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ABSTRACT

Nonhomogeneous regression models are widely used to statistically postprocess numerical ensemble weather

predictionmodels. Such regressionmodels are capable of forecasting full probability distributions and correcting

for ensemble errors in the mean and variance. To estimate the corresponding regression coefficients, minimi-

zation of the continuous ranked probability score (CRPS) has widely been used in meteorological post-

processing studies and has often been found to yieldmore calibrated forecasts compared tomaximum likelihood

estimation. From a theoretical perspective, both estimators are consistent and should lead to similar results,

provided the correct distribution assumption about empirical data. Differences between the estimated values

indicate a wrong specification of the regression model. This study compares the two estimators for probabilistic

temperature forecasting with nonhomogeneous regression, where results show discrepancies for the classical

Gaussian assumption. The heavy-tailed logistic and Student’s t distributions can improve forecast performance

in terms of sharpness and calibration, and lead to only minor differences between the estimators employed.

Finally, a simulation study confirms the importance of appropriate distribution assumptions and shows that for

a correctly specifiedmodel themaximum likelihood estimator is slightlymore efficient than theCRPS estimator.

1. Introduction

Nonhomogeneous regression is a popular regression-

based technique to statistically correct an ensemble of

numerical weather predictionmodels (NWP; Leith 1974).

Such corrections are often necessary since current NWP

models cannot consider all error sources (Lorenz 1963;

Hamill and Colucci 1998; Mullen and Buizza 2002; Bauer

et al. 2015) so that the raw forecasts are often biased and

uncalibrated.

In statistical postprocessing, various approaches have

been developed to correct such ensembles (Roulston and

Smith 2003; Raftery et al. 2005; Gneiting et al. 2005; Wilks

2009) but none of them has appeared as a best single

postprocessing strategy (Wilks and Hamill 2007).
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However, nonhomogeneous Gaussian regression (NGR)

is one of the most widely used techniques (Gneiting et al.

2005) and addresses ensemble errors in terms of regression

coefficients, which are estimated on past ensemble fore-

casts and the corresponding observations. NGR has also

been extended from temperature to other meteorological

quantities by assuming appropriate forecast distributions

(Gneiting et al. 2005; Thorarinsdottir and Gneiting 2010;

Messner et al. 2014a,b; Scheuerer 2014; Hemri et al. 2016).

In the field of statistics, regression coefficients and

distribution parameters have traditionally mostly been

estimated with maximum likelihood estimation (Aldrich

1997; Stigler 2007). Although the maximum likelihood

estimator has certain optimal properties (Huber 1967;

Casella and Berger 2002; Winkelmann and Boes 2006,

details in section 2c), Gneiting et al. (2005) established

NGR parameter estimation by minimizing the continu-

ous ranked probability score (CRPS; Hersbach 2000).

Postprocessing studies for meteorological applications

have used this estimation approach frequently since then

(Raftery et al. 2005; Vrugt et al. 2006; Hagedorn et al.

2008; Scheuerer 2014; Scheuerer and Büermann 2014;

Mohammadi et al. 2015; Feldmann et al. 2015; Scheuerer

and Hamill 2015; Scheuerer and Möller 2015; Taillardat
et al. 2016; Möller and Groß 2016) and often found it to

yield sharper and better calibrated probabilistic forecasts

than with maximum likelihood estimation.

Likelihood maximization is equivalent to minimizing

the log score (LS), which is more sensitive to outliers than

theCRPS (Selten 1998;Grimit et al. 2006). Because of this

higher sensitivity to outliers Gneiting et al. (2005) found

LS minimization to lead to overdispersive forecasts.

Figure 1a illustrates this overdispersion exemplarily for

2-m air temperature forecasts, where NGR is employed

at an Alpine site for 124-h forecasts (see section 3a for

data). Ideally, for perfect calibration the probability in-

tegral transform (PIT) should be distributed uniformly.

However, both estimation approaches, LS and CRPS

minimization, show a hump in the center bins indicating

overdispersive forecasts (i.e., the forecast distribution is

too wide so that observations fall overproportionally into

the central range of the distribution). Although the CRPS

approach indicates a better coverage at center bins, fur-

ther peaks are found at 0.05 and 0.95, which correspond to

the tails of the Gaussian forecast distribution.

The differences between CRPS and LS minimiza-

tion and the W shape of the CRPS model indicate a

misspecification of the NGR in terms of its distribu-

tional tail. Figure 1b shows the PIT histograms of a

nonhomogeneous regression model with a heavier-tail

Student’s t distribution instead of a Gaussian forecast

distribution. Both estimation approaches show only

small differences and much better calibration. This

agrees with theoretical considerations that, given an ap-

propriate distribution, LS and CRPS estimator are con-

sistent and estimate very similar regression coefficients

(Winkelmann and Boes 2006; Yuen and Stoev 2014).

