound, Mi ∀i ∈ C, limiting the number of patients that can be contained in
the system at each queue in the network. To decide on a setting of these |C|
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M1 M2 M3 M4 M5 Tolerance Runtime (s)
27 62 22 10 4 5 · 10−2 1254.7
63 104 35 14 6 1 · 10−2 32716.8
63 104 35 15 6 5 · 10−3 34992.8

Table 5.1: Results from adjusting the limit Mi ∀i ∈ C. Shows the resulting parameter
setting, probability tolerance used in each test, and the runtime associated evaluating
the system.

parameters, we conduct a number of tests, where we gradually increase each
parameter in sequence until the maximum probability of attaining the bound
respects a predetermined tolerance. In increasing Mi, we choose a sequence
going downstream the network, such that the parameter for all potential up-
stream queues are determined. Furthermore, we realize that as the marginal
state probabilities depend on the load of the system, so does the appropriate
setting of Mi. For this reason, we conduct our tests using the arrival rate λ
and the lower bound βtc, cf. the optimization problem (5.2a)-(5.2d), yielding
the largest load that will ever be encountered by the system. For the remaining
of this study, we choose βtc such that βtc =

⌈
λtpic

µc(1−pcc)
⌉
∀t ∈ T, c ∈ C, where

pic defines the probability of a patient going to queue c from the predeces-
sor i. Notice that this definition ensures the minimum number of servers that
prevents an over-utilized system for each segment of the time-line separately.

We conduct our tests using three different tolerance levels. The resulting
setting of each Mi ∀i ∈ C and the runtimes associated with evaluating the
system, is presented in Table 5.1. Here we notice that both the required state
space, as well as the associated runtime, increase excessively, despite the
fairly limited size of the state space. This would indicate that the system can
become computationally intractable if the arrival rate increases, or a small
tolerance is required to attain sufficient accuracy.

Now, in our subsequent experiments we demonstrate that using the setting
M1 = 27, M2 = 62, M3 = 22, M4 = 10 and M5 = 4 is adequate. We
conduct these experiments by comparing the marginal state distributions, and
waiting times as they were defined in (5.11) to a discrete-event simulation of
the CTMC behavior. We conduct these experiments using two different staff
profiles for which we fix the number of servers over the entire week in each
queue. Furthermore, we assess the model sensitivity to the assumption that
service times are exponentially distributed by comparing to simulations where
service times follow a log-normal distribution.

Our simulation model was implemented using the modeling language Mat-
lab, and all experiments were conducted for a simulation time of 416 weeks (8
years) including 8 weeks of burn-in. An overview of all simulation experiments
are presented in Table 5.2, showing the service time distribution and the staff
profile used in each run.
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Service Time Servers
# Distribution Standard Dev. w1 w2 w3 w4 w5

1 Exponential σc = 1/µc 1 3 3 2 1
2 Log-normal σc = 1/µc 1 3 3 2 1
3 Log-normal σc = 2/µc 1 3 3 2 1
4 Exponential σc = 1/µc 2 4 3 2 2
5 Log-normal σc = 1/µc 2 4 3 2 2
6 Log-normal σc = 2/µc 2 4 3 2 2

Table 5.2: Overview of the simulation experiments used to assess the CTMC model
adequacy. Shows the service time distribution and the number of servers used in each
run.

The results were evaluated by graphically comparing the two measures.
We assessed the marginal state distributions on the expected state, accord-
ing to fci(ξ), by sampling the system state at the beginning of each hour in
the simulation period. Further, the waiting time service level was evaluated by
sampling waiting times on arrival to the respective queues, and then deriving
the fraction corresponding to Lc(ξ) from the resulting distributions. Examples
of the experiments from Table 5.2 are presented in Figure 5.5, showing the
waiting time service level in experiment 1, 2 and 3 for queue 1 (triage) and
queue 5 (orthopedic surgeons), respectively.

For the experiments where simulation is compared directly to the CTMC
(1 and 4, cf. Table 5.2), we find that the difference in expected state, as well
as waiting time service level, is fairly negligible in all cases. Moreover, when
we adjust the service time distribution to log-normal, the change is only dis-
tinct in the cases where standard deviation is twice the expected service time.
Furthermore, Figure 5.5 demonstrates that the system is dependent on the
service time distribution, but that the sensitivity depends greatly on the queue
in focus.

5.4.2 Evaluation of the RBA Heuristic

In order to demonstrate our heuristic search procedure we have defined a
range of datasets consisting of the interaction between the three arrival pat-
terns, Λ = {λ(ξ) · 0.92, λ(ξ) · 0.9, λ(ξ)} (cf. Section 5.2.1), along with three
waiting time service levels, τ , T = {0.7, 0.8, 0.9}, cf. (5.2b). Together, these
make up nine different datasets, presented in Table 5.3.

To determine the appropriate parameter setting for our subsequent opti-
mization experiments, we apply the RBA heuristic to the following datasets:
Low70, Medium80, High90 which essentially represent three different levels of
load to the system.
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Figure 5.5: The waiting time service level as function of week-hour. Compares the
CTMC model and simulation, on experiment 1, 2 and 3 (cf. Table 5.2), and queue 1
and 5, respectively.

Reference Low70 Medium70 High70 Low80 Medium80 High80 Low90 Medium90 High90
Λ λ(ξ) · 0.92 λ(ξ) · 0.9 λ(ξ) λ(ξ) · 0.92 λ(ξ) · 0.9 λ(ξ) λ(ξ) · 0.92 λ(ξ) · 0.9 λ(ξ)
T 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9
Used in Tuning Testing Testing Testing Tuning Testing Testing Testing Tuning

Table 5.3: Datasets used in parameter tuning and testing of our two heuristic ap-
proaches.

Let z∗d define the best known solution for dataset d ∈ D, where D =
{Low70, Medium80, High80}. Then, the performance of each specific param-
eter setting is evaluated for dataset d, by using the average percentage gap,
Ed, and variance, σ2

d, presented in (5.13a)-(5.13b),

Ed =
1

N

N∑
i=1

zi − z∗d
z∗d

· 100% σ2
d =

1

N

N∑
i=1

(xi − Ed)2 (5.13a, 5.13b)

where zi and xi = (zi−z∗d)/z∗d are the resulting fitness and percentage gap
of replication i ∈ {1, 2, 3}, respectively. Further, to determine the overall per-
formance of each of the tested parameter settings we let Etot define the overall
average percentage gap, and σ the pooled standard deviation, presented in
(5.14a)-(5.14b).
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Etot =
1

nD

nD∑
d=1

Ed
σ =

√∑nD
d=1(N − 1)σ2

d

nD(N − 1)

(5.14a, 5.14b)

We conducted a full interaction test adjusting the penalty y on the levels
40 and 10000, and the fraction pf on the levels 0.25 and 0.75, respectively.
The remaining parameters were fixed based on preliminary testing. The ex-
periments were again conducted on the two variations of the heuristic. That
is, the add-remove and move-remove. Each setting was replicated twice for
each of the three datasets with a time-limit of 10 hours.

Running these experiments, none of the settings were able to improve the
solution subsequent to the first recursive stage of the heuristic. For this rea-
son, we have chosen an arbitrary parameter setting, presented in Appendix
B.1, for our later optimization experiments.

Optimization Experiments

The optimization experiments were conducted on the remaining six datasets:
Medium70, High70, Low80, High80, Low90 and Medium90. Each run of the RBA
heuristic was replicated three times using af fixed setting of 24 hours of run-
time in the second stage. The ILP problem in (5.12a)-(5.12c) was solved by
using the IBM ILOG CPLEX Optimizer.

The results for each dataset and variation of the heuristic are presented
in Table 5.4, showing the total amount of staff that is initially derived by the
first recursive stage, and subsequently by the second TS stage. The latter
is presented in three columns which contains the results obtained in each
replication of the heuristic, whereas the first stage is presented in a single
column due to its deterministic progression.

Now, our experiments show that the TS variations produce similar and
quite consistent results. Regarding the difference between the different datasets,
the amount of allocated staff is clearly sensitive to the arrival rate and the spec-
ified service level targets. The ILP problem in (5.12a)-(5.12c) was solved in
less than 10 seconds for all cases, and with 2-6 iterations in the first stage.
Moreover, the input for the second TS stage turns out to improve in only a
single case, indicating that the first stage returns solutions that are close or
exact optimums, or since the optimal solution is unknown it may also be the
case that our second TS stage implementation is inefficient.

Solution Evaluation

Now recall from Section 5.2 that the ED is in fact subject to four different pa-
tient classes determining the order in which patients are prioritized. To assess
whether the solutions derived in the preceding section has any implications
for a system incorporating all four classes, we applied each solution to our
discrete-event simulation model from Section 5.4.1 by distinguishing between
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First Stage Second Stage
TS add-remove TS move-remove

Dataset Allocated Staff Iterations Runtime (s) 1 2 3 1 2 3
Medium70 33 2 3017 33 33 33 33 33 33
High70 35 3 4496 35 35 35 35 35 35
Low80 33 2 2839 33 33 33 32 33 33
High80 39 3 4571 39 39 39 39 39 39
Low90 40 5 8079 40 40 40 40 40 40

Medium90 42 6 9826 42 42 42 42 42 42

Table 5.4: Results from testing the RBA heuristic on the remaining datasets. Shows
both the solution that is derived in the first stage of the heuristic, and the subsequent
(replicated) TS solution.

patient classes, as well as including the possibility of changing priority subse-
quent to the second queue.

Once again, our simulation experiments were conducted using a simula-
tion time of 416 weeks including 8 weeks of burn-in. In order to depict the
general implications for each respective patient class, we have derived the
waiting time service level as an average, weighted according to the number of
patients arriving at each queue over time.

The results are presented in Table 5.5 showing each patient class and
dataset, respectively. As expected, the service level is increasing in accor-
dance with both the priority of each class and the target of each dataset. Fur-
thermore, we find that the service level is always attained above the target for
patients of level 3 and 4, but slightly violated in a single case on level 2 and
half of the cases on level 1. In this regard, note that for some ED cases is
the service level dependent on the triage level, often yielding a less ambitious
waiting time target for patients of lower priority.

Datasets
Triage Level 1 Level 2 Level 3 Level 4

Medium70 0.801 0.839 0.907 0.970
High70 0.814 0.861 0.917 0.973
Low80 0.787 0.832 0.900 0.967
High80 0.880 0.916 0.968 0.986
Low90 0.876 0.906 0.984 0.994

Medium90 0.855 0.889 0.959 0.984

Table 5.5: The simulated waiting time service level for each patient class. Presented
as an average, weighted according to the amount of patients arriving at each queue
over time.

5.4.3 Discussion

Through Section 5.3 and 5.4, we have presented and tested an approach for
modeling ED patient flow based on a CTMC, which accounts for the time-
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dependency in the system resulting from a realistic time-varying arrival rate
of patients, and presence of staff. Even though we capture many of the es-
sential elements of an ED, is our model based on a few simplifications such
as assuming that service times are exponentially distributed. We have further
noted that our flow system does not incorporate the extensive structure as has
been considered by related simulation studies [118, 82]. However, simulation
experiments have indicated that our CTMC is robust to the service time dis-
tribution, and derives an accurate state distribution faster than the associated
simulations. We have further found that our approach, considering only a sin-
gle merged class of patients, is adequate in evaluating the performance of the
associated multi-class system.

