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Abstract. DIMSELO is a Competence Building for Industry project (KPN), granted by the
Norwegian Research Council under the ENERGIX program, which ran from 2013 to 2017. The
project's objective was to quantify the consequences of using advanced sea loads modeling in
integrated simulations of o�shore wind turbines in shallow to intermediate waters. During the
project, engineering hydrodynamics load and wave kinematics models of increasing complexity
and �delity were chosen from the literature and implemented. The e�ect of di�erent model
combinations on the substructure loads was was tested for three reference turbines: a DTU 10
MW rotor positioned on a monopile at a water depth of h = 25 m, on a second monopile at
h = 35 m and on a jacket, also at h = 35 m. In this paper, the fatigue loads in a production
case for the h = 25 m monopile was calculated via three di�erent load models: the well-known
Morison model, the Rainey nonlinear force model and the McCamy-Fuchs linear di�raction
model. The models were coupled to kinematics coming both from linear irregular waves and
second order irregular waves. The comparison showed that using the McCamy-Fuchs di�raction
theory reduced the predicted fatigue damage by 15% with respect to a base case where the
Morison load model was used. Nonlinear wave kinematics and nonlinear force models in�uenced
the force calculations but did not alter the total fatigue damage, since the load cases with high
wave steepness were less likely to happen.

In parallel to the research on engineering models, detailed wave loads models were also
developed during DIMSELO. By means of CFD, it was possible to reproduce experimental time
series of wave loads on a cylinder induced by regular and irregular nearly-breaking waves. Also,
a spectral solver for the fast resolution of the fully nonlinear di�raction problem was devised
at DTU during DIMSELO. The solver, which showed encouraging results in the preliminary
testing, can be coupled to any nonlinear kinematics solver to calculate the force on a cylinder
retaining full nonlinearity and di�raction.

1. Introduction

DIMSELO is a Competence Building for Industry project (KPN) granted by the Norwegian
Research Council under the ENERGIX program. It ran from 2013 to 2017, aimed at improving
sea loads modeling in integrated simulations of o�shore wind turbines in shallow to intermediate
waters.

Many new o�shore wind farms are nowadays built at 30 − 40 m water depth. This is
economically feasible since the increase in substructure manufacturing costs is compensated by
higher energy availability further from the coast. The most economic solution is still to install
turbines on top of slender piles, �xed on the sea bottom.

http://creativecommons.org/licenses/by/3.0
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However, the standard design engineering practice is largely based on models inherited from
the o�shore oil industry, where large structures in deep waters were designed. Hence, they can
be unreliable when applied to simulate slender piles. In the standard modeling approach used for
fatigue load cases, waves are represented as an irregular realization of linear (1st order) waves.
However, at intermediate depths nonlinearity cannot be neglected, and a linear wave description
is inaccurate. Various nonlinear models exist, from weakly linear second order formulations [1] to
fully nonlinear ones [2], but the number of calculations required to run a nonlinear computation
is many order of magnitudes higher than for a linear state.

In the standard practice, the wave kinematics is then translated into loads by means of simple
methods, like the Morison semi-empirical model [3]. In reality, a large monopile will di�ract
incoming waves with wavelength comparabe with its diameter, which leads to a reduction on
the total horizontal force. In linear waves, McCamy and Fuchs derived an exact result for
the cylinder di�raction problem [4]. Comparisons between the two models shows that the
Morison formulation overestimates the loads signi�cantly for wavelengths smaller than 5 cylinder
diameters. Today, only some aeroelastic codes incorporate linear di�raction theory for the
hydrodynamics loads [5][6].

For extreme loads, the designer uses the 50 year signi�cant wave heightHS,50 relative to a three
hour sea state to simulate an extreme sea state. To calculate the extreme structural response,
standard practices [7] suggest to perform one hour simulations with a corrected wave height
(HS,50,1hr = 1.09 ·HS,50,3hr). However, 10 minute realizations can be accepted if a deterministic
exteme wave is embedded in the simulation, with an extreme wave height of H50 = 1.86HS,50.
This is an approximated value calculated on the hypothesis that the wave peaks follow a Rayleigh
distribution. This procedure is also called hard embedment. The design force, calculated via the
Morison model, is then taken as the average of the maximum forces from the di�erent realizations.