In this article we set out to investigate when and why

results from LS and CRPS minimization will differ for

symmetric distribution assumptions. This is performed in

terms of temperature forecasting in central Europe and

with simulated data using the NGR as the benchmark

approach. Further adjustments of this benchmark include

the use of heavy-tailed logistic and Student’s t probabil-

ity distributions. In particular, the Student’s t distribution

allows for flexible adjustment of the distribution tails.

Section 2 provides an overview of the distributions

employed and the methods for estimation and evaluation

FIG. 1. PIT histogram for temperature forecasts at an Alpine site at124-h lead time, shown for the (a) Gaussian

and (b) Student’s tmodels, estimated with LS (solid) or CRPS (dashed) minimization. The gray area illustrates the

95% consistency interval around perfect calibration, which should be 1. Binning is based on 5% intervals.
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of the statistical models. Sections 3 and 4 present and

discuss results for probabilistic temperature postprocessing

and synthetic simulations, respectively. Finally, section 5

gives the conclusions.

2. Methods

This section briefly describes the distributions, along

with the corresponding statistical models that are set up

for the real case and simulation studies, and explains the

estimation methods and desired estimator properties.

Additionally, the comparison setup and verification

measures are described.

a. Distributions used and density functions

In this article we employ three probability distributions

with differences particularly on their tails (Fig. 2a). In the

following we overview their key characteristics by their

density functions.

The classical NGR approach is based on the Gaussian

distributionN (m, s) with the location parameter m and

the scale parameter s. Its density function fN [Eq. (1)] is

symmetrical around m (Fig. 2a), and is evaluated at the

observed value y with

fN (y;m,s)5
1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e2
1
2[(y2m)/s]2 . (1)

Similarly, but with a somewhat heavier tail, we use the

logistic distributionL (m, s) with its density function fL :

fL (y;m,s)5
e2(y2m)/s

s(11 e2(y2m)/s)2
. (2)

Note, that the standard deviation ofL is not equal to the

scale parameter s, as it is the case for N , rather than

s times p/
ffiffiffi
3

p
’ 1:8.

In addition toN andL , wemakeuseof the shifted scaled

Student’s t (denoted as ‘‘Student-t’’ in the following figures

for simplicity) distribution S (m, s, n) (Student 1908),

which, additionally to the location m and scale s parameters

has a third parameter n, the so-called degree of freedom:

fS (y;m,s, n)5

G
n1 1

2

� �

ffiffiffiffiffiffi
np

p
G

n

2

� � 11

y2m

s

� �2

n

2
64

3
75
2(n11)/2

. (3)

Herein, G denotes the gamma function. The degree of

freedom n controls the tails of the Student’s t distribution

with heavier tails for smaller n values. In the limit of n/‘
the Student’s t distribution approaches the Gaussian dis-

tribution. Its standard deviation is given by sn/(n2 2).

Figure 2 compares the probability density functions of

the different distributions where the scaled functions

(Fig. 2b) highlight the different tail behaviors. The lo-

gistic distribution has clearly heavier tails than the

Gaussian distribution and with n5 2, the Student’s t

distribution can accommodate even heavier tails.

b. Regression models

As the basis regression model, we apply the NGR

approach of Gneiting et al. (2005). The parameters of

the assumed distributions are expressed by linear pre-

dictors. Each predictor contains covariates, which are

typically provided by the NWP ensemble. This leads to

regression models of the following form [Eqs. (4)–(6)],

where the parametersmi andsi are used for theGaussian

FIG. 2. (a) Probability density functions for aGaussian (solid), logistic (dotted), andStudent’s t distribution (dashed)

with m5 0, s5 1 for Gaussian and logistic distributions, and the degree of freedom n5 2 for the Student’s t distri-

bution. (b) Scaled density values with respect to the Student’s t distribution are shown to highlight the tails.
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and logistic assumptions, and mi, si, and ni for our rep-

resentation of the Student’s t distribution [Eq. (3)]:

m
i
5b

0
1b

1
3 ens

i
, (4)

log(s
i
)5 g

0
1 g

1
3 log(SD

ens,i
), (5)

log(n
i
)5 d

0
. (6)

The subscript i labels one observation–forecast pair.

Commonly, the ensemble mean value ensi is used as

covariate for the location parametermi [Eq. (4)], and the

ensemble standard deviation SDens,i is used for the scale

parameter si [Eq. (5)]. The degree of freedom of the

Student’s t model is simply modeled by a constant inter-

cept d0 and not dependent on any covariable. Note that the

coefficients for si and ni are estimated on the logarithmic

scale in order to ensure the positivity of si and ni.