For the optimization of the system, we have been investigating a matheuris-
tic approach on a number of different input datasets. The approach consists of
firstly a recursive stage, where the lower bound on staff is greedily increased
until the constraint on waiting time is respected. As allocating staff to one
period affects the service level in all other time periods, optimality cannot be
guaranteed by using this procedure. A TS heuristic is, therefore, added to
search for any "excess" staff.

The advantage of this procedure is the greedy adaptation of a lower bound,
initialized at its lowest possible level, and therefore inclined to produce a promis-
ing solution. On the other hand, the approach faces the problem of repeatedly
evaluating both the CTMC and ILP problem, which can be computationally ex-
pensive for more complex cases. For our case the problem of assigning staff
to a limited set of working-patterns can be solved in below 10 seconds, and
for this reason the RBA heuristic is able to derive a feasible solution within a
reasonable amount of time from the first stage of the heuristic alone.

Lastly, an important question remains as to how far the obtained solutions
are from the true optimum. A time-dependent queueing network makes up a
range of dependencies, such as the load-dependency between queues in the
network, and the effect that one time period has on all other time periods due
to the weekly cyclic behavior. There is to our knowledge no standard method
of deriving an optimality gap in a system that comprises these relations that
does not involve an exhaustive evaluation of all permutations for a fixed sum∑
c∈C

∑
j∈J xcj , which can be quite computationally expensive, as we have

demonstrated earlier. However, recall that results from the second stage in
Table 5.4 could indicate that our solutions are near-optimal, since there is only
improvement in a single case.

5.5 Conclusion & Future Work

In this study, we have aimed at providing a continuous-time Markov chain
(CTMC) approach for the modeling of time-varying behavior of patient waiting
time, and the interaction of this approach with an Integer Linear Programming
(ILP) model. We have tested a matheuristic approach to the problem of allo-
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cating staff to an Emergency Department (ED) which we refer to as Recursive
Bound Adaptation (RBA).

In the literature, we have found that a range of different methods is used
in patient flow modeling, but only a few of these studies considered optimiz-
ing the system. Even fewer studies have explored modeling and optimizing the
ED based on a time-dependent queueing network. In our study, we have mod-
eled time-dependency by discretization of the patient arrival rate and defining
a step function of consecutive uniformizations of the CTMC. By conducting nu-
merous simulation experiments, we have found that this approach is adequate
for modeling the system occupancy, as well as waiting time, and is fairly robust
to adjustments in the service time distribution.

By applying the CTMC to our matheuristic approach, we provide solutions
that satisfy targets on patient waiting time, when we reduce the system to that
of only a single class of patients. Further simulation experiments have shown
show that these solutions perform well in an associated multi-class system,
with only slight violations for the least prioritized patients.

Our model approach has been based on the essential elements of acute
patient flow, which might be insufficient for other hospital cases. However,
with this study, we have provided a method that adequately evaluates patient
waiting times, which do not rely on sampling, and is therefore suitable in the
context of optimization. Moreover, we deem that the approach presented in
this study, may serve as a basis for further exploration within the area of ED
optimization. Finally, the reader should notice that our matheuristic is not only
limited to the specific system nor ILP that has been tested in this study, but
can be used for other similar cases.

5.5.1 Future Work

The approach that was presented in this study provides a range of different as-
pects to consider in future work. The recursive first stage of the RBA heuristic
could be diversified by the use of a restricted candidate list, as in the well-
known Greedy Randomized Adaptive Search Procedure (GRASP). Further-
more, over-allocation of staff may be avoided by adjusting time periods of the
bound sequentially.

Our study did not include any lower bounds to the master problem pre-
sented in (5.2a)-(5.2d) which is otherwise necessary to conduct a proper as-
sessment of the solutions obtained by our matheuristic. For this reason, we
deem that further work into exact solutions of the relaxed master problem
should be considered.

Lastly, the CTMC have provided an analytical approach for evaluating time-
dependent patient waiting time in an ED. Further patient data should be ob-
tained to evaluate this modeling approach — for instance on patient waiting
time and the service time distributions of each staff type. Moreover, analy-
sis into larger flow systems should be studied to approach ED cases of more
complex structure.
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Chapter 6

Simulation-based Rolling Horizon
Scheduling for Operating Theatres1

Anders Reenberg Andersen, Thomas Jacob Riis Stidsen
and Line Blander Reinhardt

Abstract Daily scheduling of surgical operations is a complicated and re-
current problem in the literature on health care optimization. In this study,
we present an often overlooked approach to this problem that incorporates
a rolling and overlapping planning horizon. The basis of our modeling ap-
proach is a Markov decision process, where patients are scheduled to a date
and room on a daily basis. By assuming that both state and action space is
only partially observable, we apply our model in an on-line scheme known as
rollout, where actions are constructed using a heuristic search procedure.

Our objective in this study is to test the potential of using this modeling
approach on the resulting hospital costs, and number of patients that are out-
sourced to avoid violating constraints on capacity.

Using data from a Danish hospital, we find a distinct improvement in perfor-
mance when compared to a policy that resembles a manual planner. Further
analysis shows that substantial improvements can be attained by employing
other simple policies, and a myopic heuristic search procedure.

6.1 Introduction

The hospital operating theatres are among the key elements of running a hos-
pital involving a range of different clinical specialization from organ to orthope-
dic surgery. In recent years, the use of resources in this part of the hospital
has received a substantial amount of attention in the Danish health care sec-
tor. In March 2015, the National Audit Office of Denmark [96] published a
report on the use of staff resources based on four departments in orthopedic
surgery with the conclusion that staff working hours are not ensured to be fully
utilized for a majority of cases. Other governmental reports suggest a lack in
resource utilization for the operating theatres as well. In September 2015, the
Danish Ministry of Health [97] published a report on the overall status of the
public health care sector, showing that the waiting time for surgery has been

1Submitted to Annals of Operations Research
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increasing for 25% of the selected departments in the period of 2011 to 2014.

On top of the above, running hospital operating theatres is a quite compli-
cated task. To ensure compliance with targets on patient waiting time, along
with efficient use of both staff and equipment resources, decisions on multiple
organizational levels have to be considered [64, 87]. These range from long
horizon planning problems, such as deciding on the overall required capacity,
to day-to-day scheduling (and re-scheduling) of patients for operation. Among
the important elements in the scheduling of operating theatres, is the definition
of a medium-term Master Surgical Schedule (MSS) defining the time-windows
and rooms allocated to each of the clinical specializations. In the day-to-day
scheduling of procedures to a specific time and room, the hospital planners
are constrained by these "windows" defined in the MSS. Furthermore, we per-
formed interviews and found that planners have to consider equipment con-
straints, rosters for the surgeons, overtime-costs, targets on both waiting time
and utilization of rooms, and so on. Hence, the problem of scheduling patients
for operation yields a time-consuming and complicated task for the hospital
planners to overcome.

Our objective in this study is to provide hospital planners with a decision
tool capable of optimizing the scheduling of patients for operation, respecting
the constraints that are relevant to the planners. In our case, we consider that
patients are scheduled on a day-to-day basis and require that a rolling and
overlapping planning horizon is taken into account. Thus, the decisions that
are made on each day have to be anticipative.

Our methodological approach will be a mathematical model, where we
minimize the hospital costs resulting from a sequence of decisions by em-
ploying a Markov Decision Process (MDP) approach. The MDP is applied in
a simulation-based rollout framework resulting in a heuristic policy. Our aim is
to assess this modeling approach in a setup where scheduling is conducted
on a daily basis.

In Section 6.2 we present the specific problem of this study. Next, in Sec-
tion 6.3 we present our modeling and solution approach, divided into two parts.
First, the model structure of the MDP is presented, and subsequently how we
have modeled costs and the arrival of patients to the hospital. In Section 6.4
we apply our approach to data from a Danish hospital-case and assess the
MDP performance by comparing to other scheduling methods by employing
simulation. Finally, we present our conclusion and suggestions for future work
in Section 6.5.

6.1.1 Literature Review

On a more general level the problem of operating theatre (OT) planning is
a recurrent topic that has been covered by a substantial amount of papers.
There exists several surveys on the subject of which some of the recent have
been conducted by Cardoen et al., 2010 [32], Guerriero & Guido, 2011 [64],
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May et al., 2011 [87], and lately Samudra et al., 2016 [109] where 137 journal
papers on the subject of OT planning were found in the period of 2004 to 2014.

With respect to the organizational decision levels, Guerriero & Guido, 2011
[64] find that the studies can be classified into three categories: Strategic
(long-term decisions), tactical (medium-term decisions), and operational (short-
term decisions). May et al., 2011 [87] add further three decision levels de-
noted: Very long-term, very short-term, and contemporaneous. The deci-
sions relevant to the very long-term are related to the layout of physical re-
sources [130], such as the construction of operating rooms. Long-term de-
cisions are related to patient flow patterns and assigning overall capacity to
surgical groups [25, 126]. Medium-term decisions involve defining the Master
Surgical Schedule (MSS), where the clinical specializations are assigned to
specific rooms and time-windows [129]. On the short-term, the patient proce-
dures are assigned to a specific time and room on a day-to-day basis, and on
the very short-term and contemporaneous level, last-minute scheduling and
re-scheduling is conducted [52, 31, 49, 92, 79, 20, 51, 106, 50, 121].

By focusing on the short-term operational level of OT planning, we have
found a range of different approaches and problem structures. Studies can
mainly be categorized into considering completely deterministic "off-line" prob-
lems [31, 52, 128, 141], to incorporating uncertainty features such as random
procedure time [79, 49, 20] and disruptions caused by emergency demand
[79, 51]. Surprisingly, we only encountered a single study on the allocation of
patients which accounted for the uncertainty in future elective arrivals [106].
In total, Samudra et al., 2016 [109] shows that incorporating stochasticity con-
stitutes more than half of the papers on OT planning.

The specific modeling approaches of short-term OT planning range from
mathematical programming and heuristics [31, 52, 49, 20, 51, 128, 141] to
Discrete-event and Monte Carlo simulation [50, 121], and further to a mix-
ture of these [79]. For the purely deterministic cases Xiang et al., 2015 [141]
and Van Huele & Vanhoucke, 2014 [128] combines the surgical scheduling
problem with a staff rostering problem. Xiang et al., 2015 [141] develops a
modified Ant Colony Optimization algorithm and tests the model by using both
data from the literature and real data from a Chinese hospital. Van Huele &
Vanhoucke, 2014 [128] approach the problem by using Mixed Integer Linear
Programming (MILP) based on the most frequent objectives and constraints
from the literature. In Fei et al., 2010 [52] and Cardoen et al., 2009 [31] the
focus is more on the scheduling and sequencing of the surgical procedures.
Fei et al., 2010 [52] use an approach comprising two phases where patients
are firstly assigned a date by using a column-generation-based heuristic, and
subsequently sequenced by using a hybrid genetic algorithm. Cardoen et al.,
2009 [31] focus on the sequencing of procedures and develop MILP models
which lead to either exact or heuristic solutions.

