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Declaration: 
This is second version of the thesis. The following changes have been made to the first version:- 

1.   Some figures were enlarged to make the text in them more readable (figures: 1.1, 1.9, 3.3, 3.4, 3.5).  

2.   Some typing mistakes were corrected. 

3.   In the introduction chapter, following sentences were added to make the content more clear and 

elaborate:- 

                     i.        On page 3, last line reads: “In this system, ~ 25% of the lattice vibrations have the mean free 

path between 1nm to 5nm, and ~ 55% of the phonon modes lie in the range of 5nm to 100 nm. The phonon 

modes with mean free paths in the range of 0.1µm to 1µm constitute only 20% of the lattice thermal 

conductivity”. This is added to describe figure 1.2. 

                   ii.        On page 8, the third line after equation 1.10 reads: “The pressure term is important in 

sintering processes that involve high pressure, e.g. formation of Diamond under high pressure deep inside the 

earth. Entropy also becomes important in ordered systems, e.g. in the case of superlattices, like the Au-Cu 

alloy, where different kinds of atoms occupy definite geometrical positions instead of diffusing randomly”. 
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Abstract 
As human civilization faces global warming as the biggest existential threat it has ever faced, 

harnessing waste heat is a sustainable, renewable source of energy to reduce our dependence on fossil 

fuels. By directly converting heat into electricity, thermoelectricity offers solutions for waste heat 

recovery. In the past, very stable and high-performance telluride based thermoelectric generators (TEG) 

have been used for extraterrestrial missions to provide the energy needed for probing the dark deep 

space.  In the recent years, the interest in application of this technology to automobiles, factories, power 

plants, military and households has increased.  There has been great advancement in discovery of new 

and smart materials, exhibiting high thermoelectric (TE) performance, but the transition towards their 

commercialization is not smooth. While many new materials, such as Zn4Sb3, Mg2Si, SnSe, 

skutterudites, Cu2Se, etc., have been reported to show very high thermoelectric performance, the 

application of these materials in commercial TEGs is still hindered. One of the key challenges is to 

form stable and low resistant contacts for intensive working conditions. In this thesis, different joining 

methods were developed to make contacts between various TE materials and metallic electrodes.  

Interfacial microstructure evolution was investigated to study the contact stability and degradation 

mechanism. ZnSb was first chosen because it is non-toxic, low-cost, abundant and light weight 

thermoelectric material. The successful method developed for ZnSb is then extended to CoSb3 based 

Skutterudites, which are among the highest performing TE materials in the temperature range (300
 ᴼ
C-

600
 ᴼ
C). 

In the first part, conventional joining method using soldering alloys was investigated. Low-cost high 

performance ZnSb material was chosen to bond with different metal electrodes such as Ag, Ni and 

Crofer 22 APU using some commercially available Zn-based solders. The joints were tested for long 

time at high temperature and the interfacial microstructure and chemical composition were observed 

using scanning electron microscope equipped with energy dispersive x-ray spectrometer (EDS). It was 

found that both Ag and Ni electrodes reacted with Zn-based solders and formed a thick diffusion layer 

comprising of different intermetallic phases. Furthermore, Zn was found to deeply diffuse into ZnSb 

TE leg, resulting in change of material composition. Introduction of thick films of Ti and Cr as buffer 

layers could not stop this diffusion. In case of Crofer 22 APU, the reaction layer was found to be 

minor; suggesting that Crofer 22 APU was a good electrode to be used with Zn-based solders.  

A novel solder-free joining method using microlayers of Ti and Cr as interconnecting agents was then 

developed and demonstrated on the ZnSb TE system. It was found that, using microlayers of Ti and Cr 

as interconnecting agents, a very good interfacial contact was obtained without any gaps or cracks. 

Interestingly, the starting composition of ZnSb legs was also preserved. The interfacial contact of 

ZnSb/Cr/Ni was found to be stable after heat treatment at 400
 ᴼ

C for 30 hours, suggesting solder free 

joining as an effective method for reliable contacts in TE devices in the medium temperature range 

(200
 ᴼ
C-400

 ᴼ
C). 

The solder free joining method was further developed and applied to different high-performance 

materials in higher temperature range. A very stable n-type skutterudite material was chosen to join 

with Crofer 22 APU electrode. The joint was tested at 550 
ᴼ
C for 300 hours and the interfacial 
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microstructure was studied. Cr and Co based interconnecting layers were systematically investigated 

and it was found that the Cr/Co multilayer made the best contact.  
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Abstrakt 
Da den menneskelige civilisation står overfor global opvarmning som et af de største eksistentielle 

kriser nogensinde, er konverteringen af spildvarme til en bæredygtig vedvarende energikilde en 

attraktiv løsning, der kan reducere afhængigheden af fossilt brændstof. Termoelektricitet gør det muligt 

at konvertere varme til elektricitet. Tidligere har højt ydende og stabile tellurid termoelektriske 

generatorer (TEG) været brugt, til missioner udenjordisk ved at forsyne den påkrævende energi til 

sondering af rummet. I de seneste år er der opstået interesse for at udnytte denne teknologi i områder 

som biler, fabrikker, kraftværker, militær og husholdninger. Der har været stor fremgang i opdagelsen 

af nye og effektive materialer med høj termoelektrisk (TE) ydeevne, men overgangen mod 

kommercialisering er stadig en udfordring. Selvom nye materialer som Zn4Sb3, Mg2Si, SnSe, 

skutterudider, Cu2Se, osv. har vist sig at have glimrende termoelektrisk ydeevne, men anvendelsen af 

disse materialer i kommercielle TEGs er stadig en udfordring. En af de største udfordringer er at 

producere en stabil og lav resistent kontakt til intensive arbejdsforhold. I denne tese er forskellige 

sammensætnings metoder blevet udviklet, til at skabe kontakt mellem forskellige TE materialer og 

metalliske elektroder. Udviklingen af grænseflade mikrostruktur er blevet undersøgt for at undersøge 

kontakt stabiliteten og nedbrydningsmekanismen. ZnSb blev valgt som det første materiale på 

baggrund af, at det er et termoelektrisk materiale, som er let, ugiftigt, billigt, og let tilgængeligt. Den 

succesfulde metode udviklet til ZnSb, blev derefter udvidet til CoSb3 baseret skutterudider, som er 

blandt de bedste TE materialer ved en temperatur mellem 300
 ᴼ
C-600

 ᴼ
C. 

Den første del af tesen undersøger konventionelle sammensætningsmetoder ved brug af 

lodningslegeringer. ZnSb blev valgt som materialet der skal bindes til forskellige metal elektroder som 

sølv, nikkel og Crofer 22 APU. Materialerne blev loddet sammen med kommercielle zink baseret 

loddematerialer. Sammensætningen blev testet i lang tid ved høj temperatur, hvorefter grænseflade 

mikrostruktur og kemisk komposition blev observeret ved brug af elektronmikroskop (SEM) og 

Energi-dispersive røntgen spektroskopi (EDS). Undersøgelsen viste at både sølv og nikkel elektroderne 

reagerer med de zink baserede loddematerialer, hvilket resulterede i et tykt diffusions lag bestående at 

forskellige intermetalliske faser. Det resulterede også i, at zink var dybt diffunderet i ZnSb, hvilket 

resulterede i en ændring af materiale kompositionen. Introduktionen af en tyk film bestående af titan 

eller krom som buffer lag var ikke i stand til at stoppe diffusionen. Ved brug af Crofer 22 APU, viste 

det sig at reaktionslaget var minimalt; hvilket tyder på, at Crofer 22 APU var det optimale elektrode 

valg til zink baseret loddematerialer.  

En ny loddefri sammensætnings metode blev hermed udviklet, ved brug af mikrolag med titan og krom 

som sammenkoblings materialer. Denne metode blev demonstreret på ZnSB TE systemet. 

Undersøgelsen viste, at titan og krom mikrolag til sammenkoblingsmidler resulterede i et rigtig god 

grænseflade kontakt uden huller eller revner. Yderligere, var denne metode også i stand til at 

konservere den oprindelige komposition af ZnSb. Grænseflade kontakten af ZnSb/Cr/Ni viste sig at 

være stabil efter varme behandling ved 400
 ᴼ
C i 30 timer, hvilket tyder på at den lodnings frie metode 

er effektiv til at skabe pålidelig kontakt i TE enheder ved medium temperatur (200
 ᴼ
C-400

 ᴼ
C). 

Den lodningsfri metode var yderligere udviklet og anvendt til forskellige højtydende materialer i en 

højere temperatur interval. En særdeles stabil n-type Skutterudite blev valgt til sammensætning med 
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Crofer 22 APU elektroden. Den blev testet ved 550 
ᴼ
C i mere end 300 timer, hvorefter grænsefladens 

mikrostruktur blev undersøgt. De sammenføjende lag baseret på Krom og kobolt blev undersøgt 

systematisk og resultatet viste, at et flerlagede krom/kobolt gav den bedste kontakt. 
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Chapter 1: Introduction 
 

1.1 Thermoelectricity 
Thermoelectricity is a coupled effect whereby heat gradients drive charge and/or spin. 

Seebeck in 1822 observed for the first time the Seebeck effect[1]: when he heated one end of 

a metallic rod, he observed a deflection in the compass needle placed near the rod. He, 

mistakenly, interpreted this effect as magnetism induced by temperature gradient. A year 

later, Hans Christian Ørsted, the founder and the first director of the Technical University of 

Denmark, identified this effect as heat induced electricity, and coined the term 

‘thermoelectricity’[2]. About 12 years later, Peltier observed the back action counterpart, the 

Peltier effect[3]: a temperature gradient was maintained between their junctions when 

electrical current was passed through a closed loop made of two dissimilar conductors. Lord 

Kelvin in 1850’s established the relation between these two effects[4] and discovered a third 

thermoelectric phenomenon, the Thomson effect[5]: the absorption of heat in conductors 

subjected to a temperature gradient, when electrical current passes through them. The 

Thermoelectric effects are thermodynamically reversible; however, they are accompanied by 

irreversible processes like Joule heating. 

Thermoelectric devices have a broad spectrum of applications[6]. They not only work 

silently, they can be very small, e.g. miniaturized thermoelectric modules can cool electronic 

devices at microscale[7−9]. These devices are widely used as temperature sensors in 

electrical appliances[10], Peltier coolers[11] and as source of energy in remote places, like 

deep space[12]. Recently, attempts are being made to use this technology as a waste heat 

recovery mechanism in industry[13]. However, low energy conversion efficiency is the main 

challenge faced by state-of-the-art thermoelectrics, as compared to fossil fuels. 

1.1.1 Seebeck effect 
The physics of Seebeck effect is as follows: the Fermi Dirac probability distribution function, 

‘f(E)’ for the charge carriers in a conductor changes with temperature: 

f(E) =
1

e(E−Ef kBT)⁄ +1
.    (1.1) 

Where ‘E’ is the energy of the charge carriers, ‘Ef’ is the Fermi energy, ‘kB’ is the Boltzmann 

constant and T is the temperature. When a material is subjected to thermal gradient, the 

probability function does not remain uniform throughout. The gradient in the probability 

function makes the charges flow.  
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Figure 1.1: (a) Seebeck effect, (b) Peltier effect. 

Figure 1.1(a) is a schematic diagram of the probability distribution at the hot and cold sides 

of a thermoelectric material. Temperature gradient, ‘∆T’ induces a slope in probability 

distribution, 
df(E)

dT
. High energy electrons (red) from hot side slide down to the low energy 

states in the cold side, while low energy electrons (blue) from the cold side diffuse into the 

low energy states in the hot side that were thermally vacated (bipolar transport). This process 

does not change the position of the Fermi level in the system, i.e.  
dEf

dT
= 0, and an open 

circuit voltage develops as a result, ∆V = α∆T; where α =
1

q

d(E−Ef)

dT
 is the Seebeck coefficient 

and ‘q’ is the charge of majority carriers (negative for electrons and positive for holes). 

1.1.2 Peltier effect 
When a potential difference is applied across a junction of two dissimilar conductors, carriers 

flowing across the junctions absorb thermal energy at one junction and release on the other, 

cooling the first with respect to the other. This is illustrated in figure 1.1(b). The electrical 

potential applied across the interface of two materials lowers the Fermi level of the end with 

positive bias with respect to that in the other part of the junction such that the electrons 

crossing the interface fall into lower vibronic levels, releasing phonons. This process heats up 

this end until its probability function spills beyond the Fermi level to the extent that the 

vibronic states contributing to the conduction across the interface are at the same energies. 

Depending upon the band structures of the materials in contact, a temperature gradient, ‘∆T’, 

is established. The rate of heat transfer with respect to the supplied electrical current is 

defined as Peltier coefficient, ‘π’, and it is related to the Seebeck coefficient by the Kelvin 

relation: ‘π = α T’. 

1.1.3 Properties of thermoelectric materials 
Enhancement of the efficiency of a thermoelectric material requires optimization of a series 

of conflicting material properties, namely: the Seebeck coefficient, ‘α’; the electrical 

conductivity, ‘σ’; and the thermal conductivity, ‘κ’. The thermoelectric performance of a 

material is quantified in terms of the dimensionless figure of merit, ‘zT’[14]. 

zT =
α2σT

κ
=  

nqµ

κ
α2T    (1.2) 

(a) 
(b) 
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where ‘µ’, the mobility of the carriers - each with charge ‘q’, is directly proportional to the 

thermal conductivity, ‘κ’, at a particular temperature, ‘T’. Similarly, the higher the carrier 

concentration, ‘n’, the lower is the Seebeck coefficient, ‘α’. Generally, a polycrystalline 

degenerate semiconductor, that can manage to sufficiently scatter phonons but provides high 

mobility to the charge carriers - a ‘phonon-glass electron-crystal’ - would establish the 

delicate balance between these parameters[15]. The first generation of bulk thermoelectric 

materials was produced till a century ago with zT of 0·1−0·6. A revival in the research came 

in 1990’s when it was predicted theoretically that nanostructural engineering could enhance 

the thermoelectric efficiency of a material[16]. This explained the high efficiency of the 

second-generation materials, that came in 1960’s with traces of nanostructuring, having zT 

values around 0·8−1·7. The aim for the third generation to come is to achieve zT values 

greater than 2. 

Ioffe in 1957 argued that compound semiconductors not only had high Seebeck coefficients, 

but they also had lower thermal conductivities as compared to metals, and the degree of 

scattering of phonons in a disordered material was higher than that of electrons. His magnum 

opus ‘Semiconductor Thermoelements and Thermoelectric Cooling’ [14] gave a new life to 

thermoelectricity and marked the beginning of the second generation of thermoelectrics. The 

denominator of equation 1.2, ‘κ’, is the sum of electronic thermal conductivity, ‘κe’, and 

lattice thermal conductivity, ‘κl’. Electronic thermal conductivity is related to the electrical 

conductivity by Wiedemann-Franz law: κe= σLT, where ‘L’ is the Lorentz number. For 

metals, the electronic part accounts for most of the thermal conduction, but for 

semiconductors, most of the heat is carried by lattice vibrations. The lower its thermal 

conductivity, the higher temperature gradient a material can maintain.  

 

Figure 1.2: Contributions of phonons with various mean free paths to the accumulated lattice thermal 

conductivity of PbTe, calculated at temperatures of 300K and 600K. Image adapted from[17]. 

To improve the figure of merit, most of the attention has been paid to lowering the lattice 

thermal conductivity by controlling the microstructure of materials such that the electronic 

and heat conduction are decoupled[15], [17]. In PbTe[17], one of the leading thermoelectric 

materials discovered in 1960’s, the typical value of electronic mean free path is ≈ 30nm, 

while phonons have mean free paths in a wide range of 1nm – 10µm as depicted in figure 1.2. 

In this system, ~ 25% of the lattice vibrations have the mean free path between 1nm to 5 nm, 
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and ~ 55% of the phonon modes lie in the range of 5nm to 100 nm. The phonon modes with 

mean free paths in the range of 0.1µm to 1µm constitute only 20% of the lattice thermal 

conductivity. The transport of electrons and phonons is sufficiently decoupled because of 

disorder on multiple length scales: from polycrystalline grain boundaries to nanoinclusions to 

point defects. These defects do scatter electrons as well, but it turns out to be an affordable 

compromise. However, there is a limit to this route[18], although - in theory - it has been 

recently proposed that careful nanoarchitecture can get over this limit[19]. The numerator of 

equation 1.2 contains the Power Factor, ‘α2σ’, which depends on the density and dispersion 

of energy states in the vicinity of Fermi level. These are the states that take part in the charge 

transport. Recently, people have started paying more attention to modifying the electronic 

structure to improve the power factors, making novel materials that involve careful doping 

and/or nanofabrication[20]–[22]. Point defects not only prove to be useful in scattering 

phonons, but also, they may improve electrical power factor by providing higher carrier 

concentrations or resonant electron states near the Fermi level[23]–[25]. Moreover, Interface 

potentials at nanoinclusions and the grain boundaries can suppress the disadvantageous 

bipolar transport of thermally generated electron-hole pairs in most narrow bandgap 

thermoelectrics. 

