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Abstract: Regularization methods with regularization matrix in quadratic form have received
increasing attention. For those methods, the design and tuning of the regularization matrix are
two key issues that are closely related. For systems with complicated dynamics, it would be
preferable that the designed regularization matrix can bring the hyper-parameter estimation
problem certain structure such that a locally optimal solution can be found efficiently. An
example of this idea is to use the so-called multiple kernel Chen et al. (2014) for kernel-based
regularization methods. In this paper, we propose to use the multiple regularization matrix
for the filter-based regularization. Interestingly, the marginal likelihood maximization with the
multiple regularization matrix is also a difference of convex programming problem, and a locally
optimal solution could be found with sequential convex optimization techniques.
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1. INTRODUCTION

The traditional system identification is to construct math-
ematical models based on the measured input-output data,
see e.g., Ljung (1999). Recently, there have been increasing
research interests in the system identification community
to further integrate the prior knowledge in the construc-
tion of the mathematical models. To differentiate them
from the traditional system identification, they are referred
to as the regularized system identification in this paper.
The idea to utilize the prior knowledge together with the
input-output data is by no means new, see e.g., (Ljung,
1999, p. 15). There are different ways to integrate the prior
knowledge of the system to be identified into the model
estimation, e.g., by using heuristics, Bayesian methods
or regularization methods. However, no clear trend was
formed in the system identification community until re-
cently, see e.g., Pillonetto and Nicolao (2010); Latarie and
Chen (2016); Pillonetto and Chiuso (2015); Chen et al.
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61773329 and 61603379, the Shenzhen research projects funded by
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under contract No. PF. 01.000249 and the Start-up grant under
contract No. 2014.0003.23 funded by the Chinese University of Hong
Kong, Shenzhen, as well as by a research grant for junior researchers
funded by Swedish Research Council under contract No. 2014-5894,
the National Key Basic Research Program of China (973 Program)
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(2012, 2014); Marconato et al. (2016); Chen (2018); Mu
et al. (2018b); Mu and Chen (2018); Chen (2019); Chen
and Pillonetto (2018); Mu et al. (2017, 2018a); Hong et al.
(2018); Prando et al. (2017); Zorzi and Chiuso (2017); see
Pillonetto et al. (2014) for a survey and Chiuso (2016) for
a review of regularization methods. The major obstacle is
that it was unclear how to embed the prior knowledge of
a system to be identified into the regularization. The in-
triguing finding disclosed by Pillonetto and Nicolao (2010);
Chen et al. (2012, 2014); Chen (2018); Marconato et al.
(2016); Zorzi and Chiuso (2017) is that when considering
impulse response estimation problem of linear time invari-
ant (LTI) systems, it is possible to design a regularization
in quadratic form to embed the prior knowledge of the
impulse response to be identified.

For the regularization in quadratic form, there exist dif-
ferent ways to design the regularization matrix. One way
is to design the regularization matrix through a positive
semidefinite kernel Chen et al. (2012, 2014); Chen (2018).
Accordingly, this kind of regularization is referred to as
the kernel-based regularization. In particular, two system-
atic ways to design the kernels are proposed in Chen
(2018): one way is from a machine learning perspective
and another way is from a system theory perspective. The
machine learning perspective treats the impulse response
as a function and the prior knowledge could be about the
decay and varying rate of the impulse response. Then we
can design the so-called amplitude modulated locally sta-
tionary (AMLS) kernel, which is a multiplication of a rank-
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Linköping, Sweden

§ Department of Electrical Engineering and Department of Chemical
Engineering and Materials Science, University of Southern California

Abstract: Regularization methods with regularization matrix in quadratic form have received
increasing attention. For those methods, the design and tuning of the regularization matrix are
two key issues that are closely related. For systems with complicated dynamics, it would be
preferable that the designed regularization matrix can bring the hyper-parameter estimation
problem certain structure such that a locally optimal solution can be found efficiently. An
example of this idea is to use the so-called multiple kernel Chen et al. (2014) for kernel-based
regularization methods. In this paper, we propose to use the multiple regularization matrix
for the filter-based regularization. Interestingly, the marginal likelihood maximization with the
multiple regularization matrix is also a difference of convex programming problem, and a locally
optimal solution could be found with sequential convex optimization techniques.

Keywords: System identification, regularization methods, sequential convex optimization.

1. INTRODUCTION

The traditional system identification is to construct math-
ematical models based on the measured input-output data,
see e.g., Ljung (1999). Recently, there have been increasing
research interests in the system identification community
to further integrate the prior knowledge in the construc-
tion of the mathematical models. To differentiate them
from the traditional system identification, they are referred
to as the regularized system identification in this paper.
The idea to utilize the prior knowledge together with the
input-output data is by no means new, see e.g., (Ljung,
1999, p. 15). There are different ways to integrate the prior
knowledge of the system to be identified into the model
estimation, e.g., by using heuristics, Bayesian methods
or regularization methods. However, no clear trend was
formed in the system identification community until re-
cently, see e.g., Pillonetto and Nicolao (2010); Latarie and
Chen (2016); Pillonetto and Chiuso (2015); Chen et al.