For the studies that incorporate uncertainty, Batun et al., 2011 [20] and
Lamiri et al., 2008 [79] use Stochastic Programming (SP) to minimize the total
cost of scheduling patients over a planning horizon. Specifically, Batun et al.,
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2011 [20] develops a two-stage stochastic MILP and investigates the impact
of parallel surgery processing and pooling operating rooms. Related hereto,
Lamiri et al., 2008 [79] develops an SP model, and moreover a method com-
bining Monte Carlo simulation and a MIP model to schedule elective patients
within a specific planning horizon, and emergency patients on the same day
of arrival.

Methods based on MILP modeling can in some cases become too ineffi-
cient as found by Erdem et al., 2012 [51], where a MILP model and Genetic
Algorithm (GA) are developed to reschedule elective patients upon the arrival
of emergency patients. For the MILP model, Erdem et al., 2012 [51] finds
that a commercial solver is sufficient for only a limited "light" case, and there-
fore develops a GA to find solutions close to optimality for the more complex
cases. In addition, Denton et al., 2007 [49] focus on heuristic methods for
deriving the sequencing of patients in operating rooms, and find that a simple
sequencing rule can be used to optimize both waiting time and overtime-costs.

As the above has shown, there is generally a large emphasis on random
duration of procedures and the impact from emergency arrivals, but limited
focus on overlapping planning horizons from unknown future elective arrivals.
Range et al., 2016 [106] schedule elective patients based on a MILP model
and solve the problem by using a column generation approach. Future arrivals
are taken into account by measuring the expected number of future patients
who cannot be scheduled for surgery. Practically, this feature is applied by a
piecewise linearized function in the MILP formulation. Additionally, they as-
sume that future patients are scheduled evenly over the potential days for
surgery.

In this study, we consider the problem of finding a cost-optimal allocation
of current patients as a sequential decision problem with finite overlapping
planning horizons for each future decision epoch, and with infinite decisions
over the entire model. Instead of assuming how future patients are generally
scheduled, we estimate the long-term expected costs as a function of the ac-
tion taken in the current decision epoch, and a range of heuristic scheduling
policies for future patients. More specifically, we base our model on a Markov
decision process (MDP) approach that, as to our knowledge, has not been
considered in other studies within OT planning. Even though, MDP standard
theory provides a number of exact "off-line" methods [104], we consider a
problem instance for which the state and action space is only partially observ-
able. Therefore, we derive solutions in an "on-line" manner, using a simulation-
based approach known as rollout [37, 38, 21].

6.2 Problem Description

We consider a hospital case for which a planner schedules surgical operations
on a day-to-day basis. The hospital may treat both elective and emergency
patients for a range of different clinical specializations, but operating rooms
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have been reserved for both patient types and for each respective area of
specialization in advance.

We assume that all patients have an upper limit on waiting time from the
moment a surgical operation is requested. Thus, due to uncertainty in pro-
cedure duration and inter-arrival times, capacity may in some instances be
insufficient so that patients have to be outsourced — either to an internal or
external location. In other studies, outsourced emergency patients may cause
an elective procedure to be canceled and therefore re-scheduled for operation
on a new date [51]. In our case, we assume that emergency resources are
rarely insufficient so that we may limit our scope to the scheduling of elective
patients only. We further focus on a single clinical specialization, and assume
that resources are negligibly shared with other specializations.

Requests for surgical operation occur with continuous random intervals,
but we assume that the hospital planner is able to save all requests and not
allocate these until the end of each day. Requests from elective patients only
occur on regular workdays so the hospital planner has to make a decision five
times a week of fixed interval.

In finding an optimal schedule there are multiple objectives to consider.
Patient treatment is part of a system where both quantitative and qualitative
factors play a major role in running a hospital. Long waiting times and over-
crowding of wards cause a decrease in both subjective and objective care
quality [90, 66]. In addition, insufficient operating room capacity leads to ex-
pensive overtime-costs that are further added to the setup costs of preparing
for an operation. Outsourcing is one way to avoid these problems, but yields a
logistical cost, and the patient may not be treated by the preferred resource.

Our objective in this study is to test a new approach for a cost-optimized
scheduling of surgical operations to specific rooms and days. We limit our
scope to the expenditures related to overtime-costs and setup of the operat-
ing rooms. Furthermore, we assume an upper limit on patient waiting time, but
otherwise the resulting waiting time of a schedule is not accounted for. We fur-
ther consider a number of constraints related to surgeon, room and equipment
availability. Lastly, we assume that outsourcing is only allowed when aiming
to respect the limit on waiting time, and all other constraints. These specifica-
tions will be elaborated in the following Section 6.2.1.

For the remaining of this paper we will refer to scheduled surgical opera-
tions as procedures. All recently occurred and unscheduled procedures are
referred to as requests. Days for which the number of requests is positive,
such that the hospital planner must decide on an allocation of these, will be
referred to as allocation epochs, and are not to be confused with the decision
epochs [104].
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6.2.1 Constraints & Dynamics of the Problem

As mentioned above, our aim is to derive a cost-optimized schedule for all
requests that have arrived during the day, repeating this process for all future
days. When a decision is made, the hospital planner considers a discrete
planning horizon of total length, H ∈ N, such that from the end of the current
allocation epoch, t ∈ Z, all days that are considered in the scheduling problem
are t+ 1, t+ 2, . . . , t+H − 1, t+H.

Let X ∈ N0 be a random variable defining the total amount of requests
received on an arbitrary day. Then for all days where X > 0 a scheduling
problem has to be solved with a planning horizon that has been "rolled" ac-
cordingly. Let δ ∈ Z>t define the subsequent allocation epoch to t. Further, let
Ωi, where |Ωi| = H, define the specific set of days contained in the planning
horizon of an allocation epoch, i. Hence, if δ < t + H, then Ωt ∩ Ωδ 6= ∅, as
illustrated in Figure 6.1.

Let R define a finite set of operating rooms available to the hospital, then
the planner has to make a decision involving both the finite and discrete
planning horizon, and the operating room resources in R. The feasibility in
scheduling a procedure for a specific room, r ∈ R, depends on a predefined
surgical schedule as well as other constraints which are presented in the fol-
lowing Section 6.2.1. Furthermore, all allocations may induce a cost from
setting up the room or when procedures stretch into overtime. Our assump-
tions related to these costs will be presented in Section 6.2.1.

t δ t+H δ +H

0 1 2 3 4 5

Figure 6.1: Example of a rolling and overlapping planning horizon of H = 3 days.
Requests are illustrated by black dots along the time-line. As a result, planning has
to be conducted at t = 0 and δ = 2, leading to Ωt = {1, 2, 3}, Ωδ = {3, 4, 5} and
Ωt ∩ Ωδ = {3}.

Constraints

Constraints relevant to the scheduling problem range from the availability of
predefined capacity to less tangible factors such as preferences of the staff. In
the below, we present each of these constraints separately.

1. Number of rooms. The hospital planner may decide to allocate re-
quests to a number of rooms provided that an upper limit on open rooms
is not violated. Let ykl ∈ {0, 1} be 1 if room k ∈ R is being used on day
l ∈ T , where T = {t + 1, · · · , t + H} is the set of workdays within the
current planning horizon; and otherwise 0. Further, let cl ∈ N define the
maximum number of rooms that is allowed to be opened on day l ∈ T .
We assume that the structure of cl is weekly cyclical such that cl = cl+5.
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Then, an allocation to a room k ∈ R on day l ∈ T is only allowed if
subsequently

∑
k∈R ykl ≤ cl.

2. Equipment. Any procedure cannot be allocated to any room, even if cl
is not violated. To account for potential equipment requirements, as well
as other preferences that may exist, each procedure type i ∈ P , where
P is the set of all procedures that may occur, is constrained to a subset,
Ui, of the available rooms, such that Ui ⊆ R.

3. Physicians. When a request is received by the hospital planner, a spe-
cific physician has already been assigned to conduct the procedure. We
assume that physician-rosters are not flexible so requests can only be
allocated to days for which the physicians are expected to be available
at the hospital. Let J define the set of scenarios (or patterns) of days
for which physicians will be available. As T is always a finite set, so is
J . We assume that a request is randomly assigned to a specific pattern
j ∈ J with known probability.

4. Opening hours. Lastly, all operating rooms have a pre-specified time-
interval for which they are expected to be open. Let Yi ∈ R>0 be a
random variable with known distribution that defines the duration of a
procedure type, i ∈ P . Furthermore, let rikl ∈ N0 define the number of
procedure i ∈ P that are allocated to room k ∈ R on day l ∈ T . Then,
an allocation to a room k ∈ R on day l ∈ T is only allowed if there exists
at least one sequence such that all procedures are expected to start
within the opening hours. That is,

∑
i∈P\α(rikl · E[Yi]) + (

∑
i∈P (rikl) −

1) · m < wk, where m ∈ R>0 is a fixed buffer time, wk ∈ R>0 is the
time-capacity of room k ∈ R, and α is the allocated procedure with the
longest expected duration for that room and day.

We assume that all allocations are final such that each respective pro-
cedure is locked in both room and date. Further, as neither of the above
constraints are allowed to be violated, and that the occurrence of requests is
independent of the current schedule, we allow for requests to be outsourced to
yield a feasible solution with a maximum number of allocations. In this regard,
we assume that allocating all current and future requests is always preferred
over outsourcing any of them.

Costs

In combining a suitable schedule, the hospital planner has to consider that
there might be a number of implications related to each respective solution.
We found from interviews as well as from other studies [121] that some hos-
pitals assess their performance on the utilization of time-capacity for each op-
erating room. Such measure is convenient with respect to day-to-day moni-
toring and obtaining sufficient data, but does not provide an immediate rela-
tion between setting up new rooms and the risk of stretching procedures into
overtime. For this reason, we evaluate the implications related to a specific
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schedule on a sum of some different "penalties". We refer to these as costs
as we mainly relate them to direct costs, such as overtime, cleaning, setting up
equipment, and so forth. We have categorized these costs into two respective
groups, presented below:

1. Setup. To account for the logistical costs related to equipment and staff
preparation we assume that by opening a room the hospital receives a
fixed setup cost. That is, the setup cost is induced only when the first
procedures are allocated to the room, and does otherwise not depend
on the utilization of time-capacity.

2. Overtime. As mentioned earlier, all procedures are subject to a random
duration, and thus is in risk of stretching into overtime. If this is the case,
we assume the hospital always pays a supplement to the staff indepen-
dent of the type of procedure. In addition, some amount of discontent
may arise among the staff leading to more errors and a decrease in the
treatment quality. As a result we notice that the total penalty related
to overtime could be a non-linear increasing function of the duration of
overtime.

6.3 Modeling & Solution Approach

In this section, we present the approach we use to minimize the long-term
expected costs of scheduling requests for operation. Our modeling approach
is based on a Markov Decision Process (MDP) framework, for which, due to
the problem size, we propose a simulation-based "on-line" solution method.

In Section 6.3.1 we present the specific structure of our modeling approach
along with an exact solution method from standard theory. Next, in Section
6.3.2 we present our solution approach which is based on a simulation-based
rollout method resulting in a heuristic policy.