Thermoelectric energy converters usually operate at temperatures higher than the normal 

temperature range for most semiconductors. Therefore, their stability at high temperature is a 

matter of great concern, and while a material may exhibit very good thermoelectric 

properties, it may not be able to withstand high temperature gradients and long operating 

times[26]. This emphasizes importance of investigating phenomena like strains within these 

materials[27], phase transitions[28], thermal expansion[29], mechanical strength[30], 

oxidation and sublimation[31], etc. 

1.2 Thermoelectric devices 
Conventional thermoelectric devices are fabricated as set of unicouples whereby each 

unicouple has one leg of p- and one of n-type thermoelectric material, with dimensions of few 

millimeters, which are connected electrically in series but thermally in parallel as shown in 

figure 1.3.  

 

 

Figure 1.3: A conventional thermoelectric module. The yellow and purple colours demonstrate the p- and n-

type of conduction. The assembly is packed between two thermally conducting ceramic plates (e.g. alumina or 

beryllia). Metallic strips (e.g. copper) are used as electrodes for electrical conduction. Image adapted from [32]. 

When these legs are subjected to a heat gradient, their carriers flow towards their colder ends 

and, due to difference in sign, a potential difference of a few millivolts per degree is achieved 
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between the colder ends of both the legs. The magnitude of the potential difference depends 

upon the temperature difference between the hot and the cold sides, as well as on intrinsic 

properties of the materials used. If this set up has to be used as a Peltier cooler, electrical 

power needs to be supplied to pump heat from one end to the other. The performance and 

stability of a thermoelectric device is not only dependent on the performance and stability of 

the thermoelectric materials that the legs are made of, but also on the properties of electrodes 

and the soldering/brazing alloys that connect the legs to the electrode stripes. It also depends 

on the temperature gradient that is applied across the device. Therefore, not only the physical 

properties of the p- and n-type semiconductors have to be taken into consideration, but also 

the properties of the metal-semiconductor interface, especially their stability and electrical 

and thermal resistance are important. 

Consider a thermoelectric unicouple consisting of p-type and n-type thermoelectric legs of 

length ‘L’ and cross-sectional areas ‘Ap’ and ‘An’, respectively. A temperature gradient, 

‘ΔT=Th – Tc’, is applied between its hot and cold ends. Hot side of the legs is connected by a 

metallic electrode while a load of resistance ‘RL’ is applied across the cold ends of the 

unicouple. The internal resistances are ‘Rp’ for the p-type leg and ‘Rn’ for the n-type leg. The 

total Seebeck coefficient, ‘S’, of the unicouple is the sum of the magnitudes of the Seebeck 

coefficients, ‘αp’ and ‘αn’, respectively of the p- and n-type legs, i.e.: 

 S = |αp| + |αn|.  

Similarly, the total internal electrical resistance, ‘Ri’, is the sum: 

Ri = Rp + Rn = L (
1

σpAp
+ 

1

σnAn
) 

and the total internal thermal conduction, ‘Ki’, is:  

Ki = (κpAp + κnAn)/L 

where ‘κp, σp’ and ‘κn, σn’ are the thermal and electrical conductivities of the p- and n-type 

legs, respectively. 

In real applications, heat is lost to the environment due to convection and radiation. If we 

consider the ideal case, with no heat loss, no contact resistances and constant value of 

Seebeck coefficient along the legs, the emf (electromotive force) or the open circuit voltage 

is: 

ΔV = SΔT; 

and the current flowing through the load is: 

I = 
SΔT

Ri + RL
. 

The power delivered to the load is: 

P = I
2 
RL = (

SΔT

Ri + RL
)

2
RL. 

The total heat transfer from the hot side, ‘qh’, is a sum of conductive heat transfer and the 

Peltier cooling associated with the current flow: 
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qh = KiΔT + STh. 

The efficiency of the unicouple is, therefore, 

η = 
P

qh
=  (

SΔT

Ri + RL
)

2 RL

 KiΔT+ STh
. 

According to the maximum power transfer theorem, the output power reaches its maximum 

when ‘RL = Ri’, but the efficiency is higher if ‘RL > Ri’, because a higher amount of source 

power would be consumed by the load.  

The maximum efficiency of a thermoelectric device is defined in terms of the dimensionless 

figure of merit for the modules, ‘ZT’, as: 

ηmax = ηc  ×  [
(ZT + 1)1 2⁄ −1

(ZT + 1)1 2⁄ + 
Tc
Th

]   (1.3) 

Where, ‘ηc =  
ΔT

Th
’ is the Carnot efficiency and, ‘ZT = 

S2T

RiKi
’. 

If we incorporate the thermal and electrical contact resistances, ‘Kc’ and ‘Rc’, and the total 

thermal and electrical resistances, ‘K’ and ‘R’, can be defined as K = Ki (1 + 
2Ki

Kc
)

−1

 and 

R=Ri+2Rc [33], and the device figure of merit is: ZT = 
S2T

RK
. 

The electrical resistance is also affected by the Schottky barrier between the metal and 

thermoelectric semiconductor, but the major part of thermal and electrical contact resistances 

greatly depends on the quality of joining. If the quality of the joint is not good enough, the 

cold side of the thermoelectric legs will not be as cold as the cold side of the device and the 

hot side of the device will also lose heat at the interface due to poor conduction. 

The electrical and thermal contact resistances are quantified in terms of area specific contact 

resistances, i.e. ρc = RcA and κc = Kc/A. A joint with contact resistance lower than 10% of the 

total resistance is considered to be a good contact. Therefore, for better performance, the 

length of the leg should be more than 5mm [34]. 

1.3 Diffusion in solids 
Diffusion is the net movement of molecules or atoms from a region of high concentration to a 

region of low concentration, resulting in a uniform dissolution. Concentration gradient is the 

main driving force behind this phenomenon. It is different from convection in that it does not 

involve bulk movement of particles. A classic example of diffusion is dissolution of salt in 

water. Diffusion takes place in all forms of matter; here we consider the case of solids. In 

addition to concentration gradient, other factors also play their role, like temperature, stress, 

solubility, defects, etc. Diffusion is an isotropic process, i.e. it does not have a preferred 

direction. However, if the material has anisotropy, e.g. non-cubic lattice, the diffusion can be 

different in different directions. Diffusion in solids takes place when a solid gets in contact 

with some other solid, liquid or gas; or when there are inhomogeneities within the solid itself 

such that annealing has to be performed and atoms diffuse to regions of low concentrations in 

order to reduce the gradients. The phenomenological description of diffusion processes, still 

valid today to a great extent, was given by Fick in 1855. 
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Fick’s first law relates the diffusive flux of a concentration to spatial gradient of the 

concentration in a steady state, as: 

j =  −D
∂C

∂x
      (1.4) 

where ‘j’ is the mass flux (with dimensions of ML
-2

T
-1

), ‘D’ is the diffusivity (with 

dimensions of L
2
T

-1
), ‘C’ is the concentration (with dimensions of ML

-3
) and ‘x’ is the 

measure of length. Equation (1.4) is Fick’s first law. 

 

Figure 1.4: Mass fluxes in and out of a volume V = A·∆x. 

Fick’s second law describes with the change in concentration as a result of diffusion with 

respect to time. It can be derived be considering the mass balance. The change in 

concentration per unit time in a volume ‘V = A·∆x’ equals the sum of the diffusion fluxes in 

and out of the volume times the area: 

∂Mtotal

∂t
=  

∂Min

∂t
− 

∂Mout

∂t
       

𝑉
∂C

∂t
= A · [j(x) − j(x + ∆x)]     

∂C

∂t
= −[j(x + ∆x) − j(x)]/∆x     

for infinitesimal length, ‘∆x→0’; 

∂C

∂t
=  −

∂j

∂x
      (1.5) 

inserting equation (1.4) in (1.5), 

∂C

∂t
=  D

𝜕2C

∂𝑥2
.      (1.6) 

Equation (1.6) is Fick’s second law for one dimensional case, with constant diffusivity, ‘D’. 

This is a continuity equation corresponding to the conservation of mass. In three dimensions, 

Fick’s second law becomes: 

∂C

∂t
=  D (

𝜕2C

∂𝑥2
+

𝜕2C

∂𝑦2
+

𝜕2C

∂𝑧2).   (1.7) 

If the system involves other fluxes too, then equation (1.4) is not sufficient anymore and 

other fluxes also need to be incorporated in equation (1.7). If the diffusion co-efficient is not 

constant in all directions, then equation (1.7) becomes: 
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∂C

∂t
=  𝛁 · (D𝛁C)     (1.8) 

If the diffusion co-efficient varies with position such that, D = D(x), equation (1.6) becomes: 

∂C

∂t
=  

∂

∂x
(D

∂C

∂x
) =  

∂D

∂x

∂C

∂x
+  D

𝜕2C

∂𝑥2
 .  (1.9) 

There can be many reasons behind this dependence. For example, the diffusion coefficient 

may depend on concentration which is varying as the process goes, or system is subjected to 

a temperature gradient, and so on and so forth. Similarly, if an electrical potential or stress 

makes the ions or atoms move in a certain preferred direction, we will need to modify the 

flux equation. Different methods have been developed to solve these problems numerically, 

using data obtained by experimental measurements[35].  

1.4 Alloys and phase diagrams 
In chemistry, a region of a material with a homogeneous atomic structure is called a phase. 

The making of alloys and chemical phases is one of the most important phenomena that 

shape the thermal history of thermoelectric materials. When thermoelectric materials are put 

to operation, their microstructure and properties evolve and the knowledge of phase 

transitions becomes crucial.  

A metallic alloy is a chemical mixture of a metal and one or more other metals or non-metals. 

A binary alloy is made up of two chemical elements, a ternary alloy contains three and a 

quaternary alloy has for constituents. Alloys are defined by giving the molar concentrations 

of their components or their chemical formulae. An ideal solid solution is formed when 

elements are dissolved completely and homogeneously in a solid matrix. In all alloys, there is 

one principle element to which other elements are added (e.g. aluminum alloys have Al as 

principle constituent). In this section, we will consider the simple case of binary alloys. When 

a binary alloy solidifies, its microstructure corresponds to either a solid solution or two 

separate solid solutions, or a chemical compound embedded in a solid solution.   

For a given alloy composition of volume, ‘V’, at a constant temperature, ‘T’, and pressure, 

‘P’, the Gibbs free energy, ‘G’, is defined as: 

G = U + PV − TS = H − TS    (1.10) 

where ‘U’ is the internal energy, ‘S’ is the entropy and ‘H’ is the enthalpy. Each mixture has 

a free energy, and the state with the lowest free energy is the one that forms at 

thermodynamic equilibrium. The pressure term is important in sintering processes that 

involve high pressure, e.g. formation of Diamond under high pressure deep inside the earth. 

Entropy also becomes important in ordered systems, e.g. in the case of superlattices, like the 

Au-Cu alloy, where different kinds of atoms occupy definite geometrical positions instead of 

diffusing randomly. Generally, in the solid state, pressure has a negligible contribution to the 

energetics of the system and therefore it can be ignored. Entropy is also very small for most 

solids as they have a regular order in the form of lattice structure. Therefore, the material 

state of most alloys can be described by the composition and temperature only. The two 

dimensional plots showing variation in equilibrium composition with respect to temperature 

are called “phase diagrams”.  
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In the case of pure substances, the melting point is a unique temperature at which the 

substance changes from solid state to the liquid state. However, in the case of alloys, both the 

solid and liquid states may coexist over a range of temperature. Below the lower end of this 

range, the alloy is all solid; and above the upper end of this range, the alloy has been molten 

completely. These are called the “solidus” and “liquidus” temperatures. Consider the phase 

diagram of an interesting thermoelectric alloy, the Cu-Ni system, in figure 1.5. 

 

Figure 1.5: Phase diagram of Cu-Ni alloy[36]. 

We can read from the phase diagram that the pure Cu has a unique melting point of 1085 
ᴼ
C 

and pure Ni has a unique melting temperature of 1455 
ᴼ
C, but all the alloying compositions 

have a region of solid micro-particles mixed in a liquid. Here the solid solution exists for all 

compositions of Cu-Ni alloy. To understand the solidification of a certain composition, we 

consider the example of Cu˗60Ni, i.e. the solid solution with 60% Ni.  

 

 Figure 1.6: Solidification of Cu˗60Ni alloy[36]. 
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As shown in figure 1.6, the alloy is completely molten into liquid phase above 1350°C, with a 

perfect composition of 60% Ni and 40% Cu. As we cool down and reach this point, the alloy 

starts to solidify. However, looking at the 1350°C point on the solidus line, we learn that the 

first micrograins to form are those with 70% Ni. When we cool down further, we see that the 

composition of the liquid is getting richer in Cu content. At point 1330°C the new 

micrograins have a composition of 65% Ni. The content of Ni in liquid has reduced to 54%. 

At 1310°C, the final solidification takes place and the content of Ni has dropped down to 

48%. In the solid phase, the composition of the alloy is not homogeneous, but has the same 

lattice structure. This alloy will undergo internal diffusion to achieve homogeneity. 

The Cu-Ni solid solution is “single-phase”. It is not further divided into other phases, which 

means that the atomic structure does not change with composition. In more complex systems, 

this shall change. Usually there is a “solubility limit” for every phase and the principle 

element cannot dissolve the other substance beyond that limit. The lines separating different 

phases in the solid state are called “solvus boundaries”. 

 

Figure 1.7: Phase diagram of Pb-Sn alloy[37]. 

Figure 1.7 presents the Pb-Sn phase diagram. In the solid state, there are two “single-phase” 

regions in this phase diagram, on the left is Pb-rich region and on the right is Sn-rich region. 

In between them is a “two-phase” region which is a mixture of solid solutions of Pb and Sn. 

Any point in two phase region corresponds to a weighted mixture of the single phases 

existing at that particular temperature on the solvus line. All three regions are separated by 

solvus lines. Note that the solubility of pure substances is quite low. Especially on the right 

side of the phase diagram, a very narrow Sn-rich region shows that Sn tends not to dissolve in 

Pb. The same is the case for Ni in Zn[38]. The points where the solvus and solidus lines 

match is the point of maximum solubility. These are on 26.3 mol.%Sn for Pb in Sb and 97.6 

mol.%Sn for Sn in Pb, at 454.6K temperature.  

Now consider the point where the two liquidus lines match. This common lower limit of two 

liquidus lines is called the “eutectic point”. At this composition and temperature, like for the 

melting point of a pure solid, the solid and liquid phases can coexist. Brazing and soldering 

alloys are preferred to have eutectic or near-eutectic compositions.  
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Figure 1.8: Phase diagram of Ni-Zn alloy[39]. 

In many cases, chemical reactions take place and new compounds form between the alloying 

elements. These are called intermetallic compounds, if the reactants are metals. These are 

single phases of fixed composition, distinct crystal structure and unique melting points. 

Usually they melt at higher temperature due to thermodynamic stability. As an example, have 

a look at the phase diagram of Ni-Zn system in figure 1.8. This diagram has many phases in 

the solid region. The crystal structures of different phases in Ni-Zn phase diagram are given 

in Table 1.1. 

Phase Composition 

(mol.% Zn) 

Space 

group 

Prototype 

(Ni) 0˗37.9 Fm3̅m Cu 

β 46.5˗57.5 Pm3̅m CsCl 

β1 43˗51.2 P4/mmm γCuTi 

γ 71.5˗85.2 I4̅3m Cu5Zn8 

δ 88.9 C12/m1 ……. 

(Zn) 100 P63/mmc Mg 

Table 1.1: Crystal structures in Ni-Zn system[39]. 

1.5 Joining mechanisms 
The making of stable and low resistance contacts between thermoelectric legs and metallic 

electrodes is as crucial as the stability and performance of the thermoelectric material itself. 

The contact layers between the thermoelectric legs and metallic electrodes need to have good 

electrical and thermal conductivities and reasonable mechanical strength. Thermoelectric 

devices operate at high temperature. Therefor a good understanding of the bonding 

mechanisms is also essential. There is a set of macroscopic and microscopic properties and 

mechanisms that govern this bonding. First and foremost is the thermal expansion coefficient: 

the parts of a system, that is supposed to be subjected to thermal gradients, need to have 
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compatible coefficients of thermal expansion such that the joints do not break up during the 

process due to accumulation of thermal stresses. Then there are bonding mechanisms. 

