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Abstract: In this work, we study the multiple kernel based regularized system identification
with the hyper-parameter estimated by using the Stein’s unbiased risk estimators (SURE).
To approach the problem, a QR factorization is first employed to compute SURE’s objective
function and its gradient in an efficient and accurate way. Then we propose an algorithm to
solve the SURE problem, which contains two parts: the outer optimization part and the inner
optimization part. For the outer optimization part, the coordinate descent algorithm is used and
for the inner optimization part, the projection gradient algorithm is used. Finally, the efficacy
of the proposed algorithm is demonstrated by numerical simulations.
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1. INTRODUCTION

Kernel-based regularization methods have been receiving
increasing attention over the past few years in the system
identification community; see Chen (2019), Chen and
Pillonetto (2018), Mu and Chen (2018), Mu et al. (2017),
Mu et al. (2018a), Chen et al. (2018) and Pillonetto et al.
(2014) for a recent survey. One recent result is the so-called
multiple kernel based regularization method introduced in
Chen et al. (2014). It was shown there that the use of
multiple kernels has a couple of advantages. For example,
the multiple kernel can better model complicated systems
than the single kernels, such as the stable spline (SS) kernel
Pillonetto and Nicolao (2010), the diagonal correlated
(DC) kernel and its special case tuned correlated (TC)
kernel Chen et al. (2012). A key step of this method is
to estimate the hyper-parameter of the multiple kernel by
using the empirical Bayes (EB) method, see e.g., Carlin
and Louis (1996). The EB method is currently the mostly
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widely used hyper-parameter estimation method for the
regularized system identification. However, the EB method
has the following limitations: first, it requires the Gaussian
assumption on the measurement noise; second, it is shown
to be not asymptotically optimal in the sense of mean
square error (MSE), see Mu et al. (2018b) for details.

In this paper, we revisit the multiple kernel based regu-
larization method by using instead the Stein’s Unbiased
Risk Estimator (SURE) to estimate the hyper-parameter,
see e.g., Stein (1981). In contrast with the EB method, the
SURE method does not require the Gaussian assumption
and is asymptotically optimal in the sense of the mean
square error Mu et al. (2018b), but the SURE method with
multiple kernel is not a difference of convex programming
problem, see e.g., Chen et al. (2014). Therefore, it is a
critical problem how to solve the SURE with multiple
kernel in an efficient way. To tackle this problem, a QR
factorization is first employed to compute SURE’s objec-
tive function and its gradient in an efficient and accurate
way. Then we propose an algorithm to solve the SURE
problem with multiple kernel, which contains two parts:
the outer optimization part and the inner optimization
part. For the outer optimization part, we use the coordi-
nate descent method and for the inner optimization, we
use the projection gradient method with Armijo rule. The
coordinate descent method can guarantee the convergence
of the outer optimization, and the Armijo rule can guar-
antee the convergence of the inner optimization. To check
the efficacy of the proposed method, we test the first 500
test systems and data sets in the data-bank S1D1 in Chen
et al. (2012). For the test system and data sets, the SURE
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method with multiple kernel behaves similar to the EB
method with multiple kernel and is more accurate in terms
of average fits and more robust than the EB method and
the SURE method both with the TC kernel.

2. REGULARIZED IMPULSE RESPONSE
ESTIMATION

2.1 Problem Statement

First, we consider a discrete-time single-input-single-
output (SISO) time-invariant linear (LTI) stable system:

y(t) = G0(q)u(t) + v(t), t = n+ 1, · · · ,M (1)

where q is the shift operator so that qu(t) = u(t+1), t is the
time index, y(t), u(t) and v(t) are the output, input and
disturbance at time t, respectively. The transfer function
G0(q) is defined as:

G0(q) =

∞∑
k=1

g0kq
−k (2)

where the coefficients g0k, k = 1, · · · ,∞, form the impulse
response of G0(q). Our goal is to find an estimator of the
impulse response g0k, k = 1, · · · ,∞ as well as possible
based on data {u(t), y(t)}Mt=1.

2.2 Regular Finite Impulse Response Model Estimation

Since the impulse response of a stable LTI system decays
exponentially, it is reasonable enough to truncate the
infinite impulse response at a sufficiently high order n
leading to the finite impulse response (FIR) model:

G(q, θ) =

n∑
k=1

gkq
−k, θ = [g1, g2, · · · , gn]T (3)

Then system (1) can be rewritten as follows:

y(t) = φT (t)θ + v(t), t = n+ 1, · · · ,M (4)

where φT (t) = [u(t− 1), · · · , u(t− n)] is the regressor and
θ is called the impulse response vector.