The frameworkdefined inEqs. (4)–(6) is used in later real

data and simulation studies (sections 3 and 4). For the real

data studies, sine and cosine of the day of the year (DOYi)

are additionally included in the predictor of the location

parameter mi, to better represent seasonal variation of

temperature (Dabernig et al. 2017; Messner et al. 2017):

m
i
5b

0
1b

1
3 ens

i
1b

2
3 sin(DOY

i
)

1b
3
3 cos(DOY

i
) . (7)

Clearly, the framework of Eqs. (4)–(6) can be ex-

tended by including additional covariates and also

nonlinear terms (e.g., as in Stauffer et al. 2017). Also,

other probability distributions such as the generalized

extreme value distribution (Scheuerer 2014) could be

used in this framework. Therefore, themodels defined in

this article as well as in Gneiting et al. (2005), Scheuerer

(2014), and Stauffer et al. (2017) can be generally re-

garded as distributional regression models (Klein et al.

2015), where any probability distribution can be as-

sumed for a response variable where each distribution

parameter is linked to explanatory variables.

c. Estimation methods

Estimation by the use of CRPS and LS belong to the

class of M estimation (White 1994), where ‘‘M’’ stands

for maximization or minimization. The idea is to find the

set of parameters û so that a function q (LS or CRPS in

our case) is minimized:

û5 argmin
u2Q

q(y; u) . (8)

More generally, Q5Rp defines the parameter space

with p being the number of regression coefficients,

y5 (y1, y2, . . . , yN) is a vector of observed values, andN

is the number of observations in a training dataset. In

our specific regression framework, û includes all the

estimated regression coefficients (b, g, d) as defined in

Eqs. (4)–(6). Estimators such as LS or CRPS should

address the two properties of consistency and asymp-

totic normality:

û/
p
u
0

as N/‘ ; (9)

ffiffiffiffi
N

p
(û2 u

0
)/

d
N [0, I(u

0
)21] . (10)

Consistency derives from the law of large numbers (LLN),

and normality derives from the central limit theorem

(CLT). An estimator is consistent if it approaches the true

parameter u0 in probability as the sample sizeN increases to

infinity [Eq. (9)]. Furthermore, the difference
ffiffiffiffi
N

p
(û2 u0)

approaches a Gaussian distribution N [Eq. (10)] with the

variance I(u)21. Herein, I(u) defines the Fisher informa-

tion matrix, and its inverse defines the smallest possible

variance achievable for any consistent estimator.Moreover,

this variance describes the efficiency of an estimator.

(Winkelmann and Boes 2006)

Consistency and asymptotic normality can be mathe-

matically proven for both estimators under certain regu-

larity conditions (Winkelmann and Boes 2006; Yuen and

Stoev 2014), where the properties for the CRPS estimator

are proven under mild regularity conditions (Yuen and

Stoev 2014). Under strong conditions (e.g., where the

probability density function is regular, Q is ‘‘well be-

haved’’ so that an interior solution exists), the LS esti-

mator is also asymptotic efficient among all consistent

estimators since it reaches the so-called Cramér–Rao

lower bound [chapter 3.3. in Winkelmann and Boes

(2006)]. This means that the LS estimator can achieve the

smallest variance or has the least uncertainty around the

true parameters. Hence, by assuming a correct specifi-

cation of the regression model, both estimators are sup-

posed to be consistent in finding the ‘‘true’’ parameters,

whereas the LS estimator should additionally be more

efficient by showing a smaller variance.

Themaindifference between the scoring rulesCRPSand

LS is the penalization of individual unlikely events in the

tails of the distribution, which is compared in the following.

The LS [Eq. (11)] is simply the negative log-likelihood,

which is averaged over N events, where each event i is

evaluated by the negative logarithmic density value log f :

LS5
1

N
�
N

i51

2log f (y
i
;m

i
,s

i
, n

i
). (11)

This score defines a local score as one single forecast

distribution is evaluated only at the observed value yi
with a logarithmic penalty.
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In contrast, the continuous ranked probability score

for one single event defines a squared error measure,

which takes the full forecast distribution into account:

CRPS5
1

N
�
N

i51

ð‘
2‘

[F
i
(x;m

i
,s

i
, n

i
)2H

i
(x2 y

i
)]2 dx .

(12)

For each observation yi, Fi denotes the forecasted cumu-

lative distribution function and Hi(x2 yi) the Heaviside

function, which is 0 if x, yi and 1 otherwise. Integration

over all differences between Fi and Hi in x evaluates the

full forecast distribution. Similar to theLS, theCRPS itself

defines the average over N events [Eq. (12)].

The differences between LS and CRPS can be found

particularly in the tails of an assumed distribution, as

illustrated by the Gaussian example in Fig. 3. If a single

observation is located on the distribution tails (above

and below 62), then larger differences between the

scores can be found. The LS penalizes events on these

tails more strongly than the CRPS.

d. Verification

Different verification approaches are needed for the

real data and the simulation study. Regarding the real

data, the two estimation approaches are compared in

terms of their sharpness and calibration. Sharpness will

be evaluated as the average width of the 90% prediction

intervals (PIW), defined as the average range between

the 0.05 and 0.95 quantile of the forecast distributions.

