
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Mechanistic Modelling for Risk-Based Monitoring of Lactic Acid Bacteria Cultivations

Spann, Robert

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Spann, R. (2018). Mechanistic Modelling for Risk-Based Monitoring of Lactic Acid Bacteria Cultivations. Kgs.
Lyngby: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/mechanistic-modelling-for-riskbased-monitoring-of-lactic-acid-bacteria-cultivations(2c6994fa-1b56-43d2-b037-9a4a2ff8321c).html


Robert Spann

Mechanistic Modelling for
Risk-Based Monitoring of Lactic
Acid Bacteria Cultivations

PhD Thesis, July 2018





Mechanistic Modelling for
Risk-Based Monitoring of

Lactic Acid Bacteria
Cultivations

Robert Spann

Technical University of Denmark

Kgs. Lyngby, Denmark, 2018



Technical University of Denmark
Department of Chemical and Biochemical Engineering
Process and Systems Engineering Center (PROSYS)
Søltofts Plads Building 229
2800 Kgs. Lyngby
Denmark
Phone: (+45) 45 25 25 25
Email: dtu@dtu.dk
www.dtu.dk

mailto:dtu@dtu.dk
www.dtu.dk


Summary

There is increasing interest in process analytical technology (PAT) tools for

on-line monitoring and control of bioprocesses. When modelling large-scale

production processes, microbial processes, heterogeneous process conditions,

and process uncertainties have to be considered. Heterogeneous process

conditions arise because of insufficient mixing at a large scale, and they

often have an impact on microbial activity and product yield as the cells

have to adapt to changing process conditions when circulating through the

bioreactor. Over the past years, computational fluid dynamics (CFD) and

compartment models have been applied to account for fluid dynamics in

bioreactors. They have been coupled with biokinetic models, and employed

to study substrate and oxygen gradients. The focus of this work was on pH

gradients in lactic acid bacteria cultivations as the pH is a critical process

parameter for these cultivations. Process uncertainties are considered with a

Monte Carlo simulation allowing risk-based decision making.

An aerotolerant Streptococcus thermophilus batch cultivation was utilized

as a case study, where the cells are the target product as they are used in

the dairy industry as starter cultures, e.g., for yogurt and cheese production.

In this work, a mechanistic model was developed to describe the microbial

cultivation, and it was applied together with a CFD and compartment model

to account for mixing in the bioreactor. The model was applied to gain deeper

process understanding, to test new process conditions, and as a soft sensor

for risk-based monitoring of the cultivation.

The kinetic model consisted of a biokinetic model and chemical model.

The biokinetic model described biomass growth, lactose (substrate) consump-

tion, and lactic acid production (as a by-product) among others. The chemical
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model was utilized to predict pH. A comprehensive parameter estimation

was performed using lab-scale data in order to assess the identifiability, sensi-

tivity, and uncertainty of model parameters. The model was comprehensively

validated with independent batch and continuous cultivations exhibiting a

relative mean error of less than 10 % for the biomass concentration.

The formation of pH gradients was investigated in a 700-L bioreactor. A

one-phase CFD model and compartment model were developed and validated

with tracer-pulse experiments to evaluate mixing time. A mixing time of

48 s was measured while the CFD and compartment models predicted 46

and 52 s at 240 rpm, respectively. The kinetic model was then coupled with

both the CFD and compartment model, and a cultivation was simulated with

both models. Besides an accurate prediction of the biokinetic state variables,

both models predicted the pH gradients qualitatively with a deviation of less

than 0.15 pH units. However, the CFD simulation took 4 days on 20 CPU

cores, while the compartment model was solved within 2 s on an ordinary

computer.

The compartment model was integrated in a probabilistic soft sensor

for the monitoring of lactic acid bacteria cultivations. The soft sensor used

the limited on-line measurements, namely the balance readout of the base

(ammonia) addition and pH, to update the model parameters that were used

as an input to the dynamic model. A Monte Carlo simulation of the model

was performed to account for uncertainties in model parameters, initial

process conditions, and on-line measurements. The soft sensor was validated

with historical lab-scale and pilot-scale experiments. If the soft sensor was

applied on-line during the production, it would equip plant operators with

a tool to assess pH gradients on-line and to take risk-based actions. The

probability of not achieving the target biomass yield was predicted based

on the probabilistic model predictions. In the investigated cultivation, the

risk was to lose 3.5 % of total production capacity. The operators could react

accordingly, for example, by increasing the stirrer speed to reduce the pH

gradient and achieve the desired production capacity.



Resumé

Der er en tiltagende interesse for værktøjer indenfor procesanalytisk

teknologi (PAT) til on-line overvågning og kontrol af bioprocesser. Når

storskala produktionsprocesser modelleres, skal forhold såsom mikrobielle

processer, heterogenitet, og procesusikkerheder tages i betragtning. Hetero-

gene procesforhold opstår i storskalaproduktion som følge af utilstrække-

lig omrøring, som ofte har indflydelse på mikrobiel aktivitet og produk-

tudbytte, eftersom mikroorganismerne løbende skal tilpasse sig de varierende

procesbetingelser, som skyldes omrøringen i bioreaktoren. Computational

fluid dynamics (CFD) og compartment modeller anvendes ofte til under-

søgelse af gradienter i produktionstanke. Denne afhandling fokuserede på

pH-gradienter i produktionsprocessen af mælkesyrebakterier, idet pH er en

kritisk proces parameter i fermenteringerne. Som grundlag for risikobaseret

beslutningstagning, vurderes processens usikkerheder ud fra Monte Carlo

simuleringer.

Studiet var baseret på produktionen af mikroorganismer fra en aerotoler-

ant batch-kultur af Streptococcus thermophilus, der i mejeriindustrien bruges

som en start-kultur i for eksempel yoghurt og osteproduktion. En mekanistisk

model blev udviklet og anvendt til beskrivelse af mikroorganismernes vækst.

Der supplereres med CFD og compartment-modeller, som begge tager højde

for opblandingsgraden i bioreaktoren. Modellens formål var at få en bedre

procesforståelse, at teste nye procestilstande og at anvende den som soft

sensor til risikobaseret overvågning af fermenteringen. Den mekanistiske

model bestod både af en biokinetisk og en kemisk model. Den biokinetiske

model beskrev blandt andet processer som biomassevækst, laktose (substrat)

forbrug og mælkesyreproduktion (som biprodukt). Den kemiske model blev

brugt til at beregne pH. En omfattende parameterestimering blev udført
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til vurdering af statistisk identifikation, sensitivitet og usikkerhed i model-

parametrene med udgangspunkt i laboratoriebaseret data. Uafhængigt data

fra batch og kontinuerlige fermenteringer blev brugt til validering af mod-

ellen, som for biomassekoncentrationen viste en relativ gennemsnitsfejl på

mindre end 10 %.

En ét fase CDF model samt en compartment model blev udviklet til

undersøgelse af pH-gradienter. Begge modeller blev valideret i forhold til

blandingstid bestemt i et sporstof-puls-eksperiment i en 700 L tank. Den

eksperimentelle blandingstid blev målt til 48 sekunder, mens CFD modellen

forudsagde 46 sekunder og compartment modellen 52 sekunder ved 240

omdrejninger pr. minut. Den kinetiske model blev koblet sammen med både

CFD og compartment modellerne til kvalitativ forudsigelse af pH-gradienter

med en afvigelse på mindre end 0.15 pH-enheder. CFD-simuleringen tog 4

dage på en 20-kerner CPU, mens en almindelig computer løste compartment

modellen inden for 2 sekunder. Compartment modellen blev integreret i en

probabilistisk soft sensor til overvågning af fermenteringsprocessen. Soft

sensoren brugte tilgængelige on-line målinger af pH-værdier og doseret base

(ammoniak) til opdatering af modelparametrene, som efterfølgende blev

brugt som input til den dynamiske model. Yderligere blev Monte Carlo

simuleringer foretaget for at tage højde for usikkerheder forbundet med mod-

elparametre, processens startbetingelser og on-line målinger. Soft sensoren

blev valideret i forhold til laboratorie og pilot-skala forsøg.

Implementering af on-line soft sensorer i processen ville kunne give

operatørerne et værktøj til løbende at reagere på pH-gradienter ud fra

risikobaserede handlinger. Sandsynligheden for at det ønskede procesudbytte

ikke opnås, blev undersøgt ud fra en risikoanalyse. I den undersøgte proces

blev en risiko på tab af 3.5 % af den totale produktionskapacitet estimeret.

Procesoperatøren har så mulighed for at reagere i henhold hertil ved at re-

ducere pH gradienten og dermed sikre den ønskede produktionskapacitet,

eksempelvis gennem en forøgelse af omrøringshastigheden.
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Introduction

The aim of this project is to develop and validate a comprehensive mecha-

nistic modelling framework to monitor lactic acid bacteria cultivations under

consideration of pH gradients and uncertainties. An aerotolerant Streptococ-
cus thermophilus batch cultivation is employed as a case study. The target

cultivation products are the cells which are then used in the dairy industry,

e.g., as starter cultures for yogurt and cheese production.

The focus of this project is to assess pH gradients and to take uncertain-

ties in the dynamic model simulation into account (Fig. A). pH gradients

occur because of insufficient mixing in large-scale bioreactors and they are

regarded as one of the key factors affecting the biomass productivity. CFD and

compartment models are applied to model the concentration heterogeneities

Figure A: Overview of this project. A PAT tool for risk-based monitoring of lactic
acid bacteria cultivations.
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in the bioreactor. Uncertainties arise naturally in the process as, for exam-

ple, substrate concentration varies slightly from batch to batch. In addition,

model parameters are subject to data quality in the parameter-estimation

step. A Monte Carlo simulation is applied to account for these uncertainties

in the model predictions. The final outcome of this project is a soft sensor

for risk-based monitoring of the cultivation. It uses on-line measurements to

update the dynamic model, CFD model and compartment model to consider

pH gradients, Monte Carlo simulation to yield robust model predictions, and

provides a PAT tool for risk-based decision making.

Structure of the Thesis

The thesis is structured in two parts. Part I consists of five chapters and

the overall conclusions. First, the current state of the art in the field is de-

scribed and then the main research results are explained. Part II contains the

manuscripts, submitted and accepted articles, and peer-reviewed conference

proceedings. They embody the details of the methodologies and provide

further details on the results obtained.

Chapter 1: Literature Review

The literature review provides the background of the thesis. Hetero-

geneities that arise in large-scale bioprocesses are addressed together with

appropriate modelling tools, namely CFD and compartment models. Further-

more, the state of the art of traditional one-compartment models is described,

including the Monte Carlo procedure, in order to account for uncertainties.

Chapter 2: Model Development and Validation

Chapter 2 surrounds the mechanistic model that lays the foundation of

this thesis. Firstly, a biokinetic model based on first principles is developed

that describes the biomass growth of S. thermophilus, carbon source con-

sumption, and lactic acid production as a by-product, among others. It is

combined with a chemical model that predicts the pH of the cultivation broth.

Secondly, parameter estimation, including identifiability, sensitivity, and un-

certainty analysis, is performed to fit the biokinetic model parameters. The
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model is then validated with independent data from batch and continuous

cultivations.

Chapter 3: Probabilistic On-line Monitoring Using a Soft Sensor

The mechanistic model is applied in a soft sensor to monitor lactic acid

bacteria cultivation. The soft sensor predicts both the current state of the

cultivation as well as that in the future. A Monte Carlo simulation is included

in the soft sensor to account for uncertainties in the model parameters,

initial process conditions, and measurements. The soft sensor framework is

developed and tested with historical data sets of lab-scale cultivations. So far,

homogeneous process conditions are assumed.

Chapter 4: Prediction of pH Gradients in Lactic Acid Bacteria
Cultivations

pH gradients in a 700-L bioreactor are investigated during a cultivation.

On the one hand, multi-position pH measurements are performed in the

bioreactor during the cultivation. On the other hand, the pH gradients

are predicted in simulations. Firstly, a CFD model is applied to consider

fluid dynamics and coupled with the kinetic model to simulate a cultivation.

Mixing experiments and simulations are performed to validate the model.

Secondly, a compartment model is designed starting from a CFD model. It is

applied to the cultivation, and the results are compared with the experiments

and CFD simulation. Besides the prediction accuracy of the pH gradients, the

focus is on computational speed because this is an essential aspect in view of

future on-line model applications as intended in this work.

Chapter 5: On-line Risk Quantification

The compartment model is employed in the soft sensor, and validated

with a 700-L cultivation. The pH gradient in the bioreactor and the other

state variables are predicted. In addition, the probability of not achieving the

target biomass yield and risk of product loss are quantified in the soft sensor

using the probabilistic model predictions. With this application, both the pH
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gradient and the risk can be critically assessed, and they allow risk-based

decision making by the plant operators.

List of the Main Contributions

The thesis is based on research results that have been included in a book

chapter, journal articles and peer-reviewed conference proceedings. The

articles and manuscripts could be found in Part II.

(A) Book chapter:

Spann, R., Eliasson Lantz, A., Gernaey, K. V., & Sin, G. (2018). Mod-

elling for process risk assessment in industrial bioprocesses. In Refer-

ence Module in Chemistry, Molecular Sciences and Chemical Engineer-

ing. Published

https://doi.org/10.1016/B978-0-12-409547-2.14356-2

(B) Journal article:

Spann, R., Roca, C., Kold, D., Eliasson Lantz, A., Gernaey, K. V., & Sin,

G. (2018). A probabilistic model-based soft sensor to monitor lactic

acid bacteria fermentations. Biochemical Engineering Journal, 135,

49–60. Published

https://doi.org/10.1016/j.bej.2018.03.016

(C) Peer-reviewed conference proceedings:

Spann, R., Roca, C., Kold, D., Eliasson Lantz, A., Gernaey, K. V., & Sin,

G. (2017). A Consistent Methodology Based Parameter Estimation for

a Lactic Acid Bacteria Fermentation Model. In A. Espuña, M. Graelss, &

L. Puigjaner (Eds.), Computer Aided Chemical Engineering, Elsevier,

40, 2221-2226. Published

http://dx.doi.org/10.1016/B978-0-444-63965-3.50372-X

https://doi.org/10.1016/B978-0-12-409547-2.14356-2
https://doi.org/10.1016/j.bej.2018.03.016
http://dx.doi.org/10.1016/B978-0-444-63965-3.50372-X
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(D) Peer-reviewed conference proceedings:

Spann, R., Eliasson Lantz, A., Roca, C., Gernaey, K. V., & Sin, G. (2018).

Model-based process development for a continuous lactic acid bacteria

fermentation. In F. Anton, J. J. Klemes, S. Radl, P. S. Varbanov, &

T. Wallek (Eds.), Computer Aided Chemical Engineering, Elsevier, 43,

1601-1606. Published

https://doi.org/10.1016/B978-0-444-64235-6.50279-5

(E) Journal article:

Spann, R., Glibstrup, J., Pellicer Alborch, K., Junne, S., Neubauer,

P., Roca, C., Kold, D., Eliasson Lantz, A., Sin, G., Gernaey, K. V., &

Krühne, U. CFD predicted pH gradients in lactic acid bacteria cultiva-

tions. Biotechnology and Bioengineering. In preparation

(F) Journal article:

Spann, R., Roca, C., Gernaey, K. V., & Sin, G. A Validated CFD-based

Compartment Model to Assess pH Gradients in Lactic Acid Bacteria

Cultivations. AIChE Journal. Submitted

(G) Journal article:

Spann, R., Gernaey, K. V., & Sin, G. On-line Process Risk Assessment of

a 700 L Lactic Acid Bacteria Cultivation. Frontiers in Bioengineering

and Biotechnology. Submitted

https://doi.org/10.1016/B978-0-444-64235-6.50279-5
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Chapter 1

Literature Review

The literature review is reprinted from the following book chapter with

minor changes to improve the readability of this thesis and with the addition

of the subsection, Lactic Acid Bacteria Models:

Paper A: Spann, R., Eliasson Lantz, A., Gernaey, K. V., & Sin, G. (2018).

Modelling for process risk assessment in industrial bioprocesses. In Reference

Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier.

1.1 Simulation of Heterogeneities at a Large Scale

“Mechanistic models are applied to various PAT systems but homogeneous

culture conditions are assumed typically, even though heterogeneities occur

at a large scale. In industrial large-scale bioprocesses, culture parameters, like

the substrate concentration, oxygen concentration, pH, and temperature, are

not homogeneously distributed, and gradients of them exist instead within

the bioreactor (Lara et al., 2006). This is because of a lower mixing capability

of large-scale bioreactors, which are on the scale of 10 to larger than 300 m3

compared to small laboratory-scale bioreactors, which are in the litre range.

Cells circulating within large-scale bioreactors are consequently exposed to

continuously changing conditions, and they need to adapt to these conditions

constantly, which affects their metabolic activity. As a result, biomass and

product yields are often lower at large scales than at the laboratory scale

(Bylund et al., 1998; Zou et al., 2012; Enfors et al., 2001; de Jonge et al.,
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2011; Xu et al., 1999; George et al., 1998). It is also possible that strains

that showed a good productivity at the laboratory scale do not grow at all

at a large scale. The challenge is therefore to predict the behaviour of the

microorganisms – mainly their productivity – at a large scale without the need

for expensive experiments at the large scale to support optimal bioprocess

development and control.

Gradients at a Large Scale

Gradients occur at a large scale because certain components, like sub-

strate, oxygen, and base or acid, are added at one (or sometimes several)

positions locally to the cultivation, and it takes then several seconds up

to minutes to distribute them homogeneously throughout the bioreactor

(Delvigne et al., 2006). This leads to a heterogeneous distribution of culture

parameters, such as substrate, oxygen, carbon dioxide concentration, pH, and

temperature (Fig. 1.1). Moreover, there exist pressure gradients in bioreac-

tors owing to the height of the bioreactor (Neubauer and Junne, 2016), and

cells are exposed to changing flow conditions (Nienow, 2006, 2014). The

effect of gradients in large-scale cultivations is often a reduced biomass yield

and productivity compared to homogeneous lab-scale cultivations. Cells that

travel through a large-scale bioreactor have to deal with changing conditions

uninterruptedly, which induces stress upon microorganisms. All microorgan-

isms respond in a different way to the various oscillating conditions. It is

therefore necessary to study the strain-specific response in so-called scale-

down experiments, where large-scale conditions are mimicked in lab-scale

experiments so that the microbial response can be investigated (Neubauer

and Junne, 2010; Wang et al., 2014). The effects of substrate, oxygen, and

pH gradients have been studied in detail for many organisms and certain

examples will be highlighted in the following paragraphs. The objective of

these studies is to investigate: i) how microorganisms respond to shifts in

different conditions (or combinations of them); ii) how fast the organisms

react to changes at the -omics level (genomic, transcriptomic, proteomic, and

metabolomic); and iii) what the long-term effects of oscillating conditions

are.

Substrate gradients play a major role in fed-batch cultivations, where
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Figure 1.1: Gradients in large-scale cultivations. The formation of gradients for a
fed-batch bioreactor configuration with the substrate-feed addition at the top of the
bioreactor, and the oxygen sparging and base addition at the bottom of the
bioreactor. Dark colour: high concentration/value; bright colour: low
concentration/value. Reprinted from Paper A.

the substrate is usually fed at the top of the bioreactor (Fig. 1.1, substrate).

High substrate concentrations of up to 2 g L-1 have been reported near the

feed-addition point (Bylund et al., 1998). In the feeding zone, the cells take

up much substrate according to their maximum substrate uptake capacity.

This leads to a fast depletion of oxygen there when high cell densities are

reached as high substrate turnover demands a high respiratory capacity.

A further consequence is the formation of glycolytic overflow metabolites,

such as acetate, lactate, formate, and succinate in E. coli cultivations (Sunya

et al., 2013; Xu et al., 1999) or ethanol in S. cerevisiae cultivations (George

et al., 1993) as the entire carbon cannot be metabolized by respiratory

metabolism. However, these metabolites are then typically taken up again

and re-metabolized in aerobic substrate-limited or -depleted zones, further

away from the feed addition. Nevertheless, this generation and uptake of side

products is a futile cycle, and can lead to a decreased biomass or product yield

in the end as these detours are less energetically efficient. Recent analyses

also investigated the response on the transcriptomic and proteomic level of E.
coli and C. glutamicum (Lemoine et al., 2016; Löffler et al., 2017; Simen et al.,

2017; Sunya et al., 2013), which allow for a detailed understanding of the

microorganisms. This might allow genetically engineering microorganisms
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that are less prone to stress, as shown in by Michalowski et al. (2017).

Oxygen gradients are particularly crucial when the cultivation reaches

high cell densities and the available oxygen is consumed rapidly (Fig. 1.1,

dissolved oxygen). Oxygen is added to the culture medium at the bottom of

the bioreactor as gas (air or pure oxygen). Based on low solubility of oxygen

in water, the available oxygen is limited, especially further away from the

gas inlet, and in the feeding zone, where the substrate and oxygen uptake

rates are high. Oscillating oxygen conditions have demonstrably reduced

recombinant protein production in E. coli (Sandoval-Basurto et al., 2005) and

expression of non-proteinogenic branched-chain amino acids (Soini et al.,

2008), which could result in a misincorporation (an erroneous incorporation)

into recombinant proteins. The lipase-producing strain, Yarrowia lipolityca,

for instance, shows a reduction of lipase gene expression (Kar et al., 2008).

Other strains, such as Corynebacterium glutamicum, seem to be robust with

respect to substrate and oxygen gradients (Käß et al., 2014; Limberg et al.,

2017).

pH gradients exist in bioreactors because the pH of the cultivation broth

is controlled by adding base or acid as needed by a pH control setup (Fig. 1.1,

pH). In aerated cultivations, the acid/base is often added together with the

incoming aeration gas that ensures a very fast distribution of the acid/base.

In non-aerated cultivations, the acid/base is usually added to the bioreactor

as liquid, either at the top or at another position, e.g., close to the impeller

blades. The acid/base addition leads to a zone of unfavourable pH conditions

in close vicinity of the dosage point. Cells that pass this zone are prone

to cell damage. pH shifts of almost 1 pH unit have been measured close

to the alkali addition point in an 8-m3 reactor for mammalian cell cultures

(Langheinrich and Nienow, 1999), but even higher shifts might be expected.

It was shown for E. coli, B. subtilis, and mammalian cells that oscillating pH

conditions can impact biomass growth, the metabolome, the transcriptome,

and cell viability (Amanullah et al., 2001; Cortés et al., 2016; Osman et al.,

2002). Extracellular pH has a direct effect on cell physiology because it

affects intracellular pH, which is crucial for enzymatic activity and controlled

by proton pumps (Hansen et al., 2016).
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CO2 gradients probably have a major effect on the productivity of large-

scale cultivations, too, but have been rarely investigated thus far (Fig. 1.1,

dissolved carbon dioxide) (Baez et al., 2011; Blombach et al., 2013; Buchholz

et al., 2014).

The effects of heterogeneities on microbial activity and productivity are a

combination of the fluid dynamics in the bioreactor and microbial metabolism.

Computational tools that describe the fluid dynamics are therefore coupled

with biokinetic modelling in order to support the investigation of the effect

of gradients at large scales.

Computational Fluid Dynamics (CFD) Models

CFD simulations can predict among other things the motion of the fluid

in bioreactors and are therefore applied, e.g., for the prediction of fluid

dynamics and mixing time when different impeller designs are tested for a

bioreactor (Yang et al., 2012; Zou et al., 2012). Furthermore, CFD simulations

can be combined with biokinetic models in order to investigate the effects

attributed to gradients.

The fluid dynamics are numerically solved for the liquid volume in a

CFD simulation. The fundamental mathematical equations are based on the

conservation of mass, momentum, and energy. The most commonly used

mathematical formulation is that of the Navier-Stokes equations. Further

equations describing other phenomena, such as turbulence or eddy formation,

are applied and solved depending on the goal of the simulation, as well. The

liquid volume is divided into many (up to a few million) small elements for

the simulation, and the fluid dynamic equations are solved for each element.

CFD is applied for biotechnological cultivations because many key issues

in cultivations are dependent on the flow: mass transfer (e.g., mixing of feed

streams; gas-liquid transfer), shear rates, and transport of microorganisms

through the bioreactor (Delvigne et al., 2017; Schmalzriedt et al., 2003). To

this end, the biological kinetic equations are solved together with fluid flow

within the CFD simulations. The simulation then describes concentration

gradients (e.g., substrate, dissolved oxygen), gradients of physical param-

eters (e.g., pH, mass transfer coefficients, gas hold-up), and temporal and
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spatial performance of the microorganisms (e.g., substrate uptake, product

formation, by-product formation, growth). The purpose of these studies is

usually to predict the oscillating culture conditions at a large scale and design

controlled scale-down experiments at the lab scale that mimic large-scale

conditions as closely as possible. Future interest lies in the prediction of

culture performance at a large scale using CFD simulations.

As a first step, the fluid dynamics of the bioreactor, i.e., the velocity profile

of the bioreactor, is simulated. Second, the mixing time is often simulated.

The mixing time is the time that a tracer that was pulsed into the bioreactor

needs to reach a homogeneous distribution (i.e., to achieve complete mixing)

in the bioreactor. The predicted mixing time is used to validate the CFD

simulation as the simulated and experimental mixing times can be compared.

Once the CFD simulation is validated, it can be applied to simulate microbial

cultivations. The CFD simulation is then coupled with further gas-liquid

transfer processes and biokinetic models to study bioprocess yields and

performance in bioreactors.

There are two main approaches to model microorganisms in the CFD sim-

ulation, which are applied depending on the purpose of the simulation – the

Euler-Euler and the Euler-Lagrange approach. With the Euler-Euler approach,

the microorganisms are treated as a continuum, i.e., all cells are treated in the

same way as concentrations of a dissolved component (Bannari et al., 2012;

Elqotbi et al., 2013). With the Euler-Lagrange approach, the fluid is treated

as a continuum, but the microorganisms are seen from the microbial point

of view, i.e., individual cells travelling through the bioreactor are tracked

(Haringa et al., 2016; Lapin et al., 2006; Morchain et al., 2013). The advan-

tage of the Euler-Euler approach is that it is computationally less demanding

than the Euler-Lagrange approach. Nevertheless, this leads to a loss of the

individual history of the cells (Lapin et al., 2004). This could be of interest

when one wants to investigate, e.g., the effect of subsequent, unfavourable

conditions or culture conditions experienced by the microorganisms at a

large scale over time, or so-called lifelines of the cells (Haringa et al., 2016;

Kuschel et al., 2017). Scale-down experiments that resemble large-scale

conditions could be designed based on the CFD simulation. Haringa et al.

(2017) recently proposed a three-compartment lab-scale setup to mimic the
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conditions of a 22-m3 S. cerevisiae cultivation, which needs to be validated

as a next step. CFD-based scale-down experiments will improve the quality

of scale-down studies. CFD models are furthermore applied, for example,

to enhance the treatment efficiency of wastewater plants (Karpinska and

Bridgeman, 2016; Samstag et al., 2016).

Even though the CFD simulation of the fluid dynamics together with

biokinetic models is a powerful tool that provides accurate predictions, its

application is limited to off-line studies. This is because the CFD simulation,

with its many mesh elements, is computationally too demanding, especially

when large-scale bioreactors must be modelled. For on-line applications,

such as monitoring and control, CFD simulations cannot be executed fast

enough (e.g., every couple of minutes), and therefore compartment models

are preferred.

Compartment Models

Compartment models (CMs, also known as block models or network of

zones) divide the liquid domain into a limited number of coarse elements,

which is much lower than the number of elements used in CFD simulations,

and demands therefore less computational time compared to the CFD model.

The properties (e.g., temperature, pH, concentrations) are assumed homoge-

neous in each compartment, and the Navier-Stokes equation is not included.

Additional models, such as chemical, physical, biokinetic, or population

balance models, are solved only with an affordable simulation time. The

compartments are interconnected with defined flow rates and the interface

area between each adjacent compartment.

A consistent framework to build CMs is based on an initial CFD simu-

lation that provides a validated steady-state solution of the fluid dynamics

(Moullec et al., 2010) (Fig. 1.2). The objective is to define the compartments

based on the CFD results, preferably automatically according to a specific

algorithm (Bezzo and Macchietto, 2004; Delafosse et al., 2010; Rigopoulos

and Jones, 2003). Using the simulated velocity profile, compartments could

be automatically defined, e.g. by identifying dead regions or recirculation

regions (Bezzo and Macchietto, 2004). However, this is not a general solution
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as adaptations for different kinds of bioreactors (e.g., plug-flow reactors) or

impeller configurations are needed. Moreover, the derived compartments do

not necessarily represent, for example, a feeding or acid addition zone, which

might be crucial for several applications. Bezzo and Macchietto (2004) have

therefore proposed a hybrid algorithm that takes also other properties, e.g.,

concentrations, into account for the identification of compartments. This

methodology has the disadvantage that also a CFD simulation, including

bio-kinetics, has to be performed once, in order to design the compartments.

Nevertheless, the developed CFD-based CM can be validated in this way to

replace the CFD simulation for accurate on-line applications. Manual defi-

nitions of compartments are also applied (Bashiri et al., 2016; Nauha et al.,

2018). Delafosse et al. (2014) implemented homogeneously distributed

compartments based on their coordinates, though they needed more than

12000 compartments in order to match the CFD-predicted and experimental

mixing time of a 16 L bioreactor, which used more than 106 mesh elements

for the CFD model. Such approaches will not be feasible for larger biore-

actors or on-line applications combined with Monte-Carlo simulations (see

probabilistic model predictions).

Once the compartments are defined, the volume flows (liquid and gaseous)

between the compartments are taken from the CFD simulation. Further prop-

erties, such as volumes, pressure, shear rates, viscosities, etc. are also derived

from the initial CFD simulation and used in the CM. Then, the CM needs

to be validated, e.g., with mixing experiments or the already-validated CFD

simulation (Delafosse et al., 2015). Finally, biological, physical, and chemical

kinetics can be incorporated and then solved in all compartments together

with the transfer processes between the compartments.

CMs have been applied to characterize the culture conditions in bioreac-

tors (Bezzo et al., 2003; Guha et al., 2006; Moullec et al., 2010; Nauha et al.,

2018; Rigopoulos and Jones, 2003; Wells and Ray, 2005; Zhao et al., 2017).

Moreover, entire bioprocesses have been simulated. Glucose and acetate

gradients could be predicted in a large-scale E. coli cultivation, and resem-

bled the measured tendencies (Vrábel et al., 2001). An antibiotic-producing

Streptomyces fradiae cultivation in a 3-m3 bioreactor was modelled and could

be validated with dissolved oxygen measurements (Vlaev et al., 2000). The



1.1. Simulation of Heterogeneities at a Large Scale 17

Figure 1.2: Example of a CFD-based compartment model. The steady-state velocity
profile (left) can be used to define the compartments (right) for a compartment
simulation. The velocity direction and magnitude (left, blue arrows) and an
example of the compartments (right, pink boxes) are shown for a bioreactor with
three Rushton turbines and four baffles. Reprinted from Paper A.

same framework has been applied to predict the dissolved oxygen tension

in a 31-m3 stirred-tank bioreactor for the production of another antibiotic,

and for a 236-m3 bubble column for citric acid production, however without

validation (Zahradník et al., 2001). Different gradients (substrate, oxygen,

etc.) were predicted for wastewater-treatment bioreactors (Alvarado et al.,

2012; Moullec et al., 2010; Rehman et al., 2017). These studies included the

biokinetics of the ASM1 model (Henze et al., 2000) to describe microbial

conversions in the system in very large aeration tanks of several 1000 m3. For

a 30-m3 E. coli cultivation, gradients for the glucose concentration, growth

rate, and others were predicted, whereas a population balance was applied

to account for cell heterogeneities (Pigou and Morchain, 2015; Pigou et al.,

2017)." (Paper A)
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1.2 Mechanistic Modelling of Lactic Acid Bacteria

“A mechanistic model describes the behaviour of a system with math-

ematical equations. Mechanistic models are applied to develop, optimize,

control, etc. different bioprocesses. They are based on prior knowledge of the

phenomena of the system, which are in particular the elemental mass, energy,

and momentum balances of bioprocesses (Esener et al., 1983; Roels, 1981).

Mechanistic models are therefore also called first principles, fundamental,

or white-box models. Generally speaking, ordinary differential equations

(ODEs) or partial differential equations (PDEs) describe the system if the

model outputs change dynamically in time, or in time and space, respec-

tively. The differential equations for all system components cover typically

biological, chemical, and physical mechanisms, such as microbial growth, pH

calculation, and aeration, respectively (see subsection: Biological, Chemical,

and Physical Model Expressions for Cultivations). The main components

are, for instance, the substrate (the carbon source), biomass, oxygen, reactor

volume, and gas flows in an aerobic cultivation.

The main advantage of mechanistic models over data-driven models is

that they have a large extrapolation capability as they are based on first prin-

ciples and are not limited to the conditions that were employed to calibrate

the model (Mears et al., 2017b). Mechanistic models have therefore a large

application range (see section: Applications of Process Models) and can be

utilized to test scenarios even if no data for these conditions are available.

Another advantage of mechanistic models is that the model parameters have

a physiological meaning, e.g., the specific maximum growth rate of the cells;

hence, the user of the model can directly understand them. Furthermore,

such models have a general and flexible structure that allows knowledge

transfer of process equations and parameters both in industrial and academic

environments from one process model to another. However, disadvantages

of mechanistic models are that they require a relatively long development

time, and that significant process insight is needed to obtain and validate the

fundamental process equations.

In the end, mechanistic models for the bio-based production industry

are often a combination of mechanistic and empirical equations based on
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the complexity of the system. The latter is used especially for situations

where certain phenomena are not understood to the necessary level of detail.

There are also several other types of models for bioprocesses that are out

of scope of this contribution, including data-driven models (which include,

for instance, artificial neural networks and chemometric methods, such

as principal component regression) and hybrid models (a combination of

mechanistic and data-driven modelling techniques) (Solle et al., 2017; von

Stosch et al., 2014).

The biotechnological industry increasingly applies mechanistic models

because it has realized their significance. Mechanistic models are, for ex-

ample, advantageous for predicting system behaviour after a change, while

statistical models based on QbD sometimes fail (Process Development Forum,

2014). Today data-driven approaches are preferred in industry because of

the cost-benefit analysis, which might be based on the established regulatory

requirements for the approval of new processes. However, mechanistic mod-

els can support the PAT framework to better understand the effect of process

changes under a wider range of conditions. Mechanistic models can simulate

different initial conditions as well as process disturbances thanks to their

extrapolation capabilities. They use the critical process parameters (CPPs)

as inputs to predict critical quality attributes (CQAs) of, e.g., the desired

product.

Once the model structure is established, the model parameters have to be

determined and the reliability of the model must be assessed. It is important

to prove the reliability of the model in order to be able to rely on model-based

application, and to be able to defend, for example, the design space against

the FDA. Several methods and tools exist to assess the credibility of the

model, including identifiability, uncertainty, and sensitivity analysis (Chis

et al., 2011; Sin and Gernaey, 2016).

Biological, Chemical, and Physical Model Expressions for
Cultivations

The differential model equations typically cover biological, chemical,

and physical processes. Biological processes are often modelled with a
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macroscopic view, describing the microbial cell as a whole (unstructured

model), especially when the model is applied for large-scale process design

and optimization (Gernaey et al., 2010; Kroll et al., 2017). In structured

models, at least one intracellular metabolic component, such as metabolites,

ATP, and NADH, are described. This is of particular interest for metabolic

engineering and microbial cell development in system biology (Almquist

et al., 2014; Campbell et al., 2017), which is outside the scope of this work.

In the unstructured biological model, biomass growth, product formation,

maintenance, and decay processes (of biomass, products, and precursors)

are described. The growth of biomass is written with the stoichiometric

equation (Eq. (1.1)), where biomass (CHaObNcPd), a product (P), and carbon

dioxide (CO2) are typically obtained from the conversion of the substrate

(e.g., Glucose CH2O), oxygen (O2), a nitrogen (e.g., NH3), and phosphate

source (e.g., H3PO4) (Villadsen et al., 2011).

CH2O+YO/S ·O2 +YN/S ·NH3 +YPhos/S ·H3PO4→
YX/S ·CHaObNcPd +YP/S ·P+YC/S ·CO2 +(· · ·)+YW/S ·H2O (1.1)

Biomass is composed of many elements: C, H, O, N, P, S, and trace elements,

such as Ca and Mg, which can be evaluated by elemental analysis. Only the

dominant elements are usually considered for modelling purposes, and a

pseudo steady state of this composition is assumed even though the elemental

composition of the cell might slightly change during the process. The yield

coefficients define the quantity of what is produced/consumed per quantity

of consumed substrate, e.g., the biomass yield coefficient, YX/S, that describes

how much biomass is produced per consumed substrate. The kinetic rates of

the biological processes have been described in the literature using empirical

relations, such as the Monod model (Monod, 1949) combined with func-

tions accounting for inhibition and limiting effects of substrates, metabolites,

products, and process conditions, like the pH (Eq. (1.2)).

dCX

dt
= µmax ·

CS

CS +KS
· KP

CP +KP
· e
−
(

(|pHopt−pH|)2

σ2
pH

)
·CX (1.2)

where dCX
dt is the change of the biomass concentration (CX) over time (t),

µmax is the maximum specific growth rate, CS is the substrate concentration,
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KS the saturation parameter of the substrate, CP the product concentration, KP

the product inhibition parameter, pHopt the optimal pH for growth, and σpH

the spread parameter of the Gaussian pH function. The latter approximates a

bell-like curve relating the effect of pH on the maximum growth of cells.

Chemical processes are considered in bioprocess modelling in order to

extend the application of models to systems, e.g., with varying pH. These

models are applied to study for example the effect of the pH or precipita-

tion on the process. Several chemical processes are modelled, including

dissociation reactions of weak and strong acids and bases, ion pairing, and

precipitation (Musvoto et al., 2000). Ion pairing and precipitation involve

solid-liquid interactions, while a mixed acid/base system describes liquid-

liquid interactions. In these processes, the analytical concentrations need

to be adjusted by the activity coefficients (γi), owing to the changing inter-

actions of ions in solution with each other and with the H2O molecules at

different ion concentrations. Various empirical equations are made use of

for such activity corrections depending on the ionic strength (function of

the concentration of all charged components) of the mixture (Loewenthal

et al., 1989; Musvoto et al., 2000). As an example, Eq. (3) describes the

dissociation reaction rate of an undissociated acid (HA) to its dissociated

form (A-) and the hydrogen ion (H+):

rHA⇀↽A−+H+ = K′r,A ·10
− pKA

γ2
A ·CHA−K′r,A ·CA− ·CH+ (1.3)

where K
′
r,A is the apparent reverse rate constant for the acid dissociation,

pKA the acid dissociation constant for the specific acid considered, and Ci

represents the concentration of the i-th component.

Physical processes deal with mass and heat transfer processes. Gas-liquid

exchange processes are of special interest in cultivations. These include,

among others, the mass transfer of the oxygen from the gas bubbles to the

liquid broth (aeration) and the gas stripping of CO2 from the liquid to the gas

phase. Oxygen transfer is key for the success of most large-scale bioprocesses

as most of them are aerobic – with the exception of, e.g., bioethanol and lactic

acid production. Gas-liquid mass transfer models are usually based on the

two-film theory (Whitman, 1962), and can be described as the product of the
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volumetric mass transfer coefficient, kLa, and the driving force (concentration

difference of the component in the liquid phase (CO2) and the gas-liquid

interface(C∗O2) (Eq. (1.4)). There are numerous empirical correlations for

kLa (Markopoulos et al., 2007), and several experimental methods have been

developed to measure gas-liquid mass transfer (Villadsen et al., 2011).

rO2(g)⇀↽O2(l) = kLaO2 · (C∗O2
−CO2) (1.4)

Complex, non-linear models incorporate various biological, chemical, and

physical processes. Detailed models include countless processes in order to

better comprehend, for example, the anaerobic digestion process (Flores-

Alsina et al., 2016), the pharmaceutical production of penicillin by Penicillium
chrysogenum (Goldrick et al., 2015), different aeration and agitation condi-

tions for enzyme production with Aspergillus oryzae (Albaek et al., 2011),

antibiotic production with Streptomyces coelicolor (Sin et al., 2008), and

Pichia pastoris and Saccharomyces cerevisiae fed-batch cultivations (Fernandes

et al., 2012; Wechselberger et al., 2010). Many mechanistic models rely

on a similar model structure based on first-principles chemical and physical

process descriptions that have been added to the description of the biological

mechanisms. This is because of the flexible structure of mechanistic models

that allows them to be adapted easily to other bioprocesses." (Paper A)

Lactic Acid Bacteria Models

This study applied a mechanistic and unstructured model to model lac-

tic acid bacteria cultivations, and this type of model is therefore reviewed.

Various unstructured models have been applied to model lactic acid bacteria

cultivations (Bouguettoucha et al., 2011). The growth kinetics and produc-

tion of key metabolites (e.g., lactic acid for homofermentative lactic acid

bacteria) are thus of primary interest.

Cell growth is generally described as:

dCX

dt
= µ ·CX (1.5)

where µ represents the specific growth rate.
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The biomass growth is affected by many factors, and typically carbon

limitation and inhibition, product inhibition, temperature, and pH are con-

sidered in biokinetic models. µ is then modelled as the product of functions

that account for these factors.

Carbon limitation is often described by the Monod model (Aghababaie

et al., 2015; Zacharof and Lovitt, 2013; Altiok et al., 2006; Boonmee et al.,

2003; Schepers et al., 2002a,b; Burgos-Rubio et al., 2000; Fu and Mathews,

1999):

µ = µmax ·
CS

CS +KS
(1.6)

Carbon inhibition (Åkerberg et al., 1998; Altiok et al., 2006) could also

be included with the Haldane equation as, e.g., Venkatesh et al. (1993)

reported 60 g L-1 lactose as the inhibiting concentration (KI) for Lactobacillus
bulgaricus:

µ = µmax ·
CS

CS +KS +
C2

S
KI

(1.7)

Product inhibition refers to the inhibition by lactic acid that is produced in

large quantities by lactic acid bacteria. Frequently non-competitive inhibition

is assumed (Pinelli et al., 1997; Ohara et al., 1992; Cachon and Diviès, 1993):

fP =
KP

CP +KP
(1.8)

A number of studies consider a critical lactic acid concentration (Pinh), above

which growth is completely inhibited (Burgos-Rubio et al., 2000; Monteagudo

et al., 1997; Youssef et al., 2005):

fP = 1− CP

Pinh
(1.9)

Furthermore, various authors have modelled the effect of the undissociated

(lactic acid: HLA) and dissociated (lactate: LA) forms separately (Schepers

et al., 2002b; Aghababaie et al., 2015; Venkatesh et al., 1993; Amrane and

Prigent, 1998). Aghababaie et al. (2015) applied, for instance, Eq. (1.10)

and (1.11) to model Streptococcus thermophilus cultivations.

fHLA =
1

1+ eKP·(CHLA−KHLA)
(1.10)
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fLA = e−KLA·CLA (1.11)

To model the effect of temperature, a modified Arrhenius law is generally

applied (Esener et al., 1981; Aghababaie et al., 2015).

The effect of pH is usually modelled by a bell curve, whereas Schepers

et al. (2002b) applied Eq.(1.12) with three parameters and Aghababaie et al.

(2015) Eq. (1.13) with four parameters.

fpH = e
−
(

(|pHopt−pH|)n

σ2
pH

)
(1.12)

fpH =
K1 · (pHopt − pH)2 +K2

(pHopt − pH)2 +K3
(1.13)

where pHopt is the optimal pH, n the power parameter, σ the spread parame-

ter, and K1-3 coefficients.

Lactic acid production is mostly modelled by the Luedeking and Piret

equation (Luedeking and Piret, 1959), as, for example, applied by Boonmee

et al. (2003); Altiok et al. (2006); Burgos-Rubio et al. (2000); Åkerberg et al.

(1998); Biazar et al. (2003); Rogers et al. (1978):

dCP

dt
= (α ·µ +β ) ·CX (1.14)

where α represents the growth-associated production coefficient, and β the

non-growth-associated coefficient.

Usually, the Luedeking and Piret equation is further modified, e.g., with a

substrate-limitation term (Rogers et al., 1978):

dCP

dt
=
(

α ·µ +β · CS

CS +KS

)
·CX (1.15)

A number of authors (Peng et al., 1997) have considered lactic acid produc-

tion to be entirely growth dependent:

dCP

dt
= (α ·µ) ·CX (1.16)

Altiok et al. (2006) summarized the estimated kinetic parameters (µmax,

KS, α , YX/S etc.) of many lactic acid bacteria studies. They depend, of course,
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on the strain and cultivation conditions but they serve as a robust indication,

e.g., for future parameter estimations.

Applications of Process Models

“Mechanistic models can be applied to a range of tasks from the stage of

process development to implementation during industrial-scale production

(Mears et al., 2017b) – they are applied, for instance, to process develop-

ment, optimization, monitoring, and control. The applications contribute to

economic and sustainable production and comply also with PAT guidelines

(Gernaey et al., 2012).

Mechanistic models are applied during the process development phase

to design a new process. Design means typically that a new process is

formulated for an existing plant as it is rather rare that a new production

plant is constructed for a novel process. This process involves the definition of

optimal process operating conditions, such as stirrer speed, substrate-addition

rate (for fed-batch cultivations), and aeration rate under the given constraints

of the available equipment as demonstrated for enzyme production with

Aspergillus oryzae (Albaek et al., 2011). Initial biotechnological strain and

process development is carried out at the laboratory scale, which is further

refined and validated under pilot-scale conditions. The final process is then

scaled up to the production scale because experiments at the large scale

are rather expensive. Mechanistic models are especially attractive at this

stage – it is often the case that very little data is available, and they are

capable of testing new conditions or equipment for which there is little or

no data available. The models can help assess and understand the effects

of large-scale process conditions as process scale-up is very challenging

(Neubauer et al., 2013; Stocks, 2013; Wang et al., 2014). Traditionally,

bioprocess scale-up is based on physical parameters, such as volumetric

power input, the volumetric oxygen mass transfer coefficient, kLa, or stirrer

tip speed. However, biological properties and the effect of the heterogeneous

cultivation environment (see subsection: Gradients at a Large Scale) are

often not taken into account. Another challenge is varying process conditions,

such as humidity, aeration rate, and impeller speed or type, when different

bioreactors are used at different production sites all over the world, but the



26 Chapter 1. Literature Review

same product quality is of course demanded.

Optimizing an established process is key for the long-lasting success of

a manufacturer in order to withstand economic pressures in a competitive

market. Mechanistic models have been successfully applied to optimize culti-

vations for many processes. As an example, Jiménez-Hornero et al. (2009)

proposed a model-based optimization for acetic acid cultivation. Models are

also applied to optimize not the main cultivation itself, but the pre-cultures

instead. Frahm (2013) optimized the seed train for biopharmaceutical pro-

duction. The seed is required to inoculate the production bioreactor with

the right amount of cells in order to allow for stable production. Toumi

et al. (2010) employed multi-unit process simulation in order to optimize

large-scale monoclonal antibody production.

Real-time determination of CQAs is of utmost interest in the biotechno-

logical industry. However, just a few probes are available that measure the

required attributes in the bioreactor (in-line). Biomass can, for example, be

measured indirectly in-line by capacitance or turbidity measurements. How-

ever, changing conditions of the complex biological process matrix influence

these measurement techniques, and make a reliable prediction challenging.

For the same reason, probes measuring metabolite concentrations (e.g., prod-

uct concentrations) are challenging, as well. Further reasons for the current

lack of in-line probes are that they must be robust, give stable signals, and

withstand harsh conditions during sterilization and cleaning procedures. In

addition, they must fulfil regulatory requirements according to good manu-

facturing practices (GMPs).

Software sensors are an established alternative to hardware probes for

the monitoring of bioprocesses and countless implementations in the bio-

process industry can be found (Biechele et al., 2015; Luttmann et al., 2012;

Mandenius and Gustavsson, 2014; Pais et al., 2014; Posch et al., 2013; Sag-

meister et al., 2013; Zhao et al., 2015). Software sensors are often also called

soft sensors or state estimators. Soft sensors utilize the available on-line

measurements, such as the exhaust gas analysis results (e.g., O2, CO2, and

other volatile compounds), pH, temperature, pressures, flow rates, and stir-

rer speed. These measurements are then used as input for the model that
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predicts the unknown process states including the CQA. In addition to the

aforementioned measurements, spectroscopic methods are sometimes applied

in combination with data-driven models (Kadlec et al., 2009). Spectroscopic

methods include UV-Vis (ultraviolet–visible) (Ödman et al., 2009; Zavatti

et al., 2016), near-infrared (Alves-Rausch et al., 2014), and mid-infrared

fluorescence spectroscopy (Fayolle et al., 1997), and Raman spectroscopy

(Golabgir and Herwig, 2016) among others. Automated microscopy for ac-

quiring cell-specific information, such as cell morphology, are intensively

studied for monitoring (Marquard et al., 2017) and control strategies (Bluma

et al., 2010), e.g., for the bioethanol production process (Belini et al., 2013).

Models are also applied for control strategies within the bioprocess in-

dustry. Bioprocesses are often fed-batch processes, where a feed solution is

added continuously to the cultivation broth. Models are applied, for instance,

to define the feed flow rate in order to control substrate concentration in

the broth. As there are no sufficient hardware probes to assess the substrate

concentration in real-time, models are used to predict the substrate concen-

tration to enable better control strategies (Craven et al., 2014; Johnsson,

2015; Mears et al., 2017a).

1.3 Uncertainties in Model Predictions

Owing to the complexity of bioprocesses and mechanistic models, it is

necessary to consider uncertainties when a model is applied. There are three

sources of uncertainties: i) stochastic uncertainty; ii) input uncertainty; and

iii) structural uncertainty (McKay et al., 1999):

i) Stochastic uncertainty covers the stochastic variabilities that are

observed in real processes, for example random failure of equipment

that leads to a disturbance in the process. The unforeseeable shutdown

of air sparging, as an example, would result in a shortage of oxygen.

ii) The input uncertainties refer to the lack of perfect knowledge sur-

rounding the model parameters and model inputs. The model param-

eters rely on available measured data, which are naturally subject to

random measurement errors. A parameter value is characterized by a
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probability distribution around its nominal value instead of considering

a single value. In addition to the uncertain model parameters, model

inputs, such as initial process conditions and on-line measurements, are

uncertain. The initial substrate concentration, for example, varies from

batch to batch owing to variations in the medium preparation process,

hence a fixed value cannot be expected.

iii) The structural uncertainties are related to the mathematical de-

scription of the model. We typically have insufficient knowledge of the

bioprocess that would allow a model description, including all relevant

details of the process. Our applied models are therefore an approxima-

tion of the process and based on assumptions. In order to analyse the

effect of the uncertainties, an uncertainty analysis is performed. This is

an important element of good modelling practice to ensure a reliable

mechanistic model and robust PAT application (Sin et al., 2009a). Dur-

ing the uncertainty analysis, the uncertainties are propagated to the

model outputs and their effect is evaluated. There are certain methods

for uncertainty analysis available, including Monte Carlo procedure, dif-

ferential analysis, response surface methodology, the Fourier amplitude

sensitivity test, and Sobol variance decomposition (Helton and Davis,

2003; Saltelli et al., 2008). In this contribution, we focus on the Monte

Carlo procedure as this method is widely used and reliable (Helton and

Davis, 2003).

Probabilistic Model Predictions

The uncertainty analysis provides probabilistic information about the per-

formance of the bioprocess. It shows, for example, what the probability is that

the required product quantity or quality will be achieved by considering the

aforementioned input uncertainties. Frequently, the Monte Carlo procedure

is used to propagate the input uncertainties to the output predictions (Sin

et al., 2009a). The Monte Carlo procedure involves three steps: 1) defining

the input uncertainties; 2) sampling within the input uncertainty; and 3)

Monte Carlo simulation to obtain the model output uncertainty.

In step 1, the model input uncertainties are defined, which is typically
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conducted based on expert opinions. This involves both asking process

experts from industry and academia as well as consulting relevant

literature. The aim is to obtain the uncertainty for model parameters,

initial process conditions, and measurements, e.g., what is the lower

and upper bound of these variables. A probability distribution is then

assigned to the variables. Often, a uniform distribution, also known as

uninformed prior, is assumed when there is a lack of observations or

data to support the derivation of a specific distribution function, such

as normal distribution. The latter is usually assumed to describe the

distribution function for measurement errors. For the model parameters,

the maximum likelihood estimation theory can be employed to derive

a multivariate normal distribution and the covariance matrix. Such

information should then be used for appropriate definition of input

model parameter uncertainties (Sin et al., 2010).

In step 2, random combinations of the model inputs are sampled con-

sidering the previously defined uncertainties (Fig. 1.3, Input samples).

As an example, the parameters, A and B, representing model input

parameters are considered to be uncertain, and N=1000 input samples

are sampled. There exist several sampling methods, including random

sampling (Meng, 2013), low-discrepancy sequence, such as Halton

(Halton, 1964) and Sobol (Sobol’, 1967) sequences, and stratified sam-

pling, including Latin Hypercube Sampling (LHS) (McKay et al., 1979).

The sampling method is used to sample N independent inputs from the

probability domain [0 1], where N is the number of input samples. Most

of the time, parameters and inputs are correlated (see the covariance

matrix estimation from the maximum likelihood theory). To preserve

the correlation, dependent samples need to be generated, e.g., by ap-

plying the multivariate probability distribution copula (Nelsen, 2006)

or the Iman-Conover method (Iman and Conover, 1982). The Iman-

Conover method employs a rank-based correlation control method to

induce the desired correlation between the parameter samples from an

independent input space. For those parameters, initial conditions, and

measurements that lack correlation information, an identity correlation

matrix is used (meaning no correlation is assumed). Finally, the input



30 Chapter 1. Literature Review

samples are inverted from the probability domain [0 1] to real values

with an inverse cumulative distribution function corresponding to the

distribution function for each input.

In step 3, the input uncertainties are propagated using the Monte

Carlo procedure to estimate output uncertainty (Fig. 1.3, Monte Carlo

simulation). The model is thereby simulated N times with each of the

defined input sample sets.

The results are N predictions of the model outputs (Fig. 1.3, Model

outputs). For each model output, the span of the model output prediction

indicates the extent of its uncertainty during the cultivation. Inferential

statistical analysis such as mean, and 90th and 10th percentiles are applied

to assess the results. It is important to realize that the results of the uncer-

tainties can only be interpreted in the analysis boundaries/frame (Sin et al.,

2009b). This is because the definitions and assumptions that are made in

the study, e.g., the selected model, the identification and characterization of

uncertainties, and the selected methodology.

Many studies have investigated the effect of uncertainties on the model

outputs for different biotechnological processes, including a hydrothermal

pre-treatment process of lignocellulosic biomass (Prunescu et al., 2015), a

milk-drying process (Ferrari et al., 2016), and antibiotic production with

Streptomyces coelicolor (Sin et al., 2008).

Risk-based Decision Making

Bioprocesses at the production scale undergo a risk assessment to ensure

the quality of manufacturing. Risk assessment seeks to increase the safety

of the process along with the quality of the product. Most commonly, risk-

management tools recommended by ICH Q9 (2005) are used, such as the

Failure Mode and Effects Analysis (FMEA). In this worksheet-based method,

the risks related to e.g., material properties and process conditions, are

quantified first. This characterization is fundamental to understanding the

impact CPPs on CQAs. Then, the most important critical process parameters

are prioritized and further experiments could be carried out if needed. Finally,
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Figure 1.3: Risk quantification using the Monte Carlo procedure with four steps. 1.
Input uncertainty space and sampling; 2. Monte Carlo simulation; 3. Model outputs;
4. Risk quantification. Reprinted from Paper A.

the design space for production is defined, i.e., the acceptable variability,

e.g., in material properties and process conditions is defined. The process

operation within the design space minimizes then the risks of obtaining faulty

batches. Undesired events are minimized through controlling the critical

process parameters within the design space. Furthermore, preventative

repair and maintenance actions are performed, such as the inspection and

calibration of equipment. Published examples of this Quality by Design (QbD)

approach include the mixing unit operation (Adam et al., 2011) and spray

drying process (Baldinger et al., 2011).