However, the 1.86 factor is a nonconservative approximation, and in practice higher peaks
can be observed in a three hour realization. Therefore, the hard embedment method can be
regarded to be as good as using a series of regular nonlinear waves. To overcome this limitation,
designers can run three hour simulations using the 50 year sea state, and then substitute the
highest linear wave with a nonlinear wave (soft embedment). The extreme responses are then
�tted to a Gumbel distribution, and the extreme load extrapolated to the desired return time
[8]. This approach is much more physically correct, but more computationally intesive, and is
not implemented in any aeroelastic code.

Moreover, when large extreme waves hit a turbine, higher order forcing can be transferred to
the higher structural eigenmodes. Although the Morison model can underestimate this nonlinear
behavior, it is still the only choice in many aeroelastic codes.

To conclude, it is today accepted knowledge that using linear waves and the Morison equation
is a crude simpli�cation of reality when the inertial terms have a certain degree of nonlinearity
and di�raction. In this situation, complex models allow for a better reproduction of reality.
However, the increase in accuracy with complex models comes with additional computational
cost. While it is vital to make such kind of decisions, it is hard to quantify the error that a
designer is making when choosing a simpler model over a more complex one. The objective of
DIMSELO is to �ll this gap, and help the designer choose the most appropriate combination of
wave kinematics and wave load models for the load estimations.

2. Activities in DIMSELO

The Institute for Energy Technology (IFE) in Oslo was the main applicant and project manager
of the DIMSELO project. Statoil and Statkraft participated as industrial partners, while DTU
and NTNU were appointed as academic partners.

The project included di�erent related activities:

• Sea loads modeling
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• Wave kinematics modeling

• Wind �eld modeling

• Quantify e�ects of di�erent models on dimensioning loads

2.1. Sea Loads and Wave kinematics modeling

Two main categories of hydrodynamic models were analyzed in parallel: engineering and fully-
resolved models. Engineering models are used to calculate the extensive set of load cases that are
necessary to design a wind turbine. Hence the focus was set on �nding and implementing simple
models that retained as much physics as possible. Fully resolved models are physically accurate
but computationally expensive to run. They were therefore used as benchmark for engineering
models or to analyze single complex cases.

In a �rst phase, the literature was analyzed to �nd engineering models of di�erent complexity
and accuracy. Afterwards, a correct mix of models was chosen and then implemented as
modules into 3DFloat, an aeroelastic software developed in-house at IFE [9]. In the third phase,
the consequences on the design load calculations due to the di�erent models was assessed by
performing design load calculations on three structures via the abovementioned 3DFloat package.

To take into account nonlinearity in wave kinematics for fatigue calculations, the Sharma and
Dean second-order irregular wave theory model was chosen [1]. A Fast Fourier Transform (FFT)
in the k−space domain was used to speed up the implementation of the otherwise computationally
intensive model.

To improve the representation of the kinematics in extreme load cases, a procedure for
seamlessly embedding streamfunction waves into a linear wave realizaton was invented and
implemented. The algorithm makes use of the Hilbert transform to calculate a suitable period
and amplitude of a regular wave to replace an extreme event in the linear realization [10].

For what concerns fatigue loads from linear waves hitting large monopiles, the already
mentioned McCamy-Fuchs di�raction theory was implemented. To improve the calculation of
nonlinear extreme wave loads, the Rainey slender body model [11] was included in 3DFloat. The
Rainey model can be seen as an extension to the Morison force model. However, being based on
an energy conservation approach, retains a larger amount of physics.

The e�ect of the di�erent computational models on the design loads of wind turbines was
analyzed by means of aeroelastic computations. Three structures were developed ad-hoc for the
DIMSELO project, to support a 10 MW DTU rotor positioned at di�erent water depths (h):

• Monopile at h = 25 m

• Monopile at h = 35 m

• Jacket at h = 35 m

In the results section, we will present results for the fatigue design of the monopile at h = 25m.
The rest of the results will be published in a dedicated report.