This interval can also be used to assess calibration where

90% of the events should be observed within the 90%

prediction intervals [prediction interval coverage (PIC)]

to have perfect calibration. Additionally, calibration is in-

vestigatedwith PIThistograms (Gneiting et al. 2007), which

evaluate the forecasted cumulative distribution functions

equivalently to the rank histogram (Anderson 1996;

Talagrand et al. 1997; Hamill and Colucci 1998). Herein,

the CDF values at the observed temperature events can be

summarized in a histogram, which should display a uni-

formdistribution of the PIT values. The desired uniformity

derives from the statistical forecast consistency (calibra-

tion) that is fulfilled if all realizations are statistically in-

distinguishable from a sample that is drawn from the same

predictive distribution. However, since one PIT histogram

is obtained for each station, lead time, and statistical

model, the differences between the histograms will also be

quantified by the reliability index (RI) that computes ab-

solute differences from uniformity for each PIT histogram:

RI5 �
K

k51

����kk
2

1

K

���� . (13)

Herein, kk defines the relative number of observations in

each bin k, and K defines the number of used bins.

Furthermore, the overall performance measures for

temperature forecasts will be shown in terms of LS and

CRPS as defined by Eqs. (11) and (12).

To investigate the characteristics of the two estimators

on real temperature data, we perform a tenfold cross

validation (CV) to mimic operational conditions. In an

operational situation, multiple years of a consecutive

time series would be used to estimate a fixed set of re-

gression coefficients that are applied on independent

future data where the forecast performance can be

assessed. The CV approach is used for scientific research

FIG. 3. Continuous ranked probability score (CRPS, dashed) and log score (LS, solid),

evaluated at different (theoretical) observed values for an assumed Gaussian distribution

with m5 0, s5 1, with probability density values sketched as gray area.
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purposes to obtain stable regression coefficients, and a

sufficiently large amount of test data is not used for re-

gression (e.g., as in Hamill et al. 2004; Wilks and Hamill

2007; Hagedorn et al. 2008; Wilks 2009; Messner et al.

2017; Gebetsberger et al. 2017; Rasp and Lerch 2018).

Therefore, the data are randomly partitioned into 10

different subsamples and forecasts for each subsample

are derived from models trained on the remaining 9

subsamples. More specifically, each trained model is ap-

plied on raw ensemble data of the remaining test sub-

sample. This leads to out-of-sample forecasts not used for

training, which are verified with PIW, PIC, RI, LS, and

CRPS. This approach is repeated for each lead time and

station, and estimation method (LS or CRPS).

The CV approach used for temperature data assumes

temporal independence and stationarity in the forecast er-

ror time series. Since separate CVs are performed for each

lead time, temporal independence is a valid assumption and

with no major changes in the NWP model and no major

changes in the climate over the data period, the ensemble

characteristics are not expected to change much either.

However, it has to bementioned that the original NGR

approach uses a rolling training period, where a certain

training window (e.g., 30 days for temperature) is used to

train the statistical model. This allows us to rapidly up-

date the regression coefficients fromday to day to capture

seasonality. In the CV approach used for this study, this

seasonality is captured by a seasonal effect as explained in

section 2b, and must not be updated for each day.

In the simulation study we mainly compare the esti-

mated regression coefficients with their known true

values to investigate how well the different estimation

approaches estimate the true coefficients. Additionally,

calibration is assessed by PIT histograms.

3. Probabilistic temperature forecasting

With this real data application it should be in-

vestigated if the differences between CRPS and LS

minimization, as shown in the introductory example,

imply an inappropriate distribution assumption for tem-

perature data. This idea is addressed by the use of

heavy-tailed distributions to determine the estimator

characteristic on real data and to improve temperature

forecasts. For simplicity, statistical models (Gaussian,

logistic, and Student’s t) where CRPS or LS minimi-

zation is employed, will be referred to as CRPS or LS

models, respectively.

a. Temperature data

Temperature records are used from 11 locations over

central Europe (Fig. 4) for 3-hourly lead times from 16

to 196h in the time period between 2011 and 2016.

The corresponding ensemble forecasts of 2-m air

temperature are based on the 0000 UTC initialization

from the European Centre for Medium-RangeWeather

Forecasts (ECMWF), of which forecasted mean values

and standard deviations of the 50-member ensemble are

used. Overall, this yields 581 076 observation–forecast

pairs to be validated, which include 311 different re-

gressions for different lead times and stations, since 2

sites had missing observations during nighttime.

The following case study is based on temperature re-

cords at an Alpine site (Fig. 4, filled circle) where the

complex topography causes a challenging forecasting

situation. Distinct differences between the real and

NWP topography (valleys that are not well resolved)

lead to a cold bias, which can be seen when comparing

observations with corresponding ensemble mean fore-

casts (Fig. 5a). Furthermore, the ensemble is also un-

derdispersive, which is a common problem of many

ensemble systems. This underdispersion can be assessed

in a rank histogram (Anderson 1996; Talagrand et al.