Mechanistic simulations are however rarely used for risk assessment in

the biotechnological industry (Rantanen and Khinast, 2015) even though

PAT applications that consider various uncertainties provide probabilistic

model predictions. They can therefore support risk-based decisions in real

time (Stocker et al., 2014). A probabilistic bioprocess model predicts the

probability distribution of CQAs and enables therefore the operators to react

on a risk-based basis. For example, the cumulative distribution function

that indicates the probability of not achieving the target (e.g., target yield)

can be derived from the Monte Carlo simulation outputs (Fig. 1.3, Step

4: Risk quantification). The risk is then quantified as the product of the

probability of the undesired event times the consequence of the undesired

event (Cameron and Raman, 2005). The risk could be, e.g., a loss of 0.5

kg product per cultivation or in economic perspectives e.g., $ 0.2 million.
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This then contributes to risk-based monitoring and controlling, and thereby

improves both the performance and safety of the production process (Li et al.,

2008).

Both the Bayesian approach (Mockus et al., 1997; Peterson and Lief,

2010) and Monte Carlo approach (García-Muñoz et al., 2015) have been

investigated and recommended for probabilistic PAT applications (Sin et al.,

2009a; Tabora and Domagalski, 2017). Depending on the purpose of the

application, stochastic uncertainties might be incorporated into model appli-

cation. The probability of a specific event occurring, e.g., pump failure, could

then be integrated (Barua et al., 2016), hence engineers could assess the

control algorithm robustness and evaluate, for example, the response of the

controller in the case of a pump failure (Sin et al., 2009a). Konakovsky et al.

(2017) optimized the glucose feeding strategy for Chinese hamster ovary

(CHO) cells in fed-batch culture, and considered various uncertainties in a

Monte Carlo simulation assuming a worst-case scenario in silico. However,

there is a considerable lack of published risk-based monitoring and control

implementations for large-scale cultivations, especially using mechanistic

models, despite their potential. One major challenge might be the time that is

needed to develop and implement the model-based control system. A second

challenge might be regulatory validation requirements (Djuris and Djuric,

2017)." (Paper A)



Chapter 2

Model Development and
Validation

As the basis of this work, this chapter describes the development of the

mechanistic model that was applied to simulate Streptococcus thermophilus
batch cultivations. The model was fitted against experimental lab-scale data

and validated with independent batch and continuous experiments. The

target product of the studied lactic acid bacteria cultivation is the biomass

that is produced as starter cultures for the dairy industry, e.g., to produce

cheese or yogurt.

This chapter is based upon the following article:

Paper B: Spann, R., Roca, C., Kold, D., Eliasson Lantz, A., Gernaey, K. V.,

& Sin, G. (2018). A probabilistic model-based soft sensor to monitor lactic

acid bacteria fermentations. Biochemical Engineering Journal, 135, 49–60.

2.1 Model Development

A mechanistic model was developed with the aim of describing Streptococ-
cus thermophilus cultivations. It was an unstructured unsegregated dynamic

model that comprised a biokinetic model and chemical model. The bioki-

netic model described the evolution of the biological state variables, such as

biomass, the substrate lactose, and the side product lactic acid of the S. ther-
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mophilus cultivation. The chemical model, also called mixed weak acid/base

model, covered the dissociation reactions of the charged components in the

cultivation broth in order to predict the pH of the cultivation as the pH was

of major interest in this work to account for pH gradients at large scales. The

model was implemented and solved in MATLAB R© R2017a (The MathWorks R©,

Natick, MA) using the solver ode15s.

Biokinetic Model

The dynamic biokinetic model was based on overall process stoichiometry

(Villadsen et al., 2011) (Eq. (2.1)). The carbon source lactose is consumed

together with ammonia and phosphoric acid, and converted to biomass, lactic

acid, and galactose. As an elemental analysis of the S. thermophilus strain

was not available, a biomass composition of CH1.95 O0.63 N0.22 P0.02 was

assumed in the present study (Oliveira et al., 2005), which was originally

determined for Lactococcus lactis.

qS ·CH2O+qNH ·NH3 +qPh ·H3PO4→
qX ·CH1.95O0.63N0.22P0.02 +qP ·CH2O+qGal ·CH2O (2.1)

The biomass growth rate was modelled as a product of functions. These

functions had values between 0 and 1, and accounted for the lag-time

( flag), lactose inhibition and limitation ( fS) (Åkerberg et al., 1998), lactate

inhibition( fP) (Aghababaie et al., 2015), and the pH in the cultivation broth

( fpH) (Schepers et al., 2002a) (Eqs. (2.2 - 2.3)). According to the studies of

Schepers et al. (2002a) and Amrane and Prigent (1998), the dissociated form

of lactic acid was growth inhibiting under the investigated pH conditions.

dCX

dt
= µmax · flag · fS · fP · fpH ·CX (2.2)
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dCX

dt
= µmax · (1− e−t/tlag) · CS

CS +KS +
C2

S
KI

·

1

1+ e
KP,La·

(
CLa−KLa· 1

1+e
KP,pH1 ·(pH−KP,pH2)

) · e−
(

(pHopt−pH)2

σ2
pH

)
·CX (2.3)

The lactic acid synthesis was assumed to be growth dependent (Peng

et al., 1997):

dCP

dt
= α · dCX

dt
(2.4)

The lactose consumption was the sum of biomass growth and lactic acid

synthesis rate. The studied strain metabolized only glucose and secretes

galactose with the yield (YGal: galactose consumed per lactose) under the

present cultivation conditions:

dCS

dt
=−(1+YGal) ·

(dCX

dt
+

dCP

dt

)
(2.5)

The stoichiometric matrix of the biokinetic model component is seen in

Table 2.1.
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Mixed Weak Acid/Base Model

The goal of the mixed weak acid/base model was to predict pH during the

cultivation. This model component comprised the dissociation reactions of

the charged compounds in the cultivation broth (Musvoto et al., 2000) (Table

2.3). The dissociation reactions of lactic acid, ammonia, phosphoric acid,

carbonic acid, water, and an unspecified compound Z were considered. Z was

introduced to account for the unknown compounds in the cultivation broth,

such as amino acids, as a complex medium was used and not all components

were identified and quantified.

The kinetic parameters of the mixed weak acid/base model can be found

in Paper B. In order to account for the non-ideal interactions of the charged

components, the activity coefficients ( fi) were calculated by a modified form

of the Debye-Hückel theory from Davies (1962):

log( fi) =−1.825 ·106 · (78.3 ·T )−1.5 · z2
i ·
( √

I
1+
√

I
−0.3 · I

)
(2.6)

with the ionic strength (I):

I =
1
2 ∑

i
(z2

i ·Ci) (2.7)

where i are all charged components.

Table 2.3: Kinetics for the mixed weak acid/base model.

reaction reaction rate vector
NH+

4
⇀↽ NH3 +H+ K′r,NH ·K′NH ·CNH+

4
−K′r,NH ·CNH3 ·CH+

H3PO4 ⇀↽ H2PO−4 +H+ K′r,P1 ·K′P1 ·CH3PO4 −K′r,P1 ·CH2PO−4
·CH+

H2PO−4 ⇀↽ HPO2−
4 +H+ K′r,P2 ·K′P2 ·CH2PO−4

−K′r,P2 ·CHPO2−
4
·CH+

H2CO∗3 ⇀↽ HCO−3 +H+ K′r,C1 ·K′C1 ·CH2CO∗3 −K′r,C1 ·CHCO−3
·CH+

C3H6O3 ⇀↽C3H5O−3 +H+ K′r,LA ·K′LA ·CC3H6O3 −K′r,LA ·CC3H5O−3
·CH+

H2O ⇀↽ OH−+H+ K′r,W ·K′W ·CH2O−K′r,W ·COH− ·CH+

ZH+ ⇀↽ Z +H+ K′r,Z ·K′Z ·CZH+ −K′r,Z ·CZ ·CH+

Note. Adapted from Paper B.
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Nevertheless, the validated range I ≤ 0.5 mol L-1 of the applied Davis

equation to calculate the activity coefficients (Eq. (2.6)) has to be noted, and

could be improved in future studies in particular as the ionic strength was

occasionally higher than 1 mol L-1 in the cultivations.

The stoichiometric matrix of the mixed weak acid/base model part is

shown in Table 2.2.

A P-controller with a controller gain (KP) of 5 mol L−1 ·Volume [L] was

implemented in the simulations to maintain the pH at the set point value by

adding ammonia solution (Eq. (2.8)).

NH4OHadd = KP · (pHset − pH) (2.8)

2.2 Cultivation Conditions

Streptococcus thermophilus batch cultivations were performed in well-

mixed 2-L stirred-tank bioreactors (Biostat R© B, Sartorius AG, Germany) for

the model development and validation (this chapter) and the application of

the soft sensor (Chapter 3). The 2-L bioreactors were operated at 300 rpm.

The cultivation temperature was 40 ◦C, and the headspace of the bioreactor

was gassed with nitrogen. The pH was controlled by adding 24 % ammonia

solution to the top of the liquid phase. The cultivation medium contained 20

or 65 g L-1 lactose, 10 g L-1 casein hydrolysate, 12 g L-1 yeast extract, 11.5 mM

K2HPO4, 36.6 mM sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4,

and 0.3 mM MnSO4. The pH and ammonia addition (balance value readout)

were measured on-line. Sugars and organic acids were quantified off-line

from filtered samples (filter pore size: 0.2 µm) in a high-performance liquid

chromatography (HPLC) system as described in detail in Paper B.

2.3 Parameter Estimation

A parameter estimation was performed to estimate the kinetic parameters

of the biokinetic model. The model was fitted to the experimental lactose,

biomass, and lactic acid concentrations of five cultivations. These batch
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Table 2.4: Initial parameter values of the biokinetic model.

kinetic
parameters

initial
value

source of initial value lower
bound

upper
bound

µmax 1.18 h-1 Aghababaie et al. (2015) 1 5
KS 0.79 g L-1 Åkerberg et al. (1998) 0.5 5
KI 164 g L-1 Åkerberg et al. (1998) 50 200
KP,La 0.2 L g-1 Schepers et al. (2002a) 0.1 1
KLa 25 g L-1 Schepers et al. (2002a) 10 30
pHopt 6 expert knowledge 5.7 6.5
σpH 1.54 Schepers et al. (2002a) 0.1 3
α 5 g g-1 expert knowledge 0.1 30
KP,pH1 20 expert knowledge 1 50
KP,pH2 7 expert knowledge 6.8 7.2
pHopt,lag 5.7 expert knowledge 5.5 6
σlag 0.4 expert knowledge 0.3 0.5
Ygal 0.6 g g-1 expert knowledge 0 1

Note. Reprinted from Paper B.

cultivations were conducted with an initial lactose concentration of 65 g L-1

under different constant pH conditions: 1x pH 5.5, 2x pH 6.0, 1x pH 6.5,

and 1x pH 7.0. The pH was held constant at the set point in the simulation

for the parameter estimation, and the mixed weak acid/base model was

not considered in order to obtain biokinetic parameter estimates that were

independent of the mixed weak/acid base system. Initial parameter values

were taken from the literature (Åkerberg et al., 1998; Aghababaie et al.,

2015; Schepers et al., 2002a) (Table 2.4).

The parameter estimation was conducted in MATLAB with the nonlin-

ear least-squares solver lsqnonlin, and this was followed by the maximum

likelihood estimation method from Seber and Wild (1989) as described in

detail in Paper B and Paper C. As part of the good modelling practice a

comprehensive assessment of the model parameters was conducted (Sin

et al., 2009a). This included an identifiability, sensitivity, and uncertainty

analysis in order to garner knowledge of the limitations of the model and to

find an identifiable parameter subset for regression.

The identifiability analysis revealed that nine parameters were identifiable.
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Table 2.5: Estimated model parameters including the relative errors and correlation
matrix.

kinetic
pa-
rame-
ters

estimated
pa-
ram-
eter
value

relative
error
[%]

correlation matrix

µmax KP,La KLa pHopt σpH α pHopt,lag σlag Ygal

µmax 2.06 1 1 -0.74 -0.83 -0.17 0.5 -0.08 -0.52 0.53 0
KP,La 0.24 13 1 0.77 -0.2 -0.58 -0.05 0.39 -0.28 0.04
KLa 19.80 0 1 -0.07 -0.54 0.31 0.44 -0.35 -0.28
pHopt 6.39 1 1 -0.52 -0.13 0.76 -0.86 0.02
σpH 1.42 3 1 -0.08 -0.93 0.85 0.06
α 5.19 0 1 -0.1 0.12 -0.4
pHopt,lag 5.70 1 1 -0.97 -0.03
σlag 0.3 9 1 0.03
Ygal 0.69 5 1

Note. Reprinted from Paper B.

The estimated parameter values were in the anticipated order of magnitude

known from the literature (Table 2.5). Only µmax = 2.06 h-1 was higher than

the actual biological value because it had to compensate for the functions

in the growth rate expression. On average, each function has a value of

around 0.9 during the cultivation, resulting in a biological µmax = 1.35

h-1 (0.94 · 2.06). Of course, the estimated parameters are subject to model

structure, cultivation conditions, and nominal parameter values among others

(Sin et al., 2010).

The relative error (RE), which is the ratio between the standard deviation

of the estimated parameter and the mean value, was used to quantify the

uncertainty of the parameter estimates (Eq. (2.9)). The relative error of

all parameters was lower than 10 % (except REKP,La = 13 %), and hence

acceptable (Table 2.5).

REi =
σθ̂i

θ̂i
(2.9)

The evaluation of the correlations between the parameters revealed

that certain parameters were uniquely identifiable (correlation coefficient

< 0.5) (Table 2.5). However, there was a linear dependency between some

other parameters. The estimated value of one parameter is therefore condi-

tional upon the value of another parameter, and the parameter set must be
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Figure 2.1: Model predictions for the S. thermophilus lab-scale batch cultivation that
was employed for parameter estimation. Lactose (A), biomass with the standard
deviation (B), lactic acid (C), and galactose (D) concentrations. The cultivation was
performed in a 2-L stirred-tank bioreactor at 300 rpm, 40 ◦C, and controlled at
pH = 6. The model prediction (solid lines) for the measurements (circles).
Reprinted from Paper B.

considered as a whole.

The model showed an acceptable fit of the cultivation data. Fig. 2.1

shows the model fit at pH = 6, while the model predictions under the other

cultivation conditions can be found in Paper B. After 5-6 hours, 6 g L-1

biomass were yielded, and the stationary growth phase was reached (Fig.

2.1 B). Lactose was almost entirely consumed, while 5 g L-1 were left over

(Fig. 2.1 A). A total of 33 g L-1 total lactic acid (lactic acid and lactate) were

produced (Fig. 2.1 C). A total of 30 g L-1 galactose was measured in the

cultivation broth at the end of the cultivation (Fig. 2.1 D). The goodness of

fit for the model predictions was assessed with the root mean sum of squared

error (RMSSE) (Eq. (2.10)), where the main interest was in the accuracy of

the biomass concentration because this was the product of interest.
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Figure 2.2: Growth affecting functions of pH and lactate inhibition. pH function
( fpH) vs. pH (A) and lactate inhibition function ( fP) vs. the total lactic acid
concentration (B). Reprinted from Paper B.

RMSSE =

√
1
n
·

n

∑
i
(ymeas,i− ŷi)2 (2.10)

The RMSSE for biomass was smaller than 0.6 g L-1 for the cultivations

at pH 5.5, 6.0, and 6.5, corresponding to a discrepancy of less than 10 %,

and giving evidence of a strong fit. The model fit at pH = 7.0 had an error

of 30 %. The galactose concentration was slightly underestimated for all

cultivations. This may be explained by the inconsistent carbon balance of the

experimental cultivation data. There, more carbon was produced in the form

of biomass, lactic acid, and galactose than carbon, which was derived from

lactose, was consumed. In the experiments, yeast extract was supplemented

but not considered in the model. It is likely that components of the yeast

extract, such as amino acids, were taken up by the cells, and might therefore

have led to inconsistency in the carbon balance.

Next, the functions, fpH and fP, were assessed. The bell-shape pH function

fpH had maximum at pH = 6.4 (Fig. 2.2 A). At pH = 5.5 and 7, growth was

reduced by 25 %. Previous studies observed a similar influence of the pH on

the growth of lactic acid bacteria even though slightly different pH optimums

have been determined owing to different strains being studied (Aghababaie

et al., 2015; Zacharof and Lovitt, 2013; Ohara et al., 1992).
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The inhibition of growth by lactate ( fP) was pH dependent (Fig. 2.2 B).

A total of 20 g L-1 total lactic acid inhibited growth by 50 % in a pH range

from 5.5 to 6.5. At pH = 7, only 10 g L-1 total lactic acid inhibited growth by

50 % already. Nandasana and Kumar (2008) already noticed pH-dependent

lactate (the major component under the given conditions) inhibition of the

biomass growth for lactic acid-producing bacterium, Enterococcus faecalis.
This emphasizes the requirement of the pH-dependent lactate inhibition

function (Eq. (2.3)).

2.4 Model Validation

Batch Cultivation

Following parameter estimation, the model was validated with indepen-

dent cultivation data sets. The cultivations were performed with an initial

lactose concentration of 20 g L-1 at pH = 6.0 (Figs. 2.3 and 2.4). Here, the

mixed weak acid/base model was also applied to predict pH. The model pre-

dicted the off-line measured lactose, biomass, total lactic acid, and galactose

concentrations (Figs. 2.3 and 2.4 A-D). In addition, the pH and quantity

of added ammonia were predicted (Figs. 2.3 and 2.4 E-F). An acceptable

prediction accuracy was achieved for all state variables. The RMSSE for

biomass was 0.2 g L-1 for both cultivations, which corresponds to an error

of 10 % with respect to the final biomass concentration. The pH could be

accurately predicted with a discrepancy of less than 0.1 pH units in the one

case (Fig. 2.3 E) and less than 0.3 pH units in the other case (Fig. 2.4 E).

When the cultivation started, the pH dropped from 6.1 to 6.0. Then, the pH

was controlled by adding an ammonia solution. The initial drop of the pH

was predicted to be faster than actually measured. This could be attributed

to a different buffer capacity of the experimental medium in comparison to

the modelled buffer capacity in the mixed weak acid/base model. In the

second validation cultivation, a drift of the pH sensor might have caused the

greater pH discrepancy. The obtained pH prediction accuracy was deemed

sufficiently accurate for the purposes of this study seeing that measurement

errors in the range of 0.1 pH unit were expected.

The model prediction of the pH was conditional on the predictions of
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Figure 2.3: Model predictions of the validation cultivation 1. Lactose (A), biomass
with standard deviation (B), lactic acid (C), galactose (D) concentrations, pH (E),
and the quantity of added ammonia (F). Model prediction (solid line) and the
measurements (circles). The S. thermophilus cultivation was performed in a 2-L
stirred-tank bioreactor at 300 rpm, 40 ◦C, and controlled at pH = 6. Reprinted from
Paper B.

the lactic acid concentration and the added ammonia quantity, and hence

the ammonia concentration in the broth. The validity of the mixed weak

acid/base model could therefore not be demonstrated by a correct prediction

of the pH as the pH is controlled in the model. The accurate prediction was

rather demonstrated by the quantity of added ammonia (Figs. 2.3 and 2.4 F).

As the model output matched the balance readout measurements of the base

addition, the pH model was deemed to be accurate.
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Figure 2.4: Model predictions of the validation cultivation 2. Lactose (A), biomass
with standard deviation (B), lactic acid (C), galactose (D) concentrations, pH (E),
and the added ammonia quantity (F). Model prediction (solid line) and the
measurements (circles). The S. thermophilus cultivation was performed in a 2-L
stirred-tank bioreactor at 300 rpm, 40 ◦C, and controlled at pH = 6. Reprinted from
Paper B.

Continuous Cultivation

The biokinetic model was also validated with a continuous accelerostat

cultivation in addition to the previously discussed batch cultivations. The

cultivation was performed in a 0.3 L bioreactor with a lactose concentration

of 20 g L-1 both as the initial concentration in the batch phase and in the

feed solution. The cultivation began with a batch phase that was followed by

a chemostat at a dilution rate of first 0.3 h-1 for ca. 50 h, and then 0.1 h-1

for ca. 50 h (Fig. 2.5). Subsequently, the accelerostat was performed with

an acceleration rate of the feed of 0.005 h-2. Later on, the acceleration

rate was increased stepwise to 0.008 h-2. This experiment was performed

in cooperation with Klaus Pellicer Alborch (Technische Universität Berlin,

Germany).
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Figure 2.5: Dilution rate of the continuous cultivation (accelerostat). The
cultivation started with a batch phase (not shown), followed by a chemostat and an
accelerostat. The acceleration rate was 0.005 h-2 that was increased stepwise to
0.008 h-2 between 280 and 330 h.

The objective of this section is to demonstrate the extrapolation capability

of the dynamic model, whereas a detailed discussion of the methods and

results may be found elsewhere (manuscript in preparation, first author: K.

Pellicer Alborch).

The model predicted the trend of all state variables during the accelerostat

(Fig. 2.6). Qualitative predictions were obtained for all state variables while

the biomass concentration (Fig. 2.6 B) could be quantitatively predicted.

Fluctuations of the concentrations that were measured for the state variables

could not be predicted. For example, the lactic acid concentration increased

between the dilution rate of 0.2 and 0.4 h-1 (Fig. 2.6 C). At the same time,

the galactose concentration was decreased (Fig. 2.6 D). It seemed that the

carbon flux was shifted from galactose secretion to the production of lactic

acid during this period, which could not be captured by the model. The

washout of the cells was overpredicted (predicted later than measured) with

an error of D = 0.1 h-1.

Even though the model was trained using batch cultivations, it was

capable of predicting the continuous accelerostat cultivation in a sufficient

manner. For this reason, the model was also applied to predict the optimal

conditions of a continuous large-scale production process in Paper D. In
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Figure 2.6: Increasing dilution rate dependent S. thermophilus metabolism
characterized in an accelerostat cultivation. Lactose (A), biomass with standard
deviation (B), lactic acid (C), and galactose (D) concentrations.

Paper D, the concentration of the carbon source in the feed and the feed

flow rate were optimized to obtain the maximum cell concentration in the

bioreactor effluent while minimizing the wastage of unused carbon.

All in all, the results of the validation step indicated the validity of the

model. The model was therefore applied for further applications in this study

as described in the following chapters. Nevertheless, a more comprehensive

design of experiments covering further cultivation conditions should be

performed in the future. For example, to determine the optimum of the

pH function more accurately, further pH conditions, like pH = 6.1, 6.2, 6.3,

6.4, etc. could be investigated – with replicates, of course. Furthermore,

the structure of the model could be further investigated and extended. The

implementation of a temperature-dependent function would expand the

flexibility of the model. Experiments with dynamic changes, like a pH that is

changing dynamically, for example, with a sinus curve shape, could improve

the predictability of the model. In addition, experiments with spikes of lactose



48 Chapter 2. Model Development and Validation

and lactic acid and other acids, like phosphoric acid, could be performed

in order to increase the information that can be obtained in parameter

estimation seeing that correlations between the carbon source, biomass, and

lactic acid concentrations would be broken.



Chapter 3

Probabilistic On-line
Monitoring Using a Soft Sensor

A dynamic model has been developed and validated in the previous

chapter. In this chapter, the model is applied as a soft sensor to monitor lactic

acid bacteria cultivations at the laboratory scale. Firstly, the framework of the

soft sensor is described, which includes a Monte Carlo simulation to account

for uncertainties in model prediction. The probabilistic soft sensor was then

tested on three historical data sets.

This chapter is based upon the following article:

Paper B: Spann, R., Roca, C., Kold, D., Eliasson Lantz, A., Gernaey, K. V.,

& Sin, G. (2018). A probabilistic model-based soft sensor to monitor lactic

acid bacteria fermentations. Biochemical Engineering Journal, 135, 49–60.

3.1 Framework of the Soft Sensor for On-line

Monitoring

The objective of the soft sensor was to monitor the unmeasured and

measured state variables of the S. thermophilus cultivation. It predicted

the biomass, lactose, and lactic acid concentrations, as well as the pH and

quantity of added ammonia among others. Both the current state of the

cultivation as well as the future course of the cultivation were forecasted
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Figure 3.1: Block diagram of the soft sensor. The initial conditions for the model
were defined as specified for the process. While the cultivation process is running,
the on-line measured ammonia addition rate qNH3 was used as input for the data
reconciliation module to update the biomass growth (qX ) and lactic acid production
(qP) rates. The parameter update module used the updated rates and the pH as
input to update the model parameters µmax and tlag. Monte Carlo simulations of the
dynamic model were performed considering uncertainties in the initial lactose and
biomass concentrations, measured ammonia addition, and model parameters.
Reprinted from Paper B.

by the soft sensor. The soft sensor was updated in five minute intervals.

To this end, the model parameters, µmax and tlag, were updated using the

limited available on-line measurements, namely the pH and quantity of added

ammonia solution. The parameters were updated in two steps – the data

reconciliation and parameter update step and then used as the inputs to

the dynamic model (Fig. 3.1). To ensure robust model prediction, a Monte

Carlo simulation of the model was performed at every interval, therefore

accounting for uncertainties in model parameters, initial process conditions,

and measurement of the ammonia addition. The model therefore predicted a

probability distribution of the state variables.

Data Reconciliation Step

In the data reconciliation step, the quantity of added ammonia that was

measured in real time was used to calculate the current biomass growth

and lactic acid production rate. First, the lactic acid production rate (qP)

was calculated with the charge balance (Eq. (3.1)) assuming that the added
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ammonia counteracts the produced lactic acid, and that the sum of charges

of the other components remained constant. Second, the biomass growth

rate (qX) was calculated with the lactic acid production rate expression (Eq.

(3.2)). The updated qX was then employed during the parameter update

step.

NH+
4 +C3H5O−3 = qNH,add +qP = 0 (3.1)

qX =
qP

α
(3.2)

Parameter Update Step

In the parameter update step, the model parameters, µmax and tlag, were

updated. µmax was updated with the biomass growth rate expression in

an iterative procedure (Eq. (3.3)). The current function values ( flag, fS, fP,

and fpH) were required in this procedure, and were obtained from a new

evaluation of the dynamic model. As the functions were dependent on the

model that itself is a function of µmax among others, the iterative procedure

was carried out until the change of µmax was smaller than 5 % compared to

the previous iteration.

qX could not be directly employed as an input to the model because it

would have been only true for the current interval. However, the soft sensor

was intended to predict the future of the cultivation as well, and limitation

and inhibition effects change qX dynamically.

The lag-time parameter, tlag, was updated based on pH measurements.

The studied cultivations began at a pH that was higher than the control set

point typically. tlag was therefore adjusted during an iterative procedure so

that the measured and predicted pH corresponded (Eq. (3.4)).

µmax,k =
qX ,updated

flag,k−1 · fS,k−1 · fP,k−1 · fpH,k−1 ·Xk−1
(3.3)

tlag,k = tlag,k−1 +(tpH,measured− tpH,predicted) (3.4)
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tlag was updated in five min intervals until the pH control set point was

reached. As long as tlag was updated, the model was run from beginning to

end. Once the control set point was fixed and tlag was no longer updated, the

current state of the prediction was saved and used as initial conditions for

the next iteration.

Monte Carlo Simulation of the Dynamic Process Model

The Monte Carlo method included three steps as described in detail in

Paper B:

Step 1: The input uncertainties were identified and defined. In this

work, uncertainties in the model parameters, the initial conditions, and

the on-line measurements were considered.

Step 2: N independent input sample sets (N = number of sample sets)

were generated using the LHS technique (McKay et al., 1979; Sin et al.,

2009b).

Step 3: The Monte Carlo simulation was then performed. Each input

sample was used in the dynamic model and hence the simulations

predicted the outputs N times. The probability distribution of the

model outputs was later utilized in Chapter 5 for risk quantification.

3.2 Monitoring of Lab-scale Cultivations

The probabilistic soft sensor was applied to data sets of three historical

cultivations as the experimental setup did not allow accessing the on-line

measurements in real time, e.g., from an OPC server (Figs. 3.2 - 3.4).

Nevertheless, the actual on-line measurements, namely the pH and quantity

of added ammonia solution, were used in these demonstration tests as they

would have been available on-line.

The results will be explained for one cultivation shown in Fig. 3.2.

Figs. 3.3 and 3.4 depict the results for the additional cultivations that

substantiated the quality of the soft sensor. Furthermore, there are movies in

the supplementary material of Paper B that show the virtual implementation
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of the soft sensor. There, the representation that was intended for a plant

operator and process engineer are presented as the soft sensor was updated

in five min intervals. The figures, however, portray the predictions of the soft

sensor at selected time points only (in the rows).

The cultivation began at an initial pH 7 (Fig. 3.2). Until the pH dropped

to the control set point, ammonia solution was not added to the bioreactor,

hence the only valid on-line measurement was the pH. The pH information

was used to update the lag-time parameter. For demonstration purposes,

the lag-time parameter was not updated in this example at 2 h (Fig. 3.2,

first row), and the initial value for tlag = 1 h was used. The soft sensor

predicted both the measured state variables (pH and ammonia in the left

column) and unmeasured state variables (biomass in the middle column

and lactose and total lactic acid in the right column). For comparison, the

off-line measurements are shown here as well, even though they would not

be available in an on-line implementation. After 2 h, there is a clear offset

between the predictions and actual values as tlag had not been updated yet.

The Monte Carlo simulation propagated the input uncertainties to the

outputs. The 95 % confidence intervals of the model predictions for the

biomass, lactose, and lactic acid concentrations are shown (Fig. 3.2). They

allow for a robust interpretation of the results.

After 2 h and 40 min (Fig. 3.2, second row), the pH control set point was

arrived at. tlag was finally updated, and there was already a solid prediction

of the state variables. From this point forward, the addition of ammonia

solution started in order to control the pH, and µmax was updated accordingly.

The procedure to update tlag introduced a dependency of the soft sensor

on pH measurement. In the case pH measurement was faulty, the soft sensor

will not recognize it. Nevertheless, given the limited number of on-line

measurements, this might be the only possibility for adjusting the model

with respect to the lag time that naturally varies from batch to batch. It is

therefore advised to use at least two independent pH probes to double verify

pH measurement.

After 3 h (Fig. 3.2, third row), the ammonia had been added already but
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the controller overshot so that currently, just little ammonia was added. µmax

was therefore updated to a low value, and the soft sensor predicted almost

no growth for the coming hours. The soft sensor prediction was therefore

incorrect at that moment. However, this mechanism could also be used to

warn the operators in case the base addition would stop for a long period

of time. In case no base is added, two scenarios are possible: 1) lactic acid

production could have stopped. In the case no lactic acid was produced, it

is very likely that the growth stopped as well; and 2) there was a failure

in the base addition unit. This could be that of a pump or IT component

among others. Depending on the pH profile and, e.g., pump signals, the error

could be narrowed down. Fast action of the process operators would then be

needed in order to solve the problem.

As the cultivation progressed, more and more on-line data was available.

µmax was updated every five min according to the base addition measure-

ments, and a reliable prediction of the unmeasured states was achieved

already after 4 h (Fig. 3.2, fourth row) and later after 6 h (Fig. 3.2, bottom

row).



3.2. Monitoring of Lab-scale Cultivations 55

Figure 3.2: The probabilistic monitoring system applied to the lab-scale batch data
of a S. thermophilus cultivation (1st demonstration data set). The monitoring system
reads in the on-line available data (left column, black dots), ammonia addition
quantity, and pH, and predicts the state variables (middle and right column) every
five min. A total of 100 Monte Carlo simulations of the dynamic model were
performed. The 95 % confidence intervals of the probabilistic model predictions are
shown at five time points during the cultivation (2 h, 2 h 40 min, 3 h, 4 h, 6 h).
Predictions of the pH (blue), ammonia addition (red), biomass (cyan), lactose
(green), and lactic acid (magenta) concentrations are shown. The off-line
measurements for biomass (grey dot with standard deviation), lactose (grey circle),
and lactic acid (grey square) are shown for comparison only, but were not used to
update the soft sensor. Reprinted from Paper B.
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Figure 3.3: The probabilistic monitoring system applied to the lab-scale batch data
of a S. thermophilus cultivation (2nd demonstration data set). Reprinted from Paper
B.
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Figure 3.4: The probabilistic monitoring system applied to the lab-scale batch data
of a S. thermophilus cultivation (3rd demonstration data set). Reprinted from Paper
B.
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Figure 3.5: Error of the biomass prediction in the soft sensor; the RMSSE with the
95 % confidence interval for the biomass prediction in the first demonstration data
set (see Fig. 3.2). Reprinted from Paper B.

To measure the quality of the model predictions, the RMSSE of the

cultivation in Fig. 3.2 was assessed. At the beginning of the cultivation, the

RMSSE for biomass was 0.8 ± 0.1 g L-1 (Fig. 3.5). After 3.5 h, the RMSSE

remained lower than 0.6 g L-1. At the end of the cultivation, the RMSSE was

0.5 ±0.1 g L-1, which corresponded to an error of less than 10 % with respect

to the final total biomass concentration. As discussed before, the accuracy of

the soft sensor was the lowest when too much ammonia solution was added

and the pH overshot. The ammonia addition stopped subsequently (after ca.

3 h), hence µmax was underpredicted, and the RMSSE was larger than 3 g L-1.

The reproducibility of the soft sensor predictions was tested with 10

different input sample matrices for the Monte Carlo simulation. The RMSSE

of biomass varied less than 0.5 %. Furthermore, the tolerance limit in the

iterative update procedure for µmax (Eq. (3.3)) was evaluated. Changing the

limit from 5 % to 1 % and 0.1 % did not influence the prediction accuracy in

this work. Nevertheless, this might be necessary for other applications.

There are several studies that have implemented either a model-based

or data-driven soft sensor to monitor lactic acid bacteria cultivations. Acuña

et al. (1994) and Peter and Röck (2012) applied a soft sensor that used the

pH measurement and base addition information as well. However, the latter

application is limited to the prediction of the lactic acid concentration. A

data-driven soft sensor was proposed by Fayolle et al. (1997) and Payot et al.
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(1997). Fayolle et al. (1997) employed mid-infrared spectroscopy while Payot

et al. (1997) utilized the conductivity signal. In general, the conductivity

signal might be a valuable measurement that could be included in the soft

sensor in the future. It could be especially useful for fault detection as it is

correlated with lactic acid concentration, and could be employed to validate

the pH and base addition measurements. However, for the main model, a

model-based framework was opted for over a data-driven approach. Firstly,

the advantage of a model-based over a data-driven approach is that the cause

of poor model predictions could be found, understood, and corrected. As

an example, one could change the algorithm not to update µmax directly

after the control set point is reached. In this way, the faulty prediction

after 3 h (Fig. 3.2, time = 3 h) could be corrected. These modifications

would be more difficult with a data-driven model. A further advantage

of the model-based approach is that it could be easily adapted to other

cultivations, e.g., other homolactic lactic acid bacteria strains, by readjusting

a number of the kinetic parameters. In addition, it might be also applicable to

other cultivation conditions as already outlined with the A-stat cultivation in

Chapter 2 without the need to re-calibrate the model as it would be necessary

with a data-driven approach.

In summary, the probabilistic model-based soft sensor was validated with

2-L lab-scale experiments. In contrast to earlier studies, this work considered

several sources of uncertainties using the Monte Carlo procedure, and demon-

strated a probabilistic monitoring system. However, further uncertainties,

for example in the chemical model, and stochastic uncertainties, like pump

failures, could be included in future investigations. Furthermore, if the soft

sensor would be applied at the lab-scale on-line, different scenarios to test

the detection of faulty batches by the soft sensor should be performed. These

experiments could include a deliberate stop of the base addition simulating

a pump failure, or the addition of, e.g., ethanol to stop biomass growth. In

Chapter 5, the soft sensor will be applied to a 700-L cultivation, and the

probabilistic model outputs will then be used to quantify the risk of not

producing the target biomass yield.





Chapter 4

Prediction of pH Gradients

Chapter 3 described the application of the kinetic model as a soft sensor

for on-line monitoring of lab-scale cultivations. At a large scale, however,

gradients emerge and often have an influence on the metabolic activity of

the cells. In this work, pH gradients were considered as the key parameter of

lactic acid bacteria batch cultivations. In order to apply the model at a large

scale, fluid dynamics need to be taken into account. In this chapter, firstly, a

CFD model was employed to predict pH gradients during a cultivation in a

700-L bioreactor and validated with experimental measurements. Secondly, a

CFD-based compartment model was applied, and then benchmarked against

the experiments and CFD predictions.

This chapter is based upon the following articles:

Paper E: Spann, R., Glibstrup, J., Pellicer Alborch, K., Junne, S., Neubauer,

P., Roca, C., Kold, D., Eliasson Lantz, A., Sin, G., Gernaey, K. V., & Krühne,

U. (2018). CFD predicted pH gradients in lactic acid bacteria cultivations.

Biotechnology and Bioengineering. In preparation

Paper F: Spann, R., Roca, C., Gernaey, K. V., & Sin, G. (2018). A Validated

CFD-based Compartment Model to Assess pH Gradients in Lactic Acid Bacteria

Cultivations. AIChE Journal. Submitted
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4.1 Computational Fluid Dynamics (CFD) Model

The objective of this chapter was to consider the fluid dynamics of a

large-scale bioreactor, in particular to predict pH gradients during the S.
thermophilus cultivation. The pH gradients are important for assessing the

mixing of the bioreactor seeing that pH gradients could lead to a productivity

loss of the cells.

As a case study, a stirred-tank bioreactor with a liquid volume of 700 L was

made use of. Firstly, a CFD model was developed and then validated using

tracer-pulse simulations (Fig. 4.1). The aforementioned biokinetic model

was eventually integrated into the CFD simulation and a S. thermophilus
cultivation, including its pH gradient, was simulated. The results were

validated with one experiment. Secondly, a compartment model was designed

to speed up simulation time. The compartment model was based on the

velocity profile that was obtained from the CFD simulation. It was also

applied to predict the cultivation and pH gradient while being benchmarked

against the CFD prediction.

Figure 4.1: Framework for the CFD and compartment model simulations.
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Figure 4.2: Bioreactor set up for the mixing time experiments and cultivation. A:
Simplified geometry of the stirred-tank bioreactor. B: Lance holding the six pH
sensors. C: Top view into the bioreactor with the pH sensor lance. Adapted from
Paper E.

The bioreactor was equipped with three six-blade Rushton turbines and

four baffles (Fig. 4.2). It was utilized for the CFD and compartment model

studies (present chapter) as well as the risk quantification (Chapter 5). Six

pH sensors were placed at different vertical positions in the bioreactor and

they recorded the pH every second during the tracer-pulse experiments and

cultivation. The bioreactor was operated at 130 rpm during the cultivation

and 240 rpm for the tracer-pulse experiments.

A simplified bioreactor geometry was designed in SolidWorks (Dassault

Systèmes, Vélizy-Villacoublay, France) as the gas inlet pipe, including the

sparger ring, and the shaft-holding structure were omitted. Half of the

volume was modelled applying a rotational periodicity plane. The bioreactor

consisted of three rotating domains for the impellers along with a stationary
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domain. Structured meshes with six-sided hexahedral elements were defined

in in ANSYS ICEM CFD 17.1 (ANSYS, Inc., PA). The entire mesh consisted

of ca. 1.6 million nodes. The simulations were performed in ANSYS CFX

17.1, and the k-ε turbulence model was applied to model fluid dynamics. As

the cultivation was not aerated, a one-phase CFD model could be applied.

Details on the simulation settings could be found in Paper E.

First, a steady-state velocity profile was obtained (Fig. 4.3). The CFD

simulation predicted that six recirculation loops were generated by the three

Rushton turbines as it was also expected based on earlier studies with a

similar configuration (Vrabel et al., 2000). It is predicted that mixing is fast

within the recirculation loops while the liquid flow between compartments

is slow. The pH sensors were therefore placed in the predicted recirculation

loops during the subsequent experiments (the tracer pulses and cultivation)

(Fig. 4.2 B and C). The cross-section from the top (Fig. 4.3 A-A) depicts

high circumferential velocities close to the impeller blades that turn with

four rounds per minute (240 rpm). Close to the baffles, the circumferential

mixing is much slower.

CFD Model Validation with Mixing Experiments

The CFD model was then validated with tracer-pulse experiments. For the

experiments, the bioreactor was filled with 700 L of tap water (35 ◦C) and

concentrated NaOH solution was added as tracer from the top of the bioreac-

tor. The distribution of the tracer was modelled in a dynamic CFD simulation

while one mol of an additional variable was specified in a cylindrical volume

at the top of the bioreactor. The dynamic simulation was performed with a

transient (time-dependent) velocity profile using a steady-state result as the

initialization state.

The tracer-pulse simulation revealed the fast mixing within the recircu-

lation loops (fast radial and circumferential mixing) but slow axial mixing

(Fig. 4.4, and a movie in the Supplementary Material of Paper E). The tracer

required several seconds to pass from one recirculation loop to another.

The dynamic response of pH in the mixing experiments and the concentra-

tion of the tracer in the CFD simulation were monitored at different positions
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Figure 4.3: Steady-state solution of the 700-L bioreactor at 300 rpm. Left: velocity
streamlines with velocity in stationary frame. Right: contour plot of the
circumferential velocity in stationary frame. Reprinted from Paper E.

to understand the mixing dynamics when base is added in the cultivation

to control pH (please note that the base was actually added at the bottom

of the bioreactor in the cultivation but for the mixing experiments, base

addition from the bottom was not possible owing to technical issues). At

the top sensor location 2, the pH overshot first and then reached a stable

value (Fig. 4.5 A). It is unfortunate that the very top sensor 1 failed to track

the data during the experiment. The pH sensors 3 - 6, which were placed

further away from the base addition position, responded with a sigmoidal

curve. In order to compare the pH measurements with the CFD predictions,

the measurements were normalized:

pH ′i (t) =
pHi(t)− pHi(t = 0)

pHi(t = ∞)− pHi(t = 0)
(4.1)
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Figure 4.4: Distribution of the tracer in the tracer-pulse simulation. A dynamic
simulation with a transient velocity profile at 240 rpm was performed. Reprinted
from Paper E.

where pH ′i is the normalized output of the ith sensor/monitoring position.

For t=∞, the average measurements between 4.5 and 5 min after each pulse
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Figure 4.5: Dynamic response at the six measurement and monitoring positions
after the tracer pulse. A: Measured pH in the experiments. B: Normalized values of
the experiments (symbols) and CFD simulation (lines). Adapted from Paper E.

were considered. The concentrations of the CFD simulation were normalized

accordingly.

The simulated dynamic response at the different sensor locations matched

the measurements quantitatively (Fig. 4.5 B). Both the dynamic shape

and order of magnitude could be predicted accurately. However, minor

oscillations that were predicted by the CFD simulation were not measured.

This could be attributed to the response time of the ISFET pH sensor. The

sensors employed needed 4 - 8 s to reach the final pH value (±0.02) under

well-mixed conditions (data not shown). They might therefore by sluggish to

capture rapid changes.

The mixing time was calculated based on the normalized measurements

and predictions at the different positions. To this end, the logarithmic squared

deviation with respect to the normalized upper bound 1 was calculated

according to Paul et al. (2003):

log D2 = log
[

1
n
·

n

∑
i=1

(
pH ′i (t)−1

)2
]

(4.2)

where n represents the number of sensors. log D2 = −2.65 when 95 %

homogeneity is achieved.
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Table 4.1: Mixing times at 240 rpm to reach 95 % homogeneity.

Experiments [s] CFD simulation with a transient

velocity profile [s]

42

4650

51

Note. Adapted from Paper E.

A mixing time of 48 ± 5 s was measured in the experiments (three

replicates) to achieve 95 % homogeneity (Table 4.1). This was congruous

with both the predicted 46 s of the CFD simulation and reported mixing

times of similar bioreactors in the literature (Delvigne et al., 2006). At the

production scale, mixing times on the same order of magnitude were assessed

(internal reports). It was therefore concluded that the present case study

with the 700-L bioreactor would offer representative insight into gradients in

production-scale processes.

Both the prediction of the dynamic response at the sensor positions and

the mixing time supplied convincing evidence that the CFD model described

the fluid dynamics of the bioreactor at 240 rpm satisfactorily.

Prediction of pH Gradients in a 700-L Cultivation

In order to simulate the S. thermophilus batch cultivation, the biokinetic

model was integrated in the CFD simulation. The mixed weak acid/base

model that was applied with the purpose of predicting pH in Chapter 2 and

Chapter 3 could not be solved in CFX as it resulted in a stiff system with

fast (mixed weak acid/base model) and slow (biokinetic model) differential

equations. An algebraic linear equation (Eq. (4.3)) was used instead. The

equation was derived from data of lab-scale experiments.

pH =−0.44 · (CP−5.29 ·CNH3)+7.00 (4.3)

In the cultivation, the pH was controlled by adding NH4OH at the bottom

of the bioreactor. The controlling pH sensor was located close to sensor 5.
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Figure 4.6: CFD predictions (lines) and measurements of the lactose (squares),
biomass (circles), and lactic acid (triangles) concentrations in the 700-L cultivation.
Reprinted from Paper E.

The CFD simulation was set up accordingly with a P-controller with the step

function:

NH3,add = step(6− pH) · (6− pH) ·11900 ·g ·h−1 (4.4)

The cultivation was conducted at a stirrer speed of 130 rpm. Unfortu-

nately, there were no mixing experiments available to validate the CFD model

under these conditions. However, the CFD model was assumed to predict

the fluid dynamics under these conditions properly, as well. A transient

(time-dependent velocity field) tracer-pulse simulation at 130 rpm predicted

a mixing time of 85 s to reach 95 % homogeneity. In order to simulate

the cultivation in a considerable time period, a steady-state velocity profile

was required for the simulation. However, the mixing times predicted with

a transient and steady-state velocity profile did not match. A steady-state

velocity profile with a stirrer speed of 200 rpm instead predicted a mixing

time of 89 s, and was therefore deemed to mimic the fluid dynamics at the

real speed of 130 rpm sufficiently.

The dynamic CFD simulation (with the steady-state velocity profile) of the

S. thermophilus cultivation predicted the measured biomass growth, substrate

consumption, and lactic acid production accurately (Fig. 4.6). After 6 h of

cultivation, 6 g L-1 biomass and 34 g L-1 lactic acid were yielded.
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Figure 4.7: pH at different vertical locations during the 700-L cultivation. A: pH
measurements at position 1, the top of the bioreactor (black), 2 (blue), 4 (green),
and 6, the bottom of the bioreactor (pink). B: CFD prediction. Reprinted from
Paper E.

The pH was also accurately predicted at the different positions (Fig. 4.7).

The pH was 6.8 at the beginning of the cultivation and dropped to the

controlling pH value pHset = 6 within 2.5 h. Then, the pH was controlled by

adding the base below the bottom impeller (Fig. 4.2). The measurements

(Fig. 4.7 A) indicated a maximum pH gradient between 5.9 at the top of the

bioreactor and 6.2 at the bottom sensor of the bioreactor at ca. 4 h. A few

measurements, which were recorded every second, were as high as pH = 7.

The CFD simulation (Fig. 4.7 B) predicted similar values with deviations of

less than 0.05 pH units compared to the measurements.

The multi-position pH measurements suggested that pH gradients existed

in the studied 700-L bioreactor. Furthermore, the pH gradients could be

quantitatively predicted with the CFD simulation. However, the dynamic

CFD simulation of the cultivation required four days of computation time

on 20 CPU cores within the DTU High Performance Computing Cluster

(https://www.hpc.dtu.dk/).
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4.2 Compartment Model

The compartment model was therefore developed with the aim of speed-

ing up the simulation. This would allow applying the model for on-line

applications, such as the soft sensor for monitoring, where computation time

is crucial.

The compartment model was designed based on the steady-state velocity

profile that was obtained from the CFD simulation (Fig. 4.1). In alignment

with the methodology that was applied for the CFD model, the compartment

model was validated with the tracer pulse, and subsequently coupled with

the biokinetic model to simulate the cultivation.

Compartment Model Development

In this work, a compartment model consisting of seven compartments

was designed based on the CFD simulation. Each recirculation loop was

represented by a compartment (Fig. 4.8). The location of the compartment

boundaries and the flows between the compartments were calculated as de-

scribed in detail in Paper F. The flows were exported from the CFD software,

and the compartments were separated where the axial flows were lowest. In

addition to the six compartments resembling the six recirculation loops, a

seventh compartment was placed for the top 10 cm of the bioreactor. This

was necessary to perform the simulations of the tracer pulse. It is noted that

the applied compartment model is a simple and coarse model. However, the

main aim of this study was to demonstrate the various possibilities with the

compartment model, and not to optimize the compartment further.

Two compartment models were designed for the different stirrer speeds of

130 and 240 rpm that were investigated. To determine the properties of the

compartment model, the steady-state velocity profile of the CFD simulation

was required. However, as mentioned in the CFD model section, the results of

the tracer-pulse simulation that used a transient velocity profile and a steady-

state velocity profile differed when employing the same stirrer speed. The

CFD tracer-pulse simulation with the transient velocity profile had predicted

the measured mixing time and the dynamic responses of the pH sensors at

the various locations accurately. It was therefore decided to manipulate the
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Figure 4.8: CFD-based compartment model design. A: Steady-state velocity profile
at 200 rpm representing the real stirrer speed of 130 rpm that was used in the
cultivation. B: Location of the seven compartments. Adapted from Paper F..

stirrer speed in the steady-state simulation in order to obtain the solution

that matched the mixing time closely and thus the fluid dynamics of the

real system. The real stirrer speed of 240 rpm that was used for the tracer-

pulse experiments was mimicked with a steady-state velocity profile featuring

300 rpm. The real stirrer speed of 130 rpm that was used in the cultivation
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Table 4.2: Properties of the compartment models.

Compartment Volume [L] Compartment Flow rates between the
number connection compartments [L s-1]

200 rpm* 300 rpm* 200 rpm* 300 rpm*

7 19.1 19.1 7↔ 1 10 15.3
1 80.6 80.6 1↔ 2 11.7 17.5
2 39.6 55.7 2↔ 3 9.7 13.6
3 76.8 60.6 3↔ 4 14.2 18.1
4 67.1 50.9 4↔ 5 8.8 12.1
5 36.4 52.6 5↔ 6 12.2 17.9
6 38.8 38.8

* This is the impeller speed of the steady-state velocity profile.
Note. Adapted from Paper F.

was mimicked with a steady-state velocity profile with 200 rpm. The design

of the two compartment models was therefore based on these steady-state

velocity profiles.

The properties of the compartment models are shown in Table 4.2. The

volume of the compartments 6 (bottom), 1, and 7 (top) was identical for both

compartment models while the volume of the other compartments differed

as the predicted size of the recirculation loops was different. The flow rates

between the compartments increased as expected from the compartment

model for 200 rpm to the model for 300 rpm. The compartment model

was implemented in MATLAB as an ODE system. For the simulation of the

cultivation, it was coupled with the biokinetic and chemical model.

Compartment Model Validation with Mixing Experiments

In order to simulate the tracer-pulse addition from the top of the biore-

actor with the compartment model and to assess the mixing time – as was

carried out to validate the CFD model – an additional state variable was

defined as the tracer. The small top compartment 7 was filled with 100 g L-1

of tracer initially while the tracer concentration was 0 g L-1 in the other

compartments. The reactions of the biokinetic and chemical model were not

considered for the tracer-pulse simulation.
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Table 4.3: Mixing times obtained in the compartment model, CFD model, and
experiments.

Mixing time to reach 95 % homogeneity [s]

200 rpm* 300 rpm*

Compartment model 68 52

CFD model (steady-state) 89 55

Experiment not available 48 ± 5 (240 rpm)

* This is the impeller speed of the steady-state velocity profile.

Note. Adapted from Paper F.

The mixing times predicted by the compartment model were compared

with the experiments and CFD simulation (Table 4.3). At a stirrer speed of

240 rpm, the compartment model predicted a mixing time of 52 s to achieve

95 % homogeneity, matching the experimental mixing time of 48 ± 5 s.

The mixing time predicted by the CFD simulation (with the steady-state

velocity profile) was 55 s for these conditions. At the cultivation conditions

(130 rpm), the compartment model predicted a mixing time of 68 s, which is

24 % lower than the prediction of the CFD model (89 s). Note that the CFD

simulation with a steady-state velocity profile was utilized here, while the

tracer-pulse simulations in Chapter 4.1 (Table 4.1) were conducted with a

transient velocity profile. The presented compartment model was deemed

to describe the system sufficiently even though the fluid dynamics were not

captured as comprehensively as with the CFD model. Based on the fact that

the biological reaction rates are slower than the fluid dynamics, the error of

the compartment model can however be accepted.

Prediction of pH Gradients in a 700-L Cultivation and the Benefit
of Computational Speed

In order to simulate the pH gradients in the S. thermophilus cultivation,

the kinetic model was solved with the compartment model. First, the linear

pH model, which was used in the CFD simulation to overcome the problems

of a stiff ODE system in the CFD simulation, was compared with the mixed

weak/acid base model. Both models were implemented in the compartment
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Figure 4.9: pH gradients in the S. thermophilus cultivation. A: The mixed weak
acid/base model was applied. B: The linear pH correlation (Eq. (4.3)) was applied
as in the CFD model. Adapted from Paper F.

model, and the simulations of the cultivation revealed marginal differences

(Fig. 4.9). Both models predicted a pH gradient between 6.1 and 5.8 during

the exponential growth phase. For the simulation with the mixed weak

acid/base model (Fig. 4.9 A) uncertainties in the model parameters and

initial process conditions were considered, and the 5 and 95 % percentiles

are presented. Based on the general preference of a mechanistic model,

the subsequent simulations were performed with the mixed weak acid/base

model.

The compartment model predicted the pH gradients that were measured

in the cultivation qualitatively (Fig. 4.10). The drop in the pH at the

beginning of the cultivation was predicted accurately. During the exponential

growth phase, a gradient between pH 5.9 and 6.2 was measured as discussed

earlier (Fig. 4.10 A). The compartment model predicted a gradient between

pH 5.8 and 6.1 in the corresponding compartments 1, 2, 4, and 6 (Fig. 4.10

B). The compartment model overpredicted the effect of the reduction of pH

caused by lactic acid production in the top compartment by 0.1 pH unit.

In the bottom compartment, the pH increased because of base addition.

The resulting pH increase was slightly (0.1 pH unit) underpredicted by

the compartment model. First of all, the deviation of the predictions and

measurements on the order of 0.1 pH unit are completely acceptable as they
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Figure 4.10: pH gradients that were measured and predicted by the compartment
model in the S. thermophilus cultivation in the 700-L bioreactor at 130 rpm. A: pH
measurements at the different vertical positions (see Fig. 4.2). B: pH predicted by
the compartment model at the corresponding positions with the 95 % confidence
intervals that resulted from a Monte Carlo simulation. Adapted from Paper E and F.

could have resulted from measurement errors and only one cultivation data

set was available. Further experiments are therefore needed to evaluate the

measurements statistically. However, the simple design of the compartment

model could have also led to the small mismatch. A finer compartment model

might therefore capture the pH at the measurement positions qualitatively in

contrast to the present model that simplified each recirculation loop to one

compartment and assumed the same conditions there.

