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Abstract 

When risk management considerations are integrated into the engineering systems 

design, both overall system performance and quality of the developed solutions improve. A 

central part of integrating risk management in engineering systems design is to ensure that the 

design process benefits from employing risk and uncertainty methods with different levels of 

sophistication. That is, namely through the application of risk analyses that model risk and 

uncertainty in different ways. Traditionally, especially in engineering fields, risk analyses have 

largely been expressed in a quantitative, probabilistic form. However, such quantitative 

information, either as customized input to decision making or as general-purpose statistics, is 

itself becoming increasingly problematic and afflicted by severe uncertainty. Both the precision 

in estimates and the quality of background knowledge, on which probabilities are based, have 

been challenged in practice and academia.  

This PhD thesis investigates advanced risk and uncertainty quantification methods in 

the context of engineering systems to better address, reflect, and utilize available information 

and background knowledge in design. The investigation was guided by the four research 

questions focusing on: 1) challenges in current design risk management quantification, 2) 

advanced risk and uncertainty methods, introduced under the non-probabilistic framework: the 

first group of methods is based on imprecise probabilities, the second represents a group of 

semi-quantitative approaches and the third group of methods is based on exploratory modeling, 

3) prototypical applications of the non-probabilistic methods in different engineering systems 

design contexts, and 4) the transfer and integration of these methods and their results into 

overall risk management and associated processes. The results are presented in corresponding 

chapters from which four core findings are extracted: 1) currently widely used risk and 

uncertainty methods do not appropriately describe all uncertainty - especially uncertainty due 

to lack of knowledge, so called epistemic uncertainty – that remains a challenge, 2) advanced 

methods have been developed in other fields (i.e. outside of engineering design) to deal with 

similar issues and have provided valuable results in those fields, but have not yet been applied 

or tested in engineering design contexts, 3) for the engineering design situations and scenarios 

tested in this thesis, the non-probabilistic methods provided more credible representation of 

uncertainty, and 4) finding and employing a satisfactory quantification method from the 

available options is context dependent, and a broader process view needs to be considered when 

tailoring risk management to specific design situations. 
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This study contributes in four ways to the extension of our knowledge base on risk 

management in engineering systems design. First, the study synthesizes the challenges in 

current risk management from the literature and through empirical work regarding: modeling, 

quality of background knowledge and use and integration of results (research question 

1/contribution 1). Second, this study systematically collects and categorizes advanced methods 

from the literature in other domains, conceptually develops them for the design context and 

provides a unique platform for their application through the non-probabilistic framework 

(research question 2/contribution 2). Third, it transfers these methods into usable tools through 

examples in case study applications in the oil and gas industry, followed by their comparison 

with several traditional probability approaches in representative situations (research question 

3/contribution 3). Fourth, this study facilitates and enables a more adequate choice of a 

quantification method depending on the design context in question by developing a risk 

management tailoring approach (research question 4/contribution 4). The overall conclusion is 

that non-probabilistic methods have a high potential in engineering systems design, but their 

integration to the overall risk management and associated processes must be carefully and 

knowingly planned and carried out, to harness this potential and to achieve an actual design 

impact in practice. 
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Dansk Sammenfatning 

Denne afhandling udforsker forskellige måder, som skal forbedre det videnskabelige 

felt risikostyring. Mere specifikt er målet med denne afhandling, at give en praktisk rettesnor 

og et solidt videnskabeligt fundament til at adressere, reflektere over og udnytte den 

tilgængelige information/viden indenfor kvantificering af risiko og usikkerhed. Når 

risikostyring integreres i engineering systems design styrker det kvaliteten af både systemets 

performance og kvaliteten af de løsninger der udvikles. Et central aspekt i at integrere 

risikostyring i engineering systems design er at sikre at design processen drager fordel af at 

benytte metoder til håndtering af risiko og usikkerhed som har forskellig grad af detaljering og 

sofistikation. Fordelen handler ofte om at benytte metoder der arbejder med risiko og 

usikkerhed på forskellige måder. Risiko styring har oprindeligt været overvejende kvantitativ 

og benyttet sandsynligheder, specielt inden for ingeniørkunst. Kvantitativ information som 

benyttes som input til beslutninger eller statistik, er imidlertid blevet mere problematisk at 

benytte og påvirkes af voldsom usikkerhed. Brugen af sandsynligheder er blevet udfordret af 

akademika og i praksis med hensyn til præcision i estimater og kvaliteten af den 

baggrundsviden som brugen bygger på.  

