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Abstract

Recent advancements in X-ray source technologies have opened up the possibil-
ity for directly observing photoinduced chemical reactions as they unfold on the
femtosecond time scale. An increasing number of time-resolved X-ray scatter-
ing experiments are being directed toward uncovering the light-induced ultrafast
dynamics of photocatalytic metal complexes in solution. In this scenario, theory
and modelling are brought into play to offer assistance to the interpretation and
analysis of intricate measured data. Besides, theoretical modelling is the key
to the fundamental understanding of the atomistic mechanisms behind reaction
dynamics in solution.

The work presented in this thesis deals with extending, benchmarking and ap-
plying a novel multiscale atomistic modelling strategy for simulating the struc-
tural dynamics of complex molecular systems. The method is based on the
direct Born-Oppenheimer Molecular Dynamics (BOMD) propagation of the nu-
clei and treats solvent effects within a quantum mechanics/molecular mechanics
(QM/MM) framework.

The first part of the thesis shows how the QM/MM scheme is augmented to
include electronic excited states with arbitrary spin multiplicity using a ∆SCF
approach. We describe the testing and implementation of the method in the
GPAW DFT code, providing all prerequisite theoretical background. The ro-
bustness of the implementation and the computational expediency of GPAW
allow fast configurational sampling, overcoming the problem of statistical accu-
racy in excited-state BOMD simulations of systems as large as transition metal
complexes.

The second part is dedicated to an investigation of the structure and dynamics
of a model photocatalyst, the diplatinum(II) complex [Pt2(P2O5H2)4]4−, abbre-
viated PtPOP. In doing that we make extensive use of the computational tools
presented in the first part. First, we show how ∆SCF for the first time provides
computational evidence that the lowest-lying singlet and triplet excited states
have parallel potential energy surfaces (PESs) along the Pt-Pt coordinate. Then
we highlight the synergy between time-resolved experiments and simulations
in unravelling the photoinduced ultrafast dynamics of the complex in water.
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QM/MM BOMD simulations are used to guide the analysis of X-ray Diffuse
Scattering (XDS) data measured at an X-ray free electron laser (XFEL), and to
elaborate a semi-classical picture of ground-state hole dynamics that explains
the experimental outcome. Finally, we take a step forward in the understanding
of the excited-state vibrational relaxation in solution. We show, through the
simulations, that PtPOP after excitation does not retain the symmetry of the
ground state, as so far believed; and that excess Pt-Pt vibrational energy is first
directed towards vibrational modes involving the ligands, while the role of the
solvent is to favour intramolecular vibrational energy redistribution (IVR) in
the complex.



Resumé

De seneste fremskridt inden for røntgenkilde-teknologi har gjort det muligt, på
femtosekund-tidsskalaen, at observere fotoinducerede kemiske reaktioner direk-
te, imens de finder sted. Flere og flere tidsopløste røntgenspredningseksperimen-
ter bliver udført med henblik på at forstå lys-induceret, ultrahurtig dynamik af
fotokatalytiske metalkomplekser i flydende opløsning. I dette scenarie bliver teo-
ri og matematisk modellering anvendt for at assistere i fortolkningen og analysen
af intrikate, målte data. Ydermere giver teori og simulering nøglen til at opnå
fundamental forståelse af de atomistiske mekanismer bag reaktionsdynamik i
opløsning.

Arbejdet i denne afhandling omhandler udvidelsen, benchmarkningen og anven-
delsen af en ny multiskala beregnings-strategi til at simulere strukturel dynamik
af komplekse molekylære systemer. Metoden er baseret på en direkte Born-
Oppenheimer Molekylær Dynamisk (BOMD) propagering af atomkerner, som
inkluderer solventeffekter via en kvantemekanisk/klassisk mekanisk (QM/MM)
metode.

I den første del af afhandlingen vises hvordan QM/MM-metoden udvides til at
kunne simulere elektronisk eksiterede tilstande med hvilken som helst given spin
multiplicitet ved brug af en ∆SCF strategi. Tests og implementering af meto-
den i GPAW DFT koden beskrives, og al den nødvendige teoretiske baggrund er
suppleret. Implementeringens robusthed, og GPAW’s beregningsmæssige effek-
tivitet gør det muligt at udføre konfigurationel sampling effektivt, hvormed man
kommer ud over problemet med statistisk præcision i eksiteret-tilstands BOMD
simuleringer af store molekylære systemer, såsom overgangsmetalkomplekser.

Den anden del af afhandlingen er dedikeret til en undersøgelse af strukturen og
dynamikken af diplatin-komplekset [Pt2(P2O5H2)4]4− med forkortelsen PtPOP,
hvor der vil blive gjort dybdegående brug af de beregningsmæssige værktøjer
præsenteret i første del af afhandlingen. First viser vi hvordan ∆SCF for første
gang giver beregningsmæssig evidens for at de lavest-liggende singlet- og triplet-
eksiterede tilstande har parallelle potentielle energioverflader (PES’er) langs Pt-
Pt koordinaten. Dernæst fremhæves synergien mellem tidsopløste eksperimenter
og simuleringer til at udforske den fotoinducerede, ultrahurtige dynamik af Pt-
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POP opløst i vand. QM/MM BOMD simuleringerne bruges til at guide analysen
af diffus røntgenspredningsdata (XDS) målt ved en fri-elektronslaser (XFEL),
og til at tegne et semi-klassisk billede af grundtilstands-populationshuldynamik,
som kan forklare eksperimentets udfald. Til sidst tager vi det næste skridt
fremad imod forståelsen af vibrationelt henfald af eksiterede tilstande i opløs-
ning. Vi viser med simuleringerne, at PtPOP ikke fastholder sin grundtilstands-
symmetri efter eksitation, som det ellers førhen har været troet, og vi viser
at overskydende Pt-Pt vibrationel energi først kanaliseres mod vibrationer af
liganderne, hvor solventets rolle viser sig at være at fremhæve intramolekylær
vibrationel energiredistribution (IVR) i komplekset.



Preface

This thesis has been submitted to the Department of Chemistry, Technical Uni-
versity of Denmark, in partial fulfilment of the requirements for the PhD degree
in the subject of chemistry. The work presented herein was carried out at the
Department of Chemistry, Technical University of Denmark, from December
2014 to January 2018, under the supervision of Professor Klaus B. Møller, and
joint co-supervision of Postdoc Asmus O. Dohn and Associate Professor Niels E.
Henriksen. In addition, part of the work was carried out during a one week ex-
perimental campaign at the LCLS XFEL facility of Stanford between February
and March 2015, and at the Faculty of Physical Sciences, University of Iceland,
in the group of Professor Hannes Jónnson in March 2017.

Kgs. Lyngby, February 2018

Gianluca Levi



vi



vii

to squeeze inside events,
dawdle in views,

to seek the least of all possible mistakes.

Wisława Szymborska
A note (Notatka)
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Part I

Introduction and Background





1
Filming Motion at the Atomic
Scale of Time

Being able to observe the dynamics of the chemical bond in real time has been
one of the greatest achievements of modern physical chemistry over the last
three decades. Before then, the motion of atoms during bond-breaking/forming
reactions had been inaccessible to direct experimental observation. The reason
lies in the ultrafast nature of these atomistic processes. Indeed, nuclear vibra-
tional motion unfolds on a very short time scale, the femtosecond time scale (1
fs=10−15 s). Femtochemistry [1, 2], the study of reaction intermediates at the
atomic scale of time, started out with the ultrafast experiments performed by
A. H. Zewail in the late 1980s, for which he was awarded the 1999 Nobel Prize
in Chemistry [3]. The pioneering experiments investigated the dissociation of
diatomic [4] and triatomic [5, 6] molecules in gas phase, and were made possible
by the advent of ultrashort optical laser technologies. Clocking of such ultra-
fast chemical processes is achieved according to the pump-probe methodology.
A femtosecond optical pulse is used to initiate the coherent and synchronous
motion of the atoms. This first pump pulse is followed, after a time delay con-
trolled with femtosecond resolution, by a second ultrashort pulse of radiation,
the probe pulse, which captures an individual snapshot of atomic motion. Com-
bining snapshots recorded in a sequence of pump-probe time delays produces a
“motion picture” of the dynamics. Since nuclear dynamics is an intrinsic reflec-
tion of the reaction mechanisms, pump-probe technologies have paved the way
to the mechanistic understanding of an increasingly ample range of chemical
reactions.

All early pump-probe investigations employed an optical UV-vis probe. How-
ever, spectroscopic data do not correlate directly to structural changes. The
structural information can be inferred indirectly from optical measurements if
detailed knowledge of the electronic structure of the system is available. While
this can be true in the case of elementary reactions involving small diatomic and
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triatomic molecules, as the system grows in size, extensive electronic structure
calculations are needed, which can be cumbersome at best. The complexity
of the problem is particularly high when dealing with molecular reactions in
solution, since the degrees of freedom involved are many and the dynamics is
inherently dominated by time-dependent distributions of atomic positions. On
the other hand, X-rays can provide a more direct probe of the photoinduced
structural changes. This was understood soon after the first optical pump-
probe experiments [7]. The challenge to proceed further along this direction has
been represented by the design and implementation of coherent X-ray sources
capable of providing femtosecond time resolution and sufficiently high photon
flux. Nowadays, novel X-ray free-electron laser (XFEL) facilities [7, 8, 9, 10]
meet all the requisites needed to image atomic motion in solution with X-rays.

1.1 Ultrafast Studies of Transition Metal Com-
plexes

Photocatalytic reactions involving transition metal complexes in solution have
been among the most popular targets of time-resolved experiments over the last
years [7, 11, 12]. Indeed, stability in solution, remarkable photophysical prop-
erties and the presence of electron-rich atoms, make transition metal complexes
attractive candidates for both spectroscopic and X-ray ultrafast studies. Taking
full advantage of their photocatalytic properties requires an understanding of the
structure-function relationships and mechanisms behind ultrafast light-induced
reactions in complex environments. The continuous demand for more efficient
photocatalitic systems combined with tremendous advancements in pump-probe
techniques has led to a whole host of experiments able to follow the evolution of
vibrational wave packets or the solvation dynamics in photoexcited prototypical
metal complexes in real-time [13, 14, 15, 16, 17, 18, 19, 20].

These novel experiments cover grounds often dominated by complex interplays
between vibrational relaxation, solvent effects and electronic couplings, which
are not known a priori. Therefore, linking experimental observations to mech-
anistic frameworks can only be accomplished with the help of solid theoretical
and modelling strategies. Moreover, even when the interpretation of an exper-
iment is facilitated by prior photophysical knowledge or by employing simple
phenomenological models, a variety of complementary techniques are needed
to assemble a complete atomistic and energetic picture of the early stages of
the investigated dynamics. In this context, advanced computational methods
capable of connecting multiple time-resolved observables, while delivering new
mechanistic insights into the underlying physical processes, play an important
role in complementing ultrafast experiments of transition metal complexes.
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1.2 Modelling Strategies

One of the main challenges associated with ab initio computational determi-
nation of the mechanisms of the ultrafast excited-state dynamics of complex
molecular systems is represented by the time scales one is able to simulate while
retaining accuracy. As experimental techniques with atomistic resolution start
putting a lens onto hitherto unexplored sub-picosecond intramolecular structural
and solvation processes, developing efficient computational methods capable of
providing insights into the underlying physical mechanisms becomes of utmost
importance. Broadly speaking, much of the efforts of the theoretical commu-
nity to address this challenge have been directed towards the development and
application of two computational frameworks of choice: methods that solve the
time-dependent Schrödinger equation for the nuclei using precomputed potential
energy surfaces (PESs) [21, 22, 23, 24, 25, 26, 27], and methods based on classical
propagation of the nuclei with on-the-fly evaluation of energies and forces at ab
initio level [28, 29, 30, 31, 32, 33]. Quantum dynamics approaches have proven
useful in deciphering some aspects of the excited-state decay pathways of pho-
tocatalytic metal complexes, particularly concerning non-adiabatic electronic
transitions [21, 24]. However, the outcome of this kind of simulation relies on
the selection of a small number of vibrational modes along which the dynamics
is restricted. Furthermore, solvent effects in quantum wave packet simulations
are usually accounted for in an implicit manner [23, 25], thus neglecting any
explicit solvation dynamics effect. On the other hand, the second approach, ab
initio classical dynamics, allows, in principle, to efficiently explore the full, un-
constrained space of nuclear configurations and to include explicit solvent effects
in a multiscale fashion. The price to pay for having abandoned a quantum de-
scription of the dynamics, is that quantum effects, like non-adiabatic electronic
transitions and tunnelling, are neglected in this second picture. In particular,
neglecting the non-adiabatic couplings between electronic and nuclear motions
implies restricting the dynamics of the nuclei to a single, Born-Oppenheimer
(BO) PES (the concept of BO PES will be introduced in chapter 4). Cases in
which non-adiabatic effects are important on the time scales that are considered
in the investigation, can be treated, without abandoning the full-dimensionality
provided by the classical trajectory description, with mixed quantum-classical
methods like trajectory surface hopping (TSH) [34, 35, 36], or the closely related
ab initio multiple spawning (AIMS) [37, 38, 39]. The basic idea behind these
approaches is that the time evolution of a non-adiabatic system can be repro-
duced by ensembles of trajectories that evolve on BO electronic surfaces and
experience state switches in proximity of regions of non-adiabaticity. Among
them, TSH has been the one that has been most extensively applied to study
the mechanisms behind the first steps of the ultrafast relaxation cascade of
photoexcited metal complexes [40, 41, 42, 43].
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The work presented in this thesis focused principally on extending the features
and capabilities of, and applying a multiscale computational method [44, 45, 46]
that follows along the second modelling strategy. The approach is based on a
density functional theory (DFT) implementation of on-the-fly quantum mechan-
ics/molecular mechanics (QM/MM) Born-Oppenheimer Molecular Dynamics
(BOMD) [P1]. The implementation is available within the Atomic Simulation
Environment (ASE) [47, 48] and uses the computationally efficient Grid-based
Projector Augmented Wave (GPAW) code [49, 50] for the DFT part. In its
basic form, it was already available before the start of the present PhD project,
and had already been successfully applied to study the ultrafast internal vibra-
tional dynamics and to obtain a picture of solvent-driven electronic dynamics
in bimetallic photoactive complexes [51, 30]. More specifically, the method is
tailored to help the interpretation and analysis of optical pump-X-ray probe
experiments on transition metal complexes in solution. The experiments are
performed by the group where the PhD project took place together with exper-
imental collaborators at XFELs facilities. As we will see in more detail in the
course of the thesis, X-ray scattering signals of solvated molecules are much more
challenging to analyse than conventional X-ray scattering patterns of crystals.
Put simply, the X-ray scattering of a solution appears diffuse (and for this reason
it is referred to as “X-ray diffuse scattering” (XDS)), lacking the characteristic
Bragg peaks of the scattering signal of periodic systems, which allow to infer
directly structural information. Our multiscale approach offers support to the
characterization of time-resolved XDS data by delivering statistically relevant
and accurate information on both thermal equilibrium properties and ultrafast
out-of-equilibrium dynamical processes. For example, the method has proven
decisive in establishing a robust interpretation of the solvation dynamics at the
catalytic site of a diiridium complex observed in ultrafast XDS data [16]. We
have recently presented the full details of the QM/MM BOMD implementation
in ASE and GPAW in Ref. [P1].

In all previous applications, the excited states of interest were described using
the spin unrestricted DFT formalism. In some of the investigated systems, the
observed ultrafast dynamics following photoexcitation was known to take place
on an excited state of the same spin multiplicity as the ground state, usually a
singlet. This implied that the simulations had to approximate the dynamics by
propagating the system on the lowest excited state of a different spin multiplicity
by assuming parallel PESs along the dominant vibrational motions. However,
even in systems for which the latter assumption was demonstrated to be valid,
the dynamics in the two states can still be different if their energies are such
that they lie in regions of different density of states, as recently shown by Monni
et al. [14]. These authors compared the coherence decay of vibrational wave
packets in the first singlet and triplet excited states of diplatinum complexes
in solution observed in ultrafast optical measurements, and found significant
differences despite parallel PESs.
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The need to be able to reliably compare simulations to experimental results calls
for an extension of the QM/MM BOMD method in ASE/GPAW to encompass
states of arbitrary spin multiplicity. With this perspective in mind, part of
the work carried out during the present PhD project [P2] has been devoted to
extending the capabilities of the code by coupling it to a single-determinant
DFT description of the excited states based on the ∆SCF approach [52], which
carries no extra computational cost with respect to ground state DFT.

∆SCF is gaining increasing popularity in the study of the excited states of both
organic chromophores [53, 54, 55, 56] and transition metal complexes [57, 58].
This renewed interest is motivated in part by the growing demand for computa-
tionally cheap strategies for simulating with sufficient accuracy the excited-state
structure and dynamics of large systems, for which high-level multireference
methods are not yet a viable choice. The reliability of ∆SCF as applied to
study the structure and dynamics of small molecules, organic dyes and even
biological systems, has been assessed with respect to vibrational analysis [59],
exploration of PESs [56, 60], as well as dynamics in solution within QM/MM
MD frameworks [61, 54]. On the other hand, to our knowledge, no studies exist
that investigate the ability of the method to predict the structural dynamics of
transition metal complexes, even though the performances of ∆SCF for excita-
tion energies and simulations of UV-vis spectra of metal-containing molecular
systems are not inferior to those achieved when applied to organic molecules
[57, 58]. A second general objective of the present work has been to assess
the reliability of ∆SCF for prediction of structural and dynamical properties of
transition metal complexes.

We note that the understanding of the processes that govern the ultrafast
excited-state dynamics of transition metal complexes has greatly benefited from
simulations using other MD codes. Among them, the ones that have gained most
popularity for the study of transition metal complexes are probably the SHARC
program [28, 40, 34, 62] and the plane-wave code CPMD [41, 63, 64, 43, 32, 65].
These software packages are quite advanced, they include interfaces to a host of
electronic structure codes, as in the case of SHARC, can work with QM/MM
schemes, and implement non-adiabatic MD in a surface hopping perspective.
On the other hand, they have all employed DFT in its time-dependent formu-
lation (TDDFT) to describe the excited states of transition metal complexes.
Our implementation of excited-state QM/MM BOMD is, instead, unique in its
combination of a cost-effective single determinant method as ∆SCF with the
computationally expedient GPAW DFT code. Therefore, we see our ∆SCF-
QM/MM BOMD method not as a step back with respect to already existing
MD codes, but rather as a complementary technique, which can turn especially
useful when statistical significance and an explicit description of solvation effects
can be privileged over, for example, the inclusion of non-adiabatic effects, as we
will see throughout this thesis.
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2
The Diplatinum Complex
PtPOP

In the present project we have investigated the photocatalytic diplatinum(II)
complex [Pt2(P2O5H2)4]4−, abbreviated PtPOP. The study employed both ul-
trafast XDS measurements in aqueous solution, performed together with the
group of our experimental collaborators, and a combination of gas-phase DFT
and QM/MM BOMD simulations. The use of experimental and computational
methods has proved highly synergetic: the simulations guided the analysis
and interpretation of the XDS data, while the experiments have been a test-
ing ground for fully assessing the potentialities of the ∆SCF-QM/MM BOMD
method that has been implemented in the course of the project. Furthermore,
the simulations are used to expand on the knowledge of the solution properties
of the system and move forward in the understanding of the microscopic mech-
anisms governing ultrafast relaxation in solution following photoexcitation. In
this chapter, we present the model photocatalyst PtPOP, describing the pho-
tophysical, structural and dynamical properties that are already known from
previous studies, and highlighting the pending questions that we aimed at ad-
dressing in our investigation.

Fig. 2.1 shows an illustration of the structure of the PtPOP system. Owing to
its nuclear and electronic structures, PtPOP is the prototype system of choice
for photophysical studies within a family of highly photoreactive d8-d8 binu-
clear complexes [11]. The UV-vis absorption spectrum of PtPOP in crystal and
different solvents exhibits an intense band around 370 nm and a weaker band
around 450 nm that are attributed to electronic transition from the HOMO dσ∗
antibonding to the LUMO pσ bonding metal-metal orbital [66, 67, 68]. As a
result of the nature of the excitation, the first singlet and triplet excited states
(S1 and T1), having dσ∗ → pσ character, feature a significantly shortened Pt-
Pt distance. Reported experimental values for the contraction in crystal and
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Figure 2.1: Visualization of the PtPOP molecular complex. The photocat-
alytic model system has been object of extensive experimental
and computational investigation during the present PhD project.

solution lie in the range 0.19-0.31 Å [69, 70, 71, 72, 73, 67]. From the vibronic
progression of low temperature UV-vis S0 → S1 and S0 → T1 absorption bands
[66], it has been concluded that the potential energy surfaces of S1 and T1 along
the Pt-Pt coordinate are parallel. Moreover, these states are found, from exper-
iments [66, 67] and previous DFT studies [74, 75], to be separated by a relatively
large energy gap of around 0.65 eV, and isolated from other electronic states.
The electronic structure of the complex, together with the fact that direct spin-
orbit coupling (SOC) between S1 and T1 is forbidden for symmetry reasons
[74, 76], accounts for intersystem crossing (ISC) times between 11.0 and 101.5
ps [18, 77, 66], depending on solvent and temperature. Besides, the lifetime of
T1 is found to be on the order of microseconds [66]. Ultimately, it is this state
that has catalytic activity, being able to abstract hydrogen and halogen atoms
from different substrates [11, 78].

The shape and relative position of the S1 and T1 PESs of the complex determine
its unique photophysical properties. Yet, the topology of the PESs has only been
deduced from optical measurements. One of the first goals of our investigation
was to compute the PESs along the Pt-Pt coordinate in the first two excited
states for the first time. This represented both a benchmark of the performances
of ∆SCF with respect to structural predictions of transition metal complexes,
and an indication that proposed structures and PES shapes deduced indirectly
from optical experiments are indeed justified. Furthermore, the calculations
were also aimed at testing the assumption made in previous computational works
on similar systems [16, 30], which simulated the singlet excited-state dynamics
by using the gradients of the triplet surface.

Previous ultrafast studies have exploited the peculiar photophysical properties
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of PtPOP to characterize, by femtosecond optical measurements, the evolution
of wave packet coherent vibrations along the Pt-Pt coordinate in S1 [18] and
recently also in the T1 state [14]. Some of the aspects of the ultrafast relaxation
following excitation in the S1 state in different solvents where uncovered in a
combined fluorescence up-conversion and broadband transient absorption (TA)
study by van der Veen et al. [18]. It was found that the coherence decay
of vibrational wave packets with a period of ∼224 fs takes place concomitantly
with vibrational cooling over a remarkably long time of 1-2 ps. The observations
were interpreted as a signature of the strong harmonicity of the potential along
the Pt-Pt coordinate, which in turn is due to the rigidity of the cage of P-O-P
ligands, and effective shielding from random solvent fluctuations provided by
the latter. Despite the fact that the experiments could characterize the time
scales of vibrational coherence, cooling and ISC in solution, the mechanistic
details behind these processes are far from being well understood. Hypotheses
of mechanisms of vibrational cooling have been put forward, but they are not
based on direct experimental evidence; rather they rely on the observation of
solvent trends [18] or the comparison with the behaviour of diplatinum systems
with modified ligands under similar experimental conditions [14]. Thus, van der
Veen et al. [18] explain differences in the vibrational decay rates for excitation
in the S1 state observed for different solvents as an evidence of direct solute-
solvent interactions that can only occur along the open axial Pt-Pt coordination
sites of the molecule. More recently, Monni et al. [14] seem to exclude this
possibility. These authors argue that, since no big differences with respect to
the decoherence times of a perfluoroborated derivative of PtPOP for which the
bulkier ligands offer better shielding of the Pt atoms from the environment were
observed, the origin of coherence decay must arise from anharmonic couplings
of the Pt-Pt motion with other internal vibrational modes in the complex.

The mechanism of ISC from S1 to T1 in PtPOP is also a recurrent subject
of discussion in the PtPOP literature [11, 74, 76, 18]. All recent experimental
indications seem to point in the direction of a possible involvement of a dark
mode that would lower the D4h symmetry of the Pt2P8 core of the complex,
allowing for direct SOC or lowering the energy of other triplet states, but this
mode has never been observed experimentally. The scenario is complicated
by the fact that up to now no experimental method has been able to reliably
assess the changes affecting the structure of the ligands or the presence of large
amplitude distortions in the excited state in solution.

In the light of all this, a second objective of our investigation was to clarify the
aspects of the excited-state vibrational relaxation of PtPOP in solution that
have remained so far poorly understood, shedding light on questions like: what
is the geometry of the ligand cage in the excited state? Are there ligand defor-
mations that can influence the intersystem crossing rates? What is the role of
the solvent in the ultrafast relaxation? For this purpose, we used ∆SCF in ex-
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tensive nonequilibrium gas-phase and solution-phase simulations in conjunction
with thorough vibrational analysis.

While the excited-state structural dynamics of PtPOP has been object of exten-
sive experimental ultrafast investigations in recent years, no studies exist that
address the dynamics in the ground state along the same lines. The present
understanding of the ground-state potential surface of the molecule is limited
to the observations of the early low-temperature emission [67] and Raman [79]
spectroscopic experiments, which deduced a highly harmonic potential along the
Pt-Pt coordinate, with a vibrational period of around 303 and 283 fs in crystal
[67] and aqueous solution [79], respectively. But, for example, no ultrafast stud-
ies have been reported that investigate the vibrational relaxation in the ground
state. This is mainly due to the fact that pump-probe techniques are all based
on photoexcitation of the sample, and hence usually highlight the excited-state
dynamics at the expense of the dynamics occurring in the ground-state molec-
ular ensemble perturbed by the laser. We have participated to an experimental
campaign performed at the Linac Coherent Light Source (LCLS) XFEL facility
[9, 10] of Stanford to study by time-resolved XDS measurements in water the
coherent vibrational dynamics of PtPOP in the ground-state potential. Direct
tracking of ground-state dynamics was enabled by a careful choice of pump-pulse
parameters to suppress any excited-state contribution in the time-dependence
of the XDS signal. QM/MM BOMD simulations were subsequently used to
substantiate the outcome of the ultrafast XDS experiments.



3
Outline of the Thesis

To help the reader find his/her way through the thesis, we summarize here in
short, compact form the contents and scopes of each of the following chapters.

Chapter 4 introduces the reader to the theory of nuclear dynamics from the full
time-dependent Schrödinger equation to the approximations that form the basis
of ab initio on-the-fly Born-Oppenheimer Molecular Dynamics (BOMD).

Chapter 5 delves into the details of the implementation of a ∆SCF method
with Gaussian smeared constraints in the DFT code GPAW, realized during the
present PhD project. In order to bring out its salient features and differences
with respect to other, more standard ∆SCF DFT methods, an effort is made
to show the origin of the equations that form its basis, providing all necessary
theoretical background on DFT and GPAW. Finally, the chapter reports the
results of tests of the newly implemented ∆SCF scheme on a diatomic system
that are performed to assess the robustness and reliability of the method with
respect to structural predictions.

Chapter 6 describes the QM/MM electrostatic embedding scheme in GPAW/ASE.
In addition, it establishes the link between all the components that make up
QM/MM BOMD simulations as performed in the present work.

Chapters 7 and 8 deal with the experimental side of the present project. Chap-
ter 7 provides a broad outline on the principles of time-resolved X-ray diffuse
scattering (XDS) experiments, and describes the XDS measurements performed
on PtPOP in water at the LCLS XFEL of Stanford. Chapter 8 bridges exper-
iments and theory by showing how the scattering signal can be simulated in
order to assist the analysis and interpretation of the experimental data.

Chapter 9 reports the results of preliminary tests and gas-phase calculations on
PtPOP using GPAW. This chapter includes the first calculated potential energy
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surfaces (PESs) of the complex, and highlights the finding that the lowest-lying
singlet and triplet excited states of the molecule have a different symmetry than
that of the ground state, in contrast to what so far believed.

Chapter 10 sets the stage for the presentation of the results of the QM/MM
BOMD simulations on PtPOP in water by illustrating the computational pro-
cedure used to perform them, focusing in particular on the choice of initial
conditions to simulate laser-induced out-of-equilibrium dynamics in the ground
and first singlet excited states.

Chapter 11 deals with the equilibrium thermal properties of PtPOP as obtained
from the NVT equilibrated parts of the QM/MM trajectories. A detailed char-
acterization of the solvation shell structure is presented, underlining the link
with previous experimental evidence. Moreover, this chapter shows how the
simulations are used to improve on the structural modelling of the XDS data of
PtPOP leading to the first experimental determinantion of the change in Pt-Pt
distance in the lowest-lying singlet excited state in water.

Chapter 12 presents a picture of simultaneous ground- and excited-state dynam-
ics following laser excitation obtained through nonequilibrium ∆SCF-QM/MM
BOMD simulations and non-stationary ground-state distributions from an equi-
librium QM/MM ensemble. The picture shows how the formation of a non-
stationary hole in the ground-state distribution of Pt-Pt distances accompanied
by a vibrationally “cold” excited state can explain the origin of the oscillatory
trend observed in the time-resolved XDS signal.

Chapter 13 presents the results of nonequilibrium ∆SCF-QM/MM BOMD sim-
ulations that shed light on the mechanisms of vibrational relaxation of PtPOP
in the first singlet excited state in water. This chapter uncovers the paths of
dissipation of excess Pt-Pt vibrational energy to ligand deformation modes, and
the role of the solvent in stabilizing them.



Part II

Theoretical and
Computational Methods





4
Nuclear Dynamics

In all formulas and derivations presented in this part of the thesis we will make
use of atomic units, in which the electron mass me, the elementary charge e and
the reduced planck constant ~ = h/2π are unity.

In general, the exact evolution of a non-relativistic molecular system is given
by the time dependence of the total electronic and nuclear wave function |Ψ〉,
obtained by solving the time-dependent Schrödinger equation:

i
∂

∂t
|Ψ〉 = H |Ψ〉 (4.1)

where H is the total Hamiltonian for coupled electronic-nuclear motion, con-
sisting of a sum of the nuclear kinetic energy operator Tn and the electronic
Hamiltonian He. For a system of Nn nuclei and Ne electrons, He can be ex-
pressed as:

He = −
Ne∑
i=1

1

2
∇2
i −

Ne∑
i=1

Nn∑
α=1

Zα
| Rα − ri |

+

Ne∑
i=1

Ne∑
j>i

1

| ri − rj |
+

Nn∑
α=1

Nn∑
β>α

ZαZβ
| Rα −Rβ |

= Te + Vne + Vee + Vnn (4.2)

where Rα and ri are respectively the position vectors of nucleus α and electron
i, while Zα is the charge of nucleus α (corresponding to its atomic number). In
Eq. (4.2), the first term is the kinetic energy of the electrons, the second term
represents the Coulomb attraction between electrons and nuclei, and the third
and fourth terms are the electron-electron and internuclear repulsion, respec-
tively, the latter being a constant for a given nuclear configuration.

Finding directly analytical solutions to Eq. (4.1) is impracticable even for the
smallest polyatomic systems. The route to the solution of the problem of deter-
mining ab initio the dynamics of a molecular system starts from a separation
of the electronic and nuclear motions. In fact, owing to the large difference
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in mass between electrons and nuclei, the time scales of electronic motion are
much shorter than those that characterize the motion of the nuclei. Therefore,
we can define an electronic Hamiltonian for each set of nuclear positions Rα.
The solutions of the time-independent electronic Schrödinger equation for fixed
nuclear configurations:

He |Φn; R〉 = En(R) |Φn; R〉 (4.3)

are stationary electronic wave functions |Φn; R〉 with corresponding energies
En(R), both dependent parametrically on the collective set of nuclear coordi-
nates R. The total wave function |Ψ〉 can be exactly expanded in the complete
set of these electronic states. In the coordinate representation:

Ψ(R, r) = 〈R, r|Ψ〉 =

∞∑
n

〈R,Φn; R|Ψ〉 〈r|Φn; R〉

=

∞∑
n

χn(R) Φn(r; R)

(4.4)

Eq. (4.4) is the Born-Huang, or adiabatic expansion [80], and defines the R-
dependent expansion coefficients χn(R) of the total wavefunction as projections
onto a direct product of an eigenstate of the position operator with a particular
electronic state |R〉 ⊗ |Φn; R〉 = |R,Φn; R〉.

Now, it is understood that the problem of describing the time evolution of a
molecular system has been reduced to the determination of the time dependence
of the functions χn(R). Obtaining the coefficients χn(R) can be done by solving
the following set of coupled differential equations (see Ref. [35] for a complete
derivation of this result):

i
∂

∂t
χn(R) =

[
Tn + En(R)

]
χn(R)

−
∞∑
m

Nn∑
α=1

1

2Mα

[
〈Φn; R|∇2

α|Φm; R〉

+ 2 〈Φn; R|∇α|Φm; R〉 · ∇α
]
χm(R) (4.5)

where Mα is the mass of nucleus α. The terms with n 6= m appearing in the
double summation over electronic states and nuclei on the right hand side of Eq.
(4.5) couple different electronic states through the nuclear motion and define the
non-adiabatic quantum dynamics of the system. Terms with n = m are usually
called diagonal couplings [35], even if, strictly speaking, they do not couple
different electronic states.
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4.1 The Born-Oppenheimer Approximation

A considerable simplification of the equations of nuclear motion (4.5) can be
achieved by neglecting all non-adiabatic and diagonal coupling terms, obtaining:

i
∂

∂t
χn(R) =

[
Tn + En(R)

]
χn(R) (4.6)

The approximation that we have just introduced is the Born-Oppenheimer (BO)
approximation [80]. It implies complete separation of the equations for nuclear
and electronic motion. By neglecting all couplings between electronic states it
is assumed that the electronic character of the system does not change during
nuclear motion, as there cannot be transitions between electronic states. As
a consequence, only one term n appears in the expansion of the total wave
function Eq. (4.4).

From Eq. (4.6) we can define a Hamiltonian for the motion of the nuclei as the
sum of the nuclear kinetic energy operator and the electronic state energy En.
Thus, in the BO approximation, the eigenvalues En of the time-independent
electronic Schrödinger equation constitute the potential energy surfaces (PESs)
on which the nuclei move. One commonly refers to the coefficients χn(R) as
nuclear wave functions, although they are not necessarily eigenstates of this
nuclear Hamiltonian, rather they can be any superposition of stationary nuclear
states satisfying Eq. (4.6) [81].

The BO approximation is widely employed in simulations of molecular systems
in which the motion of the nuclei is confined in well separated electronic poten-
tials, far from regions of the electronic and nuclear configuration space where
non-adiabatic effects are important.

4.2 Ab initio Born-Oppenheimer Molecular Dy-
namics

A further approximation that can be made on the basis of the large mass of the
nuclei as compared to that of the electrons, is to describe the dynamics of the
nuclei using classical equations of motion. In its most generic formulation, ab
initio Born-Oppenheimer Molecular Dynamics (BOMD) [33, 82] propagates a
system of atoms in a given adiabatic electronic state n by integrating Newton’s
equations of motion:

∂2Rα

∂t2
− Fα
Mα

= 0 (4.7)
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with forces Fα computed as the gradients of the eigenvalues of the electronic
Schrödinger equation (Eq. (4.3)) for state n (Fα = −∇αEn(R)). Eqs. (4.3)
and (4.7) are the basic equations of ab initio BOMD simulations.

One strategy involves solving Eq. (4.3) for different nuclear configurations, and
fitting the resulting points to an appropriate function to obtain a “global” PES
for the classical trajectory propagation. However, obtaining accurate “global”
PESs for systems with more than three or four atoms can be extremely challeng-
ing [82], thus posing a limitation to the utilization of this method for simulations
of the dynamics of large molecular systems. A second strategy consists in solv-
ing simultaneously Eqs. (4.3) and (4.7), which means computing, at each step
of the classical propagation, ab initio energy and gradients. Ab initio BOMD
simulations based on this approach are usually referred to as direct or on-the-
fly methods, and allow, in principle, to explore the full, unconstrained space of
nuclear configurations.

The present work is concerned with this second strategy as a route to simulate
the ground- and excited-state dynamics of systems as large as transition metal
complexes, including explicit solvent effects. In chapter 6 we will see how solvent
effects can be taken into account in a multiscale fashion within the scheme
presented herein, and how the classical equations of motion can be integrated
to reproduce an NVT, or canonical, ensemble. In the following chapter, initially,
we will have a closer look at electronic structure methods for solving the time-
independent electronic Schrödinger equation based on density functional theory
(DFT), with particular focus on the projector augmented wave (PAW) method.

The starting point of all electronic structure methods is the variational principle,
which states that the expectation value of the electronic Hamiltonian given any
approximate wave function |Φ; R〉:

〈E〉 =
〈Φ; R|He|Φ; R〉
〈Φ; R|Φ; R〉

(4.8)

is an upper bound to the exact energy. The variational principle has a disarm-
ingly simple form. For the ground state:

〈E〉 > E0 (4.9)

where the equality holds only when |Φ; R〉 is equal to the exact wave func-
tion |Φ0; R〉 of the ground state. Hence, obtaining the solutions of the time-
independent electronic Schrödinger equation can be done by minimizing the
energy as a functional of the electronic wave function, or, as we will see soon, as
a functional of the electron density, subject to specific constraints, the nature
of which is determined by the choice of the variational parameters.
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Density Functional Methods

In this chapter, we embark on an excursion into the realm of density functional
methods for solving the time-independent electronic Schrödinger equation (Eq.
(4.3)). The first part (sections 5.1 to 5.3) is intended to be a general outline of
the principles and foundations of Density Functional Theory (DFT), although
an effort is made to illustrate the genesis of its workhorse equations. For com-
prehensive reviews on DFT and step-by-step derivations the reader can consult
Refs. [82, 83, 84]. The second part (sections 5.4 and 5.5) is dedicated to the
specific DFT code used during this project, and to the development works done
in it.

By examining the expression for the electronic Hamiltonian He given in Eq.
(4.2), it is easy to see that for a system of Ne electrons, He is completely
specified by the external potential of the nuclei (“external” from the point of
view of the electrons):

υ(r) = −
Nn∑
α=1

Zα
| Rα − r |

(5.1)

Therefore, the nuclear charges and positions, which determine υ(r), uniquely
define the electronic energy and all other properties of a system of Ne electrons.
The premises of DFT stem from the simple realization that the electron density,
which is a physical observable, provides all the quantities required to construct
υ(r) and fix the electronic Hamiltonian. Recalling a result of wave mechanics
[85], the electron density is obtained from the wave function squared integrated
over the Ne− 1 electronic spatial coordinates ri and the Ne spin coordinates ξi.
For the ground state:

n(r) = Ne

∫
· · ·
∫
| Φ0 (r, ξ1,x2, . . . ,xNe

; R) |2 dξ1dx2 · · · dxNe
(5.2)
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where we have introduced the notation xi to indicate the collection of spatial
and spin coordinates for electron i (xi = {ri, ξi}). We see that n(r) is a function
of three variables that integrates to the total number of electrons:∫

n(r)dr = Ne (5.3)

Moreover, the positions and charges of the nuclei can be inferred [84], respec-
tively, from the positions of local cusps in the density and from the relation:

∂

∂dα
n(dα)

∣∣∣
dα→0+

= −2Zαn(0) (5.4)

where dα is the radial distance from nucleus α and n is the density averaged
over a sphere.

5.1 The Hohenberg-Kohn Theorems

In this and the following two sections we will lay out the standard DFT formal-
ism for the electronic ground state, leaving the discussion of excited states to
section 5.5.

Since all information that is needed to determine the electronic Hamiltonian can
be deduced from the electron density, there must be a one-to-one correspondence
between n(r) and the electronic energy corresponding to the exact wave function.
The formal justification that the electron density can be used as basic variable in
solving the electronic Schrödinger equation is provided by the two Hohenberg-
Kohn theorems [86].

The first theorem is a proof that the external potential υ(r), and hence the
electronic wave function and energy of the ground state, are uniquely determined
by the electron density. The demonstration is done by reductio ad absurdum
using the variational principle for the ground state (see Eqs. (4.8) and (4.9)).
For ease of notation we will drop from now on the parametric dependence of
the electronic wave function on the collective set of nuclear coordinates R. Let
us assume there exist two external potentials υ(a)(r) and υ(b)(r) associated
with the same ground-state electron density n(r). The two potentials are not
necessarily Coulomb potentials set by the nuclei, but have to be one-electron
operators. υ(a)(r) and υ(b)(r) define two different electronic Hamiltonians H

(a)
e

and H
(b)
e , and two different ground-state wave functions |Φ0

(a)〉 and |Φ0
(b)〉,

which are taken to be normalized (〈Φ0
(a)|Φ0

(a)〉 = 〈Φ0
(b)|Φ0

(b)〉 = 1). The
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variational principle for |Φ0
(b)〉 with respect to the Hamiltonian H

(a)
e gives:

〈Φ0
(b)|H(a)

e |Φ0
(b)〉 > E

(a)
0 (5.5)

By rewriting the left hand side of Eq. (5.5) as:

〈Φ0
(b)|H(a)

e |Φ0
(b)〉 = 〈Φ0

(b)|H(b)
e |Φ0

(b)〉+ 〈Φ0
(b)|H(a)

e −H(b)
e |Φ0

(b)〉

= E
(b)
0 +

∫
n(r)

[
υ(a)(r)− υ(b)(r)

]
dr (5.6)

where the second equality comes from the fact that υ(a)(r) and υ(b)(r) are
one-electron operators, we arrive at the following expression:

E
(b)
0 +

∫
n(r)

[
υ(a)(r)− υ(b)(r)

]
dr > E

(a)
0 (5.7)

Analogously, we could repeat the derivation using |Φ0
(a)〉 as an approximate

wave function for H
(b)
e , obtaining:

E
(a)
0 −

∫
n(r)

[
υ(a)(r)− υ(b)(r)

]
dr > E

(b)
0 (5.8)

Adding Eqs. (5.7) and (5.7) on both sides gives:

E
(b)
0 + E

(a)
0 > E

(a)
0 + E

(b)
0 (5.9)

which is obviously an impossible conclusion, showing that the density n(r) must
define a single external potential, and hence a unique Hamiltonian and a unique
ground-state wave function |Φ0〉 with associated energy E0. The important
implication of this result is that we can express the electronic energy of the
system as a unique functional of the density (E [n]).

By analogy with the definition of the electronic Hamiltonian in Eq. (4.2), we
can separate the total energy functional in the following terms:

E [n] = Te [n] + Vne [n] + Vee [n] + Vnn (5.10)

where Te [n] is the electronic kinetic energy, Vne [n] and Vee [n] are, respectively,
the Coulomb attraction between electrons and nuclei and the electron-electron
interaction:

Vne [n] = −
Nn∑
α=1

∫
Zαn(r)

| Rα − r |
dr =

∫
υ(r)n(r)dr (5.11)

Vee [n] = J [n] + xc term



24 Density Functional Methods

=
1

2

∫ ∫
n(r)n(r′)

| r− r′ |
drdr′ + xc term (5.12)

and, finally, Vnn is the constant (within the BO approximation) internuclear
repulsion. In Eq. (5.12) we have separated the classical electron-electron repul-
sion (J [n]) from a nonclassical term, which makes up the major portion of the
so-called exchange-correlation (xc) energy of the interacting system of electrons.

The second Hohenberg-Kohn theorem gives the perscription for how to evaluate
the energy of the ground state from the electronic Schrödinger equation using the
electron density. It is basically an energy variational principle for the electron
density. Consider an approximate electron density n′(r) that is positive definite
(n′(r) > 0) and integrates to the total number of electrons (

∫
n′(r)dr = Ne).

Then, the value of the energy functional of this approximate density will be
greater than or equal to the true ground state energy:

E [n′] > E0 [n] (5.13)

The idea of using a function of only three variables as variational parameter to
minimize the energy of a molecular system is particularly appealing in view of
a reduction of the complexity brought about by the 4Ne variables (3Ne spatial
and Ne spin coordinates) of the electronic wave function in wave mechanics.

Moving along these lines, we can reformulate the electronic Schrödinger equation
(Eq. (4.3)) as the problem of minimizing the functional E [n] with respect to
the electron density:

δE [n] =

∫
δE [n]

δn(r)
δn(r)dr = 0 (5.14)

or equivalently:

δE [n]

δn(r)
= 0 (5.15)

where, in Eq. (5.14), we have used the definition of differential of a functional,

and
δE [n]

δn(r)
is the functional derivative of E [n] with respect to n(r). Minimiza-

tion should be carried out under the constraint that n(r) integrates to the total
number of electrons: ∫

n(r)dr−Ne = 0. (5.16)

This problem can be solved using the method of Lagrange multipliers [84], which
leads to the following equations:

δ

δn(r)

[
E [n]− µ

(∫
n(r)dr−Ne

)]
= 0



5.2 The Kohn-Sham equations 25

⇒ δE [n]

δn(r)
− µ = 0 (5.17)

Eq. (5.17) is called Euler-Lagrange equation and the Lagrange multiplier µ is
the chemical potential. By inserting the definition of the total energy functional
Eq. (5.10) into Eq. (5.17), and using the expression for the classical attraction
between the electron density and the nuclei given in Eq. (5.11), we finally
obtain:

δ

δn(r)
[Te [n] + Vee [n]] + υ(r) =

δF [n]

δn(r)
+ υ(r) = µ (5.18)

where we have defined the energy functional F [n] as the sum of the electronic ki-
netic energy functional Te [n] and the electron-electron interaction term Vee [n].
F [n] is a universal functional of the electron density, in that it does not de-
pendent on the external potential υ(r). If we knew the form of F [n] we could
exactly solve Eq. (5.18) for the electron density and, thus, determine the true
electronic energy of a system of atoms by inserting the resulting n(r) into Eq.
(5.10). Unfortunately, the functional F [n] is not known, and DFT does not
provide any indication on how we might proceed to find the exact form of it.