6.3.1 A Markov Decision Process

Now, recall that we consider a finite set of procedures, P = {ProcedureA,
ProcedureB, · · · }. Any procedure, i ∈ P , are to be conducted within a fixed
planning horizon, H ∈ N, such that the set of future workdays in the planning
horizon are in the set T = {t+ 1, t+ 2, · · · , t+H}, where t ∈ Z is the day from
which the planning horizon is observed. Further, letR = {Room A,Room B, · · · }
define the total set of available operating rooms, and rikl ∈ N0 define the num-
ber of procedure i ∈ P that have been scheduled on future day l ∈ T in room
k ∈ R.

In addition, we consider a finite set of all patterns for which physicians can
be available within the planning horizon, J = {Pattern A, Pattern B, · · · }.
Together with P , these availability-patterns make up all of the attributes of any
request that may occur. In other words, for any current day let pij ∈ N0 specify
the number of requests of type i ∈ P that are constrained by pattern j ∈ J .
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Lastly, let W = {Monday, Tuesday, · · · , F riday} define the set of weekdays
for which procedures can be allocated, and d ∈ W , then based on the above
definitions, we introduce an MDP with state definition,

s = [pij , rikl, d] (6.1)

divided into three parts: (1) The number and attributes of all current re-
quests, pij , (2) the amount of each procedure scheduled to future day and
room, rikl, and (3) the current weekday, d. Notice that d can be redundant
depending on the structure of the problem from one case to another. If the
constraints on room-capacity, cl, and availability-patterns, J , can be general-
ized such that they are independent on the type of weekday in l ∈ T , then the
state definition can be reduced to s = [pij , rikl].

Furthermore, the reader should notice that the value of pij is generated by
a purely stochastic process, whereas the transition into a state with any value
of rikl will always be deterministic in terms of the decision by the planner.
Now, let λi define the stationary occurrence rate of requests of type i ∈ P ,
and Xij ∈ N0 be a random variable defining the occurrence of a request i ∈ P
constrained by pattern j ∈ J . Then the requests, Xij , are generated according
to a multivariate Poisson process with parameters λij = λiξij ∀i, j ∈ P, J .
Here, ξij ∈ R0<ξij≤1 is the probability that a request of type i ∈ P is con-
strained to pattern j ∈ J ; hence

∑
j∈J ξij = 1 ∀i ∈ P .

In the following, we present how this modeling approach relates to the
action space and transitions of the MDP.

Actions & Transitions

From one day to the next, the MDP changes from a current state s ∈ S to
a new state s∗ ∈ S. This transition occurs consistently and with fixed time-
interval. In addition, for each transition an action has to be chosen from the
action space, As, available at each decision epoch — that is, at the end of
every day, where the planner must decide on an allocation of the requests.
Let π define a policy such that for any s ∈ S, π(s) = a, where a ∈ As. Thus
for any arbitrary policy π ∈ Π, where Π is the set of all policies, the MDP will
evolve as a Markov chain in discrete time.

Let a be a vector of the elements aijkl ∈ N0, defining the number of re-
quests of type i ∈ P constrained by pattern j ∈ J that are allocated to room
k ∈ R on future day l ∈ T . To account for the outsourcing of requests we fur-
ther extend a with the elements qij ∈ N0, defining the number of type i ∈ P and
pattern j ∈ J that are outsourced. Thus, a has a total of |P×J×R×T |+|P×J |
elements. The size of As is, however, dependent on the values of rikl in the
state s, which is limited by the constraints presented in Section 6.2.1. As
contains any feasible value of a; hence 1 ≤ |As| ≤ (|R× T |)

∑
i,j∈P,J pij .

Notice that
∑
k,l∈R,T aijkl + qij = pij ∀i, j ∈ P, J , and as the planning

horizon is rolling rsikl +
∑
j∈J aijkl = rs

∗

ik,l−1 ∀i, k, l ∈ P,R, T \ {t+ 1}, where
rsikl and rs

∗

ikl are the schedules for the current state s ∈ S and subsequent state
s∗ ∈ S, respectively. Moreover, notice that for l = t + H all rooms are freed
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such that rikl = 0 ∀i, k ∈ P,R. However, as procedures are constrained
to specific rooms, the only feasible solution may for some cases be to out-
source all current requests. If for some decision epoch the number of requests∑
i,j∈P,J pij = 0, then the only action is to let

∑
i,j,k,l∈P,J,R,T aijkl + qij = 0, in

which case the MDP merely transitions into the next state resulting in rsikl =
rs
∗

ik,l−1 ∀i, k, l ∈ P,R, T \ {t+ 1}.
Lastly, the transition probability, pss

∗

a , of changing from s ∈ S to a subse-
quent s∗ ∈ S by choosing a ∈ As, is merely pss

∗

a = Prob{X11 = p11, X12 =
p12, · · · , X|P ||J| = p|P ||J|} if rsikl +

∑
j∈J aijkl = rs

∗

ik,l−1 ∀i, k, l ∈ P,R, T \ {t+

1}; otherwise pss
∗

a = 0.

Cost Function

In the previous section we introduced the policy π ∈ Π, where Π is the set
of all possible policies for the MDP. Furthermore, recall that for any policy the
MDP evolves as a discrete-time Markov chain. Let V π∞(s) define the expected
long-term costs that are induced by this Markov chain, starting at state s ∈ S,
under the policy π ∈ Π. That is,

V π∞(s) = E

[ ∞∑
t=0

γtC(st, πt(st))

∣∣∣∣∣s0 = s

]
(6.2)

where C(st, πt(st)) is the cost induced from taking action π(st) in state
st at time t, γt ∈ R<1 a discount factor, and t = 0 is any arbitrary point in
time. We define the optimal policy, π∗, as the policy which obtains V π

∗

∞ (s) =
minπ∈Π V

π
∞(s) ∀s ∈ S, and thus an essential element in minimizing the ex-

pected long-term costs is the definition of how each action is penalized through
the cost function, C(st, πt(st)) = C(s,a). The reader should notice that the
optimal myopic solution to the scheduling problem is included in the set Π,
and thus we have that V π

∗

∞ (s) ≤ V π
η

∞ (s), where πη is the policy for which
πη(s) = arg mina∈As E[γ0C(s,a)] ∀s ∈ S.

Now recall that we consider two different types of costs:

1. A fixed setup cost, κ ∈ R>0, is induced whenever a procedure is sched-
uled to a new room — that is, whenever

∑
i∈P rikl = 0 and

∑
i,j∈P,J aijkl >

0 for any k ∈ R and l ∈ T in the current state, s.

2. An overtime-cost that accounts for procedures stretching into overtime
for any k ∈ R. Let the total capacity utilization of a room be defined
by τ ∈ R0, and let f(δ) define the overtime-cost for an overtime of size
δ ∈ R0, where δ is the amount of time that τ exceeds the capacity, wk,
for a room k ∈ R. Now, let pk(τ) define the probability density function
for a capacity utilization of amount τ in room k ∈ R. We then penalize
an action according to the total expected amount of overtime,

∑
k∈R ok,

for the subsequent day, l = t + 1, where ok is defined in (6.3). Notice
that this formulation generalizes to any continuous distribution, pk(τ), for
which τ ≥ 0 and overtime-cost function, f(δ), for which δ ≥ 0.
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ok =

∫ ∞
wk

pk(x)f(x) · dx (6.3)

To ensure that actions are penalized for outsourcing requests, we further
introduce a large penalty, φ ∈ R>0 for every outsourced request. Finally, the
resulting cost function is presented in (6.4), where yskl and ys

∗

kl is 1 if a room k ∈
R is scheduled for use on day l ∈ T in the current state s ∈ S or subsequent
state s∗ ∈ S, respectively; and otherwise 0.

C(s,a) =
∑
k∈R

ok +
∑

k,l∈R,T\{t+H}

(ys
∗

kl − ysk,l+1) · κ+
∑

i,j∈P,J
qij · φ (6.4)

Exact Method

In Puterman, 2005 [104] a number of methods are presented for solving both
finite and infinite horizon MDP problems. These include the algorithms Value
Iteration and Policy Iteration that are used to approach an optimal policy. To
our knowledge, one of the most widely used algorithms is Value Iteration for
which a unichain and average reward approach is presented below:

Firstly, we let ε ∈ R>0 define a tolerance such that π∗ is the ε-optimal
policy to the MDP. Secondly, let vn define a vector of size |S| with elements
containing the values of each state s ∈ S at iteration n ∈ N0. Further, let
sp(vn − vn−1) define the "span" between two subsequent iterations, where
sp(x) = maxi∈I xi − mini∈I xi for any vector x. An ε-optimal policy is then
derived by using Algorithm 10, proposed by Puterman, 2005 [104].

Algorithm 10 The Value Iteration algorithm for an infinite horizon MDP.

1: Select v0, ε . Initialize
2: n← 0
3: span←∞
4: while span > ε do . Iterate until convergence
5: n← n+ 1
6: for all s ∈ S do
7: vns ← mina∈As C(s,a) +

∑
s∗∈S p

ss∗

a vn−1
s∗

8: end for
9: span← sp(vn − vn−1)

10: end while
11: for all s ∈ S do . Get the corresponding actions
12: π∗(s)← arg mina∈As C(s,a) +

∑
s∗∈S p

ss∗

a vns∗
13: end for

return π∗

Notice that even if Algorithm 10 can be proven to converge in a finite num-
ber of iterations, the algorithm requires a full enumeration of all states in S as
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well as all actions in each As. In our case the size of a single state and espe-
cially the state space, S, can be very large, even for small problem instances.
Assuming a rather limited case where physicians are always available such
that |J | = 1, procedures are constrained to only one room, and further that
cl = cl+1 ∀l ∈ T , leading to s = [pi, ril], there are a total of |P | + |P × T |
elements in each state. That is, for a case with merely |P | = 10 different pro-
cedures, and a planning horizon of |T | = 20 days, a single state is comprised
of 210 elements. Additionally, by assuming a maximum number, n, of requests
per type, i ∈ P , and a capacity limit, m, of procedures per day, the state space

would have a total size of |S| = (n + 1)|P | ·
(

1
|P |!

∏|P |
i=1(m + i)

)|T |−1

states —
for which a direct implementation of Algorithm 10 is quite a challenge, compu-
tationally. Furthermore, recall that in the worst case the action space attains
a size of |As| = (|R × T |)

∑
i,j∈P,J pij . For these reasons we assume that the

MDP considered in this study will only be partially observable.
In the following Section 6.3.2 we present a simulation-based approach with

the aim of deriving a heuristic policy to the MDP.

6.3.2 A Heuristic Approach

The method presented in this section is based on a rolling-horizon approach.
That is, instead of deriving an optimal action π∗(s) for each of the states s ∈ S,
we rely on deriving a good action heuristically in an "on-line" fashion. Our ap-
proach is based on a rollout algorithm proposed by Bertsekas & Castañon,
1999 [21], and later extended to parallel rollout by Chang et al., 2004 [37].