Bonding between two surfaces might result from mechanical interlocking whereby a molten 

fluid fills the pores on the surfaces and holds them together upon cooling. It can also have a 

chemical dimension, i.e. it might result from formation of ionic or metallic bonds. 

Interatomic forces like van der Waals interaction might also play their part in holding the two 

surfaces together.  Another important mechanism is diffusion: atoms or micro-grains from 

one material can transfer to the other, resulting in a good adhesion of the surfaces. This might 

also involve co-sintering when subjected to heat and pressure. Crystallographic matchup is 

also important as similarly oriented planes and matching lattice constants make stronger 

bonds, but since thermoelectric materials are mostly poly-crystalline, it does not play a 

significant role here. 

The joining processes are accompanied by cleaning mechanisms, application of heat and 

pressure. Cleaning mechanisms remove the oxidation layers and contaminants from the 

surfaces, in order to make intimate contact possible. The choice of cleaning mechanism 

depends on the hardness of oxides (e.g. 1800 HV for Al2O3 and 160 HV for Cu2O, while 

harnesses of Al and Cu are 15 HV and 40 HV respectively [40]) and the nature of the 

contaminants (e.g. organic contaminants can be removed with acetone). Strength of the joint 

is directly proportional to the actual bond area. Heat and pressure help reduce the yield 

strength of the base materials and permit plastic deformation to occur, that results in joining. 

It is important to ensure homogeneity of heat and pressure. Pressure can rupture the oxide 

layer on the surface and heat can make the oxide particles dissolve in metal matrix. Pressure 

and heat also make the diffusion and chemical reactions occur faster. After the process of 

bond formation, the recrystallization and growth of grains and realignment of dislocations 

occurs at the interface. This stabilization and homogenization of interface happens at lower 

temperatures and longer times compared to the bonding process.  

Now we present an overview of mechanisms adopted to connect thermoelectric materials to 

metallic electrodes: 

1.5.1 Soldering and brazing 
Soldering and brazing is joining of two surfaces by molten filler, without melting the base 

materials. These fillers are usually metallic alloys, characterized by their solidus and liquidus 

temperatures (see figure 4). By convention, if the filler melts below 450 
ᴼ
C, it is called a 

solder and the process is called soldering; above this temperature, the process is called 

brazing.  
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Figure 1.9: An overview of the solidus and liquidus temperatures of some famous fillers in the relevant 

temperature range [41][42][43][44][45][46]. 

The underlying phenomenon in this process is called wetting: the filler fluid penetrates 

between the base materials by capillary force. Wettability depends on many physical 

properties, i.e. composition of the filler and the base materials, flux, temperature, 

microstructure and condition of the surface, atmosphere, etc. The major obstacle against 

wetting is surface oxidation and every soldering or brazing process requires a removal or 

breakdown of the oxide layer. Therefore, the first step is to apply fluxes or polishing to 

remove the oxidation layer as a precursor to wetting.  

The process of wetting is quantified by the following Young’s equation[47]: 

γls =  γsf − γlf cosθ    (1.11) 

where ‘γls’ is the interface tension between the melt and the surface of the base material, ‘γsf’ 

denotes the interface tension between the flux and the solid base material, ‘γlf’ is the interface 

tension between the melt and the flux and ‘θ’ is the contact angle.  

The metallurgical reaction of the melt and base material starts after wetting and results in 

formation of a reaction layer or the intermetallic compounds. During this process, base 

material dissolves into the melt, and it is more evident when melt is an alloy of the base 

material. This dissolution can be quantified with the help of following equation[47]: 

dC

dt
= K

A

V
(Cs − C)     (1.12) 

Here ‘C’ is the concentration of the solute of base material and the melt after reaction time 

‘t’, ‘K’ is the proportionality constant, ‘A’ is the area of contact between the base and the 

melt, and ‘V’ is the volume of the melt. ‘Cs’ is the saturation limit of ‘C’ which rises with 

increasing temperature. Since the formation of intermetallic compounds may damage the 

excellent properties of our materials, choice of an optimum temperature and time is crucial. 

In the worst case, the filler may completely penetrate into the base materials which can 
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damage the joint quality as well. This phenomenon becomes very important when it comes to 

thermoelectric devices that operate at high temperatures for long times. Therefore, it is better 

to have a look at the phase diagrams of possible alloy systems and choose such filler that 

does not react fast with the base material. The growth rate of intermetallic compounds can 

also be suppressed by adding a buffer layer. However, addition of buffer layer may come as a 

compromise on the joint quality. Another factor is the microstructure of the base material, the 

filler penetrates through grain boundaries and this is fast in the case of materials with small 

grain size. 

Use of soldering/brazing as joining mechanism is an old practice in thermoelectric 

technology. Weinstein et al.[48] successfully bonded p-type PbTe thermoelectric legs to pure 

iron electrode by using SnTe as braze alloy. The process was completed in two stages: first a 

layer of SnTe powder was kept over Iron electrode at 850 
ᴼ
C for 1 hour to let it melt and wet 

the surface of the electrode, and then, at a lower temperature of 808 
ᴼ
C the SnTe coated 

surface of the electrode was pressed on the thermoelectric leg for 2˗4 minutes. The bond was 

observed to be strong and contact resistance was measured to be ~10µΩcm
2
 for carefully 

prepared joints.  

A similar but isothermal joining process, called ‘solid-liquid interdiffusion bonding’[49], 

involves a thin layer (few microns) of filler, preferably having a eutectic composition so that 

it melts thoroughly at the eutectic temperature. After the filler melts, the joint is kept at 

constant temperature for long enough time such that the melting point of the filler increases 

beyond this temperature due to dissolution of base materials. As a result, the filler is fully 

consumed and the interface solidifies at constant temperature which often results in 

homogeneous joint microstructure. In this process, the formation of intermetallic layer is 

desirable and, because of the small volume of the melt, this layer does not grow too much to 

damage the quality of materials. This process can be described by Fick’s equation of mass 

transfer: 

(CL − CS) · 
dX(t)

dt
  = DS  ·  

∂

∂x
CS −  DL  ·  

∂

∂x
CL  (1.13) 

‘CL’ and ‘CS’ are the liquid and solid concentrations at the interface, ‘X(t)’ is the position of 

solid-liquid interface that moves during the process of dissolution, ‘DL’ and ‘DS’ are the 

solute diffusivities in the liquid melt and solid base material. Pressure does not affect this 

process, however, excessive pressure may squeeze so much that some areas do not bond due 

to lack of filler, hence resulting in porosity. Heating rate also needs to be high enough such 

that the filler does not diffuse into the base materials before reaching its melting point.  

Lin, et al.[50] investigated solid-liquid interdiffusion bonding between Zn4Sb3 thermoelectric 

material and copper. The Zn4Sb3 leg was electroplated with Ni and then Ag layer, while the 

Cu electrode with Ag and Sn layers respectively, with thickness of 4µm each. The 

Zn4Sb3/Ni/Ag/Sn/Ag/Cu assembly was hot-pressed in vacuum over temperatures of 250°C˗ 

325°C for 5˗30 minutes and a respective set of samples was obtained. Molten Sn reacted with 

Ag to form Ag3Sn and Cu3Sn, resulting in isothermally solidified strong joint. Interstitial Zn 

from Zn4Sb3 diffused into the Ni barrier layer to form γ ˗ Ni5Zn21. Traces of Zn and Sb 

migration into the Sn layer were also identified.   
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1.5.2 Diffusion bonding 
Diffusion bonding is a joining process whereby two clean solid surfaces bond at atomic level 

as a result of local plastic deformation under elevated temperature and moderate pressure for 

relatively long time[51]. The mechanism of this process can be thought of as a sintering 

process. Both the materials are heated upto ~ 50˗70% of their melting point which results in 

interdiffusion of the grains of the two surfaces and formation of new microstructure at the 

interface. This process completes in two stages. When the two surfaces come close, due to the 

inevitable surface roughness, the first contact is made by the asperities. Hence the pressure at 

those grains is very high, resulting in breaking up of the asperities and microplastic 

deformation. This stage completes when, as a result of increasing contact area, the local stress 

becomes less than the yield strength of the material. Still the bonding has only occurred at 

10% of the area. Now the second stage kicks in. Thermally activated sintering mechanism 

leads to elimination of voids and recrystallization of the interface. This method usually 

produces joints of very high quality but it comes with the limitation of high temperature and 

long time. Weinstein et al.[48] bonded n-type PbTe thermoelectric legs with pure iron by 

interdiffusion mechanism at 858 
ᴼ
C for 20˗30 minutes, a temperature below PbTe-Fe eutectic. 

The joint was reported to be strong enough with low contact resistance (~10µΩcm
2
). 

1.5.3 Co-sintering 
Sintering is a process of heating and pressing of a powder in order to impart strength and 

integrity. The heat and pressure bind micrograins of the powder together to reach 

solidification, without decomposing or melting them. Spark plasma sintering (SPS) is an 

ultra-fast sintering process which involves high electrical current and uniaxial pressure. The 

heat comes from localized Joule heating at the boundaries of the micrograins. This one-step 

sintering is not only cost effective, but it also helps preserve the phonon-glass characteristics 

of thermoelectric materials. Recently this method is also being applied to sinter powders of 

thermoelectrics together with electrodes. Sintering involves three stages: 

(1) Evaporation and condensation: At first stage the micrograins start to form necks. The 

mass transfer from the areas of high curvature to the areas of low curvature improves the 

contact between the grains and increases the strength. As more times passes, the contact area 

increases and the material becomes stronger. If the starting powder is fine enough, the mass 

transfer would be faster and the process will take lesser time. The temperature has to be 

optimally chosen so that while one achieves fast enough mass transfer, the solid phase of the 

micrograins and chemical composition are preserved. This requires knowledge of thermal 

phase transitions in the material. 

(2) Diffusion by vacancy: In the second stage, the material starts to shrink as necking starts to 

push the pores from regions of high density to the regions of low density. Mass diffusion 

within micrograins starts to maximize the contact area. A network of isolated pores is formed.  

(3) Viscus flow: This last and final stage involves further densification and pore elimination. 

Due to the applied pressure and heat, the pores keep on getting smaller and smaller until a 

steady state is reached where the material can no longer push into them. 

Liu et al.[52] co-sintered layers of Ni with p-type Bi0.4Sb1.6Te3 and n-type Bi2Te2.7Se0.3 

thermoelectric materials using a hot-pressing method.  The bonding strengths were ~30MPa 

for p-type and ~20MPa for n-type samples. Although the contact resistance for p-type 
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samples was less than 1 µΩcm
2
, it was very large for n-type samples (210 µΩcm

2
). In the n-

type samples, significant diffusion of Te into the electrode and Ni into the thermoelectric 

material was observed. It was concluded that the diffusion of Ni into the thermoelectric 

material damages the electrical conductivity, because it changed the stoichiometry of the 

material in the vicinity of the interface such that a p-type region was developed. 

Kraemer et al.[53] sintered powders of silver and MgAg0.965Ni0.005Sb0.99 thermoelectric 

material with spark plasma sintering method. A precise amount of thermoelectric powder was 

sandwiched between silver powders inside a graphite die and SPS sintered at 300 
ᴼ
C to obtain 

~5mm long leg with ~0.25˗0.35 mm thick electrodes. Silver was chosen as an electrode 

because it’s thermal expansion coefficient (19·5×10
-6

/
ᴼ
C) matches with that of 

MgAg0.965Ni0.005Sb0.99 (20×10
-6

/
ᴼ
C). The other reason for this choice was that silver being one 

of the elements constituting the thermoelectric material, will have a small concentration 

gradient for diffusion towards the material. The joining resulted in a well-defined interface, 

and little interdiffusion of elements with no significant effect on contact resistance was 

observed.  

1.6 Electronic structure of contacts  
The metal-semiconductor contact can either be Shottky or Ohmic, depending on the IV 

characteristics. An ohmic contact is the one that has a negligible potential drop across the 

metal-semiconductor junction. An ideal Shottky contact has rectifying behavior and higher 

contact resistance. The quality of the electrical contacts is not only determined by the 

homogeneity and strength of physical bonding, it is also influenced by the electronic band 

structure across the interface.  

Schottky [54] and Mott [55] for the first time formulated the bending of bands in 

semiconductor side of the metal-semiconductor junction in 1938. The Schottky - Mott rule 

defines a potential barrier that the charge has to cross to move from one side of the interface 

to the other. The height of the potential barrier, ‘Φb’, depends on the difference between the 

work function, ‘Φm’, of the metal and the electron affinity of the semiconductor, ‘χs’, i.e.: 

Φb =  Φm − χs    (1.14) 

The height of this barrier is usually in the range of 0.5˗1.5 eV [56], which is well above the 

thermal energy of charge carriers in the operating temperature range of Thermoelectrics 

(~0.05˗0.1 eV). When metal-semiconductor joint is formed, charges from one surface flow 

towards the other to align the Fermi level, ‘EF’, in the system. As the metal has large density 

of carriers, the charge build up at the interface is screened within a few Ångstroms, i.e. the 

electric field does not even penetrate through the first atomic layer of the metal. In the case of 

semiconductors, the Debye length is usually of the order of ~ 10 nm.  
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Figure 1.10: Band diagram of a metal semiconductor (n-type) interface according to the Schottky-Mott model. 

W is the width of the depletion region. Image adapted from [57]. 

This gives rise to the bending of the conduction and valence bands (‘EC’ and ‘EV’) in the 

semiconductor, as shown in figure 1.5. The region with bending bands is called the depletion 

region; whose width, ‘W’, is inversely proportional to the carrier concentration in the 

semiconductor. 

However, this is a very simple model and does not describe the complete picture [56]. First 

and foremost phenomenon that needs to be taken into account is the tunneling effect for 

degenerate semiconductors. In the case of degenerate semiconductors, the depletion region 

becomes thinner and therefore charge carriers can tunnel through the potential barrier[58]. 

This effect reduces the contact resistance. Then there are the interface electronic states that 

result from the decaying solutions of Schrödinger’s equation at the interface (the metal-

induced gap states or ‘MIGS’) and the chemical bonding between the surfaces. These 

interface states trap charges and pin the Fermi level at the interface[59]. These surface states 

assist the tunneling of carriers across the interface[60]. There are other mechanisms too that 

contribute to the electronic conduction across the interface. The inter-diffusion and defects at 

the interface[61] can cause fluctuations in the interface free energy. These defects are usually 

related to the synthesis and growth, or growth. Compound semiconductors can have 

polarization of electronic charge. Interface diploes[62] can provide a layer of charge at the 

interface that will affect the conduction. Strain due to lattice mismatch[63] also changes the 

interface energy and influences conduction.  

1.7 Motivation and outline 
Today, the global energy market is increasing rapidly because of increasing use of modern 

technology and population growth. According to the estimates of the International Energy 

Agency, “the world is set to add the equivalent of today’s China plus India to its energy 

demand by 2040” [64]. While it means an increased dependence on fossil fuels, the 

hydrocarbon reserves are depleting and temperatures across the globe are rising to alarming 

levels due to CO2 and CH4 emission. On the other hand, the use of green technologies, like 

hydropower, solar energy, wind energy, geothermal energy and thermoelectric energy is on 

the rise. Thermoelectric technology is one of the areas which have attracted lot of attention 

due to its technological flexibility. However, one of the major challenges in the path towards 

a widespread application of this technology to daily life is the stability of thermoelectric 

devices. Thermoelectric devices usually work at elevated temperatures, and because of that, 

thermal degradation of the interfaces puts its long term reliability to test. 
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The overall objective of this thesis is to understand the scientific and technical problems of 

the interfacial contacts in TEGs and their dynamic behavior at high temperatures, and to 

develop innovative joining methods for making stable and good TE contacts. 

Among many interesting materials for commercial applications [65], we chose to study 

formation and interface evolution of contacts for ZnSb and CoSb3 based Skutterudites. The 

first two chapters of this thesis describe the scientific foundations and methods used to carry 

out this research. Third chapter presents an overview of the structural and thermoelectric 

properties of the TE materials chosen for this research. While both the Znsb and skutterudites 

have very different carrier concentrations and bandgaps, the electrical conduction is metallic. 

In both cases, dramatic reduction of thermal conductivity is achieved by introducing defects 

in the lattice and exploiting the complexity of the unit cell. The unit cells of these materials 

have void spaces where weekly bonded impurities can sit and cause the decay of lattice 

vibrations. This phenomenon was further explored by calculating the lattice contribution in 

thermal conductivities. It was noted that the lattice thermal conductivities of both the 

materials are very small. Later in this chapter, unpublished results on the joining experiments 

carried out on Crofer 22 APU electrode for ZnSb material are presented. Main results of the 

thesis are presented through 04 scientific papers, of which 03 have been published or 

accepted for publication and 01 has to be submitted. 