The lack of knowledge of F [n] poses severe limitations to the applicability of
orbital-free DFT to molecular and solid systems of interest. Historically, there
have been attempts to develop orbital-free density functional models for a uni-
form electron gas (the so-called Thomas-Fermi and Thomas-Fermi-Dirac theo-
ries [82, 83, 84]), however these models fail to predict bondings between atoms.
Efforts to try to overcome this challenge that are based on finding strategies
to construct density functionals using machine learning (ML) [87] are currently
being undertaken. The idea is pursued, in particular, by the group of K. Burke
[87, 88]. Such ML density functional methods have only very recently started to
move their first steps from one-dimensional systems to simulations of realistic
molecular systems [89].

5.2 The Kohn-Sham equations

At this point, we could have turned our backs on DFT if it were not for Kohn
and Sham, who, in 1965, presented a formulation of DFT, the Kohn-Sham (KS)
DFT method [90], that has found, and continues to find, wide spread use in
many different sectors of science [91].

The method brings into play a wave function expressed as a single Slater deter-
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minant:

Φ (x1,x2, . . . ,xNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψNe

(x1)
ψ1(x2) ψ2(x2) · · · ψNe

(x2)
...

...
. . .

...
ψ1(xNe

) ψ2(xNe
) · · · ψNe

(xNe
)

∣∣∣∣∣∣∣∣∣
= |ψ1(x1)ψ2(x2) · · ·ψNe

(xNe
)〉

= |ψ1ψ2 · · ·ψNe
〉 (5.19)

where each ψi(x) is a spin orbital given by the product of a spatial orbital φi(r)
and a spin function α(ξ) or β(ξ). The spatial orbitals and the spin functions are
assumed to be orthonormal. This single-determinant wave function is the exact
wave function for the ground state of a system of Ne noninteracting electrons.
The exact kinetic energy of a system of noninteracting electrons can be expressed
using a set of Nsorb spin orbitals (with Nsorb > Ne) as:

T s
e [n] =

Nsorb∑
i=1

fi 〈ψi| −
1

2
∇2
i |ψi〉 (5.20)

The system also has an exact electron density that is given by [85, 84]:

n(r) =

Nsorb∑
i=1

fi | ψi(x) |2 (5.21)

In Eqs. (5.20) and (5.21), the fi are occupation numbers for the orbitals. For
the ground state, the assignment of the occupation numbers follows the aufbau
principle, i.e. fi is equal to 1 for the lowest energy orbitals, and 0 for all other
orbitals. Note that in Eq. (5.20) we have indicated the kinetic energy as an
implicit functional of the electron density through Eq. (5.21).

The main idea underlying KS DFT is to use Eqs. (5.20) and (5.21) to express
the kinetic energy and density of a real system of interacting electrons. The
resulting KS total energy functional for the real system takes the following
form:

EKS [n] = T s
e [n] + Vne [n] + J [n] + Exc [n] + Vnn (5.22)

where the exchange-correlation energy functional Exc [n] is defined as the dif-
ference between the exact kinetic energy of the interacting system of electrons
(Te [n]) and T s

e [n], plus all nonclassical contributions to the electron-electron
interaction energy (Vee [n]− J [n], as seen from Eq. (5.12)):

Exc [n] = Te [n]− T s
e [n] + Vee [n]− J [n] (5.23)
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Thus, the exchange-correlation energy consists of a correction to account for the
interacting nature of the true system. The exact form of Exc [n] is not known.
However, the correction is, in most cases, small compared to the absolute value
of the kinetic energy T s

e [n] [82, 84], such that an approximate Exc [n] usually
suffices to achieve fairly accurate results in many cases.

By inserting the definitions of the terms T s
e [n], Vne [n] and J [n] given by Eqs.

(5.20), (5.11) and (5.12), respectively, we can rewrite Eq. (5.23) as:

EKS [n] =

Nsorb∑
i=1

fi 〈ψi| −
1

2
∇2
i |ψi〉+

∫
υ(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

| r− r′ |
drdr′

+ Exc [n] + Vnn (5.24)

Since the density is obtained from the orbitals ψi(x), which from now on will
be referred to as “KS orbitals”, the Hohenberg-Kohn variational problem (Eqs.
(5.14) to (5.17)) becomes, in the framework of the KS theory, the problem of
minimizing the value of the energy functional EKS [n] with respect to the ψi(x),
under the constraint that they are orthonormal:∫

ψ∗i (x)ψj(x)dx = δij (5.25)

where δij is the Kronecker delta. This leads to the following equations:

δ

δψ∗i (x)

EKS [n]−
Nsorb∑
i=1

Nsorb∑
j=1

ε′ij

(∫
ψ∗i (x)ψj(x)dx− δij

) = 0 (5.26)

where ψ∗i (x) is the complex conjugate of ψi(x), and the ε′ij are Lagrange mul-
tipliers. With the explicit definition of EKS [n], Eq. (5.24), inside Eq. (5.26),
after computing the functional derivatives with respect to the ψ∗i (x), we obtain
a set of nonlinear coupled equations:

fihKSψi(x) =

Nsorb∑
j=1

ε′ijψj(x) (5.27)

where the single-particle KS Hamiltonian hKS is defined as:

hKS = −1

2
∇2
i + υKS(r) (5.28)

with the effective KS potential υKS(r) given as a sum of three terms:

υKS(r) = υ(r) + υH(r) + υxc(r) (5.29)
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The first term is the usual external potential of the nuclei (υ(r)), υH(r) is the
so-called Hartree potential:

υH(r) =

∫
n(r′)

| r− r′ |
dr (5.30)

and the exchange-correlation potential υxc(r) is the functional derivative of the
exchange-correlation energy with respect to the electron density:

υxc(r) =
δExc [n]

δn(r)
(5.31)

Since the matrix ε′ with elements ε′ij is a Hermitian matrix [84], we can apply
a unitary transformation of the KS orbitals that diagonalizes ε′ while leaving
invariant the wave function Φ (x) of Eq. (5.19) and the Hamiltonian hKS [85, 84].
If we do so, we obtain from (5.27) a new set of simplified equations:

hKSψi(x) = εiψi(x) (5.32)

where εi = ε′ii/fi for fi 6= 0. These equations are termed KS equations and
must be solved for the KS orbitals iteratively, until convergence of the electronic
density, since the density appears in the expression of the Hamiltonian hKS (Eq.
(5.28)). Thus, just like the Hartree-Fock (HF) theory of wave mechanics [85],
KS DFT relies on a self-consistent field (SCF) procedure to obtain the orbitals
that minimize the total energy. Once these are available, the energy can be
determined by first computing the electron density according to Eq. (5.21) and
then inserting the result into Eq. (5.24).

As for how to determine the KS orbitals in practice, different strategies are
available. The route most commonly followed by quantum chemists (which is
also the method of choice in wave function theories as HF) is to expand the
spatial part of the KS orbitals in a basis of localized functions ζµ(r) resembling
atomic orbitals:

|φi〉 =
∑
µ

ciµ |ζµ〉 (5.33)

The basis set functions are usually taken as linear combinations of Gaussian-type
orbitals (GTOs). The coefficients appearing in the expansion of the KS orbitals
are determined by solving the matrix equation obtained from the variational
procedure in the atomic orbital basis set. The computational cost, in this case,
scales as N4

b , with Nb the number of basis functions employed in the calculation.

However, this is not the only method for solving the KS equations. An expansion
of the orbitals in a plane-wave basis set is also possible. This is the approach
that is usually preferred in the solid-state physics community to model periodic
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systems [82]. Since plane waves are unsuited to describe the strong localization
and rapidly varying nodal structure of the core orbitals, Effective Core Potentials
(ECPs), or Pseudo-Potentials (PPs), are needed to model the core electrons [82].
Sometimes, as it is the case for part of the calculations that will be presented in
this work, ECPs are also used in conjunction with an explicit description of the
valence electrons in terms of localized orbital basis sets. Considerable savings
of computational time can be achieved when employing ECPs for heavy atoms,
such as transition metal complexes, instead of localized basis set functions, be-
cause, otherwise, the number of basis functions that would be required is very
large [82]. Moreover, relativistic effects can be taken into account by fitting the
analytical form of the ECPs to results from reference relativistic calculations.

A drawback of pseudo-potential methods is that all information on the elec-
tronic structure of a system near the nuclei are lost. The Projector Augmented
Wave (PAW) method [92, 93] is a third alternative strategy to the solution of
the KS equations that allows, in principle, to retain all core properties at a
computational cost that is comparable to the one offered by pseudo-potential
approaches. The theory of the PAW method can be derived as an exact theory,
and is treated extensively in the following section (section 5.4).

Another aspect that one must consider before venturing into the “black box”
of KS DFT calculations, is the choice of xc functional. As already mentioned,
the form of this functional has to be approximated. The literature offers an
overwhelming amount of different xc functionals. Some of them, like PBE [94],
are the result of a rational design following a set of conditions that a functional
is required to satisfy. Most often, however, the functionals are constructed by
fitting some parameters to accurate experimental data. The very popular BLYP
[95, 96] functional, for example, belongs to this other class of xc functionals.

As there is no unique parameter that can be varied to systematically increase
the accuracy of the xc functionals, a classification of them is not easy. On the
other hand, it is possible to define a hierarchy of density functional approxima-
tions [82, 97] on the basis of the “ingredients” used in the preparation of the xc
functionals. The simple rule is: adding more “ingredients” is expected to give
incresingly improved functionals. At the bottom of the ladder of density func-
tional approximations we find the local density approximation (LDA), which
makes the xc functional depend exclusively on the local values of the electron
density. The LDA exchange is the exchange energy of a uniform electron gas,
for which an exact analytical form exists. The most common LDA correlation
functionals can be traced back to the VWN [98] and PW [99] parametrizations,
which have been fitted to accurate quantum Monte Carlo results. The next level
of approximation is to make the functional depend also on the gradients of the
density (generalized-gradient approximation (GGA)). Popular GGA exchange
functionals are B86 [100], B88 [95] and PBE (exchange) [94]; while among the



30 Density Functional Methods

GGA correlation functionals we can mention PW91 [101], PBE (correlation)
[94] and LYP [96]. The name of a xc functional is, usually, and in particular for
GGA functionals, constructed by merging the acronyms for the exchange and
correlation parts; so, for example, BLYP is B88 exchange plus LYP correlation.
The direct QM/MM simulations of PtPOP in water performed in the present
work made use of the GGA functional BLYP to describe the electronic struc-
ture of the complex. Finally, at the high rungs of the ladder we find hybrid
functionals, such as B3LYP [102, 103], that include some portion of exact HF
exchange energy. The results of B3LYP calculations on PtPOP are used, in the
present work, to asses the quality of the geometry of the complex as predicted
by BLYP.

5.3 Restricted and Unrestricted Formalisms

Here, we provide some definitions concerning the construction of Slater determi-
nants to represent the electronic wave function in KS DFT, most of them valid
also in HF theory. We introduce some concepts and notations that will be used
throughout this thesis, especially when discussing DFT calculations for excited
states (section 5.5).

Figure 5.1: Examples of single Slater determinants. From left to right: re-
stricted closed-shell (RCS), doublet restricted open-shell (ROS),
and approximate doublet unrestricted open-shell (UOS) determi-
nants.
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One can conceive different kinds of Slater determinants, depending on the type
of constraint that is enforced on the spatial part of the spin orbitals ψi(x).

In the restricted formalism, spin orbitals with α and β spin functions are con-
strained to have the same spatial part. Let us consider first a system with an
even number of electrons Ne, and where all spatial orbitals are doubly occupied,
meaning that for each of them there will be two electrons. The set of Ne spin
orbitals that form the determinant is obtained from Ne/2 spatial orbitals by
multiplying each of them once by a spin function α (ψi−1(x) = φi/2(r)α(ξ), i =
2, 4, . . . , Ne), and once by a spin function β (ψi(x) = φi/2(r)β(ξ), i = 2, 4, . . . , Ne).
The determinant thus obtained is a restricted closed-shell determinant (RCS).
An example of such determinant is given in Fig. 5.1 for a four electron system.
Using the short-hand notation introduced in Eq. (5.19), we can write a general
restricted closed-shell determinant as:

1ΦRCS (x1,x2, . . . ,xNe−1,xNe) = |ψ1ψ2 · · ·ψNe−1ψNe〉
= |φ1φ1 · · ·φNe/2φNe/2〉 (5.34)

where, in the last line, we have further introduced a notation in which spin
orbitals are indicated with their spatial part only (φi corresponds to a spin
orbital containing a β spin function). The superscript on the left of ΦRCS in
Eq. (5.34) tells us that the determinant is a singlet, i.e. its spin multiplicity
given by 2S + 1, where S is the spin angular momentum quantum number, is
1. This means that ΦRCS is an eigenfunction of the square of the total spin
angular momentum operator S:

S2 |ΦRCS〉 = S(S + 1) |ΦRCS〉 = 0 (5.35)

Furthermore, as any single determinant [85], ΦRCS is an eigenfunction of the z
component of the total spin operator:

Sz |ΦRCS〉 = MS |ΦRCS〉 = 0 (5.36)

(in general, for a single determinant MS =
Nα

e −Nβ
e

2
, where Nα

e and Nβ
e are,

respectively, the number of α and β electrons). The electron density of a Slater
determinant of the form of ΦRCS is given, after integrating out the spin functions
(compare with Eq. (5.21)), by:

n(r) = 2

Ne/2∑
i=1

| φi(r) |2 (5.37)

where the occupation number 2 in front of the summation derives from the fact
that each spatial orbital φi(r) is doubly occupied.
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Next we consider a system with an odd number of electrons. The determinant
describing this system is necessarily an open-shell determinant, since there is
at least one unpaired electron. We might use the restricted formalism also in
this case. Fig. 5.1 shows a restricted open-shell (ROS) determinant of three
electrons with one unpaired electron. A restricted open-shell determinant with
one unpaired electron is a doublet, and can be written as:

2ΦROS (x1,x2, . . . ,xNe−1,xNe) = |φ1φ1 · · ·φ(Ne−1)/2φ(Ne+1)/2〉 (5.38)

Note, however, that not all open-shell restricted determinants are eigenfunc-
tions of S2. We will see examples of such cases in section 5.5 when treating
determinants with open-shell electrons of different spin.

In the open-shell determinant given by Eq. (5.38), electrons with spin α expe-
rience a different exchance potential than the β electrons, due to Nα

e 6= Nβ
e and

the fact that exchange interactions are only between electrons with the same
spin. Therefore, we might expect the spatial part of the α spin orbitals to be
different from that of the β spin orbitals. In the unrestricted formalism, α and β
spin orbitals are allowed to have different spatial parts. Thus, the spin orbitals
are constructed from a set of φαi (r) and a set of φβi (r) spatial orbitals (see the
example in Fig. 5.1). The unrestricted open-shell (UOS) determinant for the
case where only one electron is unpaired can be written as:

ΦUOS (x1,x2, . . . ,xNe−1,xNe
) = |φα1φ

β

1 · · ·φ
β

(Ne−1)/2φ
α
(Ne+1)/2〉 (5.39)

The lack of superscript on the left of ΦUOS hints at the fact that this determi-
nant is not an eigenfunction of S2 (even though it is an eigenfunction of Sz with
MS = 1

2 ). This can be generalized to any unrestricted determinants [85]. As
a consequence, unrestricted determinants are not pure spin states, but contain
contaminations of higher spin multiplicities. Nevertheless, unrestricted deter-
minants are usually taken as first approximations to pure spin states. In a KS
DFT calculation employing the unrestricted formalism, two different sets of KS
equations need to be solved, one for the φαi (r) and one for the φβi (r) spatial
orbitals.

One can always define an electron density for α electrons and an electron den-
sity for β electrons that summed give the total density. For an unrestricted
determinant:

n(r) = nα(r) + nβ(r) =

Nαe∑
i=1

| φαi (r) |2 +

Nβe∑
i=1

| φβi (r) |2 (5.40)

Usually, one defines also a spin density ns(r) as given by the difference between
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the α and β densities:

ns(r) = nα(r)− nβ(r) =

Nαe∑
i=1

| φαi (r) |2 −
Nβe∑
i=1

| φβi (r) |2 (5.41)

Exchange-correlation functionals can be formulated in terms of nα(r) and nβ(r).
For open-shell systems, often (but not always, as we will see in section 5.5), DFT
calculations employ spin-polarized functionals. The expressions “unrestricted”
and “spin-polarized” are usually used interchangeably to indicate DFT calcula-
tions with unrestricted determinants.

5.4 The Projector Augmented Wave Method

The PAW method has already been briefly mentioned in section 5.2, where it
has been presented as a strategy to solve the KS DFT equations with a com-
putational cost similar to that of pseudo-potential methods, but that, contrary
to the latter, formally preserves all aspects of the wave function, and electron
density, in the core regions. One of the difficulties connected with electronic
structure calculations, in general, is to account for the rapid oscillations exhib-
ited by the orbitals near the nuclei. We will see how the PAW approach bypasses
this problem by introducing smooth auxiliary orbitals as variational parameters
in the SCF minimization procedure; and by doing that in a way that allows to
reconstruct the full KS orbitals with the correct nodal structure near the nuclei.
Before delving into the practical aspects of PAW calculations, we shall shortly
review the formalism underlying the method starting from its basic principles.
For more exhaustive descriptions of the methodology, Refs. [92, 93] are ideal
starting points.

5.4.1 Pseudo Orbitals

In what follows, the PAW theory is presented using exclusively spatial orbitals,
as the spin part of the KS spin orbitals are, in practice, not amenable to nu-
merical computation and can be integrated out at any time [85].

We seek a linear transformation T that can map the full KS orbitals φi(r) into
smooth auxiliary orbitals φ̃i(r):

|φi〉 = T |φ̃i〉 (5.42)
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The papers where the method was first presented (Refs. [92] and [93]), used the
terminology “wave function” to indicate both the |φi〉 and the |φ̃i〉 one-particle
functions. A nomenclature that has been inherited also by the GPAW program
[50, 49]. Here, to be consistent with the terminology used in section 5.2, and
avoid confusion with the many-particle electronic wave function, we will continue
to call them “orbitals”. We also drop the term “all-electron” to indicate the KS
orbitals |φi〉, which in the referenced articles is used to distinguish them from
the |φ̃i〉. However, the auxiliary orbitals |φ̃i〉, and all other quantities directly
connected to them, will be given the attribute of “pseudo”, as in the original
formulation.

We require that the operator T transforms the pseudo orbitals only within
augmentation spheres surrounding the nuclei, such that we can write it as the
identity plus some local atom-centered operators T α:

T = 1 +

Nn∑
α=1

T α (5.43)

This form of the transformation operator implies that the pseudo orbitals are
equal to the KS orbitals outside the augmentation spheres. The equivalence is
justified by the fact that between atoms, in the bonding regions, the KS orbitals
are already smooth, and, therefore, there is no need to apply the transformation
there.

Then, we expand the KS orbitals inside each augmentation region α in terms of
a complete basis set of partial waves |ϕαµ〉:

|φi〉 =

∞∑
µ

cαiµ |ϕαµ〉 , within | r−Rα |< rαc (5.44)

where rαc is the cutoff radius defining the augmentation region of atom α, and
the expansion coefficients cαiµ are to be determined. Next, we associate to each
partial wave a smooth counterpart |ϕ̃αµ〉, termed pseudo partial wave. The |ϕ̃αµ〉
for atom α are chosen such that they are related to the partial waves |ϕαµ〉
through the transformation T α:

|ϕαµ〉 = (1 + T α) |ϕ̃αµ〉
⇒ T α |ϕ̃αµ〉 = |ϕαµ〉 − |ϕ̃αµ〉 (5.45)

Since T α operates inside the augmentation regions only, we have that:

|ϕαµ〉 = |ϕ̃αµ〉 , for | r−Rα |> rαc (5.46)
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We, then, take the |ϕ̃αµ〉 as basis in which to expand the pseudo orbitals inside
the augmentation regions:

|φ̃i〉 =

∞∑
µ

cαiµ |ϕ̃αµ〉 , within | r−Rα |< rαc (5.47)

Since:

|ϕαµ〉 = T |ϕ̃αµ〉 (5.48)

we see, by inserting the above expression for |ϕαµ〉 into Eq. (5.44) and comparing
the result with Eq. (5.42), that the coefficients of the expansions in Eqs. (5.47)
and (5.44) must be identical. In order to make the transformation operator T
linear, these expansion coefficients are taken as the scalar products of the pseudo
orbitals |φ̃i〉 with some localized functions |p̃αµ〉, called projector functions:

cαiµ = 〈p̃αµ |φ̃i〉 (5.49)

By inserting Eq. (5.49) into Eq. (5.47), we obtain the following expression for
the pseudo orbitals:

|φ̃i〉 =

∞∑
µ

|ϕ̃αµ〉 〈p̃αµ |φ̃i〉 , within | r−Rα |< rαc (5.50)

which implies the identity relation:

∞∑
µ

|ϕ̃αµ〉 〈p̃αµ | = 1, within | r−Rα |< rαc (5.51)

and that:

〈p̃αµ |ϕ̃αν 〉 = δµν , within | r−Rα |< rαc (5.52)

To derive an expression for T , we first operate with T α on |φ̃i〉:

T α |φ̃i〉 =

∞∑
µ

T α |ϕ̃αµ〉 〈p̃αµ |φ̃i〉 =

∞∑
µ

(
|ϕαµ〉 − |ϕ̃αµ〉

)
〈p̃αµ |φ̃i〉 (5.53)

where the first equality comes from using Eq. (5.50), and the second equality
from the second line of Eq. (5.45). Eq. (5.53) gives the following definition of
T α:

T α =

∞∑
µ

(
|ϕαµ〉 − |ϕ̃αµ〉

)
〈p̃αµ | (5.54)
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Finally, T is obtained by inserting Eq. (5.54) into Eq. (5.42):

T = 1 +

Nn∑
α=1

∞∑
µ

(
|ϕαµ〉 − |ϕ̃αµ〉

)
〈p̃αµ | (5.55)

With the definition of T , we can express the KS orbitals in terms of pseudo
orbitals and the partial wave expansions. From Eqs. (5.42) and (5.55):

|φi〉 = |φ̃i〉+

Nn∑
α=1

∞∑
µ

(
|ϕαµ〉 − |ϕ̃αµ〉

)
〈p̃αµ |φ̃i〉

= |φ̃i〉+

Nn∑
α=1

(
|φαi 〉 − |φ̃αi 〉

)
(5.56)

where we have defined |φαi 〉 and |φ̃αi 〉 as the atom-centered expansions:

|φαi 〉 =

∞∑
µ

|ϕαµ〉 〈p̃αµ |φ̃i〉 (5.57)

|φ̃αi 〉 =

∞∑
µ

|ϕ̃αµ〉 〈p̃αµ |φ̃i〉 (5.58)

From an examination of Eq. (5.56) it should be clear that (i) outside the aug-
mentation regions, due to |ϕαµ〉 = |ϕ̃αµ〉, the original KS orbitals are equal to
the pseudo orbitals (|φi〉 = |φ̃i〉), and (ii) within the augmentation regions the
original KS orbitals are equal to the expansions |φαi 〉 (Eq. (5.57)), because the
pseudo orbitals are equal to the expansions |φ̃αi 〉 (Eq. (5.58)) as a consequence
of Eq. (5.50).

The important achievement that we have attained is a mapping of the full KS
problem into one where the variational parameters can be smooth auxiliary
functions (the pseudo orbitals φ̃i(r)), which are computationally convenient to
handle: convergence of a plane-wave or localized atomic orbital basis set is fast
for systems with many electrons, and, when using grid-based techniques, as
in GPAW (see paragraph below), they can be efficiently represented on coarse
grids. On the other hand, the oscillatory nodal structure near the nuclei can be
exactly recovered, as Eq. (5.56) suggests. Naturally, the mapping implies that
all energy functionals of Eq. (5.22), and the KS Hamiltonian hKS (Eqs. (5.28)
to (5.31)) need to be transformed accordingly for the KS procedure to lead to
the correct solution. This will be the topic of the next paragraphs. Examples of
pseudo orbitals are given in Fig. 5.2 for a σ and a π orbitals of carbon monoxide
(CO), as computed from the isolated ground state of the molecule using GPAW
with an LDA functional.



5.4 The Projector Augmented Wave Method 37

Figure 5.2: Examples of pseudo (green dashed lines) and KS orbitals (red
lines) of a CO molecule obtained from a single-point PAW calcu-
lation of the gas-phas ground-state molecule using GPAW with an
LDA functional. The plots show the values of the orbitals along
the z axis, which coincides with the axis of the molecule. Note
how, in the outer regions and in between the two atoms, the KS
orbitals match their pseudo orbital counterparts; while, close to
the nuclei, the pseudo orbitals replace the cusps and oscillating
features with smooth continuations.

For the PAW method to be exact the basis sets of partial waves |ϕαµ〉 and |ϕ̃αµ〉,
and projectors |p̃αµ〉, need to be complete. For practical calculations, however,
one truncates the expansions. Usually, one or two partial waves and correspond-
ing projectors per atomic site and angular momentum are sufficient to achieve
convergence [93, 50]. The partial waves are obtained from solving the KS equa-
tions for the isolated spherically symmetric atoms, often taking into account
scalar-relativistic effects [93, 49]. More information on the construction of par-
tial waves and projector functions can be found in Refs. [93, 50]. A second
approximation that is usually introduced in practical PAW calculations, is the
frozen core approximation. That is to say, only partial waves of valence elec-
trons are included in the expansions of the pseudo and KS orbitals (Eqs. (5.44)
and (5.47)), while the orbitals for the core states are fixed to the core partial
waves of the isolated atoms (|ϕα,core

µ 〉 and |ϕ̃α,core
µ 〉).

5.4.2 PAW Formulation of the Electron density

Here, we confine ourselves to report the expressions used to compute the elec-
tron density within the PAW method. The formulas take into account the
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approximations that we have introduced above, namely the finite truncation of
the partial wave expansions and the frozen-core approximation. Contributions
from the core electrons will be separated out to make this clear. For the full
derivations see Refs. [92, 93].

The electron density is given in terms of a pseudo density ñ(r), which is smooth
everywhere in space, and atom-centered expansions. For Nn nuclei and Norb

spatial orbitals with occupation numbers fi:

n(r) =

Norb∑
i=1

fi | φi(r) |2= ñ(r) +

Nn∑
α=1

(
nα(r)− ñα(r)

)
(5.59)

The pseudo density is obtained from the pseudo orbitals describing Neval valence
electrons and a smooth pseudo core density ñcore(r):

ñ(r) =

Norb∑
i=1

fi | φ̃i(r) |2 +ñcore(r) (5.60)

The atom-centered corrections nα(r) and ñα(r) appearing in Eq. (5.59) are
evaluated, for each atom α, from the partial waves and projector functions as:

nα(r) =
∑
µ,ν

Dα
µνϕµ(r)ϕν(r) + nαcore(r) (5.61)

ñα(r) =
∑
µ,ν

Dα
µνϕ̃µ(r)ϕ̃ν(r) + ñαcore(r) (5.62)

where Dα
µν are elements of an atomic density matrix, defined as:

Dα
µν =

Norb∑
i=1

fic
α∗
iµ c

α
iν =

Norb∑
i=1

fi 〈φ̃i|p̃αµ〉 〈p̃αν |φ̃i〉 (5.63)

and nαcore(r) and ñαcore(r) are the atomic core electron density and its smooth
counterpart. The PAW transformation ensures that each term nα(r)− ñα(r) in
Eq. (5.59) is non vanishing only inside the augmentation spheres around the
nuclei, such that outside them n(r) = ñ(r).

5.4.3 The PAW Energy Functional

In order to derive the set of equations that in the PAW method replace the
standard KS equations (Eq. (5.32)), which is the ultimate goal of this section,
we first have to find the expression of the PAW total energy functional.
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Just as for the orbitals (Eq. (5.56)) and the electron density (Eq. (5.56)), also
the energy functional can be decomposed into a “smooth” part Ẽ plus some
atomic corrections:

EPAW = Ẽ +

Nn∑
α=1

(
Eα − Ẽα

)
(5.64)

To see how the above decomposition arises, we need to consider the effects of the
PAW transformation on each energy functional term appearing in Eq. (5.22).
For some of them, like the kinetic energy functional, we will simply give the
final expressions. The terms that arise from Coulomb interactions, on the other
hand, will be explicitly derived. This gives us the opportunity to introduce
concepts that will be also used in deriving the equations that are at the heart
of the QM/MM electrostatic embedding scheme presented in chapter 6.

The following expression is used in the PAW method to evaluate the kinetic
energy functional T s

e [n] [92, 93, 50]:

T s
e [n] = T s

e [ñ] +

Nn∑
α=1

(
T sα

e − T̃ sα
e

)
(5.65)

where each term is given by:

T s
e [ñ] =

Norb∑
i=1

fi 〈φ̃i| −
1

2
∇2
i |φ̃i〉 (5.66)

T sα
e =

∑
µ,ν

Dα
µν 〈ϕαµ | −

1

2
∇2
i |ϕαν 〉+

Nαcore∑
µ=1

〈ϕα,core
µ | − 1

2
∇2
i |ϕα,core

µ 〉 (5.67)

T̃ sα
e =

∑
µ,ν

Dα
µν 〈ϕ̃αµ | −

1

2
∇2
i |ϕ̃αν 〉 (5.68)

with Nα
core the number of core states included in the atomic reference calculation

for atom α.

For LDA and GGA exchange-correlation functionals, the following general ex-
pression applies [92, 93, 50]:

Exc [n] = Exc [ñ] +

Nn∑
α=1

(
Exc[nα]− Exc [ñα]

)
= Exc [ñ] +

Nn∑
α=1

(
Eαxc − Ẽαxc

)
(5.69)
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Again, the atomic corrections depend on the density matrix elements Dα
µν

through Eqs. (5.61) and (5.62).

The way Coulomb electrostatic interactions are handled in the PAW approach is
worth more careful consideration. First, a total negative nuclear charge density
is defined as the sum of point charge densities Zα(r) of the nuclei, each given
by a delta function operating at the nuclear site Rα times the (positive) nuclear
charge Zα:

Z(r) =

Nn∑
α=1

Zα(r) = −
Nn∑
α=1

δ(r−Rα)Zα (5.70)

With this definition of the nuclear density, we can express a total charge density
(electron density plus nuclear charge density), which we call ρ(r), as:

ρ(r) = n(r) + Z(r) = n(r) +

Nn∑
α=1

Zα(r) (5.71)

Since n(r) is positive while Z(r) has been defined as a negative quantity, ρ(r)
is a sign-inverted charge density, which gives 0 when integrated over all space
for a neutral system. Furthermore, we can write the total Coulomb energy,
comprising the attraction between electrons and nuclei, and the electron-electron
and internuclear repulsion, as the following double integral:

E′coul [n] =
1

2

∫ ∫
ρ(r)ρ(r′)

| r− r′ |
drdr′ (5.72)

where the prime for E′coul [n] indicates that E′coul [n], as expressed above, includes
the infinite self interaction energy between nuclear point charges. Obviously,
this term needs to be subtracted out. To avoid excessive notation at this stage,
however, we shall apply the correction at a later step. That E′coul [n] is the total
Coulomb interaction energy plus the self interaction of the nuclei can be seen by
inserting the definition of the total charge density (Eq. (5.71)) into Eq. (5.72):

E′
coul [n] =

1

2

∫ ∫
ρ(r)ρ(r′)

| r− r′ | drdr
′

=
1

2

∫ ∫ (
n(r)−

Nn∑
α=1

δ(r−Rα)Zα
)(

n(r′)−
Nn∑
β=1

δ(r′ −Rβ)Zβ

)
| r− r′ | drdr′

= −
Nn∑
α=1

∫
Zαn(r)

| Rα − r |dr +
1

2

∫ ∫
n(r)n(r′)

| r− r′ | drdr
′ +

1

2

Nn∑
α=1

Nn∑
β=1

ZαZβ
| Rα −Rβ |

= Vne [n] + Jne [n] + V ′
nn (5.73)

The first term on the third line of Eq. (5.73) is the classical attraction between
electrons and nuclei, as in Eq. (5.11), the second term is exactly the electron-
electron repulsion as defined in Eq. (5.12), and V ′nn is the internuclear repulsion
including the self-interaction error.
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By inserting the PAW formulation of the electron density (Eq. (5.59)) into Eq.
(5.72) and grouping terms that involve a summation over nuclei we obtain:

E′coul [n] =
1

2

((
ñ+

Nn∑
α=1

(
nα + Zα − ñα

)))
(5.74)

Here and in what follows, we have introduced the following notation for double
integrals:

(f |f ′) =

∫ ∫
f(r)f ′(r′)

| r− r′ |
drdr′ (5.75)

(f |f) = ((f)) (5.76)

The expression in Eq.(5.74) can be simplified by introducing a new set of smooth
atom-centered functions Z̃α(r) localized inside the augmentation spheres:

E′coul [n] =
1

2

((
ñ+

Nn∑
α=1

Z̃α +

Nn∑
α=1

(
nα + Zα − ñα − Z̃α

)))
(5.77)

and requiring that, by construction of the Z̃α(r), the densities nα(r) +Zα(r)−
ñα(r)−Z̃α(r), which vanish outside the augmentation regions, have zero electro-
static multipole moments. As a result, none of the augmentation regions interact
electrostatically with the others and the total Coulomb interaction reduces to:

E′coul [n] =
1

2

((
ñ+

Nn∑
α=1

Z̃α

))
+

1

2

Nn∑
α=1

[
((nα + Zα))−

((
ñα + Z̃α

))]
(5.78)

where we begin to recognize the familiar separation into a “smooth” part and
atom-centered corrections. The functions Z̃α(r) are usually called compensation
charges. For Eq. (5.78) to be exact, the compensation charges should be com-
plete expansions in multipole moments. In GPAW, for practical applications,
the expansions are truncated up to the quadrupole moment [P1]. The reader
interested in the more technical details of how exactly the compensation charges
are constructed is referred to Refs. [92, 93, 50]. Here, it will be sufficient to say
that they are also functions of the atomic density matrix elements (Eq. (5.63)).

At this point, we can easily get rid of the self-interaction of the nuclear point

charges by subtracting a term
1

2

Nn∑
α=1

((Zα)):

Ecoul [n] = E′coul [n]− 1

2

Nn∑
α=1

((Zα))
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=
1

2

((
ñ+

Nn∑
α=1

Z̃α

))
+

1

2

Nn∑
α=1

[
((nα)) + 2 (nα|Zα)−

((
ñα + Z̃α

))]
=

1

2
((ρ̃)) +

1

2

Nn∑
α=1

[
((nα)) + 2 (nα|Zα)−

((
ñα + Z̃α

))]
= Ecoul [ρ̃] +

Nn∑
α=1

(
Eαcoul + Ẽαcoul

)
(5.79)

where, on the last line, we have defined Ecoul [ρ̃] as the (true) Coulomb energy

functional of a pseudo total charge density ρ̃(r) given by ρ̃(r) = ñ(r)+
Nn∑
α=1

Z̃α(r).

The last equality in Eq. (5.79) defines the three basic components of the
Coulomb energy functional. Using the standard notation for the double in-
tegrals:

Ecoul [ρ̃] =
1

2

∫ ∫
ρ̃(r)ρ̃(r′)

| r− r′ |
drdr′ (5.80)

Eαcoul =
1

2

Nn∑
α=1

[∫ ∫
nα(r)nα(r′)

| r− r′ |
drdr′ + 2

∫ ∫
nα(r)Zα(r′)

| r− r′ |
drdr′

]
(5.81)

Ẽαcoul =
1

2

∫ ∫ (
ñα(r) + Z̃α(r)

)(
ñα(r′) + Z̃α(r′)

)
| r− r′ |

drdr′ (5.82)

Having rewritten all the terms appearing in Eq. (5.22) using the PAW formal-
ism, we can, finally, collect them to obtain the expression of the PAW total
energy functional:

EPAW = T s
e [ñ] + Ecoul [ρ̃] + Exc [ñ]

+

Nn∑
α=1

(
T sα

e − T̃ sα
e + Eαcoul − Ẽαcoul + Eαxc − Ẽαxc

)
(5.83)

By comparing Eq. (5.83) to Eq. (5.64), provided at the beginning of this
paragraph, we can now see that:

Ẽ = T s
e [ñ] + Ecoul [ρ̃] + Exc [ñ] (5.84)

and:

Eα = T sα
e + Eαcoul + Eαxc (5.85)

Ẽα = T̃ sα
e + Ẽαcoul + Ẽαxc (5.86)
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5.4.4 The PAW Hamiltonian

With the expression of the total PAW energy functional at hand we can obtained
a set of transformed KS equations by invoking the variational principle. We need
to minimize EPAW with respect to the pseudo orbitals under the constraint that
the KS orbitals are orthonormal (the pseudo orbitals do not, actually, need to
be orthonormal):∫

φ∗i (r)φj(r)dr =

∫
φ̃∗i (r)T †T φ̃j(r)dr =

∫
φ̃∗i (r)Oφ̃j(r)dr = δij (5.87)

where O = T †T is an overlap operator. By applying, as usual, the method of
Lagrange multipliers:

δ

δφ̃∗i (r)

EPAW −
Norb∑
i=1

Norb∑
j=1

ε′ij

(∫
φ̃∗i (r)Oφ̃j(r)dr− δij

) = 0 (5.88)

we obtain, after unitary transformation to diagonalize the matrix of Lagrange
multipliers, as done also in deriving Eq. (5.32), the following transformed KS
equations:

h̃KSφ̃i(r) = εiOφ̃i(r) (5.89)

where h̃KS = T †hKST is the transformed KS Hamiltonian, whose explicit form
can be derived from the relation:

fih̃KSφ̃i(r) =
δEPAW

δφ̃∗i (r)
(5.90)

The functional derivative
δEPAW

δφ̃∗i (r)
is evaluated using the definition of the total

energy functional EPAW contained in Eqs. (5.64) and (5.84), the expressions
for its components T s

e [ñ] (Eq. (5.66)) and Ecoul [ρ̃] (Eq. (5.80)), and the def-
inition of Dα

µν in Eq. (5.63). We should also keep in mind that Ecoul [ρ̃] and[
Eα − Ẽα

]
are functions of the functionals Dα

µν (Ecoul [ρ̃] through the compen-
sation charges). Then, by applying the chain rule for functional derivatives and
derivatives of functions of functionals1:

δEPAW

δφ̃∗i (r)
=

δẼ

δφ̃∗i (r)
+

Nn∑
α=1

δ
(
Eα − Ẽα

)
δφ̃∗i (r)

1See appendix A of Ref. [84] for an overview on functional derivatives. In particular, the
equations that are used here are Eqs. (A.24), (A.33), (A.34) of Ref. [84].
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=
δT s

e [ñ]

δφ̃∗i (r)
+

∫ [
δEcoul [ρ̃]

δñ(r′)
+
δExc [ñ]

δñ(r′)

]
δñ(r′)

δφ̃∗i (r)
dr′

+

Nn∑
α=1

∑
µ,ν

∂Ecoul [ρ̃]

∂Dα
µν

+
∂
[
Eα − Ẽα

]
∂Dα

µν

 δDα
µν

δφ̃∗i (r)

=
δT s

e [ñ]

δφ̃∗i (r)
+

∫ [∫
δEcoul [ρ̃]

δρ̃(r′′)

δρ(r′′)

δñ(r′)
dr′′ +

δExc [ñ]

δñ(r′)

]
δñ(r′)

δφ̃∗i (r)
dr′

+

Nn∑
α=1

∑
µ,ν


∫
δEcoul [ρ̃]

δρ̃(r)

∂ρ̃(r)

∂Dα
µν

dr +
∂
[
Eα − Ẽα

]
∂Dα

µν

 δDα
µν

δφ̃∗i (r)

=
δT s

e [ñ]

δφ̃∗i (r)
+

[
δEcoul [ρ̃]

δρ̃(r)
+
δExc [ñ]

δñ(r)

]
φ̃i(r)

+

Nn∑
α=1

∑
µ,ν


∫
δEcoul [ρ̃]

δρ̃(r)

∂ρ̃(r)

∂Dα
µν

dr +
∂
[
Eα − Ẽα

]
∂Dα

µν

 δDα
µν

δφ̃∗i (r)

= fi

[
−1

2
∇2
i + υ̃coul(r) + υ̃xc(r)

]
φ̃i(r)

+

Nn∑
α=1

∑
µ,ν


∫
υ̃coul(r)

∂ρ̃(r)

∂Dα
µν

dr +
∂
[
Eα − Ẽα

]
∂Dα

µν

 fip̃
α
µ(r) 〈p̃αν |φ̃i〉

= fi

[
−1

2
∇2
i + υ̃coul(r) + υ̃xc(r)

]
φ̃i(r) +

Nn∑
α=1

∑
µ,ν

fip̃
α
µ(r)∆hαµν 〈p̃αν |φ̃i〉

(5.91)

where, in going from line three to line four, we have further used that
δρ̃(r′′)

δñ(r′)
=

δ(r′′ − r′) and
δñ(r′)

δφ̃∗i (r)
= δ(r′ − r)φ̃i(r). The Coulomb potential υ̃coul(r), and

the xc potential υ̃xc(r) are defined as:

υ̃coul(r) =
δEcoul [ρ̃]

δρ̃(r)
(5.92)

υ̃xc(r) =
δExc [ñ]

δñ(r)
(5.93)

and:

∆hαµν =

∫
υ̃coul(r)

∂ρ̃(r)

∂Dα
µν

d(r) +
∂
[
Eα − Ẽα

]
∂Dα

µν

(5.94)
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By comparing Eq. (5.90) with the last line of Eq. (5.91), we obtain the explicit
expression of the transformed KS Hamiltonian h̃KS:

h̃KS = −1

2
∇2
i + υ̃coul(r) + υ̃xc(r) +

Nn∑
α=1

∑
µ,ν

|p̃αµ〉∆hαµν 〈p̃αν | (5.95)

h̃KS is composed of three parts. The first part (first term on the right hand
side of Eq. (5.95)) is a the kinetic energy operator. The second part (υ̃coul(r) +
υ̃xc(r)) represents an effective potential, and is a functional of only smooth
pseudo densities. The third part (last term on the right hand side of Eq. (5.95))
is a correction term. As implied by Eq. (5.94)), this correction is not just a
constant potential, but adjusts together with the effective potential during the
SCF steps.

5.4.5 GPAW: a Grid-based Implementation of PAW

Inspired by already existing electronic structure codes based on pseudo-potentials,
early implementations of the PAW method employed plane waves as basis in
which to expand the pseudo orbitals [93, 92]. The GPAW program [50, 49]
pursues a different strategy by representing orbitals, densities and potentials
on real-space grids. The advantage of using real-space grids is twofold: first of
all, systematic convergence of the accuracy of the representation is ensured by
increasing the number of grid points per fixed volume (which is to say reduc-
ing the grid spacing); and, secondly, parallelization strategies based on efficient
domain decomposition of the real-space grid, within the simulation box, can be
adopted. Thanks to the latter, in particular, simulation times for large scale
calculations can be significantly reduced when using parallel supercomputing
systems [104, 49]. Moreover, GPAW takes advantage of the property of the
pseudo orbitals and pseudo densities of being smooth everywhere in space, by
representing them on relatively coarse grids. All atom-centered localized func-
tions, such as the atomic partial waves, the projector functions and the core
densities, are evaluated, instead, ahead of the actual calculations and stored in
atomic setups. This allows to keep the memory requirements low and to boost
even more the computational efficiency.

A representation of the electronic density on a coarse real-space grid is particu-
larly well-suited for multiscale embedding schemes that compute explicitly elec-
trostatic interactions between the density of a solute and classical point change
models representing the solvent (the QM/MM electrostatic embedding scheme
will be the topic of chapter 6). In chapter 6, we will see how we have taken
advantage of this computational expediency of GPAW to develop a QM/MM
electrostatic embedding scheme [P1] with only small added computational cost



46 Density Functional Methods

with respect to pure GPAW calculations of the isolated QM solute. Furthermore,
the multiscale strategy does not introduce approximations other than those al-
ready shared by standard implementations of QM/MM electrostatic embedding
[P1].

In GPAW all formulas to evaluate densities, potentials and energies are con-
verted into discretized forms. For example, the Coulomb energy of Eq. (5.80)
is computed as:

Ecoul [ρ̃] =
1

2
Vg
∑
g

υ̃coul(rg)ρ̃(rg) (5.96)

where the summation is over points g of a uniform real-space grid, Vg is the vol-
ume per grid point, and the Coulomb potential υ̃coul(rg) is obtained by solving
a discretized version of the Poisson equation ∇2υ̃coul(r) = −4πρ̃(r). In essence,
all integrals and derivatives are calculated using finite-difference methods. It-
erative diagonalization schemes are, on the other hand, required to solve the
generalized eigenvalue problem of Eq. (5.89).