On the parallel track concerning fully-resolved models, two main activities were undertaken
in DIMSELO. In the �rst activity, DTU worked on the development of a so called higher-order

spectral model to allow fully nonlinear force computations with no compromise on di�raction.
The objective was �lling in the space between the McCamy-Fuchs force model, that can handle
di�raction but not nonlinear waves, and the Rainey model that can work with any wave
kinematics, but still models the body as a slender beam [12]. The core of the model is represented
by the formulation of the linear and nonlinear di�raction potential by the cylinder by series
expansion of appropriate Bessel functions. The incident wave �eld can be calculated either by
closed formulations or by nonlinear solvers like OceanWave3D [2]. Some preliminary results are
presented in the next section.
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In parallel, IFE developed CFD models of waves impacts on monopiles via the Star-CCM+
package. Numerical reproduction of experiments on wave forcing on a circular sti� cylinder by
regular and irregular waves on a sloping bottom allowed a very accurate reproduction of the
inline force and of the �ow patterns [13, 14, 15].

2.2. Wind Field Modeling

The modeling of aerodynamic loads was also an important part of DIMSELO. The main challenge
was to analyze the e�ect of the turbulence modeling in the design of large rotors. Two di�erent
methods are today used to model the turbulent wind �eld: the Kaimal model and the Mann
model. They are both recommended by the o�shore wind standards, and both have the same one-
point spectrum. The di�erence is in how the spatial coherence is modelled. The Kaimal model
uses an exponential model, while the Mann model is a linearized version of the Navier-Stokes
where turbulence is created by the shear of the vertical wind pro�le.

In the �rst part of the project, the vertical coherence in stable conditions was characterized
experimentally through the FINO o�shore met mast. It was observed that the Mann spectrum
had a more realistic modelling of the coherence than the exponential model in Kaimal [16]. The
di�erence between the two models increased with greater vertical separation distances, which
makes it of special importance for today's large o�shore wind turbine rotors.

In a second part, the sensitivity of rotor size and choice of turbulence model on the fatigue
loads on the �oating o�shore wind turbines was investigated [17]. The two turbines had similar
semi-submersible substructures but one used a 5 MW NREL rotor and the other used the DTU
10 MW [18]. For both turbines, the choice of turbulence models has the greatest impact on the
fatigue of the mooring lines, especially due to the surge contribution. The Kaimal model gave
the highest fatigue damage of the mooring line for both wind turbines, with the larges di�erence
for the 10 MW turbine. It was also seen that the yaw motion was larger for the Mann model
than for the Kaimal model, which makes the turbulence modeling critical in cases where the
fatigue damage is sensitive to yaw.

Proper Orthogonal Decomposition (POD) method was then used to visualize the spatial
coherent structures in the two turbulence models [19]. The lowest POD modes, which contain
the most kinetic energy and are the most important for the turbine response, were very di�erent
for the two turbulence models. The coherent structures from the Kaimal model had a more
symmetric shapes while the ones from the Mann model were stretched in the horizontal direction.

3. Main results

3.1. Fatigue calculation on a monopile at h = 25 m water depth

In the following section, we will quantify the e�ects of di�erent combination of wave loads models
on the design fatigue loads of an o�shore bottom-�xed wind turbine, positioned on a monopile
at 25 m water depth.

3.1.1. Tower and pile The soil conditions for the monopile design were provided by Statoil, on
the base of their experience with North Sea installations. It was decided to select a pile with
a penetration of p = 35 m and a thickness of t = 0.08 m. From now on, the coordinates of
points are given with respect to a right-handed coordinate system positioned at the mean sea
level (MSL), with z pointing upwards, x in the direction of the wind and y sideways.

The soil sti�nesses, taken as base of the design, are reported in Table 1. The soil e�ect
was simulated via p− y curves, and the springs for the current setup were calculated by means
of the API/DNV methodology [20]. The distribution and the elastic constants of the springs
are summarized in Table 2. At each level, the same sti�ness was applied both in the x and y
direction. The translation along the z axis and the yaw rotation of the bottom node (z = −60 m)
were locked.
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Soil Depth [m] Cu [kPa]

0 - 5 75
5 - 10 125
10 + 200

Table 1: Soil sti�ness for a typical Northern Sea location. The depth is measured from the
mudline, which is positioned at z = −25 m

Spring z[m] k1[N/m] k2[N/m] k3[N/m] F 1
max[N ] F 2

max[N ] F 2
max[N ]