� This work was supported by the Thousand Youth Talents Plan
of China, the general projects funded by NSFC under contract No.
61773329 and 61603379, the Shenzhen research projects funded by
the Shenzhen Science and Technology Innovation Council under
contract No. Ji-20170189 and Ji-20160207, the President’s grant
under contract No. PF. 01.000249 and the Start-up grant under
contract No. 2014.0003.23 funded by the Chinese University of Hong
Kong, Shenzhen, as well as by a research grant for junior researchers
funded by Swedish Research Council under contract No. 2014-5894,
the National Key Basic Research Program of China (973 Program)
under contract No. 2014CB845301, the President Fund of AMSS,
CAS under contract No. 2015-hwyxqnrc-mbq.

(2012, 2014); Marconato et al. (2016); Chen (2018); Mu
et al. (2018b); Mu and Chen (2018); Chen (2019); Chen
and Pillonetto (2018); Mu et al. (2017, 2018a); Hong et al.
(2018); Prando et al. (2017); Zorzi and Chiuso (2017); see
Pillonetto et al. (2014) for a survey and Chiuso (2016) for
a review of regularization methods. The major obstacle is
that it was unclear how to embed the prior knowledge of
a system to be identified into the regularization. The in-
triguing finding disclosed by Pillonetto and Nicolao (2010);
Chen et al. (2012, 2014); Chen (2018); Marconato et al.
(2016); Zorzi and Chiuso (2017) is that when considering
impulse response estimation problem of linear time invari-
ant (LTI) systems, it is possible to design a regularization
in quadratic form to embed the prior knowledge of the
impulse response to be identified.

For the regularization in quadratic form, there exist dif-
ferent ways to design the regularization matrix. One way
is to design the regularization matrix through a positive
semidefinite kernel Chen et al. (2012, 2014); Chen (2018).
Accordingly, this kind of regularization is referred to as
the kernel-based regularization. In particular, two system-
atic ways to design the kernels are proposed in Chen
(2018): one way is from a machine learning perspective
and another way is from a system theory perspective. The
machine learning perspective treats the impulse response
as a function and the prior knowledge could be about the
decay and varying rate of the impulse response. Then we
can design the so-called amplitude modulated locally sta-
tionary (AMLS) kernel, which is a multiplication of a rank-

Proceedings,18th IFAC Symposium on System Identification
July 9-11, 2018. Stockholm, Sweden

Copyright © 2018 IFAC 180

1 kernel and a stationary kernel, parameterized to account
for the decay and varying rate of the impulse response,
respectively. The system theory perspective associates the
impulse with an LTI system and the prior knowledge could
be that the system is stable and may be overdamped,
underdamped, have multiple distinct time constants and
etc. Then we can design the so-called simulation induced
(SI) kernel using the multiplicative uncertainty configura-
tion from robust control theory. In particular, the nominal
model is used to embed the prior knowledge, the uncer-
tainty is assumed to be stable and finally the system is
simulated with an impulsive input to get the SI kernel.
A recent contribution along this way is Zorzi and Chiuso
(2017), where the harmonic analysis of AMLS kernels is
provided and more general kernels are designed.

Another way to design the regularization matrix is through
a filter matrix Marconato et al. (2016), which is motivated
by the special structure of the diagonal correlated (DC)
kernel Chen et al. (2016); Marconato et al. (2016); Carli
et al. (2017). The filter matrix is an upper triangular
matrix whose rows are coefficients of filters designed based
on the prior knowledge, which could be that the under-
lying system is low-pass, high-pass, band-pass, and etc.
Moreover, to guarantee stability, those filters differ in their
gains: filters associated with rows with high number will
have higher gains. The filters are parameterized by the
hyperparameter, which could be the order of the filter, the
cut-off frequencies, the decay rate and the scaling factor.

It is worth to note that the issue of the regularization
matrix design is closely related with the issue of hyper-
parameter estimation Chen et al. (2014). If the prior
knowledge is that the system to be identified has com-
plicated dynamics, e.g., the system has multiple time con-
stants, multiple cut-off frequencies, it will make sense to
design the regularization matrix with complicated struc-
ture. However, a regularization matrix with complicated
structure would make the nonconvex hyperparameter es-
timation problem hard to solve. So when designing the
regularization matrix, we should also consider whether
the designed regularization matrix can bring the hyper-
parameter estimation problem certain structure such that
a locally optimal solution could be found efficiently. An
example of this idea is to use the so-called multiple kernel
Chen et al. (2014) for kernel-based regularization methods.
In this paper, we extend the idea of Chen et al. (2014)
and propose to use the multiple regularization matrix
for the filter-based regularization method. Interestingly,
the marginal likelihood maximization with the multiple
regularization matrix can also be expressed as a difference
of convex programming (DCP) problem, and a locally opti-
mal solution could thus be found efficiently with sequential
convex optimization techniques.

2. SYSTEM IDENTIFICATION

Consider a discrete-time stable and causal LTI system

y(t) = G(q)u(t) + v(t), t = 1, 2, · · · , N, (1)

where t is the time index, N is the number of observations,
G(q) is the transfer function of the LTI system with q being
the forward shift operator, and y(t), u(t), v(t) ∈ R are
the measured output, input, disturbance at time instant
t, respectively. Here it is assumed that the disturbance

v(t) is a zero mean white noise with variance σ2 > 0
and moreover, independent of the input u(t) for t ∈ N.
The traditional system identification problem is to estimate
G(q) as well as possible based on the data {y(t), u(t)}Nt=1.

The prediction error/maximum likelihood method (M-
L/PEM) is the traditional method for LTI system iden-
tification. It first proposes a parametric model structure,
e.g., a parameterization ofG(q) and then derives the model
estimate by minimizing the prediction error criterion.