It is often convenient to rewrite the linear regression model
(4) in matrix form. To this goal, let:

Y =




y(n+ 1)
y(n+ 2)

...
y(M)


 , Φ =




φT
1 (n+ 1)

φT
2 (n+ 2)

...
φT
M (M)


 , V =




v(n+ 1)
v(n+ 2)

...
v(M)




(5)
Here, we let N = M − n for notational brevity. Then we
can rewrite the linear regression model (4) in matrix form:

Y = Φθ + V (6)

where Y ∈ RN , V ∈ RN and Φ ∈ RN×n. The regularized

impulse response estimate θ̂R is the value that minimizes
the regularized least squares criterion:

θ̂R = argmin
θ

‖Y − Φθ‖22 + σ2θTP (η)−1θ

= (ΦTΦ+ σ2P (η)−1)−1ΦTY
(7)

where σ2 > 0 is a known noise variance, ‖ · ‖2 is the
Euclidean norm, IN is theN−dimensional identity matrix,
P (η)−1 is the n×n regularization matrix, P (η) is the kernel
matrix, see Rasmussen and Williams (2006), η ∈ Γ ⊂ Rm

is the parameter vector used to parameterize the kernel
matrix P (η) and called the hyper-parameter, and Γ is the
set where we search for the hyper-parameter η.

2.3 Kernel Matrix

We can divide the design of kernel matrix P (η) into two
parts: parameterization of P (η) by the hyper-parameter
η, see e.g., Chen (2018), and hyper-parameter estimation
for a given kernel structure. Many kernels have been
introduced over the years, e.g., the stable spline (SS) kernel
Pillonetto and Nicolao (2010) and the diagonal/correlated
(DC) kernel and the tuned/correlated (TC) kernel Chen
et al. (2012), the latter two of which are defined as follows:

DC PDC
k,j (η) = cλ

k+j
2 ρ|k−j|, η = [c λ ρ]

TC PTC
k,j (η) = cmin(λk, λj), η = [c λ]

c � 0, 0 ≤ λ < 1, 0 ≤ |ρ| ≤ 1

(8)

where the subscript k, j denotes the (k, j) element of a
matrix. Instead of using single kernels, it is also possible
to use multiple kernels:

P (η) =

m∑
i=1

ηiPi, η = [η1, . . . , ηm]T , ηi ≥ 0 (9)

where ηi ≥ 0 and Pi ∈ Rn×n is positive semi-definite.

2.4 Hyper-parameter Estimation

The value of the hyper-parameter η is in general unknown,
and we need to estimate η based on the data. There are
different ways to accomplish this goal. One effective way
is the maximum likelihood method under the assumptions
that θ is Gaussian with zero mean and covariance matrix
P (η) and V is Gaussian distributed with zero mean and
covariance matrix σ2IN , θ and V are independent. The
method is also called the empirical Bayes method Carlin
and Louis (1996), and can be described as follow:

argmax
η∈Γ

p(Y |η) = argmax
η∈Γ

N(0,ΦP (η)ΦT + σ2IN ) (10)

which is equivalent to:

η̂ = argmin
η∈Γ

Y TΣ(η)−1Y + log detΣ(η) (11)

where
Σ(η) = ΦP (η)ΦT + σ2IN (12)

Another idea is to estimate the hyper-parameter using
Stein’s unbiased risk estimators (SURE), see e.g., Stein
(1981), where the hyper-parameter η is estimated as fol-
lows:

η̂ = argmin
η∈Γ

‖Y − Φθ̂R(η)‖22

+ 2σ2 trace(Φ(ΦTΦ+ σ2P−1(η))−1ΦT )
(13)

3. EFFICENT AND ACCURATE CALCULATION OF
THE OBJECTIVE FUNCTION AND GRADIENT

When we develop iterative algorithms to solve the hyper-
parameter estimation problem (13), we have to compute
the objective function and its gradient at each iteration.
As a result, the performance of our implementation relies
on the efficient and accurate computation of the objective
function and its gradient.
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The objective function (13) can be rewritten as below:

σ4Y T (ΦP (η)ΦT + σ2IN )−2Y

+ 2σ2 trace((ΦTΦ+ σ2P−1(η))−1ΦTΦ)
(14)

1) Computation Complexity The matrix ΦP (η)ΦT+
σ2IN in (14) is of size N × N , so the computation
complexity of the objective function relies on the
number of observation N , thus is O(N3). Direct
computation of the objective function in (14) is very
expensive for a large N .