Consider some arbitrary allocation epoch, t, in which the requests pij are
scheduled. These requests will be constrained by the occupation of the pro-
cedures that are already in the schedule, rikl, and for any policy induce the
long-term cost V π∞(s). Now consider an optimal policy, π ∈ Π, that has been
derived for a finite model-horizon H ′. Then as H ′ →∞, the policy π → π∗ for
the infinite case. The cost of such a policy would then be,

V πH′(s) = E

[
H′∑
t=0

γtC(st, πt(st))

∣∣∣∣∣s0 = s

]
(6.5)

quite similar to (6.2). We assume for the remaining of this paper that γt = 1
for t = 0, 1, . . . ,H ′. From the definition in (6.5), we note that the decision a
hospital planner has to take from the current state s, should be derived from
the sum of first the current known cost C(s,a), and second an expected long-
term cost from a sequence of future actions. Thus, we let a rollout policy, π′,
be defined as the result of a sequence of actions that has been derived under
(6.6),

π′(s) ∈ arg min
a∈As
{C(s,a) + E[Ṽ πH′−1(f(s,a, ω))]} (6.6)
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s

f(s,a, ω1) f(s,a, ω2) . . . f(s,a, ωN )

Ṽ πH′−1

C(s,a)

Figure 6.2: For the expression in (6.7), these are the subsequent paths and costs that
are observed from the current state s.

where E[Ṽ πH′−1(·)] approximates (6.5), and Ṽ πH′−1(·) represents the total
cost of a path of decisions over the horizon t = 1 to H ′. Further, we let
the subsequent state relative to s be defined as s∗ = f(s,a, ω). That is, the
combined result of the current state, s, the action, a, and a random disturbance
of the system ω.

Similar to Bertsekas & Castañon, 1999 [21], we fix the disturbances, ω,
to a finite set of values such that we limit our scope to a mere sample of the
potential subsequent states. That is, we randomly sample N disturbances
and then evaluate Ṽ πH′−1(f(s,a, wj)) for j = 1, 2, . . . , N , yielding the N paths
illustrated in Figure 6.2. Thus, for the decision of choosing an action in the
rollout policy, π′, (6.6) changes to (6.7).

π′(s) ∈ arg min
a∈As
{C(s,a) +

1

N

N∑
j=1

Ṽ πH′−1(f(s,a, ωj))} (6.7)

Notice that in practice, wj is sampled by using pseudo-random numbers
that are then converted into obtaining the requests, pij , at each subsequent
state.

How to evaluate Ṽ πH′−1(f(s,a, ω)) will be presented in the following Section
6.3.2. Moreover, the expression in (6.7) requires a full enumeration of the state
dependent action space As. As mentioned in Section 6.3.1, the size of As can
be quite intractable, and therefore we require a robust search procedure to
reduce the computational requirements. We present this procedure in Section
6.3.2.
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Simulation-based Value Evaluation

Let Λ define a non-empty finite set of policies that all perform well for the hospi-
tal scheduling problem. By choosing the one policy that performs the best re-
lated to the current state, s, we allow for a rollout policy that continually adapts
to the system. This is the basis of parallel rollout [37]. A related approach is to
choose an action based on the current weighted average performance of the
policies in Λ, which is the method we will employ in this study. We base our
approach on a Simulated Annealing Multiplicative Weights (SAMW) algorithm
proposed by Chang et al., 2007 [36]. Let φ(π) define the weighting of policy
π ∈ Λ, such that

∑
π∈Λ φ(π) = 1. The aim of the SAMW algorithm is then to

concentrate the weighting on the currently (related to s) best policies in Λ.

Let φi(π) define the weight of policy π at iteration i. Then,

φi+1(π) = φi(π)
β
−Ṽ πi
i

Zi
(6.8)

where Ṽ πi corresponds to Ṽ πH′−1(f(s,a, ωj)) at iteration i for any of the dis-
turbances ωj . In addition, we have that π ∈ Λ and βi ∈ R>1 is a "cooling"
parameter that decreases as function of iteration i. Furthermore, Zi is a nor-
malization parameter,

Zi =
∑
π∈Λ

φi(π)β
−Ṽ πi
i (6.9)

Now, we let ωj1, ω
j
2, . . . , ω

j
H′ , where ωj = ωj1, define a path of random distur-

bances such that we get Ṽ πi =
∑H′

t=1 C(st, π(st)), where st = f(st−1, π(st−1), ωjt ),
s0 is the current state s, and π(s0) is the current action a. In each itera-
tion we generate a new range of disturbances (except for ωj1) and calculate
Ṽ πi ∀π ∈ Λ.

Letting T define a fixed number of iterations, we get the sample mean
estimate ψ(π) = 1

T
∑T
i=1 Ṽ

π
i for each policy π ∈ Λ, which finally yields the

approximation,

Ṽ π
∗

H′−1(f(s,a, ωj)) =
∑
π∈Λ

ψ(π)φT (π) (6.10)

We use (6.10) to derive the last term of our rollout expression in (6.7). That
is, (6.10) is used for each of the subsequent states that are illustrated in Figure
6.2. The overall structure of the SAMW algorithm is presented in Algorithm
11, where we predefine T experimentally to ensure a limited runtime of the
algorithm. Moreover, notice that all disturbances, ωjt , can be generated prior
to the running of Algorithm 11 as will be elaborated in Section 6.3.2.

The Search Procedure

Our approach for deriving an action, a, from the current action space, As, is
based on a Greedy Randomized Adaptive Search Procedure (GRASP). That
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Algorithm 11 The Simulated Annealing Multiplicative Weights algorithm.

1: φ(π)← 1/|Λ| ∀π ∈ Λ . Initialize the distribution
2: for i = 1 to T do
3: disturbances← getNewDisturbances() . New disturbances:
ωj2, ω

j
3, . . . , ω

j
H′

4: Ṽ πi ← evaluate(disturbances, π) ∀π ∈ Λ
5: φ(π)← update(φ(π), Ṽ πi ) ∀π ∈ Λ . Update the distribution using (6.8)
6: end for
7: ψ(π)← average(Ṽ πi ∀i) ∀π ∈ Λ
8: Ṽ π

∗ ← weightedAverage(ψ(π) ∀π ∈ Λ, φ(π) ∀π ∈ Λ) . Derive
approximation using (6.10)

return Ṽ π
∗

is, we conduct an iterative search consisting of two phases: (1) A greedy
randomized solution, followed by (2) a local search procedure. We use this
approach due to the combinatorial and greedy cost structure of the problem,
ensuring that any immediate greedy allocation of requests will result in a rea-
sonably low cost. The overall structure of the GRASP is presented in Algorithm
12.

Algorithm 12 General structure of the GRASP heuristic.

1: while elapsedT ime < maximumTime do
2: a← buildGreedyRandom(s) . Construct greedy randomized solution from

current state s
3: stop← false
4: while stop = false do
5: a← localSearch(a, s) . Try to improve the solution by local search
6: stop← checkStoppingCriteria()
7: end while
8: end while

return bestFound(a) . Return best solution from the entire search

For the greedy randomized solution, we generate a candidate list by enu-
merating all feasible allocations for each of the current requests, pij . Next,
each of these allocations are ranked according to their apparent lowest cost
increase. We then restrict this list to the α ∈ N allocations with highest rank,
and finally pick an allocation by random for insertion in the schedule, rikl. This
process is conducted recursively until all requests have been allocated to the
schedule.

For the ranking of each candidate allocation we conserve runtime for the
later local search procedure, by only considering the current cost function,
C(s,a). Recall from (6.4) that the cost induced at every state is comprised of
firstly a fixed setup cost, secondly an overtime-cost, and lastly a penalty for
outsourcing requests. Thus, for an allocation to a room k ∈ R on a day l ∈ T
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we evaluate a candidate on the difference,

∆i = oikl − oi−1
kl + (yikl − yi−1

kl ) · κ+ q · φ (6.11)

where ∆i is the increase in cost if the i’th allocation is conducted for
i = 1, . . . ,

∑
i,j∈P,J pij . Further, oikl ∈ R0 and yikl ∈ {0, 1} is the overtime-

cost and open-room indicator for the room k ∈ R and day l ∈ T for which the
request is allocated, similar to (6.4). Notice that we can consider the cost on
allocation, so oikl ≥ oi−1

kl and yikl ≥ yi−1
kl . In addition, q ∈ {0, 1} indicates if

the request is outsourced; and κ and φ is the fixed setup cost and outsource
penalty, respectively. Lastly, o0

kl and y0
kl are inherited directly from the current

state, s.

Afterwards, the local search procedure intensifies the solution that has
been created in the greedy randomized phase. This is the only time in the
search that the value function, Ṽ πH′−1, is taken into account. We base this
phase on a first-best hill climber using the evaluation function,

z = C(s,a) +
1

N

N∑
j=1

Ṽ πH′−1(f(s,a, ωj)) (6.12)

based on the expression in (6.7). Our implementation of GRASP for the
problem of searching for a suitable action a ∈ As is presented in Algorithm 13.

Here, we construct the neighborhood, N , from an enumeration of every
feasible single move of a procedure to a new room or day along with all feasible
swaps between two procedures. We terminate the local search procedure by
using an upper bound on evaluations without improvement, or if the entire
neighborhood has been evaluated.

To make all solutions to the action a comparable, the disturbances that are
required for the SAMW algorithm, as well as for (6.12), are generated during
the initialization of the algorithm. Furthermore, we reuse the T sequences,
ωj2, ω

j
3, . . . , ω

j
H′ between each sample path j. So, accounting for the model

horizon, H ′, the number of iterations in the SAMW algorithm, T , and the N
subsequent states, we require a total of N + T · (H ′ − 1) randomly generated
disturbances for the execution of Algorithm 13.

6.4 Implementation & Results

In this section, we demonstrate our simulation-based MDP based on data from
a Danish hospital. We use data on patient arrivals and ward resources to
estimate the occurrence of requests, procedure duration, and room availability.

In Section 6.4.1 we present the hospital case along with a number of as-
sumptions related to our model implementation. Next, in Section 6.4.2 we
present the parameter tuning, followed by Section 6.4.3 where our approach
is compared to a range of myopic policies using simulation.
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Algorithm 13 Our GRASP implementation in the search for an action a ∈ As
1: a∗ ← (0, 0, · · · , 0)T

2: z∗ ←∞
3: disturbances← generate() . Generate all required disturbances: ωjt
4: while stillT imeLeft do
5: a← (0, 0, · · · , 0)T

6: for all
∑
i,j∈P,J pij do

7: list← getCandList(a, s, α)
8: a← pickRandom(a, list) . Pick randomly from restricted candidate list
9: end for

10: y ← 0
11: N ← getNeighborhood(a, s)
12: while y < noImproment and y < |N | and stillT imeLeft do
13: z, i← evaluateNewRandom(N , disturbances) . Evaluate random

element i from N
14: if z < z∗ then
15: z∗ ← z
16: a∗ ← update(N , i)
17: N ← getNeighborhood(a∗, s)
18: y ← 0
19: else
20: y ← y + 1
21: end if
22: end while
23: end while

return a∗
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Type Occurrences pr. day Duration Mean (h) Duration Variance (h2)
Procedure A 0.57 2.26 2.15
Procedure B 0.49 2.26 2.05
Procedure C 0.14 1.44 1.41
Procedure D 0.11 2.91 2.99
Procedure E 0.10 1.25 1.01
Procedure F 0.07 1.64 1.25
Procedure G 0.07 1.75 1.37
Procedure H 0.06 2.69 2.30
Procedure I 0.06 2.56 2.12
Procedure J 0.06 1.65 1.40

Table 6.1: Occurrence rate, sample mean duration, and variance obtained for the ten
most frequent types of requests. These account for about 52% of the total occurrence
rate.