The simplest model structure is perhaps the finite impulse
response (FIR) model which takes the following form:

G(q) =
n∑

k=1

g(k)q−1. (2)

In this way, the estimation of G(q) becomes to the esti-
mation of an FIR model of system (1) based on the data
{y(t), u(t)}Nt=1:

y(t) =
n∑

k=1

g(k)u(t− k) + v(t), t = 1, 2, · · · , N, (3)

where it is common to assume that N � n.

Clearly, y(t) with t ∈ N depends on u(t− 1), . . . , u(t− n),
which may not be known. There are different ways to deal
with the unknown input u(t) with t = 0,−1, . . . , 1 − n.
Accordingly, there are different ways to rewrite the FIR
model (3) in a matrix form:

YM = ΦMθ + VM , (4)

where YM ∈ RM ,ΦM ∈ RM×n, VM ∈ RM and

θ = [ g(1) g(2) · · · g(n) ]
T
, (5)

which is the parameter of the FIR model (2) and simply
called the impulse response in the sequel. For instance,
see e.g., Chen et al. (2012), if we choose not to use the
unknown input u(t) with t = 0,−1, . . . , 1− n and assume
that N > n, then M = N − n,

YM = YN−n = [ y(n+ 1) y(n+ 2) · · · y(N) ]
T
, (6)

and the expressions of ΦM and VM can be figured out in
a straightforward way.

For the case where the disturbance v(t) in (1) is Gaussian
and the FIR model (2) is used, the PEM/ML becomes the
least squares method

θ̂LS = argmin
θ

‖YM − ΦMθ‖22, (7)

where ‖ · ‖2 is the Euclidean norm. A disadvantage of θ̂LS

is that it may be subject to high variance for large n. The
major difficulty of the traditional PEM/ML is to choose
a suitable model complexity, i.e., the model order, which
is often done by applying cross validation or complexity
criteria such as AIC, BIC, or model validation techniques,
see e.g., Ljung (1999). However, these classical techniques
are sometimes not as reliable as expected, see e.g., Chen
et al. (2012); Pillonetto et al. (2014).

3. REGULARIZED SYSTEM IDENTIFICATION

In practice, there may exist prior knowledge of the sys-
tem (1) besides the data {y(t), u(t)}Nt=1. Interestingly, the
question of how to make use of such prior knowledge for a
better estimate ofG(q) was not systematically investigated
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1 kernel and a stationary kernel, parameterized to account
for the decay and varying rate of the impulse response,
respectively. The system theory perspective associates the
impulse with an LTI system and the prior knowledge could
be that the system is stable and may be overdamped,
underdamped, have multiple distinct time constants and
etc. Then we can design the so-called simulation induced
(SI) kernel using the multiplicative uncertainty configura-
tion from robust control theory. In particular, the nominal
model is used to embed the prior knowledge, the uncer-
tainty is assumed to be stable and finally the system is
simulated with an impulsive input to get the SI kernel.
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(2017), where the harmonic analysis of AMLS kernels is
provided and more general kernels are designed.

Another way to design the regularization matrix is through
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by the special structure of the diagonal correlated (DC)
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Moreover, to guarantee stability, those filters differ in their
gains: filters associated with rows with high number will
have higher gains. The filters are parameterized by the
hyperparameter, which could be the order of the filter, the
cut-off frequencies, the decay rate and the scaling factor.
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parameter estimation Chen et al. (2014). If the prior
knowledge is that the system to be identified has com-
plicated dynamics, e.g., the system has multiple time con-
stants, multiple cut-off frequencies, it will make sense to
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ture. However, a regularization matrix with complicated
structure would make the nonconvex hyperparameter es-
timation problem hard to solve. So when designing the
regularization matrix, we should also consider whether
the designed regularization matrix can bring the hyper-
parameter estimation problem certain structure such that
a locally optimal solution could be found efficiently. An
example of this idea is to use the so-called multiple kernel
Chen et al. (2014) for kernel-based regularization methods.
In this paper, we extend the idea of Chen et al. (2014)
and propose to use the multiple regularization matrix
for the filter-based regularization method. Interestingly,
the marginal likelihood maximization with the multiple
regularization matrix can also be expressed as a difference
of convex programming (DCP) problem, and a locally opti-
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Consider a discrete-time stable and causal LTI system

y(t) = G(q)u(t) + v(t), t = 1, 2, · · · , N, (1)

where t is the time index, N is the number of observations,
G(q) is the transfer function of the LTI system with q being
the forward shift operator, and y(t), u(t), v(t) ∈ R are
the measured output, input, disturbance at time instant
t, respectively. Here it is assumed that the disturbance

v(t) is a zero mean white noise with variance σ2 > 0
and moreover, independent of the input u(t) for t ∈ N.
The traditional system identification problem is to estimate
G(q) as well as possible based on the data {y(t), u(t)}Nt=1.

The prediction error/maximum likelihood method (M-
L/PEM) is the traditional method for LTI system iden-
tification. It first proposes a parametric model structure,
e.g., a parameterization ofG(q) and then derives the model
estimate by minimizing the prediction error criterion.