1997; Hamill and Colucci 1998), which is shown for the

bias-corrected ECMWF ensemble forecast for 124h in

Fig. 5c. Here, too many observations are counted below

the lowest and above the highest member value (lowest

and highest rank), indicating less forecast uncertainty

FIG. 4. Study area with the sites in Austria (AUT), Italy (IT),

Switzerland (CH), andGermany (GER): the filled circle represents

the Alpine site, which is used for the case study. The gray grid il-

lustrates the underlying horizontal grid of the 50-memberECMWF

ensemble forecasts.
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than needed. Well-calibrated forecasts would result in a

display of a uniform distribution. These illustrated en-

semble forecasts for 124 h are the basis for later syn-

thetic simulations, using the error characteristics for bias

and underdispersion. The empirical values of this data-

set have an average ensemble mean value of 0.35 with a

standard deviation of 6.91. The corresponding loga-

rithmic standard deviations have an average of 20.56

with a standard deviation of 0.43.

b. Alpine site case study

In this subsection we apply the regression framework,

as defined in Eqs. (4)–(6), for temperature post-

processing at the Alpine site (Fig. 4, filled circle), where

individual regressions are performed for each lead time

separately.

Figure 6 summarizes RI, PIW, and PIC for the

Gaussian and Student’s t models, which are estimated

with both approaches (CRPS or LS minimization). For

the Gaussian models (left panels), there is a clear dif-

ference between the LS and CRPS model for certain

lead times (e.g.,124h) where calibration in terms of RI

(Fig. 6a) is better for the CRPSmodel. Additionally, the

CRPS model obtains sharper predictions for all lead

times, which is shown by a smaller average width of the

90% prediction interval (Fig. 6c). Both estimation ap-

proaches show empirical coverages for certain lead

times, which do not match the nominal coverage of 90%

(Fig. 6e). This empirical coverage should be as close as

possible to the nominal coverage of the evaluated pre-

diction interval, where the LS model covers too many

observations and the CRPS covers too few in the 90%

FIG. 5. Error characteristics for real data at the Alpine site for (a),(c) 124-h temperature forecasts and

(b),(d) simulated data. (a),(b) Ensemble mean values ens against observed values, where darker colors

indicate a higher scatter density. (c),(d) Rank histograms of the bias-corrected 50-member ensembles, with

members randomly drawn from the known Gaussian distribution for the simulated data. Dotted horizontal

line indicates perfect calibration.
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interval. The agreement between empirical and nominal

coverage is even worse for the 66% interval, particularly

for the LS model (not shown).

Therefore, the PIT histograms, which are shown in

Fig. 1 for the 124-h example, provide a more complete

picture of the calibration. The 95% consistency interval

shown as gray area, are derived similar to Bröcker and
Smith (2007) and show the expected binwise sampling

variations. Thus, as long as the PIT lies within this in-

terval the forecasts can be regarded as calibrated.

Regarding the Gaussian models (Fig. 1a), the smaller

sharpness (larger prediction intervals) of the LS model

produces a hump-shaped PIT (solid), where too many

observations fall in the central bins, and too few fall in

the tails (bins close to zero and one). In contrast, the

CRPS model (dashed) shows a better calibration espe-

cially in central bins, but creates larger peaks on the tails,

which results from sharper forecast distributions. Re-

garding the high standard of PIT histograms showing a

uniform distribution, both approaches illustrate short-

comings and differ in the forecasted distribution pa-

rameters if the Gaussian distribution is assumed.

However, if the Student’s t model is applied, both ap-

proaches yield almost the same results. Similar values can

be verified for calibration (RI) and sharpness (PIW), as il-

lustrated in Figs. 6b, 6d, and 6f. Regarding the overall cal-

ibration in terms of PIT, the example for 124h yields

almost uniform histograms for the Student’s t models for

bothminimization approaches (Fig. 1b). The corresponding

estimated degree of freedom n is shown for all lead times in

Fig. 7. A daily pattern can be identified, with the highest

values during daytime (e.g., at115h) and the lowest values

during nighttime (e.g., at 124h). Small values of n imply

that heavier distribution tails are estimated, whereas high

values for n (n’ 100) create only a slightly heavier tail

than a Gaussian distribution would have. Additionally,

there is a slight indication that n increases with lead time

after accounting for the diurnal behavior.

c. Overall performance

The previously shown case study for theAlpine site is

now extended to other locations in our study area,

again with individual regressions for each lead time.

The mean scores over all the individual LS and CRPS

emphasize the benefit of the heavy-tailed models for

which score values are smallest. Not surprisingly,

CRPS models perform better in CRPS evaluation and

LS models in LS evaluation (Figs. 8a,c).

Figures 8b and 8d summarize differences in LS and

CRPS values between each regression model and the

Gaussian benchmark model, where negative values

report a better performance than the benchmark model.