In addition to the grid-based representation, linear combinations of atomic or-
bitals (LCAO) are also available in GPAW [105] as basis sets in which to repre-
sent the pseudo orbitals (when used, the densities and electrostatic interactions
are still evaluated on the grid). The disadvantage of using LCAO basis sets is
that converge of the accuracy, as in most LCAO-based electronic structure cal-
culations [82, 49], cannot be reached as systematically as when using grid-based
representations. However, there is an important advantage: the dimensionality
of the problem when using LCAO basis is reduced with respect to the grid-based
representation. This means that the memory requirements are even lower and
that, for example, it is possible to solve the KS equations using direct diagonal-
ization procedures. As a result, convergence of the SCF cycle is achieved more
rapidly, and calculations with LCAO basis can be much faster than using finite-
difference methods, for large systems. The accuracy of structural predictions
of LCAO calculations in GPAW were found to be comparable to that of pure
grid-based calculations [105]. As we will see later, SCF solution of the KS equa-
tions represents the most computationally demanding part of direct QM/MM
BOMD simulations. Since it is indispensable to keep the computational cost
at a minimum in order to collect statistical data sufficient to reach unequivocal
conclusions about solution equilibrium and dynamical properties, all QM/MM
BOMD simulations performed in the present work made use of GPAW with
LCAO basis sets.

A last aspect of the program that is worth mentioning here, is that, in contrast to
most electronic structure codes, which are based entirely on compiled languages
like Fortran or C [104], GPAW adopts a Python/C combined approach [104].
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The most computationally expensive operations, like matrix diagonalizations
and operations on the grid, are carried out in C, but most of the program
(about 85-90% of it [47])is actually written in Python2. This is done without
significant speed loss, through extensive use of NumPy3 for handling large arrays
and communicating with C parts. Thanks to the high degree of modularity of
object oriented programming in Python, it is relatively easy for users to add
additional features in the code, as we have done for the ∆SCF implementation
presented in section 5.5.

5.5 Density Functional Theory for Excited States

The KS DFT formalism, as described in the previous sections, applies to elec-
tronic ground states. Generalization to the energetically lowest excited state of
each symmetry (for symmetry we intend both the spatial symmetry, given by
the irreducible representation of the point group, and the spin multiplicity of
a state) is possible [106]. Strategies to solve variationally the KS equations for
single-determinant excited states will be the topic of this section.

In the original KS scheme, only the Ne lowest energy orbitals that can be ob-
tained from the eigenvalue problem of Eq. (5.27) are used to compute the (exact
for a noninteracting system) expectation value of the kinetic energy operator and
the electron density, according to Eqs. (5.20) and (5.21). Let us rewrite Eqs.
(5.20) and (5.21) using an arbitrary number of spatial orbitals Norb:

T s
e [n] =

Norb∑
i=1

fi 〈φi| −
1

2
∇2
i |φi〉 (5.97)

n(r) =

Norb∑
i=1

fi | φi(r) |2 (5.98)

In a ground-state calculation, one assigns the fi according to the aufbau prin-
ciple. Excited-state single determinants can be constructed by enforcing dif-
ferent occupations of the KS orbitals, thorough involvement of ground-state
virtual (empty) orbitals. Note that the occupation numbers need not to be in-
tegers, in principle, but just those that guarantee the symmetry of the desired
excited-state [106]. The KS equations are, then, solved variationally for the
set of orbitals with constrained occupations. The procedure is known as ∆SCF
[106, 52].

2https://www.python.org/.
3http://www.numpy.org/.

https://www.python.org/
http://www.numpy.org/
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Originally, this term was used to indicate only computations of vertical transi-
tion energies by the difference between the energies of variationally optimized
single-determinant excited and ground states, obtained at the same nuclear ge-
ometry. As the range of applications of the method has widened, the expression
“∆SCF” is now used to refer, more broadly, to any kind of DFT calculation
that involves SCF convergence of a system using constraints on the occupation
numbers. These include excited-state geometry optimizations [107], vibrational
frequency calculations [59], PES scans [61, 56, 108, 60], and BOMD simulations
[54].

∆SCF has been successfully employed to describe single-electron excitations,
i.e. electronic excitations that, to a great extent, can be represented by the
picture where one electron is promoted from an occupied to an empty orbital
of the ground state, of a large variety of systems [53, 57, 55, 58, 109, 110, 111].
The performance of ∆SCF with respect to the prediction of vertical excitation
energies was found to be comparable [57, 55] or, in some cases, even superior
[53, 58] to that of time-dependent DFT (TDDFT), and the results are often in
agreement with experiments and more advanced multireference wave function
calculations [53, 109, 110, 111].

This success has prompted, in recent years, the development of practical solu-
tions [56, 112, 60] to some of the deficiencies of ∆SCF, which limit its application
in extended PES scans and BOMD simulations. Thus, for example, techniques
like the maximum overlap method (MOM) [112], which avoid variational col-
lapse to a lower state of the same symmetry during the SCF cycle, have been
proposed, and find, nowadays, application in geometry optimizations [59] and
BOMD simulations [54].

The increasing popularity of ∆SCF might seem surprising, given that the method
lacks solid theoretical foundations, and, for this reason, its validity has been,
sometimes, questioned [113]. Indeed, the Hohenberg-Kohn variational principle
applies only to ground states, and there is no universal functional for excited
states [113]. However, we must bear in mind that even for the ground state
the variational principle is valid only when the exact functional is used [84].
Yet, ground-state DFT calculations employ, in practice, approximate function-
als. Moreover, Van Voorhis et al. [55] have recently provided some theoretical
justification to the use of ∆SCF, by showing that the method has a precise
meaning within TDDFT with the adiabatic approximation.

∆SCF is emerging as a cheap, yet accurate, alternative to TDDFT for structural
predictions and BOMD simulations of the excited states of large systems, for
which high-level multireference methods are not yet a viable choice. Preliminary
investigations on small molecules [59, 60], organic dyes [54, 56] and even biolog-
ical systems [61] are encouraging. In particular, ∆SCF was found to reproduce
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correct structures and PES topologies, even when the quality of excitation en-
ergies is inferior to that achieved by TDDFT [59] or higher-level methods [56].
Currently, there are no similar studies for transition metal complexes. One of
the goals of the present work is to contribute to the understanding of the perfor-
mance of ∆SCF by assessing the ability of the method to predict the structural
dynamics of transition metal complexes.

Standard ∆SCF schemes based on promotion of a single electron from an oc-
cupied orbital φr(r) of the ground state to a virtual orbital φs(r), calculate the
electron density of a system of Ne electrons as:

n(r) =

Ne∑
i=1

(1− δri) |φi(r) |2 +

Norb∑
j=Ne+1

δsj |φj(r) |2 (5.99)

where δri and δsi are delta functions. We will use the notation |Φs
r〉 to indicate

the excited state single determinant corresponding to the density given by Eq.
(5.99).

5.5.1 Ziegler’s Sum Method for Open-Shell Singlets

The lowest-lying singlet excited state of PtPOP is an open-shell singlet, since
it possesses two unpaired electrons with opposite spin. There is an intrinsic
limitation of the ∆SCF method, as illustrated until now, in treating open-shell
systems as this one.

The single-determinant configurations that, intuitively, would seem to be the
natural choice for describing an open-shell singlet with two unpaired electrons
within ∆SCF, are represented schematically in Fig. 5.3. These single determi-
nants, which we have indicated as |Φs

r〉 and |Φs
r〉, are not, however, pure singlet

states. They have MS = 0, but are not eigenfunctions of S2 [83, 85]. The
expectation value of S2 with respect to either |Φs

r〉 or |Φs
r〉 is 1 [83], hence, the

two wave functions can be considered as a mixture of singlet and triplet states.
By taking appropriate linear combinations of |Φs

r〉 and |Φs
r〉 [83, 85], we can,

however, construct a pure singlet:

|1Φs
r〉 =

1√
2

(
|Φs

r〉+ |Φs
r〉
)

(5.100)

and a pure (MS = 0) triplet states:

|3Φs
r〉 =

1√
2

(
|Φs

r〉 − |Φs
r〉
)

(5.101)
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Figure 5.3: Schematic representation of two open-shell single determinants
with mixed spin symmetry.

Thus, we see that the open-shell singlet is more correctly described by the double
determinant of Eq. (5.100). Obviously, ∆SCF cannot deal directly with |1Φs

r〉,
because of its double-determinant character. We follow, instead, an indirect
path, and combine Eqs. (5.100) and (5.101) to obtain an expression that relates
|Φs

r〉 to both |1Φs
r〉 and |3Φs

r〉:

|Φs
r〉 =

1√
2

(
|1Φs

r〉+ |3Φs
r〉
)

(5.102)

By taking the expectation value of the electronic Hamiltonian with respect to
|Φs

r〉 as give by Eq. (5.102), and rearranging, we obtain:

〈Φs
r|He|Φs

r〉 =
1

2

(
〈1Φs

r|He|1Φs
r〉+ 〈3Φs

r|He|3Φs
r〉
)

⇒ 〈1Φs
r|He|1Φs

r〉 = 2 〈Φs
r|He|Φs

r〉 − 〈3Φs
r|He|3Φs

r〉 (5.103)
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where the singlet energy is now given in terms of the energies of the mixed spin
state |Φs

r〉 and theMS = 0 triplet. This is the multiplet sum rule of Ziegler [52],
which is usually written as:

ES = 2EM − ET (5.104)

The procedure consists in finding EM and ET from separate SCF optimization
of single determinants. Since the MS = 0 triplet is not a single determinant,
in practice, ET is obtained from the MS = 1 triplet determinant |3Φs

r〉 in an
unrestricted calculation. In principle, the MS = 1 and MS = 0 triplets are
degenerate. However, due to the approximate nature of the procedure, after
the orbitals have relaxed in the SCF minimization, this is not strictly valid any
more, and the use of |3Φs

r〉 can be source of error in the determination of ES.

Another inconvenience connected with the use of the sum rule, is that calcu-
lation of the gradients of the pure singlet state can be cumbersome, because
it requires SCF convergence of two states, making geometry optimizations and
BOMD simulations computationally expensive. Therefore, in the present work,
we adopted a different strategy in the simulations of PtPOP in the S1 state.
Following Refs. [57, 56, 114], we computed the energy of the singlet open-shell
from a single ∆SCF calculation of the restricted determinant corresponding to
|Φs

r〉 using the spin-unpolarized functional. Although spin-unpolarized ∆SCF
calculations of open-shell singlets lack a formal theoretical foundation, their
accuracy in estimating transition energies of transition metal complexes has
turned out to be superior, in some cases, to the approach based on the sum rule
[57]. This success was rationalized [57] on the basis of similarities between the
spin-unpolarized ∆SCF density and an ensemble density [115].

5.5.2 Gaussian Smearing ∆SCF

Open-shell singlets are not the only systems whose multi-determinant character
prevents application of the standard ∆SCF scheme exemplified by Eq. (5.99).
Difficulties arise also when dealing with excitations that involve two or more
degenerate orbitals.

As an example, let us consider, again, the CO molecule. Fig. 5.4 shows the
qualitative molecular orbital (MO) diagram of the ground-state of CO, includ-
ing the five highest occupied and three lowest unoccupied orbitals. The two
lowest electronic excitations have 5σ → 2π and 1π → 2π character, respectively.
Therefore, they both involve pairs of degenerate π orbitals. SCF convergence
of a density obtained by changing the occupation number of only one of the
orbitals that make up a pair of degenerate π orbitals by ±1, according to Eq.
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Figure 5.4: Qualitative MO diagram of the CO molecule in the ground elec-
tronic state (X1Σ+).

(5.99), would be problematic, if not impossible at all. An ad hoc solution that
is, usually, adopted in such cases, is to add (or remove) half electron to (from)
both of the two degenerate π orbitals [107, 116].

However, this “trick” is not optimal for PES scans or BOMD simulations. In
fact, the ordering of the orbital energies can change during the sampling, thus
demanding a different occupation scheme for each nuclear configuration. In
other words, what we require, to perform PES calculations or BOMD simula-
tions with ∆SCF without running into convergence problems, is a practical tool
that allows to “dynamically” update the constraints on the occupation numbers.

Recently, Maurer et al. [56] have employed a modification of the standard
∆SCF constraints in ∆SCF PES calculations on azobenzene. The ordinary,
discrete form of the ∆SCF constraints was replaced with Gaussian functions of
the energies of the KS orbitals centered at the target orbitals (φr(r) and φs(r)
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in Eq. (5.99)). Such Gaussian smeared constraints affect all orbitals that lie
close in energy to φr(r) and φs(r), ensuring stable convergence of the density
when state degeneracies are present, while avoiding smearing of the electrons
for configurations in which the orbitals are well separated. The method has
been demonstrated to be able to deliver, when applied to azobenzene using
GGA functionals, PES topologies close to conical intersections (CIs) of quality
comparable to those obtained using higher level Coupled Cluster Singles and
Doubles calculations [56].

5.5.3 Implementing Gaussian Smearing ∆SCF in GPAW

The high density of states that characterizes transition metal complexes can be
source of convergence issues in extensive ∆SCF excited-state QM/MM BOMD
simulations. ∆SCF with Gaussian smeared constraints seems a promising strat-
egy to ease the problem, due to its proven robustness and flexibility [56]. In order
to investigate the possibility of using this tool in excited-state QM/MM BOMD
simulations of systems like PtPOP, we have implemented it in a development
branch of GPAW4 [P2].

As in Eq. (5.99), let r and s be indices for an occupied and a virtual orbitals of
the ground state, respectively, and Norb the total number of orbitals included in
the calculation. At each step of an SCF cycle, if Neval is the number of valence
electrons described explicitly in the GPAW calculation, then the occupation
numbers of the i lowest Neval orbitals, and those of the j orbitals from Neval + 1
to Norb, are calculated as:

fi(εi) = 1− gr(εi) (5.105)

fj(εj) = gs(εj) (5.106)

where gr(εi) and gs(εj) are Gaussian functions of the energies of the KS orbitals:

gr(εi) =
1

Nr
exp

{
− (εi − εr)2

2σ2

}
(5.107)

gs(εj) =
1

Ns
exp

{
− (εj − εs)2

2σ2

}
(5.108)

4The implementation is currently available within the following repository on Gitlab:
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss. The most relevant part of the code is
included in appendix A.

https://gitlab.com/glevi/gpaw/tree/Dscf_gauss


54 Density Functional Methods

The normalization factors for gr(εi) and gs(εj) are found by requiring that:

Neval∑
i=1

gr(εi) = 1 (5.109)

Norb∑
j=Neval+1

gs(εj) = 1 (5.110)

such to satisfy a condition for conservation of the total number of electrons:

Neval∑
i=1

(1− gr(εi)) +

Norb∑
j=Neval+1

gs(εj) = Neval (5.111)

The parameter σ controls the extent of the smearing, and can in principle be
varied during the SCF cycle until satisfactory convergence is achieved.

Using the occupation numbers computed in this way, the modified form of the
pseudo electron density (Eq. (5.60)) becomes:

ñ(r) =

Neval∑
i=1

fi(εi) | φ̃i(r) |2 +

Norb∑
j=Neval+1

fj(εj) | φ̃j(r) |2 +ñcore(r) (5.112)

Also the elements Dα
µν of the atomic density matrix (Eq. (5.63)), and, there-

fore, all the atom-centered densities dependent on them, are changed by the
constraints:

Dα
µν =

Neval∑
i=1

fi(εi) 〈φ̃i|p̃αµ〉 〈p̃αν |φ̃i〉+

Norb∑
j=Neval+1

fj(εj) 〈φ̃j |p̃αµ〉 〈p̃αν |φ̃j〉 (5.113)

Finally, the last expression that needs to be updated is that for the pseudo
kinetic energy functional T s

e [ñ] (Eq. (5.66)):

T s
e [ñ] =

Neval∑
i=1

fi(εi) 〈φ̃i| −
1

2
∇2
i |φ̃i〉+

Norb∑
j=Neval+1

fj(εj) 〈φ̃j | −
1

2
∇2
j |φ̃j〉 (5.114)

All other expressions of the PAW formulation remain unaltered and the KS
transformed equations can be solved, within GPAW, in the exact same way as
illustrated in Section 5.4 for the ground state.

5.5.4 Testing the Implementation

We have tested our implementation of ∆SCF with Gaussian smeared constraints
in GPAW with respect to the first two singlet and first two triplet excited states
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of the CO molecule. In what follows, we focus, in particular, on the performances
with respect to structural predictions for the lowest-lying singlet states. The
reason for this is that we aim at confidently applying the method in QM/MM
BOMD simulations of the first singlet excited state of systems like PtPOP.
Comparison of our calculations can be done with respect to two sets of results,
reported in the literature, obtained with different implementations of ∆SCF
[107, 60], as well as highly accurate experimental data [117, 118, 119].

The first implementation we compare to is the linear expansion ∆SCF (le∆SCF)
method of Gavnholt et al. [60]. le∆SCF represents another variant of ordinary
∆SCF, in which electrons are added to (or removed from) linear combinations of
KS orbitals. The method was already implemented in GPAW, and is tailored to
study excitations of molecules adsorbed on metal surfaces. Handling degenerate
π orbitals is not a problem within this approach, because the orbitals involved
in the excitation can be can taken as linear combinations of them [60], thus
avoiding any convergence issue. We note, however, that le∆SCF is not suited
for BOMD simulations, because it does not comply with the Hellman-Feynman
theorem [60], the theorem that allows to compute analytical forces from the
expectation value of the electronic Hamiltonian [120]. This is not a problem
with our Gaussian smearing ∆SCF implementation, as we will see soon. Our
second reference is a standard version of ∆SCF implemented in the DFT code
CONQUEST [107]. In this case, fixed fractional occupation numbers were used
for degenerate π orbitals when simulating the excited states of CO [107].

All calculations performed with our implementation of ∆SCF in GPAW em-
ployed an LDA xc functional. This choice is motivated by the fact that both
reference calculations [107, 60] used this approximation. The width σ of the
Gaussian functions (Eqs. (5.107) and (5.108)) controlling the extent of the
smearing of the ∆SCF constraints was set to 0.01 eV. We have tested the imple-
mentation with both a pure grid-based representation of the orbitals, and using
an LCAO tzp basis set [105]. The grid spacing was set to 0.18 Å, in any case.
The grid-based calculations can be more closely compared to those performed
using GPAW and the le∆SCF method, reported in Ref. [60], since the latter
were also grid-based. The LCAO representation was tested because it can be
used in QM/MM BOMD simulations of large systems in GPAW with consider-
able saving of computational cost, and is, therefore, the method of choice for
such calculations.

Tab. 5.1 reports the vertical excitation energies for the two lowest singlet and
triplet excited states of CO calculated at the ground-state optimized geometry
by our GPAW implementation of Gaussian smearing ∆SCF, and the correspond-
ing calculated and experimental reference values obtained from the literature
[107, 60, 117, 119]. The singlet states (A1Π and D1∆) are multi-determinant
open-shell singlets (see paragraph above). The calculations performed with
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Table 5.1: Ground to excited state vertical excitation energies for the lowest
singlet and triplet excited states of an isolated CO molecule com-
puted at the equilibrium ground-state geometry using our GPAW
implementation of ∆SCF with Gaussian smeared constraints. A
comparison is made with calculated and experimental values re-
trieved from the literature. All values are in eV.

State Transition Gaussian Smearing
∆SCF GPAW

le∆SCF
GPAW
LDAa

[60]

∆SCF
CONQUEST
tzp/LDA
[107]

Exp
[117,
119]

LDAa tzp/LDA
A1Π

5σ → 2π
7.82b ,7.34c 7.71b ,7.21c 7.84b 8.10b 8.51

a3Π 6.09 5.93 6.09 5.26 6.32
1Π-3Π 1.73b ,1.25c 1.78b ,1.28c 1.75b 2.84b 2.19
D1∆

1π → 2π
10.75b ,10.51c 10.65b ,10.41c 10.82b 10.90b 10.23

d3∆ 9.66 9.54 9.72 9.11 9.36
1∆-3∆ 1.09b ,0.85c 1.11b ,0.87c 1.10b 1.79b 0.87

a Grid-based representation of the orbitals.
b Computed using Ziegler’s sum rule [52].

c Obtained from spin-unpolarized calculations.

le∆SCF in Ref. [60] and those realized with the program CONQUEST [107]
used Ziegler’s sum method to describe these states. For our tests, we report
both the values obtained with the sum rule and those from a single calculation
using the spin-unpolarized functional.

Overall, there is a satisfactory agreement between the transition energies com-
puted with our implementation of Gaussian smearing ∆SCF and the values re-
ported for the other two implementations of ∆SCF [107, 60]. Not surprisingly,
the closest agreement is observed between the grid-based test calculations and
the le∆SCF calculations in GPAW [60]. The LCAO tzp representation gives, in
all cases, values that are only slightly smaller than those obtained with the pure
grid technique. Use of the spin-unpolarized approximation for the singlets leads
also to lower excitation energies as compared to the calculations that employed
the sum method.

The implementation of Gaussian smearing ∆SCF is intended to be used in
extensive sampling of nuclear configurations in excited-state BOMD simulations.
It is therefore important that the method is able to reproduce the shape of
BO surfaces with the sufficient accuracy over a wide range of configurations,
independently of the absolute energy shift with respect to the ground state.
Therefore, we have tested the performance of the implementation with respect
to prediction of the PESs of CO in the lowest-lying excited states. A comparison
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Table 5.2: Equilibrium bond lengths of CO in the ground state and lowest
singlet and triplet excited states obtained with our implementa-
tion of Gaussian smearing ∆SCF in GPAW, and comparison with
calculated and experimental values. All values are in Å.

State Transition Gaussian Smearing
∆SCF GPAW

∆SCF
CONQUEST
tzp/LDA
[107]

Exp
[119]

LDAa tzp/LDA

X1Σ+ ground
state 1.13 1.14 1.13 1.128

A1Π
5σ → 2π

1.21b ,1.21c 1.23b ,1.23c 1.22b 1.235
a3Π 1.20 1.22 1.21 1.206
D1∆

1π → 2π
1.39b ,1.36c 1.41b ,1.39c 1.44b 1.399

d3∆ 1.36 1.39 1.38 1.370
a Grid-based representation of the orbitals.
b Computed using Ziegler’s sum rule [52].

c Obtained from spin-unpolarized calculations.

can be made with experimental curves and equilibrium geometries, which are
available [119, 118] from the analysis of highly resolved rovibrational spectra.
As for reference calculations, we compare only to PESs computed using the
CONQUEST implementation of ∆SCF [107], since PESs of CO obtained with
le∆SCF in GPAW have not been reported.

Tab. 5.2 reports the equilibrium bond lengths of CO in the ground state and
in the two lowest singlet and triplet excited states. The equilibrium geometries
were obtained from geometry optimizations for all states except for the singlet
excited states when described with Ziegler’s sum rule; in these cases, the equi-
librium bond lengths were extracted from the positions of the energy minima of
the respective PESs, shown in Fig. 5.5 (Right) and Fig. 5.6 (Left).

Differences between the bond lengths optimized with our implementation of
∆SCF and the experimental values are all within 0.04 Å. In particular, for the
A1Π excited states, despite differences between the computed excitation ener-
gies and experimental data as large as 1.3 eV (see Tab. 5.2), the equilibrium
bond lengths deviate by less than 0.025 Å from experiments. More importantly,
switching from the grid-based to the LCAO representation does not result in
significant variations. This is in agreement with the finding that the LCAO
description in GPAW tends to reproduce structural predictions of grid-based
calculations very accurately, despite slightly larger errors, on average, for en-
ergies [105]. Analogously, the accuracy with respect to experiment does not
seem to change substantially when using spin-unpolarized calculations for the
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open-shell singlets instead of the sum method.

Figs. 5.5 and 5.6 show some of the adiabatic PESs of CO computed for the
lowest-lying excited states using the Guassian smearing ∆SCF implementation
in GPAW.

Figure 5.5: Adiabatic PESs of CO in the lowest-lying excited states computed
using our implementation of ∆SCF with Gaussian smeared con-
straints in GPAW, and comparison with curves obtained with an-
other implementation of ∆SCF (digitalized from Ref. [107]) and
determined from gas-phase rovibrational spectra (Ref. [118]). A
grid-based representation was used for the orbitals. (Left) First
two triplet states. (Right) First two singlet states calculated using
Ziegler’s sum rule.

Comparison with the experimental curves [119, 118] and those computed by
Terranova et al. [107] using ∆SCF in CONQUEST, confirms that all tested
methods are able to reproduce the correct shapes of the PESs. In some cases,
as for the T1 state (see Fig. 5.5 (Left)), the agreement with experiment of the
GPAW ∆SCF calculations is improved with respect to ∆SCF in CONQUEST.
Besides, for the singlet open-shells (Fig. 5.5 (Right)) the calculations are able to
reproduce the shapes of the experimental curves, but the position of the crossing
between the S1 and S2 states is predicted at too large bond lengths. The origin
of this discrepancy lies mainly in the error that affects the calculated energies for
the D1∆ (diabatic) state, which are too big compared to experiment. We should
keep in mind, on the other hand, that the ∆SCF implementation is targeted, for
the scopes of the present work, to applications on systems that do not exhibit
strong deviation from the BO approximation. At this stage, an accurate predic-
tion of conical intersections is beyond the ambitions of the method, especially
for a diatomic molecule as CO, for which high-level multireference calculations
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Figure 5.6: Adiabatic PESs of CO in the two lowest-lying singlet excited states
calculated using our GPAW implementation of ∆SCF with Gaus-
sian smeared constraints. (Left) Comparison between the grid-
based and the LCAO tzp calculations when using Ziegler’s sum
rule. (Right) Comparison between Ziegler’s sum method and spin-
unpolarized calculations when using a pure grid-based representa-
tion of the KS orbitals.

are feasible. Fig. 5.5 (Left) shows that grid-based and LCAO calculations with
a tzp basis set produce the same PESs for the singlet excited states, save for
some small differences in the absolute positions of the minima. Finally, as seen
from Fig. 5.5 (Right), spin-unpolarized calculations are a valid alternative to
the Ziegler’s sum method, as they virtually predict the same PESs (up to some
constant shift).

Given the above results, we are confident that our implementation of ∆SCF
with Gaussian smeared constraints in GPAW can be used for sufficiently reli-
able structural predictions in excited-state BOMD simulations. Moreover, the
cost of QM/MM BOMD simulations of open-shell singlets can be kept to a mini-
mum by using an LCAO representation of the orbitals, and the spin-unpolarized
approximation, without losing accuracy.

Before concluding this section, we take a closer look at the ability of ∆SCF
with Gaussian smeared constraints to deal with cases where state degeneracies
would, otherwise, undermine stable converge of the SCF solutions.

We consider the first singlet excited states of CO. We attempted to compute the
PESs in these states by replacing the smearing of the ∆SCF constraints with
fixed, discrete constraints of the orbital occupation numbers. For the degenerate
π orbitals the occupation numbers of the ground state were changed by ±0.5.
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The calculations were performed in the spin-unpolarized approximation, and
used a grid-based representation of the orbitals. Fig. 5.7 shows the points on
the PESs for which the SCF cycle could converge without problems. For S2,
almost all points could be converged. However, for bond lengths between ∼1.4
and ∼1.7 Å, the electronic density and orbitals of the S1 (adiabatic) state could
not be converged. Notably, convergence issues are experienced over a broad

Figure 5.7: Points on the PESs of an isolated CO molecule in the first singlet
excited states obtained when using ∆SCF in GPAW with discrete
constrains on the orbital occupation numbers.

range of configurations, starting with points relatively far from the point where
the two electronic states are expected to cross, around 1.6 Å.

The example, although based on a simple diatomic system, is illustrative of
the challenges ∆SCF-QM/MM BOMD simulations in a lowest-lying singlet ex-
cited state might face. Furthermore, one has to consider that the solvent can
transiently change the energy levels during the dynamics. As a result, state de-
generacies could be favoured even for configurations that would be energetically
isolated in the gas-phase system.

Smearing of the ∆SCF constraints is crucial in this regard. Fig. 5.8 (Bottom)
shows that by using a Gaussian smearing with σ = 0.01 eV, as done in all
calculations presented before, it is possible to fully reconstruct the PES in the
S1 state, because SCF convergence around the point of state crossing is no
more a problem. The top panels in Fig. 5.8 provide some insight into the
issue and how it is overcome by the method. Close to the minimum, the S1

state has 5σ → 2π character, the 5σ orbital has an occupation number of 1
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Figure 5.8: (Bottom) Comparison between the points on the PES of CO in
the S1 excited state obtained using ordinary ∆SCF constrains (no
smearing) and those calculated employing a Gaussian smearing of
the constraints. (Middle) Occupation numbers of the five highest
KS occupied orbitals along the CO bond length. (Top) Energies
of the five highest occupied KS orbitals along the CO bond length.

and is relatively well separated from the underlying, fully occupied 1π orbitals.
For longer bond lengths, the energy difference between the 5σ and 1π orbitals
starts to decrease, until they are degenerate, around 1.6 Å. Gaussian smearing
ensures stable convergence of the density at each point by gradually changing
the occupation numbers of the 5σ and 1π orbitals according to their energy
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difference. At the point of crossing, the occupation numbers for all three orbitals,
the 5σ and two degenerate 1π orbitals, are basically the same. Note, also, that
due to the property of the Gaussian function of being peaked, it is not until
the energy difference between orbitals becomes smaller than ∼0.04 eV, that the
smearing starts having an effect on the occupation numbers. At even longer
bond lengths, the energy of the 1π orbitals is higher than that of the 5σ orbital
and the S1 state has 1π → 2π character.

Figure 5.9: Analytical gradients computed by GPAW at selected points on
the S1 PES of CO obtained using ∆SCF with Gaussian smeared
constraints.

Before, we have mentioned that ∆SCF implementations that involve linear com-
bination of orbitals do not satisfy the Hellman-Feynman theorem [60], which is
invoked when computing analytical forces during geometry optimizations or
BOMD simulations. We have tested whether Gaussian smearing of the orbital
occupation numbers in our ∆SCF implementation can affect the quality of the
analytical gradients. Fig. 5.9 shows plots of the analytical gradients as com-
puted for different points along the S1 PES. Clearly, the gradients follow the
slope of the S1 curve, thus the smearing does not seem to be a limitation for
analytical calculation of nuclear forces.



6
The Quantum
Mechanics/Molecular
Mechanics Method

Properly accounting for the influence of the solvent on the dynamics of tran-
sition metal complexes in BOMD simulations necessitates the use of atomistic
models capable of describing explicit solute-solvent interactions. In fact, implicit
solvation models, which represent the solvent as a continuum, are not able to
describe, for example, specific transfer of excess vibrational energy from the so-
lute to molecules of the solvent or solvent-induced vibrational dephasing. While
modelling a system comprising a solute (in our case a transition metal com-
plex) and an adequate number of solvent molecules with an electronic structure
method like DFT can be impractical, one realizes that the solvent is amenable
to less accurate, but computationally more expedient descriptions. As a matter
of fact, processes like bond breaking/formation, or electronic excitations, which
entail large electronic rearrangements, are usually confined within the solute
(or within a solvation shell surrounding it, in the case, for example, of solute-
solvent charge transfer reactions). Hybrid QM/MM methods divide the system
of interest in a QM part, where the electronic structure is obtained at quantum
mechanical level, and an MM part, where the level of treatment is based on
molecular mechanics (MM), i.e. on classical potential functions. The idea is
schematically illustrated in Fig. 6.1. Comprehensive reviews on development
and application of QM/MM methodologies can be found, for example, in Refs.
[121, 122, 46].

Different strategies exist for defining the boundary between the two regions [121,
122], whose level of complexity depends mainly on whether the QM/MM borders
cut covalent bonds. Here, we will be concerned with nonadaptive QM/MM
schemes, in which the partitioning in the two subsystems is kept fixed during a
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Figure 6.1: Large systems that need an explicit description, like transition
metal complexes in solution, can be simulated using a multiscale
QM/MM approach. The idea behind it is to divide the system
into two parts (in our case the solvated complex and the solvent)
based on the different level of electronic structure detail required
by each of them.

simulation, and the QM part includes the solute entirely.

Formally, the partition of the Hamiltonian and total energy of the full system,
for an additive QM/MM scheme, can be expressed as:

HTOT = HQM + HQM/MM + HMM (6.1)

ETOT = EQM + EQM/MM + EMM (6.2)

HQM describes interactions between particles in the QM region, HMM describes
interactions between the classical MM particles, and HQM/MM is a coupling
Hamiltonian accounting for interactions between QM and MM particles.

We already know HQM, because we have encountered it before in this thesis.
In general, HQM has exactly the same form of the electronic Hamiltonian He of
Eq. (4.2).

Interactions between MM particles are represented with molecular mechanics
force fields, consisting in collections of classical pairwise additive potentials and
associated parameters. MM force fields usually describe a system of atoms with
point charges. There is not necessarily a one-to-one correspondence between
MM atoms and point charges, but charge sites can be displaced with respect
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to atomic positions (in which case one can define “dummy” atoms carrying the
charges) or represent entire groups of atoms, as for example a methyl group.
In addition there can be Lennard-Jones (LJ) interaction sites, which account
for dispersion and short-range exchange repulsion (the van der Waals (vdW)
interactions). For example, the water TIP4P [123] model, which we employed
in the QM/MM BOMD simulations of PtPOP, consists of four interaction sites:
two positive partial charges on the hydrogens (qH = 0.52), one negative partial
charge on a dummy atom M along the bisector of the HOH angle (qM = −2qH),
and a LJ site on the oxygen. Flexible MM models define also an internal energy
in terms of bonded potential functions. In this thesis, we will be dealing only
with force fields, like TIP4P, describing rigid solvent molecules. For such force
fields, the MM Hamiltonian (corresponding to the MM energy) of a system of
NMM point charges and NLJ LJ interaction sites is given by:

HMM = EMM =

NMM∑
k=1

NMM∑
l>k

qkql
|Rk −Rl |

+

NLJ∑
γ=1

NLJ∑
λ>γ

4εγλ

[(
σγλ

|Rγ −Rλ |

)12

−
(

σγλ
|Rγ −Rλ |

)6
]

(6.3)

where εγλ and σγλ are the LJ parameters.

The major challenge connected with hybrid QM/MM methods is represented by
the definition of the coupling Hamiltonian HQM/MM. Different levels of approxi-
mation can be adopted, ranging from mechanical embedding, in which neither of
the two subsystems polarizes the other, to fully polarizable embedding. Without
going into the details of each of them, in the following section, we will present
only the so-called QM/MM electrostatic embedding scheme [45], in which only
the QM subsystem is allowed to be polarized. The QM/MM electrostatic em-
bedding scheme is implemented in GPAW [P1], and has been used in the present
work.

6.1 QM/MM Electrostatic Embedding

The electrostatic embedding QM/MM interaction Hamiltonian is defined as:

Hel
QM/MM = −

NMM∑
k=1

Ne∑
i=1

qk
| ri −Rk |

+

NMM∑
k=1

Nn∑
α=1

qkZα
| Rα −Rk |

+ Hnb
QM/MM

= Hcoul
QM/MM + Hnb

QM/MM (6.4)
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where the first and second terms account for the Coulomb interactions between
electrons of the QM subsystem and MM charges, and between QM nuclei and
MM charges, respectively. Other non-bonded (nb) terms include vdW inter-
actions between QM and MM atoms, which are typically described with a LJ
potential of the same form of the last term in Eq. (6.3):

Hnb
QM/MM = Enb

QM/MM =

NLJ∑
γ=1

Nn∑
α=1

4εγα

[(
σγα

|Rα −Rγ |

)12

−
(

σγα
|Rα −Rγ |

)6
]

(6.5)
The Hamiltonian for the full system is:

Hel
TOT = HQM + Hel

QM/MM + HMM = He + Hel
QM/MM + HMM (6.6)

where He is given by Eq. (4.2). The total energy of the full system can be
obtained by solving the electronic Schrödinger equation (Eq. (4.3)) for clamped
QM nuclei and MM particles, in the same way as we would do to get the energy
of an isolated QM system. Except that now the Hamiltonian is the Hamiltonian
of the full system Hel

TOT, and the wave function describing the QM subsystem
has an additional parametric dependence on the positions of the MM particles.
The first term on the right hand side of Eq. (6.4) that is included in Hel

TOT

is entirely analogous to the Vne term of the electronic Hamiltonian He (see
Eq. (4.2)), accounting for the Coulomb attraction between electrons and nuclei
within the QM subsystem. That is to say, the external electrostatic potential
of the MM charges act on the electrons of the QM part in the same same way
as the “external” potential of the QM nuclei (Eq. (5.1)) does. When solving
the electronic Schrödinger equation with the Hamiltonian Hel

TOT defined in Eq.
(6.6), using the variational principle, the wave function and the electron density
of the QM subsystem will self-consistently relax with respect to the external
potential of the MM charges. Thus, we see that, in the QM/MM electrostatic
embedding scheme, the MM atoms are allowed to polarize the electron density
of the QM part. All terms that do not have a dependence on the electronic
coordinates of the QM subsystem, the last two terms on the right hand side of
Eq. (6.4) and HMM, are constants for given QM and MM nuclear configurations,
and, therefore, are similar to the nuclei-nuclei repulsion term Vnn in Eq. (4.2).

The expression for the total energy of the full system, Eq. (6.2), becomes:

ETOT = EQM + Eel
QM/MM + EMM (6.7)

where the total electrostatic embedding QM/MM interaction energy Eel
QM/MM

is given by the Coulomb interaction energy between MM and QM subsystems
plus other QM/MM non-bonded (vdW) interactions:

Eel
QM/MM = Ecoul

QM/MM + Enb
QM/MM (6.8)
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The QM/MM electrostatic embedding formalism, as illustrated until now, is
general, for any QM electronic structure method. Let us have a closer look at
the particular case in which the QM subsystem is described using KS DFT.

In this case, one finds the KS orbitals of the Slater determinant that minimizes
the energy of the full system by solving the KS equations (see Eq. (5.32)) with
a single particle KS Hamiltonian hel

KS, which includes the external electrostatic
potential of the MM charges (υext(r)):

hel
KS = hKS + υext(r)

= −1

2
∇2
i + υ(r) + υH(r) + υxc(r) + υext(r) (6.9)

υext(r) = −
NMM∑
k=1

qk
| r−Rk |

=
δEcoul

QM/MM [n]

δn(r)
(6.10)

where the single-particle operators υ(r), υH(r), and υxc(r) have been defined
in Eqs. (5.1), (5.30), and (5.31), respectively, and the functional Ecoul

QM/MM [n]

for the electrostatic embedding QM/MM Coulomb interaction energy is:

Ecoul
QM/MM [n] = −

NMM∑
k=1

∫
qkn(r)

| r−Rk |
dr +

NMM∑
k=1

Nn∑
α=1

qkZα
| Rα −Rk |

(6.11)

Once the self-consistent minimization has produced converged orbitals and den-
sity, one can compute the total energy of the full system as:

ETOT = EKS + Eel
QM/MM + EMM

= EKS + Ecoul
QM/MM + Enb

QM/MM + EMM (6.12)

where EKS is the value of the energy functional defined in Eqs. (5.22) and (5.23),
and Enb

QM/MM and EMM are obtained from Eqs. (6.5) and (6.3), respectively.

6.1.1 QM/MM Electrostatic Embedding in GPAW

As specified in the introduction, the QM/MM BOMD simulations of PtPOP
in water performed in the present work utilized the QM/MM electrostatic em-
bedding method as implemented in the ASE [47, 48] and GPAW programs [P1].
The implementation is the result of development work carried out in recent years
with key contributions from the research group where this PhD project has been
realized. The PhD student himself has been involved in the theretical formula-
tion of the method, and in the development of the routines to compute QM/MM
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LJ interactions. All details of the implementation have been presented in Ref.
[P1]. The code is available online within the official releases of ASE (https:
//gitlab.com/ase/ase) and GPAW (https://gitlab.com/gpaw/gpaw).

In this section, we provide the necessary information to understand how explicit
QM/MM electrostatic interactions are computed using the PAW formulation of
KS DFT. A broader overview of the QM/MM BOMD code will be given in the
following section (section 6.2).

As we have seen in section 5.4 of chapter 5, the PAW method works with pseudo
orbitals φ̃i(r) that replace the KS orbitals φi(r) in the SCF optimization of the
electron density. This prevents straightforward addition of the external potential
of the MM classical charges (υext(r)) to the PAW single-particle Hamiltonian
h̃KS, defined in Eqs. (5.92) to (5.95). Instead, we need to evaluate a transformed
operator υ̃ext(r) = T †υext(r)T , where the PAW transformation operator T has
been defined in Eq. (5.55). Analogously to the strategy employed in deriving
the transformed KS Hamiltonian h̃KS (see Eq. (5.90) in section 5.4), we utilize
the following relation:

υ̃ext(r)φ̃i(r) =
δEcoul

QM/MM[n]

δφ̃∗i (r)
(6.13)

We begin by writing the electrostatic embedding QM/MM Coulomb energy
functional Ecoul

QM/MM[n] using the total charge density ρ(r) defined in Eq. (5.71):

Ecoul
QM/MM[n] = −

NMM∑
k=1

∫
qkρ(r)

| r−Rk |
dr (6.14)

We can see that this energy functional is the same as in Eq. (6.11) by inserting
the definition of ρ(r) (contained in Eqs. (5.70) and (5.71)) into Eq. (6.14):

Ecoul
QM/MM[n] = −

NMM∑
k=1

∫ qk

(
n(r)−

Nn∑
α=1

δ(r−Rα)Zα
)

| r−Rk |
dr

= −
NMM∑
k=1

∫
qkn(r)

| r−Rk |
dr +

NMM∑
k=1

Nn∑
α=1

qkZα
| Rα −Rk |

(6.15)

Next, we rewrite Eq. (6.14) using the PAW definition of the electron density
n(r) given in Eq. (5.59):

Ecoul
QM/MM[n] = −

NMM∑
k=1

∫ qk

(
n(r)−

Nn∑
α=1

Zα(r)

)
| r−Rk |

dr

https://gitlab.com/ase/ase
https://gitlab.com/ase/ase
https://gitlab.com/gpaw/gpaw
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= −
NMM∑
k=1

∫ qk

[
ñ(r) +

Nn∑
α=1

Z̃α(r) +
Nn∑
α=1

(
nα(r) + Zα(r)− ñα(r)− Z̃α(r)

)]
|r−Rk |

dr

(6.16)

where we have further added and subtracted atom-centered compensation charges
Z̃α. The compensation charges Z̃α have been already introduced in section 5.4
as functions that, by construction, make the electrostatic multipole moments of
terms nα(r) + Zα(r) equal to those of terms ñα(r) + Z̃α(r). The use of these
functions leads to a simplification of the expression for the Coulomb interac-
tion energy between electrons and nuclei of the QM subsystem, as explained in
section 5.4. Similarly, they also allow to achieve a simplification of the expres-
sion of the electrostatic embedding QM/MM Coulomb energy functional. In
fact, by construction, terms nα(r) +Zα(r)− ñα(r)− Z̃α(r) do not interact with
the MM point charges qk, and the electrostatic embedding QM/MM Coulomb

interaction energy reduces to a functional of ρ̃(r) = ñ(r) +
Nn∑
α=1

Z̃α(r):

Ecoul
QM/MM[n] = −

NMM∑
k=1

∫ qk

(
ñ(r) +

Nn∑
α=1

Z̃α(r)

)
|r−Rk |

dr

= −
NMM∑
k=1

∫
qkρ̃(r)

|r−Rk |
dr = Ecoul

QM/MM[ρ̃] (6.17)

Finally, with the definition of Ecoul
QM/MM[ρ̃] given in the second line of Eq. (6.17),

the functional derivative
δEcoul

QM/MM[ρ̃]

δφ̃∗
i (r)

is evaluated using the same rules as em-
ployed to derive Eq. (5.91) in section 5.4:

δEcoul
QM/MM[ρ̃]

δφ̃∗i (r)
=

∫ δEcoul
QM/MM[ρ̃]

δñ(r′)

δñ(r′)

δφ̃∗i (r)
dr′ +

Nn∑
α=1

∑
µ,ν

∂Ecoul
QM/MM[ρ̃]

∂Dα
µν

δDα
µν

δφ̃∗i (r)

=

∫ ∫ δEcoul
QM/MM[ρ̃]

δρ̃(r′′)

δρ̃(r′′)

δñ(r′)

δñ(r′)

δφ̃∗i (r)
dr′dr′′

+

Nn∑
α=1

∑
µ,ν

[∫ δEcoul
QM/MM[ρ̃]

δρ̃(r)

∂ρ̃(r)

∂Dα
µν

dr

]
δDα

µν

δφ̃∗i (r)

= υext(r)φ̃i(r) +

Nn∑
α=1

∑
µ,ν

[∫
υext(r)

∂ρ̃(r)

∂Dα
µν

dr

]
p̃αµ(r) 〈p̃αν |φ̃i〉

= υext(r)φ̃i(r) +

Nn∑
α=1

∑
µ,ν

p̃αµ(r)∆hα,ext
µν 〈p̃αν |φ̃i〉 (6.18)
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where ∆hα,ext
µν , appearing in the last line, is defined as:

∆hα,ext
µν =

∫
υext(r)

∂ρ̃(r)

∂Dα
µν

d(r) (6.19)

By comparing the last line of Eq. (6.18) with Eq. (6.13) we derive the following
expression for υ̃ext(r):

υ̃ext(r) = υext(r) +

Nn∑
α=1

∑
µ,ν

|p̃αµ〉∆hα,ext
µν 〈p̃αν | (6.20)

Within the GPAW QM/MM electrostatic embedding scheme, the pseudo or-
bitals (and corresponding electron density) that minimize the total energy of
the full system, are found by solving self-consistently the PAW transformed KS
equations (see Eq. (5.89)), with a single particle Hamiltonian consisting of the
sum of the PAW Hamiltonian of Eq. (5.95) and the operator υ̃ext(r):

h̃el
KS = h̃KS + υ̃ext(r) (6.21)

The total energy after convergence of the density can be computed from:

ETOT = EPAW + Eel
QM/MM + EMM

= EPAW + Ecoul
QM/MM + Enb

QM/MM + EMM (6.22)

where EPAW and Ecoul
QM/MM are obtained from Eqs. (5.83) and (6.17), respec-

tively, Enb
QM/MM is computed from the LJ potential of Eq. (6.5), and EMM, for

a classical force field of rigid molecules, is given by Eq. (6.3).