The biological state variables were predicted accurately by the compart-

ment model (Fig. 4.11), and the predictions were compared with the CFD

simulation and a one-compartment simulation. The biomass (Fig. 4.11 A)

and lactose concentrations (Fig. 4.11 C) were predicted similarly by the

compartment model and CFD model while the yield of the total lactic acid

concentration was higher in the CFD simulation than in the compartment

model simulation (Fig. 4.11 B). This could be attributed to the fact that the

growth-associated lactic acid production constant α was changed during this

study, and a higher value (α = 5.59 g g-1) was used in the CFD simulation

than in the compartment model (α = 5.19 g g-1). Furthermore, differences

between the CFD and compartment models could be caused by the ODE
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Figure 4.11: Measured and simulated biomass (A), total lactic acid (B), and lactose
(C) concentrations in the 700-L cultivation. Measurements (circles), CFD simulation
(black solid lines), 95 % confidence intervals of the compartment model (red dashed
lines), and the homogeneous (one-compartment) model (blue dotted lines).
Reprinted from Paper F.

solvers. A considerable impact might have had the time steps that were used

in the solvers. In the CFD simulation, the time step was 1 s, while the applied

ode15s solver in MATLAB made use of a dynamic time step for the compart-

ment model simulation. There were no significant differences between the

compartment model and homogeneous one-compartment cultivation (Fig.

4.11). In the case the purpose of the model is to describe the microbial

kinetics without having an interest in the gradients, the homogeneous model

would be sufficient for the investigated cultivation. However, the interest of

this study was in the assessment and quantification of gradients.

In addition to the pH gradients (see earlier), the gradients of the main bio-

logical state variables were evaluated at 4 h of cultivation when the maximum

growth rate was achieved and hence the gradients were most pronounced

(Fig. 4.12). The distribution of the biomass, total lactic acid, and lactose con-

centrations predicted by the Monte Carlo simulation are shown in the seven

compartments. The predictions in the compartments overlapped (Fig. 4.12

top row). Zooming to the mean concentrations in each compartment revealed

that there existed small deviations of the biological state variable between

the compartments (Fig. 4.12 bottom row). However, they were statistically

not significant as the standard deviations of the state variables were larger

than the deviations, namely σbiomass = 0.22 g L-1, σlactic acid = 1.15 g L-1, and

σlactose = 4.15 g L-1. The small deviations were comprehensible: The biomass
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Figure 4.12: Gradients of the biological state variables. Mean concentrations
(circles) with the standard deviation in the seven compartments of biomass (A),
total lactic acid (B), and lactose (C). Reprinted from Paper F.

and lactic acid concentrations were higher in the bottom of the bioreactor as

the pH was closer to pHopt there, and the growth rate and lactic acid produc-

tion rate were consequently higher. Accordingly, the lactose concentration

was slightly lower in the bottom of the bioreactor.

The compartment model had a similar accuracy to the CFD model. The

advantage of the compartment model was, however, that it could be solved

in less than 2 s for one model input set. It is therefore desirable for on-line

monitoring and control applications where the computational speed is re-

quired. Under the investigated conditions, there were pH gradients observed

using both models but they had no influence on microbial growth. Gradients

of the biological state variables were practically non-existent. However, if

the cultivation conditions changed, e.g., a fed-batch cultivation was applied,

these observations might change. It is therefore of interest to investigate

fed-batch and continuous cultivations with the compartment model in terms

of future work of this project.
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Figure 4.13: Testing of different base-addition locations. A: Ammonia solution
addition below the middle impeller. B: Base addition below the top impeller. C:
Base addition from the top of the bioreactor. Reprinted from Paper F.

Testing Different Base Addition Positions

As many lactic acid bacteria cultures are produced in batch mode, it was

of interest in this study to demonstrate the compartment model simulation

as a tool to assess different base-addition positions. It was desired to reduce

the pH gradient in the cultivation even though the pH seemed not to have

an effect on the investigated strain but might be critical for other lactic acid

bacteria. Owing to the short simulation time in comparison to a CFD simu-

lation, the compartment model was the preferred model to assess different

scenarios. In this work, the location of the base addition was changed to

three potential positions, namely under the middle impeller, under the top

impeller, and the liquid surface at the top of the bioreactor. The pH sensor

that was used as an input to the pH controller was kept at the same position

as in the real setup in compartment 5 (the second compartment from the

bottom).

In the simulation with the base addition below the middle impeller, a

small pH gradient was predicted during the exponential growth phase (Fig.

4.13 A). The pH was 5.9 at the top of the bioreactor and 6.05 in the middle of

the bioreactor, where the base was added. In the case the base addition was

placed under the top impeller, the lowest pH would be 5.95 in the bottom and

6.3 in compartment 2, where the base was added (Fig. 4.13 B). Adding the

base at the top of the bioreactor, as simulated with the addition of ammonia

solution to compartment 7, a severe pH gradient was predicted (Fig. 4.13 C).
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At the bottom of the bioreactor, the pH would not drop significantly under

pH 6 as the pH sensor that is employed to control the pH is located closely.

However, the pH at the top of the bioreactor was predicted to increase up to

pH 7.

In order to decrease the pH gradients in the studied bioreactor, it is

advised to place the base addition under the middle impeller. However,

in general, when using a compartment model for process design or off-

line optimization tasks, it is likely the best candidate should be simulated

with a CFD simulation in the end to double-check the results and obtain

comprehensive predictions.

If the pH would be controlled by adding base to the top of the bioreactor,

the bacteria would have to adapt to changing pH conditions in the range of 1

pH unit while they circulate through the bioreactor because the extracellular

pH affects the intracellular pH of the lactic acid bacteria, and hence their

activity (Hansen et al., 2016). They maintain their intracellular pH typically

with energy consuming antiporters (Sawatari and Yokota, 2007). As a result,

the energy required for maintenance might increase, which could result in a

lower biomass yield. These drastic pH changes could also result in a loss of

cell viability. The investigation of the effects of oscillating extracellular pH

on lactic acid bacteria should be addressed in future studies.

Taking the recent CFD studies in the literature and in this work together,

CFD and compartment models are robust modelling tools for obtaining a

qualitative and frequently even quantitative view of the cultivation system.

In this work, an non-aerated bioreactor was investigated, and hence a one-

phase simulation was performed. Future investigations should seek to model

production-scale cultivations, including aerated fed-batch processes, and thus

combine the presence of substrate, dissolved oxygen, and pH gradients.

The CFD and compartment models were successfully applied to consider

fluid dynamics and predict the pH gradients in the S. thermophilus cultivation.

For on-line applications and fast off-line tests, the compartment model is

preferred because of the computational speed. Here, the compartment model

was applied to test different base addition scenarios, and it will be applied

for on-line monitoring and risk quantification in Chapter 5.



Chapter 5

On-line Risk Quantification

In Chapter 3, the probabilistic soft sensor has been described and vali-

dated for lab-scale cultivations. Chapter 4 has focused on the modelling of pH

gradients. This final part of the work combines both tools, and demonstrates

the monitoring of lactic acid bacteria in the 700-L bioreactor with a risk

assessment tool. The CPP, pH gradient, and the CQA, biomass production,

are evaluated.

This chapter is based upon the following article:

Paper G: Spann, R., Gernaey, K. V., & Sin, G. (2018). On-line Process Risk

Assessment of a 700 L Lactic Acid Bacteria Cultivation. Frontiers. Submitted

5.1 Monitoring of pH Gradients

The compartment model, which was validated in Chapter 4, was used

in the soft sensor, which was introduced with a single-compartment model

in Chapter 3, to monitor a 700-L cultivation. The goal was to assess a CPP

and CQA of the lactic acid bacteria cultivation, namely the pH gradient and

biomass production, respectively.

The soft sensor was applied to a historical data set of a 700-L cultivation.

The on-line data, namely the pH and quantity of added ammonia, were used

as they would be available on-line in order to update the parameters in five

min intervals. As described in Chapter 3, a Monte Carlo simulation with
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200 input samples was performed to account for uncertainties in the model

parameters, initial process conditions, and the base addition.

Fig. 5.1 presents the results of the soft sensor after 1, 2, 3, 5, and 6 h

(in rows). The ammonia addition (Fig. 5.1, left column) and pH (Fig. 5.1,

middle column) that was measured in the second compartment from the

bottom were employed as inputs to the soft sensor. The soft sensor predicted

both the measured and unmeasured state variables, whereas the biomass

and lactose concentrations are shown in the right column of Fig. 5.1. The

cultivation commenced with a pH of 6.8 (5.1, t = 1 h). As lactic acid

was produced, the pH dropped to the control set point at pH 6, when the

ammonia addition began. There was no gradient expected or predicted until

the base addition started. The pH was therefore equal at all measurement and

simulation points. The model predictions in the bottom compartment and top

compartment no. 6 are shown. tlag was updated using the pH measurements,

and the improvement of the biomass predictions can be observed when

comparing the prediction after 1 h (5.1, 1st row), 2 h (2nd row), and 3 h

((5.1, 3rd row). Of course, the off-line measurements of the biomass and

lactose concentrations were not utilized to update the soft sensor, and are

only shown for comparison’s sake.

The ammonia addition started after ca. 2.5 h when the pH set point

was reached (5.1, t = 3 h). A pH gradient between pH 5.8 and 6.1 was

observed as measured and predicted in the previous chapter. The accuracy of

the pH gradient has also been discussed in Chapter 4. The soft sensor used

the quantity of added ammonia to update µmax, and achieved an accurate

prediction of the state variable (time = 3 - 6 h). The RMSSE of the biomass

concentration was smaller than 0.4 ± 0.1 g L-1 corresponding to an error of

less than 10 %.

The added value of the compartment model in the soft sensor is that – if

applied on-line – the gradients can be assessed on-line, and therefore the risk

of faulty batches could be diminished. The soft sensor provides insight into

the bioreactor that can hardly be measured. Many large-scale bioreactors

simply do not have ports for measurement devices at different positions. In

case the pH gradient passes a critical level, operators could take appropriate
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Figure 5.1: Soft sensor predictions of the 700-L S. thermophilus cultivation for
risk-based decision making. The predictions at different time points (rows) are
shown. The ammonia addition (left column), pH gradient (middle column), and
biomass and lactose concentrations (right column) are shown. The on-line
measurements (black dots) of the ammonia addition and pH were used as an input
to the soft sensor. The off-line measurements of the biomass (grey dots with std.
deviation) and the lactose (open circles) concentrations are shown for comparison
only but not utilized to update the soft sensor. The 95 % confidence interval of the
probabilistic model predictions are seen.
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actions. There is also the possibility in the future to apply the soft sensor for

automated on-line control or guidance of the operators (Jiménez-Hornero

et al., 2009; Mears et al., 2017b). Actions to counteract a high pH gradient

could include increasing the stirrer speed or changing the pH or temperature

set point. A higher stirrer speed would improve the mixing and hence lead

to a smaller pH gradient even despite restriction because shear stress must

be considered (Arnaud et al., 1993; Lange et al., 2001). The set point of the

pH or temperature could also be changed to a less optimal value in order to

decrease cell growth. Less lactic acid would then be produced and the pH

gradient might diminish. In the case severe pH gradients occur frequently,

the bioreactor design should be improved, e.g., by altering the base inlet. As

discussed in Chapter 4, the compartment and CFD model could support the

design process.

5.2 Risk Quantification Using the Monte Carlo

Simulation

The soft sensor provided a probabilistic distribution of the model outputs

thanks to the Monte Carlo simulation. In this work, the goal was to produce a

high biomass concentration as biomass is the product. From an industry firm’s

point of view, it would be of much added value to know the probability of not

achieving the target biomass yield during cultivation. Furthermore, the risk

could be quantified, i.e., how much biomass could be lost. The probability

and risk would be indicators whether actions are needed to improve the

process.

The risk of not producing the target biomass yield was calculated based

on the results of the Monte Carlo simulation in the soft sensor. Here, a

target yield of 0.09 ± 0.003 gbiomass g−1
lactose was defined based on the yield

that was achieved at the laboratory scale, and it was intended to obtain at

least the same biomass yield when scaling up the process to 700 L. From

the production perspective, the total biomass production per batch is also of

interest as this is the amount that can be processed and sold. For the 700-L

bioreactor, which was operated with 70 g L-1 lactose, the target production

was defined as 4410 gbiomass batch-1 accordingly.
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Figure 5.2: Probability distribution of the target biomass yield. Probability
distribution of the predicted biomass yield obtained from the Monte Carlo
simulation (A). Cumulative distribution function of the biomass yield (B).
Cumulative distribution function of the total biomass production per batch (C).
Reprinted from Paper G.

Methodology

The risk was quantified based on the likelihood that was obtained from

the output of the Monte Carlo simulation. In this case, 200 model predictions

were available.

Firstly, the probability distribution of the predicted biomass yield (YX/S)

was calculated based on the predicted biomass concentration and initial

lactose concentration:

YX/S =
CX ,predicted

CS,initial
(5.1)

The histogram in Fig. 5.2 A shows the probability distribution of the

biomass yield based on the output of a Monte Carlo simulation as an example.

The yield ranged from 0.076 to 0.096 gbiomass g−1
lactose in this example. Only a

few predictions reached the target yield of 0.09 gbiomass g−1
lactose.

Secondly, the cumulative distribution function was calculated (Fig. 5.2

B). The predicted yield was subtracted by the target yield in this step to

easily differentiate between events that met the target and those that did

not. The probability of not achieving the target yield was ca. 75 %. To put it

another way, 75 % of the 200 model predictions did not reach the desired

target biomass yield while 25 % were equal or larger than the target yield,

accordingly.
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In the third step, the yield was converted to the total biomass production

per batch (Fig. 5.2 C). In the worst case, 500 gbiomass batch-1 could be lost in

this cultivation, according to the simulation. However, the probability of this

event was very low.

Finally, the risk was quantified. The risk of an undesired event (u.e.) is

generally defined as the likelihood of the undesirable event multiplied with

the consequence of this event (Cameron and Raman, 2005). The simulation

that did not meet the target yield was defined as an undesired event in this

work. To quantify the risk of all undesired events, the sum of the individual

risks was calculated:

process risk = ∑
m

consequence(u.e.) · likelihood(u.e.) (5.2)

The consequence was defined as the loss/plus of each of the j predictions

(Eq. (5.3)). The likelihood of each event is obtained from the Monte Carlo

simulation.

consequence j = Ŷj−Ytarget (5.3)

where Ŷj represents the yield predicted by the jth simulation.

The risk is equivalent to the grey shaded area under to cumulative dis-

tribution function (Fig. 5.2 C). In the presented example, the risk was

-140 gbiomass batch-1.

Risk Quantification in the Soft Sensor

Risk quantification was included in the monitoring system of the 700-L

cultivation. The probability of not achieving the target biomass yield and the

risk could therefore be obtained on-line each time the system was updated.

In the current work, the biomass concentration that was predicted for the

end of the cultivation after 6 h was used for the risk quantification. However,

the methodology could be flexibly adjusted to other time points or other state

variables.
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Fig. 5.3 shows the risk that was predicted during the cultivation. In

the beginning, the risk was high as much biomass could have been lost

according to the model predictions. However, during the early stage of the

cultivation, only a few on-line measurements were available to update the

model parameters, and especially the pH was crucial to updating tlag for an

accurate model prediction as was found in Chapter 3 (Fig. 3.5). It was

therefore proposed to define an initialization phase for the risk quantification

until tlag had been finally updated (here: 2 h 25 min). This initialization

phase should be adapted dynamically for each cultivation.

Once there was enough information for the soft sensor to provide an

accurate prediction, the risk quantification was deemed to be reliable for the

risk prediction phase. During the risk prediction phase, the risk oscillated

between 0 and -140 gbiomass batch-1 in the investigated cultivation. The risk

was close to zero at 2.5 h and 4.5 h, while at 3 h 45 min and at the end of

the cultivation the risk was negative. The oscillating risk prediction might

have been caused by the update procedure of µmax. µmax was updated with
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Figure 5.3: Risk quantification. The risk of how much biomass could be lost per
batch was obtained from the soft sensor predictions. Limited on-line measurements
were available for the soft sensor in the beginning of the cultivation (Initialization
phase). With more on-line data, the risk could be predicted (Risk prediction phase).
Reprinted from Paper G.
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Figure 5.4: µmax value updated in the soft sensor. Reprinted from Paper G.

the quantity of added ammonia in the data reconciliation and parameter

update step (Chapter 3). This led to dynamic changes in µmax (Fig. 5.4), and

hence when µmax was low, the risk of losing biomass was higher. Nevertheless,

the predicted risk was within the 68 % confidence interval (1σ) that was

estimated from the lab-scale data. The risk was therefore seen as natural

variability, and there was no yield reduction observed for this cultivation

compared to the lab-scale experiments. Nevertheless, additional lab- and

pilot-scale experiments would be needed to validate the yield statistically.

This on-line risk quantification could expand the traditional risk assess-

ment that is conducted for biotechnological processes. In addition to a risk

assessment that is conducted before the process is run, this method could

provide a risk measure for the product loss in real time. Further uncertain-

ties could be included, and hence a higher degree of reliability of the risk

quantification would be achieved. The methodology could furthermore be

extended to calculate the monetary value of the product in order to consider

the economic side, as well, as the production is profit-oriented at the end of

the day.

The soft sensor was successfully applied as a PAT risk assessment tool. It

was demonstrated with a pilot-scale cultivation, where heterogeneities exist.
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Specifically, the key CPP, namely the pH gradient, could be predicted. Having

such information on-line would enable plant operators to evaluate the mixing

strategy and ammonia addition, and react accordingly. Furthermore, the

CQA, the final biomass production, was assessed based on the probabilistic

predictions of the Monte Carlo simulation. The operation strategy and

decision to alter process parameters could therefore be based on the predicted

risk.





Conclusions and Future
Perspectives

In the work presented herein, it was demonstrated that pH gradients

and process risks can be predicted and assessed during lactic acid bacteria

cultivations. The mechanistic modelling framework was applied to a S.
thermophilus cultivation and it was shown that the applied tools could support

multiple phases of bioprocess development. Specifically, the framework was

applied as a PAT tool for risk-based on-line monitoring, it improved process

understanding, and it proposed a better process design. To accomplish this,

the biokinetic model was coupled with a chemical model for pH calculation,

and then combined with CFD and compartment models. All modelling

modules were experimentally validated. The combination of the model with

fluid dynamics, and the application as a probabilistic soft sensor contributed

to risk-based process analytical technologies, which are highly desired for

bioprocesses nowadays. The model-based soft sensor provided a PAT tool to

monitor the progress of the cultivation, especially the pH as a key parameter

in lactic acid bacteria batch cultivations. This enables achievement of virtual

insight into bioreactors, almost similar to creating an opportunity by looking

through a window into them.

The soft sensor supplied insight into the biological variables, which are

more comprehensible than physical parameters, such as pump speed, that are

traditionally monitored. The soft sensor improved the prediction accuracy of

the biomass growth because it updated the lag-time parameter. It required

merely the already installed measurement equipment of pH and base addition

quantity in contrast to other soft sensors that are, for example, based on

spectroscopic measurements.
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This PAT tool could also be used for scheduling of the different unit

operations ensuring a lean, on-time production as it is capable of predicting

the time when the target yield will be reached. The other unit operations, in

particular the downstream units, could be scheduled and prepared in time,

thereby ensuring their efficient application. In addition, other tasks, such as

cleaning in place, sterilization in place, media preparation, and preparation

of pre-cultures could be optimized when knowing the completion time of the

cultivation. An optimized schedule with a reduced downtime of production

units will increase productivity and profit.

Robust model predictions were achieved by the application of a Monte

Carlo simulation considering input uncertainties in the model parameters,

the initial process conditions, and measurements. Firstly, the comprehensive

assessment of the model parameter estimation accuracy was conducted in

order to determine the limitations of the model, which are inevitable owing to

the quality of the data that was used for parameter estimation. In addition to

the uncertainties in the model parameters, variations of the carbon source and

the biomass inoculum concentration, as well as measurement inaccuracies,

were considered in the Monte Carlo simulation because they vary naturally

from batch to batch. In the future, further stochastic, structural, and input

uncertainties should be considered. Uncertainties in the chemical model

could be considered, for instance, together with random failure of equipment

and uncertainties in the model structure.

The probabilistic model predictions allowed for a risk-based monitoring

and more objective interpretation of the model outputs compared to deter-

ministic model simulations. The risk of not achieving target productivity was

quantified and could be updated on-line within the soft sensor. A natural

progression of this work is to incorporate economic aspects in risk calculation

as the production is ultimately economically driven. In this way, the process

operators would be equipped with a tool that allows risk-based decision mak-

ing on the basis of profit/loss in monetary terms. Furthermore, the soft sensor

could detect process failures early and alert process operators immediately.

If this soft-sensor would be integrated at the production site, the operators

could be alerted to process deviations in a timely fashion. If, for example,

biomass growth stops, the soft sensor together with physical measurements
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like pressure, temperature, and flow rate measurements could support the

operators to find the cause of failure.

The soft sensor could also be used for automated process control in the

future. An automated control algorithm could adjust process parameters

in order to optimize the process, i.e., minimize the risk of faulty batches,

minimize loss of product, maximize the profit, and optimize the quality and

quantity of the product. In the more distant future, this tool could then be

included in a plant-wide on-line monitoring, control, and scheduling platform

that handles all up- and downstream units in an integrated manner.

With respect to modelling pH gradients in lactic acid bacteria cultivations,

two approaches have been considered: CFD modelling and compartment

modelling. Both predicted the spatial pH gradients as they were measured

with multi-position pH sensors. The predictions allowed judging the impor-

tance of certain process parameters, such as the stirrer speed or the dosing

position, in the production process. However, the CFD and compartment

models had limitations. Firstly, the high computational demand of the CFD

simulations limited their ability to be implemented in on-line process moni-

toring and control. Secondly, the data-driven linear pH correlation limited

the predictability of pH in the CFD simulation to the validated range of the

pH correlation. The compartment model overcame those limitations but

decreased spatial resolution and accuracy. Local heterogeneities – as, for

example, the high pH close to the base inlet observed in this study – are

not visible with the compartment model. The choice between the CFD and

compartment model depends therefore on the application. Ideally, the aim

would be for the on-line monitoring to implement the soft sensor with the

compartment model at the production site as it provides the required speed

combined with sufficient accuracy in the present case. The pH could then be

assessed on-line and reduced if it passed beyond a critical value, for example,

by increasing the stirrer speed.

There is huge potential for scale-down experiments that are designed

based on CFD simulations. Future studies could therefore benefit from the

results, e.g., during strain screening, medium testing, and process design,

and use a bioreactor setup at the laboratory scale that mimics heterogeneous
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production-scale conditions. On the one hand, multi-compartment exper-

iments, e.g., consisting of stirred-tank bioreactors and plug-flow reactors

could be used. On the other hand, high-throughput experiments employing

liquid handling stations could be designed. In the case of the presented

S. thermophilus cultivation, pH gradients could, for example, be mimicked

in a bench-scale three-compartment setup, where the largest bioreactor is

controlled to a pH 6, ammonia is added to the second compartment to mimic

the bottom base-addition zone of the bioreactor, and a third reactor that

resembles the top zone of the bioreactor, where the pH drops owing to lactic

acid secretion. However, as pumps are used to pump the liquid continuously

back and forth between the bioreactors, experiments are needed to ensure

that pumping has no influence on the results as one is mainly interested

in the effect of the gradients. Microorganisms could experience high shear

rates in the pump, which could affect microbial response, and gases like CO2

could be introduced in the liquid phase that distort the results, among other

influential factors. In a liquid-handling station using smaller volumes, pulse-

feeding experiments with acids and bases could be performed to resemble

heterogeneous large-scale conditions.

The process design phase should, in general, be accompanied by simula-

tions that consider fluid dynamics and the resulting gradients. Simulations

allow testing different scenarios. In the case of lactic acid bacteria, it might be

of interest to test varying stirrer speeds and assess the resulting pH gradients.

This is especially functional at a large scale seeing that multi-position mea-

surements are difficult to perform during production owing to experimental

challenges and regulatory requirements. In this work, a better dosing position

for the base was predicted to decrease the pH gradient. Nevertheless, an

experimental validation is still necessary to be performed.

The developed mechanistic model was capable of predicting a continuous

process even though it was calibrated with batch data. With the biotechnology

industry generally interested in moving to continuous production processes,

the value of a mechanistic model in terms of extrapolation capabilities was

shown. The development time that is needed for a mechanistic model and

is regarded as a drawback of these models might pay off when the model

aids the design of new processes – the number of costly experiments that are
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required to create an entirely new process could be reduced.

The ultimate goal here, which is to understand and predict the cultiva-

tion process accurately, requires further research. In a large-scale process,

population heterogeneities emerge as each cell has its own history, e.g.,

its age and trajectory trough the bioreactor. The utilization of single-cell

measurements, such as on-line flow cytometry, would provide additional

information about the process as, for example, the viability of individual cells

could be assessed. Several studies are currently investigating on important

research areas needed in an integrated approach for successful bioprocess

development. To name a few: i) the impact of gradients on different strains;

ii) population heterogeneities; iii) agent-based modelling; iv) CFD; and v)

virtual reality. Finally, simulations that model the different -omics levels and

track the lifeline of individual cells in combination with fluid dynamic models

that capture gradients are required. Such simulations could serve as a virtual

window into the bioreactor, displaying unmeasured parameters and support

the different phases of bioprocess development.





Abbreviations and
Nomenclature

Abbreviations

Abbreviation Definition

CFD Computational fluid dynamics

CHO Chinese hamster ovary

CM Compartment model

CPP Critical process parameter

CQA Critical quality attribute

DTU Technical University of Denmark

GMP Good manufacturing practice

HPLC High-performance liquid chromatography

LAB Lactic acid bacteria

LHS Latin Hypercube Sampling

ODE Ordinary differential equation

PAT Process analytical technology

PDE Partial differential equation

RMSSE Root mean sum of squared error
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Symbols

Symbol Definition

CH+ H+ concentration (mol L-1)

CLA lactate concentration (g L-1)

COH− OH- concentration (mol L-1)

CP total lactic acid (lactate and lactic acid) concentration (g L-1)

CS lactose (substrate) concentration (g L-1)

CX biomass concentration (g L-1)

Errori weighted model prediction error at time point i

flag lag-time function (-)

fP lactic acid inhibition function (-)

fpH pH dependency function (-)

fS substrate limitation and inhibition function (-)

H2CO∗3 dissolved CO2 and H2CO3

I ionic strength g L-1

K′C1 apparent equilibrium constant for the carbonic acid system (-)

KI substrate inhibition parameter (g L-1)

KLa lactate inhibition parameter (g L-1)

KLa1 pH dependent lactate inhibition parameter (g L-1)

K′NH apparent equilibrium constant for the ammonia system (-)

KP P-controller controller gain

KP,La 2. lactate inhibition parameter (L g-1)

KP,pH1 lactate inhibition pH parameter (-)

KP,pH2 2. lactate inhibition pH parameter (-)

K′P1 apparent equilibrium constant for the H3PO4 system (-)

K′P2 apparent equilibrium constant for the H2PO−4 system (-)

K′r,C1 apparent reverse rate constant for H2CO3 dissociation (s-1)

K′r,LA apparent reverse rate constant for lactic acid dissociation (s-1)

continued on the next page
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continued from the previous page

Symbol Definition

K′r,NH apparent reverse rate constant for NH4 dissociation (s-1)

K′r,P1 apparent reverse rate constant for H3PO4 dissociation (s-1)

K′r,P2 apparent reverse rate constant for H2PO−4 dissociation (s-1)

K′r,W apparent reverse rate constant for water dissociation (s-1)

K′Z apparent equilibrium constant for the unspecified compound

system (-)

log D2 logarithmic squared deviation of the normalized pH values

n number of measurement points

pH ′i normalized pH of the ith sensor

pHopt optimal pH parameter in the pH function (-)

pHset pH control set point (-)

qgal volumetric galactose secretion rate (C-mol L-1 h-1)

qNH volumetric ammonia consumption rate (mol L-1 h-1)

qNH,add volumetric ammonia addition rate (mol L-1 h-1)

qP volumetric lactic acid secretion rate (C-mol L-1 h-1)

qPh volumetric phosphoric acid consumption rate (mol L-1 h-1)

qS volumetric substrate consumption rate (C-mol L-1 h-1)

qX volumetric biomass growth rate (C-mol L-1 h-1)

RE relative error (-)

RMSSE root mean sum of squared error (g L-1)

T temperature in the cultivation broth (K)

t time variable (h)

u.e. undesired event

Ŷ predicted yield

Ygal galactose yield (g g-1)

YX/S biomass yield (g g-1)

zi charge number of the ith ion

ŷi model output of the ith state variable
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Greek symbols

Symbol Definition

α growth related production coefficient of lactic acid (g g-1)

θ̂i estimated value of the ith parameter

µmax maximum specific growth rate (h-1)

σ standard deviation

σpH spread parameter in the gaussian pH function (-)

σθ̂i
standard deviation of the ith estimated parameter
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Abstract  
The objective of this contribution is to give an overview about model implementations for risk-based 
decision making in industrial bioprocesses, such as the antibiotic production for the pharmaceutical 
industry. It focuses on the applications of mechanistic and computational fluid dynamics (CFD) models. 
The models are built to support the understanding of the process, improve or speed up the process 
development, and used to monitor and control the production process to achieve the desired product 
quality and quantity. Uncertainties inherently present in development of these models are considered in 
many applications, e.g. by for example using Monte Carlo simulations, to enable a risk-based decision 
making when the model results from Monte Carlo simulations are assessed. The sources of uncertainties 
may include for example process input variations, model parameter uncertainty, assumptions 
underlying the model structure, and measurement errors, among others. More and more studies combine 
mechanistic biochemical models with CFD models to investigate especially heterogeneous process 
conditions at large scale such as substrate gradients. However, on-line applications of CFD models, e.g. 
for process control, are hampered by the long computation times. Instead, CFD modelling efforts are 
directed towards supporting CFD-based compartment modelling that reduces the spatial resolution, but 
allows a much faster simulation compared to a CFD model. Compartment models integrating bio-
kinetics of the bioprocess, various sources of uncertainties in the system, and heterogeneities in the 
bioreactor can then be applied as an enabling tool for risk-based on-line monitoring and control systems 
to achieve optimized bioprocess operations. 
 
Glossary  

• Computational fluid dynamics (CFD): Modelling approach to model fluid flows in systems. 
• Critical process parameter (CPP): “A process parameter whose variability has an impact on a 

critical quality attribute and therefore should be monitored or controlled to ensure the process 
produces the desired quality.” (ICH Q8(R2), 2009) 

• Critical quality attributes (CQAs): “A physical, chemical, biological or microbiological 
property or characteristic that should be within an appropriate limit, range, or distribution to 
ensure the desired product quality.” (ICH Q8(R2), 2009) 

• Design space: “The multidimensional combination and interaction of input variables (e.g., 
material attributes) and process parameters that have been demonstrated to provide assurance 
of quality.” (ICH Q8(R2), 2009) 

• Mechanistic model: A model based on first-principles using the fundamental bioenergetics 
principles and biochemical reactions. 

• Off-line: antonym of on-line (see below). 
• On-line: real time. There is a further nuance when considering on-line measurements in 

comparison to at-, in-, and off-line measurements. (FDA, 2004)  
• Process analytical technology (PAT): Utilization of tools to design, analyse, and control 

bioprocesses through the measurement and/or prediction of critical process parameters. (FDA, 
2004) 

• Quality by design (QbD): “A systematic approach to development that begins with predefined 
objectives and emphasizes product and process understanding and process control, based on 
sound science and quality risk management.” (ICH Q8(R2), 2009) 
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Introduction 

Microbial cultivations are frequently used to produce various products e.g. for the food, chemical, and 
pharmaceutical industry. Microorganisms, such as bacteria, yeast, fungi, and mammalian cells are 
cultivated in large-scale bioreactors where the microorganisms grow and convert a substrate into the 
desired end product. The bioreactors have a volume of up to several 100 m3. It is of high importance to 
assure a high product quality in order to guarantee the right effect e.g. of a pharmaceutical drug as well 
as a cost effective production. It is challenging to control a manufacturing process in such a way that 
the desired product quality is achieved because of the large natural variability in large-scale microbial 
processes. The production process is subject to uncertainties since process inputs, e.g. the living 
microorganisms or raw materials, vary in each production cycle. Running a production with identical 
settings does therefore not automatically lead to a constant product quality. It is necessary to control the 
bioprocess dynamically and to counteract unwanted changes. However, there is a lack of real-time 
measurement techniques that allow to track the product quality attributes in a microbial cultivation 
process in real time (Pais, Carrondo, Alves, & Teixeira, 2014), hence the product quality attributes have 
to be predicted indirectly by appropriate models or soft sensors.  

The process analytical technology (PAT) guidance of the US Food and drug administration (FDA, 
2004) aims for improved monitoring and control systems to ensure product quality in bioprocesses. 
“The goal of PAT is to enhance understanding and control the manufacturing process” (FDA, 2004). A 
strategy to ensure product quality in the bioprocess is the quality by design (QbD) approach. There, a 
design space, i.e. operation space, for the production process is defined rather than using fixed parameter 
settings. The desired product quality is thereby ensured in each production cycle (Rathore & Winkle, 
2009). The product quality profile is defined by critical quality attributes (CQAs) of the product, such 
as stability, purity, density, size, concentration (ICH Q8(R2), 2009). Since CQAs are typically 
properties and characteristics that can hardly be measured in real time, they are correlated with on-line 
measureable process variables, such as temperature, pH, O2 concentration, spectroscopic measurements 
(e.g. near-infrared (NIR), Raman), etc. to define the design space. In the QbD approach, critical process 
parameters (CPPs), i.e. process parameters that have an impact on the CQAs, are determined. The effect 
of the CPPs on the CQAs is finally examined by applying statistical analyses (Mercier, Diepenbroek, 
Wijffels, & Streefland, 2014; Rathore, Mittal, Pathak, & Arora, 2014) or mechanistic modelling 
(Sommeregger et al., 2017). More specifically, a model is used to predict the unmeasurable CQAs of 
the product by using the measured CPPs as model inputs while the process is running. The CPPs are 
then controlled within the design space during the production so that the target values for the product 
CQAs will be achieved.  

Mechanistic and data-driven models are therefore becoming increasingly important for biotechnological 
processes and find many applications especially as PAT systems (Glassey et al., 2011; Koutinas, 
Kiparissides, Pistikopoulos, & Mantalaris, 2012; Rantanen & Khinast, 2015). Mechanistic models 
describe the complex biological, chemical, and physical phenomena in the bioreactor using mechanistic 
understanding of the process. Data-driven models are trained with large data sets, and sometimes 
difficult to interpret because their algorithms have no physical meaning, but they are nevertheless 
frequently applied (Djuris & Djuric, 2017). To fulfill the QbD approach, the PAT framework involves 
many activities, from development and installation of novel analytical sensors for measurement 
solutions, over the implementation of risk assessment strategies, to advanced data analysis methods. 
This includes the broad view of the system reflecting chemical, physical and microbial measurements. 
Dynamic models are developed for enabling process systems engineering strategies in the context of 
PAT such as the design, understanding, optimization, monitoring, and control of the manufacturing 
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processes. Even though the PAT guidelines were initially addressed to the pharmaceutical industry, 
many other life sciences industries, such as industrial biotechnology that includes the food and feed 
industry, are implementing this methodology, as well. 

Large-scale bioprocesses are usually hampered by suboptimal process conditions due to the 
heterogeneous conditions in large bioreactors resulting from lower mixing capabilities compared to the 
mixing in lab-scale reactors. That often causes reduced yields or product titers (Lara, Galindo, Ramírez, 
& Palomares, 2006). Modelling of large-scale microbial cultivations therefore demands both the 
simulation of the mixing behaviour (fluid dynamics) and the biochemical system. Computational fluid 
dynamics (CFD) simulations are applied to solve the fluid dynamics of the bioreactors, and they are 
then combined with biokinetic modelling to support development of process understanding and systems 
engineering for optimization and control. The disadvantage is, however, that CFD simulations require 
many computational resources, and are not applicable for on-line applications as it would be required 
for risk-based on-line monitoring and control. To this end, we see the development of process systems 
engineering towards CFD-based compartment models that employ the information from the CFD 
simulations into model-based applications, albeit at a reduced spatial resolution as an attractive 
alternative (Box 1). Compartment models allow much faster simulations.  

Box 1 Bioprocess modelling for improving bioprocess operations. 

Mechanistic models are increasingly applied in biotechnological processes for various process 
analytical technology (PAT) systems. For large-scale process modelling, both the biological phase and 
the fluid dynamics need to be considered, since conditions are not homogeneously distributed at large 
scale. Instead, gradients of e.g. the substrate concentration exist in fed-batch or continuous cultivations. 
Computational fluid dynamic (CFD) models and compartment models are applied to take the 
heterogeneities into account. Furthermore, there are uncertainties in the cultivation and modelling 
system that need to be accounted for in order to allow a risk-based decision making. Uncertainties may 
include process input variations, model parameter uncertainties, and assumptions underlying the model 
structure. This approach then allows a risk-based monitoring and control of processes, and hence 
improves both the performance and the safety of the production process. 

In risked-based bioprocess model applications for large scale, both a mechanistic bioprocess model that 
describes the biochemical processes, and a CFD model that describes the fluid dynamics of the 
bioreactor are developed initially (Fig. 1, 1st row). On the one hand, the mechanistic model can be 
applied as a single-compartment model, which is the typical approach used in the past for fermentation 
modelling studies. On the other hand, the mechanistic model can be combined with a multi-
compartment model that is derived from the CFD simulation (Fig. 1, 2nd row). Both modelling 
approaches are suitable for many applications. Production processes can for example be developed and 
tested off-line, or monitored and controlled on-line (Fig. 1, 3rd row). Performing an uncertainty analysis, 
e.g. with a Monte Carlo simulation, allows then the plant operators to make decisions based on a risk 
assessment. The aim of this methodology is to achieve an optimal bioprocess (Fig. 1, bottom row). The 
sub-steps may need repetitions, as this methodology has to be understood as an iterative procedure to 
improve the model and application quality. 
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FIGURE 1 Flow diagram for risk-based bioprocess model applications. 

 

This contribution describes model implementations for process risk assessment in industrial 
bioprocesses. It focuses on applications of process systems engineering tools for large-scale production 
processes, where complex biological, chemical, and physical phenomena are interconnected and 
simulated by – mainly mechanistic – models. First, an overview of the production process of fine 
chemicals and pharmaceutical products by microbial cultivations is given. Second, state of the art 
applications for mechanistic models of microbial, chemical and physical phenomena in industrial 
bioprocess are described. Third, probabilistic modelling approaches and risk assessment considering 
natural uncertainties and the probability of process failures in the model description are summarized. 
Then, heterogeneities, which occur at large-scale cultivations, are considered and kinetic models 
integrated into computational fluid dynamics and compartment models are demonstrated. These tools 
contribute to expanding the process systems engineering toolbox for on-line risk-based monitoring and 
control applications at large-scale production processes. Finally, future directions of the PAT 
framework are outlined. 

Bio-production of chemicals 

Many biotechnological products are manufactured by means of large-scale cultivations. The products 
range from bulk chemicals (e.g. ethanol, acetone, butanol, organic acids), over fine chemicals (e.g. 
enzymes, polymers) to pharmaceuticals (e.g. antibiotics, antibodies, steroids). Low-value products have 
usually a high market volume, while high value products are sold in low quantities (Junker, 2004; 
Nielsen, 2003). Cells produce the products in bioreactors. The process must be kept aseptic for many 
products, since contaminations could lead to the loss of the production. The cell factories comprises 
many species of bacterial, yeast, fungal, plant, animal, mammalian, and stem cells. While some 
processes use wild-type or natural mutant strains, genetically modified microorganisms are increasingly 
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applied to meet the needs of the growing demand of a sustainable production (Campbell, Xia, & Nielsen, 
2017; Meyer, Minas, & Schmidhalter, 2016).  

A bioreactor is designed for optimal gas, heat, and mass transfer ensuring a short mixing time. However, 
some cells, such as mammalian cells, are shear-sensitive, and a compromise between fast mixing and 
low shear stress must be made. The most commonly used bioreactor is the stirred tank bioreactor (STR). 
It is a vessel made out of stainless steel consisting of a stirring system (motor connected to a shaft with 
one or more impellers) to mix the cultivation broth, baffles to enhance mass transfer and avoid the 
formation of a vortex, and a cooling system to cool down the liquid since the biological metabolism 
releases heat. The working volumes of the bioreactor depend on the product category ranging from 
cheap commodities to high value products. Bulk chemicals, or animal feed supplements, such as amino 
acids and vitamins, are produced in bioreactors with working volumes of up to several hundred cubic 
meters. Pharmaceuticals are typically produced with working volumes of several tens of cubic meters. 
There are many other bioreactor configurations but it is outside the scope of this contribution to address 
all of them (for review on this topic, see Chisti & Moo-Young (2003); Mandenius (2016)). 

There are three fundamental operation modes for microbial cultivations: the batch cultivation, the fed-
batch cultivation, and the continuous cultivation (Box 2).  

 

Box 2 Bioprocess operation modes. 

Microbial fermentations are usually performed either in batch, fed-batch, or continuous mode. In the 
batch process, the medium containing all nutrients is already available in the bioreactor from the 
beginning (Fig. 2, left). The only components that might be added to the process during the operation 
are gasses (O2, CO2, N2), a base or acid for pH control, an antifoaming agent, or an inducer for gene 
expression. The process is finished when one component, e.g. the substrate, is limiting, and the 
production stops. In a fed-batch process, a concentrated solution of medium components, which is 
often the carbon substrate and a nitrogen source, are continuously added via an inlet to the process while 
it is running (Fig. 2, middle). In the continuous process, all nutrients are continuously added to the 
process and the cultivation broth is withdrawn from the bioreactor at the same time to keep the 
bioreactor volume constant (Fig. 2, right). 

 

 

FIGURE 2 Bioprocess operation modes: batch, fed-batch and continuous cultivation.  
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Mechanistic models for industrial bioprocesses 

A mechanistic model describes the behaviour of a system with mathematical equations. Mechanistic 
models are applied to develop, optimize, control, etc. different bioprocesses. They are based on prior 
knowledge of the phenomena of the system, which are in particular the elemental mass, energy, and 
momentum balances in bioprocesses (Esener, Roels, & Kossen, 1983; Roels, 1981). Mechanistic 
models are therefore also called first principles, fundamental, or white-box models. Usually ordinary 
differential equations (ODE) describe the system, if the model outputs change dynamically in time. The 
differential equations for all system components cover typically biological, chemical, and physical 
mechanisms, such as microbial growth, pH calculation, and aeration, respectively (see section 
Biological, chemical, and physical model expressions for cultivations). The main components are for 
example the substrate (carbon source), biomass, oxygen, reactor volume, and gas flows in an aerobic 
cultivation. 

The main advantage of mechanistic models is that they have a large extrapolation capability, since they 
are based on first principles, and are not limited to the conditions that were used to calibrate the model. 
Mechanistic models have therefore a large application range (see section Applications of process 
models) and can be used to test scenarios even if no data of these conditions are available (Mears, 
Stocks, Albaek, Sin, & Gernaey, 2017b). Another advantage of mechanistic models is that the model 
parameters have a physiological meaning, e.g. the specific maximum growth rate of the cells; hence, 
the user of the model can directly understand them. Furthermore, such models have a general and 
flexible structure that allows knowledge transfer of process equations and parameters both in the 
industrial and academic environment from one process model to another. However, disadvantages of 
mechanistic models are that they require a relatively long development time, and that a significant 
process insight is needed to obtain and validate the fundamental process equations.  

In the end, mechanistic models for the bio-based production industry are often a combination of 
mechanistic and empirical equations, due to the complexity of the system. The latter is used especially 
for situations, where some phenomena are not understood to the necessary level of detail. There are also 
several other types of models for bioprocesses that are out of the scope of this contribution, including 
data-driven models (which include for example artificial neural networks and chemometric methods, 
such as principal component regression), and hybrid models (a combination of mechanistic and data-
driven modelling techniques (Solle et al., 2017; von Stosch, Oliveira, Peres, & Feyo de Azevedo, 2014). 

The biotechnological industry increasingly applies mechanistic models, because the industry has 
realized the significance of mechanistic models. Mechanistic models are for example advantageous to 
predict the system behaviour after a change, while statistical models based on QbD sometimes fail 
(Process Development Forum, 2014). Today data-driven approaches are preferred in industry because 
of the cost-benefit analysis, which might be owing to the established regulatory requirements for the 
approval of new processes. However, mechanistic models can support the PAT framework to better 
understand the effect of process changes under a wider range of conditions. Mechanistic models can 
simulate different initial conditions as well as process disturbances thanks to their extrapolation 
capabilities. They use the critical process parameters (CPPs) as input to predict the critical quality 
attributes (CQAs) e.g. of the desired product. 

Once the model structure is established, the model parameters have to be determined and the reliability 
of the model must be assessed. It is important to prove the reliability of the model in order to be able to 
rely on the model-based application, and to be able to defend for example the design space towards the 
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FDA. Several methods and tools exists to assess the credibility of the model including identifiability, 
uncertainty and sensitivity analysis (Chis, Banga, & Balsa-Canto, 2011; Sin & Gernaey, 2016).  

Biological, chemical, and physical model expressions for cultivations 
The differential model equations typically cover biological, chemical and physical processes. Biological 
processes are often modelled with a macroscopic view, describing the microbial cell as a whole 
(unstructured model), especially when the model is applied for the large-scale process design and 
optimization (Gernaey, Lantz, Tufvesson, Woodley, & Sin, 2010; Kroll, Hofer, Stelzer, & Herwig, 
2017). In structured models, at least one intracellular metabolic component, such as metabolites, ATP, 
and NADH, are described. This is of particular interest for metabolic engineering and microbial cell 
development in system biology (Almquist, Cvijovic, Hatzimanikatis, Nielsen, & Jirstrand, 2014; 
Campbell et al., 2017), which is outside the scope of this contribution. In the unstructured biological 
model, biomass growth, product formation, maintenance, and decay processes (of biomass, products, 
and precursors) are described. The growth of biomass is written with the stoichiometric equation (Eq. 
(1)), where biomass (CHaObNcPd), a product (P), and carbon dioxide (CO2) are typically obtained from 
the conversion of the substrate (e.g. Glucose CH2O), oxygen (O2), and a nitrogen (e.g. NH3) and 
phosphate source (e.g. H3PO4) (Villadsen, Nielsen, & Lidén, 2011). Biomass is composed of many 
elements: C, H, O, N, P, S, and trace elements such as Ca and Mg, which can be analyzed by an 
elemental analysis. Only the dominant elements are usually considered for modelling purposes, and a 
pseudo steady-state of this composition is assumed, even though the elemental composition of the cell 
might slightly change during the process. The yield coefficients define the quantity of something 
produced/consumed per quantity of consumed substrate, e.g. the biomass yield coefficient YSX that 
describes how much biomass is produced per consumed substrate. The kinetic rates of the biological 
processes have been described in the literature using empirical relations, such as the Monod model 
(Monod, 1949) combined with functions accounting for inhibition and limiting effects of substrates, 
metabolites, products, and process conditions like the pH (Eq. (2)). 

 1𝐶𝐶𝐻𝐻2𝑂𝑂 + 𝑌𝑌𝑆𝑆𝑆𝑆𝑂𝑂2 + 𝑌𝑌𝑆𝑆𝑆𝑆𝑁𝑁𝐻𝐻3 + 𝑌𝑌𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝐻𝐻3𝑃𝑃𝑂𝑂4 → 𝑌𝑌𝑆𝑆𝑆𝑆𝐶𝐶𝐻𝐻𝑎𝑎𝑂𝑂𝑏𝑏𝑁𝑁𝑐𝑐𝑃𝑃𝑑𝑑 + 𝑌𝑌𝑆𝑆𝑆𝑆𝑃𝑃 + 𝑌𝑌𝑆𝑆𝑆𝑆𝐶𝐶𝑂𝑂2 + (⋯ ) + 𝑌𝑌𝑆𝑆𝑆𝑆𝐻𝐻2𝑂𝑂 (1) 
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where dCX/dt is the change of the biomass concentration (CX) over time (t), CS is the substrate 
concentration, KS the saturation parameter of the substrate, CP the product concentration, KP the product 
inhibition parameter, pHopt the optimal pH for growth, σ the spread parameter of the Gaussian pH 
function. The latter approximates a bell like curve relating the pH effect on the maximum growth of 
cells. 

Chemical processes are considered in bioprocess modelling in order to extent the application of models 
to systems e.g. with varying pH. These models are applied to study for example the effect of the pH or 
precipitation on the process. Several chemical processes are modelled including dissociation reactions 
of weak and strong acids and bases, ion pairing, and precipitation (Musvoto, Wentzel, Loewenthal, & 
Ekama, 2000). Ion pairing and precipitation involve solid-liquid interactions, while a mixed acid/base 
system describes liquid-liquid interactions. In these processes, the analytical concentrations need to be 
adjusted by the activity coefficients (γi), due to the changing interactions of ions in solution with each 
other and with the H2O molecules at different ion concentrations. Different empirical equations are 
applied for such activity corrections, depending on the ionic strength (function of the concentration of 
all charged components) of the mixture (Loewenthal, Ekama, & Marais, 1989; Musvoto et al., 2000). 
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As an example, Eq. (3) shows the dissociation reaction rate of an undissociated acid (HA) to its 
dissociated form (A-) and the hydrogen ion (H+): 

 𝑟𝑟𝑝𝑝𝐻𝐻⇌𝐻𝐻−+𝑝𝑝+ = 𝐾𝐾𝑟𝑟,𝐻𝐻
′ ∙ 10−𝑝𝑝𝑝𝑝𝐴𝐴 𝛾𝛾𝐴𝐴

2⁄ ∙ 𝐶𝐶𝑝𝑝𝐻𝐻 − 𝐾𝐾𝑟𝑟,𝐻𝐻
′ ∙ 𝐶𝐶𝐻𝐻− ∙ 𝐶𝐶𝑝𝑝+ (3) 

where K’r,A is the apparent reverse rate constant for the acid dissociation, the pKA is the acid dissociation 
constant for the specific acid considered, and Ci represents the concentration of the components. 

Physical processes deal with mass and heat transfer processes. Gas-liquid exchange processes are of 
special interest in cultivations. These include among others the mass transfer of the oxygen from the 
gas bubbles to the liquid broth (aeration) and the gas stripping of CO2 from the liquid to the gas phase. 
Oxygen transfer is key for the success of most of the large-scale bioprocesses, since most of them are 
aerobic – with the exception of e.g. bioethanol and lactic acid production. Gas-liquid mass transfer 
models are usually based on the two-film theory (Whitman, 1923), and can be described as the product 
of the volumetric mass transfer coefficient, kLa, and the driving force (concentration difference of the 
component in the liquid phase (CO2), and the gas-liquid interface(C*

O2)) (Eq. (4)). There are numerous 
empirical correlations for kLa (Markopoulos, Christofi, & Katsinaris, 2007), and several experimental 
methods have been developed to measure the gas-liquid mass transfer (Villadsen et al., 2011). 

 𝑟𝑟𝑆𝑆2(𝑔𝑔)⇌𝑆𝑆2(𝑙𝑙) = 𝑘𝑘𝐿𝐿𝑎𝑎𝑆𝑆2�𝐶𝐶𝑆𝑆2
∗ − 𝐶𝐶𝑆𝑆2� (4) 

Complex, non-linear models incorporate various biological, chemical, and physical processes. Detailed 
models include countless processes in order to better understand for example the anaerobic digestion 
process (Flores-Alsina et al., 2016), the pharmaceutical production of penicillin by Penicillium 
chrysogenum (Goldrick, Stefan, Lovett, Montague, & Lennox, 2015), different aeration and agitation 
conditions for the enzyme production with Aspergillus oryzae (Albaek, Gernaey, Hansen, & Stocks, 
2011), the antibiotic production with Streptomyces coelicolor (Sin, Ödman, Petersen, Lantz, & Gernaey, 
2008), and Pichia pastoris and Saccharomyces cerevisiae fed-batch cultivations (Lencastre Fernandes 
et al., 2013; Wechselberger, Seifert, & Herwig, 2010). Many mechanistic models rely on a similar 
model structure, based on first-principles chemical and physical process descriptions that have been 
added to the description of the biological mechanisms. This is due to the flexible structure of 
mechanistic models that allows them to be adapted easily to other bioprocesses. 

Applications of process models 
Mechanistic models can be applied to a range of tasks from the stage of process development to the 
implementation at the industrial-scale production (Mears et al., 2017b): They are applied for example 
to process development, optimization, monitoring, and control. The applications contribute to an 
economic and sustainable production and comply also with the PAT guidelines (Gernaey, Cervera-
Padrell, & Woodley, 2012). 

Mechanistic models are applied in the process development phase to design a new process. Design 
means typically that a new process is designed for an existing plant since it is rather rare that a new 
production plant is constructed for a new process. This process involves the definition of optimal 
process operating conditions, such as stirrer speed, substrate addition rate (for fed-batch cultivations), 
and aeration rate under the given constraints of the available equipment, as demonstrated for an enzyme 
production with Aspergillus oryzae (Albaek et al., 2011). Initial biotechnological strain and process 
development is done at lab scale, which is further refined and validated at pilot-scale conditions. The 
final process is then scaled-up to the production scale because experiments at large scale are rather 
expensive. Mechanistic models are especially attractive at this stage, since often only very little data is 
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available, and they are capable of testing new conditions or new equipment for which there is little or 
no data available. The models can help to assess and understand the effects of the large-scale process 
conditions, since process scale-up is very challenging (Neubauer et al., 2013; Stocks, 2013; G. Wang 
et al., 2014). Traditionally, bioprocess scale-up is based on physical parameters, such as volumetric 
power input, the volumetric oxygen mass transfer coefficient kLa, or stirrer tip speed. However, 
biological properties and the effect of the heterogeneous cultivation environment (see section 
Heterogeneities at large-scale cultivations) are often not taken into account. Another challenge are 
varying process conditions, such as humidity, aeration rate, impeller speed or type, when different 
bioreactors are used at different production sites all over the world, but the same product quality is of 
course demanded. 

Optimizing an established process is key for the long-lasting success of a manufacturer in order to 
withstand the economic pressures in a competitive market. Mechanistic models have been successfully 
applied to optimize cultivations for many processes. As an example, (Jiménez-Hornero, Santos-Dueñas, 
& García-García, 2009) proposed a model-based optimization for the acetic acid cultivation. Models 
are also applied to optimize not the main cultivation itself, but the pre-cultures instead. Frahm (2014) 
optimized the seed train for biopharmaceutical production. The seed is required to inoculate the 
production bioreactor with the right amount of cells in order to allow a stable production. (Toumi et al., 
2010) used multi-unit process simulation in order to optimize a large-scale monoclonal antibody 
production. 

Real-time determination of CQAs is of utmost interest in the biotechnological industry. However, only 
a few probes are available that measure the required attributes in the bioreactor (in-line). Biomass can 
for example be measured indirectly in-line by capacitance or turbidity measurements. However, 
changing conditions of the complex biological process matrix influence these measurement techniques, 
and make a reliable prediction challenging. For the same reason, probes measuring metabolite 
concentrations (e.g. product concentrations) are challenging, as well. Further reasons for the current 
lack of in-line probes are that they must be robust, give stable signals, and withstand harsh conditions 
during sterilization and cleaning procedures. In addition, they must fulfill the regulatory requirements 
under the good manufacturing practice (GMP). 