LS models refer to the Gaussian LS model and CRPS

models refer to the Gaussian CRPS models. Absolute

differences are chosen rather than relative changes as

skill scores cannot be computed for the LS (Gneiting

et al. 2005). The variability in the score difference is

smaller for CRPS models than for LS models evaluated

FIG. 6. (a),(b) Reliability index (RI); (c),(d) average width of the 90% prediction interval (PIW); and (e),(f) coverage of the 90%

prediction interval (PIC), evaluated for (a),(c),(e) Gaussian and (b),(d),(f) Student’s t models at the Alpine site from lead times 16

to 196 h, estimated with LS (solid) or CRPS (dashed).
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on the CRPS (Fig. 8b), and smaller for LS models than

CRPS models evaluated on the LS (Fig. 8d).

However, Figs. 8b and 8d illustrate a clear benefit for

all individual regressions if heavy-tailed distribution

models (logistic, Student’s t) are applied, indicated by

a negative difference. In terms of CRPS evaluation

(Fig. 8b), the logistic models can improve the Gaussian

benchmarks in 59% and 76% of all locations and lead

times, when estimated with CRPS and LS, respectively.

Even smaller CRPS values are obtained in 80% and

86% of the Student’s t models.

A similar picture is visible for LS evaluation (Fig. 8d).

A total of 84% and 82% of the evaluated logistic models

show smaller LS values for CRPS or LS minimization,

respectively. Student’s tmodels obtain smaller LS values

than the Gaussian benchmark for 93% (CRPS minimi-

zation) and 97% (LS minimization) of all regressions.

On average CRPS and LS, the Student’s t models per-

form best (Figs. 8a,c). However results also imply that the

logisticmodels already improve the benchmark sufficiently,

and the further improvement of the Student’s t models is

small. Hence, there are situations with real data where the

logistic models might be good enough and where the tail

flexibility of the Student’s t model is not necessary.

An example of the good calibration of logisticmodels is

shown in Fig. 9b, which consists of predictions for all

stations at lead time118h. Similarly to the Alpine site as

shown in Fig. 1a, the Gaussian models in Fig. 9a illustrate

an overdispersive W shape over all locations. The PIT

histogram of the CRPSmodel is more pronounced on the

tails (dashed), and the PIT histogram for the LS model

is more pronounced in the middle (solid). Contrary to

this, the heavy tail of the logistic distribution leads to

nearly perfect and similar calibration for both approaches

(middle). Additionally, the heavy tail created by the

Student’s tmodels (Fig. 9c) seems to be too heavy for this

particular lead time where too few events occur on the

tails (right). In this case Student’s t models can clearly

improve calibration compared to the Gaussian models,

but the tails are not captured appropriately and suggest to

assume a logistic distribution. Moreover, the assumption

of a constant n in Eq. (6) might be too simple, and a

seasonal variation of n as in Eq. (7) would be more

reasonable.

To give an impression about the estimated degree of

freedom n, Table 1 summarizes the estimated values on

the log scale for the entire study area and lead times. For

each station and lead time, 10 estimated values of n are

obtained, which is why averages for each station and

lead time are analyzed. In 75% (third quartile) of theses

averages, the values are below 2.67 and 3.05 for LS and

CRPS estimation, respectively, which correspond to n5
14.4 and 21.1, respectively. As the Student’s t distribu-

tion approaches the Gaussian distribution with in-

creasing n, values of n’ 20 still produce heavier tails

compared to the Gaussian tail. For values larger than

200, the Student’s t distribution is already very close to a

Gaussian distribution.

4. Simulation study

In the following simulation study, ‘‘ensemble’’ and

‘‘observation’’ data with similar error characteristics as

those at the Alpine site are generated. These data are

generated such that the true distribution parameters and

regression coefficients are known and can directly be

compared with estimated values. Furthermore they are

used to evaluate which minimization approach is more

efficient and to confirm findings from the real data

application.

FIG. 7. Estimated degree of freedom n (y axis) for the Student’s tmodels at the Alpine site

for the respective lead time (x axis) using LS (dark gray) and CRPS (gray) estimation. Note

that n is illustrated on the log scale. Each boxplot contains 10 estimated values obtained from

the tenfold cross validation.
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a. Simulated dataset

First, a series of N5 5000 simulated ensemble mean

values [ensi, Eq. (14)] and logarithmic standard de-

viations [log(SDens,i), Eq. (15)] were simulated from a

Gaussian distribution N :

ens
i
5N (0:35, 6:91) , (14)

log(SD
ens,i

)5N (20:56, 0:43) , (15)

with the distribution parameters taken from the empir-

ical means and standard deviations of the ECMWF en-

semble at the Alpine site (section 3a). Observations are

simulated from logistic distributions, which we found in

section 3c to describe temperature data quite well. The

location (mtrue
i ) and scale (strue

i ) parameters of these

distributions are modeled as functions of the simulated

ensemble statistics ensi and SDens,i:

mtrue
i 5btrue

0 1btrue
1 3 ens

i
, (16)

log(strue
i )5 gtrue

0 1gtrue
1 3 log(SD

ens,i
) , (17)

where (btrue
0 , btrue

1 )5 (6:5, 1) and (gtrue
0 , gtrue

1 )5 (0:9, 1:3)

are chosen such that the simulated forecasts exhibit a cold

bias andunderdispersion similar to the real data (Figs. 5b,d).