We note that, in the derivation outlined above, we have not introduced ap-
proximations to the form of the QM/MM electrostatic embedding scheme. Be-
sides, within GPAW, computation of QM/MM Coulomb interactions between
the QM electronic density and the MM point charges (the most computa-
tionally demanding aspect of the QM/MM electrostatic embedding scheme) is
straightforward and computationally efficient. Limiting the computational cost
brought about by the calculation of the explicit QM/MM electrostatic interac-
tions is achieved by exploiting the cost optimization tools inherent in GPAW
[P1][104, 49]:

• Like all other potentials in GPAW, the external point charge MM potential
is evaluated on domains of a real-space grid distributed among parallel
processors (parallelization using domain decomposition).

• ρ̃(r), which interacts with the MM charges in Eq. (6.17), is a smooth
quantity and thus can be represented on relatively coarse grids.
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• The size of the cell in which the QM subsystem is represented can be kept
smaller than the cell of the full QM/MM system.

Lastly, a more technical consideration. The QM/MM electrostatic embedding
scheme does not account for short-range exchange repulsion between electrons
of the QM subsystem and MM atoms. This can cause an unphysical overpolar-
ization of the QM electron density close to positive MM charges (the so-called
charge spill-out effect [124]). To avoid this inconvenience, the implementation
replaces, at distances below a certain cutoff radius, the basic form of the ex-
ternal potential (Eq. (6.10)) with an analytical potential that goes smoothly
towards a finite value for distances that tend to zero. The short-range potential
has a 6th order polynomial form and matches the potential of Eq. (6.10) at the
cutoff. More details about this aspect of the implementation can be found in
Ref. [P1].

6.2 Direct QM/MM Molecular Dynamics

In the previous chapters and sections, we have provided an overview of the
strategies that, in the present work, have been adopted to find approximate
solutions to the time-independent electronic Schrödinger equation for a system
in either the ground or an excited state. In particular, we have focused on the
GPAW DFT code, our ∆SCF implementation, and on how to define a hybrid
solute-solvent system within it, for multiscale simulations. The last recipe we
require to provide a complete view on the QM/MM BOMD strategy, as devel-
oped and employed in this project, is how to perform the classical propagation
of such hybrid systems.

Newton’s classical equations of motion have already been introduced in section
4.2 of chapter 4, in the context of fully ab initio BOMD simulations. Let us
rewrite them here for a collection of atoms defining a QM/MM system:

R̈a −
Fa
Ma

= 0 (6.23)

where Ra and Ma are, respectively, the position vector and mass of particle a,
which can be either a QM nucleus α or an MM atom k, and Fa is the force acting
on it. In Eq. (6.23) we have used the notation ḟ = ∂f

∂t to indicate derivatives
with respect to time.

The numerical integrator that is usually employed to solve Eq. (6.23) is the
velocity Verlet algorithm [125], in which positions and velocities of the particles
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are propagated according to the following equations:

Ra(t+ ∆t) = Ra(t) + Ṙa(t)∆t+
Fa(t)

2Ma
∆t2 (6.24)

Ṙa(t+ ∆t) = Ṙa(t) +
Fa(t) + Fa(t+ ∆t)

2Ma
∆t (6.25)

where ∆t is the classical time step. Generally, velocity Verlet is preferred over
more elaborate numerical integration schemes, like the Runge–Kutta methods,
because it provides good long-term stability of the total energy by ensuring time
reversibility [82].

Eqs. (6.24) and (6.25) conserve the total energy of the system and, thus, gen-
erate a microcanonical (NVE) ensemble. When the interest is in equilibrium
thermal properties or in the dynamics of a molecule in a heat bath, as is the
case for the QM/MM BOMD simulations presented in this work, it is more desir-
able to perform the propagation in a canonical (NVT) ensemble. A commonly
employed method in these cases is Langevin dynamics [82], in which friction
terms γa and random forces Frand

a are added to Newton’s equations of motion:

R̈a = −γaṘa +
Fa
Ma

+
Frand
a

Ma
(6.26)

At time t in the propagation, the random force on particle a is connected to the
target temperature T through:

Frand
a (t) =

√
2MakbTγaηa(t) (6.27)

where kb is the Boltzmann constant, and ηa is a Gaussian random process.
The advantage of using Langevin dynamics over less sophisticated thermostat
methods based on rescaling of the velocities, like the Berendsen temperature-
coupling scheme [126], is that the former generates a true NVT ensemble with
the correct fluctuations of properties, while the latter produces only correct
thermal averages but incorrect fluctuations [127]. Of course, when the focus
is on the detailed microscopic dynamics of a solute, the Langevin (stochastic)
thermostat has to be applied only to the solvent, which is done by setting to
0 the friction γa for the atoms of the solute, which will then be propagated by
Newton’s equations of motion.

Our QM/MM BOMD implementation uses the MD routines available in ASE
[47] for numerical integration of the Langevin equations of motion. ASE imple-
mentation of Langevin dynamics is based on a generalization of the velocity Ver-
let algorithm [128] that can be used together with RATTLE distance constraints
[129]. This type of constraints utilize the method of Lagrange multipliers, and
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are required for the MM subsystem, if the latter is described with a force field
that does not allow for internal motion. Furthermore, they can also be applied
to fix bond lengths and bond angles (indirectly, by constraining the distance
between atoms that are both bonded to a third one) involving hydrogen atoms
within the QM part. Applying constraints to the degrees of freedom of hydrogen
atoms is done to increase the integration time step, in order to achieve longer
simulation times at the same computational cost.

The intramolecular forces Fa needed for the classical propagation of the nuclei
are computed from the nuclear gradients of the total energy of the system. In
our GPAW implementation of QM/MM electrostatic embedding, the forces on
the QM atoms α are obtained by differentiating the expression of the total
energy given by Eq. (6.22) with respect to the nuclear positions Rα:

Fα = −∂EPAW

∂Rα
−
∂Ecoul

QM/MM

∂Rα
−
∂Enb

QM/MM

∂Rα

= Fα,PAW + Fcoul
α,QM/MM + Fnb

α,QM/MM (6.28)

where the first two terms are computed as Hellmann-Feynman forces plus contri-
butions from the response of the KS orbitals to nuclear displacements (see Ref.
[50] for a description of how forces are calculated in the PAW method), whereas
Fnb
α,QM/MM is simply the derivative with respect to Rα of the LJ potential of

Eq. (6.5). For the MM atoms k, instead, we have:

Fk = −
∂Ecoul

QM/MM

∂Rk
−
∂Enb

QM/MM

∂Rk
− ∂EMM

∂Rk

= Fcoul
k,QM/MM + Fnb

k,QM/MM + Fk,MM (6.29)

The first term in Eq. (6.29) is the most computationally expensive of all three,
since it represents the force on MM atom k due to interaction with the electron
density of the QM part. Fcoul

k,QM/MM involves the following integral:

Fcoul
k,QM/MM = −

∂Ecoul
QM/MM

∂Rk

= −
∫

qkρ̃(r)

|r−Rk |2
r−Rk

|r−Rk |
dr = −

∫
qkρ̃(r)

|r−Rk |3
(r−Rk) dr (6.30)

The other two terms are straightforward to compute, as they are obtained as
the derivative with respect to Rk of LJ potentials and the Coulomb interaction
energy between point charges (see Eqs. (6.3) and (6.5)). Note that in case the
interaction sites of the MM model do not coincide with the MM atoms, one first
computes the forces on the interaction sites and then distributes them to the
MM atoms according to the relative positions between interation sites and MM
atoms [130].



74 The Quantum Mechanics/Molecular Mechanics Method

When simulating PtPOP in TIP4P water molecules, we have found it necessary
to include counterions in the simulation box to avoid formation of vortices of
water molecules around the complex, which we observed in the trajectories un-
wrapped from periodic boundary conditions (PBCs). The formation of vortices
has been attributed to the large negative charge of the complex and could be
removed with the addition of the counterions. In order to avoid any interference
of the counterions on the dynamics of the solute, we have implemented an ad-
ditional spherical harmonic potential that can be applied to the counterions to
restrain them to parts of the simulation box far from the QM subsystem. The
position restraint (pr) potential has the following form:

υpr(Rc) =


1

2
kpr (d′c − dpr)

2 if d′c ≤ dpr

0 if d′c > dpr

(6.31)

where Rc is the position vector of counterion c, d′c =|Rc−RCQM | is the distance
of the counterion from the center of the QM cell (CQM), and dpr and kpr are
a cutoff radius and harmonic force constant, respectively. The forces on the
counterions due to the harmonic restraint potential are given by:

Fc,pr =

−kpr

(
1− dpr

d′c

)(
Rc −RCQM

)
if d′c ≤ dpr

0 if d′c > dpr

(6.32)

Thus, the restrained counterions experience a harmonic force inside a sphere of
radius dpr and centered at RCQM that drives them outside this region, where
Fc,pr = 0.

In all QM/MM BOMD simulations performed in this work, PBCs were treated
by translating solvent molecules with respect to the center of the QM cell to
conform the minimum image convention [125]. Furthermore, all electrostatic
interactions within the QM/MM simulation box were computed in toto. We
found that this did not significantly affect the computational cost for boxes of
sizes as those used in the simulations. We note, on the other hand, that long-
range cutoff schemes for the electrostatic interactions are available in the current
implementation of the GPAW QM/MM code [P1], following recent development
work.

6.2.1 Overview of the QM/MM BOMD code

Fig. 6.2 shows the basic algorithm underlying direct QM/MM BOMD simula-
tions in ASE and GPAW. Like GPAW, ASE is also written in Python. Object-
oriented programming in Python offers a high degree of modularity and interfac-
ing between different parts of the code. ASE takes care of creating and handling
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Figure 6.2: Basic algorithm to perform on-the-fly QM/MM BOMD simulations
in ASE & GPAW. The color code links ASE (https://gitlab.com/
ase/ase) and GPAW (https://gitlab.com/gpaw/gpaw) modules to the
specific tasks and operations they are called to fulfil during a simula-
tion. The Gaussian smearing ∆SCF method has been implemented in
the GPAW occupations.py module within the following development
branch: https://gitlab.com/glevi/gpaw/tree/Dscf_gauss. Other
modules that have been object of development work in the course of
the PhD project are the constraints.py and qmmm.py modules in ASE
(available in the official release of the code).

https://gitlab.com/ase/ase
https://gitlab.com/ase/ase
https://gitlab.com/gpaw/gpaw
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
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an atomistic object defining the QM/MM system of atoms. The different energy
terms and the forces on the particles are obtained by calling, from within ASE,
an interface calculator to GPAW and internal ASE calculators equipped with
force fields for the MM part. Additional ASE modules perform the remaining
tasks: applying PBCs, integrating the classical equations of motion, enforcing
geometry constraints, outputting data. An overview of the ASE and GPAW
modules that are involved in a QM/MM BOMD simulation is provided in Fig.
6.2.

In a nutshell, a QM/MM BOMD simulation in ASE and GPAW involves the
following:

1. Set up the initial conditions for the dynamics. This consists in the initial-
ization of an atomistic object containing positions (Ra(0)) and velocities
(Ṙa(0)) at time zero for all atoms of the QM/MM system. This step is
done exclusively within ASE.

2. Compute atomic forces and total energy of the QM/MM system. The
calculations are steered by a QM/MM interfacer (the qmmm.py module in
ASE, see algorithm in Fig. 6.2), which also takes care of applying PBCs.
The interfacer communicates with two calculators: (i) an MM force field
calculator built in ASE, which computes MM total energy EMM and forces
due to interactions between MM point charges (Fk,MM), and (ii) GPAW.
In GPAW, the following takes place:

• Set up the external potential of the MM point charges υext(r).

• Solve self-consistently the PAW transformed KS equations (Eq. 5.89)
with single-particle KS Hamiltonian including υext(r). In the case of
excited-state simulations, this step involves the application of ∆SCF
constraints on the orbital occupation numbers using the implementa-
tion of Gaussian smearing ∆SCF described in section 5.5 of chapter
5.

• Compute the PAW total energy EPAW (Eq. (5.83)), the electro-
static embedding QM/MM Coulomb interaction energy Ecoul

QM/MM

(Eq. (6.17)), and the corresponding forces on the QM nuclei (Fα,PAW,
Fcoul
α,QM/MM).

• Compute the forces on MM atoms due to Coulomb interactions be-
tween the MM point charges and the converged electronic density of
the QM subsystem (Eq. (6.30)).

Finally, the interfacer itself contains functions to compute the energy and
forces from other non-bonded QM/MM interactions (Enb

QM/MM, Fnb
α,QM/MM

and Fnb
k,QM/MM) using a LJ potential (Eq. (6.5)).
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3. Take a step in the BOMD propagation to find a new set of atomic positions
(Ra(t + ∆t)) and velocities (Ṙa(t + ∆t)). This is done by ASE internal
algorithms for solving the classical equations of motion with forces com-
puted in step 2. In this step, geometry constraints can be enforced using
ASE implementation of RATTLE, if necessary.

4. Repeat steps 2 and 3 until the required total simulation time is reached.

6.2.2 Generalized Normal Mode Analysis

Here, we provide some background on a technique for vibrational analysis that
can be used to obtain a picture of intramolecular vibrational energy redistri-
bution (IVR) from BOMD trajectories of a nonequilibrium molecular system
[131]. The method was first proposed by Strachan [132, 133], and is based on a
decomposition of the total vibrational energy in terms of so-called generalized
normal modes. In the present work, we have carried out this type of vibrational
analysis on nonequilibrium vacuum and solution-phase trajectories of PtPOP in
the first singlet excited state. These simulations and the results of the analysis
will be presented in chapter 13.

Following Strachan [133], generalized normal modes Qp defined as vibrational
modes whose time evolution is uncorrelated to each other (and hence are not
harmonic in general): 〈

Q̇p(t)Q̇q(t)
〉
∝ δpq (6.33)

where δpq is the Kronecker delta, can be obtained from an MD simulation of
a system of Nn atoms by diagonalizing the 3Nn × 3Nn covariance matrix K of
mass weighted cartesian velocities, whose elements are:

Kpq =
1

2

〈√
MpMqVp(t)Vq(t)

〉
(6.34)

where M and V indicate respectively atomic masses and (vibrational) velocities
in the body-fixed frame that translates and rotates with the system, and p and
q run over the 3Nn cartesian components. The matrix L whose columns are the
3Nn normalized vibrational mode eigenvectors derived from diagonalization of
K can be used to obtain a set of generalized normal mode velocities at each step
of an MD trajectory by the following projection:

Q̇(t) = LTV(t) (6.35)

where Q̇(t) and V(t) are 3Nn×1 vectors of the instantaneous generalized normal
mode and body-fixed-frame velocities, respectively, and LT is the transpose of
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the matrix L. The vibrational kinetic energy of the system can be decomposed
into contributions from individual vibrational modes according to:

Evib(t) =
1

2

3Nn∑
p=1

Q̇2
p(t) =

3Nn∑
p=1

Evib,p(t) (6.36)

Thus, one can monitor the evolution of the portion of total vibrational kinetic
energy shared by each generalized normal mode during a trajectory propagation,
by projecting the body-fixed-frame velocities along the vibrational mode vectors
through Eq. (6.35) and then computing the Evib,p(t) terms appearing in Eq.
(6.36).

This procedure provides a means to draw a qualitative picture of intramolecular
energy flow in a complex system and was recently successfully applied to analyse
ab initio MD trajectories to investigate IVR processes in uracil [131]. Moreover,
the generalized normal mode analysis briefly illustrated here was also used in
another study, in conjunction with QM/MM simulations of a metal ion in water
to decompose solute-solvent thermal fluctuations in terms of vibrational modes
to support the analysis of X-ray absorption measurements [134].

We have implemented the method in a script using the Matlab programming
language. The script is included in appendix A.
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7
Observing Molecular Motion
in Solution with X-Rays

Scattering of X-rays on a molecular system involves a change of the wave vector

|k0| =
2π

λ
of the incident photon with wavelength λ. This variation is described

by the scattering vector q:
q = k0 − ks (7.1)

where ks is the wave vector of the scattered photon. In this thesis we will be
concerned only with elastic scattering events, in which |ks| = |k0|, and:

q = |q| = 2|k0| sin
(
θ

2

)
=

4π

λ
sin

(
θ

2

)
(7.2)

where θ is the angle between the wave vectors ks and k0. This fundamental
process of light-matter interaction can be exploited for structural determina-
tions at the atomic scale resolution. X-ray scattering techniques to obtain the
structure of molecules in crystal or solution phase have undergone tremendous
improvements over the last decades [135].

One of the greatest achievements reached in the X-ray field in recent years is
the development of time-resolved X-ray scattering techniques to probe atomic
motion as it occurs in real time [7, 136, 137, 138]. The aim of the present chap-
ter is to give a general overview on pump-probe X-ray scattering experiments
as performed by the group of our experimental collaborators to investigate pho-
toinduced dynamical processes in complex molecular systems in solution. Sub-
sequently, in chapter 8, we will see how these experiments are typically analysed
in the group of our experimental collaborators, and how BOMD data can be
used to simulate the scattering signal, offering assistance to the interpretation
of the experimental outcomes.
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7.1 Pump-Probe Experiments at XFELs

Time-resolved structural determinations with X-rays are based on the pump-
probe operative principle: an ultrashort optical pump laser initiates a reaction,
which is probed, after a time delay tp, by an ultrashort X-ray pulse focused
on the sample. By collecting and putting in a sequence scattering images ac-
quired at different pump-probe time delays, it is possible to produce a “molecular
movie” of the dynamics consisting of a series of “snapshots” of atomic motion,
if the setup permits to achieve an adequate time resolution. The pump-probe
experiments that we perform use a UV-vis ultrashort laser that triggers nuclear
dynamics by electronically exciting solute molecules in dilute solution. The use
of a UV-vis pump pulse implies that the processes that can be studied with
this technique are photochemically activated reactions. However, one should
not think that this confines the investigation to excited-state PESs. As we will
see in the next section, a careful choice of pump-pulse parameters can enable
direct probing of ground-state PESs as well.

Figure 7.1: Schematical illustration of an optical pump/X-ray probe setup for
time-resolved X-ray diffuse scattering (XDS) experiments.

In a typical optical pump/X-ray probe experiment in solution, the beams of
the two lasers are focused on a liquid jet with the sample. The liquid jet is
produced through a nozzle and allows continuous replenishment of the sample
[139]. The X-ray signal is collected, at a given pump-probe time delay, on a 2D
detector positioned on a plane perpendicular to the direction of propagation of
the X-ray beam. A schematic diagram of the setup of a standard time-resolved
X-ray scattering experiment in solution is shown in Fig. 7.1.

Molecular reactions involving bond breaking/formation unfold on femtosecond
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time scales. Therefore the pump-probe apparatus that we require to investigate
such reactions should ensure femtosecond time resolution. In ordinary X-ray
diffraction measurements on crystals, the long-range order that characterizes
the sample allows constructing interference of the diffracted waves for special
q directions. As a consequence, the diffraction pattern features sharp peaks,
the so-called Bragg peaks, at specific locations. Compared to ordered materials,
disordered molecules in solution give rise to diffuse and weak diffraction patterns
covering a vast portion of q space (as the illustration of a 2D scattering pattern
of a solution in Fig. 7.1 suggests). This is due to the broad range of orienta-
tions and nuclear configurations that exist in solution. Commonly, one refers to
scattering from disordered materials as “X-ray diffuse scattering” (XDS).

The time resolution of a pump-probe XDS experiment can be limited by either
one of these two factors: (i) the shortest time in which the X-ray beam is able
to deliver enough photons for a detectable signal to be measured, and (ii) the
jitter between pump and probe pulses. The only coherent X-ray sources existing
in the world that are able to produce hard X-ray pulses as short as a few fs,
with sufficient brilliance, are X-ray free-electron lasers (XFELs) [7, 8, 9, 10].
The world’s first XFEL, the Linac Coherent Light Source (LCLS)1 of Stanford,
became operational in 2009 [10]. The PtPOP time-resolved XDS measurements
that will be presented in the next section have been performed at LCLS. The sec-
ond oldest XFEL is SACLA2 in Japan. Three other facilities started operation
in 2017: the European XFEL3 in Hamburg, the Pohang Accelerator Laboratory
(PAL)4 in South Korea, and the SwissFEL at the Paul Scherrer Institute (PSI)
in Switzerland5. These large scale facilities provide flashes of X-rays with a
duration of tens of fs [140, 7, 8], and can achieve fluxes of around 1012 photons
per pulse [140, 7, 8]. Moreover, they are equipped with timing-tools to control
with femtosecond resolution the jitter between the laser pump and the X-ray
probe [7, 8, 141].

7.1.1 The Difference Scattering Signal

In order to enhance photoinduced structural changes, one usually records dif-
ference scattering signals during a time-resolved XDS experiment, by taking,
at each time delay, the difference between an image with the laser pump pulse
turned on (Son(q, tp)) and one with the laser turned off (Soff(q, tp)):

∆S(q, tp) = Son(q, tp)− Soff(q, tp) (7.3)
1https://lcls.slac.stanford.edu/
2http://xfel.riken.jp/eng/
3https://www.xfel.eu/
4http://pal.postech.ac.kr/paleng/
5https://www.psi.ch/swissfel/

https://lcls.slac.stanford.edu/
http://xfel.riken.jp/eng/
https://www.xfel.eu/
http://pal.postech.ac.kr/paleng/
https://www.psi.ch/swissfel/
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This procedure removes all contributions to the scattering that are unaltered by
photoexcitation, which include inelastic scattering [142] or the scattering from
that large portion of the sample that is not perturbed by the laser.

The signal when the laser pump pulse is off is the scattering from a (stationary)
thermal equilibrium ensemble of ground-state molecules (Seq

GS(q)):

Soff(q, tp) = Seq
GS(q) (7.4)

After laser excitation, the population of molecules in solution will be distributed
over the electronic ground state and an excited state (assuming excitation occurs
to a single electronic state). Hence, the scattering after the laser pump pulse
has been on is made up of contributions from the non-stationary excited state
population (SES(q, tp)) and from the ensemble of molecules remaining in the
ground state:

Son(q, tp) = αSES(q, tp) + Seq
GS(q)− αSh

GS(q, tp) (7.5)

where α is the fraction of excited-state molecules, and Sh
GS(q, tp) is the signal

arising from the difference between the nuclear distribution of the equilibrium
ground-state ensemble and that of the non-stationary ensemble of molecules
remaining in the ground state after excitation. Sh

GS(q, tp) is the signature of
the hole left in the ground-state distribution by the pulse. α was assumed
to be constant in time. We will only consider scattering signals recorded at
times considerably shorter than the lifetime of the excited state, for which the
assumption of a constant α is valid. By combining Eqs. (7.3), (7.4) and (7.5),
we see that the difference scattering signal can be expressed as:

∆S(q, tp) = α
[
SES(q, tp)− Sh

GS(q, tp)
]

(7.6)

7.1.2 Anisotropy in Time-Resolved X-ray Scattering Sig-
nals

Another important aspect of the scattering signal has to be mentioned. When
using a linearly polarized laser pump pulse, as usually is the case in standard
pump-probe setups, among the molecules that are oriented randomly in solu-
tion, the laser will preferentially excite those with the transition dipole moment
parallel to the laser polarization axis. Therefore, for times shorter than the
rotational correlation time of the photoexcited molecule in solution, the X-ray
scattering signal will appear anisotropic. With the femtosecond time resolution
available at XFELs, these time scales have become accessible, since rotational
dephasing of aligned molecules in solution happens, usually, for times longer
than 50 ps for medium-sized solutes [143].
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In general, the theoretical interpretation of anisotropic scattering patterns of
polyatomic molecules is complicated [144]. However, the treatment considerably
simplifies in the case of symmetric top molecules, like PtPOP, with the transition
dipole moment parallel to the unique axis of symmetry, as it has been shown
by Baskin and Zewail for ultrafast electron diffraction [145, 146], and later by
U. Lorenz et al. in our group for X-ray scattering signals [144]. We further
restrict out attention to one-photon absorption processes. If all the symmetry
restrictions listed before are met, one-photon absorption of a linearly polarized
pulse by a thermal molecular ensemble results in the formation of an excited-
state population with a cosine-squared distribution of the dipole moment with
respect to the laser polarization axis, and of a hole, representing depletion of
the equilibrium ground-state ensemble, having the same rotational symmetry
as the excited state [144, 145, 147]. In this case, the difference scattering signal
can be decomposed into two contributions [P3][144]:

∆S(q, θq, tp) = ∆S0(q, tp) + P2(cos θq)∆S2(q, tp) (7.7)

where P2 is the second-order Legendre polynomial (P2(x) = (3x2 − 1)/2) and
θq is the angle between the laser polarization axis and the scattering vector
q, which can be inferred from the geometry of the experiment [144, 145]. Ex-
tracting ∆S0(q, tp) and ∆S2(q, tp) from the total difference scattering signal is
a straightforward linear fitting procedure at each fixed value of q [P3][144]. The
two terms can then be analysed separately. ∆S0(q, tp) is an isotropic term, in
that it has the same form of the X-ray scattering signal one would obtain from an
isotropic ensemble [P3][144], and can be analysed using the same tools that are
used to interpret scattering patterns of isotropic samples. ∆S2(q, tp) is called
anisotropic scattering term. It contains coefficients related to the rotational
distribution of the photoexcited ensemble, and further encodes information on
the orientation of atomic distances with respect to the transition dipole moment
[P3][144].

Techniques to process anisotropic scattering signals according to the separation
in the two contributions ∆S0(q, tp) and ∆S2(q, tp) have been refined and are
becoming routine in the group of our experimental collaborators [P3][15]. Re-
cently, we have carried out one of the first quantitative analysis of the anisotropic
contribution ∆S2(q, tp) in the scattering signal of a photoexcited complex in so-
lution [P3]. The investigated complex was PtPOP, and the analysis allowed to
obtain the value of the Pt-Pt distance, which is the key structural parameter
of the molecule, in solution. Part of the present PhD project has been spent
in assisting this analysis. Methods for simulating X-ray scattering signals to
analyse the experimental data will be briefly discussed in chapter 8. In the next
section we will present the time-resolved XDS experiment on PtPOP that we
have performed at the LCLS XFEL of Stanford.
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7.2 Measuring PtPOP in Water

Figure 7.2: Gaussian fit (purple line) to the spectral intensity profile of the
ultrashort pump pulse used in the time-resolved XDS experiment
on PtPOP in water [P4][P3], together with the S0 → S1 band
(black line) of the absorption spectrum of the molecule measured
in water [P4].

We have measured the time-dependent X-ray scattering signal upon photoex-
citation by an ultrashort optical pulse of a dilute 80 mM aqueous solution of
PtPOP with femtosecond time resolution. The measurements were performed
at the X-ray Pump Probe (XPP) experimental station [9] at the LCLS XFEL
facility of Stanford. In the experiment, a linearly polarized pump pulse with du-
ration of ∼50 fs (full width at half maximum (FWHM) of the spectral intensity
profile) and wavelength of ∼395 nm was used. Fig. 7.2 shows a Gaussian fit to
the spectral intensity profile of the pump pulse, together with the experimental
absorption spectrum of PtPOP in water [P4]. In the range of wavelengths shown
in the figure, excitation occurs from the ground state (S0) to the lowest-lying
singlet excited state (S1) of the complex. Fig. 7.2 highlights that the pulse cov-
ered a range of excitation energies at the far red side of the 370 nm maximum
of the S0 → S1 absorption band.

The raw data collected at the detector were processed by T. B. van Driel to apply
the corrections described in Ref. [148]. Afterwards, 2D difference scattering
images were obtained by taking the difference between the corrected images
acquired with the laser on and the corrected images acquired with the laser off.
Finally, 1D isotropic and anisotropic difference scattering curves were obtained,
at each pump-probe time delay, according to Eq. (7.7), following the procedure
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Figure 7.3: Isotropic (∆S0(q, tp), top) and anisotropic (∆S2(q, tp), bottom)
difference scattering signals as obtained from ultrafast XDS mea-
surements upon photoexcitation of PtPOP to the S1 state in wa-
ter. The signals are expressed in electronic units (e.u.) per solute
molecule. Electronic units represent the scattering of a free elec-
tron, i.e. the Thomson cross-section. The insets show the FT of
the first right-singular vector of an SVD analysis of each of the
two sets of difference scattering signals.

outlined in Ref. [P3].

Fig. 7.3 shows the isotropic and anisotropic contributions to the difference
scattering signal, ∆S0(q, tp) and ∆S2(q, tp), as a function of the time delay tp
and the magnitude of the scattering vector q. Both signals exhibit a pronounced
beating pattern that lasts for at least ∼3.5 ps. The two data sets were analysed
by singular-value decomposition (SVD), and the Fourier transforms (FTs) of the
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first right-singular vectors of ∆S0(q, tp) and ∆S2(q, tp) are plotted in the insets
of Fig. 7.3. The FTs reveal that the oscillations in the scattering signals have
a period of ∼285 fs. This value is very close to the period assigned to Pt-Pt
stretching vibrations in the ground state from Raman spectroscopic (∼283 fs)
[79] and transient absorption (∼281 fs) [18] measurements in aqueous solution.
Besides, there is no clear peak in the FTs around 224 fs, which is the value
of the Pt-Pt vibrational period characteristic of the first singlet excited-state
of PtPOP [18]. This leads us to think that, at the particular conditions at
which the experiment was performed, all contribution to the observed dynamics
from Pt-Pt coherent vibrations in the excited state is suppressed, while the
oscillatory behaviour in the difference signal must arise from motion in the
ground-state potential surface. In chapter 10, we will examine in depth how the
choice of the off-resonant pump pulse shown in Fig. 7.2 created the conditions
to probe excusively ground-state structural dynamics upon photoexcitation. In
chapter 12, we will show that a picture of nonequilibrium dynamics produced
using QM/MM BOMD trajectories in the S0 and S1 states of PtPOP in water
substantiates the hypothesis we have just formulated.



8
Simulating and Analysing
X-ray Diffuse Scattering
Signals

Due to the lack of long-range periodic order in solution, it is not possible to
reconstruct the structure of a liquid sample directly from an X-ray scattering
pattern, as one would do in X-ray crystallography [149, 150, 138]. Instead,
one has to rely on a suitable structural model to fit the experimental data. In
XDS pump-probe measurements the information on the structural changes upon
photoirradiation are condensed in 1D difference scattering curves, which are
inherently dominated by scattering from distributions of interatomic distances.
This makes the determination of the structural changes undergone by solvated
molecules particularly challenging.

In this chapter, we will illustrate how atomistic modelling brings aid to the
analysis and interpretation of ultrafast XDS data. In order to do so, we show
how it is possible to calculate time-dependent scattering signals from molecular
structures and nuclear distributions generated by BOMD simulations. We will
focus, in particular, on the modelling strategy employed to analyse the XDS
data collected in the pump-probe XFEL experiments on PtPOP in aqueous
solution, described in section 7.2 of chapter 7. Before doing that, in the following
section, we shall briefly mention the main results of the theory of time-resolved
X-ray scattering of molecules. The details of processing and analysing X-ray
solution scattering data can be found in Refs. [151, 152, 149, 150, 153, 138, 154].
The theoretical framework for interpretation of time-resolved X-ray scattering
experiments has been formulated over the past two decades. Key works in this
context are represented by Refs. [155, 156, 142, 144, 157, 158].
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8.1 Calculating X-ray Scattering Signals

Ignoring all inelastic contributions and quantum coherence effects, and further
neglecting the frequency spread of the X-ray probe pulse (known as the “static
approximation”), the time-dependent X-ray scattering signal of a system of Nn

atoms at a pump-probe time delay tp can be expressed as [142] :

S(q, tp) =

∫
%̃(R, tp) | F (R,q) |2 dR (8.1)

where S(q, tp) is in units of the Thomson cross-section of a free electron, and
%̃(R, tp) is given by the instantaneous probability distribution of nuclear geome-
tries created by the pump pulse and averaged over the intensity profile I(t− tp)
of the X-ray pulse:

%̃(R, tp) =

∫ ∞
0

I(t− tp)%(R, t)dt (8.2)

Eq. (8.1) involves also the molecular form factor F (R,q), which represents
the scattering from a static nuclear configuration and is related to a Fourier
transform of the electron density of the system [142]. Under the assumption
that the electron density is unchanged upon excitation, Eq. (8.1) is valid for
a system of molecules distributed over different electronic states (%(R, t) =∑
n %n(R, t), where %n(R, t) is the nuclear probability distribution associated

with state n). This approximation is satisfied within the Independent Atom
Model (IAM). According to the IAM, the electron density is the sum of spherical
atomic densities, and F (R,q) is given by:

F (R,q) =

Nn∑
a

fa(q)eiqRa (8.3)

where fa is an atomic form factor for atom a. Despite neglecting chemical
bonding between atoms, the IAM provides reasonable results in most cases
[159]. In an X-ray scattering calculation, the atomic form factors are taken
from tabulated values [160]. In what follows, we focus the discussion on the
case of excitation to only one excited state.

8.1.1 Difference Scattering Curves from BOMD Distribu-
tions

In section 7.1 of the previous chapter, we have said that the difference scattering
signal is composed of a term due to scattering from the excited-state ensemble
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of molecules and a term that is the signature of the hole left in the ground state
by the laser (see Eq. (7.6)). From Eq. (8.1) we can obtain Eq. (7.6) using
nuclear distributions:

∆S(q, tp) = Son(q, tp)− Soff(q, tp)

=

∫
[%̃on(R, tp)− %̃off(R, tp)] | F (R,q) |2 dR

=

∫ {
α%̃ES(R, tp) +

[
%̃eq

GS(R)− α%̃h
GS(R, tp)

]
− %̃eq

GS(R)
}
| F (R,q) |2 dR

=

∫
α
[
%̃ES(R, tp)− %̃h

GS(R, tp)
]
| F (R,q) |2 dR

= α
[
SES(q, tp)− Sh

GS(q, tp)
]

(8.4)

where we have used that the nuclear probability distribution created by the
pump pulse is given by the distribution in the excited state plus the difference
between the ground-state equilibrium distribution and the ground-state hole.

In order to simulate the difference scattering signal of a photoexcited molecu-
lar ensemble we need to calculate SES(q, tp) and Sh

GS(q, tp). Furthermore, to
account for the polarization of the pump pulse, we need to consider the decom-
position into an isotropic and an anisotropic terms, according to Eq. (7.7). It
can be shown [151, 144], using Eq. (8.1) and the IAM (Eq. (8.3)), that the
isotropic scattering signal of a species s, where for species we indicate either the
excited state or the ground-state hole, can be computed from:

Ss0(q, tp) =

Nn∑
a,b

fa(q)fb(q)4π

∫ ∞
0

d2%̃sab(d, tp)
sin(qd)

qd
d(d) (8.5)

where %̃sab(d, tp) is the time-averaged pairwise probability distribution function
of the distance d between atoms a and b, and fa(q) and fb(q) are their respec-
tive form factors. Note that in Eq. (8.5) there is no vectorial dependence, in
accordance with the fact that the isotropic contribution of the scattering signal
from the decomposition Eq. (7.7) is equivalent to the scattering of a randomly
oriented ensemble of molecules [144].

Eq. (7.7) can be recast in a more computationally convenient form, in which the
sums run over all atom types (where an atom type correspond to a particular ele-
ment) and the pairwise distribution functions are replaced by radial distribution
functions (RDFs) [151]. RDFs are readily obtained from BOMD simulations.
The relation that is used for the conversion is the definition of RDF between
atom types l and m as the ratio between a probability distribution function
%̃slm(d, tp) that collects the probability distributions %̃sab(d, tp), where atoms a
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and b belong to atom types l and m, respectively, and the isotropic density %0
lm:

g̃slm(d, tp) =
%̃slm(d, tp)

%0
lm

(8.6)

where %0
ab is the inverse of the volume V of the BOMD simulation box (%0

ab =
1/V ). The isotropic scattering signal in terms of RDFs is given by [151]:

Ss0(q, tp) =
∑
l

N l
nf

2
l (q) +

∑
l,m

fl(q)fm(q)
N l

n (Nm
n − δlm)

V
4π

×
∫ Rbox

0

d2
[
g̃slm(d, tp)− g0

lm

] sin(qd)

qd
d(d) (8.7)

in which N l
n and Nm

n are the total number of atoms of type l andm, respectively,
Rbox is the length of the simulation box, and g0

lm is the homogeneous density
limit of the RDF. All details of the above derivation can be found in Ref. [151].
Eq. (8.7) has been implemented in the Matlab programming language by former
PhD student and Postdoc A. O. Dohn, who has co-supervised the present project
in our group [151]. However, for practical applications, when one is interested in
a difference scattering signal, it is more convenient to use directly the following
relation:

∆S0(q, tp) =α
∑
l,m

fl(q)fm(q)
N l

n (Nm
n − δlm)

V
4π

×
∫ Rbox

0

d2∆g̃lm(d, tp)
sin(qd)

qd
d(d) (8.8)

where ∆g̃lm(d, tp) is the difference RDF given by:

∆g̃lm(d, tp) = g̃ES
lm(d, tp)− g̃GS,h

lm (d, tp) (8.9)

We have, therefore, modified the original script by A. O. Dohn to compute
difference scattering signals according to Eq. (8.8).

The anisotropic contribution to the scattering signal can be computed from a
formula that involves angle-dependent pairwise probability distribution func-
tions (%̃sab(d, ϑ, tp), where ϑ is the angle between the interatomic distance vector
d and the transition dipole moment of the molecule), as shown in Ref. [144]:

Ss2(q, tp) =− cs2(tp)

Nn∑
a,b

fa(q)fb(q)2π

×
∫ ∞

0

∫ π

0

d2 sin(ϑ)%̃sab(d, ϑ, tp)P2(cosϑ)j2(qd)d(d)d(ϑ) (8.10)
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where j2 is the second spherical Bessel function (j2(x) =
(

3
x2 − 1

) sin(x)
x −

3 cos(x)
x2 ), and the coefficient cs2(tp) describes the rotational distribution of the

species s. The time dependence of cs2(tp) is dictated by the rotational cor-
relation time of s [P3]. We have not implemented an equivalent formula using
angle-resolved RDFs from BOMD simulations, yet. We note, on the other hand,
that to model the anisotropic part of the difference scattering data of PtPOP
we found adequate to only employ single molecular structures, in which case
%̃sab(d, ϑ, tp) in Eq. (8.10) is a delta function, as it will be explained in the next
section.

8.2 Analysis of Ultrafast XDS Data

The strategy employed by our experimental collaborators for the quantitative
analysis of measured 1D difference XDS curves, like those shown in Fig. (7.2), is
to compare the signal to simulated curves within a maximum-likelihood frame-
work [149, 150]. In other words, to infer the structural changes one minimises
the difference between the experimental data and the simulated signal by opti-
mizing the structural model. The model includes three terms:

∆Smodel(q, tp) = ∆Ssolu(q, tp) + ∆Ssolu−solv(q, tp) + ∆Ssolv(q, tp) (8.11)

The first term, ∆Ssolu(q, tp), models changes in the distances between atoms
of the solute. Due to the very low concentrations at which XDS experiments
are performed, one neglects the scattering arising from interferences between
different solute molecules and considers only intramolecular distances [138]. The
second term, ∆Ssolu−solv(q, tp), is the scattering due to changes in solute-solvent
distances. It reflects rearrangements in the solvation shell around the solute, and
it is, for this reason, often referred to as cage term. The third contribution to
the model, ∆Ssolv(q, tp), accounts for changes in distances between atoms of the
solvent, which usually reflect changes in the thermodynamic state of the bulk
solvent.

We now show how the isotropic and anisotropic contributions to each of the
terms in Eq. (8.11) are typically computed, and highlight the particular choices
made in the analysis of the PtPOP XDS data. In the calculation of the various
terms we neglect the finite duration of the X-ray probe pulse in Eq. (8.2), thus
assuming that time averaged nuclear distributions are equal to the instantaneous
distributions.
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8.2.1 The Solute Term

We first examine how the isotropic contribution to the scattering is modelled.
∆Ssolu

0 (q, tp) is given by the isotropic scattering of the excited state minus the
isotropic scattering from the ground-state hole:

∆Ssolu
0 (q, tp) = α

[
Ssolu

ES,0(q, tp)− Sh,solu
GS,0 (q, tp)

]
(8.12)

Here, the assumption is usually made that the two terms are the scattering of
classical single structures. This amounts to disregarding entirely the spread of
the nuclear distribution functions involving atoms of the solute. For a pair of
atoms a and b the pairwise probability distribution function becomes:

4πd2%̃sab(d, tp)d(d) = δ(d− dsab(tp))d(d) (8.13)

When Eq. (8.13) is inserted into Eq. (8.5), we obtain the formula that describes
Ssolu

0,ES(q, tp) and Sh,solu
0,GS (q, tp) under the approximation of neglecting the spread

of the distributions:

Ssolu
s,0 (q, tp) =

Nsolu
n∑
a,b

fa(q)fb(q)
sin[qdsab(tp)]

qdsab(tp)
(8.14)

which is the well-known Debye formula for the orientationally averaged scat-
tering of a gas-phase molecule [135]. We will see how this approximation is
justified in the case of PtPOP in chapter 11, when we will compare the signal
calculated from single gas-phase structures with the scattering obtained from
RDFs generated through QM/MM BOMD simulations. For the fitting of the
experimental data, the scattering signal is calculated for sets of ground- and
excited-state structures generated by varying a selection of structural param-
eters in the molecule. The risk of overfitting the data limits the number of
explored parameters to only a few, usually those involving the atoms that scat-
ters the most in the molecule, and that are expected to undergo significant
changes upon excitation.

In the case of the analysis of the PtPOP XDS data, the model for the solute
assumed a fixed excited-state structure and incorporated the time dependence
through the Pt-Pt distance (dPtPt) of a (delta-function) ground-state hole:

∆Ssolu
0 (q, tp) = α

[
Ssolu

ES,0(q)− Sh,solu
GS,0 (q, dPtPt(tp))

]
(8.15)

We will see more in detail how the structure for the excited state and those for
the ground were constructed in chapter 11. The excitation fraction α, which
is a constant for the time scales considered in the analysis, can be treated as
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a free parameter in the fitting. However, α and structural parameters in the
fit are known to be strongly correlated [P4][150]. For this reason, α was first
determined by analysing the difference scattering signal at a pump-probe time
delay of 4.5 ps, at which both ground and excited states are known to have
reached vibrational equilibrium. Afterwards, α was locked and the structural
fitting of the time-dependent signal employed the Pt-Pt distance of the ground-
state hole as the only free parameter.

The anisotropic contribution to the difference scattering signal of the solute is
given by:

∆Ssolu
2 (q, tp) = α

[
Ssolu

ES,2(q, tp)− Sh,solu
GS,2 (q, tp)

]
(8.16)

Also in this case, the signals from the excited and ground states are computed
using single structure. Eq. (8.10) with delta functions instead of nuclear distri-
bution functions becomes:

Ssolu
s,2 (q, tp) = −c2(tp)

Nsolu
n∑
a,b

fa(q)fb(q)P2[cosϑab(tp)]j2[qdab(tp)] (8.17)

The model that was used to fit the measured time-dependent anisotropic differ-
ence scattering signal of PtPOP has the same form of Eq. (8.15):

∆Ssolu
2 (Q, t) = α

[
Ssolu

ES,2(q)− Sh,solu
GS,2 (q, dPtPt(tp))

]
(8.18)

Once again, the structural dynamics is parametrized only through the Pt-Pt
distance of the (delta-function) hole representing depletion of the ground-state
ensemble

8.2.2 The Solute-Solvent Term

Due to the larger number of degrees of freedom (DOF) involved, the signal from
solute-solvent interferences cannot be described using single structures, and one
has to appeal to BOMD simulations to generate nuclear distributions. The
strategy that we commonly employ consists in determining the difference signal
only once using equilibrium ground- and excited-state distributions obtained
from equilibrated BOMD data; while the dynamics is modelled as a fraction
of the final (equilibrium) value through a scaling factor β(t). For the isotropic
signal:

∆Ssolu−solv
0 (q, tp) = β(t)∆Ssolu−solv

MD (q) (8.19)

where β(t) grows from zero to the excitation fraction α. ∆Ssolu−solv
MD (q) in Eq.

(8.19) is computed from Eq. (8.8) with ∆g̃lm(d, tp) (see Eq. (8.9)) obtained
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from excited-state equilibrium RDFs (g̃ES
lm(d, tp) = gES

lm(d, t) = gES,eq
lm (d)) and

ground-state equilibrium RDFs (g̃GS,h
lm (d, tp) = gGS,h

lm (d, t) = gGS,eq
lm (d), where

we assume that the hole distributions have the same form of the equilibrium
ground-state distributions). In the computation of ∆g̃lm(d, tp), the index l for
the first summation in Eq. (8.8) runs over atom types within the solute and the
index m for the second summation runs over atom types of the solvent.

For the analysis of PtPOP we observed that there was no need to include the
solute-solvent term in the fit of ∆S2(q, tp), since the quality of the fit was already
sufficiently good without [P3]. Therefore, this term was only taken into account
in the modelling of the isotropic contribution to the difference scattering signal
through Eq. (8.19). The RDFs to compute ∆Ssolu−solv

MD (q) were obtained from
equilibrium ground- and excited-state QM/MM BOMD data, as we will see in
chapter 11.

