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Abstract: Reliability and dependability of the infrastructure is a must for any railway asset
manager to guarantee both safety and capacity of the network. To avoid operational downtime
and, even more, accidents timely maintenance of the railway infrastructure becomes a crucial
aspect. Current maintenance policies are mostly reactive or periodic, which give surge to a
high O&M cost. Reducing maintenance cost while enhancing asset reliability may be achieved
through the adoption of predictive maintenance policies. This requires the availability of a
condition monitoring system able to assess the infrastructure health state through diagnosis and
prognosis of degradation processes occurring on the different railway components. Central to
any condition monitoring system is the a-priori knowledge about the process to be supervised in
the form of either mathematical models of different complexity or signal features characterizing
the health state. This paper proposes a statistical model for the switch panel of railway turnouts
that characterizes two key components: railpad and ballast. Exploiting vibration data collected
during train passages their natural frequencies are estimated through an estimation scheme
based on empirical mode decomposition and subspace identification. By analysing vertical
acceleration data corresponding to 400 train passages the estimated resonance frequencies
associated with the ballast and the railpad have been well characterized by normally distributed
random variables. The proposed estimation architecture and the resulting low-complexity
statistical model opens an opportunity for the monitoring of developing degradation processes
in the railway’s turnout.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Statistical modelling, Empirical mode decomposition, Subspace identification,
Railway condition monitoring.

1. INTRODUCTION

Continuous availability of the railway network strongly de-
pends on the condition of the infrastructure components.
To guarantee network availability and to optimize its per-
formance and capacity condition monitoring and predic-
tive maintenance are of paramount importance. Infras-
tructure maintenance based on reactive policies has been
and still is a major cost driver for railway infrastructure
managers that face expenditures for hundreds of millions
Euro on a yearly basis to secure safety and availability
of the infrastructure (EIM-EFRTC-CER Working Group,
2012; Juul Andersen, 2012).

The maintenance and renewal actions of switches and
crossings (S&Cs) contribute significantly to the reported
expenses, because S&Cs are critical both in terms of
network capacity and safety. Banedanmark, the Danish
railway infrastructure manager, estimates that each year
one third of the total track maintenance cost is spent
on turnouts. According to the 2014 RSSB Annual Safety

* The financial support under grant number 4109-00003B provided
by Innovation Fund Denmark for the INTELLISWITCH project is
gratefully acknowledged.

Performance Report (Clinton, 2014, Section 8.5), 31%
of the track-related derailments were caused by S&Cs
malfunctioning in the period 2009-2014 in Great Britain.
Railway turnouts are complex systems from a geometrical
and dynamical point of view, where components of the
superstructure (rails and railpads) interact with those of
the substructure (ballast and subgrade) to determine the
wheel-rail interaction. As such the degradation of one
or more of these components directly affects the S&C
dynamic performance; in particular failure data recorded
in the UK in 2009 (Hassankiadeh, 2011, Chapter 7) showed
that ballast degradation is the third most important
component with a failing frequency of 7.9 (the first two
components affecting turnout performance are the switch
rail (45.3%) and the slide chair (30.4%)).

Railway will have a central role in the future development
of sustainable transport systems in Europe. This expected
key role cannot be guaranteed without optimizing the
performance of the infrastructure elements and reducing
the maintenance costs associated to faults and failures
of turnouts. Therefore, railway infrastructure managers
are motivated to change maintenance policies from reac-
tive/periodic to predictive. This can be achieved by devel-
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oping novel condition monitoring (CM) systems capable
to issue early warnings of deterioration processes and di-
agnose occurrence of faults in infrastructure components.

1.1 State of the art

Track stiffness is known as a key parameter to asses
the railway condition; in particular noticeable correlation
between variations of track stiffness and degradation of
railway performance is observed in practice (Berggren
et al.,, 2014). Track stiffness is significantly influenced
by the ballast and subgrade condition, therefore their
monitoring is crucial to prevent the overall degradation of
the infrastructure dynamic behaviour. Evaluation of the
“health state” of the ballast by means of non-destructive
measurement methods is indeed a challenging task due to
the harsh operational conditions. Several approaches were
proposed in the literature for condition monitoring of the
open track stiffness; these methods can be categorized as
direct and indirect.