The simplest model structure is perhaps the finite impulse
response (FIR) model which takes the following form:

G(q) =
n∑

k=1

g(k)q−1. (2)

In this way, the estimation of G(q) becomes to the esti-
mation of an FIR model of system (1) based on the data
{y(t), u(t)}Nt=1:

y(t) =
n∑

k=1

g(k)u(t− k) + v(t), t = 1, 2, · · · , N, (3)

where it is common to assume that N � n.

Clearly, y(t) with t ∈ N depends on u(t− 1), . . . , u(t− n),
which may not be known. There are different ways to deal
with the unknown input u(t) with t = 0,−1, . . . , 1 − n.
Accordingly, there are different ways to rewrite the FIR
model (3) in a matrix form:

YM = ΦMθ + VM , (4)

where YM ∈ RM ,ΦM ∈ RM×n, VM ∈ RM and

θ = [ g(1) g(2) · · · g(n) ]
T
, (5)

which is the parameter of the FIR model (2) and simply
called the impulse response in the sequel. For instance,
see e.g., Chen et al. (2012), if we choose not to use the
unknown input u(t) with t = 0,−1, . . . , 1− n and assume
that N > n, then M = N − n,

YM = YN−n = [ y(n+ 1) y(n+ 2) · · · y(N) ]
T
, (6)

and the expressions of ΦM and VM can be figured out in
a straightforward way.

For the case where the disturbance v(t) in (1) is Gaussian
and the FIR model (2) is used, the PEM/ML becomes the
least squares method

θ̂LS = argmin
θ

‖YM − ΦMθ‖22, (7)

where ‖ · ‖2 is the Euclidean norm. A disadvantage of θ̂LS

is that it may be subject to high variance for large n. The
major difficulty of the traditional PEM/ML is to choose
a suitable model complexity, i.e., the model order, which
is often done by applying cross validation or complexity
criteria such as AIC, BIC, or model validation techniques,
see e.g., Ljung (1999). However, these classical techniques
are sometimes not as reliable as expected, see e.g., Chen
et al. (2012); Pillonetto et al. (2014).

3. REGULARIZED SYSTEM IDENTIFICATION

In practice, there may exist prior knowledge of the sys-
tem (1) besides the data {y(t), u(t)}Nt=1. Interestingly, the
question of how to make use of such prior knowledge for a
better estimate ofG(q) was not systematically investigated
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in the system identification community until very recently.
To differentiate it from the traditional system identifica-
tion, it is referred to as regularized system identification
aiming to estimate G(q) as well as possible based on both
the data {y(t), u(t)}Nt=1 and the prior knowledge of G(q).

There are different ways to integrate the prior knowledge of
G(q) into the estimation of G(q), e.g., by using heuristics,
Bayesian methods and regularization methods. When the
prior knowledge of G(q) is about the impulse response θ,
it is possible to embed the prior knowledge in a suitably
defined regularization matrix Chen et al. (2012). To be
specific, it is possible to design a suitable regularization
matrix such that the impulse response θ is estimated by
the so-called regularized least squares method:

θ̂R = argmin
θ

‖YM − ΦMθ‖22 + γθTDθ, (8)

where D ∈ Rn×n is a positive semidefinite matrix called
the regularization matrix, and γ > 0 is the regularization
parameter used to balance the trade-off between the adher-
ence to the data and the penalty on the model complexity.

To find a suitable regularization matrix D consists of two
steps. Based on the prior knowledge, the first step is to
propose a parameterization of D with a parameter vector
η ∈ Ω ∈ Rp, called the hyper-parameter, where Ω is a set
in which we search for a suitable hyper-parameter η. For
the parameterized regularization matrix D(η), the second
step is to estimate η based on the data {y(t), u(t)}Nt=1.

3.1 Kernel-based and Filter-based Regularization

There are different ways to design the regularization ma-
trixD. One way is to designD through a positive semidefi-
nite kernel function designed based on the prior knowledge,
see e.g., Chen (2018). Recall that a function k : N ×
N → R is called a positive semidefinite kernel (simply
called a kernel hereafter), if it is symmetric and satisfies∑m

i,j=1 aiajk(xi, xj) ≥ 0 for any m ∈ N, {x1, · · · , xm} ⊂ N
and {a1, ..., am} ⊂ R. Now let k(t, s; η) be a kernel pa-
rameterized by a hyper-parameter η ∈ Ω ∈ Rp. Then
one can choose D(η) = (K(η))−1 with K ∈ Rn×n and
Ki,j = k(i, j; η), where K is called the kernel matrix. Since
this kind of regularization matrices relies on a kernel, it is
referred to as the kernel-based regularization method in
Chen et al. (2012, 2014); Chen (2018). Accordingly, the
regularized least squares criterion (8) becomes

θ̂R = argmin
θ

‖YM − ΦMθ‖22 + γθT (K(η))−1θ. (9)

As is well-known, if we let γ = σ2 and assume that

θ ∼ N (0,K(η)) and v(t) is Gaussian distributed, then θ̂R

is the same as the maximum a posteriori estimate

θ̂MAP = argmax
θ

p(θ|YM ). (10)

In this case, the kernel matrix K is interpreted as the prior
covariance matrix of θ. So far many kernels have been
introduced, e.g., the stable spline (SS) kernel Pillonetto
and Nicolao (2010) and the diagonal correlated (DC)
kernel Chen et al. (2012), and the multiple kernel Chen
et al. (2014); see Chen (2018) for two systematic ways to
design more general kernels.