8.2.3 The Solvent Term

The solvent term arises from changes in the thermodynamic variables of the
bulk solvent (temperature (T ), density (ρ) or pressure (p)). Variations of these
parameters happen as an effect of energy transfer from the solute to the solvent
during the excited-state relaxation events [153], and are isotropic. Therefore,
one has to account for such changes only in the isotropic part of the difference
scattering signal. This is done by determining in separate reference measure-
ments the differential of the scattering with respect to two of the three thermo-
dynamic variables [153]. Usually one measures the differential of the pressure
and of the temperature.

Since changes in pressure of the solvent are known to take place on nanosecond
time scales [138], well beyond the range of pump-probe delays explored in the
PtPOP experiments, in the modelling of the isotropic solvent difference scatter-
ing signal we included only a term due to changes in temperature at constant
pressure:

∆Ssolv
0 (q, tp) = ∆T (tp)

∂∆Sref
0 (q)

∂T

∣∣∣
ρ

(8.20)

8.2.4 Summarising the Model for the PtPOP Data

Collecting all terms presented in the previous paragraphs, the model used to
analyse the entire set of time-resolved XDS data collected in the XFEL experi-
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ments on PtPOP in water described in section 7.2 of chapter 7, is:

∆Smodel
0 (q, tp) =α

[
Ssolu

0,ES(q)− Sh,solu
0,GS (q, dPtPt(tp))

]
+ β(t)∆Ssolu−solv

MD (q) + ∆T (tp)
∂∆Sref

0 (q)

∂T

∣∣∣
ρ

(8.21)

∆Smodel
2 (q, tp) =α

[
Ssolu

2,ES(q)− Sh,solu
2,GS (q, dPtPt(tp))

]
(8.22)

Finally, we note that, certainly, the general procedure outlined here to analyse
1D XDS curves does not guarantee to reach a true global minimum in the opti-
mization of the model with respect to the experimental data. Prior experimental
knowledge and the support of QM/MM BOMD simulations are fundamental in
this regard. For example, the choice of modelling a time-dependent ground-state
hole in Eqs. (8.21) and (8.22), while fixing the structure of the excited state for
PtPOP, was motivated by a comparison of the period of the oscillating signal
with the known Pt-Pt vibrational period for the ground and excited states of the
molecule, and by the guidance offered by QM/MM BOMD simulations, which
could confirm the hypothesis that the observed dynamics is the signature of a
moving ground-state hole. The assistance of QM/MM BOMD simulations is
even more important for the determination of structural changes involving the
solvation shell, and hence modelling of the term ∆Ssolu−solv(q, tp), for which
prior knowledge is often lacking. In chapter 11 we will see more in detail how
calculation of ∆Ssolu−solv(q, tp) from QM/MM BOMD simulations supplied for
deficiencies in the model of the ∆S0(q, tp) signal of PtPOP.
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Part IV

Simulations results





9
Gas-Phase Molecular
Geometry

9.1 Computational Details of the GPAW Calcu-
lations

In all PtPOP simulations that are reported in this thesis, unless otherwise speci-
fied, the electronic structure of the complex was calculated using GPAW [50, 49]
with representation of the KS molecular orbitals in a basis of linear combination
of atomic orbitals (LCAO) [105].

The excited states were described with the ∆SCF scheme presented in section
5.5 of chapter 5. We chose a σ of 0.01 eV for the Gaussian smearing of the orbital
occupation numbers. In the tests of the ∆SCF implementation (section 5.5),
this value of σ was found to bring no detectable changes in the PES of the lowest-
lying singlet state of the CO molecule for geometries at which ∆SCF without
Gaussian smeared constraints could converge (see Fig. 5.8). A σ of 0.01 eV
allowed to readily converge all steps of all ∆SCF trajectories of PtPOP. For the
open-shell singlet excited state, the calculations employed the spin-unpolarized
approach described in section 5.5. Spin-unpolarized calculations are computa-
tionally much cheaper for geometry optimizations and BOMD simulations than
Ziegler’s sum method [52], because the latter requires SCF convergence of two
single-determinant states, one having mixed singlet-triplet and one with triplet
spin symmetry.

The exchange-correlation functional employed in the calculations was the GGA
functional BLYP [95, 96], while the basis functions were tzp [105] for the Pt
atoms and dzp [105] for all other atoms. We used a grid spacing of the GPAW
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cell of 0.18 Å. This choice of LCAO basis set and grid spacing ensures that the
structure of the complex is converged with respect to these simulation parame-
ters, as shown in the next section.

9.2 Preliminary Studies

9.2.1 GPAW Convergence Tests

Figure 9.1: Convergence of the Pt-Pt distance of PtPOP in the ground state
(S0) with respect to the spacing between points of the GPAW
real-space grid and LCAO basis set size. For each combination
of grid spacing/basis set the geometry of the molecule was fully
optimized in vacuum with a convergence criteria of 0.02 eV/Å for
the maximum force on all individual atoms. The syntax “sz(dzp)”
indicates that the calculations employed single-zeta (sz) functions
from a double-zeta polarized (dzp) basis set. (Left) Contour plot
of the Pt-Pt distance. (Right) Contour plot of the percentage
deviation of the Pt-Pt distance with respect to the value obtained
when using a 0.15 Å grid spacing with qzp basis set. A deviation
of 1% corresponds to an absolute difference of 0.03 Å. Satisfactory
convergence is achieved for grid spacings smaller than 0.20 Å and
only when using polarized basis.
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Electronic structure calculations are usually preceded by preparatory tests.
When using GPAW, we must ensure that (i) the size of the simulation cell
is large enough for a sufficiently accurate representation of the orbitals, and
(ii) the molecular properties of interest are converged with respect to spacing
between points of the real-space grid and, in the case of LCAO calculations,
quality of the basis set.

The size of the cell containing the real-space grid on which numerical basis
functions and electron density of PtPOP were represented, was chosen such
that the distance between any of the atoms of the complex and any of the the
cell borders was at least 6 Å. This choice of cell size was seen to be sufficient to
eliminate spurious effects due to truncation of the KS orbitals at the borders.

Figure 9.2: Convergence of the Pt-Pt distance with respect to the size of the
basis set. Each point is obtained from a geometry optimization
in vacuum at a grid spacing of 0.182 Å with different size of the
basis set. The y values express the percentage deviation of the
Pt-Pt distance with respect to the Pt-Pt distance obtained when
using a 0.182 Å grid spacing with qzp basis set. Therefore, the
plot corresponds to a horizontal cut at 0.182 Å of the contour plot
in Fig. 9.1 (Right). This value of grid spacing is that utilized in
all GPAW calculations performed on PtPOP in the present work.

Since we used LCAO calculations in all PtPOP simulations, we tested conver-
gence with respect to both the grid spacing and atomic orbital basis set. Con-
vergence was tested against the main structural parameter of interest, namely
the Pt-Pt distance, as shown in Fig. 9.1. Deviations smaller than 1% with
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respect to the Pt-Pt distance obtained with the smallest grid spacing (0.15 Å)
and largest basis set (qzp), are achieved when employing grid spacings smaller
than 0.20 Å and basis sets larger than single-zeta and including polarization
functions. The importance of including polarization functions for an accurate
description of the structure of the complex is highlighted in Fig. 9.1.

Given the above results, the GPAW simulations of PtPOP could safely employ
a 0.18 Å grid spacing and basis set of tzp quality for the Pt atoms and dzp for
all other atoms.

9.2.2 Molecular Orbitals and Electron Density

Fig. 9.3 shows a depiction of the HOMO and LUMO orbitals of the ground
state PtPOP molecule fully optimized in vacuum with GPAW. The shape of the
orbitals clearly reflects their metal-metal dσ∗ and pσ character, respectively:

Figure 9.3: HOMO and LUMO molecular orbitals of PtPOP ground state at
the gas-phase optimized geometry. Isovalues are drawn at 0.075√

e−/Å3.

the HOMO is antibonding in the region between the two Pt atoms and mainly
localized outwards along the Pt-Pt axis, the LUMO is σ-bonding, while also
extending on the outer sides of the PtP4 faces, a feature that is attributable to
the involvement of p orbitals of the phosphorus atoms [11].

Promotion of an electron from the HOMO to the LUMO leads to formation
of the S1 and T1 excited states of the molecule. Fig. 9.4 illustrates the effects of
excitation to the S1 state on the electron density of the complex. The dσ∗ → pσ
transition results in build-up of electron density between the two Pt atoms and
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Figure 9.4: Difference between the electron density of the S1 and S0 states
of PtPOP at the ground-state GPAW optimized geometry of the
complex (electron density S1 - electron density S0). Isovalues are
drawn at 0.0056 e−/Å3. (Left) Negative part of the difference
density. (Right) Positive values. The integral over the volume of
the positive or negative part of the difference density gives a value
of ±0.56 e−.

loss of it along the Pt-Pt axis in outward position. Besides, gain of electron
density in S1 is also apparent close to the P atoms, along the outer sides of the
PtP4 faces, reflecting the involvement of p ligand orbitals in the formation of
the LUMO. This outward shift of density compensates in part for the loss along
the Pt-Pt axis.

9.2.3 Excitation Energies

Tab. 9.1 reports computed vacuum S0 → S1 and S0 → T1 vertical excitation en-
ergies together with the respective experimental values. The transition energies
were calculated with ∆SCF in GPAW at the S0 gas-phase optimized structure
of PtPOP. For the S1 state we used both the spin-unpolarized technique, which
is the method we employed in all BOMD simulations of PtPOP, and Ziegler’s
sum rule.

Calculated vertical S0 → S1 transition energies are within ∼3% of the exper-
imental range of values obtained from the maximum of the S0 → S1 band of
absorption spectra of crystals [66, 67]. Almost exact agreement is found between
the S1 excitation energies computed using the two different ∆SCF methods to
describe the singlet excited state. This confirms that the spin-unpolarized ∆SCF
description of the S1 state of PtPOP has the same level of accuracy as calcula-
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Table 9.1: Vertical S0 → S1 and S0 → T1 excitation energies of PtPOP in
vacuum calculated using ∆SCF in GPAW and comparison with
experimental values retrieved from the literature. The calculations
were performed at the optimized ground-state vacuum geometry of
the complex. All values are in eV.

Calc Exp [66, 67]

S0 → S1
3.50a

3.51b 3.35-3.44

S0 → T1 3.27 2.72-2.76

∆(S1 − T1)
0.23a

0.24b 0.63-0.68
a Computed using Ziegler’s sum rule [52].

b Obtained from spin-unpolarized calculations.

tions based on the more computationally expensive sum rule.

The calculated T1 excitation energy is ∼20% larger than the experimental val-
ues. This, in turn, causes the S1-T1 splitting to be underestimated by a fac-
tor of around 2.5. A similar excitation energy for the triplet was obtained by
Novozhilova et al. [75] by TDDFT with the BLYP functional and an all-electron
basis set for Pt. We note that in the present study we focus on the dynamics
in the S1 state happening at times shorter than the known intersystem cross-
ing (ISC) time of PtPOP in water (∼14 ps [18]). All excited-state BOMD
simulations did not account for singlet-triplet transitions induced by spin orbit
couplings (SOCs) and, therefore, they were not affected by the underestimation
of the S1-T1 energy gap.

9.3 Ground- and Excited-State Geometries

The geometries of the ground state (S0) and lowest-lying singlet (S1) and triplet
(T1) excited states of PtPOP were fully optimized in vacuum using a quasi-
Newton local optimization algorithm implemented in ASE. A previous DFT
study [161] identified two conformers of PtPOP in the ground state with stag-
gered (C4h symmetry) and eclipsed (D4 symmetry) hydrogen bonding motifs,
respectively, the eclipsed structure being about 0.036 eV more stable at the
DFT-B3LYP level. In the present work, we optimized the more stable ground
state conformation; this structure was then used as a starting point to opti-
mize the geometry in the excited states. Geometry optimization was carried
out until the maximum force on all individual atoms was less than 0.02 eV/Å.
Fully-optimized geometries were confirmed to be true minima of the potential
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energy surface by inspection of the frequencies of a normal mode (NM) analysis.

The S0 and T1 geometries optimized in ASE and GPAW were compared to
optimized geometries obtained using a standard implementation of KS DFT
within the Gaussian09 program package [162]. The calculations in Gaussian09
were performed by Postdoc Mátyás Pápai in our group. In these calculations,
the unrestricted formalism was used to describe the excited state. We employed
the Ahlrichs TZVP [163] all-electron basis set for the P, O, H atoms, and the
quasirelativistic effective core potential (ECP) def2-ECP [164] in conjunction
with the valence electrons Ahlrichs def2-TZVP [165] basis set for the Pt atoms.
Two different exchange-correlation functionals were used: the BLYP functional,
which was also utilized in the GPAW calculations, and the commonly employed
hybrid functional B3LYP [102, 103], to test the effect of including a portion of
exact Hartree-Fock exchange energy on the structure of the complex. Also for
these calculations, we checked the frequencies of a normal mode (NM) analysis
to confirm that the fully-optimized geometries were true minima.

Potential energy curves in vacuum, in a particular electronic state, were com-
puted by scanning along relevant coordinates, starting from the fully-optimized
geometry of that state, while relaxing at each step all other degrees of freedom
with the same convergence criteria as used in the full geometry optimizations
in ASE.

9.3.1 Optimized Structures

Figure 9.5: Visualization of the PtPOP complex with the atomic labels used
to indicate the structural parameters reported in Tab. 9.2. The
molecular structure represented here corresponds to the geometry
fully optimized in the ground state with GPAW.
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Table 9.2: Selected structural parameters for the S0, S1 and T1 states of Pt-
POP obtained from the geometries optimized in vacuum at different
DFT levels

S0 ∆ (T1 − S0)b ∆ (S1 − S0)

ECP/TZVPa ECP/TZVPa

BLYP
GPAW BLYP B3LYP BLYP

GPAW BLYP B3LYP BLYP
GPAW

Bond (Å)
Pt-Pt 3.005 3.091 3.065 -0.211 -0.241 -0.248 -0.205
Pt-P 2.393 2.425 2.399 0.031 0.032 0.019 0.032
P-O(-P′) 1.718 1.711 1.679 0.001 0.002 -0.000 0.001
P· · ·P′ 3.098 3.126 3.084 -0.060 -0.062 -0.067 -0.055
Angles (deg)
P-O-P′ 128.84 131.90 133.38 -4.63 -5.07 -5.39 -4.27
(Pt-Pt-P)α 91.14 90.40 90.23 5.49 5.45 4.42 5.42
(Pt-Pt-P)β 91.08 90.42 90.22 -1.96 -1.28 -0.14 -1.93
P-Pt-Pt-P′ 0.03 0.00 0.01 0.61 0.54 0.36 0.46

a ECP and valence electrons basis set used for the Pt atoms.
b T1 calculated using unrestricted DFT.

Relevant structural parameters of the S0 state of PtPOP (see Fig. 9.5 for a
depiction of the molecule) together with the differences with respect to the S1

and T1 structures obtained from the geometry optimizations in vacuum, are
given in Tab. 9.2.

The ground state is found to have approximate C4h symmetry, with a D4h

Pt2P8 core. The largest discrepancy between the S0 structure predicted using
GPAW and the one obtained using more conventional atom-centered basis sets
and an ECP for Pt with the same exchange-correlation functional, is in the
Pt-Pt distance, which is 0.086 Å shorter in the GPAW structure. We note that
the GPAW calculated Pt-Pt distance of 3.005 Å is around 0.09 Å closer to the
midpoint of the experimental range (2.913-2.979 Å) of values found from X-
ray crystallography [71, 166, 167, 168]. The differences become smaller in the
excited states since the structure calculated with standard KS DFT experiences
a larger Pt-Pt contraction.

As already mentioned before in this thesis, the Pt-Pt contraction in the excited
states is a consequence of excitation of an electron from the metal-metal HOMO
antibonding to the metal-metal LUMO bonding orbital. Eventually, the Pt-Pt
contractions from ground to excited state predicted by all different methods are
well within the experimental range (0.19-0.28 Å) of values obtained from Franck-
Condon analysis of the vibronic progression of low-temperature absorption and
emission spectra [73, 67], and X-ray diffraction measurements of crystals [71, 72].
The Pt-Pt bond in the T1 state is found to be shorter than in the S1 state of
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Figure 9.6: The Pt2P8 core of PtPOP of the geometries of the S0 and S1 states
fully optimized in vacuum with GPAW. In the ground state, each
PtP4 group is in a local square pyramidal geometry and the core
has D4h symmetry. Following excitation to S1, the core distorts
towards aD2d conformation, in which PtP4 moieties are in a quasi-
trigonal bipyramidal geometry.

∼0.01 Å from the GPAW calculations. Indeed, a slightly reduced contraction
in the singlet excited state with respect to the triplet has been inferred exper-
imentally by comparing the wavenumbers of the Pt-Pt stretching progression
exhibited by the absorption bands of crystal (n-Bu4N)4[PtPOP] relative to the
S1 (145-147 cm−1) and T1 (150 cm−1) states [11, 66], and was further con-
firmed by the DFT calculations performed by Záliš et al. [74] using the PBE0
functional, which delivered a ∆(S1 − T1) for the Pt-Pt bond of ∼0.02 Å.

Turning to the other geometrical parameters, the most prominent changes be-
tween ground- and excited-state structures in interatomic distances involving
atoms of the ligands are represented by a lengthening of the Pt-P bonds and by
a shortening of the P· · ·P′ distances along the Pt-Pt axis, which is, however,
much smaller than the Pt-Pt contraction itself. An elongation of the Pt-P bonds
in the excited state of PtPOP is a well-known prediction of DFT [75]. Since
using B3LYP results in a ∼40% smaller elongation, as evident from Tab. 9.2,
it seems also to be the structural effect of excitation that is most sensible to
the introduction of exact exchange in the DFT functional. Apart from that,
BLYP and B3LYP predicted structural changes from ground to excited state
agree within 0.007 Å for bond lengths and 1◦ for angles, while differences in the
ground state are all smaller than 2% of the BLYP calculated values. Therefore,
given the similarities between BLYP and B3LYP results in this case, it was
possible to perform the BOMD simulations using the computationally cheaper
GGA functional without considerable loss of accuracy with respect to DFT with
a hybrid functional.
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An interesting aspect of the optimized geometry of the excited states that
emerges from inspection of the values of the ∠Pt-Pt-P angles reported in Tab.
9.2 is that PtP4 moieties do not retain a local square-based planar geometry
but slightly distort towards a quasi-trigonal bipyramidal structure. As a con-
sequence, in the excited states the symmetry of the Pt2P8 core is lowered to
D2d. This is underpinned by the fact that ∠Pt-Pt-P angles in the excited states
do not have the same value, as in the ground state, where they are approxi-
mately 90◦. Instead, one can define ∠Pt-Pt-P angles involving equatorial and
axial P atoms in a local quasi-trigonal bipyramidal geometry. The distortion
is represented in Fig. 9.6, where we have indicated ∠Pt-Pt-P angles involving
equatorial and axial P atoms as α and β, respectively. We will discuss in more
detail this symmetry lowering involving the ligands of the complex in the next
section, where the distortion will be characterized by means of PES scans.

9.3.2 Potential Energy Surfaces

Figure 9.7: PESs along the Pt-Pt coordinate computed in vacuum for the S0,
S1 and T1 states of PtPOP using GPAW. Open circles represent
the calculated points, while the lines are 3rd order polynomial fits.

Fig. 9.7 shows the PESs computed along the Pt-Pt coordinate for all three
electronic states using GPAW with the BLYP functional. As expected, the
PESs of T1 and S1 are shifted to shorter Pt-Pt distances with respect to the
ground state and parallel to each other. A feature that, up to now, had only
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been postulated experimentally based on the similarities of the low-temperature
S0 → S1 and S0 → T1 absorption bands [11, 66]. To our knowledge, this is the
first time that this experimental observation is confirmed by a DFT calculation
of the S1 and T1 PESs of PtPOP. Given the close similarities between the
electronic structures of d8-d8 complexes [11], we can argue that also the other
members of this class of compounds feature parallel T1 and S1 PESs. In light of
this, the choice of using gradients calculated in the first triplet state to mimic
BO dynamics in S1, as previously done in our group to simulate by unrestricted
DFT the S1 dynamics of a diiridium d8-d8 complex [30], appears justified, at
least for simulations in vacuum.

Figure 9.8: Vacuum PES of the S1 state of PtPOP along the pseudorotation
coordinate ∆. ∆ is the angle difference defined in the figure. The
Pt2P8 core of PtPOP is shown at the symmetric minima and at
the transition state of the potential energy curve. The structure
at ∆=0 has D4h symmetry and each PtP4 group is in a local
square pyramidal geometry, as in the fully optimized ground-state
molecule. The minima correspond to a Pt2P8 core with D2d sym-
metry and PtP4 groups in a quasi-trigonal bipyramidal geometry.
Open circles represent the calculated points, while the line is a
cubic spline fit to the data.

The relative energies of the singlet and triplet excited states are affected by
the understabilization of the triplet by ∼0.5 eV that has already been noted
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in section 9.2. However, since we performed only BOMD simulations in the S1

state for times considerably shorter than the ISC times observed for PtPOP
in water solution, reproducing an accurate energy picture of the lowest triplet
excited state was not relevant for these studies.

We have already mentioned that, in the excited states, PtP4 groups of the
molecule arrange according to a local quasi-trigonal bipyramidal geometry. The
extent of the distortion can be quantified by the difference (indicated by ∆)
between ∠Pt-Pt-P angles involving equatorial and axial P atoms of the local
quasi-trigonal bipyramidal geometry (see Fig. 9.8). To characterize in more de-
tail this structural distortion involving the ligands, we have computed the PES
in the S1 state along the coordinate ∆. The PES is shown in Fig. 9.8 and clearly
reveals the presence of a rotational barrier between equivalent D2d geometries.
The pseudorotation of the P atoms in each PtP4 group resembles the Berry
isomerization mechanism [169] occurring in trigonal bipyramidal molecules, al-
though the angle ∠(Pt-Pt-P)α does not reach the 120◦ value characteristic of a
perfect bipyramidal geometry due to the rigidity of the P-O-P bridging ligands.

We have investigated the dependence of this prediction of DFT on the choice
of DFT functional. To this end, we have calculated the PES of PtPOP in
the S1 state along the pseudorotation coordinate ∆ using ∆SCF in GPAW
with the PBE functional, which differs from BLYP in that it does not include
empirically optimized parameters as the latter. The results of the calculation are
presented in Fig. 9.9, where also the PES computed at BLYP level, and already
shown in Fig. 9.8, is included. The two functionals agree in the prediction
that structures with PtP4 groups in a quasi-trigonal bipyramidal geometry are
located at energy-minima, although the height of the barrier for pseudorotation
between the two equivalent isomers predicted by PBE is observed to be almost
4 times smaller than that computed with BLYP.

D2d isomers of transition metal M2L8 dimers, where each ML4 is in a local trig-
onal bipyramidal geometry and can undergo Berry pseudorotation, are known
[170], but have never been reported before for PtPOP. From the experimental
side, Ohashi and co-workers [71] interpreted the outcome of time-resolved X-
ray diffraction measurements of crystals assuming D4h symmetry. However, the
analysis derived a large contraction of ∼0.1-0.2 Å of the Pt-P bonds, which is in
contrast to the slight lengthening obtained from all DFT calculations. Moreover,
it should be considered that in crystals there are packing forces and interactions
with counterions that might come into play, which are not taken into account
in the calculations of the gas-phase isolated molecule, making the validity of a
direct comparison with experiments dubious. It is difficult, on the other hand,
to explain why previous computational works where the structure of PtPOP in
the triplet state was optimized with unrestricted DFT without symmetry con-
straints, have not reported this ligand distortion with symmetry lowering of the



9.3 Ground- and Excited-State Geometries 113

Figure 9.9: PESs of PtPOP in the S1 state along the angle difference ∆ defined
in figure. The PESs were computed in vacuum using ∆SCF in
GPAW with the BLYP and PBE functionals by relaxing at each
step all degrees of freedom apart from ∆. Open circles are the
calculated points, while the lines are cubic spline fits to the data.

Pt2P8 core. The existence of a local minimum at a geometry with D2d symme-
try for both the T1 and S1 states is supported by all type of DFT calculations
presented here, and was reproduced also by a GGA functional different than
BLYP. In the absence of detailed information about the true nature of reported
T1 geometries in the literature, we speculate that this ligand distortion might
have been overlooked.



114 Gas-Phase Molecular Geometry



10
Computational Details of the
QM/MM BOMD Simulations

10.1 Equilibrium Ground-State Simulations

The optimized geometry of PtPOP in its ground electronic state (S0) was placed
in a cubic simulation box with side length of 35 Å containing TIP4P [123] water
molecules at a density of 1 g/cm3 pre-equilibrated in the NVT ensemble at
300 K. The total number of solvent molecules, after removing those overlapping
with the solute, was 1383. The QM subsystem was defined to comprise only the
complex. The MM subsystem included the TIP4P water molecules plus four K+

counterions to neutralize the total charge of the box. Potassium was also used as
counterion in the time-resolved X-ray diffuse scattering (XDS) experiments on
PtPOP in water presented in chapter 7. The counterions were described as point
charges, using force field parameters from Ref. [171]. During the dynamics,
the position of each counterion was restrained to regions of the simulation box
outside a sphere centered at the center of the QM cell by applying the restraint
potential shown in Eq. (6.31). The cutoff radius dpr and the harmonic force
constant kpr for the restraint potential were 16 Å and 500 kcal/mol respectively.
This choice of dpr and kpr ensured that the atoms of the complex were at least 12
Å apart from the counterions during the simulations, as seen from the solute-K+

radial distribution functions (RDFs). The ground state of PtPOP was described
using the BLYP functional, a grid spacing of 0.18 Å, and with tzp basis set
[105] for Pt and dzp [105] for the rest of the atoms. Non-bonded dispersion and
exchange repulsion interactions between the solute and the MM particles were
parametrized through the standard Lennard-Jones (LJ) potential of Eq. (6.5),
using for the atoms of the complex LJ parameters from the universal force field
(UFF) [172].
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After solvating the complex, the entire box was further equilibrated in NVT to
300 K, employing a 1 fs time step until stabilization of the temperature. Ther-
malization was realized using the Langevin thermostat implemented in ASE.
The thermostat was applied only to the solvent, while the friction on the atoms
of the solute was set to 0. Periodic boundary conditions were applied according
to the minimum image convention. Stability of the simulations was ensured
by constraining all OH bonds and hydrogen bonds present in PtPOP with the
RATTLE algorithm [129]. After the equilibration, QM/MM BOMD data were
collected with 2 fs time step in the NVT ensemble with the thermostat applied
to the solvent, for at least further 25 ps.

Fig. 10.1 (Left) shows the equilibration of the instantaneous kinetic tempera-
ture of the solvent in the course of the simulation. The instantaneous kinetic

Figure 10.1: (Left) Equilibration of the instantaneous kinetic temperature of
the solvent for a QM/MM BOMD trajectory of PtPOP in the
ground state. The vertical grey dashed line represents the time
at which the trajectory was considered equilibrated. The average
instantaneous kinetic temperature 〈Tk〉 and the variance σTk

were
computed over the equilibrated part of the trajectory. (Right)
The distribution of instantaneous kinetic temperatures from the
equilibrated trajectory as compared to a Gaussian probability
distribution with mean 〈Tk〉 and variance calculated according
to Eq. (10.3).

temperature Tk at a time t during a trajectory propagation of a collection of
NMM atoms can be calculated from:

Tk(t) =
1

(3NMM −Nc) kb

NMM∑
k=1

Mk | Ṙk(t) |2 (10.1)

where Nc is the total number of constrained internal degrees of freedom (DOF).
For NH2O TIP4P water molecules NMM = Nc = 3NH2O, since in the TIP4P
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force field all three internal DOF of H2O are constrained. Therefore, Eq. (10.1)
expressed as a function of the total number of water molecules in the simulation
box becomes:

Tk(t) =
1

6NH2Okb

NMM∑
k=1

Mk | Ṙk(t) |2 (10.2)

The average instantaneous kinetic temperature 〈Tk〉 over the equilibrated part
of the trajectory, which is taken at times t > 7 ps, was equal to 300.7 K. Fig.
10.1 (Right) compares the distribution of instantaneous kinetic temperatures
from the equilibrated part of the trajectory with the theoretical probability
distribution for a canonical ensemble at 〈Tk〉. The theoretical distribution was
obtained as a Gaussian function with variance calculated from 〈Tk〉 according
to Boltzmann statistics for the NVT ensemble [127]:

σ2
NVT(Tk) =

2 〈Tk〉2

3NMM −Nc
=
〈Tk〉2

3NH2O
(10.3)

The perfect agreement between the simulated and theoretical distributions in-
dicates that the simulations are able to reproduce the correct fluctuations of the
instantaneous kinetic temperature for an NVT ensemble.

From the equilibrated part of the trajectory, 48 more parallel QM/MM BOMD
production runs were started at 0.5 ps intervals, to further accelerate the data
collection process. When starting each trajectory, the velocities of the atoms
in the solvent were randomized by imposing a Maxwell-Boltzmann distribution
at 300 K, to minimize the correlation between them. Overall, the equilibrated
trajectories amounted to 460 ps and were obtained over ∼9750 h of CPU time,
corresponding to ∼21 h per picosecond.

To assess the impact of constraining all OH and hydrogen bonds in the complex
on equilibrium properties and dynamics, a single trajectory with increased mass
for all hydrogen atoms but no constraints on the degrees of freedom of the
solute was produced. The average of the main structural parameters of the
complex and the Pt-Pt oscillating frequency obtained from this trajectory were
found to be negligibly different from those obtained when employing RATTLE
constraints for the OH and hydrogen bonds.
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10.2 Nonequilibrium Dynamics due to Laser Ex-
citation

The structural and solvation dynamics following photoexcitation by an ultra-
short pulse of PtPOP in water is investigated using classical trajectories of the
nuclei obtained by computing energy and forces at QM/MM level. The basic
principle we base our study on is that individual trajectories or ensembles of
them generated or selected from already available equilibrium BOMD ensem-
bles, according to out-of-equilibrium initial conditions, reflect the laser-induced
dynamics of the system.

The ground-state simulations detailed in the previous section established a large
set of around 230000 equilibrated QM/MM BOMD snapshots collected over
a total simulation time of about 460 ps. Collectively these data add up to
an equilibrium ensemble of ground-state PtPOP configurations in water, from
which initial conditions for the nonequilibrium dynamics in the ground and S1

excited states can be drawn.

Excitation to the S1 state by an ultrashort optical pulse was described in a
picture of instantaneous promotion of ground-state molecules from the under-
lying equilibrium ground-state distribution of Pt-Pt distances (P eq

GS(dPtPt)) to
S1 according to a spatial filtering (SF) approximation [173, 174, 175, 176, 177]
of the pump-pulse transition. This approximation takes into account the fre-
quency distribution of the ultrashort pulse but neglects any effect due to nu-
clear motion throughout its finite temporal duration. For a Gaussian pulse
ε(t) ∝ e−

t2

2τ2 e−iω1t, where ω1 and τ are respectively the center frequency and
temporal width, initial conditions for a set of excited-state trajectories can be
sampled from the (unnormalized) distribution PES(dPtPt, t0) given by:

PES(dPtPt, t0) = F 2(dPtPt)P
eq
GS(dPtPt) (10.4)

In Eq. (10.4), the excitation window F (dPtPt) takes the form:

F (dPtPt) = A exp

[
−τ

2 (∆V (dPtPt)− ~ω1)
2

2~2

]
(10.5)

where ∆V (dPtPt) is the potential energy difference between the ground and
excited states. An ultrashort pump pulse burns a hole in the ground-state
equilibrium distribution of Pt-Pt distances. The change in the ground-state dis-
tribution P eq

GS(dPtPt) induced by the pulse, which we will call distribution of the
hole, will exhibit periodic motion in the ground-state PES with the character-
istic period of the ground state [177]. Following Fleming [177], we approximate
the distribution of the hole at time zero P h

GS(dPtPt, t0) with PES(dPtPt, t0), i.e.
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we assume that the hole left in ground-state distribution by the pulse has the
same form of the non-stationary distribution created in the excited state.

The procedure that we used to generate initial conditions for the nonequilibrium
dynamics in the ground and excited states within the SF approximation is the
following:

1. Construct ∆V (dPtPt). The choice of the potentials is not trivial, since the
concept itself of fixed potential energy surfaces is ambiguous in the context
of BOMD simulations in the presence of a solvent (we will examine the as-
sumption of using fixed potential energy surfaces in the next paragraph).
A reasonable choice is to use the free energy surface of PtPOP along the
Pt-Pt coordinate obtained as potential of mean force (PMF) from equi-
librium QM/MM BOMD simulations. While for the ground state the
PMF is readily available from the set of equilibrated ground-state tra-
jectories, for the excited state the PMF is not known before performing
excited-state QM/MM BOMD simulations. Establishing a set of equi-
librated excited-state trajectories before the nonequilibrium propagation
would be computationally expensive. So, as we will see shortly, we com-
puted ∆V (dPtPt) from parameters known from steady-state and ultrafast
optical measurements in solution.

2. Chose the parameters ω1 and τ of the optical pump pulse.

3. Obtain PES(dPtPt, t0) = P h
GS(dPtPt, t0) from Eqs. (10.4) and (10.5).

4. Propagate ∆SCF-QM/MM BOMD trajectories in the excited-state start-
ing from an ensemble of ground-state equilibrium configurations reflecting
PES(dPtPt, t0). In the selection of ground-state frames we ensured that
they where spaced at least 0.5 ps from each other, such to minimize the
correlation between excited-state trajectories.

5. Remove an ensemble of PtPOP molecules reflecting P h
GS(dPtPt,0) from the

ground-state equilibrium ensemble. The remaining ground-state molecules
represent a non-stationary ensemble.

We established two sets of nonequilibrium ground- and excited-state ensembles
using two different choices of laser parameters. For the first set of initial con-
ditions, the laser pump pulse was chosen to reproduce as close as possible the
experimental conditions of the pump-probe X-ray diffuse scattering (XDS) mea-
surements of PtPOP in water presented in chapter 7.2, in which ground-state
dynamics was observed. The initial conditions for the second set of excited-state
nonequilibrium simulations and the corresponding nonequilibrium ensemble of
remaining ground-state molecules employed the parameters of the laser used by
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van der Veen et al. [18] in femtosecond transient absorption measurements of
the ultrafast excited-state vibrational dynamics of PtPOP in water. In what
follows, we examine the details of the initial conditions of each set of ensembles,
and at the end compare them.

The first set of initial conditions was aimed at modelling ground-state hole
dynamics of PtPOP in water for helping the analysis and substantiating the
outcome of the ultrafast XDS measurements we performed at the LCLS XFEL of
Stanford [P4, P3]. ∆V (dPtPt) was taken as the difference between two harmonic
potentials with force constants calculated from the reduced mass of the Pt2
dimer and the vibrational frequencies obtained by van der Veen et al. [18]
using femtosecond transient absorption measurements in water solution, which
in wavenumbers are 119 and 149 cm−1 for S0 and S1, respectively. For the
position of the minima of the potentials, the Pt-Pt distances of the S0 and
S1 gas-phase optimized geometries were used (see Tab. 9.2); finally, the two
potentials were shifted relative to each other such that the energy difference at
the Pt-Pt distance of the optimized ground-state geometry was equal to 3.35
eV (corresponding to a wavelength of ∼370 nm), i.e. the transition energy at
the maximum of the S0 → S1 band of the experimental absorption spectrum
in aqueous solution [P4][66, 67]. The parameters for the excitation field were
obtained from a Gaussian fit to the spectral intensity profile of the pump pulse
that was used in the XDS experiment. Under the assumption that the pulse is
Fourier-transform limited, the fit gave a τ of 20 fs; while for ~ω1 we obtained
3.14 eV (∼370 nm). The Gaussian fit to the experimental pump pulse is shown
in Fig. 10.2 together with the experimental absorption spectrum of PtPOP in
water [P4]. In order to remove a fraction of ground-state molecules reflecting
the experimental excitation fraction α, the parameter A in the expression of
the excitation window, Eq. (10.5), can be increased until the desired value of
α is obtained. Adopting this procedure can lead to complete depopulation of
the ground-state equilibrium distribution at specific Pt-Pt distances. Since the
experiment employed a linearly polarized excitation pulse, we took into account
the fact that the orientation dependence of the absorption probability [147]
limits the number of molecules that can be excited. Thus, in order to avoid the
unphysical situation of depopulating entirely the ground state at a particular
Pt-Pt distance, the S1 distribution given by Eq. (10.4) was modified according
to:

P ′ES(dPtPt, t0) =

{
1
BPES(dPtPt, t0) if PES(dPtPt, t0) > 1

BP
eq
GS(dPtPt)

PES(dPtPt, t0) if PES(dPtPt, t0) ≤ 1
BP

eq
GS(dPtPt)

(10.6)
with B > 1, and where the normalization factor for P ′ES(dPtPt, t0), given by∫
P ′ES(dPtPt, t0)d(dPtPt), represents the simulated excitation fraction. The pa-

rameters A and B defining the form of P ′ES(dPtPt, t0) were chosen such to deliver
a simulated excitation fraction close to the estimated experimental α and most
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Figure 10.2: Spectral intensity profiles of the ultrashort laser pulses used
to generate initial conditions for two distinct sets of ground-
and excited-state QM/MM BOMD nonequilibrium simulations.
“Pump pulse 1” is the pump laser that we have used in the time-
resolved XDS XFEL experiment on PtPOP in water [P4][P3] (see
chapter 7.2). “Pump pulse 2” is the pump laser utilized by van
der Veen et al. [18] in femtosecond optical measurements to in-
vestigate the vibrational relaxation of PtPOP in the first singlet
excited state in aqueous solution. Also shown is the absorption
spectrum of PtPOP measured in water [P4].

closely match the initial position of the ground-state hole as obtained from a
fit of the experimental data (the results of the fit will be shown in chapter
12). Then, 50 S1 ∆SCF-QM/MM trajectories were started from ground-state
QM/MM BOMD configurations reflecting the distribution P ′ES(dPtPt, t0). The
S1 trajectories were collected with a time step of 2 fs, and keeping the thermostat
applied to the solvent molecules. In total, the trajectories amounted to around
200 ps of ∆SCF-QM/MM BOMD data. The adequacy of the approximation
of using harmonic potentials in Eq. (10.5) was ascertained by comparing with
P ′ES(dPtPt, t0) calculated using free energy surfaces obtained as Morse-potential
fits to the potential of mean force (PMF) from the QM/MM BOMD simula-
tions. The PMF were calculated from the S0 and S1 QM/MM BOMD sets of
data according to:

ws(dPtPt) = −kbT ln(gsPtPt(dPtPt)) (10.7)

where T = 300 K and gsPtPt(dPtPt) is the pairwise Pt-Pt radial distribution
function (RDF) obtained from the ground- or excited-state simulations. The
complete procedure that we followed in order to obtain P ′ES(dPtPt, t0) using the
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Figure 10.3: Initial conditions for the S0 → S1 photoexcitation of PtPOP in
water simulated using the classical SF approximation with the
pump pulse used in our ultrafast XDS measurements [P4, P3]
(Left), and with the pump pulse employed by van der Veen et al.
[18] in transient absorption measurements in aqueous solution.
The black curves are Morse-potential fits to the PMF calculated
using the pairwise Pt-Pt RDFs obtained from the equilibrium
QM/MM BOMD data for the ground state and from the first set
of ∆SCF-QM/MM trajectories for the excited-state, as explained
in the text. A definition of the distributions appearing in the
figure is provided in the text. The distributions were smoothed
with a cubic smoothing spline.

PMF was:

1. Compute gGS,eq
PtPt (dPtPt) from the ∼460 ps of ground-state QM/MM BOMD

data.

2. Calculate wGS,eq(dPtPt) from gGS,eq
PtPt (dPtPt) using Eq. 10.7.

3. Compute gES
PtPt(dPtPt) from the ∼200 ps of ∆SCF-QM/MM BOMD data.

4. Compute gES,eq
PtPt (dPtPt) from the ∼200 ps of ∆SCF-QM/MM BOMD data

minus the first (nonequilibrated) 2.5 ps of each trajectory.

5. Check that gES
PtPt(dPtPt) is characterized by an average Pt-Pt distance and

width that are the same as those of gES,eq
PtPt (dPtPt), the two RDFs differing
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only by the level of statistical noise. This benchmark justifies the use
of gES

PtPt(dPtPt) instead of gES,eq
PtPt (dPtPt) to obtain the PMF of the excited

state.

6. Calculate wES(dPtPt) from gES
PtPt(dPtPt) using Eq. 10.7.

7. Shift wES(dPtPt) such that the energy difference with respect to wGS,eq(dPtPt)
at the minimum of wGS,eq(dPtPt) is equal to 3.35 eV (the position of the
maximum of the S0 → S1 band of the experimental absorption spectrum).

8. Compute P ′ES(dPtPt, t0) from Eqs. (10.4), (10.5) and (10.6) using the
difference between wES(dPtPt) and wGS,eq(dPtPt).

A negligible difference was found between the P ′ES(dPtPt, t0) distributions ob-
tained under the two approximations (use of harmonic potentials vs. use of
PMF from the QM/MM BOMD simulations). Indeed, the two PMF are quite
harmonic near the minimum of the S1 surface (see Fig. 10.3), and, moreover,
the Pt-Pt distances of the S0 and S1 gas-phase optimized geometries are found
to be very close to the positions of the minima of the PMF (compare Fig. 10.3
with the values reported in Tab. 9.2).

The second set of initial conditions was chosen with a view to modelling the ul-
trafast vibrational relaxation in solution of a non-stationary ensemble of PtPOP
molecules in the S1 state. To achieve this we employed the parameters of the
excitation pulse used in the transient absorption setup by van der Veen et al.
[18] to probe the ultrafast excited-state dynamics of the complex in water. ω1

corresponds approximately to the position of the maximum of the experimental
absorption spectrum, thus it gives a ~ω1 of 3.35 eV (∼370 nm); while τ is 60 fs.
The spectral intensity profile of the pulse is reported in Fig. 10.2. For this set
of simulations we could employ the Morse potentials obtained previously from
a fit to the PMF of equilibrium QM/MM BOMD ground- and excited-state en-
sembles, as described before. Again, the two potentials where shifted such that
the energy difference at the minimum of the ground-state potential was equal
to 3.35 eV (which, in this case, corresponds to the center frequency of the exci-
tation pulse). Since the experimental excitation fraction is not known, we chose
A = 1 in Eq. (10.5). Thereafter, PES(dPtPt, t0) was obtained directly from Eqs.
(10.4) and (10.5), and it was used to start 49 S1 ∆SCF-QM/MM trajectories.
The time step for the propagation was the same as that used in the first set of
simulations.

Tab. 10.1 summarizes the parameters of the pump pulses used in the two
different sets of initial conditions. Tab. 10.1 and Fig. 10.2 highlight the fact
that the two pulses cover two different (narrow) ranges of excitation energies.
This has a profound impact on the initial conditions for the nonequilibrium
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Table 10.1: Parameters of the excitation pulses used to generate initial condi-
tions for the nonequilibrium QM/MM distributions in the ground
and first singlet excited states of PtPOP. ε(t) is the Gaussian tem-
poral profile of the pulse and |ε(ω)|2 its spectral intensity. ∆τ and
∆ω are the full widths at half maximum (FWHM) of the temporal
and spectral intensity profiles, respectively.

Pump pulse 1a Pump pulse 2b

ε(t)
τ (fs) 20 60
∆τ (fs) 47 140
~ω1 (eV) 3.14 (395 nm) 3.35 (370 nm)
|ε(ω)|2
∆ω (eV) 0.052 (6.6 nm) 0.018 (2.0 nm)

a Pulse used in our time-resolved XDS experiment [P4, P3].
b Pulse used in the transient absorption measurements by van der Veen et al. [18].

dynamics, as shown in Fig. 10.3, where the initial ground- and excited-state
distributions, as obtained from the SF approximation for the two cases, are
plotted.

In the case of the XDS XFEL experiment, the spectral intensity profile of the
pump pulse (“pump pulse 1” in Fig. 10.2 and Tab. 10.1) overlaps with the low
energy tail of the absorption spectrum measured in water. Neglecting nuclear
motion during the pulse, as we have done, the ultrashort pulse electronically
excites PtPOP molecules with a Pt-Pt distance at which the S0 → S1 energy
gap is resonant with the excitation energy. Given the shape and relative position
of the S0 and S1 potentials of PtPOP, this means that the laser is able to
excite only ground-state molecules with a short Pt-Pt distance, close to the
position of the minimum of the S1 potential, as can be seen from Fig. 10.3
(Left). The implication is that the initial distribution prepared in the excited-
state is vibrationally “cold”, since it comprises PtPOP molecules with dPtPt

close to the excited-state Pt-Pt equilibrium distance. Therefore, the classical
ensemble of S1 trajectories is expected to exhibit little vibrational dynamics.
In the ground state, on the other hand, the excitation window F (dPtPt) of Eq.
(10.4) is sufficiently narrow to burn a localized hole at short distances in the
equilibrium ground-state distribution of Pt-Pt distances. Classically, we expect
that the hole will show large amplitude motion following the excitation event, as
an effect of the remaining (non-stationary) ground-state molecules equilibrating
in the S0 potential.