The last part of the thesis presents the conclusion and outlook followed by a list of 

manuscripts in appendices that have been published or are in the process of publishing. 

Appendix 1 presents the initial results for the solder free joining method. This joining method 

addresses the two-fold problem of deterioration of both the TE material and the metallic 

electrode, by introducing a very thin intermetallic layer in the place of solder/braze alloy. 

This layer being produced by the reaction of the electrode and TE material with a pure metal 

at a higher temperature, does not grow further at the working temperature. The results from 

the conventional soldering of ZnSb are partially presented in both appendix 1 and 3. 

Appendix 2 highlights the migration of Zn atoms from Zn-based solder to the interstitial sites 

and voids in the ZnSb leg. This migration changes the composition of the ZnSb phase and 

kills the purpose of the choice of this material. Appendix 4 is based on further extension of 

the idea of solder free joining method to a skutterudite system. It is noted that for this system, 

a Cr/Co multilayer is a better interconnecting agent for solder free joining.   
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Chapter 2: Methods 
In this chapter, the main experimental methods used for this research are described. 

2.1 Preparation and processing 
Following methods were applied to produce the materials and set them up for 

characterization. 

2.1.1 Spark plasma sintering 
The spark plasma sintering (SPS) method was used to sinter the pellets of thermoelectric 

materials used in this research. It is a pulsed electric current sintering technique whereby a 

high intensity direct current is passed through a fine powder, pressed under uniaxial high 

pressure, for short time[66].  

 

Figure 2.1: Schematic diagram of spark plasma sintering. Image adapted from [66]. 

The commercially obtained powders were loaded between two graphite punches into a 

graphite die with graphite foil as the delaminating layer. The powder was first cold-pressed in 

the die and then the punches were removed one by one and cleaned so that there is no powder 

on them that could stick with them after sintering.  

 

Figure 2.2: Graphite die with powder mounted in SPS system. 

The assembly was packed again and loaded into the SPS unit Dr. Sinter 515S (Syntax Inc. 

Japan). The chamber was closed and pumped, so that water vapors or oxygen would not react 
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with the material during sintering. First the sintering was performed manually to understand 

the behavior of material, which is specific to composition and quality of powder. The 

sintering time, pressure and ramping rate was different for different materials. Once the 

sintering parameters were explored, a consistent pattern was used to make samples.  

2.1.2 Surface treatment 
The SPS sintered thermoelectric legs, solders and electrodes were cut to required size using 

Struers Accutom-5 cutting equipment. In order to remove oxide layers and smoothen their 

surface, the samples were polished using SiC sandpapers. After polishing, the samples were 

washed with acetone and ethanol, and dried with nitrogen. 

2.1.3 Magnetron sputtering 
Magnetron sputtering is a widely used technique to grow thin films on surfaces. The basic 

principle is the sputtering of target material as a result of ion bombardment, and deposition of 

those evaporating particles on the surface of substrate. An electrical potential causes the 

molecules of low pressure gas to ionize and bombard the target that has opposite polarity. In 

magnetron sputtering, the process is enhanced with the help of a magnetic field, which makes 

the ions spiral and hence increases their probability of hitting the target. The electrical power 

supplied to the target can be a DC power in case of conductive target or an RF AC power for 

an insulating target like oxides.  

 

Figure 2.3: Schematic diagram of magnetron sputtering. 

A stronger magnet has to be used for magnetic targets, because they might shield the intensity 

of normal magnets. This technique was used to sputter a few micro-meter thick metal films 

on thermoelectric substrates. It was a non-reactive sputtering carried out in Argon 

atmosphere, after establishing vacuum overnight. The sputter rate, or the yield, depends on 

the material properties of the target, the electrical potential applied, the pressure of plasma 

gas, and the intensity of the magnet. It was quantified in terms of film thickness and the time 

taken for deposition, keeping the other parameters unchanged.  
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2.1.4 Joining 
The joining was performed using a simple hot-pressing method in Argon atmosphere. For 

conventional joining, appropriate solders or braze alloy were used as fillers. Thin sheets of 

solder were placed between polished and cleaned metallic electrodes and thermoelectric legs 

and heated under pressure upto its liquidus point.  

 

Figure 2.4: Schematic diagram of the joining process. 

For solder-free joining, a thick film of pure metal was grown on two opposite surfaces of 

thermoelectric legs to be used as filler. It was then sandwiched between polished and cleaned 

metallic electrodes and heated under pressure. The solder and the metallic film were chosen 

so that they could react and form strong bonds with the thermoelectric material and the 

electrode. 

2.2 Characterization 

2.2.1 Thermoelectric properties 
Seebeck coefficient and electrical resistivity of the materials were measured on ULVAC-

RIKO ZEM3 system. A sample of cylindrical or rectangular cuboid shape is heated upto and 

stabilized at chosen temperature step inside a furnace, while a heater in the lower block 

provides a small temperature gradient.  

 

Figure 2.5: Schematic diagram of ULVAC-RIKO ZEM3 system. Image adapted from [67]. 

This equipment uses a four probe static DC method to measure the electrical resistivity, a 

constant current is passed through the sample and voltage drop is measured between the wires 

of the thermocouple. The Seebeck coefficient is obtained by fitting the slope of the voltage 
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difference dV against the temperature difference dT measured by two thermocouples. The 

equipment is controlled by computer and data is analyzed by software. The measurement was 

performed under a low pressure of helium atmosphere, in the temperature range relevant to 

the materials.   

 

Figure 2.6: ULVAC-RIKO ZEM3 equipment. 

2.2.2 Thermal conductivity  
Thermal conductivity was measured indirectly with Netzsch’s laser flash analysis system 

LFA 457. In LFA 457 apparatus, three samples can be loaded at once, one of them being the 

reference sample with known properties. The laser flash analysis works as follows: Laser 

pulses of controlled energies are shot onto one side of the sample, and the temperature change 

is monitored on the other side as a function of time. The thermal diffusivity, ‘β’, of the 

material is a measure of the time (𝜏1/2) it takes for the other side of a sample of thickness, 

‘d’, to reach half of the maximum temperature at the side receiving the shot: 

β = 1.38
d2

π2τ1/2
     (2.1) 

Both faces of thin cuboid samples were sprayed with a graphite spray to coat them with a 

matt surface of low emissivity to ensure maximum absorption of the laser pulse. Liquid 

nitrogen was circulated through the laser gun as chiller, so that the laser source could function 

properly. First the measurement of thermal diffusivity was performed in a purged chamber by 

heating the samples up to and stabilized at each temperature step. The measured data was 

then analyzed by the LFA software and both thermal diffusivity, ‘β’, and specific heat 

capacity, ‘cp’, were estimated with respect to the known properties of the reference sample. 

The density, ‘ρ’, of the samples was calculated using Archimedes rule. Thermal conductivity, 

‘κ’, is the product: ρβcp. 
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Figure 2.7: Netzsch LFA-457 equipment. 

2.2.3 Microstructural properties 
The microstructural and compositional properties of the samples were observed under a 

Hitachi TM300 scanning electron microscope (SEM). The equipment is pumped with the 

help of a diaphragm vacuum pump to achieve a moderate vacuum level. The microscope 

studies the microstructure of a material by scanning its surface with a focused electron beam.  

The electron beam is produced thermionically from a tungsten filament. Tungsten has very 

high melting point, low vapor pressure at high temperature and has very low coefficient of 

thermal expansion. The electron beam is accelerated by applying a chosen electrostatic 

potential and focused using electromagnetic lenses.  

 

Figure 2.8: TM3000 tabletop scanning electron microscope with energy dispersive x-ray spectrometer. 

TM3000 comes with three beam conditions: the ‘5V’, ‘15V’ and ‘Analysis’ modes. 

Depending on the image requirements and material specifications, one of these modes is 

selected. The electron beam penetrates deep into the material and some electrons are scattered 

back from the nuclei on the lattice points. Because of high energy electrons hitting the atoms, 

X-rays are also emitted from them, with spectrum of energies corresponding to the electronic 
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structure of the target atoms. The scattered electrons are of two types: backscattered and 

secondary electrons. Both kinds of scattered electrons are detected and used to image the 

surface. Backscattered electrons are produced as a result of elastic scattering and therefore 

they have high energies, comparable with the energy of the incident beam. They not only 

come from the vicinity of the surface but also those produced in the deeper volumes manage 

to reach the detector. Secondary electrons are results of inelastic scattering and have lower 

energies, therefore only the ones produced in the volume close to the surface manage to 

escape the surface and are collected by the detector. Backscattered electrons provide better 

compositional contrast while secondary electrons carry more topographic details and hence 

the image formed by secondary electrons has better spatial resolution. The Hitachi TM3000 

comes with an X-ray energy dispersive spectrometer (EDS) as well, this spectrometer detects 

the X-rays coming out of the material and hence the chemical composition of the sample can 

be estimated. 
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Chapter 3: Selected results and general discussion 

3.1 Choice of materials 

3.1.1 ZnSb 
Zn-Sb system has long been under investigation for thermoelectric applications, due to its 

high thermoelectric figure of merit, low cost, abundance and non-toxicity [68, 69]. The 

phonon-glass electron-crystal Zn4Sb3 compound semiconductor is one of the best 

thermoelectric materials because of its low thermal conductivity and degenerate 

semiconductor-like electronic structure. Snyder et. al. [69] identified that the ideal 

stoichiometry for this material is Zn13Sb10 (see figure 3.2). The small and electropositive Zn 

atoms were not substituting the large and electronegative Sb sites, instead the Zn sites were 

only 90% occupied. The rest of the Zn atoms went into interstitial sites. They suggest that Zn-

Sb system can be best thought of as a valence compound. The -3 valence Sb(1) atoms have 

Zn atoms in their 6-nearest neighbor positions at 2.76Å. The -2 valence Sb(2) atoms form Sb-

Sb dimers with bond length of 2.82Å, with three Zn(1) atoms at 2.68Å distance. Zn(1) with 

two electrons available for covalent or ionic bonding to become Zn
2+

, has four Sb neighbors 

and one Zn at metallic distance of 2.7Å. In each hexagonal cell of Zn4Sb3, there are 18 Sb
3-

 

and 12 Sb
2-

 in dimers. To establish valence balance, a total of 39 Zn
2+

 are required, i.e. to 

form Zn3.9Sb3 compound. As there are only 36 available positions on the main Zn(1) site 

(Zn3.6Sb3), valence balance dictates that there must be three or more Zn atoms on interstitial 

Zn sites (more, because complete electron transfer is unlikely for interstitials). 

 
Figure-3.1: The crystal structure of Zn-Sb system without Zn interstitials: a) view from top (c-axis), b) side 

view showing Sb
2-

 dimers. The Sb
3-

 (dark blue) form distorted hexagonal-closed-packed layers with Sb
2-

 dimers 

(light blue) in the channels formed by octahedral holes. The red dots are the small Zn atoms. Image adapted 

from [69]. 

 

The understanding of chemistry of this system can give insight into the origins of its excellent 

thermoelectric properties. The thermal conductivity of Zn4Sb3 is like that of an ideal phonon 

glass, and it is due to the Zn interstitials. The compounds ZnSb and Zn4Sb3 have very similar 

structural features and electronic properties, however, despite its much lower thermal 

conductivity, Zn4Sb3 is not as stable against thermal cycling as ZnSb, and Zn in this system 

starts to precipitate at the colder end of the leg [26]. Therefore, for long term operation, ZnSb 

phase is considered to be the better choice. However, because of the complex chemistry of 

this system, it is difficult to synthesize single phase material[70, 71], and a variety of 

polymorphs are formed during synthesis. ZnSb phase has orthorhombic crystal structure and 

an indirect bandgap of 0.5 eV at room temperature and carrier concentration of ≈ 10
16

cm
−3 
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[72][73]. Blichfeld et al. studied the structural properties of the SPS sintered ZnSb [74]. The 

density of the samples was close to the theoretical value of 6.377 g/cm
3
. The thermal 

expansion coefficient of this material is anisotropic, which might cause cracks in a 

polycrystalline sample. Zn ion migration was also observed, which occurred during sintering 

along the direction of electrical current. Peaks corresponding to unreacted antimony and zinc 

were also observed in the PXRD data. The chemical morphology of the material is closely 

related to the quality of the starting powder and synthesis conditions, like pressure, time and 

temperature. We studied the contacts and interface evolution for SPS sintered ZnSb, obtained 

from TEGnology AS, and the results are presented in appendices 1˗3. 

 

3.1.2 Filled CoSb3 
Pure CoSb3 is a direct bandgap semiconductor with a small bandgap of (0.05˗0.22) eV [75]. 

This material belongs to skutterudite family of compound semiconductors with promising 

thermoelectric properties. The crystal structure of skutterudites is made up of a cubic lattice 

with space group Im3̅. The unit cell has eight cubic motifs of Co atoms occupying the 8c sites 

(1/4, 1/4, 1/4), six of which are filled by square planar rectangles of Sb occupying the 24g (0, 

y, z) sites. The two remaining cubes have void spaces in the unit cell 2a (0, 0, 0) or (1/2, 1/2, 

1/2) sites, as shown in figure 3.2 [76]. The electronic band structure of this material is such 

that it has a very high Seebeck coefficient and low electrical resistivity, but it also has a high 

thermal conductivity of 6˗10 W/m·K [77].   

 

Figure-3.2: The unit cell of CoSb3, the Co atoms are represented by red spheres and Sb by yellow spheres and 

the void cages by light blue spheres. Image adapted from [76]. 

Slack [78] proposed that introduction of rattling atoms in voids of skutterudite unit cell can 

help bring thermal conductivity to reasonably low values. These rattling atoms are supposed 

to scatter phonons and delay the transport of heat. Since then, many successful attempts have 

been made and a series of filled skutterudites has been discovered [79]–[81]. In this thesis, 

the possibility of applying a novel joining method to filled skutterudites commercially 

obtained from Treibacher Industrie AG is explored. Industrially produced powders of p-type 

DDy(Fe1˗xCox)4Sb12 and n-type (Mm, Sm)yCo4Sb12 were sintered by Spark plasma sintering 

method and joined to Crofer 22 APU electrode. The carrier concentration for these materials 

is reported to be ≈ 10
20

 cm
-3

 [82], [83]. The results of the joint formation are presented in 

appendix 4. 
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3.1.3 Metallic electrodes 
In this research, Ag, Ni and Crofer 22 APU were chosen as electrodes because of their 

excellent transport characteristics, stability in the mid-to-high temperature range, and 

abundance. Copper is another widely used electrode due to its excellent transport properties 

but it was not chosen for this study because it already starts to oxidize at 350 
ᴼ
C [84]. Crofer 

22 APU is a Fe˗22Cr based metallic alloy with traces of other elements, i.e.: Mn, C, Si, Cu, 

Al, S, P, Ti and La. It is widely used for solid oxide fuel cells[85], and it has proved to be 

corrosion resistant electrode due to formation of a conducting Cr2O3 and a (Mn, Cr)3O4 outer 

layer in oxidizing environment [86], [87]. This layer is formed due to Cr migration towards 

the surface of the alloy and reaction with oxygen. It is a low cost and stable electrode, with 

metallic transport properties and low coefficient of thermal expansion (10.3×10
-6

/
o
C at 200

 o
C 

to 12.7×10
-6

/
o
C at 1000

 o
C). 

3.2 Thermoelectric properties 
The thermoelectric properties of the chosen materials were experimentally measured and a 

detailed discussion and comparison with literature values follows in appendices 1˗4. To 

understand the phonon-glass nature of these samples, the experimental data needs to be 

further analyzed. For a good thermoelectric material, thermal conductivity, κ, should be low 

so as to increase the temperature difference between the hotter and the colder end. Thermal 

conductivity has two contributions: 1) electronic thermal conductivity (κe) which comes from 

the charge carriers (electrons or holes), and 2) lattice thermal conductivity (κl) coming from 

the lattice vibrations or phonons. 