Motivated by the special structure of the DC kernel Chen
et al. (2016); Marconato et al. (2016); Carli et al. (2017),

another way to design D through a filter matrix was
introduced recently in Marconato et al. (2016). Recall that
a filter matrix F is an upper triangular matrix whose
rows are coefficients of filters designed based on the prior
knowledge and moreover, those filters only differ in their
gains: filters associated with rows with high number will
have higher gains. The filters are parameterized by the
hyperparameter η ∈ Ω ∈ Rp, which could be the order of
the filter, the cut-off frequencies, the decay rate and the
scaling factor. Then one can choose D(η) = (F (η))TF (η)
and as a result, F (η)θ can be interpreted as the response
of the filter with the impulse response θ as the input.
Accordingly, the regularized least squares (8) becomes

θ̂R = argmin
θ

‖YM − ΦMθ‖22 + γ‖F (η)θ‖22. (11)

It is clear to see that only the frequency components
of the impulse response θ which pass the filters will be
penalized in the cost function. Moreover, if high-pass filters
are chosen, then the high frequency components of the
impulse response will be penalized, leading to smooth
impulse responses; if the filters associate with rows with
high number have higher gains, the impulse response
coefficients in the end are penalized more than the ones
in the beginning, leading to decaying impulse responses.

3.2 Hyper-parameter Estimation

There are different ways to deal with the hyper-parameter
estimation problem. So far the most widely used method
is the empirical Bayes method, which embeds the regu-
larization term in a Bayesian framework and then max-
imizes the marginal likelihood to get an estimate of η.
More specifically, we let γ = σ2 and assume that D(η)
is nonsingular, θ ∼ N (0, (D(η))−1), and v(t) is Gaussian
distributed. Then

η̂ = argmax
η∈Ω

p(YM |η)

= argmin
η∈Ω

Y T
MΣ(η)−1YM + log detΣ(η) (12)

Σ(η) = ΦM (D(η))−1ΦT
M + σ2IM

Remark 3.1. When D is singular, the Moore-Penrose
pseudo inverse D+ of D should be used instead in (12).
For convenience, we only consider the case where D is
nonsingular in this paper.

4. MULTIPLE REGULARIZATION MATRIX BASED
REGULARIZATION

Regardless of how the regularization is designed, there are
some common difficulties for this regularization method.
For instance, in order to model complicated systems, the
regularization should have complicated structure. How-
ever, the complicated structure will make the nonconvex
hyperparameter estimation problem difficult to solve. So
we should consider whether the designed regularization
can bring the hyper-parameter estimation problem certain
structure such that a locally optimal solution could be
found efficiently when we design the regularization.

An example of this idea is the use of multiple kernel
Chen et al. (2014) for the kernel-based regularization
method. In particular, the multiple kernel matrix is a conic
combination of some fixed kernel matrices Ki:
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K(η) =

p∑
i=1

ηiKi, η1, . . . , ηp ≥ 0, η = [ η1 η2 · · · ηp ] ,

(13)

where Ki, i = 1, . . . , p, can be instances of DC kernel
matrices with different decay rates and correlation coef-
ficients. The multiple kernel equips the kernel-based regu-
larization method with a couple of features. For example,
multiple kernels can better capture complicated dynamics
than a single kernel. Moreover, the hyperparameter esti-
mation problem by maximizing the marginal likelihood
can be expressed as a difference of convex programming
(DCP) problem. Thus, it is possible to find a locally
optimal solution efficiently by using sequential convex op-
timization techniques.

This idea could be extended and multiple regularization
matrix could be used for the filter-based regularization
method. In particular, the multiple regularization matrix
D(η) is positive definite and a nonzero conic combination
of some fixed regularization matrices:

D(η) =

p∑
i=1

ηiDi =

p∑
i=1

ηiF
T
i Fi, η1, . . . , ηp ≥ 0,

Di = FT
i Fi, η = [η1, · · · , ηp]T ,

(14)

where the given filter matrices Fi ∈ Rn×n, i = 1, . . . , p,
are nonsingular and can be instances of the filter matrix
proposed in Marconato et al. (2016) with different decay
rates (and possibly with different orders and different cut-
off frequencies). Clearly, the remaining problem is whether
or not the multiple regularization matrix brings the hyper-
parameter estimation certain structure such that a locally
optimal solution could be found efficiently. Fortunately,
the answer to this problem is positive.

Remark 4.1. We have assumed for convenience that Fi,
i = 1, . . . , n are nonsingular and square in (14), but this
assumption can be weakened.

Proposition 4.1. Consider the marginal likelihood maxi-
mization problem (12) with the multiple regularization
matrix (14). Then the marginal likelihood maximization
problem (12) can be expressed as a DCP problem for
nonzero η.

Proof: By using the matrix inversion lemma, we have

Y T
MΣ(η)−1YM = ‖YM‖22/σ2

− Y T
MΦM (D +ΦT

MΦM/σ2)−1ΦT
MYM/σ4. (15)

Then by Sylvester’s determinant identity, we have

log detΣ(η) = M log σ2 + log det(ΦMD−1ΦT
M/σ2 + IM )

= M log σ2 + log det(D−1ΦT
MΦM/σ2 + In) (16)

= M log σ2 − log det(D) + log det(D +ΦT
MΦM/σ2).