2) Numerical Accuracy The numerical accuracy is
determined by the conditioning and the magnitude
of the matrix P (η) and ΦTΦ. Both P (η) and ΦTΦ
can be ill-conditioned and have very large magnitude
compared to the noise level σ2In, see Chen and
Ljung (2013). We should find a numerically more
accurate way to compute the objective function and
its gradient.

In what follows, we use the same idea in Chen and Ljung
(2013) to compute the objective function of (14). Note that
with the Cholesky factorization (Golub and Van Loan,
2013, p. 262) of P (η), namely, P (η) = LLT . Let us begin
with some reformulations of (14). By matrix inversion
lemma,

σ4Y T (ΦP (η)ΦT + σ2IN )−2Y

=Y T (IN − ΦL(σ2In + LTΦTΦL)−1LTΦT )2Y
(15)

On the other hand,

2σ2 trace((ΦTΦ+ σ2P−1(η))−1ΦTΦ)

=2σ2n− 2σ4 trace((σ2In + LTΦTΦL)−1)
(16)

As has been shown in Chen and Ljung (2013), for the EB
method, the QR factorization can help to compute the
objective function and its gradient in a more accurate and
efficient way. Here, we take the same idea and compute
the cost function (14) with QR factorization.

Firstly, we recall the definition of QR factorization (Chen
and Ljung, 2013, p. 246-248). If A = QR is a QR
factorization of a full column rank A ∈ Rm×n, where
Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an
upper triangular matrix. Moreover, ifQ1 � Q(1 : m, 1 : n),

R1 � R(1 : n, 1 : n), then rank(A) = rank(Q1) and
A = Q1R1 is called thin QR factorization of A. 1

In order to guarantee the uniqueness of the thin QR
factorization, we must have two assumption:

a) Without loss of generality, assume

rank [Φ Y ] = n+ 1

b) Assume that all upper triangular matrices involved
in the thin QR factorizations below have positive
diagonal entries.

Noticing that L is positive definite, assume that we first
perform the thin QR factorization of[

ΦL Y
σIn 0

]
= QR = Q

[
R1 R2

0 r

]
(17)

where Q is an (N + n) × (n + 1) matrix whose columns
are orthogonal unit vectors such that QTQ = In+1, and
R is an (n + 1) × (n + 1) upper triangular matrix. Here,

1 Here, we assume m � n.

R is further partitioned into 2× 2 blocks with R1, R2 and
r being an n × n matrix, an n × 1 vector and a scalar,
respectively.

Now using QTQ = In+1, we can get that:

σ2In + LTΦTΦL = RT
1 R1 (18)

LTΦTY = RT
1 R2 (19)

Y TY = RT
2 R2 + r2 (20)

Therefore, (15) can be computed as

Y T (IN − ΦL(σ2In + LTΦTΦL)−1LTΦT )2Y

=r2 − σ2RT
2 (R1R

T
1 )

−1R2

(21)

and (16) can be computed as

2σ2n− 2σ4 trace((σ2In + LTΦTΦL)−1)

=2σ2n− 2σ4 trace((RT
1 R1)

−1)
(22)

Moreover, the regularized least squares estimator for the
a η can be computed according to:

θ̂R = LR−1
1 R2 (23)

By defining S � ΦP (η)ΦT + σ2IN . (14) can now be
rewritten as follows:

σ4Y TS−2Y − 2σ4 trace(S−1) + 2σ2N (24)

It can be shown that:

∂σ4Y TS−2Y

∂P (η)
=−2σ4L−1{(RT

1R1)
−1R−1

1 R2R
T
2R

−T
1 }L−1

(25)

and

− 2
∂σ4 trace(S−1)

P (η)

= 2σ4L−T {(RT
1 R1)

−1 − σ2(RT
1 R1)

−2}L−1.

(26)

The derivative ∂f(P (η)))
∂P (η) can be written as:

∂f(P (η))

∂P (η)
=2σ4L−T (RT

1 R1)
−1{In + σ2(RT

1 R1)
−1

−R−1
1 R2R

T
2 R

−T
1 }L−1

(27)

According to the chain rule :

�ηif(η) =
∂f(P (η))

∂ηi
= trace

(
∂f(P (η))

∂P (η)
PT
i

)
(28)

However, it is obvious that the computation cost depends
on the QR factorization, which depends on N . Notice that
Φ and Y are fixed and only P (η) varies when solving
the SURE problem (13) with iterative algorithms. So we
should make use of this observation to compute the QR
factorization (17) in a more efficient way, in another word,
to make the computational complexity independent of N .