κ = κe + κl.       (3.1) 

Wiedemann-Franz law relates the electronic contribution to the thermal conductivity as: 

κe = LT/ρ,      (3.2) 

where ‘L’ is the Lorenz number and ‘ρ’ is the electrical resistivity. In thermoelectric 

materials, the lattice thermal conductivity is dominated by acoustic phonons. Lorenz number 

is constant for metallic systems, but for semiconductors it depends on the electronic band 

structure. Lorenz number for degenerate semiconductor is defined as [88]:  

L = (
kB

q
)

2

[
3F2(η)

F0(η)
− (

2F1(η)

F0(η)
)

2

].   (3.3) 

Here ‘q’ is the electronic charge, ‘η = Ef/kBT’ is the reduced Fermi level, and Fi(η) is the 

Fermi integral defined as: 

Fi(η) =  ∫
(E/kBT)

i

1+exp(E/kBT−η)

∞

0
    (3.4) 

where ‘Ef’ denotes the Fermi level of the material, ‘E’ is the energy of the charge carrier and 

‘kB’ is the Boltzmann constant. The reduced Fermi level can be calculated from the measured 

values of Seebeck coefficient, ‘α’, as: 

α =  
kB

q
(

2F1(η)

F0(η)
−  η).     (3.5) 
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Figure 3.3 shows the thermoelectric properties of the ZnSb material used in this research. The 

Seebeck coefficient is positive in the measured temperature range, which shows p-type 

conduction. The resistivity increases with increasing temperature, a signature for metallic 

transport in degenerate semiconductors. Both the electrical resistivity and the Seebeck 

coefficient reach a maximum around 400 ᵒC. The thermal conductivity is largely contributed 

by the lattice part. One reason for this could be the lower carrier concentration as compared 

with other thermoelectric materials. This emphasizes further the importance of phonon 

scattering in the Zn-Sb system. 

 

Figure-3.3: Thermoelectric properties of ZnSb. 

Figure 3.4 and 3.5 show the thermoelectric properties of the p-type and n-type skutterudites 

used in this research, respectively. These materials have excellent electrical properties of an 

ideal thermoelectric, high Seebeck and low electrical resistivity. The high magnitude of 

Seebeck coefficient observed in skutterudites is attributed to their electronic band structure 

[75], while the metallic electrical resistivity to the high carrier concentration and the low 

band gap. The electronic contribution to thermal conductivity is more pronounced in these 

materials than ZnSb. This is in accordance with the higher carrier concentration in these 

materials. However, the rattler atoms seem to have played their role in reducing the lattice 

thermal conductivity, such that the total thermal conductivity became comparable to the 

thermal conductivities of the state of the art thermoelectric materials[89][90]. 
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Figure-3.4: Thermoelectric properties of SPS sintered p-type skutterudite legs. 

 

 

Figure-3.5: Thermoelectric properties of SPS sintered n-type skutterudite legs. 

3.3 Joining 
Appendices 1˗3 contain the detailed discussion about the conventional soldering and a novel 

solder free joining of ZnSb to Ag and Ni electrodes. Appendix 4 discusses the application of 

solder free joining method to skutterudites. A stable metallic electrode, Crofer 22 APU, is 
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proposed for mid temperature thermoelectric applications. Here we discuss the prospects of 

using this electrode for Zn-Sb system.  

3.3.1 Conventional joining 
Joining of thermoelectric elements to metallic electrodes using soldering/brazing alloys is an 

established method for manufacturing thermoelectric devices. ZnSb material performs best 

around 400 
ᴼ
C, and hence a suitable solder for conventional joining is the Zn˗2Al alloy with 

solidus temperature of 377 
ᴼ
C and liquidus temperature of 385 

ᴼ
C. As pointed out in 

Appendices 1˗3, this solder diffuses deeply to Ag and Ni, common metallic electrodes for this 

temperature range. This diffusion not only makes it difficult to preserve the excellent 

properties of electrodes for long time, it can also induce cracks in those electrodes.  

In steel industry, Zn has been used as galvanizing agent for long time, to prevent rusting of 

the surfaces. Fourmentin et al. [91] studied the thermodynamics of the Fe˗Zn˗Al˗Cr system 

and concluded that the addition of small amount of Al and Cr to the Zn bath at galvanizing 

temperatures delays the nucleation of brittle Fe-Zn compounds and forms a coating layer of 

Fe˗Al˗Zn˗Cr alloy. Therefore, Crofer 22 APU electrode was chosen to be soldered to ZnSb 

using the Zn˗2Al alloy. The joining was performed in Argon atmosphere at 400 
ᴼ
C for 30 

minutes under a uniaxial pressure of 3MPa. The surfaces were polished and cleaned before 

the joining to remove oxidation or contaminant layers. Initially, the assembly was kept at 375 
ᴼ
C for 30 hours long heat treatment. Later on, to test the long term stability, the samples were 

kept at 375 
ᴼ
C for 300 hours. The interface was studied under TM3000 scanning electron 

microscope. 

Figure 3.6 (a) shows the SEM micrograph of the interface between Crofer 22 APU electrode 

and Zn˗2Al solder alloy after initial joining and heat treatment. The interface between the 

solder and the electrode has no cracks or airgaps, and a relatively thin layer of intermetallic 

compounds (IMC) is formed. The joining between this solder and ZnSb is discussed in 

Appendix 2. Figure 3.6 (b) shows the SEM micrograph of the joint after long term testing for 

300 hours at 375 
ᴼ
C. The IMC layer has grown thicker, but this growth is very slow as 

compared to the other electrodes (Appendices 1˗2). 

 

Figure-3.6: a) SEM micrograph of Crofer 22 APU/Zn˗2Al interface after joining and initial heat treatment. b) 

SEM micrograph of Crofer 22 APU/Zn˗2Al joint after long term testing. 
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3.3.2 Solder free joining 
Solder free joining is, in essence, a modified diffusion bonding process facilitated by a thin 

metallic layer between the two surfaces in question. This method achieves good joint 

formation at lower temperatures than the traditional diffusion bonding temperatures (see 

section 1.5.2). For solder free joining between Crofer 22 APU and ZnSb, a few microns thick 

layer of Cr was deposited on a polished and cleaned ZnSb substrate. This surface was then 

joined with the polished and cleaned surface of Crofer electrode by heating at 450 
ᴼ
C for 30 

minutes under a uniaxial pressure of 3MPa in Argon. For long term testing, this joint was 

kept at 400C for 100 hours. The interface was studied under TM3000 scanning electron 

microscope. 

 

Figure-3.7: a) SEM micrograph of Crofer 22 APU/Cr/ZnSb joint after solder free joining, b) SEM micrograph 

of the hot side of the joint after 100 hours of heat treatment at 400 
ᴼ
C, c) SEM micrograph of the colder side of 

the joint after 100 hours of heat treatment at 400 
ᴼ
C. 

Figure 3.7 (a) shows the SEM micrograph of the interface between Crofer 22 APU electrode 

and Cr deposited ZnSb after joining. The interface between the solder and the electrode has 

no cracks or airgaps, and a thin layer of intermetallic compounds (IMC) is formed. Figures 

3.7 (b and c) show the SEM micrograph of the joint after long term testing for 100 hours at 

400 
ᴼ
C. The IMC layer has not grown thicker, but Zn has precipitated on the colder side of 

the leg. This could be the unreacted Zn content that is characteristic to the SPS sintered ZnSb 

[74]. It has been established that the Zn on interstitial sites of the Zn-Sb system precipitates 

on the colder end of the leg when subjected to heating [26].  
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Conclusion and Outlook 
This thesis has investigated the stability and interface evolution of contacts between 

electrodes like Ag, Ni and Crofer 22 APU, and thermoelectric materials like ZnSb and CoSb3 

based n-type filled skutterudite. These materials show their best TE performance in the mid 

to high temperature region (300 ᵒC to 600 ᵒC). The thermoelectric legs were prepared by 

spark plasma sintering and characterized. The thermoelectric properties show that the filling 

of voids in the unit cells of the lattice reduces thermal conductivities of these materials 

sufficiently. However, these void spaces may also enhance the unwanted diffusion of 

soldering/brazing alloys which are conventionally used to connect the thermoelectric legs to 

the metallic electrodes.  

Zn-Sb material was chosen first, for its low cost, abundance and high thermoelectric 

performance. The Zn4Sb3 phase was ruled out because it is unstable under long operation 

times. The excess zinc in the 4:3 phase sits on the interstitial sites and these interstitial Zn 

atoms play the key role in improving the zT of this material by reducing thermal 

conductivity. However, the very interstitial Zn atoms start to migrate to the colder end when 

the material is subjected to thermal gradient. This migration results in excess of Zn on the 

colder side and degrades the performance of the device. However, when conventional 

soldering was applied to the 1:1 phase, i.e. ZnSb, the soldering alloys available in the desired 

temperature range were Zn-based alloys: Zn˗2Al and S˗Bond 400.  Ag and Ni were chosen as 

electrodes because of their excellent transport properties, corrosion resistance in the desired 

temperature range and comparable coefficients of thermal expansion.  It was found that not 

only zinc diffused into the ZnSb legs, but also it reacted with the Ag and Ni electrodes and 

formed thick intermetallic layers of AgZn3, Ag5Zn8, AgZn, and Ni5Zn21 at the respective 

interfaces. The problem of Zn diffusion into electrodes was solved by using Crofer 22 APU 

as electrode. This electrode not only has excellent transport properties and comparable 

thermal expansion coefficient to ZnSb, but it is also low cost and it resists Zn diffusion due to 

thermodynamics of the Fe˗Zn˗Cr˗Al system. This electrode was tested for long term stability 

and after 300 hours of heat treatment at 375 ᵒC, the intermetallic layer at the Crofer 22 

APU/Zn˗2Al interface was not as thick as the Ni5Zn21 layer on the as-prepared Ni/Zn˗2Al 

joint. 

To stop the diffusion of Zn into ZnSb system, buffer layers of Ti and Cr were deposited on 

the TE legs before joining. This did not stop Zn from diffusing into the TE legs. The puzzle 

was finally solved by application of an innovative joining method: the thin layers of Cr and 

Ti were used to assist diffusion bonding between the electrodes and ZnSb. Ag has high 

solubility in ZnSb and the diffusion joining resulted into Ag electrode being consumed all 

together, and the buffer layers could not affect the process. However, the scheme was 

successful for the case of Ni and Crofer 22 APU electrodes. This modified diffusion joining 

was named solder free joining. The next step was to put this method to long term test. The 

Cr-assisted joint remained stable for 30 hours, but the Ti-assisted joint was observed to have 

deteriorated. The joint with Crofer 22 APU electrode was tested for 100 hours and it was 

observed to be stable. Miraculously, the intermetallic reaction layer did not grow thicker. 

The solder free joining method was further extended to the CoSb3 based n-type filled 

skutterudite. The experiments were performed with single Cr and multi Cr/Co layers. The 
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bonding was successful, however only the Cr/Co multilayer based joint could pass the 300 

hour thermal annealing test at 500 ᵒC.  

While this research resulted in the discovery of a reliable solder-free joining method and a 

low cost and stable electrode for mid to high temperature range, it has opened many 

questions. First and foremost is the identification of the intermetallic compounds formed at 

the interface and characterization of their thermal and mechanical properties. This requires a 

detailed x-ray diffraction study of the thin reaction region. The next step is to measure the 

transport properties of these intermetallic phases and understand the role they play in electron 

transfer across the interface. This investigation can be coupled with the measurement of 

interface potential barrier and simulation of electron transport. A complete picture of both the 

chemical and electronic landscape needs to be drawn for future development of this joining 

method.  
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a b s t r a c t

Quality of joining and interfacial evolution behavior play a critical role in the performance and reliability
of thermoelectric (TE) devices. In this study, different joining methods using Zn� 2Al solder alloy (1) and
solder-free joining with microlayers of Ti and Cr as interconnecting agents (2) were systematically
investigated and demonstrated on the low-cost ZnSb TE system. ZnSb material, which was chosen to
bond with Ag and Ni metallic electrodes, exhibited a maximum zT value of 0.8 at 400 +C. With the joining
method (1), Zn from the Zn� 2Al solder was found to diffuse/react with both Ag and Ni electrodes, and
penetrate into ZnSb legs. SEM-EDX analysis recorded a significant excess of Zn in the ZnSb leg after
joining. We found that, using microlayers of Ti and Cr as interconnecting agent, a very good interfacial
contact was obtained, and the starting composition of ZnSb legs was preserved. The interfacial contact of
ZnSb=Cr=Ni was found to be stable after heat treatment at 400 +C for 30 h, suggesting solder-free joining
as an effective method for reliable contacts in TE devices in the medium temperature region
(200 +C� 400 +C).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoelectric (TE) devices convert heat into electricity and
vice versa, without any moving parts. Because of their ability to fit
any size and shape, TE devices offer a wide range of applications:
from miniaturized cooling of IC chips [1,2] to electricity generation
in remote areas [3]. The increasing demand for renewable energy
has brought thermoelectricity in the limelight as a potential
candidate for green cooling and waste heat recovery. High perfor-
mance of a TE material requires optimization of a series of inter-
related physical properties, namely: the Seebeck coefficient, ‘a’;
the electrical conductivity, ‘s’; and the thermal conductivity, ‘k’. The
material figure of merit, zT, quantifies the performance of a TE
material:

zT ¼ a2sT
k

: (1)

The device figure of merit, ZT, can be defined in terms of the
total Seebeck coefficient, S, total electrical resistance, R, and total
thermal conductance, K, of the module [4e6] as:

ZT ¼ S2T
RK

¼ S2T�
Rleg þ Rc

��
Kleg þ Kc

�: (2)

Here, R ¼ Rleg þ Rc and K ¼ Kleg þ Kc. Rc and Kc are the electrical
and thermal contact resistances, respectively. The maximum effi-
ciency of a device, operating between a hot side temperature Th and
a cold side temperature Tc, is defined as [4]:

hmax ¼
Th � Tc

Th
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p þ Tc
Th

: (3)

It is clear from equations (2) and (3) that the performance of TE
device depends not only on the intrinsic material properties, but
also on the thermal and electrical contact resistances (Rc and Kc).
For practical TE power generation, low resistance and stable
interfacial contact play an important role in the performance and
long-term stability of TE devices. To achieve high conversion effi-
ciency, the ratio of total contact resistance to total device resistance
should be as small as possible, at most within 10%, to minimize the
losses [7,8].

The realization of TE generators (TEGs) on an industrial scale is
haunted by the conditions of application and complexities involved
in TE materials [9]. Since TEGs usually operate at large temperature
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gradients and various thermal cycles, their stability is a matter of
great concern. In fact, there are many low cost, non-toxic TE ma-
terials such as Cu2S, Cu2Se and Zn4Sb3 [10,11,13]; that exhibit very
good TE properties but there have been concerns about their sta-
bility under real operating conditions. As an important example,
Zn4Sb3 exhibits high zT value of 1.4 at 450 +C due to its very low
thermal conductivity resulting from phonon scattering by Zn in-
terstitials [13]. However, it was found that under working condi-
tions, Zn whiskers precipitate at the cold side of the leg and they
cause material failure over time [12]. In the family of Zinc Anti-
monide compounds [14e18], the ZnSb phase has orthorhombic
crystal structure and it is expected to be more stable than Zn4Sb3
phase since it does not contain mobile Zn on interstitial sites.
Ignored for years, ZnSb has an indirect bandgap of 0.5 eV at room
temperature and carrier concentration ofz1016cm�3 [19,20]. Most
of the reported work on TE properties of this material involves hole
doping because carrier concentration in undoped ZnSb is low
compared to state of the art TE materials [21e26]. While it is one of
the few Tellurium free TE materials in the medium temperature
range [21], there is lack of research on implementation of this
material in commercial TE modules.

In this work, both the conventional joining method using lead
free Zn� 2Al soldering alloy (with chemical formula Zn98Al2) and
an innovative direct joining method are investigated to bond the
ZnSb material with metallic electrodes such as Silver (Ag) and
Nickel (Ni). The TE properties of ZnSb are characterized as a func-
tion of temperature from 50 +C up to 450 +C. Ag and Ni electrodes
were chosen due to their excellent transport properties, compara-
ble thermal expansion coefficients with ZnSb, corrosion resistance
and availability in abundance. Zn� 2Al has been selected because of
its good wetting properties and high shear strength [27,28]. The
solidus and liquidus temperatures of this alloy; 377 +C and 385 +C
respectively; are close to the maximum working temperature of
ZnSb. The interfacial behavior evolution and chemical composition
of the TE material after joining by both the methods are system-
atically investigated and compared.