Software sensors are an established alternative to hardware probes for the monitoring of bioprocesses 
and countless implementations in the bioprocess industry can be found (Biechele, Busse, Solle, Scheper, 
& Reardon, 2015; Luttmann et al., 2012; C. F. Mandenius & Gustavsson, 2015; Pais et al., 2014; Posch, 
Herwig, & Spadiut, 2013; Sagmeister et al., 2013; Spann et al., 2018; L. Zhao, Fu, Zhou, & Hu, 2015). 
Software sensors are often also called soft sensors or state estimators. Soft sensors utilize the available 
on-line measurements, such as the exhaust gas analysis results (e.g. O2, CO2, and other volatile 
compounds), pH, temperature, pressures, flow rates, stirrer speed. These measurements are then used 
as input for the model that predicts the unknown process states including the CQA. In addition to the 
above-mentioned measurements, spectroscopic methods are sometimes applied in combination with 
data driven models (Kadlec, Gabrys, & Strandt, 2009). Spectroscopic methods include UV-Vis 
(ultraviolet–visible) (Ödman, Johansen, Olsson, Gernaey, & Lantz, 2009; Zavatti, Budman, Legge, & 
Tamer, 2016), near-infrared (Alves-Rausch, Bienert, Grimm, & Bergmaier, 2014), mid-infrared 
fluorescence spectroscopy (Fayolle, Picque, & Corrieu, 1997), and Raman spectroscopy (Golabgir & 
Herwig, 2016), among others. Automated microscopy for acquiring cell-specific information, such as 
cell morphology, are intensively studied for monitoring (Marquard, Schneider-Barthold, Düsterloh, 
Scheper, & Lindner, 2017) and control strategies (Bluma et al., 2010), e.g. for the bioethanol production 
process (Belini, Wiedemann, & Suhr, 2013).  
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Models are also applied for control strategies in the bioprocess industry. Bioprocesses are often fed-
batch processes, where a feed solution is added continuously to the cultivation broth. Models are applied 
for example to define the feed flow rate, in order to control the substrate concentration in the broth. 
Since there are no sufficient hardware probes to measure the substrate concentration in real-time, 
models are used to predict the substrate concentration and to allow better control strategies (Craven, 
Whelan, & Glennon, 2014; Johnsson, 2015; Mears, Stocks, Albaek, Sin, & Gernaey, 2017a).  

Uncertainties in model predictions 

Owing to the complexity bioprocesses and mechanistic models, it is necessary to consider uncertainties 
when a model is applied. There are three sources of uncertainties: i) stochastic uncertainty; ii) input 
uncertainty; and iii) structural uncertainty (Michael D. McKay, Morrison, & Upton, 1999): 

i) The stochastic uncertainty covers the stochastic variabilities that are observed in real processes, 
for example random failure of equipment that leads to a disturbance in the process. The unforeseeable 
shutdown of the air sparging for example would result in a shortage of oxygen. 
ii) The input uncertainties refer to the lack of perfect knowledge about the model parameters and 
model inputs. The model parameters rely on available measured data, which are naturally subject to 
random measurement errors. A parameter value is characterized by a probability distribution around its 
nominal value, instead of considering a single value. In addition to the uncertain model parameters, 
model inputs such as initial process conditions, and on-line measurements are uncertain. The initial 
substrate concentration, for example, varies from batch to batch owing to variations in the medium 
preparation process, hence a fixed value cannot be expected. 
iii) The structural uncertainties are related to the mathematical description of the model. We have 
typically insufficient knowledge of the bioprocess that would allow a model description including all 
relevant details of the process. Our applied models are therefore an approximation of the process and 
based on assumptions. 

In order to analyse the effect of the uncertainties, an uncertainty analysis is performed. This is an 
important element of good modelling practice to ensure a reliable mechanistic model and a robust PAT 
application (Sin, Gernaey, & Lantz, 2009). In the uncertainty analysis, the uncertainties are propagated 
to the model outputs and their effect is evaluated. There are some methods for the uncertainty analysis 
available including the Monte Carlo procedure, differential analysis, response surface methodology, the 
Fourier amplitude sensitivity test, and the Sobol’ variance decomposition (Helton & Davis, 2003; 
Saltelli et al., 2008). In this contribution, we focus on the Monte Carlo procedure, as this method is 
widely used and reliable (Helton & Davis, 2003).  

Probabilistic model predictions 
The uncertainty analysis provides probabilistic information about the performance of the bioprocess. It 
shows for example what the probability is that the required product quantity or quality will be achieved 
by considering the above mentioned input uncertainties. Frequently, the Monte Carlo procedure is used 
to propagate the input uncertainties to the output predictions (Sin, Gernaey, & Lantz, 2009). The Monte 
Carlo procedure involves three steps: 1) defining the input uncertainties; 2) sampling within the input 
uncertainty; and 3) Monte Carlo simulation to obtain the model output uncertainty. 

In step 1, the model input uncertainties are defined, which is typically performed based on expert 
opinions. This involves both asking process experts from industry and academia, and consulting 
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relevant literature. The aim is to obtain the uncertainty for model parameters, initial process conditions, 
and measurements, e.g. what is the lower and upper bound of these variables. A probability distribution 
is then assigned to the variables. Often, a uniform distribution, also known as uninformed prior, is 
assumed when there is lack of observations or data to support the derivation of a specific distribution 
function such as normal distribution. The latter is usually assumed to describe the distribution function 
for measurement errors. For the model parameters, the maximum likelihood estimation theory can be 
used to derive a multivariate normal distribution and the covariance matrix. Such information should 
then be used for appropriate definition of input model parameter uncertainties (Sin, Meyer, & Gernaey, 
2010).  

In step 2, random combinations of the model inputs are sampled considering the above defined 
uncertainties (Fig. 3, Input samples). As an example, the parameters A and B representing model input 
parameters are considered to be uncertain, and N=1000 input samples are sampled. There exist several 
sampling methods including random sampling (Meng, 2013), low-discrepancy sequence such as Halton 
(Halton, 1964) and Sobol (Sobol’, 1967) sequences, and stratified sampling such as Latin Hypercube 
sampling (LHS) (M. D. McKay, Beckman, & Conover, 1979). The sampling method is used to sample 
N independent inputs from the probability domain [0 1], where N is the number of input samples. Most 
of the time, parameters and inputs are correlated (see the covariance matrix estimation from the 
maximum likelihood theory). To preserve the correlation, dependent samples need to be generated, e.g. 
by applying the multivariate probability distribution copula (Nelsen, 2006) or the Iman-Conover 
method (Iman & Conover, 1982). The Iman-Conover method employs a rank-based correlation control 
method to induce the desired correlation between the parameter samples from an independent input 
space. For those parameters, initial conditions, and measurements that lack correlation information, an 
identity correlation matrix is used (meaning no correlation is assumed). Finally, the input samples are 
inverted from the probability domain [0 1] to real values with an inverse cumulative distribution 
function corresponding to the distribution function for each input. 

In step 3, the input uncertainties are propagated using the Monte Carlo procedure to estimate the output 
uncertainty (Fig. 3, Monte Carlo simulation). The model is thereby simulated N times with each of the 
above defined input sample sets.  

The results are N predictions of the model outputs (Fig. 3, Model outputs). For each model output, the 
span of the model output prediction indicates the extent of its uncertainty during the cultivation. 
Inferential statistical analysis such as mean, and 90th and 10th percentiles is applied to assess the results. 
It is important to realize that the results of the uncertainties can only be interpreted in the analysis 
boundaries/frame (Sin, Gernaey, Neumann, van Loosdrecht, & Gujer, 2009). This is due to the 
definitions and assumptions that are made in the study, e.g. the selected model, the identification and 
characterization of uncertainties, and the selected methodology.  

Many studies have investigated the effect of uncertainties on the model outputs for different 
biotechnological processes, including a hydrothermal pre-treatment process of lignocellulosic biomass 
(Prunescu, Blanke, Jakobsen, & Sin, 2015), a milk drying process (Ferrari, Gutiérrez, & Sin, 2016), and 
the antibiotic production with Streptomyces coelicolor (Sin et al., 2008). 
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FIGURE 3 Risk quantification using the Monte Carlo procedure with four steps. 1. Input uncertainty 
space and sampling; 2. Monte Carlo simulation; 3. Model outputs; 4. Risk quantification. 

 

Risk-based decision making 
Bioprocesses at production scale undergo a risk assessment to ensure the quality of the manufacturing. 
The risk assessment aims to increase the safety of the process, and the quality of the product. Most 
commonly, risk management tools recommended by (ICH Q9, 2005) are used, such as the Failure Mode 
and Effects Analysis (FMEA). In this worksheet-based method, the risks related to e.g. material 
properties and process conditions are quantified, first. This characterization is fundamental to 
understand the impact of critical process parameters (CPPs) on the critical quality attributes (CQAs), 
most likely the critical quality attributes of the product (see Introduction). Then, the most important 
critical process parameters are prioritized and further experiments could be carried out, if needed. 
Finally, the design space for the production is defined, i.e. the acceptable variability e.g. in material 
properties and process conditions is defined. The process operation within the design space minimizes 
then the risks of obtaining faulty batches. Undesired events are minimized through controlling the 
critical process parameters within the design space. Furthermore, preventative repair and maintenance 
actions are performed, such as the inspection and calibration of equipment. Published examples of this 
Quality by Design (QbD) approach include the mixing unit operation (Adam, Suzzi, Radeke, & Khinast, 
2011) and the spray drying process (Baldinger, Clerdent, Rantanen, Yang, & Grohganz, 2012). 

Mechanistic simulations are however rarely used for the risk assessment in the biotechnological 
industry (Rantanen & Khinast, 2015), even though PAT applications that consider various uncertainties 
provide probabilistic model predictions. They can therefore support risk-based decisions in real time 
(Stocker, Toschkoff, Sacher, & Khinast, 2014). A probabilistic bioprocess model that is applied in a 
soft sensor for monitoring and control of a production process predicts the probability distribution of 
the CQAs, and enables therefore the operators to react on a risk-based basis. For example, the 
cumulative distribution function that indicates the probability of not achieving the target (e.g. target 
yield) can be derived from the Monte Carlo simulation outputs (Fig. 3, Step 4: Risk quantification). The 
risk is then quantified as the product of the probability of the undesired event times the consequence of 
the undesired event (Cameron & Raman, 2005). The risk could be e.g. a loss of 0.5 kg product per 
cultivation or in economic perspectives e.g. $ 0.2 million. This then contributes to risk-based monitoring 
and controlling, and thereby improving both the performance and the safety of the production process 
(Li, Arellano-Garcia, & Wozny, 2008). The probability of reaching the target yield (and other QCAs) 
is continuously updated considering the uncertainties in the process variables. The process conditions 
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can then be controlled accordingly. In addition, the risk of failure of the cultivation process can be 
recognized early as it is updated in real-time based on the on-line measurements (H. Wang, Khan, 
Ahmed, & Imtiaz, 2016).  

Both the Bayesian approach (Mockus, Laínez, Reklaitis, & Kirsch, 2011; Peterson & Lief, 2010) and 
the Monte Carlo approach (García-Muñoz, Luciani, Vaidyaraman, & Seibert, 2015) have been 
investigated and recommended for probabilistic PAT applications (Sin, Gernaey, & Lantz, 2009; 
Tabora & Domagalski, 2017). Depending on the purpose of the application, stochastic uncertainties 
might be incorporated in the model application. The probability of a specific event occurring, e.g. pump 
failure, could then be integrated (Barua, Gao, Pasman, & Mannan, 2016), hence engineers could assess 
the control algorithm robustness, and evaluate for example the response of the controller in case of a 
pump failure (Sin, Gernaey, & Lantz, 2009). Konakovsky et al. (2017) optimized the glucose feeding 
strategy for Chinese Hamster Ovary (CHO) cells in fed-batch culture, and considered various 
uncertainties in a Monte Carlo simulation assuming a worst-case scenario in silico. However, there is a 
considerable lack of published risk-based control implementations at large scale cultivations, especially 
using mechanistic models, despite their potential. One major challenge might be the time that is needed 
to develop and implement the model based control system. A second challenge might be regulatory 
validation requirements (Djuris & Djuric, 2017). 

Heterogeneities at large-scale cultivations  

Mechanistic models are applied to various PAT systems but homogeneous culture conditions are 
assumed usually, even though heterogeneities occur at large scale. In industrial large-scale 
bioprocesses, culture parameters like the substrate concentration, oxygen concentration, pH, and 
temperature are not homogeneously distributed, and gradients of them exist instead within the 
bioreactor (Lara et al., 2006). This is due to a lower mixing capability of large-scale bioreactors, which 
are in the scale of 10 – >300 m3, compared to small laboratory-scale bioreactors (in the liter range). 
Cells circulating within large-scale bioreactors are consequently exposed to continuously changing 
conditions, and they need to adapt to these conditions constantly, which affects their metabolic activity. 
As a result, biomass and product yields are often lower at large scale than at lab scale (Bylund, Collet, 
Enfors, & Larsson, 1998; Zou, Xia, Chu, Zhuang, & Zhang, 2012). It is also possible that strains that 
showed a good productivity at lab scale do not grow at all at large scale. The challenge is therefore, to 
predict the behaviour of the microorganisms – mainly their productivity – at large-scale, without the 
need of expensive experiments at large scale to support optimal bioprocess development and control. 

Gradients at large scale 
Gradients occur at large scale because some components, like substrate, oxygen, and base or acid are 
added at one (or sometime several) positions locally to the cultivation, and it takes then several seconds 
up to minutes to distribute them homogeneously in the bioreactor (F. Delvigne, Destain, & Thonart, 
2006). This leads to a heterogeneous distribution of culture parameters such as substrate, oxygen, 
carbon dioxide concentration, pH, and temperature (Fig. 4). Moreover, there exist pressure gradients in 
bioreactors due to the height of the bioreactor (Neubauer & Junne, 2016), and cells are exposed to 
changing flow conditions (Nienow, 2006, 2014). The effect of gradients in large-scale cultivations is 
often a reduced biomass yield and productivity compared to homogeneous lab-scale cultivations. Cells 
that travel through a large-scale bioreactor have to deal with changing conditions uninterruptedly, which 
means stress for the microorganisms. All microorganisms respond in a different way to the various 
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oscillating conditions. It is therefore necessary to study the strain specific response in so-called scale-
down experiments, where the large-scale conditions are mimicked in lab-scale experiments so that the 
microbial response can be investigated (Neubauer & Junne, 2010; G. Wang et al., 2015). The effects of 
substrate, oxygen, and pH gradients have been studied in detail for many organisms and some examples 
will be highlighted in the following paragraphs. The objective of these studies is to investigate i) how 
the microorganisms respond to shifts in different conditions (or combinations of them); ii) how fast the 
organisms react to the changes on the transcriptomic, proteomic, and metabolomics level; and iii) what 
the long-term effects of oscillating conditions are.  

Box 3 Mixing issues in large-scale bioreactors. 

In large-scale bioreactors, there are usually heterogeneous conditions, e.g. substrate concentration 
gradients, because of lower mixing capabilities compared to the mixing in lab-scale reactors. For 
example, a substrate that is added locally to the bioreactor in a fed-batch cultivation is not distributed 
homogeneously in the bioreactor instantaneously (Fig. 4). Instead, a gradient is formed, i.e. there is a 
high substrate concentration close to the dosage point and a low concentration further away. This leads 
often to reduced product yields or titers as the cells that circulate through the bioreactor face constantly 
changing conditions. They need therefore to adapt to these changes, which requires energy that could 
otherwise be used to produce the product. 

 

 

FIGURE 4 Gradients in large-scale cultivations. The formation of gradients for a fed-batch bioreactor 
configuration with the substrate feed addition at the top of the bioreactor, and the oxygen sparging and 
base addition at the bottom of the bioreactor. Dark color: high concentration/value; bright color: low 
concentration/value.  

 

Substrate gradients play a major role in fed-batch cultivations, where the substrate is usually fed at the 
top of the bioreactor (Fig. 4, substrate). High substrate concentrations of up to 2 g L-1 have been reported 
near the feed addition point (Bylund et al., 1998). In the feeding zone, the cells take up a lot of substrate 
according to their maximum substrate uptake capacity. This leads to a fast depletion of oxygen there 
when high cell densities are reached, since the high substrate turnover demands a high respiratory 
capacity. A further consequence is the formation of glycolytic overflow metabolites, such as acetate, 
lactate, formate, and succinate in E.coli cultivations (Sunya, Bideaux, Molina-Jouve, & Gorret, 2013; 
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Xu, Jahic, Blomsten, & Enfors, 1999), or ethanol in S. cerevisiae cultivations (George, Larsson, & 
Enfors, 1993), as the entire carbon cannot be metabolized by the respiratory metabolism. However, 
these metabolites are then typically taken up again and re-metabolized in aerobic substrate-limited or -
depleted zones, further away from the feed addition. Nevertheless, this generation and uptake of side 
products is a futile cycle, and can lead to a decreased biomass or product yield in the end, as these 
detours are less energetically efficient. Recent analyses investigated also the response on the 
transcriptomic and proteomic level of E. coli and C. glutamicum (Lemoine et al., 2016; Löffler et al., 
2017; Simen et al., 2017; Sunya et al., 2013), which allow the detailed understanding of the 
microorganisms. This might allow to genetically engineer microorganisms that are less prone to stress, 
as shown in by Michalowski et al. (2017). 

Oxygen gradients are particularly crucial when the cultivation reaches high cell densities and the 
available oxygen is consumed rapidly (Fig. 4, dissolved oxygen). Oxygen is added to the culture 
medium at the bottom of the bioreactor as gas (air or pure oxygen). Due to the low solubility of oxygen 
in water, the available oxygen is limited especially further away from the gas inlet, and in the feeding 
zone, where the substrate and oxygen uptake rates are high. Oscillating oxygen conditions have shown 
reduced recombinant protein production in E.coli (Sandoval-Basurto, Gosset, Bolívar, & Ramírez, 
2005) and expression of non-proteinogenic branched-chain amino acid (Soini et al., 2008), which could 
lead to a misincorporation (an erroneous incorporation) into recombinant proteins. The lipase producing 
strain Yarrowia lipolityca, for example, shows a reduction of the lipase gene expression (Kar, Delvigne, 
Masson, Destain, & Thonart, 2008). Other strains, such as Corynebacterium glutamicum, seem to be 
robust with respect to substrate and oxygen gradients (Käß, Junne, Neubauer, Wiechert, & Oldiges, 
2014; Limberg et al., 2017). 

pH gradients occur in bioreactors because the pH of the cultivation broth is controlled by adding base 
or acid as needed by a pH control setup (Fig. 4, pH). In aerated cultivations, the acid/base is often added 
together with the incoming aeration gas that ensures a very fast distribution of the acid/base. In non-
aerated cultivations, the acid/base is usually added to the bioreactor as liquid, either at the top or at 
another position, e.g. close to the impeller blades. The acid/base addition leads to a zone of unfavorable 
pH conditions in the close vicinity of the dosage point. Cells that pass this zone are prone to cell damage. 
pH shifts of almost 1 pH unit have been measured close to the alkali addition point in an 8 m3 reactor 
for mammalian cell cultures (Langheinrich & Nienow, 1999), but even higher shifts might be expected. 
It was shown for E.coli, B. subtilis, and mammalian cells that oscillating pH conditions can have an 
effect on biomass growth, the metabolome, the transcriptome, and the cell viability (Amanullah, 
McFarlane, Emery, & Nienow, 2001; Brunner et al., 2017; Cortés, Flores, Bolívar, Lara, & Ramírez, 
2016; Osman, Birch, & Varley, 2002). The extracellular pH has a direct impact on the cell physiology 
because it affects the intracellular pH, which is crucial for the enzymatic activity and controlled by 
proton pumps (Hansen et al., 2016). 

CO2 gradients have probably a major effect on the productivity of large-scale cultivations, too, but have 
been rarely investigated so far (Fig. 4, dissolved carbon dioxide) (Baez, Flores, Bolívar, & Ramírez, 
2011; Blombach, Buchholz, Busche, Kalinowski, & Takors, 2013; Buchholz et al., 2014). 

The effects of heterogeneities on the microbial activity and productivity are a combination of the fluid 
dynamics in the bioreactor and the microbial metabolism. Computational tools that describe the fluid 
dynamics are therefore coupled with bio-kinetic modelling in order to support the investigation of the 
effect of gradients at large scale. 
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Computational fluid dynamics in biotechnological cultivations 
CFD simulations can predict among other things the motion of the fluid in bioreactors and are therefore 
applied e.g. for the prediction of the fluid dynamics and the mixing time when different impeller designs 
are tested for a bioreactor (Yang et al., 2012; Zou et al., 2012). Furthermore, CFD simulations can be 
combined with biokinetic models in order to investigate the effects attributed to gradients. 

The fluid dynamics are numerically solved for the liquid volume in the CFD simulation. The 
fundamental mathematical equations are based on the conservation of mass, momentum, and energy. 
The most commonly used mathematical formulation is that of the Navier-Stokes equations. Further 
equations describing other phenomena, such as turbulence or eddy formation, are applied and solved 
depending on the aim of the simulation as well. The liquid volume is divided into many (up to a few 
million) small elements for the simulation, and the fluid dynamic equations are solved for each element.  

CFD is applied for biotechnological cultivations because many key issues in cultivations are depending 
on the flow: mass transfer (e.g. mixing of feed streams; gas-liquid transfer), shear rates, and transport 
of the microorganisms through the bioreactor (Frank Delvigne, Takors, Mudde, van Gulik, & Noorman, 
2017; Schmalzriedt, Jenne, Mauch, & Reuss, 2003). To this end, the biological kinetic equations are 
solved together with the fluid flow within the CFD simulations. The simulation then describes 
concentration gradients (e.g. substrate, dissolved oxygen), gradients of physical parameters (e.g. pH, 
mass transfer coefficients, gas hold-up), and the temporal and spatial performance of the 
microorganisms (e.g. substrate uptake, product formation, by-product formation, and growth etc.). The 
purpose of these studies is usually to predict the oscillating culture conditions at large scale, and to 
design controlled scale-down experiments at lab-scale that mimic large-scale conditions as closely as 
possible. Future interest are the prediction of the culture performance at large scale using CFD 
simulations. 

As a first step, the fluid dynamics of the bioreactor, i.e. the velocity profile of the bioreactor, is 
simulated. Second, the mixing time is often simulated. The mixing time is the time that a tracer that was 
pulsed into the bioreactor needs to reach a homogeneous distribution (i.e. to achieve complete mixing) 
in the bioreactor. The predicted mixing time is used to validate the CFD simulation, since the simulated 
and experimental mixing time can be compared. Once the CFD simulation is validated, it can be applied 
to simulate microbial cultivations. The CFD simulation is then coupled with further gas-liquid transfer 
processes and biokinetic models to study bioprocess yields and performance in bioreactors.  

There are two main approaches to model the microorganisms in the CFD simulation, which are applied 
depending on the purpose of the simulation: the Euler-Euler and the Euler-Lagrange approach. In the 
Euler-Euler approach, the microorganisms are treated as a continuum, i.e. all cells are treated in the 
same way as concentrations of a dissolved component (Bannari, Bannari, Vermette, & Proulx, 2012; 
Elqotbi, Vlaev, Montastruc, & Nikov, 2013). In the Euler-Lagrange approach, the fluid is treated as 
continuum, but the microorganisms are seen from the microbial point of view, i.e. individual cells 
travelling through the bioreactor are tracked (Haringa et al., 2016a; Lapin, Müller, & Reuss, 2004; 
Lapin, Schmid, & Reuss, 2006; Morchain, Gabelle, & Cockx, 2013). The advantage of the Euler-Euler 
approach is that it is computationally less demanding than the Euler-Lagrange approach. Nevertheless, 
this leads to a loss of the individual history of the cells (Lapin et al., 2004). This could be of interest 
when one wants to investigate, e.g. the effect of subsequent, unfavorable conditions or the culture 
conditions experienced by the microorganisms at large scale over time, so called lifelines of the cells 
(Haringa et al., 2016b; Kuschel, Siebler, & Takors, 2017). Scale-down experiments that resemble the 
large-scale conditions could be designed based on the CFD simulation. Haringa et al. (2017) recently 
proposed a 3-compartment lab-scale setup to mimic the conditions of a 22 m3 S. cerevisiae cultivation, 
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which needs to be validated as a next step. CFD-based scale-down experiments will improve the quality 
of scale-down studies. CFD models are furthermore applied for example to enhance the treatment 
efficiency of wastewater plants (Karpinska & Bridgeman, 2016; Samstag et al., 2016). 

Even though the CFD simulation of the fluid dynamics together with the biokinetic models is a powerful 
tool that provides accurate predictions, its application is limited to off-line studies. This is because the 
CFD simulation with its many mesh elements is computationally too demanding, especially when large-
scale bioreactors need to be modelled. For on-line applications, such as monitoring and control, CFD 
simulations cannot be executed fast enough (e.g. every couple of minutes), and therefore compartment 
models are preferred.  

Compartment models 
Compartment models (CMs, also known as block models or network of zones) divide the liquid domain 
into a limited number of coarse elements, which is much lower than the number of elements used in the 
CFD simulation, and demands therefore less computational time compared to the CFD model. The 
properties (e.g. temperature, pH, concentrations) are assumed homogeneous in each compartment, and 
the Navier-Stokes equation is not included. Additional models, such as chemical, physical, biokinetic, 
or population balance models are solved only at an affordable simulation time. The compartments are 
interconnected with defined flow rates and the interface area between each adjacent compartment.  

A consistent framework to build CMs is based on an initial CFD simulation that provides a validated 
steady state solution of the fluid dynamics (Le Moullec, Gentric, Potier, & Leclerc, 2010) (Fig. 5). The 
goal is to define the compartments based on the CFD results, preferable automatically according to a 
specific algorithm (Bezzo & Macchietto, 2004; Delafosse et al., 2010; Rigopoulos & Jones, 2003). 
Using the simulated velocity profile, compartments could be automatically defined, e.g. by identifying 
dead regions or recirculation regions (Bezzo & Macchietto, 2004). However, this is not a general 
solution, since adaptations for different kind of bioreactors (e.g. plug-flow reactors) or impeller 
configurations are needed. Moreover, the derived compartments do not necessarily represent for 
example a feeding or acid addition zone, which might be crucial for several applications. Bezzo & 
Macchietto (2004) have therefore proposed a hybrid algorithm that takes also other properties, e.g. 
concentrations, into account for the identification of compartments. This methodology has the 
disadvantage that also a CFD simulation including the bio-kinetics has to be performed once, in order 
to design the compartments. Nevertheless, the developed CFD-based CM can be validated in this way 
to replace the CFD simulation for accurate on-line applications. Manual definitions of compartments 
are also applied (Bashiri, Bertrand, & Chaouki, 2016; Nauha, Kálal, Ali, & Alopaeus, 2017). Delafosse 
et al. (2014) implemented homogeneously distributed compartments based on their coordinates but they 
needed more than 12000 compartments in order to match the CFD predicted and experimental mixing 
time of a 16 L bioreactor, which used more than 106 mesh elements for the CFD model. Such approaches 
will not be feasible for larger bioreactors or on-line applications combined with Monte-Carlo 
simulations (see Probabilistic model predictions). 
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FIGURE 5 CFD-based compartment model. The steady-state velocity profile (left) can be used to 
define the compartments (right) for a compartment simulation. The velocity direction and magnitude 
(left, blue arrows), and an example of compartments (right, pink boxes) are shown for a bioreactor with 
3 Rushton turbines and 4 baffles. 

 

Once the compartments are defined, the volume flows (liquid and gaseous) between the compartments 
are taken from the CFD simulation. Further properties, such as volumes, pressure, shear rates, 
viscosities, etc. are also derived from the initial CFD simulation and used in the CM. Then, the CM 
needs to be validated, e.g. with mixing experiments or the already validated CFD simulation (Delafosse 
et al., 2015). Finally, biological, physical, and chemical kinetics can be incorporated, and then solved 
in all compartments together with the transfer processes between the compartments. 

CMs have been applied to characterize the culture conditions in bioreactors (Bezzo, Macchietto, & 
Pantelides, 2003; Guha, Dudukovic, Ramachandran, Mehta, & Alvare, 2006; Le Moullec et al., 2010; 
Nauha et al., 2017; Rigopoulos & Jones, 2003; Wells & Ray, 2005; W. Zhao, Buffo, Alopaeus, Han, & 
Louhi-Kultanen, 2017). Furthermore, entire bioprocesses have been simulated. Glucose and acetate 
gradients could be predicted in a large-scale E. coli cultivation, and resembled the measured tendencies 
(Vrábel et al., 2001). An antibiotic producing Streptomyces fradiae cultivation in a 3 m3 bioreactor was 
modelled and could be validated with dissolved oxygen measurements (Vlaev et al., 2000). The same 
framework has been applied to predict the dissolved oxygen tension in a 31 m3 stirred tank bioreactor 
for the production of another antibiotic, and for a 236 m3 bubble column for citric acid production, 
however without validation (Zahradník et al., 2001). Different gradients (substrate, oxygen, etc.) were 
predicted for wastewater treatment bioreactors (Alvarado, Vedantam, Goethals, & Nopens, 2012; Le 
Moullec et al., 2010; Rehman et al., 2017). These studies included the biokinetics of the ASM1 model 
(Henze, Gujer, Mino, & Lossdreacht, 2000) to describe the microbial conversions in the system in very 
large aeration tanks of several 1000 m3. For a 30 m3 E. coli cultivation gradients for the glucose 
concentration, the growth rate, and others were predicted, whereas a population balance was applied to 
account for cell heterogeneities (Pigou & Morchain, 2015; Pigou, Morchain, Fede, Penet, & Laronze, 
2017). 
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Conclusions 

Several PAT applications for cultivation processes have reached a mature level. Models have been 
increasingly applied to simulate biotechnological production processes, such as large-scale bio-
pharmaceutical antibiotic manufacturing processes. The models are applied for different off-line and 
on-line purposes including process development, optimization, monitoring, and control. This 
contribution has focused on mechanistic models because of their advantages over data-driven models. 
As mechanistic models have e.g. larger extrapolation capabilities, they can predict scenarios often 
accurately where there is little or no data available. This is of special interest if new process conditions 
should be tested without performing costly experiments.  

Uncertainties are considered in the model predictions for risk assessment, e.g. by performing Monte 
Carlo simulations. Various uncertainties have been considered: model input uncertainties, which 
include uncertain model parameters and variable medium concentrations, and stochastic uncertainties 
such as pump failures. Applications taking uncertainties into account provide probabilistic model 
predictions that allow risk-based decision making. However, uncertainties have been included only in 
one-compartment simulations yet. 

Heterogeneous process conditions, such as substrate gradients in fed-batch cultivations have been 
successfully studied and predicted with CFD simulations. To this end, bio-kinetic models have been 
integrated in the CFD simulations to track spatial and temporal changes of process conditions. 
Appropriately scaled-down bioreactors that mimic large-scale conditions are designed based on CFD 
simulations. This consistent approach enables researchers to test the effects of large-scale conditions in 
lab-scale bioreactors at the early stage of strain screening and process development. Interactions of the 
microorganisms and process conditions could be understood in more detail. Since CFD simulations are 
computationally demanding, compartment models that reduce the spatial resolution and thereby the 
computational calculation demand have been developed, and are promising for on-line applications. 

Perspectives 

So far, CFD and compartment models that were coupled with bio-kinetic models have been applied for 
off-line applications including optimization of process design and scale-up as well as increasing the 
process understanding. However, heterogeneities have not been considered for on-line applications, 
such as process monitoring and control. It is important to consider the heterogeneous process conditions 
that occur at large scale because traditional one-point measurements, e.g. of dissolved oxygen, might 
not be optimal for on-line control. New on-line control algorithms could consider the predicted 
gradients in bioreactors, and hence provide an optimized control for the bioprocess as well as propose 
optimized location for sensors to collect online data. Furthermore, uncertainties need to be considered 
for risk assessment, e.g. by Monte Carlo simulations, to allow a risk-based decision making. The latter 
is particularly useful for operating microbial cultivations in an optimal sense so that operators can take 
early and timely decisions in case process deviations are predicted to lead to sub-optimal process yields 
or outright failures of a batch/fed-batch/continuous process. Simulations considering both 
heterogeneities and uncertainties are therefore needed for risk-based on-line control applications to 
achieve optimized large-scale bioprocess operations. For these on-line applications, the model 
predictions are required in a timeframe in the order of minutes to allow control actions in real-time. 
CFD-based compartment models can therefore be a good alternative over CFD models for on-line 
applications, as they can be solved in real time. 
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Abstract 
A probabilistic soft sensor based on a mechanistic model was designed to monitor S. thermophilus 
fermentations, and validated with experimental lab-scale data. It considered uncertainties in the 
initial conditions, on-line measurements, and model parameters by performing Monte Carlo 
simulations within the monitoring system. It predicted, therefore, the probability distributions of 
the unmeasured states, such as biomass, lactose, and lactic acid concentrations. To this end, a 
mechanistic model was developed first, and a statistical parameter estimation was performed in 
order to assess parameter sensitivities and uncertainties. The model coupled a biokinetic and a 
mixed weak acid/base model to predict biological variables and chemical variables like the pH, 
respectively. In the soft sensor, the limited available on-line measurements, namely the quantity 
of added ammonia and pH, were used to update the model parameters that were then used as input 
to the mechanistic model. The soft sensor predicted both the current state variables, as well as the 
future course of the fermentation, e.g. with a relative mean error of the biomass concentration of 
8 %. This successful implementation of a process analytical technology monitoring system opens 
up further opportunities, including for on-line risk-based monitoring and control applications. 
 

1. Introduction 
Lactic acid bacteria (LAB) are used as starter cultures in the dairy industry, to produce probiotics, 
lactic acid, and exopolysaccharides [1,2]. Streptococcus thermophilus strains are aerotolerant, 
homofermentative LAB and traditionally used as fermentation starter cultures for yogurt and 
cheese production. The bacteria are produced in batch and fed-batch fermentations, and real-time 
monitoring of the process is needed in order to understand and optimize the production process. 
However, robust in-line sensors for key process variables, like biomass, substrate, and lactic acid 
concentrations, are not available in the required concentration range due to the high complexity of 
the fermentation system [3]. This makes the real-time quantification of key process variables 
challenging. The process analytical technology (PAT) guidance from the FDA [4] requested 
already the development of real-time monitoring and control tools. The tools are meant to enhance 
the on-line monitoring and control capabilities. Hence, process conditions could be adjusted in real 
time to assure quality requirements, instead of relying solely on the end product quality control. 
Although the guidelines were originally intended for the (bio-) pharmaceutical industry, they have 
also been applied in other life science industries like the food industry.  
 
Soft sensors, which utilize the on-line available measurements, are applied to predict the unknown 
state variables and monitor the fermentation process in real time [5–7]. There are, generally 
spoken, data-based and model-based soft sensors, whereas also other approaches exist. 
Chemometric methods like principal component analysis (PCA) may be applied in data-based soft 
sensors [8]. Model-based soft sensors can for example be based on mechanistic understanding 
using first principles models (e.g. the mass balance), or empirical models, when the details of the 
process are not understood sufficiently. The development of first principles models is based on a 
fundamental process understanding and mechanistic models may be implemented. Even though 
the development of mechanistic models might be time consuming, we prefer to use mechanistic 
models since they have many advantages over black-box models, e.g. that they can be reused and 
applied to multiple processes by updating the model parameters [7].  
 
Soft sensors rely typically on available on-line and at-line measurements, such as pH, conductivity, 
dissolved oxygen, heat generation, acid/base addition for pH control, and exhaust gas analysis. 
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Different spectroscopic measurements, e.g. near-infrared [9], multi-wavelength [10], and Raman 
[11] spectroscopy have also been used beside other methods in data-based soft sensor applications 
in fermentations. Mears et al. [12] applied a model-based soft sensor for on-line monitoring to a 
filamentous fungal fermentation at pilot scale using exhaust gas measurements and ammonia 
addition, and predicted various state variables (biomass, product, dissolved oxygen, kLa among 
others). However, especially aerotolerant, homofermentative LAB fermentations lack various on- 
and at-line measurements, such as exhaust gas measurements, and rely solely on conductivity, pH, 
and base addition measurements.  
 
When developing and applying mechanistic models for bioprocesses it is good modelling practice 
for PAT applications to analyze the reliability of the model [13,14]. Unfortunately, models 
describing LAB fermentations rarely provide reported results of identifiability, sensitivity, or 
uncertainty analysis, e.g. confidence intervals of the estimated parameters. If a model with 
unreliable parameters is applied as a soft sensor, predictions will be doubtful and the results could 
lead to questionable interpretations. Furthermore, a deterministic model implementation may lead 
to a good fit, but does not take the imperfect knowledge, i.e. uncertainties of model parameters 
and measurements into account. Several studies implemented soft sensors to monitor LAB [15–
18], but they did not consider uncertainties in the model structure.  
 
The aim of this study was therefore to design and evaluate a probabilistic model-based soft sensor 
in order to monitor S. thermophilus fermentations. To this end, a mechanistic model was first 
developed and validated, and then used as soft sensor for monitoring at lab scale. A statistical 
parameter estimation was performed to analyze parameter uncertainties. The soft sensor comprised 
a data reconciliation module, a parameter update module and the dynamic model. The data 
reconciliation and parameter update module updated model parameters based on the available on-
line measurements. One major challenge of this study was that only pH and ammonia addition 
measurements were available on-line, whereas e.g. exhaust gas measurements were not available. 
The dynamic model consisted of a biokinetic and a chemical model. The biokinetic model 
described substrate consumption, biomass growth, and lactic acid secretion while the chemical 
model comprised a mixed weak acid/base system with the purpose to predict the pH. Monte Carlo 
simulations of the dynamic model were performed within the monitoring system to account for 
uncertainties in the lactose (substrate) concentration, ammonia addition rate, and model 
parameters. The output of the monitoring system was consequently a probability distribution of 
the state variables. 

2. Materials and Methods 

2.1 Fermentation conditions 
Streptococcus thermophilus batch fermentations were performed in 2 L stirred tank bioreactors 
(Biostat® B, Sartorius AG, Germany) at 300 rpm, 40 °C, and with nitrogen headspace gassing. The 
pH was controlled by adding 24 % ammonia solution. 10 batch fermentations were performed 
under different cultivation conditions (initial lactose concentration 20 or 65 g L-1, pH 5.5 – 7.0) 
and used for the parameter estimation, model validation, and implementation of the monitoring 
system (see Table 4 in the Results and Discussion section). The pH (EasyFerm Bio VP 225, 
Hamilton Robotics, Reno, NV) and ammonia addition (balance value) were measured on-line. The 
fermentation medium contained 20 or 65 g L-1 lactose, 10 g L-1 casein hydrolysate, 12 g L-1 yeast 
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extract, 11.5 mM K2HPO4, 36.6 mM sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4, 
and 0.3 mM MnSO4.  

2.2 Off-line analysis 
Sugars and organic acids were quantified from filtered samples (filter pore size: 0.2 µm) in an 
HPLC system (Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA). It was equipped 
with an Aminex® HPX-87H column (Bio-Rad Laboratories, Hercules, CA) and a refractive index 
detector (ERC RefractoMax 520), and run with 5 mM H2SO4 at a flow rate of 0.6 mL min-1 at 
50 °C according to suppliers instructions. Samples were diluted 1:4 with 5 mM H2SO4 prior to 
analysis. Dry cell weight was quantified with replicates of 2 mL cell broth, which were taken in 
sampling tubes, centrifuged, washed with 0.9 % (w/v) NaCl solution, dried at 70 °C for 24 h, and 
weighted. Ammonia and phosphate were quantified with the cuvette tests LCK302, LCK303, and 
LCK350 (Hach®, Manchester, Great Britain). 

2.3 Biological model 
The dynamic biokinetic model described the evolution of the state variables such as biomass, 
lactose, and lactic acid of the S. thermophilus fermentation. The model was based on the global 
stoichiometric process equation [19] (Eq. 1 – 2). The biomass growth rate was modelled as a 
function depending on the lag-time (flag), lactose inhibition and limitation (fS) [20], lactate 
inhibition(fP) [21], and the pH (fpH) [22] (Eq. 3 – 4). It was assumed that only the dissociated form 
of lactic acid was growth inhibiting under the investigated pH conditions according to the studies 
of Schepers et al. [22] and Amrane and Prigent [23]. A biomass composition of 
𝐶𝐶𝐻𝐻1.95𝑂𝑂0.63𝑁𝑁0.22𝑃𝑃0.02 [24] was assumed in the present study. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +  𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐴𝐴𝐴𝐴𝐿𝐿 +  𝑃𝑃ℎ𝐿𝐿𝐿𝐿𝑜𝑜ℎ𝐿𝐿𝑜𝑜𝐴𝐴𝐿𝐿 𝐿𝐿𝐿𝐿𝐴𝐴𝑎𝑎 → 𝐵𝐵𝐴𝐴𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿 𝐿𝐿𝐿𝐿𝐴𝐴𝑎𝑎 + 𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (1) 

qS ∙ CH2O + qNH ∙ 𝑁𝑁𝐻𝐻3 + qPh ∙ 𝐻𝐻3𝑃𝑃𝑂𝑂4 → qX ∙ CHaObNcPd + qP ∙ CH2O + qGal ∙ CH2O (2) 

𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝐿𝐿

= µ𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑓𝑓𝑙𝑙𝑚𝑚𝑙𝑙 ∙ 𝑓𝑓𝑆𝑆 ∙ 𝑓𝑓𝑃𝑃 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝 ∙ 𝐶𝐶𝑋𝑋 (3) 

𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝐿𝐿

= µ𝑚𝑚𝑚𝑚𝑚𝑚 ∙ �1 − 𝐿𝐿
− 𝑡𝑡
𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙� ∙

𝐶𝐶𝑆𝑆

𝐶𝐶𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝐶𝐶𝑆𝑆2
𝐾𝐾𝐼𝐼

∙
1

1 + 𝐿𝐿𝐾𝐾𝑃𝑃,𝐿𝐿𝑙𝑙(𝐶𝐶𝐿𝐿𝐿𝐿−𝐾𝐾𝐿𝐿𝑙𝑙1) ∙ 𝐿𝐿
−�

�𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝�
2

𝜎𝜎𝑜𝑜𝑝𝑝
2 �

∙ 𝐶𝐶𝑋𝑋 (4) 

Where KLa1 was dependent on the pH: 

𝐾𝐾𝐿𝐿𝑚𝑚1 = 𝐾𝐾𝐿𝐿𝑚𝑚 ∙
1

1 + 𝐿𝐿𝐾𝐾𝑃𝑃,𝑜𝑜𝑝𝑝1∗�𝑝𝑝𝑝𝑝−𝐾𝐾𝑃𝑃,𝑜𝑜𝑝𝑝2�
 (5) 

An amended Luedeking and Piret equation [25] that takes only the growth dependent lactic acid 
synthesis into account was used [26]:  
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𝑎𝑎𝐶𝐶𝑃𝑃
𝑎𝑎𝐿𝐿

= 𝛼𝛼 ∙
𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝐿𝐿

 (6) 

The lactose consumption is the sum of the biomass growth and the lactic acid synthesis rate 
considering the secretion of galactose (Ygal) since the studied strain metabolizes only glucose and 
secretes galactose under the present cultivation conditions: 

𝑎𝑎𝐶𝐶𝑆𝑆
𝑎𝑎𝐿𝐿

= −�1 + 𝑌𝑌𝑙𝑙𝑚𝑚𝑙𝑙� ∙ �
𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝐿𝐿

+
𝑎𝑎𝐶𝐶𝑃𝑃
𝑎𝑎𝐿𝐿

� (7) 

A P-controller with a controller gain (KP) of 10 mol was applied to maintain the pH at the set point 
value by adding ammonia solution: 

𝑁𝑁𝐻𝐻4𝑂𝑂𝐻𝐻𝑚𝑚𝑎𝑎𝑎𝑎 = 𝐾𝐾𝑃𝑃 ∙ (𝑜𝑜𝐻𝐻𝑠𝑠𝑠𝑠𝑡𝑡 − 𝑜𝑜𝐻𝐻) (8) 

The model was implemented and solved in MATLAB® (The MathWorks®, Natick, MA) using the 
solver ode15s. ode15s was chosen because the model contains slow (e.g. biomass growth) and fast 
time constants (mixed weak acid/base model, see below) resulting in a stiff system of differential 
equations.  

2.4 Mixed weak acid/base model 
The purpose of the mixed weak acid/base model was to predict the pH during the fermentation. It 
comprised the dissociation reactions of the charged compounds in the fermentation broth as 
described in Musvoto et al. [27] (Table 1). The dissociation reactions of ammonia, phosphoric 
acid, lactic acid, carbonic acid, water, and an unspecified compound Z were considered. Z 
accounted for the unknown compounds in the fermentation broth, such as amino acids. The pKa 
values were derived from Dawson [28] and Loewenthal et al. [29] (Table 2). The activity 
coefficients were calculated by a modification of the Debye-Hückel theory from Davies [30]: 

𝐺𝐺𝐿𝐿𝑙𝑙(𝑓𝑓𝑖𝑖) = −1.825 ∙ 106 ∙ (78.3 ∙ 𝑇𝑇)−1.5 ∙ 𝑧𝑧𝑖𝑖2 ∙ �
√𝐼𝐼

1 + √𝐼𝐼
− 0.3 ∙ 𝐼𝐼� (9) 

With the ionic strength (I): 

𝐼𝐼 =
1
2
�𝑧𝑧𝑖𝑖2𝐶𝐶𝑖𝑖
𝑖𝑖

 (10) 

The implemented stoichiometric matrix may be found in the Supplementary Material. 
 
Table 1. Kinetics for the mixed weak acid/base model. fm and fd are mono- and divalent activity 
coefficients, respectively; see Loewenthal et al. (1989) and Musvoto et al. (2000). 

Reaction reaction rate vector apparent equilibrium constant 
  symbol value 
𝑁𝑁𝐻𝐻4+ ↔ 𝑁𝑁𝐻𝐻3 + 𝐻𝐻+ Kr,NH

′ ∙ KNH
′ ∙ [𝑁𝑁𝐻𝐻4+] − 𝐾𝐾𝑟𝑟,𝑁𝑁𝑝𝑝

′ ∙ [𝑁𝑁𝐻𝐻3] ∙ [𝐻𝐻+] KNH
′  10−𝑝𝑝𝐾𝐾𝑁𝑁𝑝𝑝 

𝐻𝐻3𝑃𝑃𝑂𝑂4 ↔ 𝐻𝐻2𝑃𝑃𝑂𝑂4− + 𝐻𝐻+ Kr,P1
′ ∙ KP1

′ ∙ [𝐻𝐻3𝑃𝑃𝑂𝑂4]− 𝐾𝐾𝑟𝑟,𝑃𝑃1
′ ∙ [𝐻𝐻2𝑃𝑃𝑂𝑂4−] ∙ [𝐻𝐻+] KP1

′  10−𝑝𝑝𝐾𝐾𝑃𝑃1 𝑓𝑓𝑚𝑚2⁄  
𝐻𝐻2𝑃𝑃𝑂𝑂4− ↔ 𝐻𝐻𝑃𝑃𝑂𝑂42− + 𝐻𝐻+ Kr,P2

′ ∙ KP2
′ ∙ [𝐻𝐻2𝑃𝑃𝑂𝑂4−] − 𝐾𝐾𝑟𝑟,𝑃𝑃2

′ ∙ [𝐻𝐻𝑃𝑃𝑂𝑂42−] ∙ [𝐻𝐻+] KP2
′  10−𝑝𝑝𝐾𝐾𝑃𝑃2 𝑓𝑓𝑎𝑎⁄  

𝐻𝐻2𝐶𝐶𝑂𝑂3∗ ↔ 𝐻𝐻𝐶𝐶𝑂𝑂3− + 𝐻𝐻+ Kr,C1
′ ∙ KC1

′ ∙ [𝐻𝐻2𝐶𝐶𝑂𝑂3∗]− 𝐾𝐾𝑟𝑟,𝐶𝐶1
′ ∙ [𝐻𝐻𝐶𝐶𝑂𝑂3−] ∙ [𝐻𝐻+] KC1

′  10−𝑝𝑝𝐾𝐾𝐶𝐶1 𝑓𝑓𝑚𝑚2⁄  
𝐶𝐶3𝐻𝐻6𝑂𝑂3 ↔ 𝐶𝐶3𝐻𝐻5𝑂𝑂3− + 𝐻𝐻+ Kr,LA

′ ∙ KLA
′ ∙ [𝐶𝐶3𝐻𝐻6𝑂𝑂3]− 𝐾𝐾𝑟𝑟,𝐿𝐿𝐿𝐿

′ ∙ [𝐶𝐶3𝐻𝐻5𝑂𝑂3−] ∙ [𝐻𝐻+] KLA
′  10−𝑝𝑝𝐾𝐾𝐿𝐿𝐿𝐿 𝑓𝑓𝑚𝑚2⁄  

𝐻𝐻2𝑂𝑂 ↔ 𝑂𝑂𝐻𝐻− + 𝐻𝐻+ Kr,W
′ ∙ KW

′ − 𝐾𝐾𝑟𝑟,𝑊𝑊
′ ∙ [𝑂𝑂𝐻𝐻−] ∙ [𝐻𝐻+] KW

′  10−𝑝𝑝𝐾𝐾𝑊𝑊 𝑓𝑓𝑚𝑚2⁄  
𝑍𝑍𝐻𝐻+ ↔ 𝑍𝑍 + 𝐻𝐻+ Kr,Z

′ ∙ KZ
′ ∙ [𝑍𝑍𝐻𝐻+] −𝐾𝐾𝑟𝑟,𝑍𝑍

′ ∙ [𝑍𝑍] ∙ [𝐻𝐻+] KZ
′  10−𝑝𝑝𝐾𝐾𝑍𝑍 𝑓𝑓𝑚𝑚2⁄  
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Table 2. Parameters of the dynamic model of the S. thermophilus fermentations. 
Symbol Value Reference Uncertainty classification 
Biological model 
KI 164 g L-1 [20]  
KLa 19.80 g L-1 parameter estimation see Table 3 
KP,La 0.24 L g-1 parameter estimation see Table 3 
KP,pH1 20 expert knowledge  
KP,pH2 7 expert knowledge  
KS 0.79 g L-1 [20]  
pHopt 6.39 parameter estimation see Table 3 
tlag individual parameter estimation  
Ygal 0.69 g g-1 parameter estimation see Table 3 
α 5.19 g g-1 parameter estimation see Table 3 
µmax 2.06 h-1 parameter estimation  
σpH 1.42 parameter estimation see Table 3 
Mixed weak acid/base model   
Kr,C1
′  107 s-1 [27] uncertainties in the mixed weak 

acid/base model are not considered 
because the pH is measured and 
used as input for the data 
reconciliation and parameter update 
module 

Kr,LA
′  107 s-1 [27] 

Kr,NH
′  1012 s-1 [27] 

Kr,P1
′  108 s-1 [27] 

Kr,P2
′  1012 s-1 [27] 

Kr,W
′  1010 s-1 [27] 

Kr,Z
′  107 s-1 [27] 

𝑜𝑜𝐾𝐾𝐶𝐶1 3404.7 (𝑇𝑇 − 14.8435 + 0.03279 ∙ 𝑇𝑇)⁄  [29] 
𝑜𝑜𝐾𝐾𝐿𝐿𝐿𝐿 3.86 [28] 
𝑜𝑜𝐾𝐾𝑁𝑁𝑝𝑝 2835.8 (𝑇𝑇 − 0.6322 + 0.00123 ∙ 𝑇𝑇)⁄  [29] 
𝑜𝑜𝐾𝐾𝑃𝑃1 799.3 (𝑇𝑇 − 4.5535 + 0.01349 ∙ 𝑇𝑇)⁄  [29] 
𝑜𝑜𝐾𝐾𝑃𝑃2 1979.5 (𝑇𝑇 − 5.3541 + 0.01984 ∙ 𝑇𝑇)⁄  [29] 
𝑜𝑜𝐾𝐾𝑊𝑊 14 [29] 
𝑜𝑜𝐾𝐾𝑍𝑍 9.4 expert knowledge (amino acid mix) 
T 313.16 K Measurement  
Initial Conditions  
CGal,t=0 0.0 g L-1   
CGlc,t=0 0.0 g L-1   
𝐶𝐶𝑝𝑝+,𝑡𝑡=0 dependent on the pH and ionic strength  
𝐶𝐶𝑂𝑂𝑝𝑝−,𝑡𝑡=0 dependent on the pH and ionic strength  
CP,t=0 0.0 g L-1  
CS,t=0 off-line measurements for the parameter estimation and validation  
CS,t=0 65 g L-1 for the monitoring system  normal distribution σ = 2.2 g L-1 
CtCO,t=0 1.002 ∙ 10−5 𝐴𝐴𝐿𝐿𝐺𝐺 𝐿𝐿−1   
CtNH,t=0 off-line measurements for the parameter estimation and validation  
CtNH,t=0 0.005 g L-1 for the monitoring system    
CtPh,t=0 off-line measurements for the parameter estimation and validation  
CtPh,t=0 2 g L-1 for the monitoring system   
CtZ,t=0 2 mol L-1   
CX,t=0 0.025 g L-1 for the parameter estimation and validation  
CX,t=0 0.025 g L-1 for the monitoring system  normal distribution σ = 0.0008 g L-1 

 

2.5 Parameter estimation 
The parameter estimation was performed to fit the experimental lactose, biomass, and lactic acid 
concentration measurements using the maximum likelihood estimation method from Seber and 
Wild [31]. The model was fitted to five fermentations, which were controlled at different constant 
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pH (1x pH 5.5, 2x pH 6.0, 1x pH 6.5, and 1x pH 7.0) and were performed with an initial lactose 
concentration of 65 g L-1. For the parameter estimation, the pH was held constant at the set point 
in the simulation, and the mixed weak acid/base model was not considered in order to obtain 
parameter estimates that were independent of the mixed weak/acid base system. The parameter 
estimation followed the methodology from Sin and Gernaey [32] as described in Spann et al. [33]. 
Initial parameter estimates were taken from literature [20–22] (Supplementary Table S1). 
Sensitivity and identifiability analysis were conducted to find an identifiable parameter subset for 
regression [32]. Once the regression was completed, the confidence intervals of the estimated 
parameters were derived from a linear approximation method using the Jacobian matrix of the 
parameter estimation [34].  
 
The parameter estimation was conducted in MATLAB with the nonlinear least-squares solver 
lsqnonlin. In the objective function, the weighted error of the model predictions was calculated for 
the three concentrations lactose, biomass, and lactic acid at all measured time points i (Eq. 11). 
The residuals vector then contained the weighted error vectors of the three states j. 

𝐸𝐸𝑜𝑜𝑜𝑜𝐿𝐿𝑜𝑜𝑖𝑖 = �
𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠,𝑖𝑖

𝑤𝑤𝑗𝑗
� (11) 

where wj is the maximum value of each specific component, here 65 g L-1 for lactose, 30 g L-1 for 
lactic acid, and 6 g L-1 for biomass. For model simplification purposes, the lag-time parameter, tlag, 
was described as a pH dependent distribution, in order to account for the different lag-times 
observed for fermentations having a different pH set point (Eq. 12). This approach simplifies the 
model complexity significantly and requires the estimation of only 2 parameters, instead of 5 
parameters that would have been needed, if tlag was fitted for each fermentation separately. 