Then, let us consider the thin QR factorization of

[Φ Y ] = Qd [Rd1 Rd2] (29)

where Qd is an N × (n + 1) matrix whose columns are
orthogonal unit vectors such that QT

d Qd = In+1, Rd1 is an
(n+ 1)× n matrix and Rd2 is an (n+ 1)× 1 vector.

Now consider further the thin QR factorization of[
Rd1L Rd2

σIn 0

]
= QcRc (30)
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The objective function (13) can be rewritten as below:

σ4Y T (ΦP (η)ΦT + σ2IN )−2Y

+ 2σ2 trace((ΦTΦ+ σ2P−1(η))−1ΦTΦ)
(14)

1) Computation Complexity The matrix ΦP (η)ΦT+
σ2IN in (14) is of size N × N , so the computation
complexity of the objective function relies on the
number of observation N , thus is O(N3). Direct
computation of the objective function in (14) is very
expensive for a large N .

2) Numerical Accuracy The numerical accuracy is
determined by the conditioning and the magnitude
of the matrix P (η) and ΦTΦ. Both P (η) and ΦTΦ
can be ill-conditioned and have very large magnitude
compared to the noise level σ2In, see Chen and
Ljung (2013). We should find a numerically more
accurate way to compute the objective function and
its gradient.

In what follows, we use the same idea in Chen and Ljung
(2013) to compute the objective function of (14). Note that
with the Cholesky factorization (Golub and Van Loan,
2013, p. 262) of P (η), namely, P (η) = LLT . Let us begin
with some reformulations of (14). By matrix inversion
lemma,

σ4Y T (ΦP (η)ΦT + σ2IN )−2Y

=Y T (IN − ΦL(σ2In + LTΦTΦL)−1LTΦT )2Y
(15)

On the other hand,

2σ2 trace((ΦTΦ+ σ2P−1(η))−1ΦTΦ)

=2σ2n− 2σ4 trace((σ2In + LTΦTΦL)−1)
(16)

As has been shown in Chen and Ljung (2013), for the EB
method, the QR factorization can help to compute the
objective function and its gradient in a more accurate and
efficient way. Here, we take the same idea and compute
the cost function (14) with QR factorization.

Firstly, we recall the definition of QR factorization (Chen
and Ljung, 2013, p. 246-248). If A = QR is a QR
factorization of a full column rank A ∈ Rm×n, where
Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an
upper triangular matrix. Moreover, ifQ1 � Q(1 : m, 1 : n),

R1 � R(1 : n, 1 : n), then rank(A) = rank(Q1) and
A = Q1R1 is called thin QR factorization of A. 1

In order to guarantee the uniqueness of the thin QR
factorization, we must have two assumption:

a) Without loss of generality, assume

rank [Φ Y ] = n+ 1

b) Assume that all upper triangular matrices involved
in the thin QR factorizations below have positive
diagonal entries.

Noticing that L is positive definite, assume that we first
perform the thin QR factorization of[

ΦL Y
σIn 0

]
= QR = Q

[
R1 R2

0 r

]
(17)

where Q is an (N + n) × (n + 1) matrix whose columns
are orthogonal unit vectors such that QTQ = In+1, and
R is an (n + 1) × (n + 1) upper triangular matrix. Here,

1 Here, we assume m � n.

R is further partitioned into 2× 2 blocks with R1, R2 and
r being an n × n matrix, an n × 1 vector and a scalar,
respectively.

Now using QTQ = In+1, we can get that:

σ2In + LTΦTΦL = RT
1 R1 (18)

LTΦTY = RT
1 R2 (19)

Y TY = RT
2 R2 + r2 (20)

Therefore, (15) can be computed as

Y T (IN − ΦL(σ2In + LTΦTΦL)−1LTΦT )2Y

=r2 − σ2RT
2 (R1R

T
1 )

−1R2

(21)

and (16) can be computed as

2σ2n− 2σ4 trace((σ2In + LTΦTΦL)−1)

=2σ2n− 2σ4 trace((RT
1 R1)

−1)
(22)

Moreover, the regularized least squares estimator for the
a η can be computed according to:

θ̂R = LR−1
1 R2 (23)

By defining S � ΦP (η)ΦT + σ2IN . (14) can now be
rewritten as follows:

σ4Y TS−2Y − 2σ4 trace(S−1) + 2σ2N (24)

It can be shown that:

∂σ4Y TS−2Y

∂P (η)
=−2σ4L−1{(RT

1R1)
−1R−1

1 R2R
T
2R

−T
1 }L−1

(25)

and

− 2
∂σ4 trace(S−1)

P (η)

= 2σ4L−T {(RT
1 R1)

−1 − σ2(RT
1 R1)

−2}L−1.