The pump laser used in the optical pump-probe experiments performed by van
der Veen et al. [18] (“pump pulse 2” in Fig. 10.2 and Tab. 10.1) covers a range of



10.2 Nonequilibrium Dynamics due to Laser Excitation 125

excitation energies around the maximum of the absorption spectrum of PtPOP.
Therefore, it is able to preferentially excite ground-state molecules close to the
bottom of the S0 potential. The excited-state distribution created initially by
the pulse is out-of-equilibrium with respect to the minimum of the S1 surface,
while the ground-state hole is centered around the equilibrium Pt-Pt distance.
Thus, in this case, we expect the dynamics of the total ensemble (ground- plus
excited-state molecules) to be dominated by coherent motion in the S1 state
(as we will see, the ground-state hole still exhibits a periodic spreading and
refocusing, but no coherent vibrations).

The results of the two sets of simulations will be presented, separately, in great
detail in chapters 12 and 13.

10.2.1 Considerations on the SF Approximation

In the following, we will briefly discuss what assumptions are made on the laser
excitation process within the spatial filtering (SF) approximation (Eqs. (10.4)
and (10.5)). We will focus, in particular, on the use of fixed potential energy
surfaces when applying the SF approximation in the context of QM/MM BOMD
simulations, presenting evidence that an alternative method for simulating the
transition based on a match between the instantaneous energy gap and the
photon energy does not necessarily provide more reliable initial conditions for
the nonequilibrium dynamics.

The SF approximation has been frequently employed to describe the pump-pulse
transition in simulations of ultrafast pump-probe experiments using classical tra-
jectories [173, 174, 175, 176, 177]. It is derived from first-order time-dependent
perturbation theory under two main approximations:

• The transition dipole moment is assumed independent of the nuclear co-
ordinates of the system in the Franck–Condon (FC) region (Condon ap-
proximation).

• All kinetic energy operators in the expression of the promoted excited-
state wave function are neglected [173, 175, 176], which amounts to neglect
nuclear motion during laser excitation. We will consider the effects of
nuclear motion during the pulse on the final outcome of a pump-probe
experiment in chapter 12, when we will discuss the optimal pump-pulse
parameters for highlighting ground-state dynamics.

In addition, fixed potential energy surfaces for the ground and excited states
are used to construct the potential energy difference entering the expression
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Figure 10.4: Density plot of the joint probability distribution of Pt-Pt dis-
tances and S0 → S1 energy gaps showing the correlation be-
tween these two parameters in the QM/MM BOMD simulations.
The vertical excitation energies were computed by around 110000
single-point ∆SCF-QM/MM calculations on QM/MM BOMD
ground-state configurations. The red and black lines superim-
posed to the bivariate distribution are the mean energy for a
given Pt-Pt distance, and the mean Pt-Pt distance for a given
energy gap, respectively. The panels at the right and upper sides
of the density plot show the projection of the distribution along
the energy gap and along the Pt-Pt distance (red curve), respec-
tively. The upper panel includes, additionally, the PMF of the
ground state (black curve).

of the excitation window (see Eq. (10.5)), which implies assuming a one-to-one
correspondence between nuclear coordinates and the potential energy difference.
The use of fixed potential energy surfaces appears to a good extent justified for
diatomic molecules in gas phase or solid matrix, which have been the most
common subject of classical molecular dynamics investigations that used the SF
approximation [173, 175, 176]. On the other hand, in the case of polyatomic
molecules in solution, it is clear that fluctuations in the surrounding environment
and motion along other coordinates modify instantaneously the potentials along
a particular coordinate [174].
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We have investigated this effect by analysing the correlation between the Pt-Pt
distance in PtPOP and the S0 → S1 vertical transition energy in our QM/MM
BOMD simulations. To do so, we have computed the S0 → S1 energy gap
for around 110000 QM/MM snapshots from the ∼460 ps of 300 K equilibrated
ground-state QM/MM BOMD data by performing single-point ∆SCF-QM/MM
calculations. The underlying distribution of instantaneous energy gaps is shown
in the right panel of Fig. 10.4. The solution average S0 → S1 transition energy is
equal to 3.24 eV. This value is only slightly smaller than the computed S0 → S1

vertical excitation energy in vacuum (3.51 eV, see Tab. 9.1) and within ∼4% of
the position of the maximum of the room-temperature absorption spectrum of
PtPOP in water (∼3.35 eV [66, 68]). Fig. 10.4 shows the joint probability dis-
tribution of Pt-Pt distances and S0 → S1 energy gaps obtained from the 110000
single-point ∆SCF-QM/MM calculations. As expected, given the relative posi-
tion of the PMF of S0 and S1 (see Fig. 10.3), there is a clear tendency towards
higher excitation energies for larger Pt-Pt distances. However, the correlation
coefficient computed from the covariance of the two variables, Pt-Pt distance
and energy gap, is equal to 0.62, meaning that there is no sharp one-to-one cor-
relation between the two parameters. This is further underpinned by the fact
that the mean excitation energy for a given Pt-Pt distance (black line in Fig.
10.4) deviates from the mean Pt-Pt distance for a given energy gap value (red
line).

We can envision an alternative strategy to the SF approximation for describing
the pump-pulse transition in order to generate initial conditions for nonequi-
librium classical distributions. The method consists in selecting ground-state
configurations for which the instantaneous ground to excited state energy gaps
are resonant with the photon energies of the excitation laser (i.e. according to
the classical limit of the Franck-Condon principle [178]). This alternative ap-
proach has been used in the past to create the initial conditions for excited-state
MD simulations aimed at modelling ultrafast pump-probe experiments on di-
atomics in solid rare gases [179, 180] or bond dynamics in liquids [30, 174, 181].
In those studies, first a set of ground-state equilibrated trajectories was estab-
lished, and then configurations to excite from this set were chosen according
to a match with the energies within the bandwidth of the excitation pulse. In
most of the cases, the classical propagation and the determination of the reso-
nance condition were based on fixed potential energy surfaces. Therefore, the
approach employed in most of those studies was very similar to the SF approxi-
mation. During our on-the-fly QM/MM BOMD simulations of PtPOP in water,
the potential energy along the Pt-Pt distance adjusts instantaneously to the en-
vironment. Due to the lack of one-to-one correlation between the Pt-Pt distance
and the S0 → S1 transition energy, as seen before, the result of a selection based
on the match between the laser energy and the S0 → S1 energy gap is expected
to be different from the outcome of the SF approximation. To test this, we have
determined the S1 distribution of Pt-Pt distances (PES(dPtPt, t0)) created by
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Figure 10.5: Density plot of the joint probability distribution of Pt-Pt dis-
tances and S0 → S1 energy gaps ∆E(S0 → S1) modified such
that the average ∆E(S0 → S1) is 3.35 eV (the position of the
maximum of the S0 → S1 band of the experimental absorption
spectrum). The red and green lines superimposed to the bivari-
ate distribution are the mean Pt-Pt distance for a given energy
gap and the difference between the S0 and S1 PMF of PtPOP
along the Pt-Pt distance (∆V (dPtPt)), respectively. The dashed
vertical lines represent the center energies of the pump pulses
considered in the present investigation (pump-pulse parameters
are reported in Tab. 10.1).

the ultrashort lasers used in the previous section within the SF approximation
(see Tab. 10.1) by selecting PtPOP ground state molecules according to their
values of instantaneous energy gap. The fixed potentials employed within the
SF approximation have been shifted relative to each other such that the en-
ergy difference at the minimum of the ground-state potential was equal to the
position of the maximum of the S0 → S1 band of the experimental absorption
spectrum (3.35 eV). Thus, in order to enable a comparison between the two dif-
ferent strategies to draw initial conditions, the distribution of computed S0 → S1

energy gaps ∆E(S0 → S1) was modified such to give an average ∆E(S0 → S1)
of 3.35 eV. The bivariate distribution of Pt-Pt distances and modified energy
gaps is shown in Fig. 10.5. Note how the center of the modified bivariate distri-
bution is at 3.35 eV. Then, we computed PES(dPtPt, t0) for the two laser pulses
of Tab. 10.1 by first multiplying the spectral intensity profile of the laser with
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the bivariate distribution of Pt-Pt distances and modified energy gaps, and then
projecting the resulting bivariate distribution along the Pt-Pt distance. For ex-
citation with “pump pulse 1” (see Tab. 10.1), we scaled the intensity of the pulse
to achieve the experimental excitation fraction, as also done when we have used
the SF approximation with this pulse (see previous section); however, there was
no need to rescale the resulting PES(dPtPt, t0) according to Eq. (10.6), because
excitation did not depopulate entirely the ground-state equilibrium distribution
at particular Pt-Pt distances, in this case. The results obtained using the two
pulses are shown in Fig. 10.6, together with the excited-state initial distribu-
tions computed with the SF approximation, and already presented in Fig. 10.3.

Figure 10.6: Normalized distributions of Pt-Pt distances created in the S1

state (PES(dPtPt, t0)) using two different approaches to describe
excitation of PtPOP by two ultrashort laser pulses. The black
curves were obtained by filtering the bivariate ground-state dis-
tribution of Pt-Pt distances and S0 → S1 energy gaps with the
spectral intensity profiles of the lasers. The red curves were ob-
tained within the SF approximation (see Eqs. (10.4) and (10.5),
and Fig. 10.3), using the difference between the S0 and S1 PMF
of PtPOP along the Pt-Pt distance (∆V (dPtPt)). See Tab. 10.1
for the parameters of the pump pulses.

A first, most noticeable difference between the S1 Pt-Pt distance distributions
PES(dPtPt, t0) created using the two different strategies (SF approximation and
selection of instantaneous energy gaps according to the resonance condition)
that emerges from Fig. 10.6, is that the distributions created according to the
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second strategy are much broader than the one obtained with the SF approx-
imation. The reason for this result is understood by observing from Fig. 10.5
that the range of Pt-Pt distances at the center energies of the pump pulses
(dashed vertical lines) are very disperse due to the lack of perfect correlation
between the Pt-Pt distance and the vertical transition energy. Hence, at the
energies covered by the laser pulses, the PtPOP molecules that are eligible to
be selected for excitation according to the resonance condition will display a
large distribution of Pt-Pt distances. On the other hand, the SF approximation
filters the ground-state equilibrium distribution of Pt-Pt distances according to
a dPtPt-dependent window function (see again Eqs. (10.4) and (10.5)), and thus
selects molecules in configuration space based on the fixed potential energy dif-
ference, regardless of the instantaneous energy gap. In this latter picture, the
excited distributions will have a broad width in the space of S0 → S1 transition
energies. A second difference between the predictions of the two approaches
is represented, in the case of “pump pulse 1”, by a shift of the position of the
distribution excited using the instantaneous energy gaps to shorter Pt-Pt dis-
tances, closer to the value of the average Pt-Pt distance of the ground state
(2.99 Å), with respect to PES(dPtPt, t0) predicted by the SF approximation. To
understand the origin of the discrepancy, we have plotted, additionally, in Fig.
10.5 the mean Pt-Pt distance for a given value of energy gap (red line) and
the difference between the S1 and S0 PMF used within the SF approximation
(∆V (dPtPt), green line). The intersection between the red line and the vertical
dashed line representing the center energy of “pump pulse 1” (3.14 eV) gives the
center of the distribution of Pt-Pt distances that can be excited by the laser, in
the picture based on the selection of instantaneous energy gaps. While in the
case of the SF approximation, the molecules that are promoted to the excited
state have a Pt-Pt distance close to the intersection between the vertical dashed
line and the green line representing ∆V (dPtPt). Thus, it is apparent that, due
to the disruption of the correlation between S0 → S1 energy gaps and Pt-Pt
distances, the average Pt-Pt distance at the energy of the pulse is closer to the
average ground-state Pt-Pt distance than the Pt-Pt distance where ∆V (dPtPt)
is equal to the pulse energy, explaining the shift of the position of PES(dPtPt, t0)
for “pump pulse 1”. For “pump pulse 2”, instead, the resonance condition is
satisfied at the center of the ground-state distribution, where ∆V (dPtPt) and
the red line coincide. As a consequence, the excited Pt-Pt distance distributions
are centered both at the average Pt-Pt distance of the ground-state, for the two
different method of selecting initial conditions.

A question that arises now is which one of the two strategies for setting up the
initial conditions for the nonequilibrium dynamics provides a better approxima-
tion to the pump-pulse transition. To shed light on this question, we compare in
Fig. 10.7 the experimental absorption spectrum of PtPOP in water [P4] to the
spectra simulated as a density-of-states (DOS) histogram from the (modified)
distribution of S0 → S1 energy gaps and using the classical reflection principle
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Figure 10.7: PtPOP absorption spectrum simulated as a DOS histogram of
∆SCF-QM/MM calculated S0 → S1 energy gaps and according
to the classical reflection principle (see Eq. (10.8)), as compared
to the experimental spectrum of PtPOP in water [P4]. Also
shown are the Gaussian spectral intensity profiles of the laser
pulses used in the present work to set up initial conditions for
nonequilibrium dynamics of PtPOP in water.

[182]. The classical reflection principle states that the energy dependence of
the probability of absorption of a photon reflects the equilibrium nuclear dis-
tribution in the ground state in a direct way, and is valid within the same set
of assumptions as those used to derive the SF approximation. The absorption
cross section of PtPOP was computed, according to the classical reflection prin-
ciple, from the 300 K equilibrium ground-state distribution P eq

GS(dPtPt), using
the following relation:

σ(E) ∝ 1

| ∆V ′(dPtPt) |
P eq

GS(dPtPt) (10.8)

where ∆V ′(dPtPt) is the derivative of the difference potential between ground
and excited states, which was obtained from the S0 and S1 PMF of PtPOP along
the Pt-Pt coordinate. The spectrum calculated in this way gives the probability
of absorption at the different Pt-Pt distances within the SF approximation.

There is a good agreement between the spectrum simulated using the reflec-
tion principle and the experimental spectrum, especially on the red side, while
at higher energies, for which the underlying potentials are more anharmonic,
the experimental spectrum is broader. On the other hand, the DOS histogram
clearly overestimates the width of the spectrum over the entire range of energies.
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The distribution of instantaneous S0 → S1 energy gaps, from which the DOS
histogram is constructed, was obtained from single point ∆SCF-QM/MM calcu-
lations on ground-state QM/MM BOMD configurations. In these calculations,
the geometry of the solute and all solvent molecules are kept fixed (frozen-
field approximation). It can be argued, however, that the Pt-Pt oscillators
should only experience an effective field during the rapid fluctuations induced
by the environment [183]. The failure of the frozen-field approximation to cor-
rectly describe such phenomena of motional narrowing that are active in solution
[174, 183] provides an explanation of the discrepancy between the experimental
absorption spectrum and the spectrum simulated as a DOS histogram.

Fig. 10.7 shows also the spectral intensity profiles of the two laser pulses whose
parameters where utilized in the present study to set up initial conditions for
the nonequilibrium dynamics of PtPOP in water. It is seen that, at the range
of energies covered by the pulses, the spectrum predicted by the classical reflec-
tion principle is in very good agreement with the experimental absorption spec-
trum. It can be argued, on the basis of this comparison, that the ground-state
equilibrium distribution P eq

GS(dPtPt) directly reflects via the potential difference
∆V (dPtPt) the probability of photon absorption over the range of energies cov-
ered by the pump pulses. Therefore, using P eq

GS(dPtPt) and ∆V (dPtPt) within
the SF approach, as done in the present work, represents a reasonable approxi-
mation of the excitation process. On the other hand, due to effects of motional
narrowing, a direct correlation between the distribution of instantaneous energy
gaps calculated in the frozen-field approximation and the absorption spectrum is
difficult to establish. Thus, a selection of initial QM/MM BOMD configurations
based solely on a match of the energy gap between ground and excited state
with the resonant energies of the excitation laser does not necessarily imply an
improvement of the accuracy of the initial conditions.



11
Equilibrium Solution
Structure

11.1 PtPOP Equilibrium Structure

Table 11.1: Structural parameters of PtPOP in water obtained as averages
over equilibrium QM/MM BOMD data for the S0 and S1 states,
and comparison with available solution experimental valuesa . The
MD average was carried out over a total simulation time of ∼460
ps for S0 and of ∼160 ps for S1.

S0 ∆ (S1 − S0) ∆ (T1 − S0)

Calc
[P1]

Exp
[70, 184] Calc Exp [P3] Exp [70, 69]

Bond (Å)
Pt-Pt 2.99 2.98b -0.20 -0.24(4)b -0.24(6)b

Pt-P 2.33 2.32(4)c 0.01 - 0.010(6)c

P· · ·P′ 3.09 2.92b -0.01 - 0.00(8)b
Angles (deg)
(Pt-Pt-P)α 91.2 - 5.0 - -
(Pt-Pt-P)β 91.2 - -0.3 - -
a Simulation results for S1 are compared to experimental values obtained for T1

when experimental data for S1 are not available.
b Obtained in water by X-ray scattering experiments [70][P3].

c Obtained in ethanol by X-ray absorption measurements [184, 69].

Table 11.1 reports bond lengths and angles of PtPOP obtained as averages
over thermally equilibrated S0 and S1 QM/MM BOMD data in water. The
ground-state equilibrium QM/MM BOMD simulations were described in section
10.1. Equilibrium data for S1 were extracted from the two sets of excited-
state trajectories (see section 10.2) after removing the first (nonequilibrated)
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2.5 ps from each of them, which gave a total of around 80000 BOMD snapshots,
covering 160 ps. That the molecule vibrationally equilibrates after the first 2.5
ps during the S1 QM/MM BOMD simulations will be shown in chapter 13.

The only structural parameter of the S1 state of PtPOP in aqueous solution that
has ever been determined experimentally is the equilibrium Pt-Pt distance. This
bond length has been obtained in the course of the present PhD project by E.
Biasin [P3] from a fit to the time-dependent XDS difference scattering signal
presented in section 7.2 (the data are shown in Fig. 7.3). For this analysis, the
signal was fitted at a pump-probe time delay of 4.5 ps, when both the ground-
and excited-states of PtPOP have reached vibrational equilibrium. In section
11.3 of the present chapter, we will have a closer look at how the simulations that
we have performed helped guiding the analysis of the data. The experimentally
determined Pt-Pt contraction for S1 was found to be equal, within the accuracy
of the experiments, to that obtained by time-resolved X-ray scattering measure-
ments in water by Christensen et al. [70] for the T1 state. Based on this, and
given the very close similarity between the S1 and T1 vacuum structures (see
Tab. 9.2), we test the same holds in solvent, namely that the solution structures
of the S1 and T1 states are virtually the same. Thus, in Table 11.1 we carry
out a comparison between calculated thermal averages for S1 and correspond-
ing experimental solution data available for T1. These include the Pt-Pt and
P· · ·P′ distances measured in the aforementioned X-ray scattering experiment
performed by Christensen et al. [70], and the Pt-P bond lengths derived by van
der Veen et al. [69, 184] from a fit to time-resolved X-ray absorption spectra in
ethanol.

The calculated thermally averaged bond distances and the experimental values
agree within the uncertainties of both experiments and simulations. From a
comparison with the corresponding structural parameters of the gas-phase opti-
mized geometries, we notice that the average Pt-Pt distance in solution is only
0.01 Å shorter, while the solvent affects much more significantly structural pa-
rameters involving ligand atoms. This is particularly evident for the Pt-P bonds,
which in the ground state are found to be ∼0.06 Å shorter than in the isolated
geometry-optimized structure and in S1 experience a ∼70% smaller elongation.
In addition, despite the fact that the shortening of the Pt-Pt distance due to
excitation is found to be the same in vacuum and solution, the P atoms follow
the Pt atoms in the contraction along the Pt-Pt axis to only 0.01 Å, ∼80% less
than in gas phase. As a side note, we point out that differences induced by the
presence of the solvent on these structural parameters of PtPOP are larger than
the changes brought by the use of a hybrid DFT functional like B3LYP, as can
be seen by comparing the values reported for the Pt-P and P· · ·P′ distances in
Table 9.2 and 11.1. This indicates that there would be no significant advantage
in employing the computationally more expensive B3LYP functional instead of
BLYP in the QM/MM BOMD simulations.
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An analysis of the average values of the ∠Pt-Pt-P angles reveals that also in
solution, PtP4 units are distorted towards a quasi-trigonal bipyramidal local
geometry with respect to the ground state (though the angle difference ∆ found
in solvent is∼5◦, around 2◦ smaller than for the optimized S1 vacuum geometry).
This is an important result, because it hints at the fact that a direct S1 → T1

ISC mechanism might be active in solution, which could explain the ∼3000-
times faster ISC rates exhibited by PtPOP with respect to its perfluoroborated
analogue [11, 76], where pseudorotation of the bulkier and more rigid ligands
is less likely. Indeed, the role of structural distortions in lowering the D4h

symmetry of the Pt2P8 core of PtPOP, thus promoting direct SOC between S1

and T1, has been often hypothesized but so far never proven [11, 14, 74, 76].

11.1.1 Thermal Equilibrium Properties of the Ground State

Figure 11.1: (Left) Potential of mean force (PMF) calculated from the
Pt-Pt radial distribution function (RDF) according to Eq.
10.7, together with the relative thermal probability distribution
(P eq

GS(dPtPt)) from the QM/MM BOMD equilibrium simulations
of PtPOP in water. The red line defines the average thermal
energy available to the system at 300 K. (Bottom, right) Fourier
transform of the Pt-Pt oscillations in the simulations.

Here, we expand on the thermally averaged structural and dynamical properties
of the Pt-Pt distance in the ground state. We show that the large amount of
QM/MM BOMD data collected (∼460 ps) permits a statistically robust char-
acterization of the distribution of Pt-Pt distances and frequency of the Pt-Pt
oscillations in equilibrium with a thermal bath of solvent molecules at 300 K.
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Fig. 11.1 (Left) shows the 300 K distribution of Pt-Pt distances for the ground
state of PtPOP (P eq

GS(dPtPt)), together with the free-energy surface obtained as
potential of mean force (PMF) (see Eq. (10.7)). This equilibrium distribution
has been used in section 10.2 (see Fig. 10.3) to set up the initial conditions
for the nonequilibrium BOMD simulations that will be presented in the next
chapters. The thermally averaged Pt-Pt distance of PtPOP in aqueous solution
from our simulations is 2.99 Å, while he experimental value, obtained from X-
ray scattering measurements in water is 2.98 Å [70]; therefore, the discrepancy
between simulations and experiment is less than 1%.

The PMF shown in Fig. 11.1 (Left) has been fitted to a Morse potential, which
has the form [185]:

V (dPtPt) = De

[
1− e−a(dPtPt−dPtPt,0)

]2
(11.1)

where De and dPtPt,0 are the depth and Pt-Pt distance at the potential mini-
mum, respectively, and a =

√
k0/2De with k0 the force constant at the minimum

of the potential well. Fig. 11.1 (Left) reports the Morse potential resulting from
the fit. We have constructed a quantum thermal density as an incoherent sum
of vibrational eigenstates of this Morse potential, according to:

ΓGS =

Ns∑
i=1

pi |χi〉 〈χi| (11.2)

where |χi〉 are the first Ns eigenstates with eigenvalues εi, and the probabilities

pi are the Boltzmann factors for the canonical ensemble (pi =
1∑Ns

i e−βεi
e−βεi ,

with β = (kbT )−1). In the computation of ΓGS according to Eq. (11.2), Ns was
chosen to include all states with a probability bigger than 0.1%, as determined
using the first 250 eigenvalues, and the temperature T was 300 K, the same tem-
perature set for the Langevin thermostat applied to the water molecules in the
QM/MM BOMD simulations. The eigenstates and corresponding eigenvalues
of the Morse potential were obtained using the Matlab program WavePacket
[186]. Fig. 11.2 shows a comparison between the equilibrium distribution of Pt-
Pt distances obtained from the QM/MM BOMD simulations and the quantum
density ΓGS at 300 K. The comparison indicates that the classical probability
distribution of Pt-Pt distances approximates very well the quantum density.
From the comparison we can deduce that: (i) the QM/MM BOMD simulations
correctly reproduce the fluctuations of the canonical ensemble, and (ii) at 300 K
the predictions of classical statistical mechanics with respect to the Pt-Pt oscil-
lators are close to the quantum-classical limit. To understand qualitatively the
latter observation we can compute the energy spacing of a harmonic potential
with a frequency given by the force constant of the Morse potential of Fig. 11.2
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Figure 11.2: Comparison between the (classical) equilibrium distribution of
Pt-Pt distances obtained from the ground-state QM/MM BOMD
simulations of PtPOP in water and the quantum thermal density
computed according to Eq. (11.2) with the parameters described
in the text.

and the reduced mass µPtPt of Pt2 (νPtPt = 1/2π
√
k0/µPtPt). The frequency of

the Morse potential is, in terms of wavenumbers, ν̃PtPt = 124 cm−1. This gives
βhνPtPt = 0.59; and we can see that at 300 K we are already close to approach
the high temperature limit (for a harmonic oscillator, classical and quantum
statistical mechanics give the same prediction for βhνPtPt � 1).

We now turn to examine the dynamical properties of the Pt-Pt oscillator in
the ground state. From the Morse-potential fit to the PMF a low degree of
anharmonicity of the Pt-Pt stretching vibration can be deduced. The degree
of deviation from harmonicity was estimated by calculating the anharmonicity
constant xe according to the expression [185]:

xe =
hν

4De
=

~
4De

√
k0

µPtPt
(11.3)

Using the parameters of the Morse-potential fit, a value of xe = 1.5 · 10−3

is obtained, which is noticeably small if compared, for example, to that of a
very harmonic diatomic system like I2 (2.8 · 10−3 [119]). The position of the
minimum of the Morse-fitted potential at 2.98 Å, a Pt-Pt distance only 0.01 Å
shorter than the thermally averaged value, also points to a strong harmonicity.
Finally, we have obtained the Pt-Pt vibrational frequency as the maximum of
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a Fourier transform (FT) of the oscillating Pt-Pt distance in the simulations.
The FT is reported in Fig 11.1 (Bottom, right). To obtain it, we have divided
each trajectory into chunks of 4 ps, performed an FT for each of them, and then
averaged the results. The oscillation periods obtained from the frequency of the
Morse potential, reported before, and the position of the maximum of the FT
are 270 and 275 fs, respectively. The small deviation between the two values is a
further confirmation of the harmonicity of the Pt-Pt potential. We also note that
the computed periods deviate by less than 4 % from the vibrational period of 281
fs obtained by van der Veen et al. [18] using femtosecond transient absorption
measurements in aqueous solution. More importantly, for the purpose of the
interpretation of the XDS XFEL data measured during the present project (see
section 7.2), the simulated Pt-Pt oscillation period is found to be very close to
the period (∼285 fs) obtained from the position of the maximum of an FT of
the time-dependent XDS signal (see Fig. 7.3).

11.2 Solvation Shell Structure

Fig. 11.3 shows the Pt-Hsolvent and Pt-Osolvent radial distribution functions
(RDFs) computed from the equilibrated QM/MM trajectories in S1 and S0

using a bin size of 0.01 Å for the radial sampling. The large amount of statistics
allows to fully resolve the first four peaks of solvent coordination around the Pt
atoms. The position of water molecules within each of the coordination peaks
with respect to a single Pt atom is illustrated schematically in Fig. 11.3 (Right).

The first peak in the two RDFs (areas of the RDFs highlighted in blue in Fig.
11.3 (Left, bottom)) are indicative of the presence of strong H-coordination
of solvent molecules at the Pt-ends of the complex. The second coordination
peaks (yellow water molecules) span Pt-H solvent distances between ∼ 4.5 Å and
∼ 5.5 Å and Pt-Osolvent distances between ∼ 5.5 Å and ∼ 6.5 Å. These peaks
comprise water molecules that are found to lie mainly off-axis with respect to the
Pt-Pt direction. Due to the presence of two Pt atoms, and given the symmetry
of the complex, water molecules of the second peaks make up also the third
peaks of the RDFs (5.5 Å < dPtH < 7.0 Å and 6.5 Å < dPtO < 8.3 Å). This is
better illustrated by the water molecules highlighted in purple in the schematics
of Fig. 11.3 (Right). That water molecules belonging to the second (and third)
peaks do not take up the space along the Pt-Pt direction is supported by the
fact that the distance between the second and third peaks (∼1.5 Å) is less than
the intramolecular Pt-Pt distance.

In the excited state, neither the position of the first nor the second peak changes,
which means that the two shells must draw closer in conjunction with the Pt-Pt
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Figure 11.3: (Left) Pairwise Pt-solvent RDFs sampled from the equilibrated
part of the QM/MM trajectories in S0 and S1. The gray vertical
line indicates the extent of the first coordination peak. (Right)
Division of the solvation shell around PtPOP into regions from
the point of view of a Pt atom. The colors of the different regions
match the colors of the areas of the peaks of the Pt-Osolvent RDFs.

contraction. This is further supported by a shift of the third peaks to shorter
distances as this results from the Pt atoms finding themselves closer to water
molecules located on the opposite sides of the complex, in the excited state. The
second most notable change in the RDFs is represented by a slightly reduced
coordination in the first peaks. If the extent of the first coordination shell is
taken up to the first minimum of the Pt-Osolvent RDF, at 3.85 Å, we can quantify
the coordination with the running coordination number at this distance. It
follows that the Pt-Osolvent coordination number in the first shell is around 0.77
for PtPOP in the S1 state, only ∼0.1 smaller than in the ground state.

11.2.1 Orientational Distribution in the First Coordina-
tion Peak

We have analysed the orientation of the water molecules in the first peak in the
Pt-Hsolvent and Pt-Osolvent RDFs in order to gain insight into the nature of the
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coordination at the open axial site of the complex.

Figure 11.4: Probability distributions of solute-solvent angles involving water
molecules in the first coordination shell of the Pt atoms in Pt-
POP as defined by the extent of the first peak of the Pt-Osolvent

RDF in Fig. 11.3. The color code for the distributions is the
same as in Fig. 11.3. The sampled angles are shown schemati-
cally using a QM/MM BOMD snapshot selected from one of the
S1 ∆SCF-QM/MM trajectories (for visualization purposes hy-
drogen atoms of PtPOP are omitted). These angles are related
to the orientation of water molecules with respect to the Pt-Pt
axis of the complex.

Fig. 11.4 shows the probability distribution function of two key angles in the
solute-solvent geometry sampled within the first coordination peak. Both dis-
tributions indicate a preference for linear geometry, or axial coordination, where
the O-H donor bond points along the Pt-Pt axis of the complex. This is fur-
ther supported by the distance between the first peak of the Pt-Hsolvent RDF
and that of the Pt-Osolvent RDF, which is roughly 0.96 Å, corresponding to the
TIP4P O-H bond length.

The angular distributions, indicative of the extent of axial coordination, are
largely unaltered when PtPOP is in the S1 excited state with respect to the
ground state. Therefore, water molecules within the first peak of the RDFs
seem to retain the preferential axial orientation after electronic excitation of the
complex. Experimentally, emission spectra of PtPOP are found to be indepen-
dent of the solvent [187]. The finding that electronic excitation does not lead to
any major restructuring in the local organization of solvent molecules surround-
ing the complex is in agreement with this experimental observation and points
to the fact that this might be the case also for other types of solvents.
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This behaviour is in sharp contrast to the solvent shell response observed for pho-
toexcitation of the d8-d8 complex [Ir2(dimen)4]2+ (where dimen is diisocyano-
para-menthane) by ultrafast X-ray scattering measurements in acetonitrile [16].
In that case, the effect of electronic excitation was found to be a loss of coor-
dination of methyl groups with the open coordination site at the metal atoms,
followed by reorientation of the solvent molecules to specifically coordinate Ir
atoms with the more electronegative cyano endings. In both complexes a metal-
metal bond is formed after photoexcitation, thus effectively shifting electron
density from the outer side of the planar faces of the molecules to the inside
(see section 9.2). Although different solvents are involved in the two cases, the
different response of coordinating solvent molecules can be rationalized in terms
of different contributions of atomic orbitals localized on ligand atoms in the
formation of the LUMO. As we have seen in section 9.2, in PtPOP the LUMO
has a largely predominant pz character; as a consequence, in the excited state,
a considerable portion of the electron density still localizes in outward position
with respect to the planar PtP4 faces. This, in turn, permits the Pt atoms of the
complex to retain their ability to coordinate the more electropositive part of the
solvent and it is probably connected to the previously mentioned excited-state
reactivity towards H atom donors. For [Ir2(dimen)4]2+, on the other hand,
previous DFT calculations [11] have highlighted a substantial involvement of
π∗z(C≡N) orbitals in the formation of the LUMO, shifting more electron density
from the outer sides of the molecule and making the excited state a stronger
Lewis acid.

11.3 Guiding the Analysis of the XDS Data

11.3.1 Choosing a Structural Model for the Solute

The strategy outlined in section 8.2 for analysing time-dependent difference X-
ray scattering signals measured in solution reckons on a proper choice of single
geometries to model the scattering due to changes in the distances between
atoms of the solute (the ∆Ssolu(q, tp) term). The standard procedure used by
the group of our experimental collaborators consists in utilizing DFT-optimized
geometries. Geometry optimization is carried out in vacuum or by taking into
accout solvent effects using a continuum solvent model [16, 15]. To model struc-
tural changes after photoexcitation in the ground or excited state of the solute,
usually sets of structures are generated by varying key structural parameters
while optimizing at each step the geometry in the state where dynamics is ex-
pected [16]. Thus, the model approximates the scattering from time-dependent
distributions of atomic positions within the ensemble of solvated solute molecules
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with the scattering of single geometries relaxed with respect to fixed PESs, those
predicted by DFT in vacuum or in an implicit solvent model. Here, we test the
choice of two types of vacuum structures for the analysis of the PtPOP XDS
data.

Figure 11.5: Simulated isotropic difference scattering signal of PtPOP calcu-
lated using Eq. (8.5) from: the RDFs obtained from the S0 and
S1 QM/MM equilibrium data (blue line), the optimized geome-
tries of S0 and S1 (yellow line), and the optimized geometry of
S0 and an excited state described by the optimized geometry of
S0 with the Pt-Pt distance of the S1 optimized geometry (red
line). All geometry optimizations were performed in gas-phase.
The excitation fraction α in Eq. (8.5) was equal to 0.026. This
value of α was determined at a later stage of the analysis.

The first choice is akin to the one just illustrated: both ground and excited states
of the complex are represented by the respective geometries optimized in vacuum
using GPAW with the BLYP functional. The structural parameters of these
geometries are reported in Tab. 9.2. DFT calculations with BLYP in vacuum
predict a relatively large, ∼0.03 Å elongation of the Pt-P bond lengths, and a
large, ∼0.06 Å contraction of the P· · ·P′ distances compared to the QM/MM
BOMD simulations (see Tab. 11.1). On the other hand, the QM/MM BOMD
simulations and the geometry optimizations in vacuum give the same value for
the Pt-Pt contraction in the S1 state. Therefore, a second choice of structures
that we test is the following: the ground state is represented by the ground-state
geometry optimized in vacuum in GPAW, while the excited state is obtained
from the latter by varying exclusively the Pt-Pt distance, without relaxing the
forces with respect to the S1 PES.
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Fig. 11.5 shows the isotropic difference scattering signal calculated (i) using
Eq. (8.5) with the solute-solute RDFs extracted from the S0 and S1 QM/MM
BOMD equilibrium data (blue line); (ii) using the same equation but applied to
the ground- and excited-state gas-phase optimized geometries of the complex,
in which case Eq. (8.5) reduces to a sum of terms equivalent to the Debye
formula Eq. (8.14), (yellow line); and (iii) using the gas-phase S0 optimized
geometry and an excited-state structure obtained from the first by setting the
Pt-Pt distance to that of the optimized excited-state geometry, while leaving all
other DOF unchanged (red line).

The comparison illustrates that the choice of a gas-phase excited-state structure
with the same structural parameters as the ground state, apart from the Pt-Pt
distance, approximates very well the scattering obtained from QM/MM BOMD
thermal distributions. The result can be explained as the consequence of the
convolution of at least three factors: (i) the Pt-Pt contraction predicted by gas-
phase and solution calculations is the same, (ii) the structure of the ligands is
unchanged in S1 with respect to S0 in the QM/MM BOMD simulations, and
(iii) the spread that characterizes the QM/MM BOMD distributions is found
to be relatively small. With respect to the last point, we note that the width of
the Pt-Pt thermal distribution shown in Fig. 11.1 is only around 0.07 Å, while
significant changes in the difference scattering from broadened distributions with
respect to delta functions are expected for widths at least an order of magnitude
bigger [151]. The small spread in the distributions is caused by the stiffness of
the Pt-Pt bond and by the rigidity of the cage of ligand atoms. Given the above,
the use of scattering signals from single gas-phase structures appears justified
for the analysis of the time-resolved XDS data of PtPOP in water. However,
one should be careful with the choice of the structures. This is exemplified by
the yellow curve in Fig. 11.5 obtained from the gas-phase optimized geometries
in both the ground and excited states. The curve shows significant deviations
from the scattering signal from QM/MM BOMD distributions. The differences
are due to the gas-phase geometry optimization in the excited state predicting
much larger changes in the structure of the ligands than those obtained from
the calculations in solution.

In conclusion, the set of molecular structures used to model the solute difference
scattering signal (∆Ssolu(q, tp)) in the PtPOP XDS data, was obtained by vary-
ing the Pt-Pt distance of the ground-state geometry of the complex optimized
in vacuum with GPAW, from 2.700 to 3.300 Å in steps of 0.001 Å, while keeping
all the other atoms fixed. In this modelling framework, photoinduced struc-
tural changes in the structure of the solute are parametrized through only the
Pt-Pt distance. Possible contributions to the signal arising from intramolecular
changes other than the Pt-Pt bond contraction were found within the uncer-
tainties of the measured signal, as described in Ref. [P3]; a further confirmation
that, in solution, structural changes affecting the ligands of PtPOP after pho-
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toexcitation are insignificant as compared to the Pt-Pt contraction.

11.3.2 Determining the Solute-Solvent Term

Fig. 11.6 (Left) shows the isotropic difference scattering signal of PtPOP in wa-
ter at a pump-probe time delay of 4.5 ps fitted with a model that includes only
the ∆Ssolu

0 (q) and ∆Ssolv
0 (q) terms. ∆Ssolu

0 (q) used in the fit was obtained from
the set of structures generated as explained in the previous paragraph. The fit
has been performed by Postdoc E. Biasin among our experimental collaborators.
The residual of such a fit are usually interpreted, to a first approximation, as
the signature of changes in solute-solvent distances that are not accounted for
by only including ∆Ssolu

0 (q) and ∆Ssolv
0 (q) [16]. To substantiate the

hypothesis we have computed ∆Ssolu−solv
MD (q) according to Eq. (8.8) using the

solute-solvent RDFs obtained from the equilibrated QM/MM trajectories for S0

and S1. The result is shown in Fig. 11.6 (Right), together with the scattering

Figure 11.6: (Left) Isotropic difference scattering signal of PtPOP in water at
a pump-probe time delay of 4.5 ps fitted with a model including
only the solute and solvent terms. (Right) Isotropic difference
scattering signal simulated using the solute-solute (blue line) and
solute-solvent (magenta line) equilibrium QM/MM RDFs for S0

and S1. The simulated solute-solvent term has been scaled by the
experimental excitation fraction of 0.026. Differences between
the fit to the experimental data and the simulated ∆Ssolu

0,MD(q)
arise mainly from the contribution due to heating of the bulk
solvent.

from the solute (∆Ssolu
0,MD(q)) calculated using the solute-solute RDFs, and al-
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ready presented in Fig. 11.5; while Fig. 11.7 directly compares the residual of
the fit with ∆Ssolu−solv

MD (q) scaled by the experimental excitation fraction α (α
was equal to 0.026 and was obtained at a later stage of the analysis).

Figure 11.7: Comparison between the residual of the fit of the isotropic dif-
ference XDS signal of PtPOP in water at 4.5 ps, shown in Fig.
11.6 (Right), and the solute-solvent difference scattering signal
simulated from QM/MM BOMD equilibrium distributions.

Indeed, the similarities between ∆Ssolu−solv
MD (q) computed from the QM/MM

BOMD data and the residual are remarkable. Once again, the interplay between
simulations and experiments is mutually beneficial. First of all, a ∆Ssolu−solv

0 (q,
tp) term could be included in the fit of the time-dependent isotropic XDS signal,
according to Eq. (8.19), thus improving the model. Secondly, the match between
simulations and experiments corroborates the picture of (small) solvent shell
changes drawn from the QM/MM BOMD simulations, and illustrated in the
previous section. The final fit at 4.5 ps, including the ∆Ssolu−solv

0 (q, tp) term,
delivered the value of 0.24±0.04 Å for the Pt-Pt contraction already reported
in Tab. 11.1, as well as the value of 0.026 for α.



146 Equilibrium Solution Structure



12
Coherent Vibrational
Dynamics in the Ground
State

In the present chapter, we scrutinize the set of S1 nonequilibrium ∆SCF-QM/MM
BOMD data and the S0 nonequilibrium ground-state distributions of PtPOP
in water established for a choice of pump-pulse parameters closely recreating
the experimental conditions of the pump-probe X-ray diffuse scattering (XDS)
measurements performed at LCLS. The details of the XDS experiments, realized
during the present PhD project, can be found in section 7.2; while the proce-
dure for setting up the initial conditions for the dynamics has been described in
section 10.2.

Fig. 12.1 shows the out-of-equilibrium distributions of Pt-Pt distances in S0 and
S1 at time zero, and at times corresponding to half (∼138 fs) and twice (∼550
fs) the vibrational period of the ground state, respectively. The figure includes
also the time-dependent hole distribution of Pt-Pt distances representing deple-
tion of the ground-state ensemble, obtained as the (unnormalized) distribution
of remaining ground-state molecules minus the ground-state equilibrium distri-
bution. In Fig. 12.1 we show the full time-evolution of the excited-state (blue
density plot) and ground-state hole (red) distributions of Pt-Pt distances, to-
gether with the respective instantaneous Pt-Pt average distance (black curves).

Within the approximations used to set up the initial conditions (see section
10.2), photoexcitation by the ultrashort pump laser creates a localized distri-
bution in the excited state and a complementary localized hole in the ground-
state equilibrium distribution. The nonequilibrium distributions, after time
zero, start moving and spreading, equilibrating on the respective potential sur-
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Figure 12.1: Time-dependent S0 and S1 QM/MM distributions of Pt-Pt dis-
tances simulating dynamics following excitation by a laser with
the parameters of the pump pulse used in the time-resolved XDS
measurements on PtPOP in water. Shown are the distributions
of the excited state (shaded blue areas), the remaining ground-
state ensemble (red curves), and the ground-state hole (shaded
red areas). For each state, the relative distributions are plot-
ted at time zero, and at times after excitation corresponding to
half and twice the vibrational period of the ground state. The
excited-state and ground-state hole distributions, integrating to
the simulated excitation fraction, are magnified for better visual-
ization. All distributions were smoothed with a cubic smoothing
spline.

faces. Since the initial distributions are localized in out-of-equilibrium position,
Pt-Pt distances within them start oscillating in phase, meaning that the vibra-
tional motion is coherent. For the hole, this is a reflection of the remaining
ground-state molecules vibrating coherently in the ground-state potential fol-
lowing dPtPt-dependent depletion of the ground-state ensemble by the laser.
Coherent vibrations occur with average periods of ∼276 and ∼227 fs for the
ground and excited state, respectively. The period of ∼276 fs for S0 is virtually
identical to the one found from fitting the potential of mean force (PMF) of
the equilibrium ground state distribution with a Morse potential (see section
11.1), pointing, once again, to harmonicity of the Pt-Pt vibrations. The value
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Figure 12.2: Density plots of the time-dependent Pt-Pt distance distributions
from the nonequilibrium ∆SCF-QM/MM trajectories in S1 (Top)
and S0 nonequilibrium hole distributions (Bottom) obtained fol-
lowing photoexcitation of PtPOP in water by an ultrashort pulse
selectively depleting the ground-state ensemble at short dPtPt.
The distributions were smoothed with a cubic smoothing spline.
The superimposed black curves represent the respective instan-
taneous average Pt-Pt distances.

obtained for the excited state is in very good agreement with the 224.5±0.1 fs
period observed by van der Veen et al. [18] in femtosecond optical measurements
in water employing an excitation wavelength of 370 nm.

The photon energy of the excitation pulse ensures that the excited-state distri-
bution is created very close to the equilibrium Pt-Pt distance in the S1 state.
Thus, the photoexcited molecules experience a small gradient along the Pt-Pt
coordinate in the excited state, and the amplitude of the coherent vibrations
are consequently small, as seen from Fig. 12.2 (Top). The hole, on the other
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Figure 12.3: Evolution of the Pt-Pt average distance computed from the
ground- and excited-state time-dependent distributions of Pt-Pt
distances (Left), and its FT (Right) showing peaks at the two
vibrational periods characteristic of motion in S0 (276 fs) and S1

(227 fs).

hand, starts from a position far from the equilibrium ground-state Pt-Pt dis-
tance and, therefore, undergoes large amplitude vibrations. This is the basis for
the qualitative (and classical) understanding of the observation of only ground-
state dynamics in the time-resolved XDS data of PtPOP in water presented in
section 7.2. In Fig. 12.3 (Left), we have plotted the variation of the average
Pt-Pt distance of the full simulated ensemble of PtPOP molecules computed
from:

< dPtPt(t) > =

∫
dPtPt

[
P ′
ES(dPtPt, t) + P eq

GS(dPtPt)− P h
GS(dPtPt, t)

]
d(dPtPt)

=

∫
dPtPt

[
P ′
ES(dPtPt, t) + P r

GS(dPtPt)
]

d(dPtPt) (12.1)

where both P ′ES(dPtPt, t) and P h
GS(dPtPt, t) integrate to the simulated excita-

tion fraction, and P r
GS(dPtPt, t) is the distribution of remaining ground-state

molecules. Consistent with the fact that the excited state is characterized by
a smaller Pt-Pt equilibrium distance with respect to the ground state, we find
that there is an overall decrease in the average Pt-Pt distance after excitation.
Fig. 12.3 (Right) shows that the Fourier transform (FT) of < dPtPt(t) > de-
livers the periods of both the ground and excited states. The peak of the FT
associated to the period of vibrations in S1 has a significantly smaller intensity
than the peak of the S0 period, an indication of the predominance of ground-
over excited-state dynamics.
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12.1 The Optimal Pump-Pulse Duration

Let us expand a bit on the conclusion that we have reached in the previous
section regarding the prevalence of ground-state hole dynamics with respect
to excited-state dynamics. In the following considerations we shall assume the
pump pulse is Fourier-transform limited, implying that its temporal and spectral
profiles are related through a Fourier transform.