Direct methods have been in focus in (Smekal et al., 2006;
Berggren, 2009; Kind, 2011; Brough et al., 2003; Labarile
et al., 2004; Yella et al., 2009; Asplund et al., 2013) where
the ground penetrating radar (GPR), the cone penetration
test (CPT) and visual inspection have been considered as
means of evaluation of the track condition. Despite being
in use across several railway infrastructure managers, these
methods have few drawbacks that should be considered
in the design of a condition monitoring system: (1) the
GPR relies on a proper selection of the frequency range
of the electromagnetic waves in order to provide a “good
visibility” of the ballast; (2) the CPT is a destructive
and time consuming test that influences train operations;
(3) the visual inspection is only effective for detection
of damage that has already propagated to the surface.
Indirect techniques are non-destructive methods that rely
on intelligent processing of measured data recorded by
track-side or train-based measurement systems. Examples
of methods based on measurements collected through train
passage are given in (Hosseingholian et al., 2009; Berggren
et al., 2014).

Model-based approaches for the detection of degrada-
tion of the ballast layer have been recently proposed by
Lam et al. (2012, 2014, 2017), who combined complex
mechanistic models with Bayesian algorithms for param-
eter updates. The proposed methods were validated both
with simulated and measured acceleration data. The main
drawback of these approaches resides on the large dimen-
sionality of the models, which may result in the design
of highly complex diagnostic methods. Barkhordari et al.
(2017) instead proposed a low-complexity behavioural
model of the turnout able to capture the dominant dynam-
ics related to the ballast and the railpad. The fourth-order
model was estimated using the Eigenstructure Realization
Algorithm (ERA), a subspace identification method, on
unloaded vibration data! collected during a receptance
test. Despite the good prediction capability demonstrated
by the identified model when validated against measured
vertical track accelerations induced by train passage, the

I Loaded/unloaded vibration data refer to data collected in the
presence/absence of a train loading the infrastructure. Unloaded
vibration data are usually collected through a hammer test.
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approach proposed in (Barkhordari et al., 2017) relies on
the execution of an experimental campaign that railway
infrastructure managers very seldom perform.

Low-complexity data-driven behavioural models, which
embed the dynamic characteristics of main track compo-
nents, are industrially appealing since the low parametriza-
tion will enable easy tuning and guarantee high portability
across the entire railway network despite natural presence
of uncertainties due to e.g. geographical location and phys-
ical age of the components. Further, the availability of low-
complexity models will result in simpler and more robust
designs of the monitoring tools for diagnosing faults and
prognosing failures.

1.2 Main contribution

This work presents a novel statistical model describing the
dynamical features of two key components of the turnout’s
switch panel: the railpad and the ballast. To overcome
the limitations introduced by using data collected through
unconventional experimental campaigns in the railway
industry — as the receptance test —, the paper proposes
a parameter estimation scheme that relies on loaded data,
i.e. train induced vertical accelerations, collected by a
track side measurement system. The estimation scheme
combines the empirical mode decomposition (EMD) with
numerical algorithms for subspace state space system
identification (N4SID) to estimate second order models
for the intrinsic mode functions (IMFSs) related to the
ballast and the railpad. With the models being available
the estimation of the components natural frequencies is
achieved through eigenvalue analysis.

The statistical characterization of the parameters describ-
ing the dynamical behaviour of the railpad and ballast is
deemed necessary in order to take into consideration the
presence of uncontrollable external factors — quality of the
train’s wheels, meteorological conditions, train load and
speed — that may determine significant variations in the
dynamical response. Exploiting vibration data collected
during the passage of 200 IC3 and 200 IR4 trains, the nat-
ural frequencies of the ballast and railpad are statistically
characterized as normally distributed; further the values
estimated based on the receptance test are well within two
standard deviations from the mean value.

All measured data presented in the paper are anonymized
to comply with the policy of the Danish railway infrastruc-
ture manager.