2. Experimental details

ZnSb ingots used for this study were provided by TEGnology AS,
Denmark. Details of the material synthesis are discussed elsewhere
[29]. The electrical resistivity and Seebeck coefficient were
measured on an ULVAC-RIKO ZEM-3 from 50 +C up to 450 +C in
0.1 bar Helium atmosphere. The thermal conductivity was calcu-
lated from the thermal diffusivity and heat capacity obtained by the
laser flash method on NETZSCH LFA 457 MicroFlash®, and mass
density using the Archimedes principle. The ZnSb legs, Zn� 2Al
solder and the Ag, Ni electrodes were cut to their respective di-
mensions with cross-sectional area of 3� 3 mm2. Their surfaces
were polished using the SiC sandpaper to remove oxidation layers
and to reduce interfacial inhomogeneities, degreased in acetone
and finally cleaned by ethanol. Microlayers of Ti and Cr were
deposited on the surface of ZnSb using Radio Frequency (RF)
sputtering. All parts were assembled together inside a graphite die.
The joining was performed in Argon atmosphere. The joining
temperature was maintained for 30 min at 400 +C and 450 +C for
the Zn-2Al soldering method and the solder-free joining method,
respectively. A constant pressure of 3 MPa was applied on the
samples during the joining process. The resulting samples were
then polished and observed using Hitachi TM3000 electron mi-
croscope. The interfaces were scanned in the EDX mode to study
the interfacial reactions and interdiffusion.

3. Results and discussion

3.1. Thermoelectric properties

Fig. 1 shows the TE properties of the undopped ZnSb material
used in this work as a function of temperature from50 +C to 450 +C.
The recently reported properties of 0.1% Sn-doped ZnSb [22] have
also been plotted for comparison. It is seen that the Seebeck coef-
ficient has a positive value in the entire measured temperature
range, indicating a p-type conduction, as shown in Fig. 1 (a). In the

Fig. 1. Temperature dependence of the TE properties of undopped ZnSb in this work as compared with literature (0.1% Sn doped ZnSb) [22]: a) Seebeck coefficient, b) electrical
resistivity, c) thermal resistivity, d) figure of merit.
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temperature region below 400 +C, the electrical resistivity tends to
increase with increasing temperature, showing a metallic behavior
(see Fig. 1 (b)). Both the electrical resistivity and Seebeck coefficient
start to drop as temperature increases above 400 +C. A similar trend
has been observed in other reports on ZnSb due to variation in the
carrier concentration with increasing temperature [23e26].

The thermal conductivity decreased from 2.2W/m$K at 50 +C to
1.5 W/m$K at 400 +C (see Fig. 1 (c)). Overall, the thermal conduc-
tivity values of ZnSb phase are relatively higher than those for the
Zn4Sb3 phase [17]. Our results are in good agreement with the
previously reported study [22]. However, the Seebeck coefficient
and the electrical resistivity of the material produced by Shabaldin
et al. are a bit higher than our samples. This could be attributed to
the higher concentration of holes in their samples due to Sn
doping. Another reason might be the different synthesis routes.
Shabaldin et al. prepared their samples using hot press method on
the ZnSb powder, whereas our samples were prepared by an SPS

Fig. 2. SEM micrograph of: a) ZnSb=Zn� 2Al=Ag and b) ZnSb=Zn� 2Al=Ni samples. The EDX linescan of: c) Zn� 2Al=Ag interface and d) Zn� 2Al=Ni interface.

Fig. 3. SEM micrographs of Zn� 2Al=ZnSb interface after joining.
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based fast reaction of elemental powders. These differences may
end up in different forms of phase inhomogeneities and defects
inherent to this complex intermetallic [15,31]. Both the electrical
and thermal transport properties of ZnSb are affected by synthesis
conditions and hence the concentration and distribution of Zn
defects [32,33]. The maximum zT value of 0.8 for our sample was
obtained around 400 +C, comparable with other TE materials such
as Mn-Si, Clathrates, etc. operating in the same temperature range
[7,34].

3.2. Conventional joining with solder

Fig. 2 shows the SEM micrographs of the interface between Ag,
Ni electrodes, Zn� 2Al solder and ZnSb material. It can be seen that
the interfacial contact of the ZnSb=Zn� 2Al, Ag=Zn� 2Al and
Ni=Zn� 2Al is solid formed without cracks or airgaps. However, a
large diffusion/reaction region between solder and electrodes can
be observed, and the effect is more profound for Ag than it is for Ni.
Further analysis by EDX revealed that Zn from the solder diffused
into the electrodes and reacted with Ag and Ni. The highmagnitude
of Zn diffusion into the Ag and Ni electrodes is evident from the
image contrast and EDX linescan.

As we can see from Fig. 2 (a) and (c), reaction layers form on both
sides of the Ag=Zn� 2Al interface. Not only Zn diffused into Ag, but
Ag also diffused deeply into the solder. According to the phase di-
agram of the Ag � Zn system [35], there exist four intermetallic
phases, namely the b, z, g and ε phases with chemical compositions
of AgZn (high temperature), AgZn (low temperature), Ag5Zn8 and
AgZn3, respectively with distinct properties [36,37]. From the EDX
analysis, we find that two consecutive intermetallic layers of com-
positions Ag5Zn8 and AgZn3 are formed on the Zn� 2Al side of the
interfacewhile a thicker AgZn intermetallic layer is formed on the Ag
side of the interface. The AgZn phase grows fast (with thickness of
z250mm into the electrode), while the Ag5Zn8 grows at an inter-
mediate rate (z50mm into the solder) and the AgZn3 develops
slowly as compared to the other two (with z20mm thickness).

Contrary to the case of Silver, Nickel did not diffuse deeply into
the solder as seen from the SEM micrograph and EDX linescan in
Fig. 2 (b) and (d). The thermodynamics of the Ni� Zn system [38]
suggests low Ni solubility in Zn. Zn diffused and penetrated into

Ni and formed a z70mm thick intermetallic layer of the g phase
[39] with chemical composition of Ni5Zn21, based on EDX analysis.
The diffusion of Zn into these metallic electrodes is counter-
productive because it might deteriorate their excellent properties
with time.

Fig. 3 shows the SEM image of the interface between the ZnSb
leg and the Zn� 2Al solder alloy. Overall, the interface looks good
i.e. no cracks or airgaps can be observed. In order to investigate the
influence on the ZnSb leg after joining, a detailed EDX analysis was
carried out by many point measurements along the leg. It was
found that the Zn concentration (z 56%) is significantly higher than
that of Sb(z 44%) in all randomly selected regions (see figure (1) in
Ref. [30]). These observations indicate that a large amount of Zn
from Zn� 2Al solder has diffused into the ZnSb leg. As a result, after
joining, the composition of the leg seems to approach Zn4Sb3 phase.
While the solder adhered quite well to both electrodes and ZnSb
legs, Zn diffused and penetrated into the legs.

To preserve the ZnSb phase of our samples and to minimize the
diffusion and reaction at interfaces, we used Ti and Cr layers with a
thickness of few microns as diffusion barrier. Shown in Fig. 4 (a, b)
are the SEM images of the interfaces between Zn� 2Al solder and
ZnSb material with Ti and Cr barrier layer. EDX analysis along the
ZnSb leg after joining revealed that the barrier layers could not stop
Zn from diffusing and penetrating into ZnSb. The average concen-
trations (in percentage) of Zn:Sb obtained by EDX point measure-
ments are 60:40, approximately. An innovative joining method is
needed to overcome this critical problem.

3.3. Solder-free joining through alloying

Since it is hard to stop Zn from diffusing and reacting with
both the electrode and ZnSb material, we have tried a direct
joining method i.e. without using the Zn-based solder. Looking at
the data about the thermodynamics of alloys involving Zn, Sb, Ni,
Ag, Ti and Cr [39e43], we conjectured that Ti and Cr could form
alloying layers at the interface with electrodes and the TE ma-
terial, which could serve as interconnects. First, we considered
the direct joining with Ag electrode. It turned out to be counter-
productive with silver diffusing fast into the ZnSb leg with con-
centration up to 40%, and hence destroying its thermoelectric

Fig. 4. Interface of ZnSb and Zn� 2Al solder alloy: a) SEM micrograph of Zn� 2Al=Ti=ZnSb interface, b) SEM micrograph of Zn� 2Al=Cr=ZnSb interface.
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distinction. Therefore, we ruled out Ag and decided to focus on Ni
electrode.

Fig. 5 shows the SEMmicrographs and EDX profiles of Ni bonded
to ZnSb legs via alloying with Ti and Cr layers. A diffusion/reaction
region was clearly observed at the interfaces in both the cases of Ti
and Cr. Further analysis revealed that Ni, interconnecting layers (Ti,
Cr), and ZnSb formed an alloying layer with the thickness in the
range of 15e20 mm. EDX linescan indicated strong signal of Sb, Zn,
and Ni in the reaction region, while the layers of Ti and Cr could still
be detected clearly at the interfaces. Since these alloys involved
more than three elements, the phase diagrams describing the ki-
netics of formation of these alloys and their energetically favorable
compositions could not be found in literature. EDX analysis along

the ZnSb leg showed that the starting phase of the material was
preserved after joining (see Fig. 2 in Ref. [30]).

To check the long-term stability of directly joined contacts in
working conditions, the prepared samples were kept at 400 +C
under a constant pressure of 3 MPa for 30 h. Fig. 6 presents the
SEM micrographs of the joints and EDX linescans through the in-
terfaces. The bonding alloy layer did not proceed further for ZnSb/
Cr/Ni contact (Fig. 6(b, d)), while the ZnSb/Ti/Ni contact under-
went some degradation with airgaps at the interface (Fig. 6(a, c)).
In the ZnSb-side of the ZnSb/Ti/Ni interface, a phase segregation
between Zn-rich and Sb-rich regions has occurred which might
have caused these airgaps. EDX analysis also pointed out that, in
both cases, the composition of the ZnSb leg was preserved. This is a

Fig. 5. SEM micrograph of the interface of Ni directly bonded to: a) Ti=ZnSb and b) Cr=ZnSb. EDX linescan of the interface of Ni bonded to: c) Ti=ZnSb and d) Cr=ZnSb.
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very promising finding since this method can both make a strong
bonding and maintain the composition of the ZnSb phase (see
Fig. 3 in Ref. [30]).

4. Conclusion

We have shown that pure ZnSb 1:1 phase is a promising TE
material for further development and implementation in TE mod-
ules. ZnSb has exhibited good TE properties in medium tempera-
ture range with a maximum zT value of 0.8 at 400 +C. Different
joining methods were investigated to bond ZnSb-leg with metallic
electrodes such as Ag and Ni. In the first method using Zn� 2Al
soldering alloy, the bonding between ZnSb-leg and Ag, Ni elec-
trodes was good i.e. no cracks or airgaps could be observed. How-
ever, Zn from solder strongly diffused and reacted with Ag and Ni,
and also penetrated into ZnSb-leg resulting in a significant amount
of Zn excess. The diffusion of Zn from solder intoTE leg could not be
blocked by a diffusion barrier layer of Ti or Cr. A solder-free joining
method was discovered and successfully applied to bond Ni elec-
trode with ZnSb using Ti and Cr as interconnects. The results have
shown a very good bonding thanks to a thin alloying region formed
due to the reaction of Ti and Cr microlayers with Ni and ZnSb. Initial

long-term stability test at 400 +C for 30 h revealed that the Cr
alloying regionwas stable and did not develop further, while for the
case of Ti, the interface deteriorated over time. Most importantly,
the composition of ZnSb leg was maintained after joining. Further
research on power generating characteristics including interfacial
contact resistance as well as the integration of this material in
actual TEG is ongoing.
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Data format Raw, Analyzed
Experimental
factors

The ZnSb legs prepared by Spark Plasma Sintering technique from reaction of
elemental commercial powders. The surfaces of the leg were polished and cleaned
before joining.

Experimental
features

The quality of material after joining with metallic electrodes was examined.

Data source
location

Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark.

Data accessibility The data presented in this article are accessible within this article.

Value of the data

� This data elaborates the importance of solder free joining method for making good contacts in
thermoelectric devices.

� The data presented in this article shows detailed microstructure and EDX analysis of ZnSb material
after joining and heat treatment.

� This data allows other researchers to compare the conventional joining method with new solder-
free joining method.

1. Data

The following data provides information on the SEM images and EDX analysis along the ther-
moelectric ZnSb legs. The Figs. 1–3 show micrographs of the ZnSb legs after joining and heat treat-
ment. Tables 1–3 present the concentration ratio of Zn:Sb at selected regions along the leg.

Fig. 1. SEM micrograph and selected EDX point measurements of the ZnSb leg after joining to metallic electrodes using
Zn − 2Al solder.
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Fig. 2. SEM micrograph and selected EDX point measurements along the ZnSb leg after solder-free joining to Ni electrode with
(a) Ti and (b) Cr as interconnecting agents.

Fig. 3. SEM micrograph of the ZnSb leg after solder-free joining and heat treatment for 30 hours at 400 °C with (a) Ti and (b) Cr
as interconnecting agents.

S.A. Malik et al. / Data in Brief 15 (2017) 97–101 99



1.1. After conventional joining with solder

Fig. 1 presents a typical SEM micrograph of the ZnSb leg after conventional joining using Zn − 2Al
solder alloy. The chemical analysis of selected EDX point measurements along the leg is presented in
Table 1. The average ratio of Zn:Sb is 56:44.

1.2. After solder-free joining

Fig. 2 presents SEM micrographs of the ZnSb legs after solder-free joining with (a) Ti and (b) Cr as
interconnecting agents. The EDX point measurements on selected regions are presented in Table 2.
The average Zn:Sb ratios are 48.5:51.5 for (a) and 50.8:49.2 for (b).

Fig. 3 shows SEM micrograph of the ZnSb leg after solder-free joining and heat treatment for
30 hours at 400 °C with (a) Ti and (b) Cr as interconnecting agents. The typical EDX point measure-
ments are given in Table 3.

2. Experimental design, materials and methods

ZnSb ingots used for this study were provided by TEGnology AS, Denmark. ZnSb legs with
dimension of 3×3×3 mm3 were cut to join with metallic electrodes (Ni, Ag) using two methods: the
conventional with solder and a solder-free method [1]. The joining were performed in the tem-
perature range of 400–450 °C under a pressure of 3 MPa for 30 min. Heat treatment of the joint parts
was carried out at 450 °C for 30 h. The SEM images and EDX point measurements along the ZnSb leg
after joining were carried out in a Hitachi TM3000 scanning electron microscope.
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for carrying out this research.

Table 1
Typical EDX point measurements along the ZnSb leg shown in Fig. 1.

% Ratio Region 1 Region 2 Region 3 Average

Zn:Sb 56.5:43.0 55.3:44.7 56.2:43.4 56:44

Table 2
Typical EDX point measurement along the ZnSb legs shown in Fig. 2.

% Ratio Region 1 Region 2 Region 3 Average

(a) Zn:Sb 48.9:51.1 47.9:52.1 48.9:51.1 48.5:51.5
(b) Zn:Sb 49.8:50.2 50.5:49.5 52.3:47.7 50.8:49.2

Table 3
Typical EDX point measurement along the ZnSb legs shown in Fig. 3.

% Ratio Region 1 Region 2 Region 3 Average

(a) Zn:Sb 50.9:49.4 50.8:49.2 51.4:48.6 ∼51:49
(b) Zn:Sb 50.1:49.9 51.9:48.1 51.5:48.5 ∼51:49
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Abstract 

ZnSb is one of the promising low-cost p-type thermoelectric materials for constructing waste heat recovery devices operating in 

the medium temperature region (250 – 400 ᵒC). To obtain high performance, these devices require stable and low resistance contacts 

between thermoelectric materials and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes 

using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier 

and microstructure at the interfaces is observed by scanning electron microscopy. We found that S-bond 400 solder reacts with Ag 

and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker 

reaction/diffusion layer at the interface, while Ti layer was preserved. 
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1. Introduction 

Thermoelectric (TE) devices generate electricity directly from heat, and hence they offer many possible applications 

in industry, e.g. waste heat harvesting. The TE devices must operate at high temperatures, therefore, the stability of 

the materials is a matter of great concern. While many materials have been reported to exhibit excellent TE properties, 

only a few have been industrialized [1]. Zinc antimonide has been applied in thermoelectric industry since the 

discovery of the Seebeck effect until Tellurides took the stage in the 1960’s [2]. However, the material gained new 

interest after the discovery of the high thermoelectric figure of merit of its 4:3 (Zn4Sb3) phase [3]. Among the 
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compounds based on the semiconductor zinc antimonide, Zn4Sb3 and ZnSb phases are the most investigated materials 

showing good TE performance [4]. In addition, they are low-cost, abundant, and their material processing is 

environment friendly which makes them one of the best choices for constructing TE device in the medium temperature 

range. Zn4Sb3 has a promising figure of merit, zT, value of 1.4 at 450 ᵒC due to its phonon-glass character caused by 

Zn atoms on interstitial sites which reduce the thermal conductivity substantially [5]. However, these Zn interstitial 

atoms in Zn4Sb3 are very mobile: under working conditions, they form whiskers within the leg [6] and degrade the 

material over time. Among the various chemical phases of zinc antimonide [4, 7], the 1:1 phase (ZnSb) has 

orthorhombic crystal structure and it is expected to be more stable than Zn4Sb3 phase since it does not contain mobile 

Zn on interstitial sites. ZnSb has an indirect bandgap of 0.5 eV at room temperature and carrier concentration of ≈ 1016 

cm-3 [8, 9]. Although zinc antimonides have glass-like thermal conductivity which makes them attractive for TE 

applications, their poor carrier concentration compared with state-of-the-art TE materials [10] has inspired many 

scientists to try to improve their electrical properties by adding dopants such as Al, Ag, Sn, etc [11,12].  