(26)

The derivative ∂f(P (η)))
∂P (η) can be written as:

∂f(P (η))

∂P (η)
=2σ4L−T (RT

1 R1)
−1{In + σ2(RT

1 R1)
−1

−R−1
1 R2R

T
2 R

−T
1 }L−1

(27)

According to the chain rule :

�ηif(η) =
∂f(P (η))

∂ηi
= trace

(
∂f(P (η))

∂P (η)
PT
i

)
(28)

However, it is obvious that the computation cost depends
on the QR factorization, which depends on N . Notice that
Φ and Y are fixed and only P (η) varies when solving
the SURE problem (13) with iterative algorithms. So we
should make use of this observation to compute the QR
factorization (17) in a more efficient way, in another word,
to make the computational complexity independent of N .

Then, let us consider the thin QR factorization of

[Φ Y ] = Qd [Rd1 Rd2] (29)

where Qd is an N × (n + 1) matrix whose columns are
orthogonal unit vectors such that QT

d Qd = In+1, Rd1 is an
(n+ 1)× n matrix and Rd2 is an (n+ 1)× 1 vector.

Now consider further the thin QR factorization of[
Rd1L Rd2

σIn 0

]
= QcRc (30)
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where Qc is a (2n+1)× (n+1) matrix whose columns are
orthogonal unit vectors such that QT

c Qc = In+1, Rc is an
(n+ 1)× (n+ 1) upper triangular matrix.

From (29) and (30), we have[
ΦL Y
σIn 0

]
=

[
Qd 0
0 In

]
QcRc (31)

Noticing the assumptions a) and b) and that L is positive
definite, it follows from (17) and (31), then

R = Rc, Q =

[
Qd 0
0 In

]
Qc (32)

In this way, we find a more efficient way to compute the
objective function and the gradient:

Algorithm 1. Objective Function and Gradient.

Given the QR factorization (29)
Step 1 Compute P (η)
Step 2 Compute the Cholesky factorization L of P (η)
Step 3 Compute Rd1L
Step 4 Compute the QR factorization (30)
Step 5 Compute f(η) accoding to (21) and (22)

Step 6 Compute ∂f(P (η))
∂P (η) according to (27)

Step 7 Compute �ηi
f(η) according to (28)

With the aid of thin QR factorization, the computational
complexity has been reduced from O(N3) to O(n3) due to
the inversion of smaller matrices.

4. COORDINATE DESCENT WITH PROJECTION
GRADIENT METHOD

In this section, we consider SURE with multiple kernel
which takes the following form:

η̂ = argmin
η∈Γ

f(η)

= argmin
η∈Γ

‖Y − Φθ̂R(η)‖22

+ 2σ2 trace(Φ(ΦTΦ+ σ2P−1(η))−1ΦT )

(33)

where P (η) is the kernel matrix defined by (9) and Γ =
{η|ηi ≥ 0, i = 1, · · · ,m}.
For convenience, we divide the solution to (33) into two
parts: the outer optimization part and inner optimization
part. For the outer optimization, we use the coordinate
descent method and for the inner optimization, we use the
projection gradient method.

4.1 Outer Optimization

Coordinate Descent The coordinate descent is a non-
derivative approaches for minimizing differentiable func-
tions (Bertsekas, 1999, p.149). At each iteration, the
method tries to minimize the cost along only one coordi-
nate direction. This not only simplifies the calculation of
the search direction, but often also facilitates the stepsize
selection. In particular, for a given ηk, the ith coordinate
of ηk+1 is determined by:

ηk+1
i =argmin

x≥0
f(ηk+1

1 , · · · , ηk+1
i−1 , x, η

k
i+1, · · · , ηkm)

= argmin
x≥0

g(x), i = 1, · · · ,m
(34)

where ηki is the ith element of the hyper-parameter η at
the kth iteration, and g(x) is introduced for brevity.

g(x) � ‖Y −Φθ̂R‖22+2σ2 trace(Φ(ΦTΦ+σ2P−1(x))−1ΦT )

P (x) =
i−1∑
j=1

ηk+1
j Pj + xPi +

m∑
j=i+1

ηkj Pj . (35)

Since the objective function f is continuously differentiable
over the set Γ, this method can converge to the stationary
point of (33).