Note that − log det(D) is convex for D > 0, −Y T
MΦM (D+

ΦT
MΦM/σ2)−1ΦT

MYM/σ4 and log det(D+ΦT
MΦM/σ2) are

concave for D > 0. Moreover, since D is affine in
η, − log det(D) is convex for nonzero η, −Y T

MΦM (D +
ΦT

MΦM/σ2)−1ΦT
MYM/σ4 and log det(D+ΦT

MΦM/σ2) are
concave for nonzero η. This completes the proof. �

From now on, we let

f(η) = g(η)− h(η), η ∈ Ω = {ηi ≥ 0, i = 1, . . . , p} (17)

g(η) = − log det(D) = − log det(

p∑
i=1

ηiFiF
T
i ), (18)

h(η) = Y T
MΦM (D +ΦT

MΦM/σ2)−1ΦT
MYM/σ4

− log det(D +ΦT
MΦM/σ2)− ‖YM‖22/σ2 −M log σ2

= Y T
MΦM (

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2)−1ΦT
MYM/σ4

− log det(

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2)

− ‖YM‖22/σ2 −M log σ2. (19)

Then the maximization problem (12) with the multiple
regularization matrix (14) can be written as follows:

η̂ = argmin
η∈Ω

f(η) = argmin
η∈Ω

g(η)− h(η). (20)

It follows from Proposition 4.1 that g(η) and h(η) are
convex for η ≥ 0 and η �= 0, respectively.

As discussed in Chen et al. (2014), a locally optimal
solution can be found efficiently by using sequential con-
vex optimization techniques, e.g., the majorization mini-
mization (MM) algorithm Yuille and Rangarajan (2002);
Hunter and Lange (2004). The idea of MM is to derive
an iterative optimization scheme for minimizeη∈Ω f(η). At

each iteration, a so-called majorization function f̄(η, η(k))
of f(η) at η(k) ∈ Ω is minimized:

η(k+1) = argmin
η∈Ω

f̄(η, η(k)), (21)

where f̄ : Ω×Ω → R satisfies f̄(η, η) = f(η) for η ∈ Ω and
f(η) ≤ f̄(η, z) for η, z ∈ Ω. Clearly, (21) yields an iterative
descent algorithm with k = 1, 2, · · · .
The construction of a suitable majorization function is
a key step for MM algorithms. For the DCP problem
(20), there are different ways to construct the majorization
function Hunter and Lange (2004). Here we choose to use
the so-called linear majorization, i.e.,

f̄(η, η(k)) = g(η)− h(η(k))−∇h(η(k))T (η − η(k)), (22)

where ∇h(η(k)) is the gradient of h(η) evaluated at η =
η(k). For this particular choice of majorization function,
the MM algorithm (21) is also referred to as “sequential
convex optimization” or “the convex concave procedure”
(CCCP) Yuille and Rangarajan (2002).

Now we let

Σ̄(η) =

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2. (23)

Then the MM algorithm for the problem (12) with the
multiple regularization matrix (14) can be summarized as
follows: choose η(0) ∈ Ω, set k = 0 and then go to the
following iterative steps:

Step 1: For i = 1, · · · , p, we calculate ∇h(η(k)):

∇ηih(x) = −Tr
(
Σ̄(η)−1(ΦT

MYMY T
MΦM/σ4

+Σ̄(η))Σ̄(η)−1FT
i Fi

)
(24)

and then solve the convex optimization problem (21) and
(22) to obtain η(k+1).
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where Ki, i = 1, . . . , p, can be instances of DC kernel
matrices with different decay rates and correlation coef-
ficients. The multiple kernel equips the kernel-based regu-
larization method with a couple of features. For example,
multiple kernels can better capture complicated dynamics
than a single kernel. Moreover, the hyperparameter esti-
mation problem by maximizing the marginal likelihood
can be expressed as a difference of convex programming
(DCP) problem. Thus, it is possible to find a locally
optimal solution efficiently by using sequential convex op-
timization techniques.

This idea could be extended and multiple regularization
matrix could be used for the filter-based regularization
method. In particular, the multiple regularization matrix
D(η) is positive definite and a nonzero conic combination
of some fixed regularization matrices:
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where the given filter matrices Fi ∈ Rn×n, i = 1, . . . , p,
are nonsingular and can be instances of the filter matrix
proposed in Marconato et al. (2016) with different decay
rates (and possibly with different orders and different cut-
off frequencies). Clearly, the remaining problem is whether
or not the multiple regularization matrix brings the hyper-
parameter estimation certain structure such that a locally
optimal solution could be found efficiently. Fortunately,
the answer to this problem is positive.

Remark 4.1. We have assumed for convenience that Fi,
i = 1, . . . , n are nonsingular and square in (14), but this
assumption can be weakened.
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mization problem (12) with the multiple regularization
matrix (14). Then the marginal likelihood maximization
problem (12) can be expressed as a DCP problem for
nonzero η.
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− Y T
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Then by Sylvester’s determinant identity, we have

log detΣ(η) = M log σ2 + log det(ΦMD−1ΦT
M/σ2 + IM )

= M log σ2 + log det(D−1ΦT
MΦM/σ2 + In) (16)

= M log σ2 − log det(D) + log det(D +ΦT
MΦM/σ2).