Application of Zn4Sb3 and ZnSb in devices is still under investigation. Lin, et al. [13] studied bonding of Zn4Sb3 

with copper electrode using a solid-liquid interdiffusion process. The thermoelectric leg was coated with Ni and then 

Ag layer, while the Cu electrode was coated with Ag and then Sn layer. The Zn4Sb3/Ni/Ag/Sn/Ag/Cu assembly was 

heated in vacuum over the range of 250 °C – 325 °C for 5-30 minutes under a pressure of 3MPa. Ag diffusion converts 

the Sn layer into intermetallic Ag3Sn and Cu3Sn, resulting in strong adhesion. Several unintended diffusions also 

carried on, increasing with time: Zn from Zn4Sb3 diffused into the Ni barrier layer to form γ - Ni5Zn21. Zn also diffused 

into the Sn layer. Traces of Sb migration into the Sn layer were also identified.   

Since Zn4Sb3 phase has been found to be unusable on long-term operation for practical purposes, the ZnSb phase 

was chosen as the subject of study because not only is it stable and cheap, but it also has reasonable TE performance. 

In our recently published work [14] we investigated the soldering of this material with metallic electrodes at its high-

performance temperatures (400 °C) using Zn-2Al solder alloy. The investigation had pointed out that Zn-2Al solder 

is not suitable for ZnSb material. We also developed a novel solder free joining method to join ZnSb to metallic 

electrodes, which was initially stable after testing at 400 oC over 30 hours. However, for mass production with low-

cost processing, joining with solder alloy is still a preferable method. 

 

 

Fig. 1. Thermoelectric figure of merit of ZnSb as compared to the Zn4Sb3 phase [3, 14]. 
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In the present paper, the joining of ZnSb material with metallic electrodes is investigated by using a different 

commercially available S-Bond 400 alloy (Zn-4Ag-2Al with traces of Ga and Ce). With solidus temperature of 400 

°C and liquidus temperature of 420 °C, S-Bond 400 alloy can stand the expected operating temperatures of ZnSb (i.e. 

300 °C to 400 °C). Copper has been widely used as electrical conductor due to its excellent transport properties, but it 

is not useful for mid-to-high temperature TE applications because it already starts to oxidize at 350°C [15]. In this 

study, Silver and Nickel electrodes are chosen because of their excellent transport characteristics, stability in the mid-

to-high temperature range, and abundance. These metals are widely used in mid-to-high temperature thermoelectric 

devices [16,17]. Thin layers (few µm) of Cr and Ti are introduced as a diffusion barrier. The microstructure evolution 

at the interfaces is observed and discussed in detail.  

2. Experimental details 

ZnSb ingots used for this study were provided by TEGnology ApS, Denmark. Detailed TE properties of these legs 

have been reported elsewhere [14]. The ZnSb legs, S-Bond 400 solder, and the Ag, Ni electrodes were cut to their 

respective dimensions with cross-sectional area of 3 x 3 mm2. Their surfaces were polished using the SiC sandpaper 

to remove oxidation layers and to reduce interfacial inhomogeneities, degreased in acetone and finally cleaned with 

ethanol. All parts were assembled inside a graphite die. To preserve the ZnSb phase of our samples and to minimize 

the penetration of Zn into the legs, Ti and Cr layers with a thickness of few microns were deposited on ZnSb as 

diffusion barriers. The joining was performed in Argon atmosphere with temperature maintained for 30 min at 400 

°C. A constant pressure of 3 MPa was applied to the samples during the joining process. The assembly was heated 

around the liquidus temperature of the solder under pressure, so that it melts and wets the electrode and the leg, making 

a strong mechanical contact between them. The resulting samples were then polished and observed using Hitachi 

TM3000 electron microscope in BSE mode. The interfaces were scanned in the EDX mode to study the interfacial 

reactions and interdiffusion. 

3. Results and Discussions 

Fig. 1 shows the TE figure-of-merit as a function of temperature for ZnSb and Zn4Sb3 materials. The peak zT value 

is 1.4 for 4:3 phase, while it is about 0.8 for the 1:1 phase synthesized by spark plasma sintering (SPS). Although ZnSb 

has lower zT than Zn4Sb3, it is expected to be more stable as we have aforementioned. 

Fig. 2 shows the SEM micrographs of the interfaces between Ag, Ni electrodes, Zn-4Ag-2Al solder and ZnSb TE 

leg. It can be seen that in both cases of Ag and Ni electrodes, no crack or air gap were found at the joint parts. However, 

a thicker diffusion/reaction layer was observed in Ag case (Fig. 2a). The darker lines at the interfaces represent Cr 

(Fig. 2a) and Ti (Fig. 2b) barrier layers respectively. However, these two layers behaved quite differently. The Cr layer 

broke into pieces during the joining process, while the Ti layer stayed intact. One possible reason for this could be the 

high flux of Ag atoms from the Ag electrode bombarding the Cr interface. This high solubility of Ag in Zn changed 

the chemical composition of the solder too. The solder has a much higher content of Ag after joining. However, Ag 

did not diffuse beyond the solder into ZnSb. Due to the broken Cr layer, the interfacial diffusion/reaction region (Fig. 

2a) was larger than that for Ti (Fig. 2b). Dark lines at soldering region (Fig. 2a) may be due to different concentrations 

of Ag/Zn resulting in different contrast.   

Fig. 3 shows EDX analysis and lines-scanning through the interfaces. It can be seen from Fig. 3a that Zn from the 

solder also diffused into the Ag electrode. The interdiffusion between the solder and Ag is so strong that it is hard to 

identify the boundary between the solder and the electrode from SEM contrast (see Fig. 2a). According to the phase 

diagram of the Ag-Zn system [18], four intermetallic phases, namely the β, ζ, γ and ε phases with chemical 

compositions of AgZn (high temperature), AgZn (low temperature), Ag5Zn8 and AgZn3 might possibly form during 

joining [19, 20].  
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Fig. 2. SEM micrograph of: a) ZnSb/Zn-4Ag-2Al/Ag and b) ZnSb/Zn-4Ag-2Al/Ni samples after joining. 

 

Contrary to the case of Silver, the boundary between Nickel and solder is clearly visible (see Fig. 2b). We observed 

a dark region of high Nickel content with the possible composition of Ni6Zn3Ag, as given by EDX point measurements, 

in the solder after joining. Fig. 3b shows Ni peaks (green) in EDX linescan of that region. The thermodynamics of the 

Ni-Zn system [21] suggests low solubility of Ni in Zn. The Ni diffusion that we observed here could be caused by the 

presence of impurities like Ag (4%), Al (2%) and traces of Ga and Ce which could have modified the free energy 

landscape of the system. On the other side of the interface, Zn diffused and penetrated into Ni and formed an 

intermetallic layer with composition Ni5Zn21 [22] as identified by EDX point measurements. Typical compositional 

ratios of the phases formed during the joining process are given in table 1. 

 

The composition of ZnSb leg was also studied by EDX after joining. EDX point measurements (not shown here) 

along the leg showed that the Zn concentration was significantly higher than that of Sb in all randomly selected regions 

(average Zn:Sb ratio is ≈ 56:44). This observed result is similar to the case of Zn-2Al solder as reported [23]. This 

penetration of Zn into the leg changes the composition of the leg to Zn4Sb3 phase. The diffusion of Zn into the material 

and electrodes may be counterproductive because it might deteriorate their excellent TE properties over time when 

operating at high temperature with fast cooling [6]. In this case, both Cr and Ti diffusion barriers could not stop the 

penetration of Zn from solder into ZnSb leg. This could be because the atomic radius of Zn is very small, and also the 

thickness and density of these barriers may not be good enough.  
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In Fig. 3, we notice the inhomogeneity in the solder. There are different areas with different concentrations of 

elements. From Fig. 3a, we can also see that there is a flux of Silver from the electrode through the solder. It is also 

difficult to distinguish the boundary between the solder and ZnSb. In Fig. 3a, there is a strong signal of Sb next to the 

Cr peak, which may be an unreacted Sb particle coming from ZnSb, as suggested by the SEM micrographs of the 

material used in this study [23]. However, in Fig. 3b, the boundary between Ni, the solder and ZnSb is sharp. The 

solder is more inhomogeneous and there is a region of rich Ni. 

 

Table 1. Typical compositional ratios of the phases formed during the joining process 

 

Formula % ratio 1 2 3 Average 

AgZn Ag:Zn 54.3:45.7 51.6:48.4 52.6:47.4 52.8:47.2 

Ag5 Zn8 Ag:Zn 35.7:64.3 34.3:65.7 32.9:67.1 34.3:65.7 

AgZn3 Ag:Zn 26.5:73.5 25.1:74.9 23.1:76.9 24.9:75.1 

Ni6 Zn3 Ag Ni:Zn:Ag 65.8:25.8:8.4 66.7:26.7:6.6 59.0:31.0:10.0 63.8:27.8:8.4 

Ni5 Zn21 Ni:Zn 21.2:78.8 19.3:80.7 19.9:80.1 20.1:79.9 

Zn4Sb3 Zn:Sb 53.4:46.6 57.7:42.3 56.6:43.4 55.9:44.1 

 

 

Fig. 3. The EDX linescan of: a) Ag/Zn-4Ag-2Al/ZnSb interface and b) Ni/Zn-4Ag-2Al/ZnSb interface. 
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4. Conclusion 

We have investigated the contacts of ZnSb material to Ag and Ni electrodes using S-Bond 400 solder (Zn-4Ag-

2Al) with Cr and Ti as diffusion barrier. The result showed that contacts were formed without any visible cracks or 

airgaps at the interfaces. However, diffusion/reaction regions were observed at the interface between Ag and Ni 

electrodes and ZnSb material, and the effect is more substantial for the case of Ag electrode than Ni. The interfacial 

boundary between ZnSb/Ti/solder/Ni was much clearer than that of ZnSb/Cr/solder/Ag. EDX point measurements 

along the ZnSb leg after joining revealed that there is a significant higher concentration of Zn, which diffused from 

the solder and changed the chemical composition of the Zn-Sb material from 1:1 to 4:3 phase. The attempts to stop 

this penetration by applying a thin layer of Ti and Cr metals as diffusion barriers could not be successful. We think 

that multi layers of Cr and Ti, or other possible elements such as Mo or Ta, may be a better solution to overcome this 

issue, and further investigation is ongoing. 
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Abstract 

Skutterudites are among the most promising thermoelectric (TE) materials in the medium to high 

temperature range (300 
ᴼ
C to 600 

ᴼ
C) because of their high TE performance (zT>1). However, the use of 

these high performance materials in practical TE devices is still very limited due to the challenges in 

formation of good and stable contacts with electrodes. In this work, we report a new approach using solder-

free joining method to make contacts of CoSb3 based filled skutterudite legs with low-cost and stable Crofer 

22 APU electrode. Commercially available high performance skutterudite material was sintered by Spark 

Plasma Sintering (SPS) technique. Their thermoelectric properties were measured from RT to 550 
ᴼ
C. The 

results show that the SPS sintered sample has a maximum zT value of 1.5 at 550 
ᴼ
C, which is comparable 

with the best reported value in the literature. The TE properties of Crofer 22 APU show similar 

characteristics to most of the metals, i.e. very low electrical and thermal resistivities and low Seebeck 

coefficient. For contacts by solder free joining method, a thin layer of Cr and a multilayer Cr/Co were used 

to bond the skutterudite legs to the Crofer 22 APU electrode at 550 
ᴼ
C under 1.5 MPa for 30 minutes. We 

found that a very good interfacial contact without any visible gaps or cracks was formed between the TE 

material and Crofer 22 APU. The contact remained stable after long term testing at 550 
ᴼ
C for 300 hours, 

although some changes could be observed at the interface.  

Keywords: low-cost thermoelectrics, contact resistance, Skutterudite, thermoelectric modules, interface 

kinetics 

 

1. Introduction 

It is estimated that more than 50% of industrial usage of energy is lost in the form of waste heat[1]. The 

interplay of heat and electrical currents has been investigated since 1823 when Seebeck noted that a compass 

needle would deflect if it was placed near a closed loop of two dissimilar conductors and one of the junctions 

was heated[2]. This effect was later termed as thermoelectric effect[3].  With increasing demands for 

renewable energy resources, thermoelectric (TE) technology has drawn attention of the scientific 

community[4]. Poly-crystalline, degenerate semiconductors, that can manage to sufficiently scatter phonons 

but has high mobility channels for the charge carriers - i.e. ‘phonon-glass electron-crystal’ materials - exhibit 

the best thermoelectric performance[5]. One of the major hurdles in the path of widespread application of 

this technology is the stability of the metal-thermoelectric joints under practical circumstances[6]. Efficient 

TE material exhibits a fine balance between a number of inter-related physical properties, namely: the 

material Seebeck coefficient, ‘α’; the electrical conductivity, ‘σ’; and the thermal conductivity, ‘κ’. The 

dimensionless figure of merit, zT, is a measure of the performance of a TE material[7]: 



𝑧𝑇 =
𝛼2𝜎𝑇

𝜅
     (1) 

The device figure of merit, ZT, can be defined in terms of the total Seebeck coefficient, S, total electrical 

resistance, R, and total thermal conductance, K, of the module [8] as: 

 S
2
T S

2
T 

 ZT = = . (2) 

 RK (Rleg + Rc)(Kleg + Kc) 

here, R = Rleg + Rc and K = Kleg + Kc. Rc and Kc are the electrical and thermal contact resistances, respectively. 

It is obvious from equation 2 that low contact resistance is necessary in order to increase the device figure of 

merit. Strong adhesion and absence of cracks and airgaps at the interface reduces the electrical and thermal 

contact resistances. 

Skutterudites are a promising class of materials that can be used for thermoelectric applications in the mid to 

high temperature region. The general formula of these materials is RM4X12: R is the so-called “rattler” used 

to fill the large void spaces in the unit cells; M is a transition metal, e.g. Co, Fe, Ru, or Os; and X is P, As, or 

Sb. They are cubic with 34 atoms per unit cell and belong to the space group IM3̅ [9]. The structure consists 

of square planar rings of four pnictogen (Nitrogen family, the X) atoms along the (100), (010), or (001) 

directions. The unit cell can be thought of as an array of MX6 distorted octahedrons, sharing corners. This 

arrangement gives two large unfilled cavities which are available for the fillers, R. The transition metal atoms 

(M) form a simple cubic sublattice and the rattlers fill the two void cages in the unit cell. When the R atoms 

are absent from the structure, the binary skutterudite antimonides show excellent transport characteristics 

[10][11]. Filling of the cavities provides phonon scattering centers that reduce the thermal conductivity 

substantially, with phonon-glass spatially separated from the electron-crystal of the Sb sublattice 

[12][13][14]. Filled skutterudites have extra phonon modes [15], the atoms filling the voids reduce thermal 

conductivity. 

Rogl et al. [16] have studied the TE properties of p-type (DDy(Fe1-xCox)4Sb12) and n-type ((Mm, 

Sm)yCo4Sb12) filled skutterudite materials produced by Treibacher Industrie AG. They first processed the 

powder to obtain small grain sizes, and then hot-pressed it under a uniaxial pressure in Argon atmosphere to 

obtain sample pellets. The samples resulting from ball-milled powders appeared to have smaller grain sizes 

(<1µm). The zT for p-type samples peaked at 500
o
C, in the range of 1.1 to 1.3, higher for the ball milled 

samples due to their low thermal conductivities. In the case of n-type samples, the effect of microstructure on 

the transport properties was more evident and all of the thermoelectric properties appeared to change with 

respect to average grain size. This indicates not only the phonon transport was hindered but also the electrons 

faced scattering and filtering at the grain boundaries. The zT for n-type samples peaked at 550
o
C, in the 

range of 1.0 to 1.6, higher for the ball milled samples. 