Theorem 1. Consider (33). Assume that the minimum of

min
x≥0

f(η1, · · · , ηi−1, x, ηi+1, · · · , ηm), i = 1, · · · ,m (36)

is uniquely attained. Let {ηk} be the sequence generated
by the coordinate descent method. Then every limit point
of {ηk} is a stationary point of (33).

Proof. Since the objective function (33) is continuously
differentiable over the set Γ, then the result follows from
Proposition 1.1.4 (convergence of coordinate descent) in
(Bertsekas, 1999, p.151).

Stopping Criterion In our paper, the stopping criterion
is defined as:

−∇f(η∗)T (η − η∗) ≤ 0, ∀η ≥ 0 (37)

where ∇f(η∗) is the gradient of f(η) evaluated at η = η∗.

Theorem 2. Consider (33). If η∗ satisfies (37), then it is a
stationary point of (33).

Proof. The function (37) is equivalent to:

((η∗ − s∇f(η∗))− η∗)T (η − η∗) ≤ 0, ∀η ∈ Γ, s > 0. (38)

This holds if and only if η∗ is the projection of η∗−s∇f(η∗)
on Γ accoding to Projection Theorem (Bertsekas, 1999,
p19), since η ≥ 0 is a nonempty, closed, and convex subset
of Rn.

Algorithm 2. Coordinate Descent Algorithm for (33).

Choose the starting point η0 ∈ Γ.
FOR k = 0, 1, 2, . . . do the following steps:

FOR i = 1, 2, . . . ,m, solve the problem (34), i.e.

ηk+1
i = argminx≥0 f(η

k+1
1 , · · · , ηk+1

i−1 , x, η
k
i+1, · · · , ηkm);

END
IF ηk satisfies the stopping criterion (37)
break;

END
END

4.2 Inner Optimization

Projection Gradient Method Over a Convex Set We
focus on solving (34) numerically. Before we discuss the
projection gradient method, we firstly recall the definition
of the gradient method:

xk+1 = xk + αkdk, k = 1, 2, · · · , (39)
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where xk is the parameter at kth iteration, αk is the
stepsize and dk is the direction. If �g(xk) �= 0, the
direction dk is chosen such that:

�g(xk)T dk < 0.

On the one hand, the stepsize αk is chosen to be positive
and such that xk+αkdk ≥ 0, since x ≥ 0. If the �g(xk) =
0, the method stops,i.e., xk+1 = xk (equivalently we choose
dk = 0). On the other hand, the majority of the feasible
gradient methods that we will consider are also descent
algorithms, that is, the step size αk is selected so that:

g(xk + αkdk) < g(xk), ∀k.

Let us recall the definition of projection operator: let z be
a fixed vector in Rn and consider the problem of finding a
vector x∗ in a closed convex set Γ, which is at a minimum
distance from z; that is :

x∗ = argmin
x∈Γ

‖z − x‖2 = ΠΓ(z) (40)

We call ΠΓ(z) the projection of z on Γ.

For our case where x ≥ 0 forms a convex set, we can choose
a feasible direction and the stepsize such that:

xk+1 = xk + αk(x̄k − xk) (41)

where
x̄k = Πx≥0(x

k − sk � f(xk))

to satisfy the requirements we discussed above. For sim-
plicity, we choose αk = 1, ∀k and we have:

xk+1 = Πx≥0(x
k − sk � g(xk)) (42)

For our case , the projection of xk in x ≥ 0 is:

Πx≥0(x
k) = max{0, xk}. (43)

Stepsize Selection The Armijo rule is one way to choose
the stepsize and can guarantee the convergence of the
conditional gradient method over a convex. In particular,
we choose δ, β, and s̄, with s̄ > 0, 0 < β < 1, and
0 < δ < 1. For each k, we set sk = βmk s̄, where mk is
the first nonnegative integer m = 1, · · · for which

g(xk)−g(x(βmk s̄)) ≥ δβms̄� g(xk)T (xk−x(βmk s̄)) (44)

where

x(βmk s̄) � Πx≥0(x
k − βmk s̄� g(xk)) (45)

In other words, the stepsizes βms̄, m = 0, 1, · · · are
tried successively until the above inequality is satisfied for
m = mk.

Algorithm 3. Projection Gradient Algorithm for (34) .