Note that − log det(D) is convex for D > 0, −Y T
MΦM (D+

ΦT
MΦM/σ2)−1ΦT

MYM/σ4 and log det(D+ΦT
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concave for D > 0. Moreover, since D is affine in
η, − log det(D) is convex for nonzero η, −Y T
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ΦT

MΦM/σ2)−1ΦT
MYM/σ4 and log det(D+ΦT

MΦM/σ2) are
concave for nonzero η. This completes the proof. �

From now on, we let

f(η) = g(η)− h(η), η ∈ Ω = {ηi ≥ 0, i = 1, . . . , p} (17)

g(η) = − log det(D) = − log det(

p∑
i=1

ηiFiF
T
i ), (18)

h(η) = Y T
MΦM (D +ΦT

MΦM/σ2)−1ΦT
MYM/σ4

− log det(D +ΦT
MΦM/σ2)− ‖YM‖22/σ2 −M log σ2

= Y T
MΦM (

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2)−1ΦT
MYM/σ4

− log det(

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2)

− ‖YM‖22/σ2 −M log σ2. (19)

Then the maximization problem (12) with the multiple
regularization matrix (14) can be written as follows:

η̂ = argmin
η∈Ω

f(η) = argmin
η∈Ω

g(η)− h(η). (20)

It follows from Proposition 4.1 that g(η) and h(η) are
convex for η ≥ 0 and η �= 0, respectively.

As discussed in Chen et al. (2014), a locally optimal
solution can be found efficiently by using sequential con-
vex optimization techniques, e.g., the majorization mini-
mization (MM) algorithm Yuille and Rangarajan (2002);
Hunter and Lange (2004). The idea of MM is to derive
an iterative optimization scheme for minimizeη∈Ω f(η). At

each iteration, a so-called majorization function f̄(η, η(k))
of f(η) at η(k) ∈ Ω is minimized:

η(k+1) = argmin
η∈Ω

f̄(η, η(k)), (21)

where f̄ : Ω×Ω → R satisfies f̄(η, η) = f(η) for η ∈ Ω and
f(η) ≤ f̄(η, z) for η, z ∈ Ω. Clearly, (21) yields an iterative
descent algorithm with k = 1, 2, · · · .
The construction of a suitable majorization function is
a key step for MM algorithms. For the DCP problem
(20), there are different ways to construct the majorization
function Hunter and Lange (2004). Here we choose to use
the so-called linear majorization, i.e.,

f̄(η, η(k)) = g(η)− h(η(k))−∇h(η(k))T (η − η(k)), (22)

where ∇h(η(k)) is the gradient of h(η) evaluated at η =
η(k). For this particular choice of majorization function,
the MM algorithm (21) is also referred to as “sequential
convex optimization” or “the convex concave procedure”
(CCCP) Yuille and Rangarajan (2002).

Now we let

Σ̄(η) =

p∑
i=1

ηiFiF
T
i +ΦT

MΦM/σ2. (23)

Then the MM algorithm for the problem (12) with the
multiple regularization matrix (14) can be summarized as
follows: choose η(0) ∈ Ω, set k = 0 and then go to the
following iterative steps:

Step 1: For i = 1, · · · , p, we calculate ∇h(η(k)):

∇ηih(x) = −Tr
(
Σ̄(η)−1(ΦT

MYMY T
MΦM/σ4

+Σ̄(η))Σ̄(η)−1FT
i Fi

)
(24)

and then solve the convex optimization problem (21) and
(22) to obtain η(k+1).
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Step 2: Check if the optimality condition is satisfied. If
satisfied, stop. If otherwise, set k = k + 1 and go to step
1.

Remark 4.2. In Marconato et al. (2016), the hyper-
parameter estimation problem is tackled by using the
k-fold cross validation Hastie et al. (2001) and it was
mentioned in (Marconato et al., 2016, p. 200) that the
implementation of the hyper-parameter tuning could be
improved. Here, we tried the empirical Bayes method and
moreover, we have showed that for the multiple regulariza-
tion matrix, the empirical Bayes method can be expressed
as a DCP problem for which a locally optimal solution
could be found efficiently by using sequential convex opti-
mization techniques.

Remark 4.3. In the multiple regularization matrix (14),
the reason why we keep Di = FT

i Fi is two fold. First,
for the filter-based regularization, the filter matrix Fi is
designed directly but not the regularization matrix Di.
Second, in the implementation, we often need the factor-
ization Fi of Di for efficient and reliable implementation.

5. NUMERICAL SIMULATION

In this section, we aim to test, on the one hand, the idea
to use multiple regularization matrix for regularization
methods, and on the other hand, a locally optimal solu-
tions of the marginal likelihood maximization (12) with
the multiple regularization matrix (14) can be found with
sequential convex optimization techniques.

5.1 Test Systems and Data-bank

The method in (Chen et al., 2012, Section 2) is used
to generate 100 test systems, each of which is a 30th
order discrete-time LTI system. Each test system is then
simulated with a white Gaussian noise input u(t) and
the corresponding output is referred to as the noise-free
output. The noise-free output is then perturbed by an
additive white Gaussian noise and the perturbed output
is collected as the output y(t) for each test system. The
signal-to-noise ratio, i.e., the ratio between the variance of
the noise-free output and the noise, is chosen to be equal
to 1. In this way, we collect N = 375 data points, i.e.,
y(t), u(t) with t = 1, 2, · · · , 375.

5.2 Simulation Setup

For each test system and data set, we construct two
regularized FIR models with order n = 125 by using the
following two methods.