0 -26.25 2.84e+07 2.50e+07 7.96e+07 3.16e+05 4.55e+05 6.32e+05
1 -28.75 3.47e+07 3.05e+07 9.71e+07 3.85e+05 5.55e+05 7.70e+05
2 -31.25 7.47e+07 6.57e+07 2.09e+08 6.64e+05 9.56e+05 1.33e+06
3 -33.75 8.34e+07 7.34e+07 2.34e+08 7.42e+05 1.07e+06 1.48e+06
4 -36.25 1.04e+08 9.18e+07 2.92e+08 1.16e+06 1.67e+06 2.32e+06
5 -38.75 1.69e+08 1.49e+08 4.73e+08 1.25e+06 1.80e+06 2.50e+06
6 -41.25 1.81e+08 1.59e+08 5.07e+08 1.34e+06 1.93e+06 2.68e+06
7 -43.75 1.93e+08 1.70e+08 5.41e+08 1.43e+06 2.06e+06 2.86e+06
8 -46.25 2.06e+08 1.81e+08 5.76e+08 1.52e+06 2.19e+06 3.05e+06
9 -48.75 2.18e+08 1.92e+08 6.10e+08 1.61e+06 2.32e+06 3.23e+06
10 -51.25 2.30e+08 2.03e+08 6.45e+08 1.71e+06 2.46e+06 3.41e+06
11 -53.75 2.42e+08 2.13e+08 6.79e+08 1.80e+06 2.59e+06 3.59e+06
12 -56.25 2.55e+08 2.24e+08 7.13e+08 1.89e+06 2.72e+06 3.77e+06
13 -58.75 2.67e+08 2.35e+08 7.48e+08 1.98e+06 2.85e+06 3.96e+06

Table 2: Spring distribution on the 25 m monopile. The Fmax values mark the upper boundaries
for the validity of the di�erent spring constants.

The monopile was designed to have an eigenfrequency of f = 0.23 Hz in the fore-aft �rst
bending mode. The bending resistance of the monopile was designed to withstand the large
thrust of the 10 MW rotor. The characteristics of the pile and of the tower are summarized in
Table 3. The weight of the transition piece was simulated by a point force of 4.59 MN applied
at z = 19 m, oriented towards the negative z direction. The yaw bearing element and the nacelle
were then positioned on top of the tower, resulting in a total hub height of 119.0 m above MSL.

Both pile and tower were considered as made of steel, with a Young modulus of E = 210 GPa,
a torsional sti�ness of G = 80 GPa and a density of ρ = 7800 kg/m3. Two dampers were
positioned at the mudline, one in the x and one in the y direction, to achieve 1.5% of the critical
damping of the fore-aft tower �rst eigenmode.

Reference z1[m] z2[m] D1[m] D2[m] t1[m] t2[m] nel[−]

Pile below mudline -60 -25 9.0 9.0 0.08 0.08 28
Pile above mudline -25 0 9.0 9.0 0.08 0.08 10
Pile above water 0 11.5 9.0 9.0 0.08 0.038 4

Up to transition piece 11.5 19.0 9.0 8.75 0.038 0.036 2
Tower 11.5 115.63 8.75 6.25 0.038 0.02 18

Table 3: Structural Characteristics of the pile. For each section, we report the diameters, the
steel thickness, and the number of beam elements by which it was discretized.
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3.1.2. Rotor and controller The DTU 10 MW rotor was used in the computations. The rotor
has a diameter of D = 178.3 m, with the abovementioned hub height of hhub = 119.0 m. The
rated rotor speed is 9.6 rpm, leading to a maximum tip speed of 90 m/s. The blade root is
shaped as a cylinder, while the lift-generating sections of the blade belong to the FFA-W3 airfoil
series, with di�erent thicknesses. A maximum rotor thrust of T = 1500 kN (CT = 0.82) was
achieved for Vwind = 12 m/s, above which the turbine outputs the rated power of P = 10 MW .

The rotor geometry is plotted in Figure 1a. The twist goes from a maximum of roughly 14◦

to almost zero at the blade tip. Some rotor material properties are reported in Figure 1b. The
value EA is the Young modulus multiplied by the cross sectional area, while GJ is the torsional
sti�ness. The linear density ρl is the amount of mass per meter of blade length. A thorough
description of the rotor and of the aerodynamic characteristics of the airfoils can be found in the
relative DTU report [18].