𝐿𝐿𝑙𝑙𝑚𝑚𝑙𝑙 = 2 𝐿𝐿
�𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙−𝑝𝑝𝑝𝑝�

2

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙
2

⁄  
(12) 

The uncertainty of the estimated parameters was quantified with the relative error (RE) between 
the standard deviation of the parameter estimate with respect to the estimated mean value: 

𝑅𝑅𝐸𝐸𝑖𝑖 =
𝜎𝜎𝜃𝜃�𝑖𝑖
𝜃𝜃�𝑖𝑖

 (13) 

2.6 Initial conditions 
The initial conditions for the dynamic model are given in Table 2. 

2.7 Assessment of the model fit 
The goodness of fit for the model prediction in the model validation procedure and on-line 
monitoring application was assessed with the root mean sum of squared errors (RMSSE): 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �
1
𝐴𝐴

��𝑦𝑦𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠,𝑖𝑖 − 𝑦𝑦�𝑖𝑖�
2

𝑛𝑛

𝑖𝑖

 (14) 

3. Framework for the soft sensor 

3.1 Design of the probabilistic model-based soft sensor  
The objective of the probabilistic model-based soft sensor is to monitor the S. thermophilus 
fermentation. It predicts the probabilistic distribution of the states, such as biomass, lactose, lactic 
acid, and pH, in real time based on the on-line available ammonia addition and the pH 
measurements. The soft sensor consists of a data reconciliation module, a parameter update 
module, and a dynamic process model (Fig. 1). The model parameters µmax and tlag are updated 
every 5 minutes based on the latest on-line measurements, and the soft sensor predicts both the 
current value and the future course of the state variables. The current states are saved as initial 
conditions for the next interval. Monte Carlo simulations of the dynamic model are performed 
every interval using samples from the input uncertainty domain. To this end, the Latin hypercube 
sampling technique was used to generate 100 random samples from the input uncertainty domain 
in which we included uncertainties in the initial conditions, model parameters, and ammonia 
addition (Table 2). The outcome from the Monte Carlo simulations was a probability distribution 
of the state variables. 

 
Fig. 1. Block diagram of the probabilistic model-base monitoring system. The initial conditions 
for the model were defined according to the process specifications including 10 % uncertainties in 
the lactose and biomass concentration. The on-line measured ammonia addition rate qNH3 was used 
as input for the data reconciliation module to update the biomass growth and lactic acid production 
rate based on the charge balance and the lactic acid production rate expression. The parameter 
update module used the updated rates and the pH as input to update the model parameters µmax and 
tlag for the dynamic model. Monte Carlo simulations of the dynamic model were performed 
considering uncertainties in the initial lactose concentration, measured ammonia addition, and 
model parameters. The output of the dynamic model was a probability distribution of the state 
variables. 
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3.1.1 Data reconciliation method 
The data reconciliation module is based on elemental and bio-energetic conservation principles 
such as the charge balance (Eq. 15) and the lactic acid production rate expression (Eq. 16). It uses 
the amount of added ammonia, where one measurement value is available every minute, to update 
the volumetric biomass growth and lactic acid production rate. The ammonia addition data points 
of each interval are fitted with a smoothing spline line and the average ammonia addition of the 
interval, qNH,add, is estimated. Missing measurement points can also be handled due to the 
implementation of the fit. With the data reconciliation the growth rate (qX) is obtained and used as 
input for the parameter update module.  

𝑁𝑁𝐻𝐻4+ + 𝐶𝐶3𝐻𝐻5𝑂𝑂3− = 𝑞𝑞𝑁𝑁𝑝𝑝,𝑚𝑚𝑎𝑎𝑎𝑎 + 𝑞𝑞𝑃𝑃 = 0 (15) 

𝑞𝑞𝑃𝑃 = 𝛼𝛼 ∙ 𝑞𝑞𝑋𝑋 (16) 

3.1.2 Parameter update 
The updated qX is used to update µmax in every interval. µmax is updated in an iterative procedure 
until the change of µmax is less than 5 % compared to the previous iteration. In the first iteration 
(k=1) µmax is calculated based on the updated qX, the function values, and biomass concentration 
of the previous interval (Eq. 17). The subsequent iterations use the function values and biomass 
concentration based on the new µmax value. The function values and biomass concentration derive 
from an evaluation of the dynamic model. 

µ𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 =
𝑞𝑞𝑋𝑋,𝑢𝑢𝑝𝑝𝑎𝑎𝑚𝑚𝑡𝑡𝑠𝑠𝑎𝑎

𝑓𝑓𝑙𝑙𝑚𝑚𝑙𝑙,𝑘𝑘−1 ∙ 𝑓𝑓𝑆𝑆,𝑘𝑘−1 ∙ 𝑓𝑓𝑃𝑃,𝑘𝑘−1 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝,𝑘𝑘−1 ∙ 𝑋𝑋𝑘𝑘−1
 (17) 

It is not possible to use the updated rates (qP and qX) directly in the dynamic model, as they 
resemble only the conditions of the previous 5 minutes. However, inhibition and limitation effects, 
as well as pH variations, which will occur during a fermentation, influence the rates. It is therefore 
necessary to calculate the rates within the dynamic model according to Eq. 4 and Eq. 6 in order to 
predict the future course of the fermentation, as well. 
 
The lag-time parameter tlag is updated based on the measured pH value as soon as the measured 
pH reaches the controlling value (here pH = 6). The continuous pH measurement is saved every 
minute. tlag is adjusted so that the modelled and measured pH reach the control value at the same 
time (Eq. 18). tlag is updated in an iterative procedure until the change is less than 2 % compared 
to the previous iteration. 
 

𝐿𝐿𝑙𝑙𝑚𝑚𝑙𝑙,𝑘𝑘 = 𝐿𝐿𝑙𝑙𝑚𝑚𝑙𝑙,𝑘𝑘−1 + (𝐿𝐿𝑝𝑝𝑝𝑝=6,𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑎𝑎 − 𝐿𝐿𝑝𝑝𝑝𝑝=6,𝑝𝑝𝑟𝑟𝑠𝑠𝑎𝑎𝑖𝑖𝑝𝑝𝑡𝑡𝑠𝑠𝑎𝑎) (18) 

Once tlag is updated, the model is run from the beginning, because tlag influences the whole 
prediction range. The current state is then saved as initial conditions for the next iteration. The 
updated parameters µmax and tlag are used as input for the dynamic model.  

3.1.3 Dynamic mechanistic process model 
The dynamic process model comprises the biological model and the mixed weak acid/base model 
as described in the Materials and Methods section. 

3.1.4 Monte Carlo simulations 
The Monte Carlo method includes three main steps namely (1) identification and definition of 
input uncertainties, (2) sampling and (3) Monte Carlo simulation. For step 1, uncertainties in the 
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biological model parameters, initial lactose concentration, initial biomass concentration, and the 
ammonia addition are considered (Table 2). The uncertainties of the model parameters are 
represented by the covariance matrix (includes the standard deviation and correlation matrix), 
which is derived from the parameter estimation. Uncertainties in the initial lactose and biomass 
concentration, and the measured ammonia addition are considered to be normally distributed with 
3σ = 10 %. The model parameters are assumed to be normally distributed as well because the 
measurement errors, on which the parameter estimation is founded, are assumed to be normally 
distributed. In order to account for the ammonia addition uncertainty, samples with a normal 
distribution, a mean value 1, and 3σ = 0.1 are generated and will be multiplied with the measured 
ammonia addition rate in the Monte Carlo simulations. Uncertainties in the parameters of the 
mixed weak acid/base system are not considered since pH predictions were not necessary for the 
online monitoring application, as pH was directly measured and used as input for the data 
reconciliation module. The identification of uncertain input sources and the definition of the 
uncertainty ranges depend on the system studied. In general, this should therefore be systematically 
evaluated for each studied system separately. In this study, uncertainties of 5 % were expected 
based on an expert discussion and considering the available data. To be on the safe side, we 
considered 3σ = 10 % for the uncertainties in the initial conditions and the ammonia measurement. 
 
For step 2, the Latin Hypercube Sampling (LHS) technique is used together with the Iman Conover 
rank correlation method to induce the correlation matrix in the input domain (see step 1) [35,36]. 
The sampling procedure features the following generic steps: First, LHS sampling for independent 
inputs is performed in the unit probability domain [0 1] for N sampling numbers (N =100 used in 
this study). Then, the correlation matrix is induced via the Iman Conover method [37] for the 
correlated parameters. Finally, the correlated parameter samples are inverted from the probability 
domain to real values considering the inverse cumulative distribution function for each input e.g. 
using the Matlab function icdf. In this study, we assumed both measurement errors as well as 
parameter estimation errors to be normally distributed hence we set the option “Probability 
distribution name” to “Normal” in the icdf function. In this step, the user can define any other 
distribution function deemed appropriate as well (e.g. uniform, gamma etc.). 
 
In step 3, Monte Carlo simulations of the dynamic model are performed for each sample. The 
output of the Monte Carlo simulations consists of 100 model predictions, representing a 
probabilistic distribution of the predicted state variables. 

4. Results and Discussion 

4.1 Parameter estimation 
A parameter estimation of the biological model was performed in order to assess the model 
reliability. Uncertainty and sensitivity analysis were conducted to find an identifiable parameter 
subset. It must hereby be considered that the estimated parameters depend among others on the 
nominal parameter values, the cultivation conditions, and the model structure [34]. The first 
parameter estimation, fitting all biokinetic model parameters, revealed identifiability issues 
(Supplementary Table S2). KP,pH1, KP,pH2, KS, and KI could not be estimated and were therefore 
maintained at their initial values for the subsequent steps. The subsequent parameter estimation 
with the remaining 9 parameters revealed an identifiable parameter subset. The estimated 
parameter values were in the expected range and in the order of magnitude as known from previous 
studies (Table 3). It has to be noted that µmax = 2.06 h-1 was higher than the actual biological value 
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because it had to compensate for the functions in the growth rate expression. The relative errors of 
all parameters were lower than 10 %. In addition, all parameters had a significant effect on the 
model outputs (Supplementary Table S3). Some of the parameters met the criterion of a correlation 
coefficient smaller than 0.5 to be uniquely identifiable. However, this parameter subset should be 
considered as a whole due to the linear dependency between most of the parameters. The estimated 
value of one parameter is conditional on the value of another parameter. Therefore, the covariance 
matrix of the parameters should be used, e.g. when performing parameter sampling in Monte Carlo 
simulations, when performing model simulations, as done in this work. 
 
Table 3. Estimated model parameters including the relative error and correlation matrix. 

kinetic 
parameters 

estimated 
parameter value 

relative 
error [%] 

correlation matrix 

   µmax KP KLa pHopt σpH α pHopt-

lag 
σlag Ygal 

µmax 2.06 1 1 -0.74 -0.83 -0.17 0.5 -0.08 -0.52 0.53 0 
KP,La 0.24 13  1 0.77 -0.2 -0.58 -0.05 0.39 -0.28 0.04 
KLa 19.80 0   1 -0.07 -0.54 0.31 0.44 -0.35 -0.28 
pHopt 6.39 1    1 -0.52 -0.13 0.76 -0.86 0.02 
σpH 1.42 3     1 0.08 -0.93 0.85 0.06 
α 5.19 0      1 -0.1 0.12 -0.4 
pHopt-lag 5.70 1       1 -0.97 -0.03 
σlag 0.3 9        1 0.03 
Ygal 0.69 5         1 

 
The model showed an acceptable fit of the fermentation data (Fig. 2, Supplementary Fig. S1 – 4). 
To measure process performance, the focus was on the biomass concentration because the cells 
were the target fermentation product. The RMSSE for biomass was around 0.4 g L-1 for many of 
the fermentations, corresponding to a discrepancy of less than 10 %, giving evidence of a good fit 
(Table 4). A good model fit was achieved for the fermentations at pH 5.5, 6.0, and 6.5 but not at 
pH = 7.0, which had an error of 30 %. Furthermore, the secretion of galactose was underestimated 
in all fermentations. This could be attributed to an inconsistent carbon balance in the experimental 
fermentation data, where more carbon was produced than lactose consumed. The supplemented 
yeast extract, which was not taken into account in the model, does contain approximately 6 g L-1 
carbon [19] when assuming the elemental composition of a S. cerevisiae cell for the yeast extract. 
Hence, amino acids that derived from the yeast extract and were taken up by the cells might have 
led to the inconsistency in the carbon balance. The parameter estimation aimed therefore not to fit 
the galactose concentration, but it was anyhow kept in case the model will be extended in future 
studies. 
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Fig. 2. Model predictions for a S. thermophilus lab-scale batch fermentation. . Lactose (A), 
biomass with standard deviation (B), lactic acid (C), and galactose (D) concentrations. The 
fermentation was performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at 
pH = 6. The model prediction (solid line) for the measurements (circles) of one of the five lab-
scale batches that were used for the parameter estimation is shown. The biomass measurement is 
shown with the standard deviation. 
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Table 4. Fermentation conditions and RMSSE of the biomass prediction for all used data sets: 
parameter estimation, validation, and the monitoring system. 

batch data pH initial lactose conc. [g L-1] RMSSE [g L-1] final biomass [g L-1]* 

pa
ra

m
et

er
 

es
tim

at
io

n 

5.5 65 0.3 2.45 ± 0.1 
6 65 0.2 6.0 ± 0.2 
6 65 0.6 6.0 ± 0.1 

6.5 65 0.3 5.7 ± 0.1 
7 65 0.6 2.2 ± 0.2 

va
lid

at
io

n 6 20 0.2 2.1 ± 0.2 

6 20 0.2 1.8  ± 0.1 

m
on

ito
rin

g 
sy

st
em

 

6** 65 0.5  ± 0.1 5.9 ± 0.1 

6** 65 0.5  ± 0.1 5.8 ± 0.2 

6** 65 0.5  ± 0.1 5.9 ± 0.2 
* with standard deviation of the last measurement at ca. 6 h fermentation time 
** the initial pH was the pH of the medium (around pH = 7). The fermentation was controlled at pH = 6. 
 
The evaluation of the pH function fpH showed a clear maximum at pH = 6.4 (Fig. 3A). 
Furthermore, growth was already reduced by 25 % at pH = 5.5 and 7. Similar trends of the 
influence of the pH on the growth of LAB were observed in other studies [21,38,39]. These studies 
found slightly different pH optimums in the range between 6 and 7 since different strains were 
studied. The growth inhibition by lactate was pH dependent, as well (Fig. 3B). 20  g L-1 lactate 
inhibited growth by 50 % in the pH range from 5.5 to 6.5, whereas at pH = 7 already 10  g L-1 
lactate inhibited growth by 50 %. pH dependent inhibition of growth caused by lactate was also 
already observed for the lactic acid producing bacterium Enterococcus faecalis [40]. This 
underlines the necessity of the pH dependent lactate inhibition parameter KLa1 (Eq. 5).  
 

 
Fig. 3. Growth affecting functions of pH and lactate inhibition. pH function vs. pH (A) and lactate 
inhibition function vs. lactic acid concentration (B). 
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4.2 Model validation 
Following the statistical assessment of the quality of the parameter estimates above, the model was 
validated against two independent fermentation data sets, which were performed at pH = 6.0 and 
an initial lactose concentration of 20 g L-1 (Fig. 4, Supplementary Fig. S5). The model predicted 
the measured lactose, biomass, lactic acid, and galactose concentrations (Fig. 4 A-D). The lag-
time parameter tlag was fitted for both fermentations because the lag time differs from batch to 
batch. The assessment of the validation model fit showed that the model gave an acceptable 
prediction accuracy with an RMSSE for biomass of 0.2 g L-1 (Table 4). The pH prediction was 
also very accurate with a discrepancy of less than 0.1 pH units (Fig. 4 E). In the beginning of the 
fermentation, the pH dropped from 6.1 to 6.0 before the controller started to add ammonia solution. 
This drop was predicted to be faster than actually measured, which could be attributed to a slightly 
different buffer capacity of the medium in reality compared to the mixed weak acid/base model. 
However, a prediction accuracy within ± 0.1 pH units was deemed sufficiently accurate for 
monitoring purposes, as pH measurement errors were expected to be in the same range. The only 
exception of an accurate pH fit was at the moment when the pH controller started: too much 
ammonia was added in the experiment so that the pH showed an overshoot. The pH prediction is 
closely dependent on the predictions of the ammonia addition and lactic acid concentration. The 
validity of the mixed weak acid/base model was therefore demonstrated by a correct prediction of 
the added ammonia solution (Fig. 4 F), as the pH is held constant by adding ammonia solution. 
Nevertheless, the validity of the applied Davis equation to calculate the activity coefficients (Eq. 
9) for 𝐼𝐼 ≤ 0.5 𝐴𝐴𝐿𝐿𝐺𝐺 𝐿𝐿−1 has to be noted, and could be improved in future studies in particular for 
fermentations with an ionic strength higher than 1 mol L-1. Overall, these results indicate the 
validity of the model, which encourages its further application for monitoring of a fermentation 
process as presented below. 

4.3 Application of the probabilistic model-based soft sensor 
The probabilistic model-based soft sensor was applied to the data sets of three historical 
fermentations, where the historical on-line data was used as it would be available on-line. Here, 
the initial pH was around 7 and the pH dropped to the control value 6 due to acid secretion as by-
product during the LAB fermentation (Fig. 5, Supplementary Fig. S6 and S7, while the 
Supplementary Movies show the virtual on-line implementation of the soft sensor). The on-line 
data, namely pH and quantity of added ammonia were used as an input to update the monitoring 
system (Fig. 5 left column). The Monte Carlo propagation of the error for the biomass, lactose, 
and lactic acid concentration is then predicted by the monitoring system (Fig. 5 middle and right 
column). The predictions of the future states of the system are shown at different times, 2 h, 2 h 
40 min, 3 h, 4 h, and 6 h (Fig. 5 rows). Since the pH was higher than the control value 6, no 
ammonia solution was added within the first 2 h and 35 min. Therefore, no data reconciliation and 
parameter update were conducted (Fig. 5, time =2 h), and Monte Carlo simulations were 
performed in the defined input uncertainty space (Table 2 and Supplementary Fig. S8) considering 
uncertainties in the biological model parameters and initial conditions. The monitoring system was 
running without updating the parameters until the ammonia addition started to control the pH 
(Fig. 5, at time = 2 h 40 min). At this point, tlag was updated ensuring that the pH controller in the 
experiment and simulation started at the same time. It is clear that there is a lag-time variation 
from batch to batch, which has to be taken into account. On the one hand, a dependency on the pH 
measurement is introduced by this procedure. On the other hand, it is the only possibility – given 
the limited amount of on-line measurements – to align the modelled and measured ammonia 
addition, which is crucial for the monitoring system. Once tlag was updated, and the ammonia 
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addition started, the data reconciliation and parameter update modules updated µmax every 5 
minutes, as described in the Framework description. With time, more measurement information 
was available and the prediction accuracy of the state variables increased (Fig.5, time =3 h – 6 h). 
 

 
Fig. 4. Model prediction for a validation lab-scale batch fermentation. Lactose (A), biomass with 
standard deviation (B), lactic acid (C), galactose (D) concentrations, pH (E), and the added 
ammonia amount (F). The S. thermophilus fermentation was performed in a 2 L stirred tank 
bioreactor at 300 rpm, 40 °C, and controlled at pH = 6. Model prediction (solid line) for the 
measurements (circles) of one of the two validation lab-scale batches.  
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Fig. 5. Probabilistic monitoring system applied to lab-scale batch data of a S. thermophilus 
fermentation. The monitoring system reads in the on-line available data (left column, black dots), 
ammonia addition and pH, and predicts the state variables every 5 minutes (middle and right 
column). 100 Monte Carlo simulations of the dynamic model were performed within the 
monitoring system considering uncertainties in the initial conditions, ammonia addition, and model 
parameters. The 95 % confidence intervals of the predictions are shown at five time points during 
the fermentation (2 h, 2 h 40 min, 3 h, 4 h, 6 h). Predictions of the pH (blue), ammonia addition 
(red), biomass (cyan), lactose (green), and lactic acid (magenta) concentrations are shown. The 
off-line measurements for biomass (gray dot with standard deviation), lactose (gray circle), and 
lactic acid (gray square) are shown for comparison only, but were not used for the data 
reconciliation and parameter update (see Fig. 1).  
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The RMSSE for biomass was 0.8 g L-1 when the fermentation started, and improved to 0.5 g L-1 
at the end of the fermentation (both with a standard deviation of 0.1 g L-1) (Fig. 6). Mainly, the 
update of tlag after 2 h and 40 minutes of the fermentation improved the prediction accuracy. The 
reproducibility of the Monte Carlo simulations was validated as the RMSSE for biomass varied 
less than 0.5 % in 10 repeated Monte Carlo simulations with 100 input samples in each simulation. 
Changing the tolerance limit to estimate µmax in the iterative update procedure (Eq. 17) to 1% and 
0.1% did not improve the prediction accuracy for the presented fermentations (data not shown). 
However, this might be necessary for other applications. In summary, an accurate prediction of the 
state variables was achieved.  
 

 
Fig. 6. 95% confidence interval of the RMSSE for the biomass prediction during the probabilistic 
monitoring of a S. thermophilus fermentation.  
 
Several reports have implemented soft sensors to monitor LAB fermentations. Acuña et al. [16] 
and Peter and Röck [15] implemented a model-based monitoring system for LAB fermentations 
using the base addition and pH measurements, whereas the second implementation is limited to 
monitoring the lactic acid concentration. Fayolle et al. [17] and Payot et al. [18] designed a data-
based soft sensor using mid-infrared spectroscopy and conductivity, respectively. However, all 
studies presented deterministic predictions and did not consider the imperfect knowledge of the 
process by taking uncertainties into account. 
 
Contrary to the earlier published investigations, this study accounted for several sources of 
uncertainties in the probabilistic monitoring system and assessed the combined effect of system 
uncertainties on the predictions. The initial conditions, on-line measurements, and biological 
model parameters were considered as uncertainty sources. The concentrations of the medium 
components (initial conditions) vary from batch to batch as the medium preparation procedure 
underlies uncertainties. The biomass concentration depends on the cryo-stock and pre-culture 
quality. Since the monitoring system relies on the ammonia addition measurement, it is important 
to incorporate measurement uncertainties, as well. Mears et al. [12] pointed out that an error of 
5 % of the carbon evolution rate or oxygen uptake rate, caused by measurement errors in the 
exhaust gas, led to errors of more than 50 % in the model prediction of the final biomass 
concentration in a filamentous fungi process at pilot scale. The exact extent of uncertainties of the 
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initial conditions and measurements could not be determined in the present study because 
statistically relevant data was not available. The implemented uncertainties were instead based on 
expert knowledge. However, the model parameter uncertainties were obtained in the parameter 
regression step that has been presented above.  
 
The monitoring system predicted the current state variables and forecasted the future course of the 
fermentation and could therefore support a lean production. If this monitoring system is applied at 
production sites, it will provide plant operators with a PAT tool to monitor the biological variables 
in the fermentation process , such as biomass concentration, instead of on-line ammonia addition 
measurements, where the latter are difficult to comprehend (as shown in the virtual implementation 
in the Supplementary Movies). In addition, the tool could predict whether and when the target cell 
yield will be reached. This helps run the batch period optimally and schedule other unit operations: 
All downstream processing steps could be coordinated with the upstream fermentation batch time 
and therefore be prepared in time. Moreover, cleaning, sterilization, media preparation, and pre-
culture steps affiliated with the start up of the batch process could be optimized to reduce the 
overall downtime of the fermentation unit. An optimized schedule with efficient utilization of the 
different operation units can contribute to a more economical operation of the production plant. 
The monitoring system could also cover the early diagnosis of process failures and warn the 
operators if biomass growth had stopped unexpectedly. The standstill of ammonia addition is a 
sign of interrupted biomass growth, as it happened in the shown fermentation after 3 h (Fig. 5, 
time = 3 h). However, a warning should only be given in case the ammonia addition stopped for a 
longer period of time – in contrast to the present fermentation, where the ammonia addition stopped 
only for a short while because the pH controller overshot. Furthermore, the system could be 
extended to calculate the risk of not achieving the target biomass yield as a result of the outcome 
of the soft sensor, which provides the probability distribution of biomass concentration at the end 
of a given batch. It could then be implemented for risk-based monitoring and be further developed 
for control purposes. 

5. Conclusion 
A probabilistic model-based soft sensor was proposed for the monitoring of S. thermophilus 
fermentations. State variables, such as biomass, substrate, and lactic acid, which were not possible 
to be measured on-line, could be successfully predicted. The predictions were based on very 
limited available on-line measurements, namely base addition and pH measurements since exhaust 
gas measurements were not available. The aim was achieved by coupling a biokinetic model and 
a mixed weak acid/base model (for the pH calculation), which were validated comprehensively. 
Uncertainties in the initial substrate concentration, base addition, and biological model parameters 
were quantified and accounted for using Monte Carlo simulations in the probabilistic monitoring 
system. The future objective of this study will be to implement the monitoring system for on-line 
risk-based monitoring and control in pilot- and large-scale LAB studies. 
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Nomenclature 

  
CGal galactose concentration (g L-1) 
CGlc glucose concentration (g L-1) 
𝐶𝐶𝑝𝑝+ H+ concentration (mol L-1) 
CLA lactate concentration (g L-1) 
𝐶𝐶𝑂𝑂𝑝𝑝− OH- concentration (mol L-1) 
CP total lactic acid (lactate and lactic acid) concentration (g L-1) 
CS lactose (substrate) concentration (g L-1) 
CtCO total carbonic acid (H2CO3

∗  and 𝐻𝐻𝐶𝐶𝑂𝑂3−) concentration (mol L-1) 
CtNH total concentration of 𝑁𝑁𝐻𝐻4+ and 𝑁𝑁𝐻𝐻3 (g L-1) 
CtPh total concentration of 𝐻𝐻3𝑃𝑃𝑂𝑂4, 𝐻𝐻2𝑃𝑃𝑂𝑂4−, and 𝐻𝐻𝑃𝑃𝑂𝑂42−(g L-1)  
CtZ total concentration of the unknown compound (dissociated and undissociated form) (mol L-1) 
CX biomass concentration (g L-1) 
Errori Weighted model prediction error of a component at time point i 
fd divalent activity coefficients (-) 
flag lag-time function (-) 
fm monovalent activity coefficients (-) 
fP lactic acid inhibition function (-) 
fpH pH dependency function (-) 
fS substrate limitation and inhibition function (-) 
H2CO3

∗  dissolved CO2 and H2CO3 
I ionic strength (g L-1) 
KC1
′  apparent equilibrium constant for the carbonic acid system (-) 

KI substrate inhibition parameter (g L-1) 
KLa lactate inhibition parameter (g L-1) 
KLa1 pH dependent lactate inhibition parameter (g L-1) 
KLA
′  apparent equilibrium constant for the lactic acid system (-) 

KNH
′  apparent equilibrium constant for the ammonia system (-) 

KP P-controller controller gain 
KP,La 2. lactate inhibition parameter (L g-1) 
KP,pH1 lactate inhibition pH parameter (-) 
KP,pH2 2. lactate inhibition pH parameter (-) 
KP1
′  apparent equilibrium constant for the phosphoric acid system (-) 

KP2
′  apparent equilibrium constant for the dihydrogen phosphate system (-) 

Kr,C1
′  apparent reverse rate constant for carbonic acid dissociation (s-1) 

Kr,LA
′  apparent reverse rate constant for lactic acid dissociation (s-1) 

Kr,NH
′  apparent reverse rate constant for NH4 dissociation (s-1) 

Kr,P1
′  apparent reverse rate constant for H3PO4 dissociation (s-1) 

Kr,P2
′  apparent reverse rate constant for 𝐻𝐻2𝑃𝑃𝑂𝑂4− dissociation (s-1) 

Kr,W
′  apparent reverse rate constant for water dissociation (s-1) 

KS substrate limitation parameter (g L-1) 
KW
′  apparent equilibrium constant for the water system (-) 

KZ
′  apparent equilibrium constant for the unspecified compound system (-) 

n number of measurement points 
pHopt optimal pH parameter in the pH function (-) 
pHopt_lag optimal pH for the lag-time fit (-) 
pHset pH control set point (-) 
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𝑜𝑜𝐾𝐾𝐶𝐶1 pKa constant for carbonic acid dissociation 
𝑜𝑜𝐾𝐾𝐿𝐿𝐿𝐿 pKa constant for lactic acid dissociation 
𝑜𝑜𝐾𝐾𝑁𝑁𝑝𝑝  pKa constant for NH4 dissociation 
𝑜𝑜𝐾𝐾𝑃𝑃1 pKa constant for H3PO4 dissociation 
𝑜𝑜𝐾𝐾𝑃𝑃2 pKa constant for 𝐻𝐻2𝑃𝑃𝑂𝑂4− dissociation 
𝑜𝑜𝐾𝐾𝑊𝑊 pKa constant for water dissociation 
𝑜𝑜𝐾𝐾𝑍𝑍 pKa constant for the unspecified compound dissociation 
qGal volumetric galactose secretion rate (C-mol L-1 h-1) 
qNH volumetric ammonia consumption rate (mol L-1 h-1) 
qNH,add volumetric ammonia addition rate (mol L-1 h-1) 
qP volumetric lactic acid secretion rate (C-mol L-1 h-1) 
qPh volumetric phosphoric acid consumption rate (mol L-1 h-1) 
qS volumetric substrate consumption rate (C-mol L-1 h-1) 
qX volumetric biomass growth rate (C-mol L-1 h-1) 
RE relative error (-) 
RMSSE root mean sum of squared errors (g L-1) 
T temperature in the bioreactor (K) 
t time variable (h) 
tlag lag-time coefficient (h) 
wj maximum value of the state j for the weighted error in the objective function  
Ygal galactose yield (g g-1) 
zi charge number of the i-th ion 
𝑦𝑦�𝑖𝑖 i-th model value of one output (g L-1) 
𝑦𝑦𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠,𝑖𝑖 i-th measurement value of one output (g L-1)  

 
Greek Letters 

α growth related production coefficient of lactic acid (g g-1) 
𝜃𝜃�𝑖𝑖 estimated parameter value 
µmax maximum specific growth rate (h-1) 
σ standard deviation 
σpH spread parameter is the gaussian pH function 
σlag standard deviation of the lag-time fit  
𝜎𝜎𝜃𝜃�𝑖𝑖  standard deviation of the estimated parameter  
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Supplementary material 
 
Table S1. Initial parameter values. 

kinetic 
parameters 

initial value source of initial value lower 
bound 

upper 
bound 

µmax 1.18 h-1 [21] 1 5 
KS 0.79 g L-1 [20] 0.5 5 
KI 164 g L-1 [20] 50 200 
KP,La 0.2 L g-1 [22] 0.1 1 
KLa 25 g L-1 [22] 10 30 
pHopt 6 expert knowledge 5.7 6.5 
σpH 1.54 [22] 0.1 3 
α 5 g g-1 expert knowledge 0.1 30 
KP_pH1 20 expert knowledge 1 50 
KP_pH2 7 expert knowledge 6.8 7.2 
pHopt-lag 5.7 expert knowledge 5.5 6 
σlag 0.4 expert knowledge 0.3 0.5 
Ygal 0.6 g g-1 expert knowledge 0 1 

 
Table S2. First parameter estimation: Estimated parameter values, relative errors, and local 
sensitivity analysis 

kinetic 
parameters 

estimated 
parameter 
value 

relative error 
[%] 

δmsqr lactose δmsqr biomass δmsqr lactate 

µmax 2.23 19 57 5 28 
KS 2.88 73 2 0 1 
KI 139.10 1 17 2 8 
KP,La 0.21 33 6 1 3 
KLa 20.19 0 23 2 11 
pHopt 6.49 6 142 13 70 
σpH 1.60 9 11 1 5 
α 5.20 0 8 2 6 
KP_pH1 6.96 0 0 0 0 
KP_pH2 6.95 3 1 0 0 
pHopt-lag 5.69 1 403 38 198 
σlag 0.30 118 22 2 11 
Ygal 0.69 5 12 0 0 
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Table S3. Final parameter estimation: Estimated parameter values, relative errors, and local 
sensitivity analysis 

kinetic 
parameters 

estimated 
parameter 
value 

relative error 
[%] 

δmsqr lactose δmsqr biomass δmsqr lactate 

µmax 2.06 1 56 5 27 
KP,La 0.24 13 5 0 3 
KLa 19.80 0 24 2 12 
pHopt 6.39 1 135 13 66 
σpH 1.42 3 8 1 4 
α 5.19 0 8 2 5 
pHopt-lag 5.70 1 409 39 201 
σlag 0.3 9 22 2 11 
Ygal 0.69 5 13 1 0 

 

 
Fig. S1. Model predictions for a S. thermophilus lab-scale batch fermentation at pH = 5.5. It was 
performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at pH = 5.5. Model 
prediction (solid line) for the measurements (circles). The biomass measurement is shown with the 
standard deviation. This fermentation was used for the parameter estimation. 
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Fig. S2. Model predictions for a S. thermophilus lab-scale batch fermentation at pH = 6.0. It was 
performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at pH = 6.0. Model 
prediction (solid line) for the measurements (circles). The biomass measurement is shown with the 
standard deviation. This fermentation was used for the parameter estimation. 
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Fig. S3. Model predictions for a S. thermophilus lab-scale batch fermentation at pH = 6.5. It was 
performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at pH = 6.5. Model 
prediction (solid line) for the measurements (circles). The biomass measurement is shown with the 
standard deviation. This fermentation was used for the parameter estimation. 
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Fig. S4. Model predictions for a S. thermophilus lab-scale batch fermentation at pH = 7.0. It was 
performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at pH = 7.0. Model 
prediction (solid line) for the measurements (circles). The biomass measurement is shown with the 
standard deviation. This fermentation was used for the parameter estimation. 
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Fig. S5. Model prediction for a validation lab-scale batch fermentation. The S. thermophilus 
fermentation was performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled at 
pH = 6. Model prediction (solid line) for the measurements (circles) of one of the two validation 
lab-scale batches. The biomass measurement is shown with the standard deviation. 
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Fig. S6. Probabilistic monitoring system applied to lab-scale batch data of a S. thermophilus 
fermentation. The monitoring system reads in the on-line available data (black dots), ammonia 
addition and pH, and predicts the state variables every 5 minutes. 100 Monte Carlo simulations of 
the dynamic model were performed within the monitoring system considering uncertainties in the 
initial conditions, ammonia addition, and model parameters. The 95 % confidence intervals of the 
predictions are shown at five time points during the fermentation (2 h, 2 h 40 min, 3 h, 4 h, 6 h). 
Predictions of the pH (blue), ammonia addition (red), biomass (cyan), lactose (green), and lactic 
acid (magenta) concentrations. The off-line measurements for biomass (gray dot with standard 
deviation), lactose (gray circle), and lactic acid (gray square) are shown for comparison only, but 
were not used for the data reconciliation and parameter update (see Fig. 1). 
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Fig. S7. Probabilistic monitoring system applied to lab-scale batch data of a S. thermophilus 
fermentation. The monitoring system reads in the on-line available data (black dots), ammonia 
addition and pH, and predicts the state variables every 5 minutes. 100 Monte Carlo simulations of 
the dynamic model were performed within the monitoring system considering uncertainties in the 
initial conditions, ammonia addition, and model parameters. The 95 % confidence intervals of the 
predictions are shown at five time points during the fermentation (2 h, 2 h 40 min, 3 h, 4 h, 6 h). 
Predictions of the pH (blue), ammonia addition (red), biomass (cyan), lactose (green), and lactic 
acid (magenta) concentrations. The off-line measurements for biomass (gray dot with standard 
deviation), lactose (gray circle), and lactic acid (gray square) are shown for comparison only, but 
were not used for the data reconciliation and parameter update (see Fig. 1).  
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Fig. S8. Plotting of the sampling matrix for the input uncertainty space. The Latin Hypercube 
Sampling (LHS) technique and the Iman Conover rank correlation method were used to sample 
100 independent inputs and to induce the known covariance matrix, respectively. 
 

Paper B 187



 
 St

oi
ch

io
m

et
ri

c 
m

at
ri

x 
   

St
oi

ch
io

m
et

ri
c 

m
at

ri
x 

  
  

C
om

po
ne

nt
s -

> 
i 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

N
am

e 

Lactose 

Galactose 

Biomass 

Lactic acid 

Lactate 

Ammonia 

Ammonium 

Phosphoric acid 

Dihydrogen 
phosphate 

Hydrogen phosphate 

Carbon dioxide 
dissolved = carbonic 
acid 

Bicarbonate 

Hydrogen ion 

Hydroxyl ion 

unknown acid 
undissociated form 

unknown acid 
dissociated from 

Sy
m

bo
l 

S 
G

al
 

X
 

H
L

a 
L

a1
- 

A
 

A
1-

 
P 

P1
- 

P2
- 

C
l 

C
1-

 
H

 
O

H
 

Z+
 

Z
 

C
he

m
ic

al
 c

om
po

si
tio

n 
C

12
H

22
O

11
 

C
6H

12
O

6 
C

H
aO

bN
cP

d 
C

3H
6O

3 
C

3H
5O

3(
-

) 
N

H
3 

N
H

4(
+)

 
H

3P
O

4 
H

2P
O

4(
-

) 
H

PO
4(

2-
) 

H
2C

O
3*

(l)
 

H
C

O
3(

-
) 

H
+ 

O
H

- 
  

  

Pr
oc

es
s (

U
ni

ts
) 

C
-m

ol
/L

 
C

-m
ol

/L
 

C
-m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 
m

ol
/L

 

B
io

m
as

s g
ro

w
th

 
-(1

+Y
ga

l) 
Y

ga
l 

1 
  

  
c 

  
d 

  
  

  
  

  
  

  
  

L
ac

tic
 a

ci
d 

sy
nt

he
si

s 
-(1

+Y
ga

l) 
Y

ga
l 

  
 

1/
3 

  
  

  
  

  
  

  
1/

3 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  

A
m

m
on

ia
 d

is
so

ci
at

io
n 

  
  

  
  

  
1 

-1
 

  
  

  
  

  
1 

  
  

  

Ph
os

ph
at

e 
di

ss
oc

ia
tio

n 
1 

  
  

  
  

  
  

  
-1

 
1 

  
  

  
1 

  
  

  

Ph
os

ph
at

e 
di

ss
oc

ia
tio

n 
2 

  
  

  
  

  
  

  
  

-1
 

1 
  

  
1 

  
  

  

C
ar

bo
na

te
 d

is
so

ci
at

io
n 

1 
  

  
  

  
  

  
  

  
  

  
-1

 
1 

1 
  

  
  

L
ac

ta
te

 d
is

so
ci

at
io

n 
  

  
  

-1
 

1 
  

  
  

  
  

  
  

1 
  

  
  

W
at

er
 d

is
so

ci
at

io
n 

  
  

  
  

  
  

  
  

  
  

  
  

1 
1 

  
  

D
is

so
ci

at
io

n 
of

 Z
 

  
  

  
  

  
  

  
  

  
  

  
  

1 
  

-1
 

1 

 

188



Paper C 189

Paper C

A Consistent Methodology Based Parameter

Estimation for a Lactic Acid Bacteria Fermentation

Model

Robert Spanna, Christophe Rocab, David Koldb, Anna Eliasson Lantzc, Krist V.

Gernaeya, Gürkan Sina

a Process and Systems Engineering Center (PROSYS), Department of

Chemical and Biochemical Engineering, Technical University of Denmark

b Chr. Hansen A/S

c PILOT PLANT, Department of Chemical and Biochemical Engineering,

Technical University of Denmark

Published in the Proceedings of the 27th European Symposium on Computer

Aided Process Engineering – ESCAPE 27, 2017.

http://dx.doi.org/10.1016/B978-0-444-63965-3.50372-X

http://dx.doi.org/10.1016/B978-0-444-63965-3.50372-X


A Consistent Methodology Based Parameter Estimation
for a Lactic Acid Bacteria Fermentation Model
Robert Spanna, Christophe Rocab, David Koldb, Anna Eliasson Lantza, Krist V. Gernaeya

and Gürkan Sina*

aDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts
Plads Building 229, 2800 Kgs. Lyngby, Denmark
bChr. Hansen, Boege Allé 10-12, 2970 Hoersholm, Denmark
gsi@kt.dtu.dk

Abstract
Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy
industry or as probiotics, and research on their cell production is highly required. A first principles
kinetic model was developed to describe and understand the biological, physical, and chemical
mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a
methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an
initial knowledge based guess of parameters was available and an initial parameter estimation of
the complete set of parameters was performed in order to get a good model fit to the data. How-
ever, not all parameters are identifiable with the given data set and model structure. Sensitivity,
identifiability, and uncertainty analysis were completed and a relevant identifiable subset of pa-
rameters was determined for a new parameter estimation including an evaluation of the correlation
and confidence intervals of those parameters to double-check identifiability issues. Such a con-
sistent approach supports process modelling and understanding as i.e., one avoids questionable
interpretations caused by estimates of actually unidentifiable parameters.

Keywords: lactic acid bacteria, parameter estimation, sensitivity analysis, identifiability analysis,
uncertainty analysis

1. Introduction

Biotechnological manufacturing companies increasingly apply first principles models in order to
support the development, optimization, and control of their processes. Models are an indispens-
able tool for the comprehensive understanding and control of the processes (Mears et al., 2016).
Within the model development process, model parameters need to be estimated. However, of-
ten an ill-conditioned parameter estimation is performed because no statistical evaluation of the
procedure is conducted and the selected set of estimated parameters is not identifiable.

In this work, a consistent statistical parameter estimation methodology is followed for an unstruc-
tured first principles model of a lactic acid bacteria fermentation. This model can be applied in a
process monitoring system that allows risk-based operation and decision-making. The aim of this
study is to accomplish a consistent statistical analysis of the estimated parameters. To this end, a
local sensitivity and identifiability analysis are applied.
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2. Nomenclature

Symbol Description
Ci concentration (g L-1) α growth related production coefficient of

lactic acid (g g-1)KI substrate inhibition constant (g L-1)
KS limiting substrate constant (g L-1) β non-growth related production coef. of

lactic acid (g g-1 h-1)KLa lactate inhibition parameter (L g-1)
KHLa lactate inhibition parameter (g L-1) σ std. deviation in the pH function
KP,HLa 2. HLa inhibition parameter (L g-1)
P lactic acid (g L-1) Subscripts i
pHopt optimal pH in the pH function HLa undissociated lactic acid
tlag lag-time coefficient (h) La dissociated lactic acid
X biomass (g L-1) P product: lactic acid
µmax max. specific growth rate (h-1) S substrate: lactose

3. Materials and Methods

3.1. Fermentation

The batch fermentation of Streptococcus thermophilus was carried out in a 2 L stirred tank glass
bioreactor (Biostat® B, Sartorius AG, Germany) with a stirring speed of 300 rpm and nitrogen
headspace gassing. The temperature was maintained at 40 °C and the pH was controlled at pH = 6
by the addition of 24 % (v/v) NH3. The fermentation medium contained 18 g L-1 lactose, 10 g L-1

casein hydrolysate, 12 g L-1 yeast extract, 11.5 mM K2HPO4, 36.6 mM sodium acetate, 8.2 mM
trisodium citrate, 0.8 mM MgSO4, and 0.3 mM MnSO4.

3.2. Analysis

Dry cell weight was determined from cell broth, which was centrifuged, washed in 0.9 % (w/v)
NaCl solution, and dried for 24 h at 70 °C. Organic acids were quantified from filtered (pore
size: 0.2 µm) supernatant samples in a HPLC system (Dionex UltiMate 3000, Thermo Fisher
Scientific, Waltham, MA) and a refractive index detector (ERC RefractoMax 520), equipped with
an Aminex® HPX-87H column (Bio-Rad Laboratories, Hercules, CA) using 5 mM H2SO4 at a
flow rate of 0.6 mL min-1 at 50 °C.

3.3. Simulation and Modelling

An unstructured first principles model describing the homolactic batch fermentation of Strepto-
coccus thermophilus was developed. Lactose is metabolized yielding biomass, lactic acid, and
galactose. The present strain consumes the glucose part from lactose completely, while galac-
tose is mostly secreted. The growth rate expression in Eq. (1) depends on the lag time, lactose
inhibition and limitation (Åkerberg et al., 1998), lactic acid inhibition, which is separated into
the dissociated and undissociated form (Aghababaie et al., 2015), and the pH of the cultivation
(Schepers et al., 2002). An amended form of the Luedeking-Piret (Luedeking and Piret, 1959)
equation describes the lactic acid production in Eq. (2).
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dX
dt

= µmax · flag · fS · fLa · fHLa · fpH ·X = µmax · (1− e−t/tlag)

· CS

CS +KS +
C2

S
KI

· e−KLa·CLa · 1
1+ eKP,HLa(CHLa−KHLa)

· e−(
(|pHopt−pH|)2

2σ2 ) ·X (1)

dP
dT

= (α ·µ +β · fS · fpH) ·X (2)

The kinetic model has been implemented in MATLAB® (The MathWorks®, Natick, MA) and the
ODEs were solved with the ode15s solver.

3.4. Consistent Statistical Parameter Estimation

The consistent statistical parameter estimation follows the methodology from Figure 1. In the
beginning, just literature values or expert knowledge are available for the initial parameter guess,
but they do often not refer to the exact strain or cultivation conditions of interest. The first param-
eter estimation of the complete set of parameters is performed with this weak initial parameter
guess. In the present study, the statistical parameter estimation and the uncertainty analysis with
the Monte Carlo method were solved in MATLAB applying the methodology of Sin and Gernaey
(2016). In the statistical assessment, the parameters are first ranked according to their significance
on the model outputs, measured by δmsqr, according to the methodology of Brun et al. (2002). The
least squares method is applied for the sensitivity and identifiability analysis as defined in Seber
and Wild (1989). Then, the confidence intervals are checked. Third, the covariance matrix is
evaluated and parameters with a pairwise correlation larger than 0.5 are regarded as correlated.
Parameters with too large confidence intervals and with zero influence on the model outputs are
not identifiable and excluded. A new parameter estimation is performed with a parameter subset
with a collinearity index below 15. It is also advised to run the parameter estimation of several
subsets, if there is no obvious subset candidate, and then to compare the results. The results of the
new parameter estimation are again statistically evaluated. The parameter estimate is considered
as identifiable when the pairwise correlation of the parameters is lower than 0.5 and the relative
error (RE = standard deviation / mean value of the parameter value) is lower than 0.1. Otherwise,
the parameter estimation and statistical evaluation have to be repeated until a statistically identi-
fiable parameter subset is obtained or a new design of experiments has to be performed in order
to obtain more experimental information.

Identifiability analysis

• Sensitivity: δmsqr

• Confidence intervals

• Pairwise correlation

• Collinearity index

Parameter 
estimation

Decision

correlation < 0.5

RE< 10 %

Parameter subset

No

Yes
use the modelInitial parameters

new design of 
experiments

Figure 1: Steps for the consistent statistical parameter estimation.
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Table 1: First parameter estimation: initial values and results.

kinetic initial source of initial values estimated 95% δmsqr

para- values parameter CI lactose
meters values
µmax 1.18 h-1 (Aghababaie et al., 2015) 2.89 ±9 12.8
KS 1 g L-1 expert guess 0.5 ±6 0.5
KI 164 g L-1 (Åkerberg et al., 1998) 47 ±683 3.7
KLa 0.326 L g-1 (Aghababaie et al., 2015) 3E-7 ±0.3 0
pHopt 6 expert knowledge 6 ±15,700 0
σ 1.54 (Schepers et al., 2002) 5 ±19,653 0
α 1.54 g g-1 (Aghababaie et al., 2015) 6E-3 ±11 0
β 0.52 g g-1 h-1 (Aghababaie et al., 2015) 7.54 ±32 3.3
tlag 1 h expert guess 0.84 ±5 3.7

4. Results and Discussion

The consistent statistical parameter estimation was applied to the fermentation data set, as de-
scribed in the Materials and Methods section. The model parameters were estimated in order
to fit all four offline measurements during the entire fermentation: biomass, lactose, lactic acid,
and galactose. Initial parameter values were obtained from literature and fermentation specialists
(Table 1). However, one has to be aware of that both the strain is not identical and the model
structure was slightly changed compared to the literature. For example, the maximum specific
growth rate parameter µmax did therefore not reflect the biological specific maximum growth rate
directly since it has to compensate for all functions in the growth rate expression, and should be
better interpreted as an artificial parameter. The undissociated lactic acid inhibition parameter
KHLa = 0.0444 g L-1 and the second lactate inhibition parameter KP,HLa = 52.862 L g-1 given
from Aghababaie et al. (2015) were kept constant as they could not be estimated with the given
experimental data set because the concentration of the undissociated form was too low at the
given pH = 6. Table 1 summarizes the results of the first parameter estimation, which was within
the expected range. Figure 2 shows the initial model fit as dashed line. Considering that µmax
accounts for five functions in the growth rate expression, a biological µmax would be in the range
of 1.7 h-1 when assuming that each function has to be compensated by 10 % on average. The
model parameters were ranked by their local significance using the delta mean-square measure,
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biomass (dots), lactic acid (crosses), the initial model fit (dashed line), and the second model fit
(line). C: Monte Carlo simulation (N=1000) with the uncertainty of the parameter estimates for
the model output lactose.
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Table 2: Correlation matrix of the 9 parameters in the first parameter estimation.

µmax KS KI KLa pHopt σ α β tlag

µmax 1 0.72 -0.67 -0.15 -0.72 0.62 0.25 0.67 -0.57
KS 1 -0.69 -0.55 -0.43 0.32 -0.08 0.81 -0.7
KI 1 0.14 0.04 0.04 -0.58 -0.25 0.95
KLa 1 0.34 -0.24 0.16 -0.49 0.33
pHopt 1 -0.9 0.18 -0.75 0.03
σ 1 -0.17 0.64 0.07
α 1 -0.49 -0.48
β 1 -0.29
tlag 1

δmsqr. δmsqr values of the parameters with respect to lactose are listed in Table 1. KLa, pHopt, σ,
and α had zero effect on the model outputs. The large confidence intervals showed that KI, pHopt,
and σ could not be identified with the given data set. The data set lacked information of different
substrate concentrations and pH conditions in order to determine them. Table 2 shows the cor-
relation matrix of the 9 investigated parameters. The correlation coefficient was higher than 0.5
for several parameters indicating high linear correlations between these model parameters. For
example, µmax was highly correlated with KS and KI as well as with the parameters from the pH
and lag time functions. α and β had a correlation coefficient of 0.49, which did not clearly show
correlation. The explanation was that the estimated value of α was very low. KI, pHopt, σ, KLa
and α were excluded from the next parameter estimation based on the sensitivity analysis and the
large confidence intervals. It was hence decided to set the functions fLa, fHLa, and fpH equal to
one. α was kept at the initial literature value and β was estimated. The collinearity index for this
subset of parameters was 4.6, indicating identifiability (data not shown). It was noted that other
subsets with more parameters and a collinearity index below 15 existed, but they included also pa-
rameters that had no effect on the model output. The second parameter estimation for the selected
four parameters gave the same quality of fit as shown in Figure 2. The new estimated parameter
values are listed in Table 3 including their confidence intervals, δmsqr with respect to lactose, and
the correlation matrix. The parameters were still in the range known from literature. They had
furthermore all a significant effect on the model outputs. The relative errors were however large
for KS and tlag indicating a bad quality of the parameter estimation (data not shown). The param-
eters were still correlated. The correlation coefficients differed from the previous matrix because
another parameter subset was investigated. In order to predict the uncertainty, i.e. the effect of
the estimated parameters and their standard deviation on the model outputs, a Monte-Carlo sim-
ulation was performed. Figure 2 indicates that the uncertainties in the parameter estimates had a
substantial effect on the model outputs.

This study verified the methodology for a consistent statistical parameter estimation. However,
the problem is not completely solved for the given data set and model structure because the data
set does not contain enough information in order to estimate the parameters accurately, and the
model needs to be simplified. To improve the parameter estimation accuracy, it is necessary
to perform a new design of experiments, e.g. with different initial conditions so as to obtain
information rich new data for parameter estimation.
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Table 3: Results of the second parameter estimation with the confidence intervals (CI).

kinetic parameters estimated 95% CI δmsqr correlation matrix
parameter values lactose

µmax KS β tlag
µmax 1.97 ±0.66 14.3 1 0.87 0.64 0.97
KS 0.53 ±1.24 0.7 1 0.55 0.76
β 4.2 ±1.8 2.2 1 0.76
tlag 0.81 ±0.94 3.7 1

5. Conclusion

First principles models are increasingly applied in biotechnological manufacturing processes and
reliable parameter estimation procedures are needed. This study verified the methodology for
a consistent statistical parameter estimation. However, the given problem was not solved com-
pletely since the available data set did not include enough information to estimate all parameters
accurately. The estimated parameters contained correlation. It is therefore necessary to acquire
more fermentation data, which also covers different fermentation conditions. In order to identify
for example KS more measurement points at low lactose concentrations are needed. Furthermore,
the kinetic model is too complex. A simplification of it is recommended.
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Abstract
A mechanistic process model describing a lactic acid bacteria (LAB) fermentation was applied to
develop a continuous fermentation process. Producing LAB for the dairy industry in a continuous
cultivation, which would allow harvesting the cells during the cultivation, would reduce produc-
tion costs compared to traditional batch processes. To this end, a validated mechanistic model
of a Streptococcus thermophilus fermentation was used for a model-based continuous process
evaluation. The fermentation model consists of biological and chemical mechanisms including a
description of the growth rate as a function of pH and inhibition effects of metabolites. The opti-
mal dilution rate and substrate concentration in the feed were estimated in order to maximize the
cell yield (biomass concentration) and to minimize the waste of substrate during the continuous
fermentation in a 50 m3 bioreactor for two scenarios: downstream capabilities are i) flexible, and
ii) fixed. The biomass concentration is restricted by the growth-inhibiting lactic acid concentra-
tion, which is produced by the growing bacteria. Furthermore, the substrate, which is supplied
by the feed, should be consumed completely in the fermentation and not wasted in the bioreactor
effluent owing to raw material costs. The resulting non-linear optimization problem was formu-
lated and solved in MATLAB R©. A Monte Carlo simulation showed the robustness of the results,
where a biomass concentration of 5 g L-1 could be achieved in the continuous fermentation with
a substrate wastage of less than 3 % in the bioreactor effluent. The productivity of the continu-
ous process was similar to a traditional batch process, but frequent cleaning and sterilization are
no longer necessary in a continuous process resulting in a shorter unproductive downtime of the
bioreactors. This promising potential of a continuous process for LAB cultivations encourages
pilot-scale studies for a comprehensive techno-economic evaluation.

Keywords: continuous lactic acid bacteria fermentation, modelling, process development, Monte
Carlo simulation

1. Introduction
Mechanistic models are increasingly applied in the biotechnological industry in order to develop,
understand, optimize, monitor, and control fermentation processes. They can support the devel-
opment of fermentation processes and give insight into the process during operation. There are
several applications for mechanistic models: E.g. they may be applied offline to determine appro-
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priate process operation conditions and control strategies, or online as soft sensor for model-based
monitoring and control (Mears et al., 2017).
In this study, a mechanistic model describing a Streptococcus thermophilus fermentation was
applied to design a continuous fermentation process. The food industry strives for continuous
fermentations to reduce production costs compared to traditional batch fermentations, which are
still the standard operation. The model predicted biological state variables, such as the biomass,
substrate (lactose), and lactic acid concentrations. In addition, the model predicted the pH of the
fermentation broth by solving the dissociation reactions of the charged components, as lactate,
ammonia, carbonate and phosphate. The aim of this study was to propose the optimal process
conditions for a continuous lactic acid fermentation to design a beneficial process compared to a
batch process. To this end, the model was utilized to optimize the dilution rate and substrate con-
centration in the feed stream by maximizing the biomass concentration and reducing the substrate
waste in the bioreactor effluent.