The first method is to use the kernel-based regularization
method (9) with the tune-correlated (TC) kernel intro-
duced in Chen et al. (2012)

kTC(i, j; η) = cmin{λi, λj}, i, j = 1, · · · , n, (25)

η = [c λ]T , c ≥ 0, 0 ≤ λ < 1.

The second method is to use the regularization method
with multiple regularization matrix (11). The multiple
regularization matrix is constructed based on the inverse
of the TC kernel matrix which has closed-form expression:

DTC(λ) = (KTC(η))−1 (26)

where KTC(η) is the kernel matrix constructed based on
the TC kernel (25) with c = 1. From Carli et al. (2017)

and Marconato et al. (2016), we know thatDTC has closed-
form expression

DTC
i,j (λ) =

ηij
1− λ

(−1)i+jλ− i+j
2 λ

|i−j|
2 (27)

where

ηij =




0 if |i− j| > 1,

1 + λ if i = j = 2, . . . , n− 1,

1 otherwise.

(28)

Moreover, we have DTC = (FTC)TFTC with

FTC
i,j (λ) =




λ−i/2(1− λ)−1/2, for j = i, i < n

−λ−i/2(1− λ)−1/2, for j = i+ 1, i < n

λ−n/2 for i = j = n

.

Then we construct the multiple regularization matrix

D(η) =
15∑
i=1

ηiDi =

15∑
i=1

ηiF
T
i Fi, (29)

η = [ η1 . . . η15 ] , ηi ≥ 0, i = 1, . . . , 15,

where for i = 1, 2, . . . , 15,

Di = DTC(λi), Fi = FTC(λi), λi = 0.85, 0.86, · · · , 0.99.

For both methods, the empirical Bayes method is used to
estimate the hyper-parameter η. The noise variance σ2 is
estimated as follows: an FIR model with order n = 125
is first estimated with the least squares method and the
sample variance is then used as the estimate of σ2. Similar
to Chen et al. (2012), we choose not to use the unknown
input u(t) with t = 0,−1, . . . , 1− n.

To measure the difference between the true impulse re-
sponse of the test system and the regularized impulse
response estimate, the following measure of fit is used:

fit = 100


1−

[∑125
k=1 |g0k − ĝk|2∑125
k=1 |g0k − ḡ0|2

] 1
2


 , ḡ0 =

1

125

n∑
k=1

g0k

where g0k and ĝk are the true impulse response and its
estimate at the kth time instant, respectively.

5.3 Simulation Results

For the test systems and data-bank, the average fits for
the two tested methods are summarized in the table

TC MReg

Avg. Fit 53.9 54.1

where “TC” denotes the kernel-based regularization method
(9) with the TC kernel (25) and “MReg” denotes the
regularization method (11) with multiple regularization
matrix (29). The distribution of the model fits are shown
in Fig. 1. As can be seen, the regularization method (11)
with multiple regularization matrix (29) behaves similarly
to the kernel-based regularization method (9) with the TC
kernel (25), both in terms of the average accuracy and the
robustness for the test systems and data-bank.

6. CONCLUSION

In this paper, we have considered the regularization
method with the multiple regularization matrix and we
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Fig. 1. Boxplot of the model fits for the two tested meth-
ods: the left column shows the result for the kernel-
based regularization method (9) with the TC kernel
(25) and the right column shows the result for the reg-
ularization method (11) with multiple regularization
matrix (29). For both columns, there are 3 fits below
zero, which are not shown for better display.

have shown that for the hyper-parameter estimation prob-
lem, the widely used empirical Bayes method can be ex-
pressed as a difference of convex programming problem,
and hence a locally optimal solution could be found ef-
ficiently using sequential convex optimization techniques.
In this preliminary work, we tested the multiple regular-
ization matrix constructed based solely on the inverse of
the tune-correlated kernel matrix. The simulation results
showed the efficacy of the proposed method. In the near
future, we will test the multiple regularization matrix
constructed based on the filter-based regularization matrix
introduced in Marconato et al. (2016). For example, to
embed the prior knowledge that the system to be identi-
fied could be low-pass, high-pass, band-pass and etc., the
fixed regularization matrix in the multiple regularization
matrix can be chosen to be the filter-based regularization
matrix with different orders, different cut-off frequencies,
and different decay rate. Another topic to explore is the
sparsity of the optimal hyper-parameters.
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Fig. 1. Boxplot of the model fits for the two tested meth-
ods: the left column shows the result for the kernel-
based regularization method (9) with the TC kernel
(25) and the right column shows the result for the reg-
ularization method (11) with multiple regularization
matrix (29). For both columns, there are 3 fits below
zero, which are not shown for better display.

have shown that for the hyper-parameter estimation prob-
lem, the widely used empirical Bayes method can be ex-
pressed as a difference of convex programming problem,
and hence a locally optimal solution could be found ef-
ficiently using sequential convex optimization techniques.
In this preliminary work, we tested the multiple regular-
ization matrix constructed based solely on the inverse of
the tune-correlated kernel matrix. The simulation results
showed the efficacy of the proposed method. In the near
future, we will test the multiple regularization matrix
constructed based on the filter-based regularization matrix
introduced in Marconato et al. (2016). For example, to
embed the prior knowledge that the system to be identi-
fied could be low-pass, high-pass, band-pass and etc., the
fixed regularization matrix in the multiple regularization
matrix can be chosen to be the filter-based regularization
matrix with different orders, different cut-off frequencies,
and different decay rate. Another topic to explore is the
sparsity of the optimal hyper-parameters.
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