2. EXPERIMENTAL SET-UP

As part of the INTELLISWITCH project a switch and
crossing in the Danish railway infrastructure has been
instrumented with 3 wheel detectors, 12 2-axis accelerom-
eters (measurement range: +500g) and 3 displacement
sensors (measurement range: £20mm). All sensors are
connected to a cabinet where signals are conditioned and
data temporary stored. The location of the sensors along
the S&C is shown in the schematics in Fig. 1.

The wheel detectors are used to switch on/off the data col-
lection whenever a train passes through the turnout. The
accelerometers are magnetically installed on the rail web
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Fig. 1. Layout of the sensors location along the turnout
at Tommerup station (Fyn - Denmark). The data
utilized in this work refer to vertical accelerations
measured by accelerometer A4 on the switch panel.

(a) Overview of the turnout in
proximity of Tommerup station

(b) Accelerometer A5 magneti-
cally connected to the rail web

cpew

(d) Wheel detector mounted on
proximity of the rail web

(c) Displacement sensor resting
on the sleeper

Fig. 2. Pictures of the instrumented S&C nearby Tom-
merup station (Fyn - Denmark).

and measure vertical and lateral accelerations induced by
a train passage. The displacement sensors are measuring
the vertical motion of the sleepers. The data acquisition
board samples all measurements at the sampling frequency
F, = 20kHz. Pictures of the instrumented S&C and of
selected sensors are shown in Fig. 2.

A turnout is divided in three main areas (along the track):
the switch panel, the closure panel and the crossing panel.
This work focuses on identifying a low-complexity statis-
tical model of the turnout’s dynamics in correspondence
of the switch panel. In particular, vertical acceleration
measurements at the location of accelerometer A4 (see
Fig. 1) are considered for this study. An example dataset is
shown in Fig.3, where both the normalized vertical acceler-
ation and the time-shifted output of the wheel detector is
reported. The displayed acceleration signal is normalized
according to @ = a/ max(|al).

The time-shifted output of the wheel detector is utilized
to precisely determine when the train boogies are passing
through the measurement location A4. The time synchro-
nization between the wheel passage signal WS(t) and
the vertical acceleration a@(t) allows the automatic slic-
ing of the acceleration signal in components referring to

Pegah Barkhordari et al. / IFAC PapersOnLine 51-24 (2018) 1278-1284

0 L I I L I
0 1 2 3 4 5 6

Time [s]

Fig. 3. The track acceleration response to a passenger train
(IR4) and the wheel detector signal.

each train boogie for the model identification presented
in Section 3. The time delay 7 is computed based on the
knowledge of the train speed and the distance between the
wheel detection sensor and the accelerometer A4.

3. ESTIMATION OF TRACK RESONANCE
FREQUENCIES

Condition motoring of the track infrastructure can be
performed by continuous evaluation of the track resonance
frequencies. Estimation of these resonances from the track
response to railway traffic excitation is not a trivial task
and advanced signal processing methods should be em-
ployed for such a purpose.

The analysis of vertical acceleration time series in cor-
respondence of a boogie (an example shown in Fig. 3)
reveals that (1) the signal is not completely damped in
between wheels, which implies that the responses to two
successive wheels are not fully distinguishable; (2) the
maximum amplitude of the acceleration shows significant
variation, which may imply issues with the quality of the
wheels. Therefore track resonances may be poorly excited
and shadowed by other frequencies where the train exci-
tation is more prominent. To lower the impact of spurious
measurements on the estimation of the track resonance
frequencies, each measured acceleration time series is split
into pieces corresponding to the response induced by one
boogie. Each piece is then processed independently to give
rise to one estimate of the natural frequencies associated
with the ballast and the rail pad.

To reliably estimate the track resonance frequencies a
novel procedure based on the combination of signal pro-
cessing and a subspace identification method is proposed.
First, empirical mode decomposition is applied to each
piece of the acceleration signal to extrapolate the fun-
damental oscillatory modes included in the signal. Sub-
sequently, the N4SID subspace identification method is
used to identify a second order model for each IMF. The
models are then exploited to compute the track compo-
nents natural frequencies by means of eigenvalue analysis.
Last the estimated frequencies obtained for all boogies are
averaged through the robust statistics of the median. A
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Fig. 4. Block diagram of the estimation scheme for ballast
and railpad natural frequencies.

block diagram showing the different stages of the proposed
procedure is shown in Fig. 4.