2. Nomenclature

Symbol Description
Ci concentration (g L-1) µmax max. specific growth rate (h-1)
F medium flow rate (L h-1) α growth related production coefficient

of lactic acid (g g-1)KI substrate inhibition constant (g L-1)
KS limiting substrate constant (g L-1) σpH std. deviation in the pH function
KLa lactate inhibition parameter (L g-1)
KP,La 2. lactate inhibition param. (L g-1)
KP,pH1 lactate inhibition pH parameter Subscripts i
KP,pH2 2. lactate inhibition pH parameter La dissociated lactic acid
pHopt optimal pH in the pH function P by-product: lactic acid
tlag lag-time coefficient (h) S substrate: lactose
V volume of the bioreactor (L) Si lactose in the feed inlet
Ygal galactose yield (g g-1) X biomass

3. Materials and Methods
3.1. Fermentation Model
A first principles model describing the homolactic S. thermophilus fermentation was applied for a
continuous fermentation. The model was validated previously with 2 L batch fermentations at dif-
ferent pH set points (pH 5.5 - 7.0) and initial lactose (substrate) concentrations (20 and 70 g L-1).
Furthermore, the model was validated with a continuous accelerostat fermentation at lab-scale to
ensure that the model predicts limiting substrate conditions as they occur in continuous cultiva-
tions, as well (manuscript in preparation). The studied strain consumes lactose, yielding biomass,
lactic acid, and galactose because galactose is not metabolized but secreted. In the present study,
the bacterial cells (biomass) are the product of interest. The growth rate expression (Eq. (1))
depends on the lag time, lactose inhibition and limitation (Åkerberg et al., 1998), pH dependent
lactate inhibition, and the pH of the cultivation broth (Schepers et al., 2002).

dCX

dt
= µmax · (1− e−t/tlag) · CS

CS +KS +
C2

S
KI

· 1

1+ e
KP,La·(CLa−KLa· 1

1+e
KP,pH1∗(pH−KP,pH2)

)
· e

−(
(pHopt−pH)2

σ2
pH

)

·CX − F
V

·CX (1)
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Table 1: Kinetic parameters for the dynamic model of the S. thermophilus fermentation.

Parameter Unit Value 95 % confidence interval (CI) Reference
KI g L-1 164 (Åkerberg et al., 1998)
KLa g L-1 19.80 19.71 19.89 parameter estimation
KP,La L g-1 0.24 0.17 0.30 parameter estimation
KP,pH1 20 expert knowledge*

KP,pH2 7 expert knowledge*

KS g L-1 0.79 (Åkerberg et al., 1998)
pHopt 6.38 6.28 6.50 parameter estimation
tlag h 1 expert knowledge*

Ygal g g-1 0.69 0.61 0.76 parameter estimation
α g g-1 5.19 5.18 5.20 parameter estimation
µmax h-1 2.06 2.03 2.08 parameter estimation
σpH h-1 1.42 1.35 2.50 parameter estimation

*) consultation of process experts.

The expression for the lactic acid secretion rate as by-product (Eq. (2)) is considered to be growth
dependent (Peng et al., 1997).

dCP

dt
= α · dCX

dt
− F

V
·CP (2)

The lactose uptake rate expression (Eq. (3)) is the sum of the growth and lactic acid secretion rate
expressions taking the secretion of galactose (Ygal) into account.

dCS

dt
=

F
V

· (CSi −CS)− (1+Ygal) · (
dCX

dt
+

dCP

dt
) (3)

The chemical model (for the pH calculation) comprises the dissociation reactions of the charged
components in the fermentation broth, such as lactate, ammonia, carbonate, phosphate, and
water (Musvoto et al., 2000). The kinetic model has been implemented in MATLAB R© (The
MathWorks R©, Natick, MA) and the ODEs were solved with the ode15s solver. The kinetic pa-
rameters (Table 1) were derived from a consistent parameter estimation as described in Spann
et al. (2017).

3.2. Design of the continuous fermentation conditions
The continuous process was a single stage chemostat cultivation without recirculation, hence the
process is continuously fed with the growth medium and the culture broth is withdrawn at the

Table 2: Description of the design problem (LB: lower bound, UB: upper bound).

Scenario Description
Flow rate [m3 h-1] CSi [g L-1]
LB UB LB UB

Scenario 1
50 m3 bioreactor

1 20 50 150
downstream flexible

Scenario 2
50 m3 bioreactor

fixed to 10 50 150
downstream restricted
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Figure 1: Scheme of the continuous lactic acid bacteria fermentation and downstream units.

same rate in order to maintain the bioreactor volume constant. The target product of the fermen-
tation process are the cells, as they are used in the dairy industry for yoghurt and cheese pro-
duction, subsequently. Optimal process conditions for a continuous S. thermophilus fermentation
process were predicted for two scenarios (Table 2): Scenario 1) A 50 m3 bioreactor is available
and the downstream units will be built based on the calculated bioreactor effluent flow rate (Fig.
1). Scenario 2) A 50 m3 bioreactor and the downstream units for centrifugation and pelletizing
are already available with given capacities. The flow rate is fixed to 10 m3 h-1 here. For scenario
1, the feed flow rate and lactose concentration in the feed solution were optimized. For scenario
2, only the lactose concentration in the feed solution was optimized. The carbon source lactose
will be growth limiting. The challenge of the design problem for an optimal feed flow rate and
inlet substrate concentration was that the lactic acid concentration in the broth is determined by
the biomass concentration but lactic acid inhibits biomass growth at the same time. The objective
was: i) to maximize the biomass concentration in the bioreactor effluent; and, ii) to minimize
the waste of substrate in the bioreactor effluent for both scenarios. The objective function was
solved in MATLAB using the built in solver, fmincon. The mean values of the biological model
parameters were used in the optimization step.

3.3. Monte Carlo simulation
100 independent input samples were created in the probability range [0 1] with the Latin Hyper-
cube Sampling (LHS) technique (McKay et al., 1979; Sin et al., 2009). Then, the Iman Conover
method (Iman and Conover, 1982) was applied to induce the correlation between the model pa-
rameters, which was derived from a parameter estimation. The samples were finally converted
into the real parameter space using the Matlab function icdf, in which all uncertainties were as-
sumed to be normally distributed. A Monte Carlo simulation of the continuous fermentation
process was performed considering both the biological model parameter uncertainties (Table 1)
and variations of the lactose concentration in the feed (which was obtained in the previous opti-
mization step) with 3σ = 10 %.

4. Results and Discussion
Two scenarios were investigated considering both the new construction of the production facilities
(scenario 1), and the limitations of an already available plant (scenario 2). For scenario 1, the
capacities of the downstream units were considered to be flexible. A flow rate of 5 m3 h-1 was
estimated with a lactose concentration of 54 g L-1 in the feed solution (Fig 2). For scenario 2,
an already existing production plant was assumed given limitations in the flow rates. Here, the
estimated lactose concentration in the feed solution was 50 g L-1. More lactose would be wasted
in the bioreactor effluent in scenario 2 since the dilution rate is almost twice as high as in scenario
1, and the lactic acid bacteria cannot consume all the supplied lactose at this high rate.
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The continuous fermentation starts with a batch phase with 65 g L-1 lactose initially (Fig. 3).
During the exponential growth in the batch phase, the biomass concentration increased before the
continuous fermentation started. The optimal time to switch from the batch to continuous mode
will not be easily detectable since there is no dissolved oxygen (DO) tension signal in this non-
aerated cultivation, where DO is usually used in aerated cultivations to monitor biomass activity.
However, the base addition rate will in this case indicate when growth slows down as lactic
acid secretion is diminished at the same time (data not shown). The Monto Carlo simulations
considering model parameter uncertainties and variations of the lactose concentration in the feed
inlet show that the considered uncertainties had a minor effect on the target biomass concentration
with acceptable 3σ < 0.5 g L-1.
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Figure 2: Contour plot of the normalized ob-
jective function value with respect to the lactose
concentration in the feed and the feed flow rate.
The minimum for scenario 1 is at F = 5 m3 h-1

and CSi = 54 g L-1. The minimum for scenario 2
is at the lower limit CSi = 50 g L-1 with the given
F = 10 m3 h-1.

A continuous cultivation could be a profitable
alternative to a batch process for the indus-
trial production of lactic acid bacteria as the
cells are the desired product that can be pro-
duced in a continuous manner, similar to pri-
mary metabolites. In addition, naturally de-
rived lactic acid bacteria might be less prone
to genetic instability, which might for exam-
ple be an issue in a continuous cultivation with
genetically modified organisms that are often
used in the pharmaceutical industry. However,
the application of a continuous cultivation is
quite limited in the biotechnological industry
so far. This might be mostly because of the
risk for process contaminations, which could
cause more harm in a continuously operated
reactor than a batch culture. Nevertheless, es-
pecially in the presented lactic acid bacteria
cultivation, the lactic acid concentration is al-
ready inhibiting the growth of many contaminants as the lactic acid concentration will be higher
than 25 g L-1. In a traditional batch process with an initial lactose concentration of 65 g L-1 a
biomass concentration of 6 g L-1 was reached (see the initial batch phase in Fig. 3). The batch
process will be, however, more expensive than the continuous culture due to more frequent clean-
ing, sterilization, pre-culture preparation tasks, etc., provided that the continuous process could
be maintained stable with a low risk of failure.

Figure 3: A continuous S. thermophilus fermentation with a batch phase in the beginning. 95 %
confidence bounds for the limiting substrate lactose, dry cell weight, lactic acid concentration,
and the pH (from left to right). A Monte Carlo simulation of 100 input samples was performed
considering model parameter uncertainties, and variations of the lactose concentration in the feed
solution.
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Mechanistic models, as applied in the present study, are preferably used for off-line cultivation
process development because of their many advantages (Mears et al., 2017): Mechanistic models
are often able to extrapolate to process conditions outside the conditions that were used to develop
the model. In addition, mechanistic models provide a flexible model structure that could be
adjusted to several processes by adjusting the model parameters. Furthermore, some companies
prefer to apply mechanistic models, e.g. for control purposes, because they want to understand
where the predictions derive from, instead of following a black-box prediction. Due to these
advantages, one should accept a longer model development and validation time of a mechanistic
model compared to black-box models.
Further research is necessary to validate the presented model predictions in lab- or pilot-scale
experiments. Biotechnological companies and further studies could use the presented case study
by also including an economical objective function, e.g. considering sales revenue and expenses,
such as operation and raw material costs, in order to design the most profitable continuous culti-
vation.
5. Conclusion
This study used a mechanistic model describing the production of S. thermophilus in a fermen-
tation process to propose the optimal conditions for a continuous cultivation. The fermentation
conditions were estimated for two scenarios: downstream capabilities are i) flexible, and ii) fixed.
A continuous process is regarded as more cost effective than a traditional batch process, and espe-
cially mechanistic models are valuable for process design purposes because they might be capable
to predict also conditions which were not experimentally investigated beforehand. In conjunction
with uncertainty considerations, a probability distribution of the model prediction was obtained
and the uncertainty in the biomass prediction was low, which shows the robustness of the model
for analysis. Further studies are needed to validate the model predictions experimentally at pilot-
scale and economic issues could be included in the optimization problem.
6. Acknowledgement
This project has received funding from the European Union’s Horizon 2020 research and innova-
tion program under the Marie Skłodowska-Curie grant agreement No 643056 (Biorapid project).

References
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Abstract 

The formation of pH gradients in a 700 L batch fermentation of Streptococcus thermophilus 

was studied using multi-position pH measurements and computational fluid dynamic (CFD) 

modelling. To this end, a dynamic, kinetic model of S. thermophilus and a pH correlation were 

integrated into a validated one-phase CFD model, and a dynamic CFD simulation was 

performed. First, the fluid dynamics of the CFD model were validated with NaOH tracer pulse 

mixing experiments. Mixing experiments and simulations were performed while multiple pH 

sensors, which were placed vertically at different locations in the bioreactor, captured the 

response. A mixing time of about 46 s to reach 95 % homogeneity was measured and predicted 

at an impeller speed of 242 rpm. The CFD simulation of the S. thermophilus fermentation 

captured the experimentally observed pH gradients between a pH of 5.9 and 6.3, which 

occurred during the exponential growth phase. A pH higher than 7 was predicted in the vicinity 

of the base solution inlet. Biomass growth, lactic acid production, and substrate consumption 

matched the experimental observations. Moreover, the biokinetic results obtained from the 

CFD simulation were similar to a single-compartment simulation, for which a homogeneous 

distribution of the pH was assumed. This indicates no influence of pH gradients on growth in 

the studied bioreactor. This study verified that the pH gradients during a fermentation in the 

pilot-scale bioreactor could be accurately predicted using a coupled simulation of a biokinetic 

and a CFD model. In order to support the understanding and optimization of industrial-scale 

processes, future biokinetic CFD studies need to assess multiple types of environmental 

gradients, like pH, substrate, and dissolved oxygen, especially at industrial scale. 

 

Introduction 

Heterogeneities of culture parameters like substrate concentrations, pH, and dissolved oxygen 

concentrations are regarded as mainly responsible for productivity loss in large-scale bioreactor 

cultivations. Transport limitations occur at large scale due to insufficient mixing, and cells are 

consequently exposed to fluctuating conditions. Non-limiting substrate concentrations in the 

range of 0.3 – 2 g L-1 are reported in feeding zones during fed-batch processes, while there are 

substrate-limited conditions further away from the feeding position (Bylund et al., 1998; 

Larsson et al., 1996). pH values might also be outside of physiological ranges next to acid or 

base addition points (Langheinrich and Nienow, 1999; Lara et al., 2006). Mixing times of large-

scale bioreactors for microbial cultures exceed 100 s to reach 95 % homogeneity, and the 

circulation time of the cells, which is proportional to the mixing time, is consequently in the 

magnitude of 10 s and longer depending on the stirring conditions (Delvigne et al., 2006; 

Nagata, 1975). Cells might adapt to continuously changing environments while they move 

through the bioreactor. Biomass and product yield reduction are reported for several different 

strains and processes when a process is scaled up to large scale (Bylund et al., 1998; Enfors et 

al., 2001; George et al., 1998; Xu et al., 1999). This is most likely related to heterogeneities, 

because microorganisms are exposed to fluctuating environmental conditions at large scale, 

which might affect the metabolic activity. pH gradients have shown an influence on the 

transcriptional response and enzyme activity in bacteria, and may therefore lead to decreased 

biomass growth and product formation as shown in scale-down studies (Amanullah et al., 2001; 

Cortés et al., 2016; Onyeaka et al., 2003).  

Computational fluid dynamic (CFD) modelling is capable of representing the fluid dynamic 

conditions in bioreactors. It was already applied for process optimization by improving the 

impeller configuration for an increased oxygen transfer rate (Yang et al., 2012; Zou et al., 

2012). Moreover, biokinetic models are coupled with fluid dynamics to analyze environmental 
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gradients during fermentations (Schmalzriedt et al., 2003; Wang et al., 2015). Either 

compartment models can be built and coupled with a biokinetic model or a biokinetic model is 

directly integrated into a CFD model. Compartment models, which are based on the knowledge 

about the fluid dynamics in the bioreactor obtained from CFD models, reduce the number of 

spatial elements and decrease the computational demand (Vrábel et al., 2001). If biokinetic 

models are directly integrated into CFD, both the Euler-Euler approach (Bannari et al., 2012; 

Elqotbi et al., 2013) and the Euler-Lagrange approach combined with a population balance 

model (Haringa et al., 2016; Lapin et al., 2004; Lapin et al., 2006; Morchain et al., 2013) are 

commonly applied. The fluid is treated as a continuum in both approaches, but the biological 

phase is treated as a continuum in the Euler-Euler approach and as a discrete phase in the Euler-

Lagrange approach. This allows to track single cells there. So far, studies have mainly been 

focused on substrate and oxygen gradients in aerobic nutrient-limited fed-batch processes. 

Furthermore, their relevance is questionable because many of the aforementioned works use 

CFD models that were not experimentally validated e.g. by comparing the model response to 

mixing experiment data. There is therefore a considerable lack of scientific literature focusing 

specifically on dynamic CFD simulations of biokinetic models integrated into validated CFD 

models with the intention to simulate the formation of pH gradients in pilot and large-scale 

bioreactors.  

The objective of this study was to predict the pH gradients, which occur in a 700 L bioreactor 

during a Streptococcus thermophilus fermentation, by coupling CFD and kinetic modelling in 

a CFD simulation. This tool, which combines fluid dynamics and microbial kinetics, will be 

used to study pH heterogeneities at pilot scale. To this end, first a one-phase CFD model of a 

700 L bioreactor for a S. thermophilus fermentation was set up. Tracer pulse experiments with 

a NaOH solution and multi-position pH monitoring validated the fluid dynamic model 

predictions of the bioreactor. Then a kinetic model describing the biomass growth, lactic acid 

synthesis, and lactose consumption of S. thermophilus was integrated into the validated CFD 

model to simulate a pH controlled batch cultivation. An algebraic equation was applied to 

calculate the pH value based on the lactic acid and ammonia concentrations. 

Materials and Methods 

Bioreactor geometry and settings 

A stirred tank bioreactor (Chemap AG, Switzerland) equipped with three 6-blade Rushton 

turbines was used (Fig. 1) and filled to a liquid height of HL = 1.92 m, corresponding to a 

volume of 700 L, for both the mixing time experiment and the fermentation. The stirrer speed 

was 242 rpm (P/V = 0.79 kW m-3) for the mixing time determination and 132 rpm 

(P/V = 0.13 kW m-3) for the fermentation. The stirrer speed was measured with testo 477 LED 

stroboscope (Testo SE & Co. KGaA, Germany). The Reynolds number (Re) was defined as: 

 
𝑅𝑒 =

𝑁 ∙ 𝐷𝑖
2 ∙ 𝜌𝐻20

𝜇𝐻20
 (1) 

where N represents the stirrer speed, Di the impeller diameter, ρ the fluid density, and µ the 

dynamic viscosity of the fluid. 
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Figure 1. The geometry of the stirred tank bioreactor with dimensions in cm. The bioreactor is 

equipped with three 6-blade Rushton turbines and four baffles. Six monitoring points were 

positioned in the bioreactor. The reactor was filled up to 1.92 m liquid height both in the pulse 

experiment to determine the mixing time and in the fermentation. 

 

The power input (P) was calculated: 

 𝑃 = 𝑁𝑃 ∙ 𝜌 ∙ 𝑁
3 ∙ 𝐷𝑖

5 (2) 

where NP is the power number. NP was assumed to be 5.5 (Doran, 1995; Ruston et al., 1950) 

for each Rushton turbine as Re > 105 (see the results section). The power input could 

unfortunately not be measured in the studied bioreactor. 

Mesh generation and simulation settings 

The bioreactor geometry was designed in SolidWorks (Dassault Systèmes, France). The 

sparger ring, the gas inlet pipe, and a supporting structure, which holds the shaft, were omitted. 

The bioreactor consisted of a stationary tank domain and three rotating impeller domains. Only 

half of the bioreactor volume was modelled applying a rotational periodicity plane. Meshes 
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with 6-sided hexahedral elements were defined for both domains in ANSYS ICEM CFD 17.1 

(ANSYS, Inc., US-PA). The stationary domain consisted of approximately 2,000 mesh 

elements per liter. Each rotating domain, with a height of HI = 0.075 m and diameter 

DI = 0.32 m, was defined with about 95,000 elements per liter. The complete mesh consisted 

of 1.6 million nodes. The interface between the rotating and stationary domains was defined as 

Frozen-Rotor interfaces. CFD simulations were performed in ANSYS CFX 17.1 with the k-ε 

turbulence model (Supplementary Material). The top boundary was assumed a flat surface with 

a free-slip wall. The liquid density was assumed to be 𝜌 =  997 𝑘𝑔 𝑚−3 and the dynamic 

viscosity 𝜇 =  8.9 ∙  10−4 𝑘𝑔 𝑚−1 𝑠−1 in both the tracer pulse and fermentation simulation. 

Tracer pulse simulations 

An additional variable was specified for the tracer pulse experiments in all domains with a 

diffusion coefficient 𝐷𝑡𝑟𝑎𝑐𝑒𝑟 =  5.17 ∙  10−9 𝑚2 𝑠−1 corresponding to the characteristics of 

the tracer compound 𝑂𝐻− (Cents et al., 2005). Six monitoring points were located at different 

positions, which corresponded to the sensor positions (Fig. 1). Vertical positions of the sensors 

were, with respect to the bottom of the bioreactor: 0.10 m, 0.35 m, 0.60 m, 0.95 m, 1.25 m, and 

1.60 m. The horizontal distance to the bioreactor wall was 0.10 m. A transient (time-dependent 

velocity field) simulation was performed with a physical time scale of a step time of 0.1 s and 

a root mean square (RMS) residual target of 10−4. The RMS is a measure to validate the 

convergence. The tracer pulse was simulated by starting the simulation with 1 mol of the tracer 

variable in a cylindrical volume of height of 0.20 m and a width of 0.10 m, which was at the 

center at the top of the liquid phase.  

Tracer pulse experiments 

The bioreactor was filled with tap water. An NaOH solution (27 %, Novadan ApS, Denmark) 

was used as tracer substance for the pulse experiments. When dosing a pulse, 80 mL of NaOH 

was poured from 0.30 m above the liquid level at the center of the bioreactor into the liquid 

within 1 s. Experiments were carried out at 35 °C within a pH range of 5.0 to 6.0 to ensure that 

the mixing time is measured without interference of the slow reverse reaction of the carbonate 

dissociation (Einsele, 1976). The pH was reduced with H3PO4 (75 %, Novadan ApS, 

Denmark). The pulses were performed in three replicates. Six pH sensors (CPS471D, 

Endress+Hauser AG, Switzerland) mounted on a lance measured the pH at different positions 

every second. The positions were equivalent with the monitoring points in the tracer pulse 

simulation with the exception of the top placed sensor, which failed to record the data (Fig. 1). 

Mixing time calculation 

Mixing times were calculated after normalizing the pH measurements according to Paul et al. 

(2003): 

𝑝𝐻𝑖,𝑒𝑥𝑝
′ (𝑡) =

𝑝𝐻𝑖.𝑒𝑥𝑝(𝑡) − 𝑝𝐻𝑖,𝑒𝑥𝑝(𝑡 = 0)

𝑝𝐻𝑖,𝑒𝑥𝑝(𝑡 = ∞) − 𝑝𝐻𝑖,𝑒𝑥𝑝(𝑡 = 0)
 (2) 

where 𝑝𝐻𝑖,𝑒𝑥𝑝
′  is the normalized pH output of the i-th sensor in the experiment, 𝑝𝐻𝑖,𝑒𝑥𝑝 is the 

experimental pH value measurement, and 𝑝𝐻𝑖,𝑒𝑥𝑝(𝑡 = ∞) are the average pH measurements 

between 4.5 and 5 minutes after the pulse. The normalized response of all sensors was plotted 

with the logarithmic squared deviation with respect to the normalized upper bound 1 in order 

to determine the mixing time: 
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𝑙𝑜𝑔 𝐷2 = 𝑙𝑜𝑔 [
1

𝑛
∙∑(𝑝𝐻𝑖,𝑒𝑥𝑝

′ (𝑡) − 1)
2

𝑛

𝑖=1

] (3) 

where n is the number of sensors. log 𝐷2 = −2.6  when 95% homogeneity was achieved, 

log𝐷2 = −2 and log 𝐷2 = −1.65 at 90% and 85 % homogeneity, respectively. The simulated 

tracer pulse concentrations were normalized by eq. (2), in which the pH values were replaced 

by the tracer concentrations. 

Streptococcus thermophilus fermentation and analysis 

The batch fermentation of the homolactic S. thermophilus strain (provided by Chr. Hansen A/S, 

Hørsholm, Denmark) was carried out in the aforementioned 700 L stirred tank bioreactor at a 

stirring speed of 132 rpm, 40 °C, and N2 headspace gassing. The pH was controlled by adding 

24 % (w/v) ammonia solution (NH4OH) through a pipe, which was located 0.1 m above the 

bottom in the center of the vessel, to maintain pH = 6.0. The pH-value was measured from a 

sensor, which was located 0.3 m above the bottom of the bioreactor close to the reactor wall. 

The initial pH was 6.8. The medium contained 70 g L-1 lactose, 10 g L-1 casein hydrolysate, 

12 g L-1 yeast extract, 11.5 mM K2HPO4, 36.6 mM sodium acetate, 8.2 mM trisodium citrate, 

0.8 mM MgSO4, and 0.3 mM MnSO4. The pH was monitored every second at 4 of the 6 

previously mentioned positions at heights of 0.10 m, 0.60 m, 1.25 m, and 1.60 m. Dry cell 

weight was determined from centrifuged, washed (with 0.9 % NaCl), and dried (at 70 °C for 

24 h) cell broth. Sugars and organic acids were quantified from filtered (0.2 µm) samples in an 

HPLC system (Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA) and a 

refractive index detector (ERC RefractoMax 520), with an Aminex® HPX-87H column (Bio-

Rad Laboratories, Hercules, CA) using 5 mM H2SO4 at a flow rate of 0.6 mL min-1 at 50 °C 

according to suppliers instructions. 

Biokinetic and pH simulation in the CFD model 

An unstructured kinetic model of S. thermophilus, which described the lactose consumption, 

biomass growth, and lactic acid synthesis, was integrated into the CFD model (eq. (4-7)). 

Effects of the lag-time, substrate limitation and inhibition (Haldane, 1930), pH (Schepers et al., 

2002), and lactate inhibition (Aghababaie et al., 2015) were considered in the growth function. 

A simplified version of the Luedeking-Piret equation (Luedeking and Piret, 1959) was applied 

to describe the lactic acid synthesis. 
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(1 + 𝑌𝑔𝑎𝑙) ∙ 𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑞𝑋
→ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑌𝑔𝑎𝑙 ∙ 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 (4) 

(1 + 𝑌𝑔𝑎𝑙) ∙ 𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑞𝑃
→ 𝑙𝑎𝑐𝑡𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝑌𝑔𝑎𝑙 ∙ 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 (5) 

𝑞𝑋 = µ𝑚𝑎𝑥 ∙ (1 − 𝑒
−𝑡 𝑡𝑙𝑎𝑔⁄ ) ∙

𝐶𝑆

𝐶𝑆 +𝐾𝑠 +
𝐶𝑆
2

𝐾𝐼

∙ 𝑒
−(
(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻)

2

𝜎2
)

∙
1

1 + 𝑒
𝐾𝑃,𝐿𝑎(𝐶𝑃−

𝐾𝐿𝑎

1+𝑒
𝐾𝑃,𝑝𝐻1∙(𝑝𝐻−𝐾𝑃,𝑝𝐻2)

)

∙ 𝐶𝑋 

(6) 

𝑞𝑃 = 𝛼 ∙ 𝑞𝑋 (7) 

where qX and qP are the volumetric growth and lactic acid production rates, respectively. 
Lactose (CS), biomass (CX), and lactic acid (CP) were listed as additional variables, and their 

rate equations were defined as expressions in the CFX expression language. Initial 

concentrations were 𝐶𝑆,𝑡=0 =  70 𝑔 𝐿−1, 𝐶𝑋,𝑡=0 =  0.025 𝑔 𝐿−1, and 𝐶𝑃,𝑡=0 =  0 𝑔 𝐿−1. The 

kinetic parameters as listed in Table I were derived from a parameter estimation, which was 

based on 2 L lab-scale fermentations with the aforementioned medium at 300 rpm (two 6-blade 

Rushton turbines with a diameter = 53 mm) and 40 °C at different pH values (in the range of 

5.5 – 7.0) and initial lactose concentrations (20 and 70 g L-1) (Spann et al., 2018). It must be 

considered in the evaluation of the model that the supplemented yeast extract contains ca. 

6 g L-1 carbon, which is not included in the model. However, this is only partially taken up by 

the cells and the dynamic model accounts for it by under predicting the galactose concentration. 

The biomass, lactic acid, and lactose concentrations, which are crucial in this study, are 

predicted accurately (Spann et al., 2018). 
 

Table I. Kinetic parameters of the integrated S. thermophilus model.  

Symbol Description Value 

K
I
 substrate inhibition parameter 164 g L

-1
 

K
S
 substrate limitation parameter 0.79 g L

-1
 

K
La

 lactate inhibition parameter 21.1 g L
-1

 

K
P,La

 2. lactate inhibition parameter 0.2 L g
-1

 

K
P,pH1

 LA inhibition pH parameter 20 

K
P,pH2

 2. LA inhibition pH parameter 7 

pH
opt

 optimal pH in the pH function 6.22 

t
lag

 lag-time coefficient 0.38 h 

Y
gal

 galactose yield 0.63 g g
-1

 

α growth related production coefficient of lactic acid 5.59 g g
-1

 

µ
max

 maximum specific growth rate  2.16 h
-1

 

σ spread parameter in the pH function 1.09 
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An algebraic linear correlation for the pH calculation based on the lactic acid and ammonia 

concentrations was obtained based on experiments performed at 2 L scale (Supplementary 

Material): 

𝑝𝐻 = −0.44 ∙ (𝐶𝑃 − 5.29 ∙ 𝐶𝑁𝐻3) + 7.00 (8) 

The dynamic simulation with a time step of 1 s and an RMS residual target of 1 ∙ 10−5 was 

carried out using a steady state result as initialization state. Continuity, momentum, and energy 

equations were derived from a steady state solution, and thus assumed constant. They were 

therefore not solved in the dynamic simulation in order to reduce the computational time. The 

impeller speed was set to 200 rpm for the steady state velocity profile in the fermentation 

simulation in contrast to 132 rpm in the experimental fermentation. This modification was 

necessary in order to represent the mixing behaviour in the fermentation simulation (with a 

steady state velocity profile) as the predicted mixing times differed when applying a steady 

state or transient velocity profile (see the Results and the Discussion sections for details). The 

pH was controlled by adding ammonia at the same position as in the experiment. Control was 

conducted with a P-controller, which was using the step function: 

𝑁𝐻3,𝑎𝑑𝑑 = 𝑠𝑡𝑒𝑝(6 − 𝑝𝐻) ∙ (6 − 𝑝𝐻) ∙ 11900 𝑔 ℎ−1 (9) 

where the pH is calculated at the monitoring point 35 cm above the bottom of the bioreactor. 

The kinetic model was also implemented in MATLAB (The MathWorks, Natick, MA) and 

solved with the ode 15s solver. There, the fermentation broth was modelled as a single 

compartment with a homogeneous distribution of the pH and all state variables, i.e. no gradients 

were considered. 

Results 

A one-phase CFD model of a 700 L bioreactor for a S. thermophilus fermentation was set up 

and tracer pulse experiments with NaOH and multi-position pH monitoring validated the fluid 

dynamic model predictions. A kinetic model of S. thermophilus was integrated into the 

validated CFD model in order to predict pH gradients during the fermentation. 

The velocity profile of the bioreactor 

A steady state solution of the CFD model was initially obtained, which predicted the 

macroscopic flow profile of the bioreactor. It clearly revealed six recirculation loops, which 

were generated by the Rushton turbines (Fig. 2). A turbulent flow regime was assumed, 

because the Reynolds number was 2.2∙105 at 242 rpm. The fluid velocity was highest behind 

the turbine blades, which turned with 2.8 m s-1 tip speed at 242 rpm. Low velocities were 

observed close to the bioreactor wall and especially around the baffles. The steady state 

solution converged with respect to the RMS values of the velocity components, while the 

velocities were unstable at the monitoring points. Further analysis revealed that the velocity 

profile of the bioreactor had a transient (time-dependent) nature (Supplementary Movie 1). The 

four recirculation loops between the impellers were changing in size and moving up- and 

downwards. The tracer pulse simulation was therefore performed with a transient velocity field. 
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Figure 2. Steady state solution of the 700 L stirred tank bioreactor with 300 rpm. Left: velocity 

streamlines with velocity in stationary frame. Right: contour plot with the circumferential 

velocity in stationary frame.  

 

Tracer pulse simulation and experiments 

Fast radial and slower axial mixing were predicted in the tracer pulse simulations (Fig. 3 and 

Supplementary Movie 2). It took several seconds until the tracer passed to a subsequent 

recirculation loop after the simulated injection from the top. The monitoring points in the CFD 

model and pH sensors in the experiment were positioned in each anticipated recirculation loop 

in order to be able to follow the dynamic distribution of the tracer.  

The dynamic response at all sensor locations 

The dynamic responses of the monitoring points during tracer pulse simulations were captured 

with the intention to understand the fluid flow dynamics when e.g. an acid or a base solution is 

added to regulate the pH value in a cultivation. The two monitoring locations 1 and 2 at the 

upper part of the liquid phase showed an overshooting response before they reached a stable 

value, whereas the other monitoring points 3 – 6, which were located in a greater distance to 

the injection point, responded with sigmoid curves (Fig. 4). In order to validate the tracer pulse 

simulations, these results were compared with the experimental measurements. Both the shapes 

and order of magnitude of the dynamic trends obtained from the predictions agreed with the 

measurements at the different positions. Nevertheless, oscillations of the pH signal and the 

initial high overshoot of sensor 2 predicted by the simulation were not captured by the 

measurements.  
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Figure 3. Concentration fields of the tracer during the transient simulation of the pulse in the 

700 L stirred tank bioreactor at 242 rpm. The tracer was injected at 0 s at the top of the liquid 

phase and snapshots are taken at different time points. 

 

 
Figure 4. Normalized pH response of the five pH sensors (Position 2-6, as shown in Fig. 1) in 

the pulse experiment and six monitoring points in the transient simulation performed at 242 

rpm. Experimental values (symbols) and simulated values (solid lines). The pH showed an 

overshoot close to the injection point at the top of the bioreactor before it leveled out. The pH 

increased gradually at the lower positioned sensors and monitoring points. 
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Figure 5. Logarithmic squared deviation of the pH values in the tracer pulse experiments and 

simulation considering all monitor points. Three tracer pulse experiments (dotted lines) and the 

CFD simulation (solid line) at 242 rpm. 95 % homogeneity was reached at log D2 = -2.6. 

 

Determination of the mixing time 

To assess the progress of reaching homogeneity, the logarithmic squared deviation of all 

sensors was evaluated. All experimental curves followed the predicted trend until 95 % 

homogeneity was achieved (Fig. 5). The variance of the replicates increased for homogeneities 

higher than 95 %. The predicted and measured mixing times at the levels of 85 %, 90 %, and 

95 % homogeneity matched very well (Table II). 95 % homogeneity was reached after about 

46 seconds.  

The dynamic response at all locations and the mixing time prediction gave considerable 

evidence that the fluid flow in the bioreactor was well described by the applied CFD model.  

Table II. Experimental and CFD predicted mixing times for different levels of homogeneity at 

242 rpm (P/V = 0.79 kW m-3). 

Level of 
homo-
geneity 

Mixing time for the 

tracer pulses [s] 

Experiments CFD simulation 

85 % 

26 

30 30 

30 

   

90 % 

32 

36 36 

35 

   

95 % 

42 

46 50 

51 
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Figure 6. Dry cell weight, lactose, and lactic acid concentrations as measured and predicted in 

the S. thermophilus batch fermentation. The fermentation was carried out in the 700 L 

bioreactor at 132 rpm, 40 °C, and the pH controlled at pH = 6. Dry cell weight (circles) with 

standard deviation, lactose (squares), lactic acid (triangles), and the CFD simulation result 

(solid line).  

 

Simulated and measured pH gradients in the S. thermophilus fermentation 

As a next step, the CFD and biokinetic models were combined in a dynamic simulation in order 

to predict the pH gradients during the fermentation. Therefore, an unstructured non-segregated 

kinetic model of S. thermophilus and a pH correlation were integrated into the validated CFD 

model. A dynamic simulation was performed with the purpose of predicting the pH gradients 

during the batch fermentation. A steady state velocity profile was applied, which decreased the 

computational demand in contrast to solving the fluidic profile for the entire fermentation time. 

The mixing time at the fermentation conditions of 132 rpm was 85 s according to a tracer pulse 

simulation with a transient velocity profile. The impeller speed had to be set to 200 rpm in the 

fermentation simulation in order to represent the same mixing time with a steady state velocity 

profile (Supplementary Fig. S1). Expected biomass growth, substrate consumption, and lactic 

acid production profiles of a Monod type kinetic model were observed and in accordance with 

the measurements (Fig. 6). A final biomass concentration of 6 g L-1 was reached after 5 h when 

34 g L-1 lactic acid seemed to inhibit growth completely. The observed biomass yield was 

similar to 2 L lab-scale experiments, where perfect mixing was assumed (Supplementary Fig. 

S2). As the applied time step was crucial in order to solve the differential equations in the CFD 

model, a time step of 1 s was chosen. An increased time step led to larger deviations of the 

kinetic profiles (data not shown). The obtained kinetic results from the CFD simulation were 

very similar to the single-compartment simulation performed in MATLAB, in which a 

homogeneous distribution of the pH and all state variables was assumed (Supplementary Fig. 

S3). The pH predictions were in close agreement with the measurements in all locations (Fig. 

7). In the beginning of the fermentation, the pH dropped from 6.8 to the controlling pH value 

6, when the pH controller started in both the simulation and experiment. A minimum pH of 5.9 

was attained in the top zone of the bioreactor during the exponential growth phase. In the 

bottom zone, where ammonium hydroxide was added, pH values of up to 6.3 were measured 

and simulated at the sensor positions. Close to the base injection, pH values larger than 7 were 

predicted (Fig. 8). As the applied pH correlation is only valid up to a pH of 7, a more accurate 

pH prediction was not possible in this case. 
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Figure 7. pH values measured and predicted every second at different positions during the S. 

thermophilus fermentation. Fermentation (A) and CFD simulation (B). In the beginning of the 

fermentation, the pH dropped from 6.8 to the controlling pH value 6, when the pH controller 

started. The pH was controlled at pH = 6 using the measurement of sensor 5 by adding NH4OH 

at the bottom of the bioreactor. pH sensors and monitoring points were placed at position 1, 2, 

4, and 6 in the bioreactor as shown in Fig. 1. The pH dropped down to pH = 5.9 in the top zone 

of the bioreactor, whereas a maximum of around pH = 6.3 was measured and predicted at 

position 6 in the bottom zone of the bioreactor. 

 

 

Figure 8. Simulated pH gradients during the S. thermophilus fermentation in the 700 L 

bioreactor at 4 h 40 min of the cultivation. The pH was higher than 7 close to the alkali inlet 

at the bottom of the bioreactor and around 5.9 in the top zone of the bioreactor. As the 

applied pH correlation is only valid up to a pH of 7, a more accurate pH prediction was not 

possible. 
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Discussion 

In order to simulate the pH gradients of a S. thermophilus fermentation in a 700 L bioreactor, 

a one-phase CFD model was first validated and then coupled with a biokinetic model and a pH 

correlation. Multi-position pH monitoring in tracer pulse experiments validated the fluid 

dynamic model predictions of the one-phase CFD model. The CFD model predicted the mixing 

time of around 46 s to reach 95 % homogeneity at an impeller speed of 242 rpm and forecasted 

the dynamic response of all sensors in the tracer pulse experiments. The dynamic simulation 

of the non-aerated S. thermophilus batch fermentation predicted both the biokinetic profiles 

and the pH gradients matching the experimental observations. Rather large pH gradients 

between pH values of 5.9 and higher than 7 were predicted in the bioreactor while the 

fermentation was controlled at pH 6. 

The simulated flow profiles showed six recirculation loops generated by the three Rushton 

turbines consistent with literature data (Vrabel et al., 2000). pH sensors and monitoring points 

were placed so that conditions in all six recirculation loops were monitored in tracer pulse 

experiments and simulated accordingly. The dynamic pH response of the pH sensors was well 

represented by the simulated data. It is important to stress that the CFD model relied among 

other criteria on physical and chemical properties, empirical equations, and the mesh structure. 

Importantly, no parameter estimation/model calibration of the CFD model was performed in 

order to fit experimental data. However, the predicted oscillating behavior of the pH and the 

initial overshoot of sensor 2 was not measured. This can likely be attributed to the response 

time of the applied ISFET pH sensors, which is in a range of 4 - 8 s to reach ±0.02 of the final 

pH value in the relevant pH range. This response time was determined in own measurements, 

and is in accordance with vendor specifications. Furthermore, there was a discrepancy between 

the predicted and measured homogeneity when 95 % homogeneity was reached 60 s after the 

pulse, which could be caused by the fluctuating sensor output (±0.01), while the model 

asymptotically approaches 100 % homogeneity. 

It was shown that the recirculation loops were dynamically changing, and hence a transient 

velocity profile was required. Dynamic velocity changes that might have caused the dynamic 

behaviour of the recirculation loops have been already observed for Rushton turbines 

(Hartmann et al., 2004; Nikiforaki et al., 2003). However, the velocities have not been 

experimentally validated for the studied system, yet.  

Both observed and simulated mixing times were consistent with results from Delvigne et al. 

(2006). They reported similar mixing times between 20 and 53 s to reach 85 % homogeneity 

in stirred tank bioreactors with a working volumes of 350, 1200, and 1800 L with a comparable 

power input to the present study. However, as no power input measurements were available for 

our 700 L bioreactor, the theoretical power input could not be validated in this study. With 

regard to the definition of mixing time in CFD simulations, Larsson (2015) concluded that 

there is no consistent definition so far. Instead, there exist several possibilities to determine the 

mixing time from observing the CFD system at one or several points, up to detecting the 

concentration on flat surface planes covering a larger area of the CFD system. In contrast to 

previous studies, which only used one position to calculate the mixing time, six points, which 

were distributed over the whole liquid phase, were used in this study in order to improve 

reproducibility and accuracy of the results. Overall, it should be noted that both the 

experimental setup as well as the way of treating and interpreting the data still lead to 

uncertainties. For example, the location of the top sensors and their monitoring points affects 

the accuracy of the measurements and predictions of the overshoot after the tracer pulse. A 

sensitivity analysis of the sensor locations in the simulation could support the assessment of 
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the accuracy of the model. Up to now, this study has proven that the CFD model achieved a 

good prediction of the fluid dynamics in the bioreactor.  

Discussion of the results from the combined CFD and biokinetic model 

Since heterogeneities at large scale affect the productivity of many chemical and biochemical 

processes, a tool to couple fluid dynamics and reaction kinetics is highly demanded. Dynamic 

simulations of biokinetic models integrated in the fluidic profile simulated by a CFD model 

can pave the way for enhanced understanding of microbial behavior in large-scale bioreactors. 

Consequently, it is a basic requirement that the CFD simulation provides accurate results.  

To achieve an affordable computational time for the biokinetic CFD simulation, a steady state 

velocity profile was required. The necessary manipulation of the stirrer speed (to 200 rpm) in 

the steady state simulation was necessary because of the general transient fluid dynamics in the 

bioreactor as discussed above. It could also be considered to apply other turbulent models in 

future. However, a tuning of the CFD model to fit the experimental data should be generally 

avoided, and the computational development might allow in future using the transient velocity 

profile for the biokinetic CFD simulation. 

Due to the higher computational demand, while solving the differential equations in all nodes 

of the CFD model mesh (about 1.6 million nodes in this study), discretization errors are likely 

when selected time steps are inappropriate. The same issue occurs if RMS targets are too high. 

Applying a time step of 1 s resulted in a similar biological growth as observed in the 

experiment, while larger time steps led to larger deviations between measurements and 

predictions. This is most likely due to the accumulation of numerical errors. However, a smaller 

time step might have reduced numerical errors further, but will also increase computational 

burden. The similarity between the single-compartment simulation – where completely mixed 

conditions were assumed – and the CFD simulation results might be caused by three reasons: 

(i) either the pH gradients had a very small effect on the culture performance in the present 

study, or (ii) the biokinetic model was not sensitive to pH changes, or (iii) the small differences 

arose from the aforementioned numerical errors in the CFD simulation due to the coarse time 

step. 

pH gradients between 5.9 and 6.3 were predicted and observed between the top and the bottom 

zone of the bioreactor, respectively. A pH higher than 7 was predicted for the vicinity of the 

base solution inlet. Even though the pH measurements and predictions matched, the 

uncertainties in the applied pH correlation need to be considered. The fast production of lactic 

acid led to a small decrease of the pH at the top of the bioreactor, whereas the addition of 

ammonium hydroxide caused a pulse-wise increase of the pH at the bottom of the bioreactor. 

Langheinrich and Nienow (1999) reported pH gradients of 0.8 units due to alkali addition in 

an 8 m3 reactor for mammalian cell cultures. pH gradients have a noticeable effect on the 

productivity. Aghababaie et al. (2015) reported that the growth of S. thermophilus was reduced 

by 20 % when cultivated 0.3 pH units away from the optimal pH conditions. However, cells 

are not constantly exposed to unfavorable environmental conditions while moving through a 

large-scale bioreactor. Cortés et al. (2016) and Amanullah et al. (2001) showed in two-

compartment scale-down studies of E. coli and B. subtilis, in which they mimicked oscillating 

pH conditions up to a delta pH of 0.9, that growth was not statistically significantly affected. 

However, the organic acid metabolism changed, and E. coli responded on the transcriptional 

level to the alkaline stress. The extracellular pH affects the intracellular pH of lactic acid 

bacteria (Cachon et al., 1998; Hansen et al., 2016) and by this the enzymatic activity. 

Lactobacillus sp. maintain their intracellular pH with the energy consuming Na+ (K+)/H+ 

antiporters (Sawatari and Yokota, 2007). The additional energy requirements could lead to 

altered culture performance in large-scale fermentations. The remaining open question is how 
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fast the cells are affected by pH changes and how fast they adapt to them. In the immediate 

vicinity of the inlet for base addition, the cells are exposed to unfavorable pH values that might 

lead to viability loss (Hansen et al., 2016). Cells that are moving through the bioreactor and 

have suffered in an unfavorable environment before will not function in an optimal manner 

immediately, when they enter a more favorable zone, as they need to adapt to the new 

conditions again (Löffler et al., 2016; Nieß et al., 2017). Further studies like Vanrolleghem et 

al. (2004), who studied and modelled the dynamic response to substrate pulses in wastewater 

treatment plants, are required to understand the adaptation processes of microorganisms under 

oscillating conditions better. This knowledge about metabolic phenomena, e.g. the dynamic 

response of growth to changing substrate availability, could then expand the biokinetic models 

coupled with CFD models (Delvigne and Noorman, 2017). 

Coupling biokinetic and fluid dynamic modelling will open the way for the understanding and 

optimization of large-scale processes. To predict gradients at large scale is of utmost interest, 

because measurements during fermentations at large scale are either very difficult or even 

impossible to perform due to the size of the bioreactors, the costs of a single fermentation run, 

and the GMP regulations at production sites. Scale-down systems (Oosterhuis, 1984) could be 

designed based on the CFD predictions, and mimic the gradients in lab-scale experiments (Lara 

et al., 2006; Neubauer and Junne, 2016). They allow to study the response mechanisms upon 

external oscillating conditions, and can be integrated in the scale-up process (Neubauer et al., 

2013). This will reduce the risk of failure when scaling up processes.  

Conclusion 

The present study was designed to predict pH gradients in a 700 L lactic acid bacteria 

fermentation by applying a dynamic CFD simulation. It gave evidence that pH heterogeneities 

existed in the studied 700 L bioreactor. More importantly, it proved that pH gradients could be 

quantitatively predicted with the CFD simulation. pH gradients between 5.9 at the top and 

above 7 close to the alkali inlet at the bottom of the bioreactor were predicted. The high pH in 

the alkali inlet zone could cause cell damage and an undesired production loss in large-scale 

bioreactors. Therefore, the results could support fine-tuning of the stirring rate when reaching 

the maximum growth rate in order to distribute the base faster. In summary, these findings 

suggest that coupling a biokinetic model and a fluid dynamic model is a very useful tool to 

predict gradients in bioreactors. However, to predict the effect on microorganisms growing 

under oscillating conditions was beyond the scope of this study. The validation of the applied 

CFD model with multi-position pH monitoring during mixing experiments is a promising 

outcome of this study, which should be performed in further CFD studies of bioprocesses as 

well. Future work should include multiple environmental gradients in the dynamic CFD 

simulations. Besides pH, also substrate, oxygen, carbon dioxide, and temperature gradients are 

of high interest for batch, fed-batch, and continuous cultivations since most of them are 

regarded to contribute to productivity loss at large scale. 
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1. Supplementary Figures 

 

Figure S1. Mixing time prediction to reach 95 % homogeneity by the CFD simulation with 

different volumetric power inputs. Steady-state velocity profile (circles) and transient velocity 

profile (plus). 
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Figure S2. Comparison of the biomass growth in the 700 L bioreactor (black dots) and the 2 L 

bioreactor (red dots) with 95 % confidence interval of the three experiments in 2 L. 

 

Figure S3. Comparison of the kinetic model results from the CFD and MATLAB simulation. CFD 

(solid black line) and MATLAB (dashed blue line) simulation. The bioreactor was assumed to be 

one element with homogeneous distribution of the pH and all state variables in the MATLAB 

simulation in contrast to the CFD simulation. 

Paper E 225



2. The k-epsilon model in ANSYS CFX 

The k-epsilon model is applied in this study as it is implemented in ANSYS CFX 17.1 (see chapter 

2.2.2.1. The k-epsilon Model in ANSYS CFX in the CFX-Solver Theory Guide). An overview of 

the applied settings in given in Table SI. 

The continuity equation is: 

 𝛿𝜌

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(𝜌𝑈𝑗) = 0 (1) 

The momentum equation is: 

 𝛿𝜌𝑈𝑖

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(𝜌𝑈𝑖𝑈𝑗) = −

𝛿𝑝′

𝛿𝑥𝑖
+

𝛿

𝛿𝑥𝑗
[𝜇𝑒𝑓𝑓 (

𝛿𝑈𝑖

𝛿𝑥𝑗
+
𝛿𝑈𝑗

𝛿𝑥𝑖
)] + 𝑆𝑀 (2) 

where SM is the sum of the body forces (e.g. ρg if gravity is the only momentum source), μeff is the 

effective viscosity accounting for turbulence, and p’ is the modified pressure. 

 
𝑝′ = 𝑝 +

2

3
𝜌𝑘 +

2

3
𝜇𝑒𝑓𝑓

𝛿𝑈𝑘

𝛿𝑥𝑘
 (3) 

 

 𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡 (4) 

where μt is the turbulence viscosity. 

 
𝜇𝑡 = 0.09𝜌

𝑘2

휀
 (5) 

k is the turbulence kinetic energy and ε the turbulence eddy dissipation. k and ε derive from the 

differential transport equations for the turbulence kinetic energy and turbulence dissipation rate 

without buoyancy turbulence: 
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 𝛿𝜌𝑘

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(𝜌𝑈𝑖𝑘) =

𝛿

𝛿𝑥𝑗
[(𝜇 + 𝜇𝑡)

𝛿𝑘

𝛿𝑥𝑗
] + 𝑃𝑘 − 𝜌휀 (6) 

 

 𝛿𝜌휀

𝛿𝑡
+

𝛿

𝛿𝑥𝑗
(𝜌𝑈𝑖휀) =

𝛿

𝛿𝑥𝑗
[(𝜇 +

𝜇𝑡
1.3

)
𝛿휀

𝛿𝑥𝑗
] +

휀

𝑘
(1.44𝑃𝑘 − 1.92𝜌휀) (7) 

Pk is the turbulence production due to viscous forces: 

 
𝑃𝑘 = 𝜇𝑡 (

𝛿𝑈𝑖

𝛿𝑥𝑗
+
𝛿𝑈𝑗

𝛿𝑥𝑖
)
𝛿𝑈𝑖

𝛿𝑥𝑗
 (8) 

 

List of symbols for the k-epsilon model 

Symbol Description Dimension 

g gravity vector m s-2 

k turbulence kinetic energy per unit mass m2 s-2 

Pk shear production of turbulence g m-1 s-3 

p static pressure g m-1 s-2 

p’ modified pressure g m-1 s-2 

SM momentum force g m-2 s-2 

U vector of velocity in the direction of x,y,z m s-1 

ε turbulence dissipation rate m-2 s-3 

μ dynamic viscosity g m-1 s-1 

μt turbulent viscosity g m-1 s-1 

μeff effective viscosity g m-1 s-1 

ρ density g m-3 
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Table SI. Overview of the settings for the CFD simulation. 

Zones and settings Value 

Analysis type Transient 

 Timestep: Tracer pulse: 500 ∙ 0.01 s following 0.1 s; Fermentation: 1 s 

Reactor Domain Material: Water 

 Domain motion: Stationary 

 Buoyancy model: Non Bouyant 

 Turbulence option: k-Epsilon 

 Heat transfer: None 

Impeller Domains Material: Water 

 Domain motion: Stationary 

 Buoyancy model: Non Bouyant 

 

Angular velocity:  

 Tracer pulse: 242 rpm (transient velocity profile) 

 Fermentation: 200 rpm (steady state velocity profile) 

 Rotation axis: Global Y 

 Turbulence option: k-Epsilon 

 Heat transfer: None 

Boundary conditions Impeller top: Opening 

 Reactor walls: No slip wall 

 Reactor top: Free slip wall 

 Reactor baffles: No slip wall 

 Reactor shaft: No slip wall, rotating wall around the Y-axis 

 Impeller surface: No slip wall 

Interfaces Rotational periodicity around the Y-axis between Impeller symmetry side 1 and 2 

 Rotational periodicity around the Y-axis between Reactor symmetry side 1 and 2 

 Top of the Impeller to the Reactor, Frame Change: Frozen Rotor 

 Sides of the Impeller to the Reactor, Frame Change: Frozen Rotor 

 Bottom of the Impeller to the Reactor, Frame Change: Frozen Rotor 

 

  

228



3. Mesh study 

A mesh size study was performed to find a mesh that provides accurate results. To achieve this the 

relative size of the mesh elements – and hence the number of nodes – was changed, and the 

simulated velocity profiles were assessed by comparing coarse and fine meshes. A steady state 

velocity profile was analyzed with the settings given in Table SI with 200 rpm. 

First the rotating impeller domain was analyzed. Four different mesh sizes with 102k, 213k, 307k, 

and 487k nodes were evaluated. Besides a visual (subjective) interpretation (data not shown), the 

velocity along the line indicated in Fig. S4 was assessed. There were larger differences observed 

between the 102k mesh and the other simulations (Fig. S5). Smaller differences were seen between 

the 213k mesh and the finer meshes especially further away from the impeller blade. The 

differences between the 307k and the very fine 487k mesh were deemed to be small, and the 307k 

mesh was therefore selected for the impeller domain. 

 

Figure S4. Line used to assess the optimum mesh size of the impeller domain. 
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Figure S5. Velocity in the impeller domain for four different mesh sizes across the line in Fig. S4. 

 

The mesh size of the bioreactor domain was subsequently analyzed with the above defined 

impeller domain (307k). Three mesh sizes were evaluated for the bioreactor domain, namely 475k, 

712k, and 1008k nodes. The velocities were visual and systematically assessed along the horizontal 

and vertical line that are shown in Fig. S6. 

While the velocity profiles were similar along the height of the bioreactor for all three cases, there 

were differences observed along the horizontal line (Fig. S7). The prediction with the coarse 475k 

mesh differed from the two finer meshes. The two finer meshes (712k and 1008k) however 

predicted similar velocity profiles. The 712k mesh was therefore considered further in this study 

as it was deemed to predict the velocity profile sufficiently, and had a lower computational demand 

than the 1008k mesh. 

Nevertheless, the mesh size study must be interpreted with caution as firstly, the predicted 

velocities were not experimentally validated, and secondly, the steady state simulation that was 
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used in this mesh size study might not be suitable to describe this system entirely as the transient 

changing velocity was observed and discussed for this system in the main manuscript. 

 

Figure S6. Horizontal and vertical lines used to assess the optimum mesh size of the bioreactor 

domain. 

 

 

Figure S7. Velocity in the reactor domain for three different mesh sizes. Left: Velocity across the 

horizontal line in Fig. S6. Right: Velocity across the vertical line in Fig. S6. 
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Fermentation no.