6.4.1 Case & Data Description

For our hospital case, requests occur according to |P | = 288 different types.
The occurrence-process is further assumed to be stationary and Poisson with
known parameters. Each request will be subject to an availability-pattern for
which we assume that every successive period of five days has at most one
day where the designated physician is unavailable. In addition, all patterns
occur with equal probability. Furthermore, the procedure duration is random,
but with known mean and variance.

Data for the ten most frequent types of requests, accounting for 52% of the
total occurrence rate, are presented in Table 6.1.

We assume that all requests have to be allocated. However, if the hospital
does not have sufficient capacity within the current planning horizon, then a
minimum number of requests are allowed to be outsourced. The fixed planning
horizon is set to H = 20 days within which the capacity on the number of open
rooms depends on the weekday, as shown in Table 6.2. In total, the hospital
has three different rooms at disposal for which the opening-hours results in a
total time-capacity of wk = 7.5 hours.

The planner further has to account for equipment compatibility between
procedure types and rooms. The compatibility between procedures and rooms
for the ten most frequent types are presented in Table 6.3, where 1 indicates
that the procedure is compatible with the room; otherwise the indicator is 0.
Between all allocated procedures we assume a fixed buffer time of m = 0.5
hours.

Weekday Monday Tuesday Wednesday Thursday Friday
Limit on open rooms 1 2 2 2 2

Table 6.2: Upper limit on number of open operating rooms for each respective weekday.
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Type Room A Room B Room C
Procedure A 1 0 0
Procedure B 1 1 0
Procedure C 1 1 1
Procedure D 1 1 1
Procedure E 1 1 1
Procedure F 1 1 1
Procedure G 1 1 1
Procedure H 1 1 1
Procedure I 1 1 1
Procedure J 1 1 1

Table 6.3: Compatibility between procedure types and rooms. Shown for the ten most
frequent types. The number 1 indicates the a procedure is compatible with a room;
otherwise the indicator will be 0.

Model Implementation

We assume that the capacity utilization of room k ∈ R is distributed according
to a log-normal distribution with probability density function

pk(τ) =
1

%kτ
√

2π
· e
−(ln τ−γk)2

2%2
k (6.13)

where γk = ln(µ2
k/
√
σk + µ2

k), %k =
√

ln(σk/µ2
k + 1), µk is the sum of

the expected durations for all procedures allocated to room k ∈ R, and σ2
k

is the corresponding sum of their variances. In addition, we use a polynomial
function to evaluate the cost of performing procedures in overtime δ, assuming
that f(0) = 0. That is,

f(δ) = b1δ
2 + b2δ (6.14)

In practice the parameters b1 and b2 would be adjusted to attain the desired
slope and relation to the payed overtime-costs, and the more intangible costs
of stretching the procedure duration into overtime. Later, we will assess the
result of adjusting these parameters on the performance of our model.

For the SAMW algorithm we employ two base-policies in the set Λ. These
have been chosen to account for the uncertainties in the resulting costs and
at the same time maintain a reasonably fast evaluation time. We will refer to
these base-policies as:

1. The Anticipative Increased Cost Policy (AIP)

2. The Anticipative Weighted Cost Policy (AWP)

In both policies, the current requests, pij , are allocated to the schedule,
rikl, according to their expected duration, E[Yi], in ascending order. Each
request at a time, they evaluate all feasible room-day pairs, k, l ∈ R, T , within
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the planning horizon and allocate the requests based on the lowest anticipative
cost. The latter is estimated differently in each of the policies.

1. The AIP estimates the increased cost similar to (6.11), but for the dif-
ference, oikl − oi−1

kl , accounts for the future procedures that have not
appeared in the schedule, yet. Specifically, the total capacity utilization
is estimated from µkl and σkl (cf. the distribution in (6.13)), where each
parameter is a sum of the already allocated procedures and an estimate
of the future procedures. Thus, prior to allocating the request, the AIP
assumes that

µkl = ηl · E[YG] +
∑
i∈P

(rikl · E[Yi]) + (
∑
i∈P

(rikl)− 1) ·m (6.15)

and

σ2
kl = ηl · V ar(YG) +

∑
i∈P

(rikl · V ar(Yi)) (6.16)

for each feasible room-day pair, k, l ∈ R, T , where E[YG] =
∑
i∈P E[Yi] ·

λi/λG is the global weighted average duration, V ar(YG) =
∑
i∈P V ar(Yi)·

λi/λG is the global weighted average variance, and λG =
∑
i∈P λi is the

global rate of occurrence. Lastly, ηl ∈ R>0 estimates the additional num-
ber of requests that day l ∈ T will be subject to in the future. Thus,

ηl =

l∑
x=t+1

(λG/(H · |R| − dx)) (6.17)

for l ≥ t + 1; otherwise ηl = 0. Further, dx ∈ N0 is the number of room-
day pairs that are closed (due to capacity depletion) within the horizon
relative to day x ∈ Nt+1≤x≤l.

2. For the AWP policy, each allocation depends again on the requests that
have not appeared in the schedule yet. However, the AWP is based
on the notion that uncertainty should be employed as a "weight" rather
than an estimate of the potential overtime-costs. Consider the difference
oikl − o

i−1
kl from (6.11). This time oi−1

kl is evaluated by merely summing
over the known procedures in rikl, whereas the resulting overtime-cost,
oikl, is based on (6.15)-(6.17). However, we change (6.17) to ηl = ν ·∑l
x=t+1(λG/(H · |R| − dx)), where ν ∈ R>0 determines the "weight" of

these uncertain requests, and is determined experimentally.

6.4.2 Adjusting the Parameters
The MDP model parameters were assessed and adjusted by applying the
model to a simulation framework. That is, we simulated the arrival of requests
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and their resulting utilization of capacity in the system by generating pseduo-
random numbers. In this simulation, we have assumed that requests occur
according to a Poisson process, and that the total capacity utilization of any
room is distributed according to a log-normal distribution as defined by (6.13).

We randomly generated three different sets of seeds covering a simulation
period of 565 days, and then replicated each run of the simulation on each
respective set twice. 365 days were used to burn-in the simulation for which
we used the AIP policy to save runtime, leaving 200 days to assess the model
performance of the MDP. We employed a fixed runtime of 20 minutes, and
conducted tests with three different levels for each respective parameter. The
parameters that were subject for testing, and their levels, are presented in
Table 6.4. The number of sampled paths, N , and the SAMW iterations, T ,
were tested with interaction resulting in a total of (3 × 3 + 3 + 3) × 2 × 3 =
90 simulations. The remaining parameters were adjusted during preliminary
testing of the model.

For the cooling schedule, βi, we tested both a fixed cooling parameter,
such that βi remained constant for all T iterations, and an exponential de-
creasing continuous function, βi = β(i) = 1 + C(ε, T )−(i−1), where C(ε, T ) =

e−
ln(−1+ε)
T , and ε defines the final cooling value after T iterations.

Lastly, for the overtime function in (6.3) we used a setting with b1 = 10 and
b2 = 4, and a fixed setup-cost of κ = 100. The penalty for outsourcing requests
was set to φ = 1 · 106.

Level
# Parameter 1 2 3
1 SAMW Iterations (T ) 20∗ 50 100
2 Cooling Schedule βi = 2 (fixed)∗ ε = 1.1 ε = 1.001
3 Sampled Paths (N ) 5∗ 10 30
4 Model Horizon (H ′) 50 150∗ 300

Table 6.4: Parameters that have been subject to simulation. Parameter 1 & 2 are
related to the SAMW algorithm (Algorithm 11), and 3 & 4 to the rollout expression (6.7).
The bold font indicates the preliminary setting of the parameters during the simulations,
whereas the star indicates the setting employed in the experiments in Section 6.4.3.

We measured the performance of each setting on the cumulated cost (over
the 200 day simulation period) of both the overtime- and setup-costs; and the
penalty from outsourcing requests. The parameters were then compared in a
dot-plot and on their respective correlations to the amount of cumulated value.
Interestingly, the cooling schedule showed to be more effective when held
constant at βi = 2 and decreasing in performance as ε increases; hence when
βi decreases at a faster rate. The cooling schedule had a distinct effect on
the performance, whereas the remaining parameters were more inconclusive.
The effect from the number of SAMW iterations, T , was almost negligible with
respect to the cumulated value, whereas the number of sampled paths, N ,
and the model horizon, H ′, depended more on the specific set of seeds for
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the simulation.
As regards the value of ν in the AWP, we employed a hill climber heuristic

where the average performance was recursively evaluated over ten different
sets of seeds until convergence. This resulted in a final weight of ν = 16.969.

6.4.3 Numerical Experiments

In this section, we apply our MDP model based on the results from the pa-
rameter tests, and compare the performance to a range of different policies.
These include a policy that resembles the behavior of a "manual" planner,
which we will refer to as the Manual Policy (MP). Next, we compare the MDP
performance to a more advanced heuristic search procedure.

The MP is based on the following assumptions:

1. The expected duration of each procedure is known to the planner.

2. The planner is familiar with procedure variability, but the exact distri-
bution nor spreading is not known. For this reason, a fraction of the
available capacity is used as a buffer such that a new procedure is not
allowed to start within this time-interval. However, the total expected du-
ration of the allocated procedures is allowed to violate the buffer capacity
by at most 10% of the total capacity.

3. The exact costs are unknown to the planner. For this reason, the planner
will try to utilize the setup-cost for a new room as much as possible.
Firstly, the requests are sorted in ascending order similar to the policies
in Λ, and then allocated in sequence to the room-day pair that results in
the least amount of excess capacity. If there are no feasible allocations
for the room-day pairs that are already in use, the planner will allocate
the request to the latest unused room-day pair such that this new room
will be subject to as many future requests as possible.

Our experiments were conducted using simulations similar to the tests in
Section 6.4.2. Thus, a period of 365 days were used to burn-in the simulation,
and 200 days to assess the performance of the model. However, simulations
were extended to eight different sets of seeds and replicated five times on
each set. Besides testing the model on a range of different seeds, we varied
the parameters in the overtime function (6.14) on four different levels, pre-
sented in Table 6.5. Later, we will refer to the overtime-cost settings using the
conventions presented in this table. Again, the MDP runtime was fixed at 20
minutes for each day over the entire length of the simulation.

Our experiments in this section include the MDP, MP with a capacity buffer
of both 10% and 20%, and the policies in Λ.
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Reference b1 b2
Low 10 4

Medium 100 10
High 300 100

Very High 10,000 500

Table 6.5: Parameter settings for the overtime function (6.14). All four levels are tested
at each of the eight sets of seeds.

In order to compare the performance across the different combinations of
seeds (and thereby the behavior of the requests generated) and overtime-
costs, we standardized the cumulated cost, including the penalty for outsourc-
ing, by employing the conversion

xijk =
yijk −mink∈Kij{yijk}

maxk∈Kij{yijk} −mink∈Kij{yijk}
(6.18)

where yijk is the resulting cost of simulation run k ∈ Kij using seeds i and
overtime-cost setting j. Thus, for the five replications of the MDP, the MP with
both 10% and 20% capacity buffer; and the policies in Λ, |Kij | includes 9 runs
for each combination of i and j.