3.1 Empirical Mode Decomposition

Empirical mode decomposition is a signal processing
method that decomposes a signal into so-called intrinsic
mode functions, which represent the fundamental oscilla-
tory modes of the original signal.

Given a train 7 with N, boogies, let B = {b1,...,bn,} be
the set of train boogies and a(t) for ¢ € [tg, ¢1] the induced
vertical acceleration at a specific location of the turnout.
For each by, the corresponding slice of the overall signal a(t)
is selected based on the time-shifted output of the wheel
sensor, i.e. ag(t) for t € [tw, k,tw,k + J] is the vertical
acceleration induced by the boogie by where ., 1 is the
time instant the first wheel passes over the accelerometer,
tw,,k is the time instant the second wheel passes over the
sensor and 0 < 0 < ty, k+1. The acceleration ay(t) is the
signal fed to the EMD algorithm.

The IMFs are extracted using the sifting process originally
presented in (Huang et al., 1998) and summarized in
Algorithm 1. The stop conditions in the EMD algorithm
(lines 3 and 12) are the following: (1) the overall sifting
process stops when the residual r(t) is smaller than a pre-
determined threshold ¢; or if 7(¢) has become a monotonic
function of time; (2) the sifting process associated with the
j-th IMF stops when the standard deviation SD of two
consecutive sifting components is smaller than e; = 0.2 —
0.3.

The obtained IMFs are then utilized as inputs to the iden-
tification process to estimate a low-complexity behavioural
model for each train passage.

3.2 N4SID Subspace Identification Method

In (Barkhordari et al., 2017) the identification of a low-
complexity behavioural model based on vertical accelera-
tion data collected during a receptance test in unloaded
conditions was addressed by exploiting the Eigenstructure
Realization Algorithm (ERA). The ERA method assumes
that the identification data set represents the dynamics
of the system to be identified in free vibration. This hy-
pothesis cannot be met with data collected during train
passage for two main reasons: (1) as the train passes over
the turnout the infrastructure becomes loaded and this
introduces vibrations constraints; (2) the time interval be-
tween two successive excitations from two adjacent wheels
in a boogie is shorter than the time needed for the mea-
sured acceleration to be completely damped. Therefore the

1281

Algorithm 1: Empirical Mode Decomposition

Data: Track vertical acceleration ay(t)
Result: Set of intrinsic mode functions

Ik = {imfl, ce ,mem}
1 Residual r(¢t) < ax(t);
214 1;
3 while r(t) > ¢; do
a hio(t) < r(t);
5 7+« 1
6 repeat
7 Find all local extrema hy(;_1)(t);
8 Find the upper and lower envelopes by spline
interpolation of the local extrema;
9 Compute the mean value m(t) between the
lower and upper envelopes;
10 Subtract the mean value from the original
signal hy;(t) = hyg_1)(t) —m(t);
11 Compute
tw2,k+8
M-y () = ()P
SD =
D N0
Je=J+L
12 until SD > eo;
13 me»L(t) — hl(]—l)(t)7
14 r(t) < r(t) —imfi(t);
15 11+ 1;

16 end

N4SID algorithm for state space system identification is
employed.

This subspace identification method was proposed for LTI
systems in order to identify a state space model represent-
ing the input/output behaviour of a system (Viberg, 1995).
For the j-th IMF extracted from the EMD algorithm,
the past and future output data in the N4SID algorithm
(ie. Y, and Yy) are constructed as Y, = (imf;)

and Y; = (imfj)k‘%_l.
excitation) is unknown, the past and future input vectors
in the identification procedure (i.e. Uy and U,) are set to
zero. Defining W, as [U,, Y|, the N4SID identification
algorithm read ( Katayama (2006))

0k—1
Since the input signal (train

(1) Compute the oblique projection of Yy onto W, along
Uy (ie. §) by using Eq. (1) and the LQ decomposition
in Eq. (2)

€ =By, {Y;|W,} = RpRLW, = 0,X; (1)

Us;7 [Ru 0 0][Q;
[Wp] = [Rm Ry 0] Q| . (2)
Yf R31 R32 0 Qg

where R%Q is the pseudo-inverse of Ros. Oy is the
extended observability matrix and Xy is the future
state vector.