Thus, a dataset of length 5000 is available with fore-

casts and corresponding observations that have similar

FIG. 8. (a),(c) Mean and (b),(d) differences of averaged scores for each station and lead time for LS-

minimized (solid line and dark gray) and CRPS-minimized (dotted line and light gray) models, evaluated with

the (a),(b) CRPS and (c),(d) LS. References are the Gaussian models for LS or CRPS minimization,

respectively. Each boxplot contains results for 311 individual regression fits for each lead time and station.
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properties as the real data used in section 3a. However,

different to the real data the true coefficients btrue
0 , btrue

1 ,

gtrue
0 , and gtrue

1 are known and can directly be compared to

estimated coefficients b0, b1, g0, and g1 from nonho-

mogeneous regressionmodels of the form of Eqs. (4)–(5).

In the following, we fit models with Gaussian and lo-

gistic distribution assumptions and repeat the simula-

tions 1000 times to account for sampling effects.

b. Simulation results

Figure 10a compares the two estimation approaches

for the Gaussian models. By repeating the simulation

1000 times, both approaches estimate the true co-

efficients for the location submodel (b0, b1) on the me-

dian. However, differences occur in the scale submodel

(g0, g1). Although the slope coefficient g1 expresses the

true value on the median, clear differences can be found

for the intercept g0. Both approaches do not calculate

the true coefficient of 0.9 and estimate a larger value.

This is mainly the consequence of the scaling by ap-

proximately 1.8 since the standard deviation of the lo-

gistic distribution is 1:83 0:95 1:62.

Furthermore, this difference is caused by the response

data, which are sampled from a logistic distribution that

has a heavier tail than the Gaussian distribution. To

account for those ‘‘extreme’’ events, both approaches

have to estimate a larger intercept and make the

‘‘forecast uncertainty’’ large enough. Furthermore, the

LS model produces a larger intercept than the CRPS

model, which is caused by the larger penalty of extremes

by the logarithm.

However, if the same simulation is performed with

logistic models (Fig. 10b), then both approaches esti-

mate the true ‘‘errors’’ (coefficients) on median. By

looking on the variance or range of the estimated co-

efficients, respectively, it can be seen that the LS model

is slightly more efficient than the CRPS model. More

specifically, the LS model reports a smaller interquartile

range than the CRPS model. This finding also agrees

with Yuen and Stoev (2014), where CRPS shows a

smaller efficiency than LS estimation.

Finally, Fig. 11 shows PIT histograms of the different

models for different lengths of the simulated datasets.

As expected and similar to the real data case study, the

Gaussian ‘‘forecasts’’ humps at central PIT values show

the lack of calibration (Fig. 11a). Although this hump is

less visible for the CPRS model than for the LS model,

the peaks on the tails for the CRPS model are more

FIG. 9. PIT value for (a) Gaussian, (b) logistic, and (c) Student’s t models with LS (solid) or CRPS (dashed) minimization. Analysis

includes 11 stations for118-h lead times. The gray area illustrates the 95% consistency interval around perfect calibration, which should

be 1. Binning is based on 5% intervals.

TABLE 1. Summary of estimated degree of freedom log(n) for LS

and CRPS estimation over all stations and lead times. (from left to

right) Minimum, first quartile (25% quantile), median (50% quan-

tile), mean, third quartile (75%quantile), and maximum. Values are

based on log(n) values that are averaged over the 10 cross-validation

blocks of each station and lead time separately.

Min

First

quantile Median Mean

Third

quantile Max

LS 1.16 1.79 2.19 2.88 2.67 15.83

CRPS 1.21 1.95 2.44 3.52 3.05 14.45
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pronounced. In contrast, the difference between the

estimation approaches becomes smaller if the correct

(and known) logistic response distribution is assumed

(Fig. 11b). As expected from estimation theory, the

differences vanish with increasing sample size for the

correct distribution assumption (Figs. 11d,f), and show

a well-defined W shape for the wrong assumption

(Figs. 11c,e).

This W shape is characteristic in the presented sce-

nario where symmetric heavy-tailed (logistic) data are

modeled with the Gaussian assumption. Clearly, this is

expected to differ if the response data are drawn from

another distribution. As an example, we repeat the sim-

ulation with the same setup as described in section 2a, but

simulate the observations from aGaussian instead of the

logistic distribution. The characteristic PIT histograms

for the respective models are displayed in Fig. 12, which

shows an M shape for the logistic models (Fig. 12b). As

for the wrong assumption in Figs. 11a,c,e, the two es-

timation approaches differ most on the tails. This M

shape is also visible for the temperature study at118 h

in Fig. 9c for the heavy-tailed Student’s tmodels, where

the PIT histograms for the logistic models show the

best calibration and a good agreement between the

estimation approaches.