In the classical picture that we have adopted so far, an ultrafast probe can
clearly detect dynamics in the ground-state only if the excitation pulse creates
a narrow, localized hole in position space. In our case, this was allowed by
a long enough pulse, such that its frequency spread, determining the spread
of the distribution of Pt-Pt distances that can be excited (according to the
window function of Eqs. (10.4) and (10.5)), was sufficiently smaller with respect
to the width of the absorption spectrum (see Tab. 10.1 and Fig. 10.2). In
this picture, we have neglected motion of the ground-state molecules during
the pulse. Molecules moving in and out of the resonance region would smear
the initial distribution of the hole. As the duration of the pulse increases,
the smearing becomes more ample. A limiting case is approached when the
pulse duration becomes equal to half the vibrational period of the ground state,
because in this case molecules from all parts of the ground-state distribution
can enter the resonance condition; as a result, the dynamics in the ground
state is washed out. On the other hand, for too short pulses, the spread of
excitation frequencies becomes so large that the resonance condition is satisfied
at all Pt-Pt distances, so the dynamics is smeared out anyway. The optimum
pulse duration for clearly observing ground-state dynamics lies in the middle
of these two limiting conditions. Based on these considerations, Fleming et
al. [177, 188] define the optimum pulse duration as the middle of the interval
1/∆νabs < ∆τ < TGS/2, where ∆νabs is the frequency spread of the absorption
spectrum and TGS is the ground-state vibrational period. In the case of the
pump pulse used in the XDS experiments on PtPOP, the duration of the pulse
∆τ , as quantified by the full width at half maximum (FWHM) of the temporal
laser profile, is ∼50 fs (see Tab. 10.1), while the experimental 1/∆νabs and
TGS/2 are, respectively, ∼20 fs (FWHM of the spectrum reported in Fig. 10.2)
and ∼140 fs. Therefore, the pulse duration lies very close to the middle (∼60
fs) of the interval 1/∆νabs < ∆τ < TGS/2. So, the experiments employed
pump-pulse frequency and duration that, in this classical picture, are optimal
for enhancing ground-state hole dynamics.

Obviously, the finite duration of the pulse has an effect also on the amplitude
of the coherent oscillations in the excited state. The initial distribution will be
broadened more, and hence the coherent dynamics will be smeared out faster, in
the electronic state in which motion happens more rapidly. For PtPOP, the S1
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state has a higher Pt-Pt stretching frequency than the ground state. Therefore,
we expect that the smearing due to the finite pulse duration is more significant
for S1 than for S0. This could be a plausible explanation of why the experimental
data contain no trace at all of excited-state dynamics (see FTs in Fig. (7.3)),
while the simulations predict the presence of a (although small) contribution
from dynamics in S1.

12.2 Comparison with the Fit of the XDS Data

Figure 12.4: Comparison between the time dependent Pt-Pt distance of the
ground-state hole determined from the structural fit of the
isotropic difference XDS signal (Top), and the same parameter
obtained from the nonequilibrium QM/MM hole distributions
convoluted with the IRF of the experiment (Bottom). Both ex-
perimental and simulated dPtPt have been fitted with an expo-
nentially damped sine function multiplied with a step function
centered at t = 0 and convoluted with a Gaussian IRF (black
continuous curves). The analysis of the experimental data has
been performed by E. Biasin and K. Haldrup and is presented in
Ref. [P4].
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Fig. 12.4 (Top) shows the results of the fit of the isotropic difference scattering
signal from the PtPOP XDS data in terms of the best-fit Pt-Pt distance of
the ground-state hole as a function of time. The fit has been performed by
E. Biasin and K. Haldrup [P4] employing the model presented in section 8.2
(see especially Eq. (8.21) and related discussion), describing the hole with the
set of single vacuum ground-state structures generated as explained in section
11.3. The time-dependent dPtPt could be fitted with an exponentially damped
sine function multiplied with a step function centered at t = 0 and convoluted
with a Gaussian with a width of ∼60 fs, representing the Instrument Response
Function (IRF) of the experiment. The fitting function is also shown in Fig.
12.4 (Top). The fit delivered a period of ∼284 fs and a decay time of the
coherent oscillations of ∼1.7 ps. Fig. 12.4 (Bottom) shows the same type of fit
as performed on the average Pt-Pt distance obtained from the time-dependent
simulated hole distributions convoluted with the same IRF as employed in the
fit of the experimental data. From this, we obtain a period of 271 fs, which
agrees to within 5% with respect to the experimental period. The coherence
decay from the simulations, on the other hand, is found to be around two times
faster than from the experiments. We argue that the discrepancy could be
a consequence of the simulations slightly overestimating the anharmonicity of
the Pt-Pt vibrations. Indeed, the oscillation period of the simulated average
dPtPt hole distance changes by around 20 fs from the first oscillation to the
oscillations at time longer than 1.5 ps; while no appreciable variation in the
Pt-Pt vibrational period could be observed from the data. Another noticeable
discrepancy is represented by a reduced amplitude of the first two oscillations in
the Pt-Pt distance determined from the structural fit of the data with respect
to the simulated dPtPt hole distance. This has been interpreted as an indication
of the presence of multi-photon excitation of PtPOP in the experiments.

12.3 Absorption or Raman?

It might appear surprising that, in discussing ground-state coherent vibra-
tional dynamics induced by an ultrashort optical laser, we have not appealed
to the so-called resonant impulsive stimulated Raman scattering (RISRS) pro-
cess [189, 177, 190, 191]. RISRS is, usually, invoked to explain photoinduced
vibrational dynamics in the ground-state from a quantum mechanical viewpoint
[14, 18, 177]. The quantum mechanical viewpoint is based on stationary vibra-
tional eigenstates, and thus pictures ground-state dynamics in the energy space.
The ground-state equilibrium ensemble is represented by a thermal density ma-
trix defined as an incoherent sum of stationary eigenstates (see Eq. (11.2)). In
this quantum mechanical picture, during interaction with an optical laser, two
concomitant processes are in play: absorption and the RISRS process. Absorp-
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tion transfers population from the thermally populated vibrational eigenstates
of the ground state to the excited state. This event cannot explain coherent
motion in the ground state, since the eigenstates do not acquire any time de-
pendence after they have been depopulated, they remain stationary. Ground-
state coherent oscillations must arise due to RISRS, from a quantum mechanical
viewpoint. RISRS transfers population, during the pulse, from the excited state
back to the ground state, thus leading to the formation of a coherent sum of
stationary states, i.e. a wave packet. Such a wave packet is non-stationary and
will move on the ground-state potential surface with the characteristic period
of the ground-state.

The classical picture of a moving hole localized in position space, originating
from selective absorption of Pt-Pt distances, which we have used to interpret
coherent ground-state dynamics, is only apparently incompatible with the pic-
ture offered by quantum mechanics. As explained by Fleming et al. in seminal
works [177, 188], even though the classical picture has no authority to describe
what happens during interaction with the laser pulse, it implicitly incorporates
the combined effects of absorption and RISRS in the description of the resulting
ground-state dynamics. These authors have shown that the vibrational dynam-
ics in the ground state described using the two pictures can be surprisingly
similar, especially at high temperature, when many vibrational eigenstates of
the ground state are initially populated. In some limiting cases, the classical
and the quantum mechanical viewpoints give essentially identical results, since
they use two different ensembles with the same density matrix.



13
Dynamics of Excited-State
Bond Formation

In the present chapter, we describe the analysis of the second set of nonequi-
librium ground-state distributions and ∆SCF-QM/MM trajectories of PtPOP
in water. These were produced using the parameters of the pump pulse em-
ployed in the transient absorption setup that allowed van der Veen et al. [18]
to probe the ultrafast vibrational dynamics upon excitation into S1 of PtPOP
in water. The excited-state simulations were primarily aimed at (i) characteriz-
ing the coherence decay of the Pt-Pt vibrations in S1 in water, (ii) elucidating
structural distortions involving the ligands during the excited-state dynamics
and (iii) assessing whether the ultrafast relaxation is exclusively governed by
specific solute-solvent interactions, as suggested in Ref. [18], or whether energy-
accepting modes in the complex are also playing a role as mediators in the
transfer of energy to the solvent, as hypothesized in Ref. [14]. To address
the last point we have performed a vibrational analysis of the ∆SCF-QM/MM
trajectories according to the method illustrated in section 6.2.2 of the theoret-
ical and computational method part of the present thesis. The content of this
chapter is included, with minor variations, in Ref. [P2].

Due to the vast amount and statistical variability of parallel processes playing
out in solution, extracting clear indications about the most likely paths of en-
ergy relaxation from a BOMD-generated out-of-equilibrium solution ensemble
can be arduous if not impracticable at all. In fact, the interplay between anhar-
monic couplings and stochastic events can lead to incoherent processes, making
the monitoring of average dynamical properties useless, while, at the same time,
extrapolation of ensemble trends from the behaviour of a few individual uncor-
related trajectories can be dangerous, due to statistical bias. For this reason,
we have performed additional ∆SCF-QM BOMD simulations of an isolated gas-
phase PtPOP molecule in S1 with the aim to gain preliminary insights into the
excited-state intamolecular energy flow and, thus, facilitate the interpretation of
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the vibrational analysis of the S1 ∆SCF-QM/MM trajectories. The ∆SCF-QM
BOMD simulations in vacuum were performed by propagating the system with
Velocity Verlet with an integration time step of 1 fs. To allow a time step of 1 fs,
all O-H bonds and hydrogen bonds present in PtPOP were constrained with the
ASE implementation of RATTLE [129], as done for all QM/MM BOMD sim-
ulations performed in the present work. Likewise, the complex was described
using GPAW with BLYP. During the dynamics, the translational and rotational
degrees of freedom (DOF) were removed at each step by projecting out the total
linear and angular momenta, respectively.

In the next section we explain how the vibrational velocities needed for the
generalized normal mode analysis, illustrated in section 6.2.2, were obtained
from the solution-phase and vacuum trajectories. Section 13.2 is dedicated to
presenting the results of the vacuum simulations; while section 13.2 deals with
the QM/MM BOMD simulations.

13.1 Extracting the Body-Fixed-Frame Velocities

Generalized normal modes and corresponding velocities were computed for the
PtPOP complex from both gas-phase and solution-phase trajectories. To per-
form the analysis, the cartesian velocities without contributions from translation
and overall rotation of the molecule are needed.

For the gas-phase simulations, since we have removed the total linear and an-
gular momenta at each step of the propagation, the body-fixed-frame velocities
were readily available. For the solution-phase trajectories, where it was not
possible to separate out translation and overall rotation of the solute during the
∆SCF-QM/MM BOMD propagation, the body-fixed-frame velocities Vp to be
used in (6.34) were obtained from the cartesian velocity vectors Ṙa(t) by an a
posteriori procedure. First of all, we required that the origin is at the molecule’s
center of mass, i.e.

∑Nn

a MaRa(t) = 0 and
∑Nn

a MaṘa(t) = 0, where Nn is the
number of atoms in PtPOP, to separate the translation. Afterwards, we applied
a rigid rotation to align all frames to a reference structure:

R′a(t) = A(t)Ra(t) (13.1)

where the rotation matrix A(t) was computed using the Kabsch method [192],
which minimizes the root mean squared deviation (RMSD) between the instan-
taneous structure R′(t) and the reference frame. Finally, we assumed the overall
rotational energy and internal kinetic energy of the molecule to be completely
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separable, such that the total kinetic energy is given by:

Ek(t) =
1

2
Ṙ2

CM(t)

Nn∑
a=1

Ma+
1

2

Nn∑
a=1

Ma (ωr(t)×R′a(t))
2

+
1

2

Nn∑
a=1

MaV
2
a(t) (13.2)

where RCM(t) is the translating position of the origin of the system of axis with
respect to the fixed laboratory system and ωr(t) is the apparent angular velocity
obtained from the instantaneous moment of inertia and angular momentum of
the molecule (ωr(t) = I−1(t)

∑Nn

a R′a(t) × Ṙ′a(t)); and calculated the body-
fixed-frame velocities according to:

Va(t) = Ṙ′a(t)− ωr(t)×R′a(t) (13.3)

When multiple trajectories were available, the average in Eq. (6.34) to compute
the covariance matrix K was carried out over time and trajectories.

The Python script used to extract the body-fixed-frame velocities of PtPOP at
each step of the ∆SCF-QM/MM trajectories is provided in appendix A.

13.2 Gas-Phase Vibrational Dynamics

We have performed two different types of ∆SCF-QM BOMD simulations of S1

PtPOP in vacuum. The initial gas-phase structures utilized in the two simula-
tions are shown in Fig. 13.1.

In the first simulation (simulation (I)), a single S1 trajectory was started from a
structure geometry-optimized in vacuum in the S1 state with respect to all DOF
except for the Pt-Pt distance, which was set at the value of the ground-state
structure optimized in vacuum using GPAW with BLYP (3.005 Å, see section
9.3). At the beginning of the simulation, all atomic momenta were equal to 0.
The trajectory was then propagated for 16 ps with time step of 1 fs. While this
choice of initial conditions is far from being representative of the state created
by excitation with an ultrashort laser, it nevertheless provides a useful means
for more easily identifying vibrational modes of the molecule that couple more
strongly to the Pt-Pt stretching mode, since at the beginning of the dynamics
almost all excess potential energy will be concentrated in this mode.

In a second vacuum ∆SCF-QM BOMD simulation (simulation (II)), we have
propagated a single S1 trajectory starting from the optimized geometry of the
ground state. With respect to the SF approximation used to set up initial con-
ditions for the nonequilibrium ∆SCF-QM/MM BOMD simulations (see section
10.2), this second choice of initial conditions corresponds to a CW (infinitely
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Figure 13.1: The initial PtPOP structures used in the two ∆SCF-QM BOMD
simulations in the S1 excited state (ES). (Left) Simulation (I) was
started from the gas-phase geometry optimized in S1 with the Pt-
Pt distance constrained to the Pt-Pt distance of the gas-phase
ground-state (GS) optimized geometry of the complex (3.005 Å).
(Right) Simulation (II) was started from the gas-phase ground-
state optimized geometry. The structures are drawn with the
Pt-Pt axis oriented horizontally to highlight that Pt2P4 groups
in (I) and (II) are in a quasi-trigonal bipyramidal and square-
based planar geometry, respectively.

long) pump pulse, i.e. the excitation window of Eq. (10.5) is a delta function
(this is the Bersohn-Zewail (BZ) model, see for example [173]). This simulation
was aimed at producing a picture of the dynamics that is closer to the events that
take place in an ultrafast pump-probe experiment than the one that emerges
from the first simulation. Total propagation time and time step were the same
as those of the ∆SCF-QM BOMD run started from a relaxed S1 geometry with
the Pt-Pt distance of the ground state.

13.2.1 Analysis of the Energy Drift

Figs. 13.2 and 13.3 analyse the energy drift in the two different vacuum ∆SCF-
QM BOMD simulations of PtPOP in S1. Fig. 13.2 refers to the run started
from a geometry with the Pt-Pt distance of the vacuum ground-state optimized
geometry and all other DOF relaxed in S1 (simulation (I)). Fig. 13.3 refers to
the simulation started from the geometry optimized in vacuum in the ground
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Figure 13.2: Time dependence of the total potential and kinetic energies of
PtPOP in the gas-phase ∆SCF-QM BOMD simulation (I) (see
Fig. 13.1). The black curve represents the evolution of the total
energy obtained as the sum of the potential and kinetic energies
(uses the blue energy scale).

Figure 13.3: Time dependence of the total potential and kinetic energies of
PtPOP in the gas-phase ∆SCF-QM BOMD simulation (II) (see
Fig. 13.1). The black curve is the instantaneous total energy
(potential plus kinetic, uses the blue energy scale).

state (simulation (II)).

In both cases, the total energy (potential plus kinetic) is satisfactorily stable
throughout the entire simulation time of ∼16 ps. For the first simulation, at the
end of the run the energy drift, quantified by the deviation of the instantaneous
total energy from the value at t = 0, is equal to 1.3×10−2 eV (3.4×10−4 eV per
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atom), corresponding to a root-mean-square error (RMSE) of 7.7×10−3 eV. For
the second simulation, the maximum energy drift in total energy is −0.9× 10−2

eV (−2.4× 10−4 eV per atom and RMSE of 4.7× 10−3 eV).

13.2.2 Interplay between Pinch, Twist and Breathing

We start by examining the trajectory from simulation (I) (see Fig. 13.1).

Figure 13.4: Time evolution of the total energies (kinetic plus potential) of
selected vibrational modes and the sum of the rest as obtained
from a generalized normal mode analysis of the gas-phase S1 tra-
jectory from simulation (I). In total, the modes extracted from
the vibrational analysis after removing the translations and over-
all rotations, and taking into account the constraints enforced on
the positions of the hydrogen atoms during the dynamics, were
92. The total mode energies were averaged over time intervals of
300 fs and expressed as a percentage of the total average vibra-
tional energy. See Fig. 13.5 for a depiction of the four selected
modes

The Pt-Pt stretching mode takes up alone almost all excess vibrational energy at
the beginning of the dynamics. This is apparent from Fig. 13.4, which reports at
different intervals of time during the simulation the percent fraction of average
total energy (kinetic plus potential) for the four modes that are found to have
the largest average kinetic energy over the entire simulation time and for the
sum of the rest. The average total energy for each mode was calculated from
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Figure 13.5: The four main generalized normal modes involved in the gas-
phase S1 dynamics of PtPOP, and the FTs of their velocity au-
tocorrelation functions. The position of the maximum of the FT
of a mode gives the characteristic frequency of that mode.
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the virial theorem as twice the average of the kinetic energy over intervals of 300
fs. The four selected modes are depicted in terms of generalized normal mode
displacement vectors in Fig. 13.5. The figure also shows the Fourier transform
(FT) of the autocorrelation function Cp(t) of the mode velocities for each mode
p. These were calculated from:

Cp(t) =
〈
Q̇p(0)Q̇p(t)

〉
(13.4)

The positions of the FT peaks represent the characteristic vibrational frequen-
cies of the modes.

Figure 13.6: Instantaneous kinetic energy of the four main modes of a general-
ized normal mode analysis of PtPOP along a vacuum trajectory
in S1 where almost all excess vibrational energy is initially stored
along the Pt-Pt stretching coordinate (simulation (I)). The ener-
gies of the twist 2 and breathing modes are shifted upwards for
better clarity. All modes are visualized with the help of displace-
ment vectors in Fig. 13.5.

The mode with character of Pt-Pt stretching is indicated as “pinch”. Initially
in the dynamics, this mode takes up to almost 90% of the total vibrational
energy. After around 6 ps, the portion of energy shared by the pinching mode
has decreased by around 95% of the initial value. Of this, ∼80% has flowed
into 87 modes, which seem to be activated simultaneously and at the same rate,
with none of them showing particular preference for overtaking the excess Pt-Pt
vibrational energy; while around 20% has been transferred to a single mode
with main character of ligand twist (twist 1). Thereafter, a significant portion
of the energy flow is directed towards the other two remaining modes (twist 2
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and breathing), which, thus, seem to be activated rather sequentially after the
activation of twist 1. The interplay between the four main modes identified in
the vibrational analysis manifests itself in the evolution of the respective kinetic
energies, as illustrated in Fig. 13.6. In particular, the strong coupling between
the pinching mode and twist 1 is evident from the fact that while the kinetic
energy of the twist 1 mode is at a maximum, around 6-7 ps, the kinetic energy
of the pinch has reached a minimum, and after that has a small increase at
the expense of the kinetic energy accumulated in twist 1. The same is true
at early times in the dynamics for the pinching and breathing modes. In fact,
at times earlier than 1 ps, kinetic energy is seen to rapidly flow in and out of
the breathing mode, matching a local minimum in the evolution of the kinetic
energy of the pinch.

To shed light on the origin of the couplings between these vibrational modes,
an analysis in terms of their characteristic frequencies (see Fig. 13.5) and main
structural distortions involved is needed. The Pt-Pt pinching period of 242 fs
is in satisfactory agreement with the ∼230 fs value extracted from the vibra-
tional progression of the low-temperature S0 → S1 absorption band of crystal
(n-Bu4N)4[PtPOP] [11, 66]. As seen from the depiction of the breathing mode
in Fig. 13.5, this mode has also partial character of Pt-Pt stretching, thus ex-
plaining why breathing and pinching seem to be coupled despite the breathing
mode has a considerably higher frequency. Regarding the latter, the period
of 140 fs obtained from the maximum of the FT of this mode is in very good
agreement with the experimental 232 cm−1 peak (144 fs period) of the Raman
spectrum of PtPOP in the ground state [193], which was assigned to a symmet-
ric Pt2P8 stretching mode by Gellene and Roundhill [161] on the basis of a DFT
vibrational analysis. Lastly, twist 1 and twist 2 are antisymmetric twistings of
the ligands, where pairs of opposite ligands twist in clockwise and counterclock-
wise directions, resulting in variations of the dihedral ∠P-Pt-Pt-P′ and in-plane
∠P-Pt-P angles. The strong coupling between the pinching and one of these
twisting modes (twist 1) is readily explained by the fact that they share almost
the same frequency. Indeed, the period of the twisting mode is found to be only
∼8 fs longer than that of the pinch. A vibrational analysis carried out using the
Gaussian09 program on the ground-state molecule optimized in vacuum with
BLYP identified an analogous normal mode with frequency close to the one of
the Pt-Pt stretching mode. Furthermore, the calculated gradients of the dipole
moment and polarizability of PtPOP along this mode are very close to 0, re-
vealing that it is neither IR or Raman active, thus explaining why it has never
been observed experimentally (unfortunately Gellene and Roundhill [161] have
decided to report only DFT-calculated frequencies that could be compared to
experimentally determined IR or Raman transitions, thus a comparison with
their vibrational analysis cannot be made for this mode).

Plots of the evolution of the structural parameters that are mostly involved in



164 Dynamics of Excited-State Bond Formation

Figure 13.7: Evolution of the main geometry parameters of PtPOP involved
in the ∆SCF-QM BOMD vacuum simulation started from a re-
laxed S1 structure with the Pt-Pt distance of the ground-state
optimized geometry (simulation (I)), and their FT. Changes in
the reported parameters and their frequencies correlate with vari-
ations in the kinetic energy of the normal modes presented in Fig.
13.6. (Top) Evolution of the Pt-Pt distance. (Middle) Instanta-
neous average P-P distance between P atoms belonging to oppo-
site ligands. Since P-P symmetric vibrations take part in both
the breathing and pinching modes, fluctuations in this parameter
reflect the frequencies of both modes. (Bottom) Variation of the
mean of the ∠P-Pt-Pt-P′ dihedral angles involving ligands that
undergo simultaneous clockwise torsion in the dynamics of the
twist 1 and twist 2 modes.
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the dynamics of the selected modes, together with their FTs, are shown in Fig.
13.7. The frequencies of the fluctuations of reported atomic displacements and
angles, and the time evolution of their amplitudes correlate very well with the
evolution of the mode kinetic energies shown in Fig. 13.6, thus further vali-
dating the results of the generalized normal mode analysis. We note that it
would be more difficult to infer the intramolecular energy flow from the local
mode picture provided by the evolution of the amplitudes of oscillations of single
structural parameters, when a priori knowledge of the coupled nuclear motion
in the dynamics is lacking. This is clear, for example, from the plot of the
evolution of the average P-P distance between P atoms belonging to the same
PtP4 group and to opposite ligands, which features two superimposed oscilla-
tions with different frequencies (indeed, the P-P distances change both in the
breathing and pinching modes); as a consequence, the correlation between the
pinching and breathing modes before 1 ps, which shows up clearly in the evolu-
tion of the kinetic energies, is lost, thus highlighting the advantages offered by
a decomposition of the kinetic energy in generalized normal mode contributions
as performed in this work.

13.2.3 The Bending Mode

Fig. 13.8 shows the evolution of the total energies of five selected vibrational
modes and the sum of the rest obtained from the generalized normal mode
analysis performed on the S1 vacuum ∆SCF-QM trajectory started from the
gas-phase optimized structure of PtPOP in the ground state (simulation (II)).
The five modes were those sharing on average during the simulation the biggest
portion of kinetic energy. The total mode energies were computed using the
virial theorem as twice the average mode kinetic energies over time intervals of
300 fs. The portion of total energy stored initially in the pinching mode is found
to be much smaller than in simulation (I), being equal to only ∼30%. Notably,
an almost equal portion of energy is shared by a mode that was not activated in
in simulation (I) (indicated as “bending” in Fig. 13.8). All other modes share an
equal portion of the remaining excess total energy. Between ∼1 and ∼7 ps the
flow of energy activates the twist 1 and breathing modes (see Figs. 13.5 and 13.7
for a characterization of these modes), while at around 8 ps the mode indicated
as “twist 3” has received a considerable portion of the excess total energy.

The bending mode is depicted in Fig. 13.9 (Bottom), where also the FT of the
autocorrelation of mode velocitie is reported. It is characterized by a bending of
the ligands corresponding to nuclear motion in the well of the potential energy
landscape along the pseudorotation coordinate ∆, as defined in Fig. 9.8. This
is further confirmed by the evolution of ∆ during the dynamics (Fig. 13.9
(Middle)), which shows a first rapid increase, followed by oscillations with a
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Figure 13.8: Time evolution of the total energies (potential plus kinetic) of
selected vibrational modes of PtPOP and the sum of the rest
as obtained from a generalized normal mode analysis of the S1

vacuum trajectory from simulation (II) (see Fig. 13.1). The
total mode energies were averaged over time bins of 300 fs and
expressed as a percentage of the total average vibrational energy
of the molecule.

period of ∼490 fs around a value of about 7◦, consistent with the shape and the
minimum of the potential shown in Fig. 9.8. The only experimental indication
of the existence of a vibrational mode with a lower frequency than the metal-
metal stretching in PtPOP is given by the presence of a ∼40 cm−1 sideband
on the Pt-Pt vibronic progression of low temperature absorption and emission
spectra of single crystals of Ba2[PtPOP] [67], which was attributed to a ligand
deformation mode, but was never further characterized. According to the results
of our simulations we assign the observed mode to a bending of the ligands in a
D2d geometry (of the Pt2P8 core), thus reaffirming the conclusion that PtPOP
in the excited state does not retain a C4h symmetry that we have reached in
section 9.3 using PESs calculations.

The twist 3 mode is characterized in Fig. 13.10. Its behaviour is similar to
the twist 2 mode observed for simulation (I), in that it is activated later in the
dynamics, after about 6 ps, but has a slightly different period (∼107 fs) and
character of the torsional motion.

In Fig. 13.11 we report the evolution of the instantaneous kinetic energy along
the modes with the largest average kinetic energy over the entire BOMD simu-
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Figure 13.9: Evolution of the vacuum S1 trajectory started from the optimized
gas-phase S0 geometry of PtPOP (simulation (II)) along the co-
ordinates that, at the beginning, share the largest portion of
vibrational energy of the molecule. (Top) Variation of the Pt-Pt
distance. (Middle) Evolution of the pseudorotation coordinate
∆ defined in Fig. 9.8. (Bottom) Visualization of the mode that
corresponds to motion along ∆ and is activated at the beginning
of the dynamics together with the pinching mode.
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Figure 13.10: The twist 3 vibrational mode obtained from a generalized nor-
mal mode analysis of the vacuum ∆SCF-QM trajectory from
simulation (II). (Top) FT of the autocorrelation function of the
mode velocities and representation in terms of generalized nor-
mal mode displacement vectors. The mode involves the simul-
taneous clockwise and counterclockwise twist of pairs of adja-
cent ligands. (Bottom) Variation of the mean of the ∠P-Pt-Pt-
P′ dihedral angles involving ligands that undergo simultaneous
clockwise torsion in the dynamics of the mode. The inset shows
the FT of the instantaneous average dihedral angle.

lation time. These include the pinching and bending modes, the breathing and
twist 1 modes, identified also previously, and the twist 3 mode. The kinetic
energy along the bending mode is seen to decrease rapidly in the first ∼3 ps.
The pinching mode, instead, has, at ∼3 ps, around the same kinetic energy it
had at the beginning; hence, it is reasonable to assume that a considerable por-
tion of the excess energy of the bending flows to the pinch. Besides, we observe
how, in this second type of simulation, the coupling between the pinching and
the breathing and twist 1 modes seems to be accentuated. This is apparent
from the multiple local dips that characterize the evolution of the kinetic en-
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Figure 13.11: Evolution of the instantaneous kinetic energy along the vi-
brational modes of PtPOP that undergo the largest displace-
ments during the excited-state ∆SCF-QM BOMD simulation
(I) started from the ground-state optimized geometry of the
complex.

ergy of the pinch in the first ∼3 ps, which are accompanied by variations of the
same magnitude but opposite sign in the energies of the breathing and twist 1
modes. What is new with respect to simulation (I), in which all coordinates
except the Pt-Pt distance were relaxed before running the dynamics, is that a
non-negligible portion of the total kinetic energy of the molecule is also stored
in the breathing and twisting modes from the very beginning of the dynam-
ics. Therefore, we conclude that initial activation following the gradients of the
excited-state potential after excitation can induce a stronger coupling of the
ligand deformation modes with the Pt-Pt pinching mode, along the dynamics.

13.3 Dynamics in Solution

Fig. 13.12 shows the excited-state distribution of Pt-Pt distances as obtained
from the ensemble of out-of-equilibrium S1 ∆SCF-QM/MM trajectories at three
times: time zero, after around half the S1 vibrational period, i.e. when the
distribution is at the first inner classical turning point, and at a late time in the
dynamics, when the coherent oscillations cease. While Fig. 13.12 shows density
plots of the excited-state (blue) and ground-state hole (red) time-dependent
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Figure 13.12: Time-dependent excited-state distribution of Pt-Pt distances
(blue shaded areas) as obtained from the nonequilibrium ∆SCF-
QM/MM trajectories. The distribution is shown immediately
after excitation, at its first inner turning point and at the end of
the nonequilibrium dynamics. For the ground state, the figure
shows the equilibrium distribution (grey line) and the portion of
it remaining after excitation to S1 (red dashed line) at time zero.
The excited-state distributions are magnified for better clarity.
All distributions were smoothed with a cubic smoothing spline.

dPtPt distributions.

The laser pulse parameters used to set up the initial conditions for obtaining
the non-stationary QM/MM ensembles creates an initial distribution of Pt-Pt
distances in S1 that is localized within a narrow range of elongated distances
with respect to the excited-state equilibrium position, while leaving a localized
hole in the middle of the ground-state equilibrium distribution. The subsequent
dynamics of the full ensemble is dominated by large amplitude coherent oscil-
lations in S1. Coherent Pt-Pt oscillations in the excited state are around the
equilibrium distance of 2.79 Å, with a period of ∼230 fs, and persist up until
around 2 ps. This vibrational period is slightly longer than the one (∼227 fs,
see previous chapter) obtained from the first set of ∆SCF-QM/MM trajectories,
which were started closer to the bottom of the S1 potential. Therefore, the po-
tential appears characterized by a slight anharmonicity. No coherent vibrations



13.3 Dynamics in Solution 171

Figure 13.13: Density plots of the evolution of the excited-state ensemble of
Pt-Pt distances (Top) and of the ground-state hole (Bottom)
obtained from QM/MM trajectories reflecting the initial con-
ditions shown in Fig. 13.12. The distributions were smoothed
with a cubic smoothing spline. The superimposed black curves
represent the respective instantaneous average Pt-Pt distances.

can be seen from the plot of the center of the time-dependent ground-state hole
distribution (Fig. 13.12 (Bottom)), as expected, but a periodic spreading and
refocusing is apparent in the first ∼500 fs. Such a “breathing” of the hole distri-
bution reflects the rigid rotation of the hole about the origin in the phase-space
[194, 177, 188].

In section 9.3, we have shown that the Pt-Pt distance is not the only coordinate
to undergo large changes from ground to excited state, but the Pt-Pt contrac-
tion is accompanied by a bending of the ligands, quantified by an increase of the
parameter ∆ (see Fig. 9.8) by ∼5◦. Therefore, we have examined the possibility
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Figure 13.14: Density plot of the evolution of the distribution of angle dif-
ferences ∆ extracted from the ensemble of S1 ∆SCF-QM/MM
trajectories of PtPOP in water. The black line is the mean ∆
along the ensemble propagation. ∆ has benn defined in Fig.
9.8. The distributions were smoothed with a cubic smoothing
spline.

that the ensemble of excited molecules displays coherent oscillations also along
the coordinate ∆ by plotting the evolution of the distribution of angle differ-
ences ∆ (Fig. 13.14). As apparent from Fig. 13.14, no coherent oscillations are
observed for the bending motion, but rather the trajectories along this coordi-
nate exhibit the behaviour of overdamped oscillators, reaching the equilibrium
value gradually over a time of ∼ 2.5 ps. This finding is consistent with the
lack of oscillating signatures different from the Pt-Pt stretching vibrations in
time-resolved measurements in solution [18].

13.3.1 Mechanism of Coherence Decay

The coherence time of an ensemble oscillations in solution is determined by two
processes happening concurrently: relaxation of vibrational energy, and pure
dephasing events, the latter arising from elastic stochastic collisions with the
solvent and phase changes along an anharmonic potential. An extensive discus-
sion of the concepts of decoherence, vibrational cooling and pure dephasing in
solution can be found in Ref. [195]. We have investigated the causes of deco-
herence of the Pt-Pt oscillations in the excited state by quantifying the time
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Figure 13.15: Time dependence of the average Pt-Pt distance of the nonequi-
librium S1 ensemble (black line) together with the best fit (red
line) from Eq. (13.5).

scales for coherence decay (τc), vibrational cooling (τe), and pure dephasing
(τd) predicted by the simulations. To obtain the simulation decoherence time,
we have fitted the time-dependent average of Pt-Pt distances with a periodic
monoexponentially decaying function of the form:

fc(t) = Ae−t/τc cos

(
2π

TES
t

)
+B (13.5)

in which TES is the coherent oscillation period. The vibrational cooling time
τe was computed by fitting the time-dependent kinetic energy of the pinching
mode obtained from the generalized normal mode analysis, and shown in Fig.
13.16, with the following function:

fe(t) = Ce−t/τe cos2

(
2π

TES
t+

π

2

)
+D (13.6)

which reflects the dependence of the energy on the square of the relative veloci-
ties. The best fits gave values of τc = 520±14 fs and τe = 320±10 fs. The pure
dephasing time τd was estimated by making use of the approximations underly-
ing the optical Bloch equations [196]. In the optical Bloch picture, the rate of
decoherence is given, phenomenologically, by the sum of the rates of vibrational
cooling and pure dephasing:

1

τc
=

1

2τe
+

1

τd
(13.7)

Using Eq. (13.7), a value of 2770 fs is found for τd. This means that the
decoherence of the Pt-Pt vibrations is essentially driven by energy dissipation
along the Pt-Pt coordinate, while statistical effects are far less important.
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Figure 13.16: Time dependence of the kinetic energy of the pinching mode of
PtPOP (black open circles) obtained from the vibrational anal-
ysis of the S1 ∆SCF-QM/MM BOMD simulations and averaged
over all trajectories. The red line is the best fit of the function
in Eq. (13.6) to the time dependence of the average pinching
kinetic energy. Also shown (blue line) is the average transla-
tional kinetic energy of water molecules sampled by requiring
that (i) at t = 0 they are within the first peak of the Pt-Osolvent

RDF (see Fig. 11.3) and (ii) at the end of the nonequilibrium
propagation they have not left this coordination shell. Finally,
the dashed vertical lines represent the times when the average
Pt-Pt distance of the ensemble of non-stationary S1 PtPOP
molecules is at the first two outer turning points.

Experimentally, decoherence times of τc = 1.76±0.8 ps and τc = 1.5±0.5 ps were
found from transient absorption and time-resolved fluorescence up-conversion
measurements respectively [18]. Furthermore, vibrational cooling was found to
happen on time scales of τc = 1.31 ± 0.04 ps (transient absorption) and τc =
1.5±0.2 ps (fluorescence up-conversion), i.e. simultaneously to coherence decay.
Thus, while the coherence decay is around three times faster in our simulations,
they agree qualitatively with the experiments in the observation that the origin
of the decoherence is mostly dynamical, i.e. a result of (dynamical) energy
dissipation in the excited system, and not statistical in nature. This behaviour
is a consequence of the compactness and rigidity of the scaffold of P-O-P ligands,
the first providing screening of the Pt-Pt oscillator from (stochastic) interactions
with solvent molecules, and the second offering a highly harmonic force constant
for the pinching motion (the period of the oscillations in the average Pt-Pt
distance from the simulations changes by only ∼18 fs from the first to the
last oscillation). As for the cause of the quantitative discrepancy between the
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coherence decay and vibrational relaxation times found for PtPOP from the
present simulations with respect to the experimental values, we argue that this
is a consequence of the calculations slightly overestimating the anharmonicity
of the Pt-Pt motion. This is underpinned by the fact that the PMF computed
from the equilibrated part of the S1 ∆SCF-QM/MM trajectories, shown in Fig.
13.12, is best fitted with a Morse potential, while in the transient absorption
measurements performed by van der Veen et al. [18] the period changes at most
by ∼1.5 fs in going from a 360 to a 380 nm excitation wavelength (as already
mentioned, in our simulations the period changes by ∼18 fs at the end of the
coherent dynamics).

The mechanism of coherence decay in PtPOP is different from what was pro-
posed [30] for the [Ir2(dimen)4]2+ complex, already mention in section 11.2.
The main factor causing decoherence in [Ir2(dimen)4]2+ is, in fact, statistical,
ascribable to the flexibility of the dimen ligands that impart higher anharmonic-
ity to the potential energy surface and a broader width to the distribution of
configurations of ground-state molecules that can be excited [30, 11]. Even more
insightful is, perhaps, a comparison with the behaviour observed for I2 under-
going geminate recombination after photoexcitation in different environments.
When the reaction was followed in solvents like CCl4 or cyclohexane, vibra-
tional relaxation was found to occur without coherent oscillations [197]. The
behaviour of PtPOP is, instead, much more similar to that of I2 in solid kryp-
ton, where stochastic collisions with solvent molecules leading to dephasing in
solution are absent and the system is allowed to dissipate energy while retaining
the vibrational phase. [196, 180]. In all cases, the rigidity of the environment
surrounding the oscillators is found to play an important role in determining
whether vibrational coherence survives during the energy relaxation process or
not.

13.3.2 Paths of Vibrational Energy Relaxation

Having established that vibrational cooling drives the coherence decay of the
ensemble of Pt-Pt oscillators, the natural question that arises at this point is:
what are the paths of energy dissipation from the Pt-Pt coordinate?

To provide an answer to this question, we have first investigated the hypothesis
advanced by van der Veen et al. [18] that the main channel of energy dissipation
involves transient orientationally specific interactions of the Pt atoms with water
molecules coordinated at the open axial site. To do so, we have calculated the
average translational and rotational energies of water molecules selected from
the first solvent coordination shell around the Pt atoms defined by the first
peak of the Pt-Osolvent RDF, as indicated in Fig. 11.3. The average transla-
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Figure 13.17: Density plot of the time evolution of the first peak of the Pt-
Osolvent RDF obtained from the S1 ∆SCF-QM/MM trajectories
of PtPOP in water during the first 3 ps of dynamics. The in-
set shows the time dependence (black curve) of the cumulative
Pt-Osolvent coordination number at dPtO = 3.85 Å, represent-
ing the instantaneous average number of water molecules found
within the first solvent coordination shell of the Pt atoms, to-
gether with the value (red line) obtained from the equilibrated
part of the ∆SCF-QM/MM trajectories.

tional energy is plotted as a function of time in Fig. 13.16 together with the
average kinetic energy along the pinching mode. The average rotational energy
extracted from the trajectories did not display any particular displacement from
its equilibrium thermal value. Early in the dynamics, the average translational
energy of the coordinating water molecules experiences small positive fluctua-
tions from its thermal equilibrium value. These fluctuations happen at around
250 and 450 fs, i.e. at the first and second outer turning points of the average
Pt-Pt distance. This uptake of energy by the solvent, however, represents only
a small fraction of the loss of energy from the pinching mode, and, certainly,
cannot explain the steady decrease happening already during the first Pt-Pt
oscillation period. In other words, the water molecules are more “spectators" of
the Pt-Pt dynamics, rather than active participants in the relaxation process.

This is further substantiated by the time evolution of the first peak of the Pt-
Osolvent RDF presented in Fig. 13.17. The oscillations that appear until around
500 fs mirror the Pt-Pt oscillations of the excited-state ensemble of PtPOP
molecules, thus implying that the solvent molecules are relatively static dur-
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ing this part of the dynamics. After that, the Pt-Pt distribution has almost
reached an equilibrium, and the solvent molecules rearrange to the new solute
configuration, as evident from the inset of Fig. 13.17, which reports the time
evolution of the Pt-Osolvent cumulative coordination number at the first min-
imum of the RDF (dPtO = 3.85 Å). Since only water molecules coordinating
to the Pt atoms at the free axial sites are eligible to accept energy directly
from the Pt-Pt pinching, the simulations seem to exclude direct solute-solvent
interactions as the main source of energy loss. Therefore, other intramolecular
vibrational modes have to mediate dissipation of the excess energy along the Pt-
Pt coordinate to the solvent owing to anharmonic couplings with the pinching
mode.

Figure 13.18: (Top) Evolution of the ensemble average total vibrational ki-
netic energy of PtPOP (black circles) obtained as sum of the
kinetic energies of the individual generalized normal modes, ac-
cording to Eq. (6.36), from the vibrational analysis of the S1

∆SCF-QM/MM trajectories. The average ensemble total en-
ergy was further averaged over time intervals of 100 fs as in-
dicated by the horizontal black lines. The red line is an ex-
ponential fit to the data points, while the horizontal dashed
line represents the theoretical value of vibrational energy of an
ensemble of molecules with the number of DOF of PtPOP in
the simulations in equilibrium at 300 K. (Bottom) Plots of the
time dependence of the kinetic energy along selected vibrational
modes of PtPOP for three representative ∆SCF-QM/MM tra-
jectories in S1. The kinetic energies of modes a, b and c are
vertically shifted for clarity of presentation.
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A second indication that this is indeed the case is given by Fig. 13.18 (Top),
where the total vibrational kinetic energy of PtPOP averaged over time intervals
of 100 fs is plotted. An exponential fit to the evolution of the total vibrational
energy, also shown in Fig. 13.18 (Top), gives a time constant of 600 ± 200 fs
for the decay before reaching equilibrium. Hence, the total vibrational energy
is dissipated almost twice as slow as the vibrational cooling along the Pt-Pt
coordinate. This observation can be understood as a clear sign of transfer of
excess energy along the Pt-Pt coordinate to intramolecular modes involving
the ligands only if one assumes that the energy initially accumulated in the
ligand modes dissipates faster than the Pt-Pt vibrational cooling time. Since
the ligands are exposed to direct interactions with the solvent it is reasonable
to expect that the energy put into vibrational modes involving ligand atoms in
the excitation process dissipates very efficiently to the solvent. It follows that
the above result can be interpreted as an indication that the energy initially
stored in the Pt-Pt coordinate survives in the PtPOP molecule for longer than
the simulated vibrational cooling time for the ensemble of Pt-Pt oscillators.

As a last, more stringent, test of this mechanistic hypothesis we have plotted
in Fig. 13.18 (Bottom) the evolution of the kinetic energy for the pinching
mode together with three other relevant vibrational modes, as obtained from
the generalized normal mode analysis, along three representative trajectories.
The modes labelled mode b and mode c were found to have similar frequencies
and large overlaps with respectively the twist 1 and breathing modes obtained
from the gas-phase trajectories, and shown previously to be coupled to the
pinching mode. However, they cannot be characterized fully as a twisting and
a breathing mode, since they exhibit also character of other types of vibrations,
most significantly Pt-P stretching (a representation of the modes in terms of
displacement vectors is given in Fig. B.1 in appendix B). Mode a does not
overlap significantly with any of the main modes coupled in vacuum with the
Pt-Pt pinch. It has mixed character of Pt-P stretching and ligand twist, with an
autocorrelation function of mode velocities (see Fig. B.1) centered around 120 fs.
This period is not far from the position of the peak (138 fs) in the IR spectrum of
PtPOP assigned to P-Pt-P stretching by Gellene and Roundhill [161]. Notably,
the evolution of the kinetic energies along these ligand deformation modes is
seen from Fig. 13.18 (Bottom) to be strongly anticorrelated with the evolution
of the kinetic energy of the pinching mode, since drops in the latter are always
mirrored by increments of the former and vice versa. P-O and P-OH groups in
the molecule experience large nuclear motion along the three ligand vibrational
modes. Since these groups are likely involved in hydrogen bonding with the
water molecules during the dynamics, the modes are expected to efficiently
funnel excess energy to the solvent.