The rotor was discretized via 34 beam elements, of roughly 3 m each. Further details on the
rotor aeroelastic model will be available in the �nal DIMSELO report.
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(a) Rotor geometry.

0.0 0.2 0.4 0.6 0.8 1.0
r/R[ ]

0

1

2

3

4

5
EA

[N
]

1e10
EA[N]
GJ[Nm2]

l[kg/m]

0

1

2

3

4

5

G
J[N

m
2 ]

1e10

0

250

500

750

1000

1250

1500

l[k
g/

m
]

(b) Rotor material properties.

Figure 1: The total blade length is R = 89.15 m. The twist is given in degrees.

The generator torque and blade pitch were regulated via the DTU Wind Energy controller.
It features two main control zones, one of partial load for speeds lower than 12 m/s, and one of
full load where the torque is controlled via blade pitching. The controller source code [21] was
compiled into a DLL and then interfaced with the aeroelastic code.

3.1.3. Aeroelastic Code The aeroelastic calculations were performed in time domain via the
aeroelastic code 3DFloat. It is a �nite element code, with Euler-Bernoulli beams with 12 degrees
of freedom. The time integration of the equation was performed via the implicit generalized-
alpha scheme, with a time step of ∆t = 0.01 s. The rotor loads were calculated via the classic
Blade Element Method [22]. The �ow velocity reduction due to tower shadow was calculated via
a simple potential �ow model.

3.1.4. Met-Ocean conditions The monopile was tested for fatigue loads. Statoil provided a
simpli�ed joint probability distribution of signi�cant wave heightHS and peak period TP , plotted
in Figure 2, deemed suitable for preliminary studies. The conditional wind speed at 100 m height,
U100, is summarized Table 4. For each sea state, one JONSWAP spectrum was generated, and
a 1 hour aeroelastic compuation was performed. For the spectrum, a high cut-o� frequency of
3TP was used, while the timestep in the frequency discretization was df = 1/3600. Hz, to avoid
repetition of the waves.
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The directional distribution of the waves was calculated via a cosine squared function, see
paragraph 3.5.8.7 of the DNV recommended practices [23]. For each sea state, two di�erent
wave spreading were considered: a multidrectional sea (s = 5), and an almost unidirectional sea
(s = 20).

The turbulent wind inbox was calculated according to Mann's uniform shear turbulence
model [24]. A reference wind speed of Vref = 37.5 m/s together with a C turbulence class
was used to calculate the input parameters to Mann's model. The longitudinal turbulence scale
parameter was set to Γ1 = 42 m, while the lateral and upward components were set respectively
to σ1 = 0.7 and σ2 = 0.5. The turbulent length scale in the Mann model was set as L = 0.7Γ1.
The turbulence box had Nx = 65536 cells along the wind direction, and Ny × Nz = 32 × 32
cells in the cross-wind plane, with a cell size of ∆y = ∆z = 7 m. In the wind direction, the cell
size was ∆x = U · T/65536, where the total simulation time was T = 1 hr and U was the mean
wind speed in the load case. The mean wind velocity U was taken from Table 4 and corrected,
according to power law with exponent α = 0.2, for the e�ective hub height of hhub = 119 m. For
further details on the calculation of the other constants, refer to annex B of the IEC standards
[25] and to the �nal DIMSELO report, currently under preparation.
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Figure 2: HS and TP distribution.

HS [m] U100[m/s]

0.5 5.8
1.5 9.1
2.5 13.5
3.5 17.6
4.5 21.0
5.5 23.8

Table 4: Wind speed at 100 m height U100,
conditional on the signi�cant wave height HS

3.1.5. Combinations of hydrodynamic models For the fatigue calculations, two wave kinematics
models were tested: linear waves and second-order irregular waves [1].