Time [h] NH3 24% [g]NH3 conc  [mol/l]Lactic acid [g/L]Lactic acid [mol/L]pH

0.00 0.00 0.00 0.00 0.00 7.05

1.33 0.00 0.00 0.00 0.00 7.18

2.50 0.00 0.00 1.01 0.01 6.77

3.25 0.70 0.00 2.82 0.03 5.95

3.75 5.90 0.04 5.36 0.06 6.00

4.25 13.10 0.09 9.27 0.10 6.02

4.75 23.17 0.16 15.56 0.17 6.01

5.33 37.70 0.27 24.27 0.27 5.97

5.58 43.10 0.30 27.85 0.31 6.01

5.83 46.28 0.33 29.09 0.32 6.01

6.08 47.40 0.33 30.80 0.34 6.00

6.33 47.90 0.34 30.57 0.34 6.04

0.00 0.00 0.00 0.00 0.00 6.91

2.45 0.00 0.00 2.05 0.02 6.10

3.03 4.60 0.03 4.23 0.05 5.99

3.70 14.40 0.10 10.17 0.11 6.04

4.15 23.90 0.17 16.32 0.18 6.00

4.45 31.60 0.22 20.63 0.23 6.00

4.95 44.59 0.31 27.09 0.30 6.02

5.37 50.20 0.35 30.40 0.34 6.02

5.78 51.10 0.36 31.58 0.35 6.00

0.00 0.00 0.00 0.00 0.00 6.99

1.55 0.00 0.00 0.51 0.01 6.83

2.55 0.20 0.00 2.10 0.02 6.13

3.22 6.00 0.04 4.57 0.05 6.01

4.05 17.09 0.12 12.38 0.14 6.00

4.38 24.29 0.17 16.80 0.19 6.01

4.80 34.70 0.24 23.70 0.26 6.00

5.05 41.28 0.29 26.99 0.30 6.00

5.53 49.90 0.35 31.19 0.35 6.00

6.38 52.80 0.37 32.60 0.36 6.00

7.13 54.20 0.38 33.12 0.37 5.99L1
4

L2
5

Data
L8

L1
2
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0.00 n.d. 0.00 0.00 6.83

0.85 n.d. 0.00 0.00 6.82

1.63 n.d. 0.30 0.00 6.74

2.07 n.d. 0.62 0.01 6.59

2.47 n.d. 1.28 0.01 6.31

2.97 n.d. 2.67 0.03 5.95

3.47 n.d. 5.36 0.06 5.97

3.97 n.d. 9.67 0.11 5.96

4.47 n.d. 16.32 0.18 6.01

4.97 n.d. 23.68 0.26 5.98

5.47 n.d. 29.64 0.33 5.90

5.97 n.d. 31.43 0.35 5.92

6.47 n.d. 31.77 0.35 5.92

Volume of bioreactor [|l] NH3 [g/mol] Lactic acid [g/mol]

2 17.04 90.08

L2
5
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Example of the pH trend in the 2 L fermentation

The pH droped from pH ca. 7 to 6 in the first 3 hours of the fermentation. Then, 
the pH was controlled at pH = 6 by adding ammonia.
For the correlation between the pH, lactic acid and ammonia the data of four 2-L 
fermentations (see raw data on the left) was analyzed.
At pH = 6, the addition of ammonia was 1:1 [mol/L] proportional with the 
synthesis of lactic acid (see next graph). 

For the beginning of the fermentation, when the pH drops, only a few data 
points were available. A linear correlation to predict the pH from the lactic acid 
concentration in this zone is shown in the next graph. 
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y = -39.90x + 7.00
R² = 0.79

5.00

5.50

6.00

6.50

7.00

7.50

0.00 0.01 0.01 0.02 0.02 0.03

p
H

Lactic acid [mol/L]

pH > 6

A linear correlation to predict the pH from the lactic acid and ammonia 
concentration was derived:

pH = −39.9 ∙ 𝐿𝐴 − 1 ∙ 𝑁𝐻 + 7.00
Here the concentrations are given in mol/L.
Note that the concentrations in the publication were presented in g/L!

Paper E 235



236



Paper F 237

Paper F

A Validated CFD-based Compartment Model to Assess

pH Gradients in Lactic Acid Bacteria Cultivations

Robert Spanna, Christophe Rocab, Krist V. Gernaeya, Gürkan Sina

a Process and Systems Engineering Center (PROSYS), Department of

Chemical and Biochemical Engineering, Technical University of Denmark

b Chr. Hansen A/S

Submitted to the AIChE Journal (Online ISSN:1547-5905).



 
 

Abstract 
A compartment model (CM) was designed based on a computational fluid dynamics (CFD) 
simulation, and applied to analyze the mixing effects on the cultivation performance of lactic 
acid bacteria in a 700 L bioreactor. To this end, the kinetic model, which describes the biomass 
growth as well as pH dynamics in the cultivation, was coupled with the CM describing mixing 
and transport phenomena within the bioreactor. A Monte Carlo simulation was performed to 
account for uncertainties in the model. Applying the validated CM, a better base addition 
position for pH control was proposed to reduce the pH gradients in the reactor. The computation 
speed of the CM (<2 s for one simulation) enables fast off-line process condition testing and 
on-line applications, e.g. as a soft sensor, in contrast to a CFD simulation that takes several 
hours/days to simulate. This allows future application of the CM for on-line monitoring and 
control. 

Introduction 
Biotechnological processes demand continuous improvement in order to be competitive. 
Mechanistic models are built and shown to be useful to support bioprocess development efforts 
at different levels; e.g. to support process understanding, to speed up the development of new 
processes, and to monitor and control the production process to ensure that the right product 
quality and quantity are achieved.1,2 However, the cell physiology, and hence often the product 
quality are different at production scale compared to lab scale because of altered cultivation 
conditions.3 In large-scale processes, culture parameters such as the carbon source 
concentration, oxygen concentration, and the pH among others are not homogeneously 
distributed in contrast to traditional lab-scale conditions. Transport limitations exist due to a 
lower mixing capability of large-scale bioreactors. For example, the addition of alkali solution 
to a batch cultivation in order to control the pH leads to a significantly higher pH in the vicinity 
of the inlet.4 Cells are exposed to changing conditions while they circulate through the 
bioreactor, and they might adapt to those conditions resulting in increased maintenance 
requirements and a lower yield at large scale.5–8 This makes it challenging for both the 
experimental process design that usually takes place at lab scale, and for the model 
development that relies typically on data derived from lab-scale experiments. They often do 
not consider the heterogeneous conditions at large scale. 

Computational fluid dynamics (CFD) models are applied to investigate the mixing in 
bioreactors. They have been used to investigate potential improvement of the mass transfer in 
large-scale bioreactors, e.g. the oxygen transfer rate by optimizing the impeller configuration.8,9 
Furthermore, several process conditions during a cultivation have been investigated by 
coupling biokinetic models with the CFD model.10–13 The drawback of CFD models is, 
however, that they require a long computation time of more than a day to simulate a full-scale 
cultivation14 – which might change in future e.g. with quantum computing. Even though CFD 
simulations are a powerful tool for process development, CFD models are unsuitable for on-
line applications today due to their high computational demand. 

Compartment models therefore offer an opportunity as a compromise between the 
computational complexity for describing mixing and the simulation speed that is needed for 
various applications such as on-line monitoring and control applications, as well as fast off-
line simulations, e.g. to test different scenarios for reactor geometry, mixing equipment and 
sensor locations. Like CFD models, they consider the mixing and the resulting heterogeneous 
process conditions in large-scale bioprocesses. In the compartment model, the spatial resolution 
is reduced compared to a CFD model and the flow rates between compartments are usually 
determined based on the velocity fields predicted by a steady state CFD simulation.15 So far, 
various bioprocesses have been simulated with compartment models, in order to investigate 
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gradients of the substrate, oxygen, and metabolites.15–19 However, pH gradients have not been 
investigated despite the importance of the pH on the microbial physiology.20,21 

The objective of this study was therefore to design and validate a CFD-based compartment 
model for a Streptococcus thermophilus batch cultivation, and to predict the pH gradients that 
occurred in the 700 L bioreactor. To this end, first a compartment model was designed and the 
flow rates were extracted from a steady state CFD simulation validated in a previous study 
(Spann et al., 2018, submitted: “CFD predicted pH gradients in lactic acid bacteria 
cultivations”). The compartment model was validated with tracer experiments and the CFD 
predictions. Then, a biokinetic model describing microbial growth, and a chemical model 
describing the pH dynamics in the bioreactor were integrated in the compartment model, and a 
pH controlled batch cultivation was simulated. The model predictions were compared with 
experimental multi-position pH measurements. Finally, a further application of the 
compartment model for process design purposes was demonstrated, in which the compartment 
model was applied to test different alkali addition positions in order to decrease the pH 
gradients during the cultivation. 

Materials and Methods 
Cultivation Conditions and Off-Line Analysis 
A Streptococcus thermophilus cultivation was performed in a stirred tank bioreactor (Chemap 
AG, Switzerland) with 700 L liquid volume in batch mode. The bioreactor was equipped with 
three 6-blade Rushton turbines and four baffles (see for the details Spann et al., 2018, 
submitted). The cultivation was performed with a stirrer speed of 130 rpm, at 40 °C, and with 
nitrogen headspace gassing. 24 % (w/v) ammonia solution (NH4OH) was added below the 
bottom impeller to control the pH at the set point pH 6. The pH sensor that provided the 
measurements as input to the controller was located 35 cm above the bottom of the bioreactor 
close to the bioreactor wall. The pH was furthermore monitored every second at heights of 0.10 
m and 1.60 m with CPS471D pH sensors (Endress+Hauser AG, Switzerland). The medium 
contained 70 g L-1 lactose, 10 g L-1 casein hydrolysate, 12 g L-1 yeast extract, 11.5 mM 
K2HPO4, 36.6 mM sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4, and 0.3 mM 
MnSO4. 

The dry cell weight was determined from cultivation broth samples that were first centrifuged, 
then washed twice with 0.9 % NaCl, and finally dried at 70 °C for 24 h. Organic acids and 
sugars were quantified from filtered (0.2 µm) samples in an HPLC (Dionex UltiMate 3000, 
Thermo Fisher Scientific, Waltham, MA). It was equipped with a refractive index detector 
(ERC RefractoMax 520) and an Aminex® HPX-87H column (Bio-Rad Laboratories, Hercules, 
CA), and operated at a flow rate of 0.6 mL min-1 at 50 °C using 5 mM H2SO4 according to 
suppliers instructions. 

Compartment Model 
A compartment model was designed based on the steady state velocity profiles that were 
obtained from a CFD simulation. The CFD simulations that were conducted in ANSYS CFX 
17.1 (ANSYS, Inc., US-PA) were described elsewhere (Spann et al., 2018, submitted). The 
CFD model captured half of the bioreactor volume applying a rotational periodicity plane. The 
mesh was defined with 6-sided hexahedral elements and consisted of 1.6 ∙ 106 nodes in total in 
both the stationary domain and the rotating domains. Steady state velocity profiles were 
obtained representing a stirrer speed of 130 and 240 rpm using the k-ε turbulence model. The 
CFD model was validated at 240 rpm with NaOH tracer pulse experiments from the top of the 
bioreactor using multi-position pH measurements. Both the dynamic pH change and the mixing 
time have been accurately predicted by the CFD model. 
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To design the compartments for the reactor model, it was decided to represent each 
recirculation loop that was revealed by the velocity profiles of the CFD simulation as one 
compartment (Figure 1 and Supplementary Figure S1). To further define the boundaries and 
the inflow and outflow of fluids, the following procedure was used: (i) Horizontal planes were 
set up every 1 cm in CFX-Post and the axial velocities and node areas were exported for each 
plane from the CFD results. (ii) The flow rates were calculated as the product of the velocity 
and the area, and the positive and negative axial flow rates were separated. (iii) The arithmetic 
means of both the positive and negative flows were calculated. (iv) The local minima (here 
five) of the mean positive axial flow rates defined the interfaces between the compartments 
(here six compartments) (Supplementary Figure S2). These positions matched with the local 
maxima of the mean negative flow rates over the bioreactor height. (v) The arithmetic mean of 
the mean positive flow and of the absolute mean negative flow of the interface planes were set 
as the flow between the compartments. In this way, a continuity is ensured, which avoids mass 
accumulation in compartments. The properties of the compartment model can be found in 
Table I. 

In addition, a 7th compartment was designed capturing the 10 cm at the top of the bioreactor 
that was necessary to support the tracer pulse simulation (see below). The resulting 
configuration of the compartmental model is shown in Figure 1 B.  

 
FIGURE 1. Design of the CFD- based compartment model for a stirred speed of 130 rpm. 
Velocity streamlines of the steady state CFD solution (A). The seven compartments for 
the 700 L bioreactor (B). 
 

The compartment model has been implemented in MATLAB (The MathWorks®, Natick, MA) 
as an ordinary differential equation (ODE) system. To simulate the lactic acid bacteria 
cultivation the biokinetic and the pH model (see below) were defined together with the 
compartment model that represented the stirrer speed of 130 rpm in the ODE system. 
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For comparison, a one-compartment model with a volume of 700 L was simulated in MATLAB 
to model the cultivation without the effects of gradients. 

Table I. Properties of the compartment models 
Compartment Volume [L] Compartment 

interconnection 
Flow rates between the 
compartments [L s-1] 

 130 rpm 240 rpm  130 rpm 240 rpm 
1 38.8 38.8 1 ↔ 2 12.2 17.9 
2 36.4 52.6 2 ↔ 3 8.8 12.1 
3 67.1 50.9 3 ↔ 4 14.2 18.1 
4 76.8 60.6 4 ↔ 5 9.7 13.6 
5 39.6 55.7 5 ↔ 6 11.7 17.5 
6 80.6 80.6 6 ↔ 7 10 15.3 
7 19.1 19.1    

 

Mixing Time Calculation with a Tracer Pulse 
The addition of a tracer pulse was simulated by starting a simulation with 100 g L-1 of an 
additional state variable in the top compartment while the additional variable was not present 
in the other compartments. Only the flows between the compartments were modelled whereas 
the reaction rates of the dynamic model (see below) were not considered. The concentration of 
the additional variable in each compartment was then normalized (Eq. (1)) and the mixing time 
was calculated with the logarithmic squared deviation with respect to the normalized upper 
bound 1 (Eq. (2)).22 95 % homogeneity was achieved at log𝐷𝐷2 = −2.6. 

 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖
′ (𝑡𝑡) =

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡 = 0)
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡 = 5 min) − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡 = 0) (1) 

where 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖
′  represents the normalized tracer concentration in the i-th compartment, and 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) the tracer concentration in the i-th compartment at time t after the pulse. 

 
𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷2 = 𝑙𝑙𝑙𝑙𝑙𝑙 �

1
𝑛𝑛
∙��𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖

′ (𝑡𝑡) − 1�
2

𝑛𝑛

𝑖𝑖=1

� (2) 

where n is the number of compartments. In this study, the 5 lower compartments were 
considered to calculate the mixing time, as this represented the experimental conditions of the 
tracer pulses (Spann et al., 2018, submitted). In these experiments, the bioreactor was filled 
with 700 L 35 °C tap water, and pulses of a NaOH solution (27 %, Novadan ApS, Denmark) 
were applied from the top of the bioreactor within a pH range of 5.0 to 6.0. Five pH sensors 
(CPS471D) measured the pH every second at different positions, namely at heights of 0.10, 
0.35, 0.60, 0.95, and 1.25 m with respect to the bottom of the bioreactor with a clearance of 
0.1 m to the bioreactor wall. 

Biokinetic and pH Model 
A dynamic mechanistic model was implemented that described the evolution of the state 
variables in the S. thermophilus cultivation. The model had been developed and validated 
earlier with 2 L experiments and is described in detail in Spann et al.23 The model comprises a 
biological model part and a chemical model part.  

  

Paper F 241



 
 

The biokinetic model 
The biological model predicted the biomass growth, substrate (lactose) consumption, and the 
lactic acid secretion by the bacteria among others. The biokinetic model is based on the overall 
process stoichiometry24 (Eq. (3)-(4)). The biomass growth rate is modelled as a product of 
functions that account for the lag-time (flag), lactose inhibition and limitation (fS)25, lactate 
inhibition (fP)26, and the pH in the cultivation broth (fpH)27 (Eq.(5)-(6)). 

𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙𝐿𝐿𝐿𝐿 +  𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑛𝑛𝐴𝐴𝐿𝐿 +  𝑃𝑃ℎ𝑙𝑙𝐿𝐿𝑜𝑜ℎ𝑙𝑙𝑜𝑜𝐴𝐴𝐿𝐿 𝐿𝐿𝐿𝐿𝐴𝐴𝑎𝑎 → 𝐵𝐵𝐴𝐴𝑙𝑙𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝐴𝐴𝐿𝐿 𝐿𝐿𝐿𝐿𝐴𝐴𝑎𝑎 + 𝐺𝐺𝐿𝐿𝑙𝑙𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙𝐿𝐿𝐿𝐿 (3) 
qS ∙ CH2O + qNH ∙ 𝑁𝑁𝑁𝑁3 + qPh ∙ 𝑁𝑁3𝑃𝑃𝑃𝑃4 → qX ∙ CHaObNcPd + qP ∙ CH2O + qGal ∙ CH2O (4) 

𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝑡𝑡

= µ𝑚𝑚𝑡𝑡𝑚𝑚 ∙ 𝑓𝑓𝑙𝑙𝑡𝑡𝑙𝑙 ∙ 𝑓𝑓𝑆𝑆 ∙ 𝑓𝑓𝑃𝑃 ∙ 𝑓𝑓𝑝𝑝𝑝𝑝 ∙ 𝐶𝐶𝑋𝑋 (5) 

𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝑡𝑡

= µ𝑚𝑚𝑡𝑡𝑚𝑚 ∙ �1 − 𝐿𝐿
− 𝑡𝑡
𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙� ∙

𝐶𝐶𝑆𝑆

𝐶𝐶𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝐶𝐶𝑆𝑆2
𝐾𝐾𝐼𝐼

∙
1

1 + 𝐿𝐿𝐾𝐾𝑃𝑃,𝐿𝐿𝑙𝑙(𝐶𝐶𝐿𝐿𝐿𝐿−𝐾𝐾𝐿𝐿𝑙𝑙1) ∙ 𝐿𝐿
−�

�𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝�
2

𝜎𝜎𝑜𝑜𝑝𝑝
2 �

∙ 𝐶𝐶𝑋𝑋 (6) 

with KLa1 dependent on the pH: 

𝐾𝐾𝐿𝐿𝑡𝑡1 = 𝐾𝐾𝐿𝐿𝑡𝑡 ∙
1

1 + 𝐿𝐿𝐾𝐾𝑃𝑃,𝑜𝑜𝑝𝑝1∗�𝑝𝑝𝑝𝑝−𝐾𝐾𝑃𝑃,𝑜𝑜𝑝𝑝2�
 (7) 

The lactic acid secretion rate of the bacteria is modelled as a growth dependent function:28  
𝑎𝑎𝐶𝐶𝑃𝑃
𝑎𝑎𝑡𝑡

= 𝛼𝛼 ∙
𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝑡𝑡

 (8) 

The lactose uptake rate is the sum of the biomass growth and lactic acid secretion rate (Eq. (9)). 
Ygal accounts for the secretion of galactose since the used strain does not metabolize the 
galactose that is produced from the lactose. 

𝑎𝑎𝐶𝐶𝑆𝑆
𝑎𝑎𝑡𝑡

= −�1 + 𝑌𝑌𝑙𝑙𝑡𝑡𝑙𝑙� ∙ �
𝑎𝑎𝐶𝐶𝑋𝑋
𝑎𝑎𝑡𝑡

+
𝑎𝑎𝐶𝐶𝑃𝑃
𝑎𝑎𝑡𝑡

� (9) 

The kinetic parameters (Table II) were identified in a parameter estimation that included an 
identifiability and uncertainty analysis.23 
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Table II. Kinetic parameters for the S. thermophilus model 
Symbol Value Std. deviation Reference 

 CFD model Monte Carlo model  
Biological model     
KI 164 g L-1 164 g L-1 n.d. 25 
KLa 21.1 g L-1 19.80 g L-1 0.05 g L-1 23 
KP,La 0.2 L g-1 0.24 L g-1 0.03 L g-1 23 
KP,pH1 20 20 n.d.  23 
KP,pH2 7 7 n.d. 23 
KS 0.79 g L-1 0.79 g L-1 n.d. 25 
pHopt 6.22 6.39 0.06 23 
tlag 0.38 0.38 n.d. parameter estimation 
Ygal 0.63 g g-1 0.69 g g-1 0.04 g g-1 23 
α 5.59 g g-1 5.19 g g-1 0.01 g g-1 23 
µmax 2.16 h-1    23 
σpH 1.09 1.42 0.04 23 
Mixed weak acid/base model  
Kr,C1
′  107 s-1 29 

Kr,LA
′  107 s-1 29 

Kr,NH
′  1012 s-1 29 

Kr,P1
′  108 s-1 29 

Kr,P2
′  1012 s-1 29 

Kr,W
′  1010 s-1 29 

Kr,Z
′  107 s-1 29 

𝑜𝑜𝐾𝐾𝐶𝐶1 3404.7 (𝑇𝑇 − 14.8435 + 0.03279 ∙ 𝑇𝑇)⁄  30 
𝑜𝑜𝐾𝐾𝐿𝐿𝐿𝐿 3.86 31 
𝑜𝑜𝐾𝐾𝑁𝑁𝑝𝑝  2835.8 (𝑇𝑇 − 0.6322 + 0.00123 ∙ 𝑇𝑇)⁄  30 
𝑜𝑜𝐾𝐾𝑃𝑃1 799.3 (𝑇𝑇 − 4.5535 + 0.01349 ∙ 𝑇𝑇)⁄  30 
𝑜𝑜𝐾𝐾𝑃𝑃2 1979.5 (𝑇𝑇 − 5.3541 + 0.01984 ∙ 𝑇𝑇)⁄  30 
𝑜𝑜𝐾𝐾𝑊𝑊 14 30 
𝑜𝑜𝐾𝐾𝑍𝑍 9.4 23 
T 313 K measured process 

condition 
Initial Conditions 
CGal,t=0 0.0 g L-1  
CGlc,t=0 0.0 g L-1  
CP,t=0 0.0 g L-1  
CS,t=0 70 g L-1 2.3 g L-1  
CtCO,t=0 1.002 ∙ 10−5 𝐴𝐴𝑙𝑙𝑙𝑙 𝐿𝐿−1  
CtNH,t=0 0.005 g L-1   
CtPh,t=0 2 g L-1   
CtZ,t=0 2 mol L-1  
CX,t=0 0.025 g L-1 8 ∙ 10-4 g L-1  
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The chemical model to predict the pH 
The objective of the chemical model was to predict the pH in the cultivation broth. Two models 
were applied to predict the pH, namely a linear equation and a mixed weak acid/base model. 

In this study, first the linear equation that had been used in the CFD study (Spann et al., 2018, 
submitted) was applied to predict the pH (Eq. (10)). It therefore allowed a comparison of the 
CFD and compartment model predictions but is dependent on the data it has been derived from. 
The mixed weak acid/base model (see below) could not be solved in the CFD simulation 
because the fast reaction rates resulted in a stiff system of differential equations. 

𝑜𝑜𝑁𝑁 = −0.44 ∙ �𝐶𝐶𝑃𝑃 − 5.29 ∙ 𝐶𝐶𝑁𝑁𝑝𝑝3� + 7.00 (10) 

 

Second, a mechanistic mixed weak acid/base model was applied that had been previously 
validated for the S. thermophilus cultivation.23 It comprises the dissociation reactions of lactic 
acid, ammonia, phosphoric acid, carbonic acid, water, and an unspecified compound Z (Table 
III).29 The mixed weak acid/base model could not be solved in the CFD simulation because the 
fast reaction rates resulted in a stiff system of differential equations. 

Table III. Kinetics of the mixed weak acid/base model 

Dissociation reaction Reaction rate vector 
𝐶𝐶3𝑁𝑁6𝑃𝑃3 ↔ 𝐶𝐶3𝑁𝑁5𝑃𝑃3− + 𝑁𝑁+ Kr,LA

′ ∙ KLA
′ ∙ [𝐶𝐶3𝑁𝑁6𝑃𝑃3] − 𝐾𝐾𝑡𝑡,𝐿𝐿𝐿𝐿

′ ∙ [𝐶𝐶3𝑁𝑁5𝑃𝑃3−] ∙ [𝑁𝑁+] 
𝑁𝑁𝑁𝑁4+ ↔ 𝑁𝑁𝑁𝑁3 + 𝑁𝑁+ Kr,NH

′ ∙ KNH
′ ∙ [𝑁𝑁𝑁𝑁4+] − 𝐾𝐾𝑡𝑡,𝑁𝑁𝑝𝑝

′ ∙ [𝑁𝑁𝑁𝑁3] ∙ [𝑁𝑁+] 
𝑁𝑁3𝑃𝑃𝑃𝑃4 ↔ 𝑁𝑁2𝑃𝑃𝑃𝑃4− + 𝑁𝑁+ Kr,P1

′ ∙ KP1
′ ∙ [𝑁𝑁3𝑃𝑃𝑃𝑃4] − 𝐾𝐾𝑡𝑡,𝑃𝑃1

′ ∙ [𝑁𝑁2𝑃𝑃𝑃𝑃4−] ∙ [𝑁𝑁+] 
𝑁𝑁2𝑃𝑃𝑃𝑃4− ↔ 𝑁𝑁𝑃𝑃𝑃𝑃42− + 𝑁𝑁+ Kr,P2

′ ∙ KP2
′ ∙ [𝑁𝑁2𝑃𝑃𝑃𝑃4−] − 𝐾𝐾𝑡𝑡,𝑃𝑃2

′ ∙ [𝑁𝑁𝑃𝑃𝑃𝑃42−] ∙ [𝑁𝑁+] 
𝑁𝑁2𝐶𝐶𝑃𝑃3∗ ↔ 𝑁𝑁𝐶𝐶𝑃𝑃3− + 𝑁𝑁+ Kr,C1

′ ∙ KC1
′ ∙ [𝑁𝑁2𝐶𝐶𝑃𝑃3∗] − 𝐾𝐾𝑡𝑡,𝐶𝐶1

′ ∙ [𝑁𝑁𝐶𝐶𝑃𝑃3−] ∙ [𝑁𝑁+] 
𝑁𝑁2𝑃𝑃 ↔ 𝑃𝑃𝑁𝑁− + 𝑁𝑁+ Kr,W

′ ∙ KW
′ − 𝐾𝐾𝑡𝑡,𝑊𝑊

′ ∙ [𝑃𝑃𝑁𝑁−] ∙ [𝑁𝑁+] 
𝑍𝑍𝑁𝑁+ ↔ 𝑍𝑍 + 𝑁𝑁+ Kr,Z

′ ∙ KZ
′ ∙ [𝑍𝑍𝑁𝑁+] − 𝐾𝐾𝑡𝑡,𝑍𝑍

′ ∙ [𝑍𝑍] ∙ [𝑁𝑁+] 
 
To account for the changing ionic strength in the cultivation broth due to the increase of the 
lactate and ammonium concentrations, the activity coefficients were first calculated by a 
modified Debye-Hückel model by Davies32 (Eq. (11)) in order to then determine the apparent 
equilibrium constants KLA

′ ,  KP1
′ ,  KP2

′ , KC1
′ , KW

′ , and KZ
′  according to Musvoto et al.29 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓𝑖𝑖) = −1.825 ∙ 106 ∙ (78.3 ∙ 𝑇𝑇)−1.5 ∙ 𝑧𝑧𝑖𝑖2 ∙ �
√𝐼𝐼

1 + √𝐼𝐼
− 0.3 ∙ 𝐼𝐼� (11) 

With the ionic strength (I) of the charged components (i): 

𝐼𝐼 =
1
2
�𝑧𝑧𝑖𝑖2𝐶𝐶𝑖𝑖
𝑖𝑖

 (12) 

The pH was controlled at the pHset = 6.0 by adding ammonia solution using a P-controller with 
the controller gain (KP) of 5 mol L-1 ∙ liquid volume [L]: 

𝑁𝑁𝑁𝑁4𝑃𝑃𝑁𝑁𝑡𝑡𝑎𝑎𝑎𝑎 = 𝐾𝐾𝑃𝑃 ∙ (𝑜𝑜𝑁𝑁𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑜𝑜𝑁𝑁) (13) 
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Monte Carlo Simulation 
A Monte Carlo simulation of the dynamic model was performed to account for uncertainties in 
the model. The Monte Carlo procedure consisted of three steps: First, the input uncertainties 
were identified and defined. In this case study, uncertainties in the kinetic model parameters 
and the initial substrate and biomass conditions were considered. The range of uncertainties 
are listed in Table II as defined earlier.23 Second, N = 200 random input samples were 
generated from the input uncertainty domain using the Latin hypercube sampling 
technique.33,34 The sampling matrix can be found in the Supplementary Figure S3. Third, the 
Monte Carlo simulation was performed. The model predicted therefore a probability 
distribution of the model outputs.  

Results and Discussion 
The compartment model was designed with the aim to fulfill two key characteristics: (i) The 
model should accurately account for the fluid dynamics and thus heterogeneous process 
conditions in the large scale bioreactor. (ii) It was meant to reduce the computation time 
considerably compared to a CFD simulation. A fast computation time was crucial, on the one 
hand, for a widespread use in different process development tasks, and, on the other hand, to 
be suitable for on-line monitoring and control applications. To achieve this, a manual CFD-
based compartmentalization was performed where each of the recirculation loops that have 
been predicted by the CFD simulation were considered as a compartment. The seventh 
compartment was placed for the top 10 cm of the bioreactor that enabled the tracer pulse 
simulation in order to validate the compartment model. Two compartment models were 
designed: The first model modelled the stirrer speed of 130 rpm, which corresponded to the 
conditions of the S. thermophilus cultivation. The second model modelled the stirrer speed of 
240 rpm, which corresponded to the conditions for the tracer pulse experiments. 

Validation of the Compartment Model with the Mixing Time 
The compartment models were validated with a tracer pulse simulation from the top of the 
bioreactor. The predictions of the CFD model were used as a benchmark to assess the 
compartment model since the CFD model was dynamically validated with experimental 
measurements (Spann et al., 2018, submitted). It had been shown that the CFD model is capable 
of predicting both the dynamic trend of the tracer concentration at various positions in the 
bioreactor after a tracer pulse, and to predict the mixing time accurately.  

The mixing times to achieve 95 % homogeneity were compared with the experiments and the 
CFD model (Table IV). The compartment model that mimicked a stirrer speed of 240 rpm 
predicted 52 s to achieve 95 % homogeneity, which were both in good agreement with the 
experimentally measured mixing time values (48 ±5 s). In addition, the mixing time simulated 
by the compartment model matched well with the mixing time prediction of the CFD 
simulation, which was 55 s. A further comparison of the mixing time prediction was made at 
130 rpm (the impeller speed of the cultivation), which showed that the prediction of the 
compartment model was 68 s compared to the 89 s mixing time predicted by the CFD model.  
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Table IV. Mixing times that were predicted by the compartment model, the steady state 
CFD model, and the experiments 

 Mixing time [s] 
to reach 95% homogeneity 
130 rpm 240 rpm 

Experiment not available 48 ± 5 
CFD model 89 55  
Compartment 
model 

68 52 

 

In general, the predicted mixing times were shorter with the compartment models than the CFD 
models, which may be explained by the reduced resolution of the compartment model. When 
the tracer enters the next compartment, the same concentration is assumed in the whole 
compartment, while many more mesh elements must be passed in the CFD model (the complete 
CFD model consists of ca. 1.6 million nodes). The present compartment model was coarse as 
only seven compartments were designed. Axial (up and down) mixing within the recirculation 
loops was therefore not represented in the compartments. Horizontal flows (radial and 
circumferential) have not been considered in the presented compartment model. Nevertheless, 
for example, the circumferential flow might be faster close to the impellers than at the 
bioreactor wall and the baffles.  

The simple compartment model with seven compartments was not expected to describe the 
fluid dynamics comprehensively (e.g. as comprehensive as CFD). Nonetheless, the results 
validated the compartment model against both measurements and CFD predictions to describe 
mixing adequately in the reactor for this case. Indeed, the relative difference between the 
prediction of CFD and the compartmental model for the mixing time were lower than 20% at 
130 rpm. This difference was only 5% at 240 rpm. Anyhow, as the growth rate constants of 
microbial system is slower compared to the mixing time constants, this mixing time accuracy 
was deemed acceptable for this study. These results are specific to the reactor geometry as well 
as cultivation conditions (viscosity etc.) used in this study. If the conditions in the bioreactor 
are modified, e.g. a lower or higher stirrer speed, the compartment model properties (compare 
Table I) might change. It is noted that a more complicated compartment model design might 
be needed to adequately describe mixing in other systems. For instance, the study of Delafosse 
et al. required more than 12000 compartments to simulate the expected mixing time.35 It was 
not the aim of this study to optimize the compartment model design further.  

Simulation of the Lactic Acid Bacteria Cultivation 
In this section, the validated compartment model describing the fluid dynamics, was combined 
with the biokinetic and pH model in order to simulate the lactic acid bacteria cultivation. The 
results were compared with experimental measurements, the CFD model, and a homogeneous 
model. The cultivation was performed at 130 rpm and hence the corresponding compartment 
model was used. The same model equations (including the pH calculation (Eq. (10)) and 
parameters were used as in the CFD simulation (Spann et al., 2018, submitted) to allow a 
comparison of the model predictions. 

The S. thermophilus batch cultivation was simulated and the prediction of the state variables 
biomass, lactic acid, and lactose was assessed (Figure 2). The three models, the compartment 
model (dashed line), the CFD model (solid line), and a one-compartment model (dotted line) 
match the off-line measurements (circles) quantitatively. The off-line measurements are shown 
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for comparison purposes here. The objective of the comparison was to evaluate the effect of 
different modelling approaches for the fluid dynamics combined with the same kinetic 
parameter set. The difference between the compartment model and the CFD model was less 
than 0.42 g L-1 in the biomass prediction (Figure 2 A), < 0.97 g L-1 in the lactic acid prediction 
(Figure 2 B), and < 3.74 g L-1 for the lactose concentration (Figure 2 B). This corresponds to a 
difference of less than 10 % with respect to the maximum concentrations that were recorded. 
The difference between the compartment model and the homogeneous model was considerably 
lower. It was less than 0.15 g L-1 in the biomass prediction (Figure 2 A), < 0.77 g L-1 in the 
lactic acid prediction (Figure 2 B), and < 1.56 g L-1 for the lactose concentration (Figure 2 B), 
corresponding to a difference of less than 3 %.  

 
Figure 2. Simulated and measured biomass (A), lactic acid (lactate + lactic acid) (B), and 

lactose (C) concentrations in the 700 L S. thermophilus cultivation. Measurements 
(open circles), CFD simulation (black solid line), compartment model (red dashed 
line), homogeneous simulation (blue dotted line). 

 

As the difference between the homogeneous model and the compartment model was small, it 
might be argued that the compartment model is not needed. However, the purpose of the 
compartment model is to be able to describe the effects of the mixing, e.g. the pH gradients. 
What if scenarios for different location of acid/base addition for pH control are therefore 
possible, which would otherwise not be possible with the homogeneous model assuming a 
completely mixed bioreactor. Moreover, the results are case specific and hold only true for the 
investigated strain and process conditions. More importantly, the comparison showed only the 
view of the total bioreactor, whereas local gradients, both of the pH and the state variables, 
might exist in the cultivation and were evaluated below. 

The difference between the CFD model and the compartment model was visible and it could 
be attributed to the ODE solving algorithms or the simulated process conditions, among others. 
Discretization errors may have caused the difference since the CFD model was solved with a 
time step of 1 s (Spann et al., 2018, submitted), while the MATLAB ode15s solver uses a 
dynamic step size providing a more accurate integration of the stiff ODE system (the 
integration error was set to 10-5). Furthermore, gradients of state variables, such as substrate, 
lactic acid, and pH were predicted differently, and could have led to divergent model results as 
they influence the biomass growth, e.g. by inhibition (see Eq. (6)). The CFD simulation predicts 
a similar gradient as the compartment model (see below) at the measurement positions, which 
were close to the bioreactor wall. However, in contrast to the compartment model, the 
resolution of the CFD simulation is finer, and hence the high pH in the close vicinity of the 
base addition affected the CFD results. Biomass growth is consequently reduced in the base 
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addition region in the CFD simulation, while an “average” pH is modelled in the bottom 
compartment of the compartment model. Substrate and lactic acid gradients are from a 
statistical point of view nonexistent (see below).  

The computation time for the compartment model was less than 2 s on an Intel® Core™ i7-
5600U CPU @2.6 GHz (1000 repetitions showed this performance), which was considerably 
faster than the 4 days on 20 CPU cores on the DTU High Performance Computing Cluster 
(https://www.hpc.dtu.dk/) that was required for the CFD simulation. The long computation 
time is generally the issue with simulations performed with biokinetic models coupled with 
CFD models.14 

Monte Carlo simulation 
The fast simulation time of the compartment model allowed considering a Monte Carlo 
simulation of the mechanistic mixed weak acid/base model together with the biokinetic model 
in the subsequent compartment model implementations. With the Monte Carlo simulation the 
uncertainties of the model parameters could be covered as they have been determined in the 
parameter estimation.23 This allowed a more robust model prediction in comparison to the 
deterministic simulation used above. Furthermore, the mechanistic pH model (Table III) 
replaced the data driven pH correlation (Eq. (10)) since we generally prefer a mechanistic 
model to describe the system because of the advantages of mechanistic models, e.g. the 
extrapolation capability and flexibility.2 The computation time of the compartment model 
remained below 2 s with the mixed weak acid/base model included.  

A Monte Carlo simulation of the compartment model with 200 input samples was performed, 
and the mean concentration of the state variables over all compartments was evaluated (Figure 
3). The assessment of the gradients between the compartments is shown in the subsequent 
section. The probabilistic compartment model predicted the state variables quantitatively, 
namely the biomass (Figure 3 A), lactic acid (Figure 3 B), and lactose (Figure 3 C) 
concentration. The Monte Carlo procedure was applied in order to propagate the input 
uncertainties (model parameters, and initial process conditions) to the model outputs.36 The 
uncertainty in the model outputs is indicated by the 5 and 95 % percentiles.37 The maximum 
standard deviation was σbiomass = 0.22 g L-1, σlactic_acid = 1.15 g L-1, and σlactose = 4.15 g L-1. The 
uncertainties were deemed to be low and acceptable since they were in the range of expected 
measurement errors (for biomass and lactic acid) and of the anticipated medium preparation 
uncertainties (for lactose).  
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Figure 3. Simulated and measured biomass (A), lactic acid (lactate + lactic acid) (B), and 

lactose (C) concentrations in the 700 L S. thermophilus cultivation. Measurements 
with std. deviation (open circles), deterministic CFD simulation (black solid line), 
5 and 95 % percentile of the Monte Carlo simulation output of the compartment 
model predictions (red dashed line), and the homogeneous model (blue dotted 
line). 

 

Gradients in the Cultivation 
The compartment model was applied to predict both the pH gradient and gradients of the 
biological state variables during the lactic acid bacteria cultivation. 

pH gradients 
The initial pH of the cultivation was pH = 6.8 that dropped due to lactic acid secretion within 
the first 2.5 h (Figure 4 A). The pH was then controlled to maintain it at pH = 6.0 by adding 
ammonia solution at the bottom of the bioreactor. A pH gradient was formed, which could be 
measured and predicted by the compartment model. The measurements showed the largest pH 
gradient at 4 h (during the exponential growth phase), with pH = 5.9 at the top of the bioreactor 
and pH = 6.2 at the bottom of the bioreactor. The pH measurements were taken every 1 s, and 
a few measurements showed a pH up to pH = 7.0. The mixed weak acid/base model predicted 
the initial pH drop accurately and the maximum pH gradient at 4 h to be between pH = 5.8 and 
6.1 (Figure 4 A). The pH was raised in the bottom of the bioreactor because of the ammonia 
addition. Due to the fast lactic acid secretion and the insufficient mixing the pH decreased in 
the top compartments of the bioreactor. When the linear pH correlation was implemented in 
the compartment model, it matched the results of the mixed weak acid model closely (Figure 
4 B).  
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Figure 4. Compartment model predictions and measurements of the pH gradient in the 

700 L S. thermophilus cultivation with a stirrer speed of 130 rpm. A: Monte Carlo 
simulation of the compartment model with the mixed weak acid/base model 
(dashed line) and measurements (dots) that were recorded every 1 s. 
B: Compartment model with the linear pH correlation. 

 
The pH gradients were qualitatively predicted with a deviation of 0.1 pH units with the mixed 
weak mixed acid/base model. The small mismatch of the pH gradient predictions is likely 
related to the mixed weak acid/base model because it did not represent the medium components 
completely. The accuracy of the predictions could be improved in several ways: (1) Additional 
components such as acetic acid and amino acids that are present in the cultivation could be 
added to the mixed weak acid/base model. (2) The deviation of 0.1 pH units could also have 
resulted from calibration and measurement errors (e.g. drift of the pH sensors), which can be 
improved by the use of several pH sensors to double-check the results. (3) A finer compartment 
model design (i.e. increasing the number of compartments) can help better quantitatively 
represent the fluid dynamics (approximating that of the CFD simulation). However, this would 
lead to longer mixing times in the compartment model, and hence the predicted pH gradient 
might increase.  

Nonetheless, the difference of 0.1 pH unit between the prediction of the compartmental model 
and the measurements is deemed acceptable, as this difference is not likely to cause significant 
errors on the microbial growth kinetics, hence this qualitative prediction of pH is deemed 
acceptable for the process design and monitoring purposes.  

Gradients in the biological state variables 
Apart from the pH gradients, differences of the concentrations of the biological state variables 
such as biomass, lactic acid, and lactose concentration were evaluated along the compartments. 
Figure 5 shows the differences at 4 h when the largest differences were predicted since the 
highest growth rate had been reached at that time. The predicted differences are statistically 
not significant, as the predicted deviation by the Monte Carlo simulation (Figure 5 top row) 
was much larger than the shown gradient of the mean values (Figure 5 bottom row). The 
biomass and lactic acid concentrations were slightly higher at the bottom than at the top of the 
bioreactor (Figure 5 A.2 and B.2). The lactose concentration was higher at the top of the 
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bioreactor than at the bottom (Figure 5 C.2). The differences were mainly attributed to the pH 
in the compartments. Owing to the pH function (fpH) with the pH optimum at pHopt = 6.4 (Eq. 
(6)), the growth rate was faster in the bottom compartments since the fpH was higher there than 
in the top compartment where the pH was lower. Slightly more biomass and lactic acid were 
consequently accumulated in the bottom compartment, and more lactose was consumed there.  

Such small differences in the lactic acid, and lactose concentration will not have an effect on 
the microbial performance. The situation could, of course, change if a fed-batch process would 
be applied since then a larger gradient of the carbon source would be expected as well.6  

 
Figure 5. Biomass (A), lactic acid (lactate + lactic acid) (B), and lactose (C) concentrations 

gradients at 4 h of the S. thermophilus cultivation that were predicted by the 
compartment model. Std. deviation of the Monte Carlo simulation (top row). 
Mean concentrations in the seven compartments (bottom row). 

 
The compartment model predicted the pH gradients qualitatively with a deviation of less than 
0.1 pH units. The accuracy of the compartment model was therefore comparable with the CFD 
model (see Spann et al., 2018, submitted) whereas the computation time of the compartment 
model was much faster. The latter makes the compartment model a promising tool for on-line 
applications as it could be implemented in a soft sensor that requires a fast simulation time. 
The soft sensor could be applied for on-line risk-based monitoring and control, and could 
support the operation of the cultivation (manuscript in preparation).  

Assessment of Different Base Addition Positions 
The compartment model could be also applied for the process design besides the above 
mentioned on-line monitoring and control application. It could be applied to simulate different 
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scenarios, e.g. to test different control strategies or to investigate different base addition and 
pH sensor locations in order to decrease the pH gradient. 

In the studied system, the base was added below the bottom impeller and the controlled pH 
was measured in compartment 2. Here, a pH gradient between 5.8 and 6.1 was predicted in the 
exponential growth phase as discussed above (Figure 4). In case the base addition would be 
placed underneath the middle impeller in the bioreactor, a pH gradient between 5.9 and 6.05 
was predicted (Figure 6 A). If the base addition was placed below the top impeller while the 
controlled pH was still measured in compartment 2, a pH gradient between 5.95 and 6.3 was 
predicted (Figure 6 B). If the base would be added to the top of the bioreactor, a pH gradient 
between 5.95 and 7.0 was predicted (Figure 6 C). 

 
Figure 6. pH gradients predicted by the compartment model when the base would be 

added at different positions. Base addition below the middle impeller (A), below 
the top impeller (B), and from the top of the bioreactor (C).  

 
According to these results, the pH gradient could be significantly reduced if the base inlet 
would be placed below the middle impeller. In the worst-case scenario, with the base addition 
from the top together with the measurement of the pH at the bottom (the measurement input to 
the controller here in compartment 2, Figure 6 C) the pH gradient would increase drastically. 
In general, other combinations of the position of both the base addition and the controlling pH 
measurement could be assessed. Experimental validation of the proposed design for the sensor 
location using the simulation of the compartmental model iteratively would help better improve 
optimization of the process. 

Indeed, the compartment model could complement the process design phase at an early stage; 
in particular, it allows exploring and testing different scenarios with a short simulation time. 
Using a CFD simulation instead requires much longer simulation times and more 
computational resources.19 However, we believe that a detailed analysis with a high resolution 
CFD simulation would be needed subsequently to substantiate the results. As an example, the 
gradients in the area in the vicinity of the base addition point could not be simulated with the 
compartment model. A higher pH is expected here as the base concentration is very high4, 
which could be predicted by the CFD simulation with a higher spatial resolution (Spann et al., 
2018, submitted).  

Moreover, thanks to the promising results obtained in this study with a 700 L bioreactor, it is 
now intended to apply the CFD-based compartment model to larger (production-scale) 
bioreactors, e.g. > 50 m3, and to support industrial production processes. The presented tools 
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can for example be applied to investigate to which extent pH gradients exist at production scale, 
and whether they could have an influence on the metabolic activity and especially the biomass 
growth and product quality.  

Conclusion 
A CFD-based compartment model was designed in order to represent the fluid dynamics of the 
700 L bioreactor in an adequate manner and to reduce the computation time in comparison to 
CFD simulations. The compartment model was needed to account for the heterogeneous 
process conditions that occur in large-scale bioprocesses. It predicted the S. thermophilus batch 
cultivation including the pH gradients matching the CFD simulation and measurements with 
acceptable deviations. These gradients could have an influence on the microbial performance 
in the production process, while differences in the lactose and lactic acid concentrations along 
the height of the bioreactor were negligibly small. Thanks to the fast computation time without 
reducing the quality of the prediction significantly, the compartment model could be used for 
on-line applications, e.g. in a soft sensor for future risk-based monitoring and control. The 
computation speed also enabled a Monte Carlo simulation considering uncertainties in the 
model parameters and initial process conditions, which provided probabilistic model 
predictions in contrast to the deterministic CFD model prediction. Furthermore, the capability 
of the CFD-based compartment model in the early stage of the bioprocess design phase was 
demonstrated as different base addition positions were tested with the aim to minimize the pH 
gradients during the cultivation. 
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Notation 
CGal galactose concentration (g L-1) 
CGlc glucose concentration (g L-1) 
𝐶𝐶𝑝𝑝+ H+ concentration (mol L-1) 
CLA lactate concentration (g L-1) 
𝐶𝐶𝑂𝑂𝑝𝑝− OH- concentration (mol L-1) 
CP total lactic acid (lactate and lactic acid) concentration (g L-1) 
CS lactose (substrate) concentration (g L-1) 
CtCO total carbonic acid (H2CO3

∗  and 𝑁𝑁𝐶𝐶𝑃𝑃3−) concentration (mol L-1) 
CtNH total concentration of 𝑁𝑁𝑁𝑁4+ and 𝑁𝑁𝑁𝑁3 (g L-1) 
CtPh total concentration of 𝑁𝑁3𝑃𝑃𝑃𝑃4, 𝑁𝑁2𝑃𝑃𝑃𝑃4−, and 𝑁𝑁𝑃𝑃𝑃𝑃42−(g L-1)  
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 tracer concentration in the i-th compartment  
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖
′  normalized tracer concentration in the i-th compartment 

CtZ total concentration of the unknown compound (dissociated and undissociated form) (mol L-1) 
CX biomass concentration (g L-1) 
fd divalent activity coefficients (-) 
flag lag-time function (-) 
fm monovalent activity coefficients (-) 
fP lactic acid inhibition function (-) 
fpH pH dependency function (-) 
fS substrate limitation and inhibition function (-) 
H2CO3

∗  dissolved CO2 and H2CO3 
I ionic strength (g L-1) 
KC1
′  apparent equilibrium constant for the carbonic acid system (-) 

KI substrate inhibition parameter (g L-1) 
KLa lactate inhibition parameter (g L-1) 
KLa1 pH dependent lactate inhibition parameter (g L-1) 
KLA
′  apparent equilibrium constant for the lactic acid system (-) 

KNH
′  apparent equilibrium constant for the ammonia system (-) 

KP P-controller controller gain 
KP,La 2. lactate inhibition parameter (L g-1) 
KP,pH1 lactate inhibition pH parameter (-) 
KP,pH2 2. lactate inhibition pH parameter (-) 
KP1
′  apparent equilibrium constant for the phosphoric acid system (-) 

KP2
′  apparent equilibrium constant for the dihydrogen phosphate system (-) 

Kr,C1
′  apparent reverse rate constant for carbonic acid dissociation (s-1) 

Kr,LA
′  apparent reverse rate constant for lactic acid dissociation (s-1) 

Kr,NH
′  apparent reverse rate constant for NH4 dissociation (s-1) 

Kr,P1
′  apparent reverse rate constant for H3PO4 dissociation (s-1) 

Kr,P2
′  apparent reverse rate constant for 𝑁𝑁2𝑃𝑃𝑃𝑃4− dissociation (s-1) 

Kr,W
′  apparent reverse rate constant for water dissociation (s-1) 

Kr,Z
′  apparent reverse rate constant for the dissociation of the unknown component (s-1) 

KS substrate limitation parameter (g L-1) 
KW
′  apparent equilibrium constant for the water system (-) 

KZ
′  apparent equilibrium constant for the unspecified compound system (-) 

pH pH of the cultivation broth 
pHopt optimal pH parameter in the pH function (-) 
pHset pH control set point (-) 
𝑜𝑜𝐾𝐾𝐶𝐶1 pKa constant for carbonic acid dissociation 
𝑜𝑜𝐾𝐾𝐿𝐿𝐿𝐿 pKa constant for lactic acid dissociation 
𝑜𝑜𝐾𝐾𝑁𝑁𝑝𝑝  pKa constant for NH4 dissociation 
𝑜𝑜𝐾𝐾𝑃𝑃1 pKa constant for H3PO4 dissociation 
𝑜𝑜𝐾𝐾𝑃𝑃2 pKa constant for 𝑁𝑁2𝑃𝑃𝑃𝑃4− dissociation 
𝑜𝑜𝐾𝐾𝑊𝑊 pKa constant for water dissociation 
𝑜𝑜𝐾𝐾𝑍𝑍 pKa constant for the unspecified compound dissociation 
qGal volumetric galactose secretion rate (C-mol L-1 h-1) 
qNH volumetric ammonia consumption rate (mol L-1 h-1) 
qP volumetric lactic acid secretion rate (C-mol L-1 h-1) 
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qPh volumetric phosphoric acid consumption rate (mol L-1 h-1) 
qS volumetric substrate consumption rate (C-mol L-1 h-1) 
qX volumetric biomass growth rate (C-mol L-1 h-1) 
T temperature in the bioreactor (K) 
t time variable (h) 
tlag lag-time coefficient (h) 
Ygal galactose yield (g g-1) 
zi charge number of the i-th ion 
α growth related production coefficient of lactic acid (g g-1) 
µmax maximum specific growth rate (h-1) 
σ standard deviation 
σpH spread parameter is the gaussian pH function 
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Supplementary material 
 

 
FIGURE S1. Design of the CFD- based compartment model for a stirred speed of 240 

rpm. Velocity streamlines of the steady state solution (A). The seven 
compartments for the 700 L bioreactor (B). 

 

 
FIGURE S2. Axial velocities across the height of the bioreactor. For the steady state CFD 

simulation representing 130 rpm (A), and 240 rpm (B). Mean axial velocities were 
calculated over horizontal planes that were placed every 1 cm across the height of 
the bioreactor. 
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FIGURE S3. Sampling matrix for the input uncertainty space. The Latin Hypercube 

Sampling (LHS) technique and the Iman Conover rank correlation method were 
used to sample 200 independent inputs and to induce the known covariance 
matrix, respectively. 
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Abstract 

An on-line process risk assessment framework was developed and applied for a 700 L 
Streptococcus thermophilus cultivation. To achieve this, a probabilistic soft sensor was applied 
that included a validated mechanistic biokinetic model and a CFD-based compartment model. 
The risk assessment framework considered imperfect mixing conditions (hence pH gradients) 
and its impact on the process performance. The process risk, defined as the likelihood of not 
achieving the target biomass production per batch, was calculated continuously during the 
cultivation process using the on-line measurements, namely ammonia solution addition and the 
pH measurement. A Monte Carlo simulation was performed each time the model was updated 
to account for uncertainties in the model parameters, namely the initial process conditions, and 
on-line measurements. The soft sensor predicted pH gradients ranging from pH 5.8 ± 0.02 at 
the top of the bioreactor to 6.1 ± 0.02 at the bottom of the bioreactor. In the present cultivation, 
the estimated process risk was to lose less than 140 g biomass per batch, which is ca. 3.5 % of 
the total production capacity. A sensitivity analysis indicated that the on-line ammonia addition 
had the highest impact on the risk quantification. This process analytical technology (PAT) tool 
could be included in an automated risk-based control framework that minimizes the risk of not 
achieving the economic objectives of the process. 

1 Introduction 

More and more scientific and risk-based methodologies have been implemented in 
pharmaceutical and related processes since the publications of the process analytical technology 
(PAT) guidance (FDA, 2004) and the quality by design (QbD) approach (ICH Q8(R2), 2009) 
(Rantanen & Khinast, 2015). These methodologies assist the industry to understand the 
manufacturing process and to control the process in a way that the quality of the product is 
assured by design. In the quality by design approach, the desired product attributes, such as 
purity, stability, and concentration, are defined, and critical quality attributes (CQAs) are 
identified. Critical process parameters (CPPs), i.e. process parameters that have an impact on 
the CQAs, are then determined based on process characterization studies (Rathore & Winkle, 
2009). CPPs may include temperature, pH, feed flow rate etc. The acceptable range of the CPPs 
is defined as the design space that leads to the desired product quality. During production, these 
parameters need to be controlled by the PAT system and maintained within the design space to 
ensure a robust process operation and to ensure product quality in bioprocesses (Gnoth, Jenzsch, 
Simutis, & Lübbert, 2007). 

Models are implemented to predict the CQAs by using the measured CPPs as model inputs in 
the framework of PAT (Glassey et al., 2011). Commonly, statistical models such as multivariate 
data analysis are applied to predict the effect of the CPPs on the CQAs (Mercier, Diepenbroek, 
Wijffels, & Streefland, 2014; Rathore, Mittal, Pathak, & Mahalingam, 2014). Nevertheless, 
mechanistic models and hybrid models (a combination of mechanistic and data-driven 
modelling techniques) are used as well (Kager, Herwig, & Stelzer, 2018; Mears, Stocks, 
Albaek, Sin, & Gernaey, 2017; Solle et al., 2017; Sommeregger et al., 2017). Since the CQAs 
can be hardly measured in real time, the models are especially beneficial in a soft sensor for on-
line monitoring and control of industrial processes (Mandenius & Gustavsson, 2015). They 
enable to follow the dynamics of the CQAs in real time and to control the process accordingly.  