The results are presented in Table 6.6 showing the performance for each
model and overtime-cost setting, presented as both the average and standard
deviation standardized cost. The table shows a distinct difference between the
MDP and the remaining policies, measured on both the average and standard
deviation performance. The difference is especially distinct between the MDP
and the MP, regardless of the capacity buffer. Notice that the MP with 20%
capacity buffer yields an average of 1.000 and a standard deviation of 0.000
for the first three overtime settings because this policy resulted in the highest
cost across all eight sets of seeds.

Interestingly, the benefit of using the MDP increases as function of the
overtime cost. Simultaneously, the difference between the policies decreases,
resulting in quite indifferent performance at the highest overtime cost level.
Otherwise, the MP performs substantially better with a 10% instead of a 20%
capacity buffer. Still, the anticipative policies in Λ yield substantially lower
costs than both MP settings, where AWP results in both lower average and
standard deviation cost than all the remaining policies, except at the highest
level. The relative difference between the average performance of the MDP
and AWP is quite large, but given an average runtime of about 3 milliseconds
for the AWP, the latter might still be a suitable choice in many operational set-
tings.
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Average Std. Deviation
Overtime MDP MP 10% MP 20% AIP AWP MDP MP 10% MP 20% AIP AWP

Low 0.009 0.473 1.000 0.188 0.075 0.014 0.120 0.000 0.149 0.053
Medium 0.075 0.499 1.000 0.234 0.096 0.027 0.130 0.000 0.161 0.050

High 0.015 0.526 1.000 0.267 0.136 0.016 0.133 0.000 0.158 0.054
Very High 0.019 0.977 0.927 0.800 0.857 0.016 0.037 0.097 0.107 0.070

Table 6.6: Performance of the MDP compared to the MP with a capacity buffer of 10%
and 20%; and the base-polices in Λ. The models are compared on their standardized
cost.

We should emphasize that the performance of the MDP, AIP and AWP
are only relevant in practice if the necessary computational setup can be in-
troduced into the hospital operations, as is an obvious advantage of a more
simple policy — such as the MP. However, if this is the case, then we should
consider how other computational methods compare to the MDP performance,
which will be elaborated in the following section.

Further Validation

In this section, we compare our MDP to a GRASP heuristic with a myopic
structure. That is, we re-used the basic algorithmic structure that was pre-
sented in Algorithm 12, but without the anticipative costs. Instead, during the
local search, we evaluate the solution on the sum of the expected overtime-
cost and the fixed setup-cost over the entire planning horizon. Thus,

C ′(s,a) =
∑

k,l∈R,T\{t+H}

okl+
∑

k,l∈R,T\{t+H}

(ys
∗

kl−ysk,l+1)·κ+
∑

i,j∈P,J
qij ·φ (6.19)

Just as in our previous experiments, we simulated the performance of the
GRASP heuristic with 20 minutes of runtime, and replicated each run five
times on each combination of seeds and overtime-cost setting.

The result of the simulations are presented in Table 6.7, showing the av-
erage and standard deviation performance for each model and overtime-cost
setting. The average performance has further been depicted in Figure 6.3.
Again, the models are compared on their standardized cost according to (6.18),
but re-calculated to fit the only two models that are compared in this section.

Average Std. Deviation
Overtime MDP GRASP MDP GRASP

Low 0.276 0.201 0.422 0.354
Medium 0.302 0.357 0.328 0.382

High 0.392 0.463 0.365 0.411
Very High 0.453 0.493 0.294 0.303

Table 6.7: Performance of the MDP compared to the GRASP heuristic. The models
are compared on their standardized cost
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Table 6.7 shows that the performance of the two models is much more
equal compared to our previous experiments. In fact, the GRASP outperforms
the MDP in both average and standard deviation cost when the overtime-cost
is set to "Low". This corresponds to the parameters b1 = 10 and b2 = 4 which
is the setting that the MDP was adjusted for. However, as the cost of stretching
procedures into overtime increases, so does the MDP performance resulting
in lower average (cf. Figure 6.3) and standard deviation cost for the remaining
overtime settings.

We should further emphasize that in the cheapest setting, the overtime-
cost does not exceed the cost of opening a new room until about 3 hours into
overtime, which is longer than the expected duration for most of the occurring
requests in our data. This may not apply to many real hospital settings. In
addition, these experiments were conducted for a reasonably short simulation
of 200 days; hence, if the improvement of exploiting the rolling and overlapping
nature of the problem is small, then such advantage might only show for much
longer periods of simulation.
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Figure 6.3: Performance of the MDP and GRASP measured on their standardized cost.
On average, the MDP yields better decisions when the overtime-cost is anything but at
the cheapest level.

6.5 Conclusion

Aiming to apply and test a new approach to the problem of scheduling op-
erating theatres, we developed a simulation-based Markov Decision Process
(MDP). The advantage of such modeling approach is that a sequence of deci-
sion problems are taken into account, which seems to have been disregarded
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in this area of scheduling in general. In fact, to our knowledge the MDP ap-
proach has not been considered previously in day-to-day scheduling of re-
quests to operating theatres.

Specifically, our approach consists of deriving a heuristic rollout policy,
evaluating each action of the current state, based on a sampling of a number
of potential future paths. This process is further based on a predefined set of
base-policies by employing an algorithm known as Simulated Annealing Multi-
plicative Weights (SAMW) [36]. We further consider that the state-dependent
action space is intractable, and for this reason we derive an action by employ-
ing a Greedy Randomized Adaptive Search Procedure (GRASP).

In order to validate our MDP, we conducted a number of numerical experi-
ments based on simulation, where we compared our approach to both simple
and more advanced myopic scheduling methods. Firstly, we validated a pol-
icy that resembles a manual planner, which indicated that there is a distinct
improvement of employing our model rather than scheduling requests manu-
ally. Furthermore, we found that a substantial improvement can be attained
by employing a policy that accounts for future requests by weighting their con-
tribution to the overtime-costs. We refer to this as the Anticipative Weighted
Cost Policy (AWP). In addition, we found that a GRASP disregarding the rolling
horizon performs only slightly worse than our MDP, and in fact better when the
cost of stretching into overtime is sufficiently low. In other words, the myopic
GRASP might be beneficial to certain hospital cases. However, consider that
better results might be achievable for other base-policies in Λ and more effec-
tive implementations of the SAMW algorithm.

6.5.1 Future Work
In future work more extensive numerical experiments should be considered.
The difference in performance between the simulation-based MDP and myopic
GRASP should be investigated by extending the period over which simulation
is conducted, employing more levels on the overtime-cost setting, and more
effective base-policies in Λ. Additionally, further work into more simple policies
should be investigated to benefit the hospital cases where requests have to be
allocated within a short time (e.g. below a few seconds).
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Chapter 7

Conclusion, Perspective
& Future Work

7.1 Conclusion

One of our main objectives has been to provide management and planners
with a range of tools that can be employed to improve the utilization of hospital
resources related to patient flow. In achieving this, we have given particular
attention to inpatient flow, which constitute one of the core operations of a
hospital (cf. Section 1.2). We have provided a method for modeling the oc-
cupancy of the hospital wards, and methods for optimizing the configuration
of resources related to both room types and the aggregated bed capacity. In
addition to inpatient flow, we have presented an approach for modeling an
emergency department with time-dependent behavior, and a method for opti-
mizing the associated resources. Lastly, we have investigated an approach for
optimizing an area of the hospital operations that interact with several patient
flow types, namely the process of scheduling surgical procedures.

All things considered, we have covered a wide range of problems related
to hospital patient flow.

In relation to expanding the current knowledge of modeling and optimizing
patient flow, we have mainly been focusing on methods within two different
fields, namely Markov chain modeling and heuristic optimization.

Firstly, we have aimed at expanding the scarce amount of Markov chain
models that have been used to model patient flow as a system of queues [22].
Thus, throughout this thesis we have demonstrated how to model and apply
continuous-time Markov chains to different relevant hospital problems.

Secondly, we have employed these Markov chain models in a number of
heuristic search procedures, which in the literature is a rather uncommon ap-
proach. In fact, for the context of optimizing patient flow, our literature re-
views indicate that only few studies integrate both optimization and analytical
stochasticity in patient flow. Often a number of pre-defined scenarios are eval-
uated, or for the instances where optimization is employed, the patient flow
is evaluated using simulation. As regards scheduling of surgical patients, a
substantial amount of studies employ uncertain requests (e.g. acute patients),
but only a few of these consider the inherent rolling horizon of the problem.

As a result of the aforementioned, this thesis has lead to a number of both
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heuristic and matheuristic search procedures that are able to exploit the be-
havior of patient flow to provide useful solutions for both hospital management
and planners.

7.1.1 Specific Findings

In the following we will elaborate on the specific findings of Chapter 3-6.

In Chapter 3, we set out to provide hospital management with a decision
tool for improving the utilization of bed resources. Specifically, we considered
a set of patient types arriving to a set of inpatient wards, and additionally that
patients can be relocated to alternative wards whenever the ward capacity is
insufficient. We further considered a situation where a hospital is not able to
expand their total bed capacity, and must optimize the utilization of their current
resources by minimizing the expected number of patients that are relocated on
arrival.

To achieve this, we modeled the flow of patients as a queueing system
based on a homogeneous continuous-time Markov chain. Our model accounts
forN wards andN different patients, as well as the arrival and service rates for
each patient type. Furthermore, if a relocation is needed, our model accounts
for the probability of routing a patient of a specific type to a specific ward in
the system. Lastly, in aiming to make this Markov chain model applicable in
a practical setting, we provided a method for minimizing the computational re-
sources that are needed to evaluate the steady-state probability distribution by
truncating the state space. We validated this modeling approach by employ-
ing data from a Danish hospital in a heuristic statistical test, which showed that
our model adequately reflects the bed occupancy of a real hospital setting.

In order to minimize the expected number of patient relocations, we em-
ployed our Markov chain model in the objective function of a heuristic search
procedure with a hill climber structure. Based on data from a real hospital
case, our search procedure was able to reduce the objective value by 11.8%
compared to the hospital’s current distribution of beds. A complete enumer-
ation of the problem showed that this was in fact the optimal solution to the
problem.

In Chapter 4, we extended the optimization problem considered in Chap-
ter 3 by including the configuration of room types among the wards. Instead of
minimizing the expected number of relocated patients, we used an objective
function that maximizes the expected number of patient preference-matches
for private rooms. The amount of relocations were instead included as a con-
straint in the optimization problem. Similar to Chapter 3, we considered a sit-
uation where a hospital is subject to a fixed number of each respective room
type, and must improve their service by changing the configuration of these
rooms.

We achieved this by employing a heuristic search procedure that samples
solutions from the search space based on an interpolation between the cur-
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rently known solutions. In this process, the objective value of each solution is
evaluated by deriving the occupancy distributions for patients that prefer ad-
mission to private rooms from the aggregated occupancy distributions. The
latter is calculated by employing the Markov chain model from Chapter 3. Fur-
thermore, in the initialization phase of this search procedure, uniform samples
are obtained from the search space by using a fast surrogate objective func-
tion. This sets the stage for the solutions that are sampled and evaluated with
the true, but much slower, objective function.