(2) Compute the state vector Xy using the singular
value decomposition of £ (see Eq. (4)) and define
Xr+1, Xks Yijks Ugke-
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£=U13 V] = 0y X; 3)
0, =U,S’T
X; =T 'S5Vl
where X = [z(k), z(k+1),...,2(k+ N —1)] € R™*V,

(3) Compute the matrices A,B,C,D by solving the
regression equation using least-squares techniques.

&)= (B el ) ([ 6]
CD| [ Yee] |Ukp Uik | | Uklk

(4)
where )_(k;+1 S is the estimated future states,

Yy € RP*N=1 s the future output data, Uy, €
R™*N=1 is the future input data.

Ran—l

3.3 Frequency Estimation

For the j-th IMF a canonical realization of the second
order discrete-time state space model can be defined as
follows,

{;(j(k +1) = Ayx; (k) )

3;(k) = C;%; (k)
A; and C;j are defined in terms of natural frequency (w,)
and damping factor (¢) in the following equation,

Aj=eonl| Ja g, | xT) G =10 ©

The resonance frequency and the damping factor corre-
sponding to the model identified for the j-th IMF can be
computed by means of eigenvalue analysis

A, —Re(n(u(A)/T)
METT ot 9T T Ay

where T is the sampling time and A1 (A ;) is the first eigen-

value of the complex pair associated with the matrix A ;.
4. LOW-COMPLEXITY BEHAVIOURAL MODEL

By applying the methodology proposed in the previous
section to the measured track vertical acceleration in
response to train passages, a low-complexity behavioural
model capturing the ballast and railpad dynamics of the
turnout is now developed. According to the literature (see
e.g. (Dahlberg, 2006)) and the analysis of the receptance
test presented in (Barkhordari et al., 2017), the frequency
interval containing the resonance frequencies of the track
infrastructure is [0, 1000]Hz. Therefore, the measured data
is pre-filtered using a low-pass filter with the cut-off
frequency of 1000 Hz. As discussed in Section 3, the filtered
acceleration response is then split into time segments
corresponding to a boogie. For each time segment the
EMD algorithm is used to produce IMFs, which in turn
are considered as an identification data set. The N4SID
method is then applied to each identification dataset
for identifying a proper state space model representing
the dominant behaviour of the measured acceleration.
According to the literature (Dahlberg, 2006) the first and
second resonance frequencies of the track corresponding
to the flexibility of the ballast and railpad are found in
the ranges of [50, 300] Hz and [200, 600] Hz, respectively.

Pegah Barkhordari et al. / IFAC PapersOnLine 51-24 (2018) 1278—1284
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Fig. 5. Track response to a passage of two adjacent
wheels (IR4 train travelling at 158km/h) and the four
extracted IMFs.

Since each IMF represents one simple oscillatory mode
of the original signal, a 2nd order model is identified for
each IMF.

Figure 5 shows an example of the acceleration response
recorded for a passage of two adjacent wheels and the four
IMFs extracted. Performing the latter analysis for each
IMF, it can be shown that only the excited frequencies
calculated for the second and fourth IMFs are within the
frequency range in which the track resonance frequencies
are expected.

4.1 Model Validation and Robustness

The discrete time state space realization of the identified
models for imf, and imf, associated with the data set
shown in Fig. 5 are

A, — | 09976 £0.1845¢ ™" 0.0592 + 0.1787¢ "
M, 27 1-0.0592 £ 0.1787¢ 3 0.9976 + 0.1845¢ >
C, = [0.7073 + 0.6536e* —0.0209 + 0.6352¢ %]
(8)
A, — | 0-9812£0.4030¢™° 0.1757 +0.3918¢ "
My:d T [ -0.1757 £0.3918¢ 3 0.9812 + 0.4030¢

Cy = [0.7082 4 0.1449¢ % —0.0627 + 0.1405¢ ]
(9)
My and M, are then combined through the output into a
unified model M able to predict the dominant behaviour
of the measured acceleration in relation to the ballast and
railpad components

- [Ay, 0O
A: ~
M: [0 AJ.