Choose the parameters β, δ ∈ (0, 1), s̄ > 0 and starting
point x0 ≥ 0:
FOR k = 0, 1, 2, . . . do the following steps:

Step1. Set m = 0:
Step2. Backtracking loop:

IF (44) holds;
THEN go to Step 3;

ELSE
Set m = m+ 1 and go to the beginning
of Step 2;

END
Step 3. Set xk+1 = ΠΓ(x

k − βms̄� g(xk));
IF xk+1 is stationary point;

break;
END

END

Theorem 3. Consider (34). For every x ≥ 0 there exists
s > 0 such that:

g(x)− g(x(s)) ≥ δ � g(x)T (x− x(s)) (46)

where x(s) � Πx≥0(x− s� g(x)). Let {xk} be a sequence
generated by the gradient projection method with the
stepsize sk chosen by the Armijo rule along the projection
arc. Then every limit point of {xk} is stationary.

Proof. Since g(x) is continuously differentiable over set
x ≥ 0, the result follows from Proposition 3.3.1 in (Bert-
sekas, 1999, p.283).

5. NUMERICAL SIMULATION

5.1 Description of Test Systems and Data Sets

To test Algorithm 2 and Algorithm 3, we use the data-bank
S1D1 in Chen et al. (2012). S1D1 contains 2500 randomly
generated 30th order discrete-time systems and associated
data sets. The system is simulated with an input that is
white Gaussian noise with unit variance, and the noise
free output is perturbed by additive white Gaussian noise
whose variance is one tenth of the variance of the noise-free
output.

5.2 Simulation Setup

For this preliminary study, we only test the first 500
systems and data sets of S1D1. For each data set, we
estimate an FIR model with n = 125 by the regularized
least squares method.

For comparison, we test four methods with different ker-
nels and different ways to estimate the hyper-parameter,
which are summarized as follows:

• SURE-TC : the TC kernel (8) with the hyper-
parameter estimated by the SURE method (13)

• ML-TC: the TC kernel (8) with the hyper-parameter
estimated by the maximum likelihood method (11)

• ML-MK: the multiple kernel (9) with the hyper-
parameter estimated by the maximum likelihood
method (11)

• SURE-MK-QR: the multiple kernel (9) with the
hyper-parameter estimated by the SUREmethod (13)
of QR factorization implementation

• SURE-MK-SF: the multiple kernel (9) with the
hyper-parameter estimated by the SUREmethod (13)
of straightforward implementation

where the multiple kernel is constructed based on 22 TC
kernels (8) obtained on the grid with c = 1 and λ = 0.50 :
0.02 : 0.90, 0.95. For ML-MK, the algorithm proposed in
Chen et al. (2014) is used. For SURE-MK-QR, we use the
proposed Algorithms 2 and 3, where we set s̄ = 1, δ = 0.01,
β = 0.1 and the initial point η0 = [0.1, 0.1, · · · , 0.1]T .
Note that we estimate the noise variance σ2 in (34) by
using the sample variance of an FIR model, which is
estimated with least squares method.
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where xk is the parameter at kth iteration, αk is the
stepsize and dk is the direction. If �g(xk) �= 0, the
direction dk is chosen such that:

�g(xk)T dk < 0.

On the one hand, the stepsize αk is chosen to be positive
and such that xk+αkdk ≥ 0, since x ≥ 0. If the �g(xk) =
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g(xk + αkdk) < g(xk), ∀k.

Let us recall the definition of projection operator: let z be
a fixed vector in Rn and consider the problem of finding a
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distance from z; that is :

x∗ = argmin
x∈Γ

‖z − x‖2 = ΠΓ(z) (40)

We call ΠΓ(z) the projection of z on Γ.

For our case where x ≥ 0 forms a convex set, we can choose
a feasible direction and the stepsize such that:

xk+1 = xk + αk(x̄k − xk) (41)

where
x̄k = Πx≥0(x

k − sk � f(xk))

to satisfy the requirements we discussed above. For sim-
plicity, we choose αk = 1, ∀k and we have:

xk+1 = Πx≥0(x
k − sk � g(xk)) (42)

For our case , the projection of xk in x ≥ 0 is:

Πx≥0(x
k) = max{0, xk}. (43)

Stepsize Selection The Armijo rule is one way to choose
the stepsize and can guarantee the convergence of the
conditional gradient method over a convex. In particular,
we choose δ, β, and s̄, with s̄ > 0, 0 < β < 1, and
0 < δ < 1. For each k, we set sk = βmk s̄, where mk is
the first nonnegative integer m = 1, · · · for which

g(xk)−g(x(βmk s̄)) ≥ δβms̄� g(xk)T (xk−x(βmk s̄)) (44)

where

x(βmk s̄) � Πx≥0(x
k − βmk s̄� g(xk)) (45)
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Algorithm 3. Projection Gradient Algorithm for (34) .
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point x0 ≥ 0:
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ELSE
Set m = m+ 1 and go to the beginning
of Step 2;

END
Step 3. Set xk+1 = ΠΓ(x

k − βms̄� g(xk));
IF xk+1 is stationary point;

break;
END

END

Theorem 3. Consider (34). For every x ≥ 0 there exists
s > 0 such that:

g(x)− g(x(s)) ≥ δ � g(x)T (x− x(s)) (46)

where x(s) � Πx≥0(x− s� g(x)). Let {xk} be a sequence
generated by the gradient projection method with the
stepsize sk chosen by the Armijo rule along the projection
arc. Then every limit point of {xk} is stationary.