Based on data from both a Danish and Belgian hospital, we validated the
performance and robustness of our search procedure, and found that we were
able to derive near-optimal solutions within a relative gap of 1% from the op-
timum. To further validate our approach, we conducted simulations which
showed that the obtained room configurations benefit the day-to-day process
of scheduling patients to rooms.

In Chapter 5 we aimed at deriving a decision support tool for hospitals
that are generally governed by their efficiency, and therefore seek to rearrange
their resources by analyzing the difference between the currently available and
minimum required department resources. More specifically, our focus was to
minimize the amount of staff resources for an emergency department and
simultaneously account for constraints on the patient waiting times.

Similar to the aforementioned studies, we modeled the patients moving
through the emergency department by using a continuous-time Markov chain
model. However, since the arrival rate and the availability of staff is distinctly
fluctuating for this type of patient flow, we introduced time-dependent behavior
into the queueing system. This was achieved by employing a piecewise tran-
sient model, where the state probability distribution is recursively evaluated
with uniformization. We validated this modeling approach by comparing to var-
ious simulations of the associated system. In these experiments, we found that
our approach adequately can model patient waiting times in a time-dependent
system, and is reasonably robust to different service-time distributions.

In order to minimize the emergency department’s staffing, we employed
our Markov chain approach in a matheuristic search procedure that recursively
adapts and solves an integer linear programming model based on evaluations
of the patient waiting times. The resulting solution is then passed to a tabu
search heuristic that further minimizes the amount of staff. We tested this
approach on a number of different input datasets, and found that tabu search
was only able to improve the solution in a single case.

We validated our optimized staff configurations in simulations with mul-
tiple triage-classes of patients, and found that our solutions performed well
with only slight violations for the least prioritized patients. These results were
despite that we only accounted for a single class when the solutions were de-
rived.

In Chapter 6 we set out to provide hospital planners with an operational
decision tool for scheduling surgical patients, resulting in a minimization of the
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total expected long-term costs related to this process. We considered a situ-
ation where requests for a procedure occur continually, but are not scheduled
until the end of the day. At this point, the planner must account for the po-
tential overtime-costs, setup costs, and a range of constraints, which among
other things relate to the planning horizon and capacity of the system.

Aiming to achieve this, we investigated an approach that accounts for the
inherent rolling horizon of the problem, and thus makes the scheduling pro-
cess anticipative. Specifically, we modeled the optimization problem as a
simulation-based Markov decision process. That is, we employed a heuristic
"online" approach, referred to as rollout, where an action is derived based on
an evaluation of potential future paths with a simulated annealing multiplicative
weights algorithm. Moreover, we avoid enumerating the entire action space by
employing a Greedy Randomized Adaptive Search Procedure (GRASP) such
that only the most promising candidates of the action space are evaluated.

We validated our model by simulating the performance with different input
data, and compared the results to a range of other heuristic approaches. In
these experiments, our model exercised distinct improved performance over
the simple policies, and especially a policy that resembles a manual plan-
ner. Additionally, we found that a substantial improvement of the scheduling
process can be attained by employing a policy, which we refer to as the antic-
ipative weighted cost policy.

Further experiments showed that the performance of our model depends
on the cost of conducting the surgical procedures in overtime, and that a my-
opic GRASP only performs slightly worse, despite that the rolling horizon was
omitted.

7.2 Perspective & Future Work

Even though hospital planning is a popular research field, we have found that
there is still a wide range of opportunities when it comes to understanding and
improving the processes that govern patient flow. We have shown that Markov
chain modeling can be a viable basis for a number of relevant hospital opti-
mization problems, and that accounting for a rolling horizon may benefit the
problem of scheduling surgical patients. For this reason, we hope that our re-
sults can serve as the basis for further research in the field of hospital patient
flow.

Even so, we acknowledge that our methods yield a couple of obstacles
that cannot be ignored. A noteworthy obstacle that applies to all four studies
in this thesis, is that real-life systems often lead to very large and computa-
tionally expensive state spaces. This is especially problematic in the context
of optimization, where many successive runs need to be conducted in order to
derive a good solution. To cope with this problem, Chapter 3-5 relied on trun-
cating the state space, whereas the system in Chapter 6 was evaluated with
simulation, and thus excluded the analytical approach. For the Markov chain
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models that were truncated, we deem that certain parameters can still cause
the state space to become intractable, at least if the purpose is optimization
and the model accuracy has to be maintained. For instance, the state space
in Chapter 3-4 increases as function of the ward number, and the model must
therefore rely on groups of patients with similar length of stay to confine the
amount of states. For the state space in Chapter 5, the occupancy of patients
in the system depends on the balance between arrival rate and the emergency
department staffing.

A related issue is coping with the arrival process and the service time dis-
tribution of the system. In this thesis, we have found that a Poisson process
is an adequate assumption for inpatients, and shown that acute arrivals are
governed by a Poisson process with a weekly cyclical pattern. Regarding the
service time distribution, we have assumed that this is exponential throughout
Chapter 3-5 for convenience. Our experiments showed that the queueing sys-
tems considered in this thesis are generally robust to this assumption, and that
certain inpatient groups are actually governed by distributions that are close
to exponential. Thus, we deem that this assumption may well be reasonable
for a much wider variety of cases, than we have considered here.

Turning to the perspective of optimization, the reader may have noticed
that our methods require rather long runtimes, which make them more useful
to strategic and tactical planning, and less to contexts where a decision is re-
quired within few minutes. Even so, we should emphasize that for the cases
where we have employed an analytical model of the patient flow, the exces-
sive calculations are accompanied by a high accuracy, an opportunity for other
researchers to reproduce the results, and a basis for obtaining bounds, which
might lead to solving these optimization problems to proven optimality at some
point in the future.

Lastly, but certainly not least, our methods have been focused on the spe-
cific application area of hospital patient flow. Nonetheless, there are a wide
range of similar application areas for which we deem that our findings are just
as applicable. Materials flowing through or between factories have character-
istics that are similar to patient flow. For instance, factory management may
wish to optimize the distribution of tools among machines, or determine when
and where to process certain jobs. The same applies to call centers that have
to schedule operators, and minimize their costs by simultaneously accounting
for the customer waiting time. Furthermore, the performance of certain com-
puter systems can be improved by considering the relation between randomly
occurring jobs and the processor configuration.

7.2.1 Future Work

In this thesis, we have opened the door to a variety of future research projects,
presented below:

Regarding the distribution of ward resources for inpatients (cf. Chapter 3
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and 4), further research into increasing the number of wards should be con-
sidered. In this thesis, we have only accounted for a subset of the wards that
constitute an entire hospital, whereas including all wards might lead to better
model fits, as well as an improved distribution of resources. Further, as the
number of wards increases, more constraints may appear in the optimization
problem, and thus the structure of the current search procedures may have to
be redefined. Finally, simulation experiments with different input (e.g. service
time distributions) can be useful in deriving the conditions under which our
modeling approach is no longer adequate.

For the scheduling of room resources specifically, more complex cases
should be investigated, for instance by introducing gender types, and that the
fraction of both room preferences and gender can be a function of the pre-
ferred ward.

For the optimization of acute patient flow (cf. Chapter 5) research should
be conducted to improve the search procedure, for instance by testing differ-
ent approaches to adjusting the bound on staffing. Even more important, in
order to properly assess the solutions and perhaps even determine that the
optimal solution has been found, future research should investigate whether
lower bounds on the optimal objective value can be obtained. Any research
in this direction, may eventually lead to algorithms that can guarantee proven
optimality, which will be highly valuable. This point is relevant to the aforemen-
tioned studies on inpatient flow as well.

In addition, to ensure that our model fits the behavior of acute patient flow,
further data on the emergency department should be uncovered to properly
assess our modeling approach. That is, the actual service time distributions,
the occupancy of patients at each node in the system, and the distribution of
patient waiting time.

For the scheduling of surgical patients (cf. Chapter 6), further simulation
experiments should be conducted to clarify the difference in performance be-
tween our simulation-based Markov decision process and the myopic GRASP.
From here, the results could further be compared to the optimal myopic solu-
tion.

Experiments with different base-policies should be considered with a view
to improve our approach. As we have already seen, such base-polices can
be employed as stand-alone scheduling approaches that may be able to out-
match the more advanced methods in many practical settings due to their fast
runtimes.

In general, a greater number of simulation experiments, or analytical work,
would help to clarify the conditions under which the (simulation-based) Markov
decision process is a practical approach to the scheduling problem. For in-
stance, research on lower bounds might reveal when the potential is small,
and that a different model is more beneficial. Additionally, experiments with
more complex systems may show that a myopic approach (which is often able
to capture more system characteristics) usually obtains better solutions.
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Chapter A

Appendix for Chapter 3

A.1 Equations

Derivative of the Erlang-B formula,
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(A.1)

where Gm,n
p,q

( a1,...,an,an+1,...,ap
b1,...,bm,bm+1,...,bq

∣∣ z) is the Meijer-G function, Γ(x) and Γ(s, x)
the complete and upper incomplete gamma functions, respectively; and Ψ(x)
the digamma function.

A.2 Figures
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Figure A.1: Simulated distribution of (3.9). Conducted with 30,000 replications.
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Figure A.2: Complete enumeration of the search space for the current distribution of
beds.
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Appendix for Chapter 5

B.1 Parameters

Staff Types Service Times (h)
Triage Nurse 1/6
Basic Physicians 1/3
Specialized Medical Physicians 3/4
Organ Surgeons 3/4
Orthopedic Surgeons 3/4

Table B.1: Assumed average service times for each of the five staff types.

From
To 1 2 3 4 5 Discharge

1 1.00
2 0.10 0.53 0.25 0.11 0.01
3 0.50 0.50
4 0.50 0.50
5 0.50 0.50

Table B.2: Routing probabilities for the queueing network presented in Figure 5.1.

Staff Type Waiting Time Target (h)
Triage Nurse 1/6
Basic Physician 1
Specialized Medical Physician 3
Organ Surgeons 3
Orthopedic Surgeons 3

Table B.3: Waiting time targets, νc, used to evaluate the performance of the ED.
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Variation l a pf y
add-remove 15 5 0.75 40

move-remove 15 5 0.75 10,000

Table B.4: Parameters used in the Recursive Bound Adaptation tests.

B.2 Algorithms

Algorithm 14 The tabu search heuristic.

1: xcj ← INITIALIZE(), L← ∅ . Initialize solution xcj and tabu list L
2: x∗cj ← xcj , f

∗ ← EV ALUATE(x∗cj)
3: while elapsedtime < maxtime do
4: N ← CREATE(xcj , pf , a) . Create neighborhood of size a, using solution
xcj and fraction pf

5: j ← 1, b← N [j]
6: for i = 2 to |N | do . Find the best solution in the neighborhood
7: f ← EV ALUATE(N [i])
8: if f < b and (N [i] /∈ L or f < f∗) then
9: b← f, j ← i

10: end if
11: end for
12: xcj ← N [j], L← UPDATE(N [j], l) . Move to the best permissible

solution and update the tabu list
13: if f < f∗ then
14: f∗ ← f, x∗cj ← xcj . Save the best known solution
15: end if
16: end while

return x∗cj
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