Three hydrodynamic loads models were taken under consideration. The well-known semi-
empirical Morison force model [3] considers the body as slender. It states that the mass forces,
due to the alternate acceleration of the �uid surrounding the body, and the viscous forces, due
to the separation of the boundary layer on the cylinder surface, can simply be superimposed.
The distributed force on a �xed beam immersed in an oscillating �ow is therefore:

dF = ρACM~adz + 0.5ρL|~u|~udz (1)

where dF is the distributed force on the cylinder, ρ is the �uid density, A is the member
cross-sectional area, ~a is the �uid acceleration, L is the member size, perpendicular to the �uid
�ow direction, and ~u is the �uid velocity.

Two other force models were made available: the McCamy-Fuchs and the Rainey model [11].
For a cylindrical surface piercing column, the Rainey force model adds two additional inertial
terms to the Morison equation. One, called the axial divergence term, takes into account the
fact that the cylinder is nonslender in the vertical direction [26]. The second is a local di�raction
force at the intersection between the wave surface and the cylinder, which takes into account the
energy added to the �uid due to the rate of change of the submerged height of the cylinder [27].
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3.1.6. Results Fatigue calculations For each combination of HS and TP , ten simulations were
run, as in Table 5. The simulations were performed in accordance with load case number 1.2
from the IEC-61400 standard document [25]. This means the turbines are operating, and the
wind has normal turbulence.

LC Wave Kinematics Force Model Wave Spread [s] D̂F
mudl D̂M

broot

1 1st-order Morison 20 1.00 1.00
2 1st-order Rainey 20 0.99 1.01
3 1st-order McCamy-Fuchs 20 0.85 1.00
4 2nd-order Morison 20 0.98 1.00
5 2nd-order Rainey 20 1.01 1.00
6 1st-order Morison 5 0.80 0.98
7 1st-order Rainey 5 0.80 0.99
8 1st-order McCamy-Fuchs 5 0.68 0.98
9 2nd-order Morison 5 0.78 0.99
10 2nd-order Rainey 5 0.80 1.00

Table 5: Combination of models used to run the simulations in the di�erent load cases (LC). The
value s in wave spread is the exponent of the cosine-square directional distribution [23]. In column
5, the total damage caused on the pile by the x-wise force at the mudline is summarized. In
column 6, the total damage caused on the blade by the �apwise blade root moment is summarized.
The computations with the Morison load model and linear waves (LC = 1) were used as a

reference case, therefore the value of the total damage is set to D̂ = 1.00.

The objective is to compare the predicted total damage to the turbine component when using
di�erent wave kinematics and wave load models. Hence, random fatigue loads were transformed
to damage equivalent loads (DEL), by applying a rain�ow counting algorithm and the Palmgren-
Miner rule for fatigue accumulation [22]. From theory, we know that the total damage to a

component (D̂) is, in �rst approximation, proportional to the DEL to the power of the Wöhler
exponent m:

D̂ ∝ DELm (2)

The lifetime, on the other hand, is inversely proportional to the total damage D̂.
During the aeroelastic simulations, the loads were sampled at two representative locations:

the x-wise force at the base of the pile (mudline) and the �apwise moment at the root of one of
the blades. The DELm was calculated at these two locations, and the value achieved with linear
waves and the Morison load model (load case 1, or in short LC1), was used as the reference total
damage. To calculate the DEL, the steel Wöhler exponent (m = 3) was used. The results are
summarized in Table 5.

For what concerns quasi-unidirectional 1st-order waves (s = 20), the Rainey force model
does not give signi�cantly di�erent predictions than the Morison model. This is visible also in
�gure Figure 3a, where exceedance probabilities for the peaks in the in-line force at the mudline
are presented. Since the magnitude of the higher order terms in the Rainey force model are
proportional to the wave steepness, they become almost negligible in linear waves. The tabled
results also show that introducing di�raction in the calculation implies a reduction of the damage
by 15%. In fact, according to the McCamy-Fuchs theory, waves with wavelength shorter than
5D are partially or totally scattered by the structure. In a water depth of h = 20 m, this wave
length corresponds to a period of T = 5.4 s. As Figure 2 points out, a signi�cant amount of
energy is concentrated in this range, hence the damage reduction in LC3.
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(a) Pexc[−] vs. Fx[kN ], 1st-order irregular waves

(b) Pexc[−] vs. Fx[kN ], 2nd-order irregular waves

Figure 3: Exceedance probability of the in-line force peaks at the mudline, measured in kN
(s = 20, HS = 5.5 m, TP = 9.5 s, same random phases). With �rst order kinematics, the Rainey
nonlinear force model and the Morison model predict the same peak statistics. With second
order irregular waves, the Rainey model predicts larger extreme values than the Morison force
model. The magnitude of the highest peaks in the second order realization is very similar to the
amplitude of the �rst order peaks.