Overall, the simulations carry clear signs that dissipation of the Pt-Pt energy
to the solvent, which drives the decoherence of the Pt-Pt oscillations, occurs
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mainly indirectly through IVR to modes characterized by motion of the O-P-
OH moieties. The result seems to confirm the hypothesis recently put forward
by Monni et al. [14], mentioned in the introduction, that anharmonic couplings
between internal modes are the main source of decoherence of the Pt-Pt vibra-
tions in photoexcited PtPOP. Since vibrational cooling along the pinching mode
is found from the simulations to be much faster in solvent compared to vacuum,
we can deduce that the role of the solvent is actually to facilitate anharmonic
couplings between the modes, making IVR more efficient. Experimentally, van
der Veen et al. [18] found a dependence of vibrational cooling to the solvent,
which was interpreted as a signature of direct energy transfer from the Pt-Pt
coordinate to the solvent. This interpretation, however, neglects the fact that
different solvents can affect the strength of the anharmonic couplings between
internal modes differently, thus changing the rates of IVR. Once again, this
is in contrast to what was found for [Ir2(dimen)4]2+ in acetonitrile, where the
solvent prolongs coherence of the metal-metal oscillations by making, in some
cases, IVR less likely than in vacuum [30].
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Part V

Conclusions and Outlook
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The work presented herein focused on augmenting, benchmarking and applying
a novel multiscale modelling strategy for simulating the structural dynamics
of complex molecular systems in solution. The project has been prompted by
the beginning of a new era of X-ray science, namely the “femtosecond era”, in
which modern sources of intense and ultrashort pulsed X-ray radiation enable
the direct observation of the dynamics of the chemical bond in real time.

Femtosecond X-ray scattering measurements are emerging as a powerful tool
to map photocatalytic processes in solution. Much of the attention is concen-
trated on elucidating the details of the ultrafast excited-state dynamics of tran-
sition metal complexes with photoconversion functionality. The interpretation
and analysis of such novel ultrafast experiments call for first-hand theoretical
support. Moreover, several experimental studies are starting to address the
problem of improving efficiency and versatility of photocatalytic complexes by
modifying their structure or by changing the solvent in which they are embed-
ded [198, 199, 200, 201, 202]. Correctly linking the experimental outcomes to
photocatalytic reactivity and tunability requires mechanistic knowledge, which,
again, can only be attained through modelling and theory.

Assistance to the ultrafast experiments can be offered by atomistic simulations
provided that they are both reliable and efficient. Detailed description of the so-
lution dynamics of systems as large as transition metal complexes is far beyond
the reach of multireference electronic structure methods, due to insurmountable
computational requirements. On the other hand, entirely classical and empirical
models cannot describe at ab initio level processes like bond-formation dynam-
ics, coherence decay, energy transfer to the solvent. The route that we follow is
based on the multiscale QM/MM coupling of a computationally expedient elec-
tronic structure code like GPAW with classical potential functions representing
the solvent. The strategy allows for extensive sampling of solvent-influenced dy-
namics of a complex molecular system, within a Born-Oppenheimer Molecular
Dynamics (BOMD) simulation framework.

In the present work, we have expanded the capabilities of the original formula-
tion of the GPAW-based QM/MM BOMD methodology, enabling it to describe
electronic excited states with arbitrary spin multiplicity. In particular, we have
chosen to try a cheap single-determinant DFT approach as ∆SCF. In chapter
5 of this thesis we have provided the prerequisite theoretical background on
GPAW and ∆SCF, and described the ∆SCF implementation. We have drawn
upon already existing ∆SCF implementations that use a Gaussian smearing of
the orbital occupation numbers to readily converge the electron density in a
context of dynamically changing energy levels, and adapted the strategy within
GPAW. The implementation has been tested on a diatomic molecule showing
good reproducibility with respect to other, more standard, ∆SCF implementa-
tions, and further shown how a full potential energy surface can be reconstructed
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without convergence problems close to regions of states crossing thanks to the
robustness provided by the Gaussian smearing.

A second part of the present project has dealt with the PtPOP molecule. PtPOP
has received much attention in the last years as representative of a broader class
of transition metal complexes with photocatalytic functionality. For this rea-
son, it has been object of extensive ultrafast experimental studies. The model
photocatalyst represented the ideal candidate for assessing the potentialities
and performances of a combination of ∆SCF and QM/MM BOMD methodolo-
gies as applied to study the structural properties and dynamics of transition
metal complexes. The assessment was in terms of both reproduction of previ-
ous experimental observations and assistance to new ultrafast X-ray scattering
experiments with unprecedented time resolution carried out during this project.

In chapter 9, we have reported the first calculated potential energy surfaces
(PESs) of PtPOP along the Pt-Pt distance coordinate for both the lowest-lying
singlet and triplet excited states, which provide the first computational evidence
that they have approximately the same shape and position with respect to the
ground-state gas-phase equilibrium geometry. While in chapter 11, we have seen
that the QM/MM BOMD simulations predict structural and dynamical prop-
erties in solution, such as the equilibrium Pt-Pt bond length, the excited-state
structural changes and the Pt-Pt period of vibration, that are in agreement with
experimental values. We have further elucidated the solvation shell structure
in the ground and excited states, highlighting the presence of solvent molecules
strongly coordinating along the Pt-Pt axis. The solvation cage is largely unal-
tered by excitation, a feature that, previously, had only been postulated based
on experimental evidence. Ensemble properties have been robustly character-
ized using a large amount of statistics (around 460 ps for the ground state and
more than 200 ps for the excited state), achieved thanks to the computational
expediency inherent in GPAW and ∆SCF. We note that similar QM/MM stud-
ies on transition metal complexes [64, 31, 32] base their conclusions on statistical
amounts of thermally sampled data which are roughly an order of magnitude
smaller than those achieved in the present work.

We performed pump-probe X-ray diffuse scattering (XDS) experiments at an
X-ray free electron laser (XFEL) on PtPOP in aqueous solution, where we fol-
lowed the evolution of coherent Pt-Pt vibrations in the ground state. QM/MM
BOMD simulations have been determinant in guiding the data analysis by re-
fining the structural model (chapter 11). Furthermore, they provided a semi-
classical picture of the photoinduced dynamics of the full ensemble of molecules
that is entirely useful in interpreting the experimental outcome. The picture is
based on the formation of a localized hole in the ground-state distribution of
Pt-Pt distances following laser excitation to the ground state. The model pre-
dicts the optimal experimental conditions for preparing a vibrationally “cold”
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excited-state population and a complementary narrow ground-state hole dis-
placed from equilibrium, to bring out the vibrational modulation of the signal
due to coherent ground-state dynamics. This was illustrated in chapter 12.

Next, in chapter 13, we took a step forward from the interpretation and val-
idation of the experiments, and tried to uncover mechanistic aspects of the
excited-state dynamics of PtPOP that had remained so far poorly understood,
because they are not accessible by experiments. We summarize the main conclu-
sions that we have reached about the ultrafast vibrational relaxation following
photoexcitation of PtPOP to the first singlet excited state (S1) in water:

• The Pt2P8 core of the molecule does not retain the D4h symmetry it
has in the ground state, as commonly believed, but distorts towards D2d

symmetry, following pseudorotation of the ligands. An aspect that had
passed unnnoticed from previous DFT calculations, but which could play
a decisive role in determining the trends observed in the ISC rates of
PtPOP and its derivatives in solution.

• Decoherence along the Pt-Pt coordinate occurs through vibrational cooling
while preserving to a large extent the vibrational phase.

• Channels of intramolecular vibrational energy redistribution (IVR) prevail
over direct transfer to the solvent in determining the flow of excess Pt-Pt
vibrational energy.

• The modes involved in the IVR have main character of ligand twisting
and Pt-P bond stretching, and vibrational periods close to the period of
the Pt-Pt stretching vibrations.

• The role of the solvent in the relaxation process is to strengthen anhar-
monic couplings between the pinching and the ligand deformation modes,
thus facilitating IVR with respect to the scenario in vacuum.

Overall, cost-effective ∆SCF-QM/MM BOMD simulations appear, from the
present study, as a powerful tool to investigate aspects of the excited-state dy-
namics and reactivity of complex molecular systems in solution. Therefore, they
can be used to assist the analysis of, and complement ultrafast experiments for
cases in which the BO approximation can be safely employed.

In this study, we have focused on the relaxation events taking place in S1 in the
first picoseconds after photoexcitation in water. The intersystem crossing to the
lower lying T1 state is known from transient absorption measurements to occur
much later, after around ∼14 ps [18]. This permitted us to use ∆SCF-QM/MM
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BOMD simulations that neglect any non-adiabatic and spin-orbit couplings be-
tween electronic states. In our simulations, the S1 state, where the investigated
structural dynamics occurs, was found to be relatively well isolated from T1 and
other higher lying electronic states, as implied by the unperturbed shape of all
obtained S1 potential curves. However, fluctuations in the solvent configura-
tions could temporarily shift the energy levels, thus favouring other electronic
states getting closer to S1. In order to asses the interplay between these tran-
sient energy levels fluctuations and the structural distortion of the symmetry of
the molecule caused by pseudorotation of the ligands in determining the rates
of ISC in water solution, non-adiabatic dynamics simulations including spin-
orbit couplings (SOCs) and solvent effects are needed. Future computational
studies should point in this direction to expand on the knowledge about the
excited-state relaxation cascade at later times than those considered here.

In addition, the early events in the excited-state relaxation cascade in many
photocatalytic transition metal complexes are dominated by couplings between
electronic and nuclear motions. Electronic transitions can occur on picosecond
or sub-picosecond time scales, and can play an important role in determining the
catalytic properties of a complex. Therefore, many ultrafast experimental stud-
ies address the problem of determining the time scales of non-adiabatic processes
in photoexcited transition metal complexes [12]. Recently, the femtosecond time
resolution offered by XFELs was exploited to characterize coherent nuclear dy-
namics along with changes in the electronic character in a prototypical iron
complex [13].

Hence, the next natural step to take to improve on the range of applicability
of our code is to go beyond the BO approximation through inclusion of non-
adiabatic effects in the dynamics. As mentioned in the introduction, this can
be done, without losing the advantages offered by a classical description of the
nuclear dynamics, using mixed quantum-classical schemes like the trajectory
surface hopping (TSH) method. The development of surface hopping routines
within ASE or the coupling of the GPAW ∆SCF implementation presented in
this thesis with already integrated TSH programs, like SHARC [34, 62], rep-
resent possible projects for the future. The single-determinant character of
∆SCF, combined with the use of smooth orbitals, should guarantee efficient
evaluation of the non-adiabatic coupling vectors, needed for the surface hop-
ping propagation, using convenient finite difference methods [203, 204]. On
the other hand, the approximation of utilizing a single-determinant method as
∆SCF to describe a problem that is inherently multiconfigurational will have
to be rigorously assessed. Tests of the quality of non-adiabatic couplings com-
puted with ∆SCF should be performed on small molecules for which high-level
multireference methods are available, and on transition metal complexes against
couplings calculated at TDDFT level, which is the current method of choice in
non-adiabatic MD simulations of such systems.
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Below we include scripts and parts of larger codes that have been developed in
the course of the present project. The first entry contains the most important
part of the Gaussian smearing ∆SCF code implemented in GPAW, and currently
available only within a development branch of the program on Gitlab (https:
//gitlab.com/glevi/gpaw/tree/Dscf_gauss). We include it here, together
with an example script for a Gaussian smearing ∆SCF calculation in GPAW,
in the hope that it can serve as guidance in case someone intends to use the
implementation, or wants to contribute to further develop it. We also provide
scripts for extracting body-fixed frame cartesian velocities from MD trajectories
and for performing a generalized normal mode analysis. We think these scripts
might turn useful to students that are confronted with similar problems, or be
source of inspiration for development within simulation packages like ASE.

Listing A.1: Python class developed in the GPAW module occupations.py
for determining Gaussian smeared ∆SCF constraints on the or-
bital occupation numbers during an SCF cycle of a GPAW calcu-
lation. This is the most important part of the Gaussian smear-
ing ∆SCF implementation. The implementation is currently
available within the following development branch of GPAW:
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss. Projects
to merge the implementation in the official release of the program
are ongoing.

c l a s s FixedOccupations_Gauss ( ZeroKelvin ) :
de f __init__( s e l f , occupation , con s t r a in t s , width=0.01) :

s e l f . occupat ion = np . array ( occupat ion )
s e l f . c o n s t r a i n t s = con s t r a i n t s
ZeroKelvin . __init__( s e l f , True )
s e l f . width = width/Hartree
s e l f . n i t e r = −1

de f spin_paired ( s e l f , wfs ) :
r e turn s e l f . fixed_moment ( wfs )

de f fixed_moment ( s e l f , wfs ) :

https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
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f o r kpt in wfs . kpt_u :
new_occupation = s e l f . d i s t r i bu t e_gaus s i an ( kpt , s e l f .

occupat ion [ kpt . s ] )
wfs . bd . d i s t r i b u t e ( new_occupation , kpt . f_n )

# Fix the magnetic moment f o r sp in po l a r i z ed c a l c u l a t i o n s
i f s e l f . occupat ion . shape [ 0 ] == 2 :

s e l f .magmom = s e l f . occupat ion [ 0 ] . sum( ) − s e l f . occupat ion [ 1 ] .
sum( )

i f s e l f . c o n s t r a i n t s [ 0 ] :
f o r orb in s e l f . c o n s t r a i n t s [ 0 ] :

s e l f .magmom += orb [ 0 ]
i f s e l f . c o n s t r a i n t s [ 1 ] :

f o r orb in s e l f . c o n s t r a i n t s [ 1 ] :
s e l f .magmom −= orb [ 0 ]

de f d i s t r i bu t e_gaus s i an ( s e l f , kpt , ThisSpin_occupation ) :

new_occupation = ThisSpin_occupation

i f s e l f . c o n s t r a i n t s [ kpt . s ] :
f o r c , orb in enumerate ( s e l f . c o n s t r a i n t s [ kpt . s ] ) :

dx2 = ( kpt . eps_n−kpt . eps_n [ orb [ 1 ] ] ) ∗∗2
fgaus s = 1/( s e l f . width∗np . sq r t (2∗np . p i ) )∗np . exp(−dx2/(2∗

s e l f . width ∗∗2) )
i f orb [0 ] <0:

f gaus s [ s e l f . occupat ion [ kpt . s ]==0]=0
e l s e :

f gaus s [ s e l f . occupat ion [ kpt . s ] !=0]=0
fgaus s /= sum( fgaus s )
# Normalize the gauss ian d i s t r i b u t i o n such that
# the sum of the smeared c on s t r a i n t s i s
f gaus s ∗= orb [ 0 ]
# The c on s t r a i n t s can be < or > 0
# < 0 e l e c t r o n s are removed
# > 0 e l e c t r o n s are added
new_occupation = new_occupation+fgaus s

re turn new_occupation

de f t od i c t ( s e l f ) :
r e turn {}

Listing A.2: Example of input script for a calculation with the Gaussian
smearing ∆SCF implementation in GPAW. The script runs cal-
culations to compute the energies of the first singlet and triplet
excited states of the CO molecule.

from __future__ import pr int_funct ion
from ase . p a r a l l e l import paropen
from ase . s t r u c tu r e import molecule
from gpaw import GPAW
from gpaw import Mixer , MixerSum , MixerDif
from gpaw . occupat ions import FixedOccupations_Gauss as FOG
import HPCPath as p
from gpaw . e i g e n s o l v e r s import CG
from gpaw . e i g e n s o l v e r s import Davidson
import os
from ase . i o import read , wr i t e

PATH = p .HPCPath( ) . path

#Def ine a name f o r the output f i l e s
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fname = ’CO_lcao_0 .18_tzpLDA_S2 ’
j ob id=os . environ [ ’PBS_JOBID ’ ]

#The energy o f the opt imized ground s t a t e
E_gs = −14.687650

CO = read (PATH+’CO_lcao_0 .18_tzpLDA_optSO . xyz ’ )

#Set c e l l to c e l l o f GS opt imiza t i on
CO. s e t_c e l l ( [ 1 2 , 12 , 13 . 15034 ] )

# Excited s t a t e c a l c u l a t i o n − Tr ip l e t
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
occupat ions =[ [1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 ] , [ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 ] ]
calc_esT = GPAW(mode=’ l cao ’ , b a s i s=’ tzp ’ , nbands=8, h=0.18 , xc=’LDA’ ,

sp inpo l=True ,
occupat ions=FOG( occupat ions , [ [ [ −1 , 2 ] ] , [ [ 1 , 5 ] ] ] , width

=0.01) ,
maxiter_smear=80, maxiter=1000 ,
convergence={ ’ energy ’ : 0 .0005 ,

’ dens i ty ’ : 1 . 0 e−4,
’ e i g e n s t a t e s ’ : 4 . 0 e−8,
’ bands ’ : −1}, txt=PATH+fname+’_T2fromS0opt . out ’

)

CO. s e t_ca l cu l a t o r ( calc_esT )
E_esT = CO. get_potent ia l_energy ( )
d=CO. get_distance (0 , 1 )

# Excited s t a t e c a l c u l a t i o n − S i ng l e t sp in po l a r i z ed
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
calc_esS_sp = GPAW(mode=’ l cao ’ , b a s i s=’ tzp ’ , nbands=8, h=0.18 , xc=’LDA’ ,

sp inpo l=True ,
occupat ions=FOG( occupat ions , [ [ [ −1 , 2 ] , [ 1 , 5 ] ] , [ ] ] , width

=0.01) ,
maxiter_smear=80, maxiter=1000 ,
convergence={ ’ energy ’ : 0 .0005 ,

’ dens i ty ’ : 1 . 0 e−4,
’ e i g e n s t a t e s ’ : 4 . 0 e−8,
’ bands ’ : −1}, txt=PATH+fname+’_S1fromS0opt_sp .

out ’ )

CO. s e t_ca l cu l a t o r ( calc_esS_sp )
E_esSsp = CO. get_potent ia l_energy ( )

# Excited s t a t e c a l c u l a t i o n − S i ng l e t sp in pa i red
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
occupat ions =[ [2 , 2 , 2 , 2 , 2 , 0 , 0 , 0 ] ]
calc_esS_ns = GPAW(mode=’ l cao ’ , b a s i s=’ tzp ’ , nbands=8, h=0.18 , xc=’LDA’ ,

sp inpo l=False ,
occupat ions=FOG( occupat ions , [ [ [ −1 , 2 ] , [ 1 , 5 ] ] ] , width=0.01)

,
maxiter_smear=80, maxiter=1000 ,
convergence={ ’ energy ’ : 0 .0005 ,

’ dens i ty ’ : 1 . 0 e−4,
’ e i g e n s t a t e s ’ : 4 . 0 e−8,
’ bands ’ : −1}, txt=PATH+fname+’_S1fromS0opt_ns .

out ’ )

CO. s e t_ca l cu l a t o r ( calc_esS_ns )
E_esSns = CO. get_potent ia l_energy ( )

fd=paropen (PATH+fname+’ . txt ’ , ’w ’ )
p r i n t ( fd . name+’ ␣␣␣␣␣␣␣␣ ’+jobid , f i l e=fd )
p r in t ( f i l e=fd )
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pr in t ( ’ Bas i s ␣ s e t : ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ tzp ’ , f i l e=fd )
p r in t ( ’Goemetry␣ (Ang) ␣␣␣T␣ Poten t i a l ␣ energy ␣ (eV) ’ , f i l e=fd )
p r in t ( ’%.3 f ␣␣␣␣␣␣␣␣␣␣␣␣␣%.6 f ’ % (d , E_esT) , f i l e=fd )
p r in t ( ’ Exc i ta t i on ␣ energy ␣5sigma−>2pi ␣T: ␣␣␣%.2 f ’ %(E_esT−E_gs) , f i l e=fd )
p r in t ( f i l e=fd )
p r in t ( ’Goemetry␣ (Ang) ␣␣␣S␣sp␣ Poten t i a l ␣ energy ␣ (eV) ’ , f i l e=fd )
p r in t ( ’%.3 f ␣␣␣␣␣␣␣␣␣␣␣␣␣%.6 f ’ % (d , E_esSsp ) , f i l e=fd )
p r in t ( ’ Exc i ta t i on ␣ energy ␣5sigma−>2pi ␣S : ␣␣␣%.2 f ’ %(2∗E_esSsp−E_esT−E_gs) ,

f i l e=fd )
p r in t ( f i l e=fd )
p r in t ( ’Goemetry␣ (Ang) ␣␣␣S␣ns␣ Pot en t i a l ␣ energy ␣ (eV) ’ , f i l e=fd )
p r in t ( ’%.3 f ␣␣␣␣␣␣␣␣␣␣␣␣␣%.6 f ’ % (d , E_esSns ) , f i l e=fd )
p r in t ( ’ Exc i ta t i on ␣ energy ␣5sigma−>2pi ␣S : ␣␣␣%.2 f ’ %(E_esSns−E_gs) , f i l e=fd

)

Listing A.3: Matlab script for performing a generalized normal mode analysis
of an MD trajectory. It takes as input a .dcd file with cartesian
velocities.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calcu la te g en e r a l i z e d Normal Modes from covar iance o f mass
% weighted c a r t e s i a n v e l o c i t i e s .
%
% Fol lows Strachan , A. JCP 120 (2004)
%
% G. Levi 2017
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Def ine v a r i a b l e s

kb = 8.617330337217213 e−05; % eV/K
ts t ep = 1 ; % f s
v2eV = 1e10∗ sq r t (1 .6021766208 e−19/1.660539040e−27) ; % 1e10∗ sq r t ( eV2J∗Na)
mass = [195 . 084 , 195 .084 , 30 .974 , 30 .974 , 30 .974 , . . .

30 .974 , 30 .974 , 30 .974 , 30 .974 , 30 .974 , . . .
15 .999 , 15 .999 , 15 .999 , 15 .999 , 15 .999 , . . .
15 .999 , 15 .999 , 15 .999 , 15 .999 , 15 .999 , . . .
15 .999 , 15 .999 , 15 .999 , 15 .999 , 15 .999 , . . .
15 .999 , 15 .999 , 15 .999 , 15 .999 , 15 .999 , . . .
1 . 008 , 1 .008 , 1 .008 , 1 .008 , 1 .008 , . . .
1 . 008 , 1 .008 , 1 . 0 0 8 ] ;

syms = { ’Pt ’ , ’ Pt ’ , ’P ’ , ’P ’ , ’P ’ , ’P ’ , ’P ’ , ’P ’ , ’P ’ , ’P ’ , . . .
’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , . . .
’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , . . .
’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ } ;

mass = repmat (mass , 3 , 1) ;
mass = reshape (mass , 1 , 3∗ s i z e (mass , 2) ) ;

%% Read in c a r t e s i a n v e l o c i t i e s

path = ’Path\ to \ t r a j e c t o r y \ f i l e \ ’ ;
f lname = ’ TrajectoryFi leName ’ ; % . dcd f i l e with v e l o c i t i e s

d i sp ( [ ’ Reading␣ v e l o c i t i e s ␣ . . . ’ ] )

% Read in v e l o c i t i e s
h = read_dcdheader ( [ path flname ] ) ; % Ang/ps
natoms = h .N;
nmols = 1 ;
nsteps = h .NSET;
s t a r t s t e p = 0 ; % F i r s t s tep 0
step = 1 ;
l a s t s t e p = nsteps −1;
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nsteps_se l = c e i l ( ( l a s t s t e p+1−s t a r t s t e p ) / step ) ;
t = 0 : t s t ep : ( nsteps_sel −1)∗ t s t ep ;
v e l s = readdcd ( [ path flname ’_v. dcd ’ ] , s t a r t s t ep , step , l a s t s t ep , 1 :

natoms ) ;
v e l s = ve l s / (v2eV∗1e−12) ;

%% Make covar iance matrix o f mass weighted v e l o c i t i e s

% Mass weigthed v e l o c i t i e s
mvels = repmat (mass . ^ ( 0 . 5 ) , nsteps_sel , 1) .∗ v e l s ;

d i sp ( [ ’Making␣ covar iance ␣matrix ␣ from␣mass␣weighted ␣ v e l o c i t i e s ␣ . . . ’ ] )

% Covariance matrix
K = ze ro s (3∗natoms , 3∗natoms ) ;
f o r aa = 1:3∗ natoms

K( aa , aa : end ) = 0 .5 ∗ mean(mvels ( : , aa : end ) .∗ repmat ( mvels ( : , aa ) ,
1 , 3∗natoms−(aa−1) ) , 1) ;

K( aa : end , aa ) = K(aa , aa :3∗ natoms ) ;
end

ekinm = trac e (K) ; % Average k i n e t i c energy (eV)

%% Diagona l i z e covar iance matrix o f mass weighted v e l o c i t i e s

d i sp ( [ ’ Finding ␣normal␣modes␣ . . . ’ ] )

% Now d i a gona l i z e covar iance matrix
[ L , em] = e i g (K) ;
Lt = L ’ ;

%% Get NMs v e l o c i t i e s

mVels = ze ro s ( nsteps_sel , 3∗natoms ) ;
f o r t t = 1 : nsteps_se l

mVels ( tt , : ) = Lt ∗ mvels ( tt , : ) ’ ;
end

% Calcu la te NMs k i n e t i c e n e r g i e s
ek in = 0 .5 ∗ mVels . ^2 ;

%% NMs t o t a l e n e r g i e s

t_wbin = 300 ; % f s
t_edges = 0 : t_wbin : ( nsteps −1) ∗2 ;
[N, edges , b ins ] = h i s t c oun t s ( t , t_edges ) ;
t_binned = ze ro s (1 , l ength (N) ) ;
f o r i i = 1 : l ength (N)

t_binned ( i i ) = ( t_edges ( i i +1)+t_edges ( i i ) ) /2 ;
end
e to t = ze ro s ( l ength (N) , 3∗natoms ) ;

% Calcu la te t o t a l energy
f o r nn = 1:3∗ natoms

f o r i i = 1 : l ength (N)
e to t ( i i , nn ) = 2 ∗ mean( ek in ( b ins==i i , nn ) ) ;

end
end

%% Mode f r e qu en c i e s from FT of au t o c o r r e l a t i o n mode v e l o c i t i e s

f o r nm =1:3∗natoms
di sp ( [ ’ Gett ing ␣ au t o c o r r e l a t i o n ␣ func t i on ␣mode␣ ’ num2str (nm) ] )

% Get au t o c o r r e l a t i o n func t i on
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acV = ze ro s ( nsteps_sel , 1) ;
f o r t t = 1 : nsteps_se l

acV( t t ) = mVels (1 , 114−nm+1)∗mVels ( tt , 114−nm+1) ;
end

% Four ie r Transform
this_pad = 2^nextpow2 ( l ength ( t ) ) ;
[T, Sft_spec ] = dft_01 ( t , acV , this_pad ) ;
[M, idxM ] = max( Sft_spec ) ;
f i g = f i g u r e (1000)
c l f
p l o t (T, Sft_spec , ’ k ’ , ’ l i n ew id th ’ , 2)
xlim ( [ 0 600 ] )
x l ab e l ( ’ Period ␣ ( f s ) ’ , ’ i n t e r p r e t e r ’ , ’ tex ’ , ’ f o n t s i z e ’ ,26) ;
y l ab e l ( ’ a . u . ’ , ’ i n t e r p r e t e r ’ , ’ tex ’ , ’ f o n t s i z e ’ , 26) ;
th i s ax = gca ;
textx = th i sax .XLim(2) − ( th i s ax .XLim(2)−th i s ax .XLim(1) ) ∗1/3 ;
texty = th i sax .YLim(2) − ( th i s ax .YLim(2)−th i s ax .YLim(1) ) ∗1/3 ;
t ext ( textx , texty , { [ ’T␣=␣ ’ num2str (T( idxM) , ’%.1 f ’ ) ’ ␣ f s ’ ] } , ’

i n t e r p r e t e r ’ , ’ tex ’ , ’ f ontwe ight ’ , ’ bold ’ , ’ f o n t s i z e ’ , 22)
s e t ( gcf , ’ Po s i t i on ’ , [ 0 0 600 500 ] )
s e t ( gca , ’ f o n t s i z e ’ , 22 , ’ f ontwe ight ’ , ’ bold ’ , ’ LineWidth ’ , 1 . 5 ) ;
t i t l e ( [ ’Mode␣ ’ num2str (nm) ] , ’ i n t e r p r e t e r ’ , ’ tex ’ , ’ f o n t s i z e ’ , 22 , ’

f ontwe ight ’ , ’ bold ’ )
g r id o f f
box on

pause
p r in t ( f i g , [ path ’Mode ’ num2str (nm) ’ . png ’ ] , ’−dpng ’ )

end

%% Make average s t r u c tu r e

% Read in c a r t e s i a n p o s i t i o n s

d i sp ( [ ’ Reading␣ p o s i t i o n s ␣ . . . ’ ] )

% Read in p o s i t i o n s
h = read_dcdheader ( [ path flname ’ _solu . dcd ’ ] ) ; % Ang
natoms = h .N;
nmols = 1 ;
nsteps = h .NSET;
s t a r t s t e p = 0 ; % F i r s t s tep 0
step = 1 ;
l a s t s t e p = nsteps −1;
nsteps_se l = c e i l ( ( l a s t s t e p+1−s t a r t s t e p ) / step ) ;
pos = readdcd ( [ path flname ’ _solu . dcd ’ ] , s t a r t s t ep , step , l a s t s t ep , 1 :

natoms ) ;

posm = mean( pos , 1) ;
posmxyz = ze ro s ( natoms , 4) ;
f o r aa = 1 : natoms

posmxyz ( aa , 2 : end ) = posm(3∗ ( aa−1)+1:3∗( aa−1)+1+2) ;
end

% Write p o s i t i o n s to f i l e
f i d = fopen ( [ path flname ’_mean . xyz ’ ] , ’wt ’ ) ;
formatSpec = ’%s\ t ␣%.6 f \ t ␣%.6 f \ t ␣%.6 f \ t ␣\n ’ ;
f p r i n t f ( f i d , ’%d\n ’ , 38) ;
f p r i n t f ( f i d , ’ \n ’ ) ;
f o r aa = 1 : natoms

f p r i n t f ( f i d , formatSpec , syms{aa } , posmxyz ( aa , 2) , posmxyz ( aa , 3) ,
posmxyz ( aa , 4) ) ;

end
f c l o s e ( f i d ) ;
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%% Write NMD f i l e f o r Normal Mode Wizard

f i d = fopen ( [ path flname ’_NMs.nmd ’ ] , ’wt ’ ) ;

% T i t l e
f p r i n t f ( f i d , [ f lname ’ \n ’ ] ) ;

% Atom names
formatSpec = ’%s ’ ;
f p r i n t f ( f i d , [ ’ names␣ ’ ] ) ;
f o r aa = 1 : natoms

f p r i n t f ( f i d , formatSpec , [ syms{aa} ’ ␣ ’ ] ) ;
end
f p r i n t f ( f i d , [ ’ \n ’ ] ) ;

% Residue names
formatSpec = ’%s ’ ;
f p r i n t f ( f i d , [ ’ resnames␣ ’ ] ) ;
f o r aa = 1 : natoms

f p r i n t f ( f i d , formatSpec , [ syms{aa} ’ ␣ ’ ] ) ;
end
f p r i n t f ( f i d , [ ’ \n ’ ] ) ;

% Coordinates
formatSpec = ’%.6 f ␣%.6 f ␣%.6 f ␣ ’ ;
f p r i n t f ( f i d , [ ’ c oo rd ina t e s ␣ ’ ] ) ;
f o r aa = 1 : natoms

f p r i n t f ( f i d , formatSpec , posmxyz ( aa , 2) , posmxyz ( aa , 3) , posmxyz ( aa ,
4) ) ;

end
f p r i n t f ( f i d , [ ’ \n ’ ] ) ;

% NMs
f o r nn = 1:3∗ natoms

f p r i n t f ( f i d , [ ’mode␣ ’ num2str (nn) ’ ␣ ’ ] ) ;
f p r i n t f ( f i d , ’%.6 f ␣ ’ , Lt(114−nn+1, : ) ) ;
f p r i n t f ( f i d , [ ’ \n ’ ] ) ;

end

f c l o s e ( f i d ) ;

Listing A.4: Python script for extracting body-fixed frame velocities from
ASE trajectory files.

#!/ usr /bin /env python

import numpy as np
import os
import HPCPath as p

import rmsd

from sys import argv
from ase . i o import read , write , Tra jec tory

"""
Separe te s t r an s l a t i on , r o t a t i on and v i b r a t i o n s assuming
there are no coup l ing s .
Rotates v e l o c i t y ve c to r s accord ing to optimal supe rpo s i t i on
with r e sp e c t to a r e f e r e n c e s t r u c tu r e .

1) Trans la t e s frames such that COM co i n c i d e s with COM
re f e r e n c e s t r u c tu r e
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2) Generate r o t a t i on matrix R to superimpose frames to
r e f e r e n c e us ing Kabsch method

(W. Kabsch , Acta Cryst . A 32 , (1976) )

3) Rotates p o s i t i o n s and v e l o c i t i e s us ing R

G. Levi 2017
"""

de f get_angle ( r1 , r2 , atom) :
v1 = r1 [ atom , : ]
v2 = r2 [ atom , : ]
v1n = v1 / np . l i n a l g . norm( v1 )
v2n = v2 / np . l i n a l g . norm( v2 )
ang le = np . a rcco s (np . vdot ( v1n , v2n ) )

re turn np . degree s ( ang le )

de f get_vcom(v , masses ) :
M = masses . sum( )
vcom = np . dot ( masses . f l a t t e n ( ) , v ) / M

return vcom

def get_etrans (vcom , masses ) :
M = masses . sum( )
e t rans = 0.5∗M∗np . l i n a l g . norm(vcom) ∗∗2 # eV

return e t rans

de f get_ang_velocity ( atoms ) :
"""

Sets the t o t a l angular momentum to zero
by counte rac t ing r i g i d r o t a t i o n s .

"""
# Find the p r i n c i p a l moments o f i n e r t i a

# and p r i n c i p a l axes ba s i s v e c to r s
Ip , ba s i s = atoms . get_moments_of_inertia ( v e c to r s=True )
# Calcu la te the t o t a l angular momentum

# and transform to p r i n c i p a l ba s i s
Lp = np . dot ( bas i s , atoms . get_angular_momentum ( ) )
# Calcu la te the r o t a t i on v e l o c i t y vec to r

# in the p r i n c i p a l bas i s , avo id ing zero d i v i s i o n
# and transform i t back to the c a r t e s i a n coord inate system

# Angular v e l o c i t y in p r i n c i p a l ax i s :
omegap = np . s e l e c t ( [ Ip > 0 ] , [ Lp / Ip ] )
omega = np . dot (np . l i n a l g . inv ( ba s i s ) , omegap )
# Compute r o t a t i o n a l energy
e ro t = 0.5∗np . dot ( omegap , Lp)
# We subt rac t a r i g i d r o t a t i on

# corresponding to t h i s r o t a t i on vec tor
p o s i t i o n s = atoms . ge t_pos i t i ons ( )
vang = np . c r o s s ( omega , p o s i t i o n s )

re turn vang , e ro t

de f get_rotat ion (P, Q) :
"""

Kabsch method to obta in a r o t a t i on matrix
that minimizes the msd between an i s tantaneous
s t ru c tu r e and a s t a t i c r e f e r e n c e s t r u c tu r e .
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"""

# Calcu la te covar iance matrix
cov = np . dot (np . t ranspose (P) , Q)

# SVD
V, S , W = np . l i n a l g . svd ( cov )
d = (np . l i n a l g . det (V) ∗ np . l i n a l g . det (W) ) < 0 .0
i f d :

S [−1] = −S[−1]
V[ : , −1] = −V[ : , −1]

# Generate r o t a t i on matrix
R = np . dot (V, W)

return R

def mult ixyzwr i te ( r e f , r , t r a j s , na , comr , syms , nameout , w r i t e r e f=False
) :

r e f . s e t_pos i t i on s ( r )
i f w r i t e r e f :

# Write p o s i t i o n s r e f e r e n c e
f l r e f = open ( pathout+’ Reference . xyz ’ , ’w ’ )
f l r e f . wr i t e ( ’%d\n ’ % na )
f l r e f . wr i t e ( ’ \n ’ )
f o r j in range ( na ) :

f l r e f . wr i t e ( ’%3s%14.6 f %14.6 f %14.6 f \n ’ % ( syms [ j ] , r [ j , 0 ] , r [ j
, 1 ] , r [ j , 2 ] ) )

f l r e f . c l o s e ( )
# Write t r a j e c t o r y r e f e r e n c e
t r a j r e f = Tra jec tory ( pathout+’ Reference . t r a j ’ , ’w ’ , r e f )
t r a j r e f . wr i t e ( )
t r a j r e f . c l o s e ( )

# Move cen t ro id to o r i g i n
# Needed by the Kabsch method
c r e f = r .mean( ax i s=0)
ro = r − c r e f

# Create t r a j e c t o r y ob j e c t f o r dynamic frames
t r a j r = Tra jec tory ( pathout+nameout+’ _solu . t r a j ’ , ’w ’ )

ct = 0
f o r tt , t h i s t r a j in enumerate ( t r a j s ) :

p r i n t ’ Proce s s ing ␣ t r a j e c t o r y ␣ ’+t h i s t r a j
t r a j = Tra jec tory ( t h i s t r a j )
t l = len ( t r a j )

# Write header
i f t t == 0 :

f l r = open ( pathout+nameout+’ _solu . xyz ’ , ’w ’ )
f l r . wr i t e ( ’%d\n ’ % na )
f l r . wr i t e ( ’ Tra jec tory ␣ ’+nameout+’ ␣Step␣0\n ’ )
f l r n o a = open ( pathout+nameout+’ _soluNoalign . xyz ’ , ’w ’ )
f l r n o a . wr i t e ( ’%d\n ’ % na )
f l r n o a . wr i t e ( ’ Tra jec tory ␣ ’+nameout+’ ␣Step␣0\n ’ )

f l v = open ( pathout+nameout+’ _vsolu . xyz ’ , ’w ’ )
f l v . wr i t e ( ’%d\n ’ % na )
f l v . wr i t e ( ’ Tra jec tory ␣ ’+nameout+’ ␣Step␣0\n ’ )
f l v no r = open ( pathout+nameout+’ _vsoluNorot . xyz ’ , ’w ’ )
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f l v n o r . wr i t e ( ’%d\n ’ % na )
f l vno r . wr i t e ( ’ Tra jec tory ␣ ’+nameout+’ ␣Step␣0\n ’ )

f l e = open ( pathout+nameout+’ _esolu . dat ’ , ’w ’ )
f l e . wr i t e ( ’%3s%14s%14s%14s \n ’ % ( ’ t ’ , ’ e t rans ’ , ’ e r o t ’ , ’ ek in ’

) )

f o r i i in range ( t l ) :
s = t r a j [ i i ] [ : na ]
s . s e t_cons t ra in t ( )
f r = s . ge t_pos i t i ons ( )
fv = s . g e t_v e l o c i t i e s ( )
masses = s . get_masses ( ) [ : , np . newaxis ]
comf = s . get_center_of_mass ( )

### Pos i t i on s
# Trans late o r i g i n to COM re f e r e n c e
tvec = comf − comr
f r −= tvec

# Write out p o s i t i o n s be f o r e al ignment
i f c t i s not 0 :

f l r n o a . wr i t e ( ’%d\n ’ % na )
f l r n o a . wr i t e ( ’ Step : ␣%d\n ’ %(ct ) )

f o r j in range ( na ) :
f l r n o a . wr i t e ( ’%3s%14.6 f %14.6 f %14.6 f \n ’ % ( syms [ j

] , f r [ j , 0 ] , f r [ j , 1 ] , f r [ j , 2 ] ) )

# Move c en t r o i d s to o r i g i n
# Needed by the Kabsch method
cr = f r .mean( ax i s=0)
f r −= cr

# Rotate to minimize rmd to r e f e r e n c e
R = rmsd . kabsch ( f r , ro )
f r r o t = np . dot ( f r , R)

# Move c en t r o i d s back
f r r o t += cr

## For an orthogona l ( r i g i d ) t rans fo rmat ion det (R)=0
detR = np . l i n a l g . det (R)

## Check RMSD
frrmsd = rmsd . rmsd ( f r r o t , r )

p r i n t ( ’ Step : ␣ ’ + s t r ( ct ) + ’ , ␣ det (R) : ␣ ’ + s t r ( detR ) + ’ ,
␣RMSD: ␣ ’ + s t r ( frrmsd ) )

# Write out p o s i t i o n s
i f c t i s not 0 :

f l r . wr i t e ( ’%d\n ’ % na )
f l r . wr i t e ( ’ Step : ␣%d\n ’ %(ct ) )

f o r j in range ( na ) :
f l r . wr i t e ( ’%3s%14.6 f %14.6 f %14.6 f \n ’ % ( syms [ j ] ,

f r r o t [ j , 0 ] , f r r o t [ j , 1 ] , f r r o t [ j , 2 ] ) )

### Ve l o c i t i e s
# Remove COM ve l o c i t y
vcom = get_vcom( fv , masses )
fv −= vcom
et rans = get_etrans (vcom , masses )

# Set po s t i on s and v e l o c i t i e s with r e sp e c t to COM
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# be fo r e c a l c u l a t i n g angular v e l o c i t y
s . s e t_pos i t i on s ( s . g e t_pos i t i ons ( ) − comf )
s . set_momenta ( fv ∗ masses )

# Remove angular v e l o c i t y
vang , e ro t = get_ang_velocity ( s )
fv −= vang
ekin = 0 .5 ∗ np . vdot ( fv ∗ masses , fv )

# Write out v e l o c i t i e s be f o r e r o t a t i on
i f c t i s not 0 :

f l v no r . wr i t e ( ’%d\n ’ % na )
f l vno r . wr i t e ( ’ Step : ␣%d\n ’ %(ct ) )

f o r j in range ( na ) :
f l v no r . wr i t e ( ’%3s%14.6 f %14.6 f %14.6 f \n ’ % ( syms [ j

] , fv [ j , 0 ] , fv [ j , 1 ] , fv [ j , 2 ] ) )

# Rotate to r e f e r e n c e
fv = np . dot ( fv , R)

# Write out v e l o c i t i e s
i f c t i s not 0 :

f l v . wr i t e ( ’%d\n ’ % na )
f l v . wr i t e ( ’ Step : ␣%d\n ’ %(ct ) )

f o r j in range ( na ) :
f l v . wr i t e ( ’%3s%14.6 f %14.6 f %14.6 f \n ’ % ( syms [ j ] ,

fv [ j , 0 ] , fv [ j , 1 ] , fv [ j , 2 ] ) )

# Write to t r a j e c t o r y
s . s e t_pos i t i on s ( f r r o t )
s . s e t_v e l o c i t i e s ( fv )
t r a j r . wr i t e ( s )

# Write out en e r g i e s
f l e . wr i t e ( ’%3d%14.6 f %14.6 f %14.6 f \n ’ % ( ct ∗2 , etrans ,

erot , ek in ) )

ct = ct + 1

f l r . c l o s e ( )
f l r n o a . c l o s e ( )
f l v . c l o s e ( )
f l v no r . c l o s e ( )
f l e . c l o s e ( )
t r a j r . c l o s e ( )

############################################################

### Def ine v a r i a b l e s
na = 38 # Number o f atoms in s o l u t e
pathout = p .HPCPath( ) . path+’NMs/ ’

### Get inputs
de l argv [ 0 ]

# Read in r e f e r e n c e s t r u c tu r e
# Reference i s f i r s t frame o f t r a j e c t o r y in f i r s t argument
t r a j r e f = Tra jec tory ( argv [ 0 ] )
r e f = t r a j r e f [ 0 ] [ : na ]
r e f . s e t_cons t ra in t ( )
r = r e f . g e t_pos i t i ons ( )
syms = r e f . get_chemical_symbols ( )
comr = r e f . get_center_of_mass ( )

# Read in t r a j e c t o r i e s to proce s s
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t r a j s = [ ]
f o r f i l ename in argv [ 1 : ] :

i f ’ . t r a j ’ in f i l ename :
t r a j s . append ( f i l ename )

# Read name f o r output f i l e i f g iven
i f ( ’ . t r a j ’ not in argv [−1]) :

nameout = argv [−1]
e l s e :

nameout = t r a j s [ 0 ] [ 0 : − 5 ]

mul t ixyzwr i te ( r e f , r , t r a j s , na , comr , syms , nameout , w r i t e r e f=False )



B
Further Details on the
Vibrational Analysis in
Solution

Fig. B.1 shows the main generalized normal modes involved in the vibrational
relaxation of PtPOP in water, as obtained from the vibrational analysis of the
S1 solution-phase trajectories of the second set of ∆SCF-QM/MM BOMD simu-
lations performed in the present work. The pinching mode has almost exclusive
character of Pt-Pt stretching and a period of ∼236 fs. Thus, it is very similar to
the pinching mode extracted from the vacuum ∆SCF-QM BOMD simulations
(compare with Fig. 13.5). The mode indicated as mode a has prevalent char-
acter of asymmetric Pt-P stretching, with an FT of mode velocities peaking at
∼120 fs. Mode b and mode c have large overlaps with, respectively, the twist
1 and breathing modes obtained from the generalized normal mode analysis of
the vacuum trajectories. Their characteristic periods are also very close to those
of the vacuum twist 1 and breathing modes (compare with Fig. 13.5). Notably,
mode b and mode c present significant contributions from Pt-P stretchings in
addition to characters of twisting and breathing.
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Figure B.1: The pinching mode and the modes that were found to be more
coupled to it from the generalized normal mode analysis of the
∆SCF-QM/MM BOMD simulations of PtPOP in water. The
modes are represented through generalized normal mode displace-
ment vectors. For each of them the FT of the autocorrelation
function of mode velocities is also shown.
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