Proof. Since g(x) is continuously differentiable over set
x ≥ 0, the result follows from Proposition 3.3.1 in (Bert-
sekas, 1999, p.283).
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generated 30th order discrete-time systems and associated
data sets. The system is simulated with an input that is
white Gaussian noise with unit variance, and the noise
free output is perturbed by additive white Gaussian noise
whose variance is one tenth of the variance of the noise-free
output.

5.2 Simulation Setup

For this preliminary study, we only test the first 500
systems and data sets of S1D1. For each data set, we
estimate an FIR model with n = 125 by the regularized
least squares method.

For comparison, we test four methods with different ker-
nels and different ways to estimate the hyper-parameter,
which are summarized as follows:

• SURE-TC : the TC kernel (8) with the hyper-
parameter estimated by the SURE method (13)

• ML-TC: the TC kernel (8) with the hyper-parameter
estimated by the maximum likelihood method (11)

• ML-MK: the multiple kernel (9) with the hyper-
parameter estimated by the maximum likelihood
method (11)

• SURE-MK-QR: the multiple kernel (9) with the
hyper-parameter estimated by the SUREmethod (13)
of QR factorization implementation

• SURE-MK-SF: the multiple kernel (9) with the
hyper-parameter estimated by the SUREmethod (13)
of straightforward implementation

where the multiple kernel is constructed based on 22 TC
kernels (8) obtained on the grid with c = 1 and λ = 0.50 :
0.02 : 0.90, 0.95. For ML-MK, the algorithm proposed in
Chen et al. (2014) is used. For SURE-MK-QR, we use the
proposed Algorithms 2 and 3, where we set s̄ = 1, δ = 0.01,
β = 0.1 and the initial point η0 = [0.1, 0.1, · · · , 0.1]T .
Note that we estimate the noise variance σ2 in (34) by
using the sample variance of an FIR model, which is
estimated with least squares method.

2018 IFAC SYSID
July 9-11, 2018. Stockholm, Sweden

17



18 Shiying Hong  et al. / IFAC PapersOnLine 51-15 (2018) 13–18

SURE-TC ML-TC SURE-MK ML-MK

84

86

88

90

92

94

96

98

Box-plots of 500 fits

Fig. 1. Box-plots of the 500 fits.

5.3 Simulation Result

To measure the quality of regularized impulse response
estimators, we define the model fit as follows:

fit = 100


1−

[∑125
k=1 |g0k − ĝk|2∑125
k=1 |g0k − ḡ0|2

] 1
2


 , ḡ0 =

1

n

125∑
k=1

g0k (47)

For each test system and associated data sets, we first
calculate the regularized impulse estimators using the four
methods. Then we calculate the corresponding fits (47).
The average fits and times are shown in Table 1 and the
distribution of the fits is shown in Figure 1.

Table 1. Average fit and average time

ML-TC SURE-TC ML-MK SURE-MK-QR SURE-MK-SF

average fit 90.3475 90.4805 91.2777 91.3710 91.3710

average time 3.2304 3.1872 6.0372 11.3672 25.0851

5.4 Findings

For the 500 test system and data sets, SURE method with
multiple kernel is more accurate in terms of average fits
and more robust in contrast with the other two methods
based on TC kernel. The average fit is slightly better
than the multiple kernel (9) with the hyper-parameter es-
timated by the maximum likelihood method (11) while ro-
bustness is similar. In comparison with the straightforward
implementation, the implement with QR factorization can
save more than half of the computation time.

6. CONCLUSION

In this contribution, we have considered the multiple ker-
nel based regularized system identification with the hyper-
parameter estimated by the Stein’s unbiased risk estimator
(SURE). In particular, we first perform a QR factorization
on the data and then we propose a coordinate descent
projection gradient algorithm, which is guaranteed to con-
verge to a stationary point. Numerical simulation shows
that the SURE with multiple kernel behaves quite well
for regularized system identification. Actually, the compu-
tation time can be further shortened by using Newton’s
method. This will be shown in the journal version of this
paper.
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