Thermal degradation of pure CoSb3 occurs because of two mechanisms: (i) oxidation in air, resulting into a 

complex three-layered scale consisting of CoSb2O4, CoSb2O6, Sb2O3 and Sb2O4 layers, (ii) thermal 

decomposition into CoSb2, CoSb and Sb4, whereby Sb4 evaporates. The oxidation of pure CoSb3 material 

starts at about 380
o
C and the oxidation activation energy of the pure material is about 170 kJ/mol [17]. 

Exothermic differential thermal analysis (DTA) peaks were observed at 583
o
C, 655

o
C, and 740

o
C; 

accompanied by derivative thermogravimetry (DTG) peaks. Powder XRD performed on the completely 

oxidized CoSb3 at 550
o
C and 650

o
C indicated that the main products were: α-Sb2O4, CoSb2O6 and CoSb2O4. 

The optical micrograph of a cross section of CoSb3 surface heated in air at 600
o
C for 48 hours showed three 

layers with different colors formed. An X-ray diffraction depth profile showed that the top layer is made of 

α-Sb2O4 and the next two layers are of CoSb2O6 and CoSb2O4, respectively. The inner CoSb2O4 was also 

observed to be 4-times thicker than the CoSb2O6 layer on top of it. The electrical conductivity and Seebeck 



coefficient were measured after thermal treatment of CoSb3 at 615
o
C for 48 hours. It was noted that the 

thermal treatment enhanced the electrical conductivity (σ) 4-times and decreased the value of Seebeck 

coefficient (α) twice, resulting in the same power factor (α
2
σ) as before. For Fe-doped CoSb3 alloys, the 

starting temperature and activation energy of oxidation is slightly different[18].  Skald et al. [19] studied the 

oxidation behavior of Ce-filled Fe4Sb12 from room temperature to 800
o
C in air. The oxidation already starts 

slowly at 225
o
C and the mass gain starts to increase after 300

o
C. With increasing temperature, the surface of 

sample changes colors indicating formation of different compounds. At the temperatures below 500
o
C, 

powder XRD could only observe Sb and Ce based oxide crystallites, however at 800
o
C, FeSbO4 was 

observed along with Sb2O4 and CeO2. For better insight, X-ray absorption near edge spectroscopy (XANES) 

was performed which indicated the onset of formation of an Fe
3+

 oxide at 300
o
C. However, since this phase 

was not detected by powder XRD, it ought to be polycrystalline.  

 

Leszczynski et al.[17] studied the decomposition of CoSb3 doing a non-isothermal DTA in He gas flow and 

thermogravimetry (TG) analysis in vacuum-sealed quartz tubes. They found that the endothermic 

decomposition of CoSb3 starts at about 420
o
C and that four DTG peaks can be observed whose onset 

temperatures are approximately 580
o
C, 690

o
C, 870

o
C, and 930

o
C, for a heating rate of 10 K/min. The 

increase of decomposition rate at 580
o
C with the peak maximum at 640

o
C could be attributed to faster 

antimony sublimation for exceeding the melting point of antimony (630
o
C). For the next DTG peak with 

onset temperature of 690
o
C, they assumed that it may correspond to activation of a faster antimony diffusion 

path. They attributed the subsequent increases of decomposition rate at 875
o
C and 930

o
C to the 

thermodynamic stability limits of the δ-CoSb3 (874
o
C) and γ-CoSb2 (930

o
C) phases, respectively. The 

product of CoSb3 decomposition in vacuum was mainly CoSb2 and Sb4. CoSb2 did not seem to further 

decompose into CoSb, this could be because the TG was performed in sealed quartz tubes and the gradually 

increasing Sb4 pressure might have affected the decomposition process. This explanation is also supported by 

the fact that the mass loss of CoSb3 sample in sealed vacuum quartz tubes was much smaller than that in inert 

gas flow. F. Wu et al.[20] studied the TG and DTG curves for different heating rates (5
o
C/min, 10

o
C/min, 

15
o
C/min and 20

o
C/min) and observed faster decomposition for higher heating rate. The peaks in weight loss 

were also shifted to lower temperatures for when heating rate was high. 

 

The application of skutterudite thermoelectrics to make devices has also become a hot topic lately. Both 

conventional brazing[21][22] and current assisted co-sintering[23] [24] methods have been studied. Zhao et 

al. [21] used Mo–Cu alloy as electrode and Ag–Cu alloy as brazing agent, using a 20µm thick Mo layer as a 

diffusion barrier. The joining quality was good and the efficiency was measured to be 6.4% and output 

power seemed to stay unaltered under thermal cycling. However, long-term stability is still an open question. 

Chen et al. [22] studied the joining to Ag–Cu braze alloy with Co, Ni and Ti barrier layers sputtered on the 

CoSb3 substrate, and also without any barrier layer. It was noted that without the barrier, the solder would 

completely diffuse into CoSb3 within 3 days. On the contrary, the Co barrier layer forms a thin intermetallic 

layer with the braze alloy after 40 days of reaction at 600
o
C, which indicates low Cu and Ag solubility in Co. 

However, on the CoSb3 side of the joint, Co reacts with the thermoelectric to form CoSb and CoSb2 layers 

which grow slowly with time (>10µm) and cracks start to appear at the interface after 44 days of reaction at 

450
o
C. The Ni barrier layer reacted fast with both the material and the braze alloy. In the case of Ti barrier 

layer, 4 binary Cu–Ti compounds were formed at the Ag–Cu/Ti interface. However, the reaction layers 

formed at the Ti/CoSb3 interface were quite thin (<3µm after 21 days), although the Ti layer detached itself 

from the CoSb3 surface.  

 

Zhao et al. [23] sintered CoSb3 powder on a Ti barrier foil and Mo–Cu electrode. The joint was studied after 

thermal aging at temperatures of 550 
o
C, 575 

o
C and 600 

o
C for 0-20 days. The joining had no gaps or cracks 

when tested below 600 
o
C. Intermetallic phases TiSb, TiSb2 and ToCoSb formed at Ti/CoSb3 interface and 

grew over time. In a recent work, Zhao et al. [24] co-sintered CoSb3 powder with Ti powder as a barrier 

layer and W–Cu metallic alloy as the electrode, using spark plasma sintering technique. The W–Cu electrode 

was chosen because of comparable thermal expansion coefficients. No cracks appeared at the Ti/CoSb3 

interface for W–20Cu electrode because it’s thermal expansion co-efficient is pretty close to CoSb3 in the 

operating temperature range (10 × 10
-6

/
o
C to 11 × 10

-6
/
o
C). After thermal aging at 500 

o
C for 30 days, the Ti 



layer did not detach, and intermetallic TiSb layer formed at the Ti/CoSb3 interface. Increased temperature of 

550
o
C resulted in thicker (~20 µm) intermetallic layer and formation of two more phases, TiSb2 and TiCoSb. 

Thermal aging decreased the shear strength of the joint because the intermetallic phases formed at the 

Ti/CoSb3 interface are brittle. It also increased the electrical contact resistance. So far, most commonly used 

electrodes in the mid to high temperature range are Ag and Ni, which are costly and unstable at high 

temperatures. Low cost, stable materials and innovative joining method are needed. 

 

Commercially available Crofer 22 APU [25] has proved to be a very promising electrode for solid oxide fuel 

cells[26]. It is an Fe–22Cr alloy with small traces of Mn, C, Si, Cu, Al, S, P, Ti, La. It is a low cost and stable 

alloy, with metallic transport properties and low coefficient of thermal expansion (10.3×10
-6

/
o
C at 200

 o
C to 

12.7×10
-6

/
o
C at 1000

 o
C). Kaderi et al. [27] observed the oxidation behavior of Crofer 22 APU by in-situ 

XPS in the low-to-mid temperature range (< 700
o
C). Cr ions start moving to the surface and form oxide layer 

at 300 °C with a Cr concentration reaching its maximum at 500°C. Mn and Ti ions reach the surface at 500 

°C and 700 °C, respectively and form oxides. This process also reduces Fe oxides present on the surface as 

oxygen prefers Cr. Thermal degradation and oxidation of this alloy at elevated temperatures was examined 

by Park et al. [28]. Upon annealing in air at elevated temperatures (> 800
o
C), layers of conducting chromia 

(Cr2O3) and chromium-manganese oxide ((Mn, Cr)3O4) covered the samples. The thickness of the chromia 

layer increased relatively faster after 825 
o
C.  

 

Recently, we have developed a novel solder-free joining method and we have successfully applied this 

method to join ZnSb with Ni electrode [29]. The interface of this contact was found to be stable at 400 
ᴼ
C 

after 30 hours. In the present work we employ and further developed this method for CoSb3 based filled 

skutterudite material using Crofer 22 APU electrode. The thermoelectric properties of SPS sintered TE 

material are investigated over the desired temperature range and compared with the reported hot-pressed 

samples. The thermoelectric properties of Crofer 22 APU electrode are also measured to confirm its metallic 

nature. Cr and Co layers were deposited by DC sputtering on the clean and polished surface of skutterudite 

legs. Interface microstructure was observed after joining as well as after long term testing at high 

temperature.  

 

2. Methods 

The commercial powders of p-type and n-type skutterudites were obtained from Treibacher Industrie AG and 

SPS sintered using Dr. Sinter in vacuum under a uniaxial pressure of 50 MPa. Sintering temperature for the 

p-type leg was 650
o
C and for n-type leg, it was 700 

o
C. After sintering, the pellets were taken out of the 

graphite die, cleaned and cut for thermoelectric characterization and joining experiments. The electrical 

resistivity and Seebeck coefficient were measured on an ULVAC-RIKO ZEM-3 from room temperature 

(RT) to 550 
o
C in 0.1 Bar Helium atmosphere. The thermal conductivity was calculated from the thermal 

diffusivity and heat capacity obtained by the laser flash method on NETZSCH LFA 457 MicroFlash
 R , and 

mass density using the Archimedes principle. For the joining experiments, the skutterudite legs, Al–12Si 

braze and electrode were cut to their respective dimensions with cross-sectional area of 4mm × 4mm. Their 

surfaces were polished using the SiC sandpaper to remove oxidation layers and to reduce interfacial 

inhomogeneities, degreased in Acetone and finally cleaned by Ethanol. Microlayers of Cr and Co/Cr 

multilayer were deposited on the skutterudite substrate using DC sputtering. All parts were assembled 

together inside a graphite die. The joining was performed in Argon atmosphere. The joining temperature was 

maintained for 30 minutes at 500 
o
C. A constant pressure of 3 MPa was applied on the samples during the 

joining process. A long term test was run for 300 hours at 500 
ᴼ
C. The resulting samples were then polished 

and observed using Hitachi TM3000 electron microscope. The interfaces were scanned in the EDX mode to 
study the interfacial reactions and interdiffusion. 



3. Results and Discussion 

3.1 Thermoelectric Properties 

Figure 1 shows the TE properties of the SPS sintered p-type skutterudite as a function of temperature from 

RT to 550
o
C, alongside the literature values of the best hot-pressed samples for comparison. The electrical 

resistivity tends to increase with increasing temperature, showing a metallic behavior (see figure 1 (a)). The 

Seebeck coefficient has a positive value in the entire measured temperature range, indicating a p-type 

conduction, as shown in figure 1 (b). Both the electrical resistivity and Seebeck coefficient start to flatten 

after 400
o
C. A similar trend has been observed by Rogl et al. [16] for hot pressed samples. However, the 

Seebeck coefficient values are lower in magnitude, this could be attributed to the change in synthesis method. 

SPS is a fast and current assisted technique which could not only introduce microstructural inhomogeneities 

but also cause ion migration.   

 

Figure 1: Temperature dependence of the TE properties of SPS sintered p-type skutterudite: a) electrical resistivity, b) Seebeck 
coefficient, c) thermal resistivity, d) figure of merit. 

The thermal conductivity for our SPS sintered samples is very close to the ball milled, hot-pressed samples 

of Rogl et al. (see figure 1 (c)). The same trend was also observed by Rogl et al. [16] as well, this trend 

indicates that the electronic contribution to the thermal conductivity is dominant at elevated temperatures. 

The best performing samples reported by Rogl et al. were carefully prepared with nanostructured grains. 

The perfect match of thermal conductivity values indicates that the fast SPS method can result in phonon-
glass like characteristics.  

 

Figure 2: Temperature dependence of the TE properties of SPS sintered n-type skutterudite: a) electrical resistivity, b) Seebeck 
coefficient, c) thermal resistivity, d) figure of merit. 



Figure 2 shows the TE properties of the SPS sintered n-type skutterudite as a function of temperature from 

RT to 500
o
C. The electrical resistivity tends to increase with increasing temperature, showing a metallic 

behavior (see figure 2 (a)). The Seebeck coefficient has a negative value in the entire measured 

temperature range, indicating an n-type conduction, as shown in figure 2 (b). The magnitude of Seebeck 

coefficient start to become constant after 450
o
C. A similar trend has been observed by Rogl et al. [16] for 

hot pressed samples. However, the magnitudes are closer to the samples that were not ball milled and had 

bigger grain sizes.  The thermal conductivity is in good agreement with the best performing sample of 

Rogl et al. (see figure 1 (c)). This almost constant value was also reported by Rogl et al. [16] as well, with 

the same order of magnitude for samples with nanostructuring. The lower magnitude of Seebeck 

coefficient and electrical resistivity cancel out and the overall zT values are as good as the best hot-pressed 

samples in literature. 

 

Figure 3: Temperature dependence of the TE properties of Crofer 22 APU: a) electrical resistivity, b) Seebeck coefficient, c) 
thermal resistivity. 

Figure 3 shows the TE properties of Crofer 22 APU as a function of temperature from RT to 700
o
C. The 

electrical resistivity is as low as pure metals, and it increases with increasing temperature because of 

increasing electron-lattice scattering. The Seebeck co-efficient is also very low in magnitude, however the 

sign of the Seebeck coefficient is positive. This is also the case for most metals and it has been discussed in 
detail by K. Behnia [30]. The thermal conductivity of the alloy is also comparable with metals. 

3.2 Solder-free joining 

Solder-free joining is a modified diffusion bonding between two materials, under application of a uniaxial 

pressure at elevated temperature, facilitated by a few micron thick layer of a carefully chosen metal. Few 
micron layer of Cr and Cr/Co multilayer were grown on the cleaned skutterudite substrates.  

Figure 4 (a) shows the SEM micrograph of bonding between Crofer electrode and n-type skutterudite with 

Cr layer as the interconnect. It is evident that the contact is solid formed. An IMC diffusion/reaction region 

of < 5 µm is observed at the interface. On the skutterudite side of the interface, a layer of Sb rich phase has 

developed which adds to strengthening of the bond. A few Sb rich grains are also observed in Crofer. 

These grains don’t seem to dissolve in the Crofer matrix, hence the excellent transport properties of the 

electrode are preserved. Figure 4 (b) shows the SEM micrograph of bonding between Crofer electrode and 

n-type skutterudite with Cr/Co multilayer as the interconnect. It is evident that the joint is solid formed. An 

IMC diffusion/reaction region of ~10 µm is observed at the interface. On the skutterudite side of the 
interface, Co layer reacted with the TE material to form layers of CoSb and CoSb2 phases.  

 



 

Figure 4: SEM micrograph of: a) Crofer 22 APU/Cr/n-type skutterudite, b) Crofer 22 APU/Cr/Co/n-type skutterudite. 

 

Figure 5: SEM micrograph of Crofer 22 APU/Cr/Co/n-type skutterudite after heat treatment at 500 
ᴼ
C for 300 hours. 

Figure 5 (a) shows the SEM micrograph of the sample with Cr/Co multilayer after 300 hours of heat 

treatment at 500 
ᴼ
C. The quality of joint is still good. However, the materials seem to be interlocked by 

some micrograins of skutterudite penetrating into the electrode. This phenomenon needs to be further 

investigated. The IMC diffusion/reaction region has not grown further and seems to have reached 

saturation point. On the skutterudite side of the interface, Co layer reacted with the TE material to form 

layers of CoSb and CoSb2 phases.  



4. Conclusion 

We have shown that the high performance of filled skutterudite thermoelectrics could also be achieved by the 

spark plasma sintering method, which is much faster than the ball milling and hot-pressing route. The 

material figure of merit, zT, has the same order of magnitude as the best reports in the literature. Our 

investigation of transport properties of the low cost and stable electrode, Crofer 22 APU, confirmed the 

metallic behavior of this alloy. Using solder-free joining with single Cr and multi Cr/Co layers, good 

contacts between n-type skutterudite and Crofer 22 APU were formed thanks to a think alloying region that 

formed due to the intermetallic reaction at the interface. Long term test on the Cr/Co multilayer sample for 

300 hours has shown that the diffusion does not develop further and the quality of joint was preserved.  
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