Using second-order irregular waves seems to have little e�ect on the total damage, as
demonstrated by the damage values in LC4 and LC5. According to the exceedance probability
plots in Figure 3b and Figure 3a (HS = 5.5 m), larger peaks are more likely to happen when
second order waves are used. However, this di�erence is not enough to impact the overall fatigue
lifetime, also considering that the sea states with the highest HS have a very low joint probability
of occurrence (Figure 2).

When increasing the spread of the spectrum, the overall damage caused by the x-wise mudline
force on the pile is smaller. This is as expected, since in a directionally spread spectrum a
signi�cant part of the energy comes from the y direction, reducing the x-wise force. Again, using
the McCamy-Fuchs force model leads to a reduced fatigue due to the cylinder di�raction. Slender
body models predict the same amount of total damage, independently of the wave model used.

It is interesting to note that the total damage due to the �apwise blade root moment is
independent of the wave kinematics and wave load model used. This means that the �apwise
rotor load is dominated by the aerodynamic loads. Moreover, the high aerodynamic damping
acting on the rotor during normal operation is likely suppressing any excitation of the rotor
eigenfrequencies.

3.2. Higher-Order modeling of the di�raction around a surface piercing cylinder: linear solver

In this section, we will present some results of the validation of the linear force predicted by the
spectral method. The picture and the formulas are reproduced, with permission, from a previous
publication [12].

To explain the basic idea behind the solver, we note that the total wave elevation η and
velocity potential φ for any problem concerning a wave hitting a structure can be written as:

(
η
φ

)
=

(
η
φ

)
I

+

(
η
φ

)
D1

+

(
η
φ

)
D2

(3)
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In the equation, the subscript I stands for incoming wave, D1 is the �rst order di�raction
potential, while D2 is the nonlinear di�raction potential. In cylindrical coordinates (r, θ, z), the
z-axis points upwards from the mean sea level at the cylinder centerline, while θ = 0 is the main
wave direction.

To be able to represent a generic linear �eld in cylindrical coordinates, we can think of the wave
elevation and potential as a Bessel expansion in the radial direction, and as a cosine expansion
in the tangential direction:

ηI(r, θ) =

P∑
p=0

N∑
j=1

ApjJp(kpjr) cos(pθ)

φI(r, θ, z) =
P∑

p=0

N∑
j=1

BpjJp(kpjr) cos(pθ)
cosh(kpj(z + h))

cosh(kpjh)

The coe�cients Apj represent the amplitude of the pth harmonic in the tangential direction,
associated with the jth wave number. The radial variation can therefore be described as the
Jp Bessel function of the �rst kind, while the tangential variation is a simple cosine function.
The Apj can be retrieved, for example, by a Bessel transform applied in cascade after a cosine
transform.

The I plus the D1 �eld from a cylinder of radius r0 can be written in cylindrical coordinates
as an expansion of Bessel Functions in a domain [r0, rmax], in the same fashion as in the exact
linear solution by McCamy and Fuchs:

ηID1 =

P∑
p=0

N∑
j=1

ApjJp(kpjr)−<

{(
Apj +

iωpj

g
Bpj

)
J ′pj
H ′pj

H(1)
p (kpjr)

} cos(pθ) (4)

φID1 =

P∑
p=0

N∑
j=1

BpjJp(kpjr)−<


(
Bpj +

ig

ωpj
Apj

)
J ′pj
H ′pj

H(1)
p (kpjr)


 cos(pθ)

cosh(kpj(z + h))

cosh(kpjh)

(5)

where kpj/rmax is the j'th root of the �rst kind Bessel function of order p; H
(1)
p is the �rst

kind order p Hankel function; J ′pj ≡ ∂rJp(kpjr)|r=r0 and H ′pj ≡ ∂rH
1
p (kpjr)|r=r0 . The J-terms

represent the incoming wave in cylindrical coordinates (I). The Hankel functions H are outward
propagating waves representing the �rst order di�racted �eld D1, which is the same as we �nd
in the linear di�raction solution. The coe�cients of the Hankel functions are derived from
impermeability boundary condition on the cylinder wall.