C=[C; Gy
It is worth noting that since the train load (input to the
model) is not available for measurement, the output is esti-

(10)

mated by using only the A and C matrices. Therefore, the
initial conditions are required to be estimated iteratively
for each wheel passage.

To assess the robustness of the final model, its capability
in predicting the measured accelerations in response to
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Fig. 6. Comparison of the measured (blue) and predicted
accelerations (red) in correspondence to an IR4 train
passage at 120km/h. (Top) The whole train passage,
(Bottom) Zoomed in of a boogie passage.

another train excitation recorded at the turnout position
A4 is evaluated. The comparison between measured accel-
eration and predicted output is shown in Fig. 6 and the
fitting score is 77% for this particular dataset.

5. STATISTICAL CHARACTERISTIC OF THE
TRACK RESONANCES

To find a single value representing the first (second) res-
onance frequency of the track subject to train passage,
the median calculated over all observations (i.e., all values
extracted as first (second) frequency from different time
segments) is taken into account. In other words, median of
all extracted wy, ;1 and wy, ;2, where ¢ is the time segments
counter, is calculated. The first and second resonances
obtained based on the analysis of the track response shown
in Fig. 5 are only one sample among many others. There-
fore, acceleration response of the track to a pool of train
excitations (200 IC3 trains and 200 IR4 trains with the
speed ranging from 120 km/h to 160km/h) has been used
for further analysis. The described estimation procedure is
then applied to the recorded track acceleration responses
and a probability density function (PDF) is found for each
resonance frequency.

Figures 7-10 show the PDF and the probability plot for
the first and second resonances. The vertical dashed-line
in these figures represents the track resonance computed
by using the receptance test data Barkhordari et al. (2017).
Using the Kolmogorov-Smirnov (K-S) goodness-of-fit test
with a confidence level of 95%, the p-value is calculated
as, 0.719, 0.2248, 0.4213 and 0.0522 for the fitted normal
distributions. This emphasizes that statistical characteris-
tic of the track resonances can be represented as normal
distribution. The mean value of the PDF's in these figures
are close to the first and second resonances of the track
obtained in Barkhordari et al. (2017), by performing a
receptance test at the Tommerup station (w,,1 = 167.59Hz
and wy, 2 = 549.96 Hz).
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5.1 Discussion

The method proposed in this paper can be employed suc-
cessfully to generate the statistical description of railway
track resonances using vibration data relative to train pas-
sage. The statistical model provides a robust description
of the infrastructure dominant behaviour in relation to
uncontrollable parameters as train speed, wheel load, en-
vironmental conditions, etc. Further, the statistical model
may be exploited for long-term monitoring of infrastruc-
ture characteristics through e.g. recursive updating of the
obtained PDFs. Last, the statistical model opens for wide
opportunities to design novel change detectors to address
the occurrence of faults and/or wear at the ballast and
railpad level. These methods will be inherently data-driven
to increase the portability of the condition monitoring
system across different S&Cs in the railway network.

6. CONCLUSION

A low-complexity behavioural model capable of predicting
the dynamic response of a railway turnout around the
switch panel was identified by using the measured track
vertical acceleration. This was carried out by proposing a
novel estimation scheme based on the combination of the
empirical mode decomposition and the N4SID subspace
identification method. The model identified for the track
response to a train passage was then employed to estimate
railway track resonances. The robustness and validity of
the model were demonstrated by testing the capability of
the identified model to predict the dominant behaviour of a
new set of data measured during the passage of a different
train. Statistical properties of the resonance frequencies
were then obtained by considering a pool of IR4 and IC3
trains, and finding a probability density function fitted
to each resonance frequency. The findings of the current
study can be used as a basis for portable and predictive
condition monitoring of railway switches and crossings.
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