Traditionally, risk assessment is conducted in the process design phase to identify process 
parameters with a high risk, which are then further investigated for process characterization 
(Rantanen & Khinast, 2015; Stocker, Toschkoff, Sacher, & Khinast, 2014). Risk management 
methods such as Failure Mode Effects Analysis (FMEA) provide a method to evaluate these 
risks (ICH Q9, 2005). The risk is thereby weighted based on the severity, occurrence and 
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detection of a process failure, i.e. a deviation from the parameter’s nominal operating point. 
The severity is a measure for the seriousness of the consequences (with respect to the target 
product) if such a process failure happens; the occurrence is the expected probability of this 
event; and the detection indicates to which extent this process failure can or cannot be detected 
timely before the product is used (ICH Q9, 2005). 

To date, risk is quantified statically during the process design phase (Adam, Suzzi, Radeke, & 
Khinast, 2011) but often not quantified dynamically in real time while a process is running. To 
achieve on-line risk quantification, we applied a Monte Carlo simulation in a model-based soft 
sensor including a CFD-based compartment model for on-line monitoring and risk 
quantification of a 700 L lactic acid bacteria cultivation. Lactic acid bacteria cultures are 
produced in large-scale bioreactors to be used subsequently in the dairy industry e.g. for yogurt 
or cheese production. The compartment model was applied to account for heterogeneous 
process conditions (especially pH) in the process. In the Monte Carlo simulation, several 
uncertainties were considered: model parameter uncertainties, process input variations, and on-
line measurement errors. The soft sensor predicted therefore a probability distribution of the 
state variables on-line, including the critical quality attribute for the case study defined as the 
biomass yield. The probability of not achieving the target biomass production and the 
corresponding risk were quantified based on the predicted probability distribution and updated 
on-line. A sensitivity analysis was then applied to provide better insight into which process 
parameters have been contributing to the computed process risk. 

2 Materials and Methods 

2.1 Cultivation conditions 

A batch cultivation of the homolactic S. thermophilus (provided by Chr. Hansen A/S, 
Hørsholm, Denmark) was carried out in a stirred tank bioreactor at a stirring speed of 132 rpm, 
40 °C, and with N2 headspace gassing. The stirred tank bioreactor (Chemap AG, Switzerland) 
was equipped with three 6-blade Rushton turbines, had four baffles, and was filled with approx. 
700 L cultivation medium initially (Figure 1 A). The pH was controlled by adding ammonia 
solution (24 % (w/v) NH4OH) at the bottom of the bioreactor with the pH set point at 6. The 
pH controlling sensor was located 0.3 m above the bottom of the bioreactor close to the 
bioreactor wall. In addition, pH sensors (CPS471D, Endress+Hauser AG, Switzerland) 
measured the pH at heights of 0.1 m and 1.6 m with a distance of 0.1 m to the reactor wall. The 
initial pH was 6.8. The cultivation medium contained 70 g L-1 lactose, 10 g L-1 casein 
hydrolysate, 12 g L-1 yeast extract, 11.5 mM K2HPO4, 36.6 mM sodium acetate, 8.2 mM 
trisodium citrate, 0.8 mM MgSO4, and 0.3 mM MnSO4.  
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Figure 1. Simplified bioreactor setup (A) and the compartment model (B). A bioreactor with 
three six-blade Rushton turbines, four baffles, and a liquid volume of 700 L was used. The base 
(ammonia solution) was added at the bottom of the bioreactor. B: 7 compartments were 
designed based on the axial velocities of the steady state CFD solution resembling a stirrer 
speed of 132 rpm (for details see Spann et al., 2018, submitted). 

 

2.2 Design and validation of the compartment model 

The compartment model has been designed and validated elsewhere (manuscript in 
preparation). The compartment model was based on a computational fluid dynamics simulation 
that had been validated with tracer pulse experiments earlier (Spann et al., 2018, submitted). In 
accordance to the six recirculation loops that are built by the three Rushton turbines (Vrabel, 
Van Der Lans, Luyben, Boon, & Nienow, 2000), six compartments were defined, where each 
compartment resembled a recirculation loop (Figure 1 B). In addition, a seventh compartment 
was defined at the top zone of the bioreactor, where low axial velocities were predicted. The 
compartments were defined based on the axial velocity, i.e. the compartments were separated 
at the positions of the lowest axial velocities. This methodology assumed fast circumferential 
mixing, which might be true for the inner radius of the bioreactor, as the impellers turn with 2 
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rounds per second. However, it simplified the fluid dynamics close to the bioreactor wall and 
baffles, where slow circumferential mixing was  

Table I. Properties of the compartment model (half of the bioreactor was modelled). 

Compartment 
interconnection 

Interface area 
[m2] Velocity [m s-1] Compartment 

no. Volume [m3] 

1 ↔ 2 0.1754 0.0693 1 0.0388 

2 ↔ 3 0.1839 0.0476 2 0.0364 

3 ↔ 4 0.1754 0.0810 3 0.0671 

4 ↔ 5 0.1839 0.0527 4 0.0768 

5 ↔ 6 0.1754 0.0669 5 0.0396 

6 ↔ 7 0.1847 0.0541 6 0.0806 

   7 0.0191 

 

predicted by the CFD simulation (Spann et al., 2018, submitted). The pros and cons of this 
compartment design are discussed elsewhere (manuscript in preparation). However, the focus 
of this article are the applications of a compartment model with respect to on-line risk 
assessment, and not the detailed discussion of the compartment model. The volumes of the 
compartments and the flows between the compartments (Table I) were extracted from the CFD 
model that was built in ANSYS CFX 17.1 (ANSYS, Inc., US-PA). Half of the bioreactor was 
modelled as there was a vertical symmetry in the middle of the bioreactor. The compartment 
model was implemented together with the kinetic model (see below) in MATLAB® R2017a 
(The MathWorks®, Natick, MA). 

2.3 Biokinetic model and pH simulation 

The dynamic model comprised a biological and a chemical model part as described in detail in 
Spann et al. (2018). The biokinetic model predicted the evolution of the state variables, such as 
biomass, lactic acid, and lactose concentration. The chemical model was a mixed weak 
acid/base model describing the dissociation reactions of the charged components, such as 
ammonium and lactate. 

2.3.1 The biokinetic model 
The biokinetic model was based on the global stoichiometric process equation (Villadsen, 
Nielsen, & Lidén, 2011) (Eq. (1)-(2)). The biomass growth rate was modelled as a function that 
depended on the lag-time (flag), lactose inhibition and limitation (fS) (Åkerberg, Hofvendahl, 
Hahn-Hägerdal, & Zacchi, 1998), lactate inhibition(fP) (Aghababaie, Khanahmadi, & Beheshti, 
2015), and the pH in the cultivation broth (fpH) (Schepers, Thibault, & Lacroix, 2002) (Eq.(3)-
(4)). 
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𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 +  𝑨𝑨𝑨𝑨𝑨𝑨𝑳𝑳𝑨𝑨𝑨𝑨𝑳𝑳 +  𝑷𝑷𝑷𝑷𝑳𝑳𝑳𝑳𝑷𝑷𝑷𝑷𝑳𝑳𝑷𝑷𝑨𝑨𝑳𝑳 𝑳𝑳𝑳𝑳𝑨𝑨𝒂𝒂
→ 𝑩𝑩𝑨𝑨𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑨𝑨𝑳𝑳 𝑳𝑳𝑳𝑳𝑨𝑨𝒂𝒂 + 𝑮𝑮𝑳𝑳𝑮𝑮𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 (1) 

𝐪𝐪𝐒𝐒 ∙ 𝐂𝐂𝐇𝐇𝟐𝟐𝐎𝐎 + 𝐪𝐪𝐍𝐍𝐇𝐇 ∙ 𝑵𝑵𝑵𝑵𝟑𝟑 + 𝐪𝐪𝐏𝐏𝐏𝐏 ∙ 𝑵𝑵𝟑𝟑𝑷𝑷𝑷𝑷𝟒𝟒 → 𝐪𝐪𝐗𝐗 ∙ 𝐂𝐂𝐇𝐇𝐚𝐚𝐎𝐎𝐛𝐛𝐍𝐍𝐜𝐜𝐏𝐏𝐝𝐝 + 𝐪𝐪𝐏𝐏 ∙ 𝐂𝐂𝐇𝐇𝟐𝟐𝐎𝐎 + 𝐪𝐪𝐆𝐆𝐚𝐚𝐆𝐆
∙ 𝐂𝐂𝐇𝐇𝟐𝟐𝐎𝐎 (2) 

𝒂𝒂𝑪𝑪𝑿𝑿
𝒂𝒂𝑳𝑳

= µ𝑨𝑨𝑳𝑳𝒎𝒎 ∙ 𝒇𝒇𝑮𝑮𝑳𝑳𝒍𝒍 ∙ 𝒇𝒇𝑺𝑺 ∙ 𝒇𝒇𝑷𝑷 ∙ 𝒇𝒇𝑷𝑷𝑵𝑵 ∙ 𝑪𝑪𝑿𝑿 (3) 

𝒂𝒂𝑪𝑪𝑿𝑿
𝒂𝒂𝑳𝑳

= µ𝑨𝑨𝑳𝑳𝒎𝒎 ∙ �𝟏𝟏 − 𝑳𝑳
− 𝑳𝑳
𝑳𝑳𝑮𝑮𝑳𝑳𝒍𝒍� ∙

𝑪𝑪𝑺𝑺

𝑪𝑪𝑺𝑺 + 𝑲𝑲𝑳𝑳 + 𝑪𝑪𝑺𝑺𝟐𝟐
𝑲𝑲𝑰𝑰

∙
𝟏𝟏

𝟏𝟏 + 𝑳𝑳𝑲𝑲𝑷𝑷,𝑳𝑳𝑳𝑳(𝑪𝑪𝑳𝑳𝑨𝑨−𝑲𝑲𝑳𝑳𝑳𝑳𝟏𝟏) ∙ 𝑳𝑳
−�

�𝑷𝑷𝑵𝑵𝑳𝑳𝑷𝑷𝑳𝑳−𝑷𝑷𝑵𝑵�
𝟐𝟐

𝝈𝝈𝑷𝑷𝑵𝑵
𝟐𝟐 �

∙ 𝑪𝑪𝑿𝑿 

(4) 

with KLa1 dependent on the pH: 

𝑲𝑲𝑳𝑳𝑳𝑳𝟏𝟏 = 𝑲𝑲𝑳𝑳𝑳𝑳 ∙
𝟏𝟏

𝟏𝟏 + 𝑳𝑳𝑲𝑲𝑷𝑷,𝑷𝑷𝑵𝑵𝟏𝟏∗�𝑷𝑷𝑵𝑵−𝑲𝑲𝑷𝑷,𝑷𝑷𝑵𝑵𝟐𝟐�
 (5) 

The lactic acid synthesis was considered to be growth dependent (Peng, Yang, Wang, Lin, & 
Cheng, 1997):  

𝒂𝒂𝑪𝑪𝑷𝑷
𝒂𝒂𝑳𝑳

= 𝜶𝜶 ∙
𝒂𝒂𝑪𝑪𝑿𝑿
𝒂𝒂𝑳𝑳

 (6) 

The lactose consumption rate was the sum of the biomass growth and the lactic acid synthesis 
rate considering the secretion of galactose (Ygal) since the used strain metabolizes only glucose 
and secretes galactose under the present cultivation conditions: 

𝒂𝒂𝑪𝑪𝑺𝑺
𝒂𝒂𝑳𝑳

= −�𝟏𝟏 + 𝒀𝒀𝒍𝒍𝑳𝑳𝑮𝑮� ∙ �
𝒂𝒂𝑪𝑪𝑿𝑿
𝒂𝒂𝑳𝑳

+
𝒂𝒂𝑪𝑪𝑷𝑷
𝒂𝒂𝑳𝑳

� (7) 

The kinetic parameters were estimated from the data obtained in five lab-scale cultivations, and 
validated with an independent data set. The experiments were conducted under different 
substrate (20 and 70 g L-1) and pH conditions (5.5 <= pH <= 7.0) including identifiability and 
uncertainty analysis (Spann et al., 2018). The derived parameters including the uncertainty of 
the estimated parameter values are listed in Table II. 

  

266



   

Table II Kinetic parameters of the dynamic model for the S. thermophilus cultivation. 

Symbol Value Std. deviation Reference 
Biological model   
KI 164 g L-1 n.d. (Åkerberg et al., 1998) 
KLa 19.80 g L-1 0.05 g L-1 (Spann et al., 2018) 
KP,La 0.24 L g-1 0.03 L g-1 (Spann et al., 2018) 
KP,pH1 20 n.d. (Spann et al., 2018) 
KP,pH2 7 n.d. (Spann et al., 2018) 
KS 0.79 g L-1 n.d. (Åkerberg et al., 1998) 
pHopt 6.39 0.06 (Spann et al., 2018) 
tlag updated in the soft sensor  
Ygal 0.69 g g-1 0.04 g g-1 (Spann et al., 2018) 
α 5.19 g g-1 0.01 g g-1 (Spann et al., 2018) 
µmax Initial value: 2.06 h-1, updated in the soft 

sensor 
(Spann et al., 2018) 

σpH 1.42 0.04 (Spann et al., 2018) 
Mixed weak acid/base model  
Kr,C1
′  107 s-1 (Musvoto et al., 2000) 

Kr,LA
′  107 s-1 (Musvoto et al., 2000) 

Kr,NH
′  1012 s-1 (Musvoto et al., 2000) 

Kr,P1
′  108 s-1 (Musvoto et al., 2000) 

Kr,P2
′  1012 s-1 (Musvoto et al., 2000) 

Kr,W
′  1010 s-1 (Musvoto et al., 2000) 

Kr,Z
′  107 s-1 (Musvoto et al., 2000) 

𝑝𝑝𝑝𝑝𝐶𝐶1 3404.7 (𝑇𝑇 − 14.8435 + 0.03279 ∙ 𝑇𝑇)⁄  (Loewenthal et al., 1989) 
𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 3.86 (Dawson, 1969) 
𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁  2835.8 (𝑇𝑇 − 0.6322 + 0.00123 ∙ 𝑇𝑇)⁄  (Loewenthal et al., 1989) 
𝑝𝑝𝑝𝑝𝑃𝑃1 799.3 (𝑇𝑇 − 4.5535 + 0.01349 ∙ 𝑇𝑇)⁄  (Loewenthal et al., 1989) 
𝑝𝑝𝑝𝑝𝑃𝑃2 1979.5 (𝑇𝑇 − 5.3541 + 0.01984 ∙ 𝑇𝑇)⁄  (Loewenthal et al., 1989) 
𝑝𝑝𝑝𝑝𝑊𝑊 14 (Loewenthal et al., 1989) 
𝑝𝑝𝑝𝑝𝑍𝑍 9.4 (Spann et al., 2018) 
T 313 K measured process 

condition 
Initial Conditions 
CGal,t=0 0.0 g L-1  
CGlc,t=0 0.0 g L-1  
CP,t=0 0.0 g L-1  
CS,t=0 70 g L-1 2.3 g L-1  
CtCO,t=0 1.002 ∙ 10−5 𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿−1  
CtNH,t=0 0.005 g L-1   
CtPh,t=0 2 g L-1   
CtZ,t=0 2 mol L-1  
CX,t=0 0.025 g L-1 8 ∙ 10-4 g L-1  

 

2.3.2 The mixed weak acid/base model 
The objective of the mixed weak acid/base model was to predict the pH (as the negative 
logarithm of the hydrogen ion activity: pH = –log10{H+}). To this end, this model part 
comprised the dissociation reactions of the charged components in the cultivation (Musvoto, 
Wentzel, Loewenthal, & Ekama, 2000), such as ammonium, lactate, phosphate, carbonate, etc. 
which are relevant in the investigated pH range (Table III) (Spann et al., 2018). The pKa values 
were derived from Dawson (1969) and (Loewenthal, Ekama, & Marais, 1989) (Table II), and 
the activity coefficients were calculated by a modified Debye-Hückel model by Davies (Davies, 
1962): 
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𝑮𝑮𝑳𝑳𝒍𝒍(𝒇𝒇𝑨𝑨) = −𝟏𝟏.𝟖𝟖𝟐𝟐𝟖𝟖 ∙ 𝟏𝟏𝟏𝟏𝟔𝟔 ∙ (𝟕𝟕𝟖𝟖.𝟑𝟑 ∙ 𝑻𝑻)−𝟏𝟏.𝟖𝟖 ∙ 𝒛𝒛𝑨𝑨𝟐𝟐 ∙ �
√𝑰𝑰

𝟏𝟏 + √𝑰𝑰
− 𝟏𝟏.𝟑𝟑 ∙ 𝑰𝑰� (8) 

With the ionic strength (I): 

𝑰𝑰 =
𝟏𝟏
𝟐𝟐
�𝒛𝒛𝑨𝑨𝟐𝟐𝑪𝑪𝑨𝑨
𝑨𝑨

 (9) 

A P-controller with a controller gain (KP) of (5 mol L-1 ∙ liquid volume [L]) was applied to 
maintain the pH at the set point value of 6 by adding ammonia solution: 

𝑵𝑵𝑵𝑵𝟒𝟒𝑷𝑷𝑵𝑵𝑳𝑳𝒂𝒂𝒂𝒂 = 𝑲𝑲𝑷𝑷 ∙ (𝑷𝑷𝑵𝑵𝑳𝑳𝑳𝑳𝑳𝑳 − 𝑷𝑷𝑵𝑵) (10) 

The model was implemented and solved in MATLAB. The numerical solver ode15s was used 
because the present model contains slow (e.g. the biomass growth rate) and fast time constants 
(e.g. the ammonia dissociation rate and the flow rates between the compartments) resulting in 
a stiff system of ordinary differential equations. The implemented stoichiometric matrix of the 
biological and chemical model can be found in the Supplementary Material. 

 

Table III. Kinetics of the mixed weak acid/base model. fm and fd are the mono- and divalent 
activity coefficients, respectively; see Loewenthal et al. (1989) and Musvoto et al. (2000). 

Dissociation 
process 

Reaction reaction rate vector apparent 
equilibrium 
constant 

Ammonium 𝑁𝑁𝑁𝑁4+ ↔ 𝑁𝑁𝑁𝑁3 + 𝑁𝑁+ Kr,NH
′ ∙ KNH

′ ∙ [𝑁𝑁𝑁𝑁4+] − 𝑝𝑝𝑟𝑟,𝑁𝑁𝑁𝑁
′ ∙ [𝑁𝑁𝑁𝑁3] ∙ [𝑁𝑁+] KNH

′ = 10−𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁 
Phosphate 1 𝑁𝑁3𝑃𝑃𝑃𝑃4

↔ 𝑁𝑁2𝑃𝑃𝑃𝑃4− + 𝑁𝑁+ 
Kr,P1
′ ∙ KP1

′ ∙ [𝑁𝑁3𝑃𝑃𝑃𝑃4] − 𝑝𝑝𝑟𝑟,𝑃𝑃1
′ ∙ [𝑁𝑁2𝑃𝑃𝑃𝑃4−] ∙ [𝑁𝑁+] KP1

′ = 10−𝑝𝑝𝑝𝑝𝑃𝑃1 𝑓𝑓𝑚𝑚2⁄  

Phosphate 2 𝑁𝑁2𝑃𝑃𝑃𝑃4−
↔ 𝑁𝑁𝑃𝑃𝑃𝑃42− + 𝑁𝑁+ 

Kr,P2
′ ∙ KP2

′ ∙ [𝑁𝑁2𝑃𝑃𝑃𝑃4−] − 𝑝𝑝𝑟𝑟,𝑃𝑃2
′ ∙ [𝑁𝑁𝑃𝑃𝑃𝑃42−] ∙ [𝑁𝑁+] KP2

′ = 10−𝑝𝑝𝑝𝑝𝑃𝑃2 𝑓𝑓𝑑𝑑⁄  

Carbonate 1 𝑁𝑁2𝐶𝐶𝑃𝑃3∗
↔ 𝑁𝑁𝐶𝐶𝑃𝑃3− + 𝑁𝑁+ 

Kr,C1
′ ∙ KC1

′ ∙ [𝑁𝑁2𝐶𝐶𝑃𝑃3∗] − 𝑝𝑝𝑟𝑟,𝐶𝐶1
′ ∙ [𝑁𝑁𝐶𝐶𝑃𝑃3−] ∙ [𝑁𝑁+] KC1

′ = 10−𝑝𝑝𝑝𝑝𝐶𝐶1 𝑓𝑓𝑚𝑚2⁄  

Lactate 𝐶𝐶3𝑁𝑁6𝑃𝑃3
↔ 𝐶𝐶3𝑁𝑁5𝑃𝑃3− + 𝑁𝑁+ 

Kr,LA
′ ∙ KLA

′ ∙ [𝐶𝐶3𝑁𝑁6𝑃𝑃3] − 𝑝𝑝𝑟𝑟,𝐿𝐿𝐿𝐿
′ ∙ [𝐶𝐶3𝑁𝑁5𝑃𝑃3−] ∙ [𝑁𝑁+] KLA

′ = 10−𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 𝑓𝑓𝑚𝑚2⁄  

Water 𝑁𝑁2𝑃𝑃 ↔ 𝑃𝑃𝑁𝑁− + 𝑁𝑁+ Kr,W
′ ∙ KW

′ − 𝑝𝑝𝑟𝑟,𝑊𝑊
′ ∙ [𝑃𝑃𝑁𝑁−] ∙ [𝑁𝑁+] KW

′ = 10−𝑝𝑝𝑝𝑝𝑊𝑊 𝑓𝑓𝑚𝑚2⁄  
Unknown 
compound 𝑍𝑍𝑁𝑁+ ↔ 𝑍𝑍 + 𝑁𝑁+ Kr,Z

′ ∙ KZ
′ ∙ [𝑍𝑍𝑁𝑁+] − 𝑝𝑝𝑟𝑟,𝑍𝑍

′ ∙ [𝑍𝑍] ∙ [𝑁𝑁+] KZ
′ = 10−𝑝𝑝𝑝𝑝𝑍𝑍 𝑓𝑓𝑚𝑚2⁄  

 

2.4 Probabilistic soft sensor for on-line monitoring 

The aim of the probabilistic soft sensor is to predict the measurable and unmeasurable process 
variables, such as the biomass and substrate concentration, and the pH in real time. The 
algorithm for the probabilistic sensor is shown in Table IV and the details of the soft sensor 
including a validation with 2 L lab-scale experiments can be found elsewhere (Spann et al., 
2018). 

Once the process is started, the soft sensor is updated in 5 min intervals (Table IV). The initial 
process conditions are defined as specified for the real cultivation (Table IV, step 1-2). The soft 
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sensor uses the latest on-line measurements of the process, namely the added ammonia quantity 
and the pH (Table IV, step 3) to update the model parameters µmax and tlag (Table IV, step 4). 
The parameters are updated in 5 min intervals, and are then used as input to the dynamic model 
that predicts both the current value and the future course of the state variables (Table IV, step 
5). In this study, the soft sensor was applied off-line once the cultivation was performed for 
demonstration purposes. The on-line measurements were hereby used as they would be 
available on-line. The off-line measurements were only used to assess the goodness of the 
model fit (see below) but not to update the soft sensor. 

 

Table IV. Methodology of the probabilistic soft sensor 

Step 1 Define the initial process conditions (x0) of the real process and model  
Step 2 Start the cultivation 
Iterate step 3 to 7 in 5 minutes intervals until tend (cultivation completion) 
Step 3 Read on-line measurements 
 pH and ammonia addition rate (pH, qNH,add) 
Step 4 Update the kinetic parameters µmax and tlag 

 Step 
4.1 Data reconciliation 

  
𝑁𝑁𝑁𝑁4+ + 𝐶𝐶3𝑁𝑁5𝑃𝑃3− = 𝑞𝑞𝑁𝑁𝑁𝑁,𝑎𝑎𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑃𝑃 = 0 

𝑞𝑞𝑋𝑋 = 𝑞𝑞𝑋𝑋 𝑎𝑎⁄  

 Step 
4.2 Parameter update 

  
µ𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 =

𝑞𝑞𝑋𝑋,𝑢𝑢𝑝𝑝𝑑𝑑𝑎𝑎𝑢𝑢𝑢𝑢𝑑𝑑

𝑓𝑓𝑙𝑙𝑎𝑎𝑙𝑙,𝑘𝑘−1 ∙ 𝑓𝑓𝑆𝑆,𝑘𝑘−1 ∙ 𝑓𝑓𝑃𝑃,𝑘𝑘−1 ∙ 𝑓𝑓𝑝𝑝𝑁𝑁,𝑘𝑘−1 ∙ 𝑋𝑋𝑘𝑘−1
 

𝑡𝑡𝑙𝑙𝑎𝑎𝑙𝑙,𝑘𝑘 = 𝑡𝑡𝑙𝑙𝑎𝑎𝑙𝑙,𝑘𝑘−1 + (𝑡𝑡𝑝𝑝𝑁𝑁=6,𝑚𝑚𝑢𝑢𝑎𝑎𝑚𝑚𝑢𝑢𝑟𝑟𝑢𝑢𝑑𝑑 − 𝑡𝑡𝑝𝑝𝑁𝑁=6,𝑝𝑝𝑟𝑟𝑢𝑢𝑑𝑑𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑑𝑑) 
Step 5 Monte Carlo simulation of the model 

 Step 
5.1 

Define the input uncertainty space (once/ not every interval) (σθ,σx0) 

 Step 
5.2 Sample the independent input matrix (once/ not every interval)  

  SAMPLE MATRIX (Θl x N) 

 Step 
5.3 Monte Carlo simulation  

  
for 1:N 
Solve y(t) = Model(θj,x0) 

Step 6 Process risk quantification 

 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 = �𝑝𝑝𝑚𝑚𝑐𝑐𝑝𝑝𝑝𝑝𝑞𝑞𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 ∙ 𝑚𝑚𝑟𝑟𝑟𝑟𝑝𝑝𝑚𝑚𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑜𝑜
𝑚𝑚

 

Step 7 Save current state 

 

A Monte Carlo simulation of the dynamic model is performed every interval as explained in 
detail in Spann et al. (2018) (Table IV, step 5). To this end, the input uncertainties are first 
identified and defined. Second, random input samples are generated, and third, the Monte Carlo 
simulation is performed. In this study, uncertainties in the model parameters, initial conditions, 
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and the ammonia addition are considered. The Latin hypercube sampling technique is used to 
generate N = 200 random samples (Supplementary Figure S1) from the input uncertainty 
domain (M. D. McKay, Beckman, & Conover, 1979; Sin, Gernaey, Neumann, van Loosdrecht, 
& Gujer, 2009). 200 model simulations were therefore performed every interval that the soft 
sensor was updated providing a probability distribution of the model outputs. The model 
predictions of the biomass production were then assessed for the on-line risk quantification. 

2.5 Assessment of the soft sensor predictions  

The quality of the soft sensor predictions was assessed with the root mean sum of squared errors 
(RMSSE) with respect to the off-line measurements: 

𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹 = �
𝟏𝟏
𝑨𝑨

��𝒚𝒚𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳,𝑨𝑨 − 𝒚𝒚�𝑨𝑨�
𝟐𝟐

𝑨𝑨

𝑨𝑨

 (11) 

2.6 Process risk quantification 

The risk of not achieving the target production of biomass was calculated on-line as a result of 
the soft sensor predictions (Table IV, step 6). The biomass was selected because the lactic acid 
bacteria were the desired product of this process. The target biomass production was defined as 
4410 g biomass per batch that was based on previous 2 L lab-scale experiments (see the 
Supplementary Material for the detailed calculation). The loss/surplus (here named 
consequence) for each of the j Monte Carlo simulation predictions was then calculated as the 
difference between the model prediction (ŷ) and the target: 

 𝑳𝑳𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝒄𝒄𝒄𝒄𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝒋𝒋 = 𝒚𝒚�𝒋𝒋 − 𝑳𝑳𝑳𝑳𝑷𝑷𝒍𝒍𝑳𝑳𝑳𝑳 (12) 

Risk is generally defined in the process industries as the likelihood of an undesirable event 
(u.e.) times the consequence of that event (Cameron & Raman, 2005). The risk of several 
undesirable events is consequently the sum of their individual risks (Eq. (13)). In this study, the 
consequence of an undesired event was the loss of the biomass in terms of total biomass amount 
per batch (Eq. (12)). The likelihood of this event was the probability of this event that was 
predicted by the Monte Carlo simulation. 

 𝑷𝑷𝑷𝑷𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑷𝑷𝑨𝑨𝑳𝑳𝒓𝒓 = �𝑳𝑳𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝒄𝒄𝒄𝒄𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳(𝒄𝒄. 𝑳𝑳. ) ∙ 𝑮𝑮𝑨𝑨𝒓𝒓𝑳𝑳𝑮𝑮𝑨𝑨𝑷𝑷𝑳𝑳𝑳𝑳𝒂𝒂(𝒄𝒄.𝑳𝑳. )
𝑨𝑨

 (13) 

where m ϵ j is the number of undesirable events (u.e.). 

2.7 Sensitivity analysis 

A linear regression on the Monte Carlo simulation outputs (see above) was performed to 
measure the sensitivity of the parameters on the model outputs (Saltelli et al., 2008). This 
method is also called Standardized Regression Coefficients (SRC) method. In this study, the 
final biomass concentration after 6 h of cultivation was the model output of interest, as the 
biomass was the target product of the cultivation. A first order linear multivariate model was 
therefore fitted to the j Monte Carlo simulation predictions of the final biomass concentration 
using the constrained linear least squares algorithm (lsqlin) in MATLAB: 
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 𝒚𝒚�𝑿𝑿,𝒋𝒋 = 𝑳𝑳 + �𝒃𝒃𝑨𝑨
𝑨𝑨

∙ 𝜽𝜽�𝑨𝑨,𝒋𝒋 (14) 

where 𝑦𝑦�𝑋𝑋 represents the predicted biomass concentration (in this case study, it was chosen the 
prediction after 6 h of cultivation which is the typical length of batch cultivation), a the ordinate-
intercept of the linear model, b the linear regression coefficient, 𝜃𝜃� the parameter value, i the 
index of the model input of interest, and j the index of the Monte Carlo simulation. 

The standardized regression coefficient (SRCi) (also called βi) was obtained by scaling the 
linear regression coefficient bi using the standard deviation of the model inputs and output of 
the Monte Carlo simulation: 

 𝑺𝑺𝑹𝑹𝑪𝑪𝑨𝑨 =
𝝈𝝈𝜽𝜽�𝑨𝑨
𝝈𝝈𝒚𝒚�𝑿𝑿

∙ 𝒃𝒃𝑨𝑨 (15) 

The 𝑆𝑆𝑆𝑆𝐶𝐶𝑝𝑝2 are then the relative variance contributions to the model output variance of the linear 
model. SRCi can take values between -1 and 1, whereas a high absolute value indicates a large 
effect of the parameter i on the model output, a negative sign means a negative effect, and a 
positive sign indicates a positive effect on the output (Sin, Gernaey, Neumann, van Loosdrecht, 
& Gujer, 2011). If the coefficient of determination is sufficiently high, e.g. R2 > 0.7, which 
implies that the model is sufficiently linear, the SRCi is considered to be a valid measure for 
the sensitivity (Campolongo, 1997; Saltelli, Ratto, Tarantola, & Campolongo, 2006). 

3 Results and Discussion 

A validated model-based soft sensor was applied to predict unmeasurable attributes such as the 
biomass concentration in a lactic acid bacteria cultivation and to quantify the risk of not 
achieving the target biomass production. To this end, a CFD-based compartment model was 
used to provide a reliable risk quantification since there exist pH gradients in the 700 L 
bioreactor that occur due to insufficient mixing. 

3.1 On-line pH gradient monitoring 

The probabilistic soft sensor was applied to a historical cultivation data set, whereas the 
historical on-line data (pH and balance readout of the ammonia addition) were used as they 
would be available on-line. The soft sensor used the on-line data to update the model parameters 
µmax and tlag in 5 min intervals, as described in the Materials and Methods section and in Spann 
et al. (2018). A Monte Carlo simulation of the dynamic model was performed within the soft 
sensor to account for uncertainties in the model parameters, the ammonia addition quantity 
measurement, and the initial biomass inoculation and lactose concentration. The Monte Carlo 
simulation with 200 input samples accounting for uncertainties in the model parameters, initial 
process conditions, and the ammonia addition propagated the error to the model outputs, such 
as the pH (Figure 2 left column) and the biomass and lactose concentration (Figure 2 right 
column). The output of the soft sensor was therefore a probability distribution of the state 
variables, and the 95 % confidence intervals of the model predictions are shown (Figure 2). The 
predictions of the earlier, current, and future states of the system are shown as an example at 
different times: 2 h, 4 h, and 6 h (Figure 2 rows). The virtual implementation with 5 min 
intervals may be found in the Supplementary Movie.  
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The initial pH was ca. 6.8 and then dropped due to lactic acid secretion until the controlling pH 
value 6 was reached when the base addition started (Figure 2 left column). In the first 2.5 h, no 
ammonia was added since the pH > 6 at the controlling position (for the position of the pH 
controlling sensor see Figure 1). There was consequently also no pH gradient predicted until 
the ammonia solution was added, as the cell density was maintained homogeneously distributed 
in the liquid phase. 

As soon as the base addition started, a pH gradient was formed (Figure 2 B and C): In the 
bottom compartment of the bioreactor where the ammonia solution was added, a pH of up to 
6.1 ± 0.02 was predicted due to the base addition. In the compartment 6 (second compartment 
from the top of the bioreactor), the pH dropped down to 5.8 ± 0.02 during the exponential 
growth phase. The quality of the quantitative pH gradient prediction was not the scope of this 
paper and was assessed elsewhere (manuscript in preparation). However, the on-line predicted 
gradients seemed to cover the reality qualitatively, as pH gradients in the range of 5.9 to 6.3 
have also been measured in this cultivation (Spann et al., 2018, submitted). 

The results of the on-line prediction of the pH gradient could be used at the production scale to 
minimize the risk of faulty batches for example by (i) monitoring the extent of the gradients; 
(ii) controlling the process; and (iii) rethinking about an improved bioreactor, impeller, or base 
addition design. In case the soft sensor is implemented as a monitoring tool – as shown in this 
study – plant operators could manually supervise the process and take actions in case the pH 
gradients reach a critical level. They could take risk-based decisions as they have a measure for 
whether the mixing is sufficient with respect to the pH. The soft sensor could also be applied 
for automated on-line control. In order to avoid too large pH gradients, the impeller speed could 
be increased, for example. Apart from this, the cultivation temperature could also be altered, in 
order to regulate the biomass growth rate (which is not included in the presented model). A 
decreased biomass growth rate would indeed decrease the lactic acid production, and hence the 
pH gradient might decrease. However, this might also result in a longer cultivation time. A 
model-based control algorithm could be implemented to predict the best control strategy 
(Jiménez-Hornero, Santos-Dueñas, & García-García, 2009; Mears, Stocks, Sin, & Gernaey, 
2017). In case severe gradients occur frequently, results of such a model might also be an 
incentive for the production department to re-evaluate the bioreactor design, especially parts 
like the impeller or base addition inlet that could be modified more easily than the bioreactor 
itself. 

The probabilistic soft sensor predicted in addition to the pH gradients the biological state 
variables, such as the biomass, lactose (substrate), and lactic acid (data not shown) 
concentration (Figure 2 right column). With the cultivation time, the update of the parameters 
µmax and tlag improved the prediction. After 3 h, the RMSSE for the biomass concentration 
prediction – the target product – was smaller than 0.4 ± 0.1 g L-1 that corresponds to an error 
of less than 10 % with respect to the final biomass concentration (data not shown).  

This soft sensor, if implemented at a production site, provides the plant operators with a PAT 
tool to monitor the course of the cultivation with biological variables instead of the base 
addition profiles that have little direct meaning. A further strength of the soft sensor is that it 
could be applied to predict the end time of the cultivation, i.e. when the target cell mass will be 
achieved (Petrides & Siletti, 2004). Downstream capacities, including primed machines and 
workforce, could be scheduled and prepared accordingly. Furthermore, also subsequent steps 
in the upstream process, such as cleaning or pre-cultures for subsequent cultivations could be 
optimally planned. Overall, it might reduce the downtime of the plant equipment leading to a 
more economical operation. 
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Figure 2. Probabilistic soft sensor to predict the pH gradient (left column), biomass growth, 
and substrate consumption (right column). The soft sensor using the compartment model was 
applied to data of a 700 L S. thermophilus batch cultivation. Predictions of the pH at the 
controlling position (blue line), the pH at the bottom compartment (blue dots), the pH in the top 
compartment (blue dashed line), biomass (cyan), and lactose (green) are shown. The off-line 
measurements for biomass (gray dots with standard deviation) and lactose (gray circles) are 
shown for comparison only, but were not used for the on-line update of the parameters.  
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3.2 On-line process risk quantification  

A frequently asked question during the production process is, “What is the risk of not achieving 
the target yield (titer, productivity, etc.)?” In order to demonstrate the capability of the 
probabilistic soft sensor to quantify and update this risk while the process is running, we 
selected the biomass yield and total biomass production per batch as an example.  

The target yield was defined to be 0.09 ± 0.003 g biomass per g lactose based on previous 2 L 
lab-scale experiments (data not shown). The target was to achieve at least the same yield when 
the process was scaled up to the 700 L bioreactor. The undesired event was therefore to achieve 
less than the target yield. The risk was considered as the loss of product (biomass) per batch. It 
is quantified as the sum of the likelihood of the undesirable events times the amount of lost 
product (see Materials and Methods). 

In our case, we got the likelihood from the output of the Monte Carlo simulation that considered 
uncertainties in the model parameters, initial process conditions, and the ammonia solution 
addition balance readout. The output of the probabilistic soft sensor were 200 model 
predictions. We considered the probability distribution of the biomass concentration prediction. 
The risk quantification method will be first presented with the biomass concentration of the 
final model prediction after 6 h of the cultivation as an example. Subsequently, the results of 
the on-line risk quantification considering the dynamic model updates will be shown.  

First, the biomass yield was calculated and a histogram of the predicted probability distribution 
is shown (Figure 3 A). The biomass yield distribution ranged from 0.076 to 0.096 g biomass (g 
lactose)-1. Some simulations did not reach the target yield. Second, the cumulative distribution 
function of the predicted yield minus the target yield was calculated (Figure 3 B). In this 
example, the probability of not achieving the target yield was 75 %. In other words, 75 % of 
the 200 simulations predicted that the final biomass yield was smaller than the desired target 
yield. 25 % of the Monte Carlo predictions were accordingly equal or larger than the target 
yield. Third, the biomass production of the entire batch was calculated considering the 
bioreactor volume (Figure 3 C). The total production amount might be of higher interest for a 
company than the yield as the obtained mass is crucial for sale. Product quality aspects were 
not considered in this work but could of course be included in the model. The risk is equivalent 
with the area under the cumulative distribution function that corresponds to the undesired events 
(Figure 3 C, grey shaded area). In this example, the risk was the loss of 140 g biomass per batch. 

 

Figure 3. Probability distribution of the target biomass yield and production quantity. The 
probability distribution of the biomass yield after 6 h of cultivation as predicted by the Monte 
Carlo simulation (A); Cumulative distribution function of the yield with respect to the target 
yield (B); Cumulative distribution function of the total biomass production per batch (C). The 
grey shaded area under the cumulative distribution function represents the risk. 
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As a result of the probabilistic soft sensor, the risk could be predicted on-line considering the 
model updates (Figure 4). In this study, the predicted biomass concentration at the end of the 
cultivation (after 6 h) was considered. However, the time point and the desired product or other 
process attributes could be amended for other studies.  

In the beginning of the cultivation, the risk could not be properly predicted as no or only little 
information from the on-line measurements was available (Figure 4, Initialization phase). As 
more on-line data was provided, the soft sensor could be updated, and hence the model 
predictions became more accurate. The on-line risk calculation needed therefore an 
initialization phase, waiting for enough on-line data (ammonia addition and pH measurements) 
to update the lag-time parameter and the maximum specific growth rate parameter. Once 
enough on-line data was available, a proper on-line risk quantification was achieved during the 
process operation. In this study, the initialization phase was set until tlag was finally updated 
after 2 h and 25 min, when the base addition started. Nevertheless, the boundaries for the 
initialization phase need to be adapted in case the system would be applied for a different 
cultivation system. 

 

Figure 4. On-line risk quantification during the cultivation. The risk as biomass production loss 
per batch was quantified on-line based on the output of the probabilistic soft sensor that was 
updated in 5 min intervals. Limited on-line measurements were available in the beginning of 
the cultivation that did not enable a proper risk quantification (Initialization phase). With more 
on-line data, the dynamic model parameters could be updated in the soft sensor allowing the 
risk prediction (Risk prediction phase). 

The risk was low, i.e. close to zero, when all Monte Carlo simulations achieved the target. In 
the present case, the risk is low after 2.5 h (Figure 4, Risk prediction phase). Later on, the risk 
became higher between 3-4 h reaching a predicted risk of 140 g biomass that could be lost per 
batch. Next, the risk was predicted to be low again after 4 h and 30 min, and finally, when the 
soft sensor was updated after 6 h cultivation, the risk was 140 g biomass per batch. This 
oscillating risk prediction could be attributed to the on-line update of the µmax parameter that 
was dependent on the base addition. The base addition reflects the lactic acid secretion by the 
lactic acid bacteria and hence the biomass growth can be predicted. The on-line risk 
quantification captured therefore effects of the biomass growth rate. The growth rate changed 
in the presented cultivation. This resulted in the oscillations of the predicted biomass yield that 
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led to the oscillating risk prediction (Supplementary Figure S2). The predicted risk is 
nevertheless within the 1σ range of the target yield (0.09 ± 0.003 g biomass (g lactose)-1) and 
regarded as natural variability of the process. This indicated that there was no yield decrease in 
the presented 700 L cultivation compared to the 2 L lab-scale experiments. However, replicates 
of the 700 L cultivations would be needed to validate the results statistically. 

For an industrial application, the risk could be calculated as profit loss, i.e. an economic risk 
assessment (Gargalo, Cheali, Posada, Gernaey, & Sin, 2016; Hasanly, Khajeh Talkhoncheh, & 
Karimi Alavijeh, 2017), as the economic aspect might be the driving force for the production. 
The risk could then be quantified in e.g. $ per batch. Furthermore, possible loss of product 
quantity during the downstream operations could also be considered. The benefit from the 
monitoring system is that one can reflect and take action either by automated on-line control or 
manually, i.e. the action by a process operator. The operators could obtain an on-line measure 
to assess the risk of faulty batches and react accordingly, e.g. by increasing the stirrer speed to 
decrease pH gradients. In future, the soft sensor could be applied for on-line control, and hence 
controlling process parameters in such a way that the risk of losing product or profit remains as 
low as possible. To this end, it might also be necessary to include further uncertainties in Monte 
Carlo simulation, such as stochastic variabilities, e.g. process equipment failures (Michael D. 
McKay, Morrison, & Upton, 1999). 

3.3 Sensitivity analysis of the risk quantification 

The aim of the sensitivity analysis was to determine the sources of high uncertainty and to 
quantify their impact on the biomass prediction as the biomass predictions were the basis for 
the risk quantification. To achieve this, a linear regression was performed on the final biomass 
predictions (after 6 h) of the Monte Carlo simulation. 

The results of the 200 model simulations were a probability distribution (see the histogram of 
the final yield in Figure 4 A) indicating a considerable variance in the predicted biomass 
concentration. The variance was therefore decomposed by a linear regression considering the 
uncertain model parameters, initial conditions, and the ammonia addition that were taken into 
account in the Monte Carlo procedure. The standardized regression coefficients (SRCs) are 
presented in Table V. The applied method could satisfactorily decompose the variance with a 
linear model as the coefficient of determination was R2 = 0.96 for the biomass concentration in 
this study. 

Since R2 > 0.7 the individual impact of each considered parameter on the biomass prediction 
could be assessed. For example, ΔNH,add, which accounted for the uncertainty in the on-line base 
addition readout, contributed by 85 % (SRC2 = 0.922 ∙ 100 %) to the variance in the biomass 
prediction (Table V). 

In the soft sensor, ΔNH,add (ΔNH,add ~ N(1,0.001)) was multiplied with the on-line measured 
ammonia addition rate to account for the uncertainty in the base addition. A discussion about 
the assumed range of uncertainty can be found elsewhere (Spann et al., 2018). Generally 
speaking, the considered uncertainties of the on-line measurements and the initial conditions 
are usually evaluated case-by-case incorporating expert inputs from the process engineering 
and development perspectives.  
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Table V. Standardized regression coefficient (SRC) of the linear model fitting the biomass 
concentration prediction with respect to the uncertain parameters. 

Group Parameter name SRC on 
biomass production 

Sum of SRC2 

Equipment ΔNH,add 0.92 0.85 

Biokinetic model 

pHopt - 0.28 

0.11 

KP,La - 0.12 
σpH 0.09 
KLa 0.05 
α - 0.04 
Ygal - 0.04 

Initial conditions CS,t=0 0.04 < 0.01 CX,t=0 - 0.01 

 

To evaluate the contribution of the parameters on the variance of the biomass prediction, the 
parameters were grouped to be (i) related to the equipment; (ii) biokinetic parameters; and (iii) 
initial conditions (Table V). The sum of SRC2 of the groups was the variance explained by the 
parameters comprised in the groups. The biomass growth prediction was most sensitive to the 
uncertainties of the used equipment, namely the balance readout of the base addition (ΔNH,add), 
as discussed above. The biokinetic model parameters were responsible for 11 % of the total 
variance of the biomass prediction. The pH function fpH with the parameters pHopt and σpH (Eqs. 
(3)-(4)) contributed mainly to it.  

Both initial conditions, the initial substrate concentration and the biomass concentration, had a 
low effect on the final biomass production according to the sensitivity analysis. Substrate was 
added in excess, and the lactic acid bacteria did not consume everything until the end of the 
cultivation (see Figure 2 C). This might be attributed to the lactic acid inhibition at the end of 
cultivation when the lactic acid concentration was high. According to the sensitivity analysis, 
the initial substrate could therefore be reduced without affecting the final biomass production. 
The initial biomass concentration had also a minor effect on the final biomass concentration 
following the results of the sensitivity analysis. However, it would not be possible to reduce the 
initial biomass concentration without any consequences. A lower initial biomass concentration 
would lead to a longer lag time and hence a longer cultivation time. The effect of the initial 
biomass concentration on the lag time was however not captured in the applied sensitivity 
analysis, as the lag time was updated on-line based on the measured pH. Furthermore, the 
cultivation time was not considered in the present analysis, instead the yield after 6 h of 
cultivation was evaluated. Under these conditions, the equipment uncertainty and the pH related 
parameters were most significant. 

Nevertheless, the results of the sensitivity analysis are conditional on the assumptions made in 
the design of the problem, e.g. which uncertainties were considered as an input and which model 
application was included (Helton, 1993; Walker et al., 2003). For that reason, the presented 
results can only be interpreted in the context the problem was designed (Sin et al., 2011). 

Within the scope of this study, the sensitivity analysis revealed that ΔNH,add had the highest 
effect on the biomass prediction. In other words, the on-line base addition measurement that is 
a balance readout had a large effect on the quality of the soft sensor prediction. This agrees with 
the process engineering understanding of the system as the soft sensor uses the base addition to 
update the µmax parameter. As a result, the risk quantification was also mostly dependent on the 
base addition measurement because the risk quantification was based on the biomass prediction. 
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It is consequently essential for an accurate model and risk prediction that the on-line balance 
measurements are as precise and faulty measurements could be ruled out. This could be for 
example achieved with a doubled measurement applying a supplemented flow measurement in 
addition to the balance readout of the base addition. 

4 Conclusion 

An on-line risk assessment tool was proposed to quantify both pH gradients and the risk of not 
achieving the target production in a lactic acid bacteria cultivation. To this end, a soft sensor 
was applied as a PAT tool that was based on a mechanistic model and a CFD-based 
compartment model. It provided, on the one hand, an on-line prediction of the pH gradient in 
the bioreactor, which is a critical process parameter. This would enable plant operators to assess 
the mixing and the base addition strategy. On the other hand, the soft sensor quantified the risk 
of not achieving the target biomass production. The likelihood of the undesired event, i.e. the 
target biomass production could not be achieved, was calculated based on the probabilistic 
model predictions that were obtained from the Monte Carlo simulation of the soft sensor model. 
The Monte Carlo simulation was performed to consider uncertainties in the model parameters, 
on-line measurements, and initial process conditions. In the investigated 700 L cultivation, the 
risk was to lose max. 140 g biomass per batch. The sensitivity analysis revealed that the on-line 
base addition measurement had the highest impact on the biomass prediction, and hence the 
soft sensor risk quantification requires accurate on-line measurements. The future objective of 
this study is the implementation of the soft sensor for risk-based decision making and control 
in large-scale cultivations under consideration of techno-economic risks.  
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6 Nomenclature 

a Ordinate intercept of the SRC model 

bi Linear regression coefficient for the i-th model parameter 

CGal galactose concentration (g L-1) 

CGlc glucose concentration (g L-1) 

CLA lactate concentration (g L-1) 

𝐶𝐶𝑂𝑂𝑁𝑁− OH- concentration (mol L-1) 

CP total lactic acid (lactate and lactic acid) concentration (g L-1) 

CS lactose (substrate) concentration (g L-1) 

CtCO total carbonic acid (H2CO3
∗  and 𝑁𝑁𝐶𝐶𝑃𝑃3−) concentration (mol L-1) 

CtNH total concentration of 𝑁𝑁𝑁𝑁4+ and 𝑁𝑁𝑁𝑁3 (g L-1) 

CtPh total concentration of 𝑁𝑁3𝑃𝑃𝑃𝑃4, 𝑁𝑁2𝑃𝑃𝑃𝑃4−, and 𝑁𝑁𝑃𝑃𝑃𝑃42−(g L-1)  

CtZ total concentration of the unknown compound (dissociated and undissociated form) (mol L-1) 

CX biomass concentration (g L-1) 

fd divalent activity coefficients (-) 

flag lag-time function (-) 

fm monovalent activity coefficients (-) 
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fP lactic acid inhibition function (-) 

fpH pH dependency function (-) 

fS substrate limitation and inhibition function (-) 

H2CO3
∗  dissolved CO2 and H2CO3 

I ionic strength (g L-1) 

KC1
′  apparent equilibrium constant for the carbonic acid system (-) 

KI substrate inhibition parameter (g L-1) 

KLa lactate inhibition parameter (g L-1) 

KLa1 pH dependent lactate inhibition parameter (g L-1) 

KLA
′  apparent equilibrium constant for the lactic acid system (-) 

KNH
′  apparent equilibrium constant for the ammonia system (-) 

KP P-controller controller gain 

KP,La 2. lactate inhibition parameter (L g-1) 

KP,pH1 lactate inhibition pH parameter (-) 

KP,pH2 2. lactate inhibition pH parameter (-) 

KP1
′  apparent equilibrium constant for the phosphoric acid system (-) 

KP2
′  apparent equilibrium constant for the dihydrogen phosphate system (-) 

Kr,C1
′  apparent reverse rate constant for carbonic acid dissociation (s-1) 

Kr,LA
′  apparent reverse rate constant for lactic acid dissociation (s-1) 

Kr,NH
′  apparent reverse rate constant for NH4 dissociation (s-1) 

Kr,P1
′  apparent reverse rate constant for H3PO4 dissociation (s-1) 

Kr,P2
′  apparent reverse rate constant for 𝑁𝑁2𝑃𝑃𝑃𝑃4− dissociation (s-1) 

Kr,W
′  apparent reverse rate constant for water dissociation (s-1) 

Kr,Z
′  apparent reverse rate constant for the dissociation of the unknown component (s-1) 

KS substrate limitation parameter (g L-1) 

KW
′  apparent equilibrium constant for the water system (-) 

KZ
′  apparent equilibrium constant for the unspecified compound system (-) 

n number of measurements 

pHopt optimal pH parameter in the pH function (-) 

pHset pH control set point (-) 

𝑝𝑝𝑝𝑝𝐶𝐶1 pKa constant for carbonic acid dissociation 

𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿 pKa constant for lactic acid dissociation 

𝑝𝑝𝑝𝑝𝑁𝑁𝑁𝑁  pKa constant for NH4 dissociation 

𝑝𝑝𝑝𝑝𝑃𝑃1 pKa constant for H3PO4 dissociation 

𝑝𝑝𝑝𝑝𝑃𝑃2 pKa constant for 𝑁𝑁2𝑃𝑃𝑃𝑃4− dissociation 

𝑝𝑝𝑝𝑝𝑊𝑊 pKa constant for water dissociation 

𝑝𝑝𝑝𝑝𝑍𝑍 pKa constant for the unspecified compound dissociation 

qGal volumetric galactose secretion rate (C-mol L-1 h-1) 

qNH volumetric ammonia consumption rate (mol L-1 h-1) 

qP volumetric lactic acid secretion rate (C-mol L-1 h-1) 
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qPh volumetric phosphoric acid consumption rate (mol L-1 h-1) 

qS volumetric substrate consumption rate (C-mol L-1 h-1) 

qX volumetric biomass growth rate (C-mol L-1 h-1) 

  

RMSSE root mean sum of squared errors (g L-1) 

SRCi standardized regression coefficient of the i-th parameter 

T temperature in the bioreactor (K) 

t time variable (h) 

tlag lag-time coefficient (h) 

Ygal galactose yield (g g-1) 

zi charge number of the i-th ion 

𝑦𝑦�𝑝𝑝 i-th model value of one output (g L-1) 

𝑦𝑦𝑚𝑚𝑢𝑢𝑎𝑎𝑚𝑚,𝑝𝑝 i-th measurement value of one output (g L-1)  

 

Greek Letters 
α growth related production coefficient of lactic acid (g g-1) 

𝜃𝜃�𝑝𝑝,𝑗𝑗 i-th parameter value used on the j-th Monte Carlo simulation 

µmax maximum specific growth rate (h-1) 

σ standard deviation 

σpH spread parameter is the gaussian pH function 

𝜎𝜎𝜃𝜃�𝑖𝑖  standard deviation of the estimated parameter  

𝜎𝜎𝑦𝑦�𝑋𝑋 standard deviation of the biomass concentration distribution  
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8 Supplementary material 

 

Supplementary Figure S1. Plotting of the sampling matrix for the input uncertainty space. The 
Latin Hypercube Sampling (LHS) technique and the Iman Conover rank correlation method 
were used to sample 100 independent inputs and to induce the known covariance matrix, 
respectively. 

 

 

Supplementary Figure S2. Updated µmax value during the course of the cultivation. 
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Supplementary calculation of the target biomass production for the risk quantification 

The target yield for biomass was 0.09 ± 0.003 g biomass per g lactose based on previous 2 L 
lab-scale experiments (data not shown). The target biomass concentration was therefore 6.3 ± 
0.21 g biomass per liter as the initial substrate concentration was 70 g L-1: 

 
𝟏𝟏.𝟏𝟏𝟎𝟎

𝒍𝒍 𝒃𝒃𝑨𝑨𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳
𝒍𝒍 𝑮𝑮𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

∙ 𝟕𝟕𝟏𝟏
𝒍𝒍 𝑮𝑮𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

𝑳𝑳
= 𝟔𝟔.𝟑𝟑

𝒍𝒍 𝒃𝒃𝑨𝑨𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳
𝑳𝑳

 (A.1) 

Provided the liquid volume of the cultivation with 700 L, the target biomass production was 
4410 ± 0.147 g biomass per batch: 

 
𝟔𝟔.𝟑𝟑

𝒍𝒍 𝒃𝒃𝑨𝑨𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳
𝑳𝑳

∙ 𝟕𝟕𝟏𝟏𝟏𝟏 𝑳𝑳 = 𝟒𝟒𝟒𝟒𝟏𝟏𝟏𝟏 𝒍𝒍 𝒃𝒃𝑨𝑨𝑳𝑳𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳 (A.2) 
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