The explanation of the derivation of the nonlinear potential D2 is out of the scope of the
present description, and will be subject of a future publication currently under preparation.

A �rst important validation is that the theory is consistent with linear di�raction from
McCamy and Fuchs when the cylinder is exposed to a linear monochromatic wave. The McCamy-
Fuchs analytical solution for the force on a cylinder of radius r0 exposed to a wave with wave
number k and positioned at water depth h is the following:

F =
2ρgH

k2
A(kr0) tanh(kh) cos(ωt− δ(kr0)) (6)
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where A(kr0) =
[
J ′1(kr0)

2 + Y ′1(kr0)
2
]−1/2

, Y1 is the �rst order Bessel function of second kind
and δ(kr0) is a phase shift. Figure 4 shows the value of A(kr0) as obtained by the spectral
method, compared to the analytical solution. A perfect match is seen for the various values of
kr0.

Figure 4: Magnitude of the �rst order force predicted by the spectral solver versus the McCamy
and Fuchs analytical solution, adapted with permission from �gure 2 in [12]

3.3. CFD modeling of loads on a sti� cylinder

CFD computations on sti� cylinder were used to help the validation of engineering models in
the most complex cases. One important result is relative to loads on sti� cylinders caused by
nonlinear waves. In the framework of the Danish WaveLoads project [28], DTU measured the
inline force on a sti� cylinder positioned on a shoaling slope (1:25), subject to regular waves
of di�erent height. The experiments were reproduced in DIMSELO, both via accurate CFD
viscous computations and by 3DFloat [14]. The high �delity CFD model resolved the �uid
domain around the cylinder with a total of 500'000 cells. The 3DFloat model used streamfunction
regular waves and the above mentioned Rainey force model. Figure 5 shows the inline force on
a sti� cylinder, with a diameter of D = 0.075 m, exposed to two di�erent sets of regular waves.
In Figure 5a, the 3DFloat force computations match the experiments very closely, and so do
the CFD computations. For a high steepness wave, in Figure 5b, di�erences start to arise. A
secondary load cycle appears close to the trough of the experimental force timeseries, caused by
a local di�raction happening on the back side of the cylinder. Since the wave model used for the
aeroelastic computations does not include any modi�cation of the waves due to the presence of
the structure, the deriving force signal struggles to follow the experimental one. On the other
hand, the CFD model handles the surface di�raction correctly, and is able to reproduce the
experimental signal very closely.

4. Conclusion

DIMSELO has been successful in analyzing the e�ect of improved physical modeling of o�shore
wind turbines. Through advanced CFD, it was possible to analyze the nonlinear loads around a
cylinder in regular and irregular waves. An innovative spectral potential solver to calculate
nonlinear loads on o�shore structures was developed at DTU. The model showed to be a
promising alternative to CFD for calculating nonlinear loads on piles, and requires a fraction
of the computational cost.
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(a) Linear wave, H = 0.09 m,T = 1.56 s (b) Nonlinear wave, H = 0.15 m,T = 1.56 s

Figure 5: Comparison of computations with STAR-CCM (CFD), experiments from the
WaveLoads project (Exp) and computations via the aeroelastic code 3DFloat. Reproduced from
�gure 15 in [14]

The results presented this paper have showed the consequences of enabling more physically
complete engineering models in aeroelastic calculation of fatigue design loads on a bottom �xed
10 MW o�shore turbine. In particular, using a load model which captures �rst order di�raction
predicts a 15% lower total fatigue damage induced by streamwise force at the mudline. Using
second order irregular waves and nonlinear force models did not have a signi�cant impact on
the fatigue loads. This means that in some particular cases nonlinearities can be neglected
when computational speed and ease of use are a critical factor. Also, blade �apwise loads were
insensitive to the wave load model.

A �nal report for DIMSELO will be available in the �rst half of 2018, where the impact of
the computational modes on the whole design of the three above mentioned structures will be
presented.
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