Generally, calibration for symmetric response data in

terms of PIT histograms shows the W shape if the as-

sumed distribution tail is too weak, and the M shape if

the distribution tail is too heavy. However, the forecast

tail shows largest differences between the estimation

approaches in both scenarios and agrees with the tem-

perature study of section 3.

To combine results of real and synthetic scenarios, the

obtained shapes of the PIT histograms display a useful

characterization to identify misspecifications of the dis-

tributional assumption. Apart from the presented sce-

narios, the PIT shapes and differences between the

estimation approaches might not be restricted to en-

semble postprocessing. For instance, similar calibration

results are expected if wrong tails of temperature

anomalies are assumed, since anomalies typically have

the same distributional properties as the data them-

selves. Moreover, results are relevant for applications

other than probabilistic weather forecasting (e.g.,

climate), where a future increase in extremes would lead

to heavier tails.

5. Conclusions

Nonhomogeneous regression is a commonly used

postprocessing strategy to statistically correct NWP

ensemble forecasts. This approach predicts the outcome

of weather quantities of interest with full parametric

forecast distributions. To estimate distribution param-

eters or regression coefficients, scoring rules have to be

optimized. Log-score (LS) minimization has a long tra-

dition in statistical modeling, whereas CRPS minimiza-

tion has become popular in meteorological studies.

Although both approaches should theoretically obtain

similar results, differences are often found in practical

studies. In this article we set out to explain potential

differences and use these findings to improve probabi-

listic temperature forecasts. A comparison of both esti-

mation approaches is performed on air temperature

FIG. 10. The estimated regression coefficients (b0, b1, g0, g1) for the (a)Gaussianmodels and (b) logistic models, estimated with LS (dark

gray) or CRPS (light gray) minimization, respectively. Boxplots are based on the bootstrap procedure of repeating the simulation 1000 times

and illustrate the interquartile range (0.25–0.75) in boxes, whiskers for 61.5 times interquartile range, and outliers in solid circles.
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data from 11 stations in central Europe and in a

simulation study.

In principle, LS and CRPS minimization differently

penalize ‘‘extreme’’ events or events with larger de-

viations from the mean forecast, respectively. Conse-

quently, the assumed forecast distribution plays a crucial

rule to obtain a good forecast performance regarding

sharp and calibrated predictions.

Generally, it turns out that evaluation of CRPS shows

better values if CRPS minimization is performed, and

evaluation of LS shows better values if LS minimization is

employed. However, synthetic simulations and the case

studies show that CRPS models can lead to sharper pre-

dictions thanLSmodels. This particularly occurs if awrong

distribution with too light tails is assumed. Unfortunately,

the increased sharpness of CRPSminimization is obtained

FIG. 11. Calibration in terms of PIT values for one simulation with N 5 (a),(b) 5000; (c),(d) 10 000; and

(e),(f) 50 000 data using (a),(c),(e) Gaussian or (b),(d),(f) logistic model, estimated with LS (solid) or

CRPS (dashed) minimization. The gray area illustrates the 95% consistency interval around perfect cal-

ibration, which should be 1. Binning is based on 5% intervals.
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at the expenses of a decreased calibration, where cov-

erages are better at center bins but worse on the tails.

CRPSminimization apparently improves coverage, but

only at particular prediction intervals. Overall cali-

bration in terms of PIT histograms illustrates that both

approaches cannot calibrate appropriately if the wrong

distribution is applied, which qualifies the better

sharpness of CRPS minimization. Therefore, we can-

not conclude that one approach should be applied over

the other. In this context, more appropriate distribu-

tion assumptions have to be made if PIT calibration

highlights problems on the tails, or if differences be-

tween the two estimation approaches occur. As a

consequence, symmetric or—if needed—asymmetric

distributions should be assumed, which better take

heavy tails into account if necessary.

To account for a potentially heavier tail, this study in-

troduces and compares the logistic and Student’s t distri-

bution against the classical Gaussian assumption for air

temperature. The Gaussian and logistic assumption is

found appropriate for air temperature at certain stations

and lead times. However, the larger flexibility of the Stu-

dent’s t distribution to adjust the tail, could clearly improve

sharpness with respect to calibration in the overall analy-

sis. This derives from the distribution parameter, which

accounts for a possible heavier tail if needed.

If the distributional assumption accounts for the

tails, then both approaches lead to very similar results.

In this case, the synthetic study highlights that the LS

approach is more efficient in estimating the true re-

gression coefficients.
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APPENDIX

Computational Details

The estimation of regression coefficients is performed in

R (R Core Team 2017) using the crch package (Messner

et al. 2016), which is able to perform minimization of the

CRPS or LS. Closed expressions of the CRPS for the

Gaussian, logistic, and Student’s t distribution are based on

the scoringRules package (Jordan et al. 2017).
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