Denne Ph.d. afhandling undersøger avancerede metoder til kvantificering af risiko og 

usikkerhed i relation til engineering systems, for bedre at kunne adressere, reflektere og benytte 

den information der er tilgængelig samt baggrundsviden inden for design. Afhandlingen blev 

guidet af fire forskningsspørgsmål som fokuserede på: 1) udfordringer ved nuværende 

kvantificering i risikostyring i design, 2) avancerede metoder til risiko og usikkerheds 

håndtering – som introduceres i forbindelse med ikke-kvantitative metoderamme i tre dele: 

Den første gruppe af metoder er baseret på upræcise sandsynligheder, den anden gruppe 

repræsentere en gruppe af semi-kvantitative tilgange og den tredje gruppe er baseret på 

eksplorative modeller, 3) prototypiske anvendelser af de ikke-probabilistiske metoder i 

forskellige engineering systems design kontekster, og 4) overførsel og integration af disse 

metoder og deres resultater til risikostyring og de tilknyttede processer. Resultatet præsenteres 

i tilsvarende kapitler hvorfra fire centrale resultater uddrages: 1) nuværende metoder til 

risikostyring og usikkerhed som bruges i vid udstrækning, beskriver ikke al usikkerhed på en 

passende måde – især vedrørende usikkerhed som skyldes manglende viden, såkaldt epistemisk 

usikkerhed, som forbliver en udfordring, 2) avancerede metoder er blevet udviklet inden for 

andre felter (uden for engineering design) for at adressere lignende udfordringer og har vist sig 
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at være værdifulde inden for disse felter, men er endnu ikke blevet anvendt eller testet i 

engineering design kontekster, 3) det var de ikke-probabilistiske metoder som gav mest 

pålidelige resultater i de engineering design kontekster som blev testet, 4) at identificere en 

tilfredsstillende metode afhænger af konteksten og et mere vidtrækkende syn på processen er 

nødvendigt for at kunne tilpasse eller ’skræddersy’ risikostyringsprocessen til specifikke 

design sammenhænge og situationer. 

Afhandlingen bidrager til forskningen og viden inden for risikostyring i engineering 

systems design på fire måder. For det første syntetiseres udfordringerne ved nuværende 

risikostyring fra litteraturen og gennem case studier vedrørende: modellering, kvalitet af 

baggrundsviden og brug af samt integration af resultaterne (forskningsspørgsmål 1/bidrag 1). 

For det andet samler afhandlingen systematisk avancerede metoder fra litteraturen inden for 

andre domæner og kategorisere dem, udvikler dem til brug i en design kontekst og bidrager 

med en unik platform til at benytte metoderne ved hjælp af det ikke-probabilistiske 

rammeværktøj (forskningsspørgsmål 2/bidrag 2). For det tredje overføres disse metoder til 

anvendelige værktøjer ved hjælp af eksempler fra case studierne indenfor olie og gas 

industrien. Metoderne sammenlignes med traditionelle tilgange som gør brug af sandsynlighed 

i repræsentative scenarier (forskningsspørgsmål 3/bidrag 3). For det fjerde facilitere 

afhandlingen valg af metode til kvantificering i relation til den konkrete design kontekst. Der 

udvikles en fremgangsmåde og rammeværktøj til tilpasning / skræddersyning af risikostyring 

(forskningsspørgsmål 4/bidrag 4). Den mest gennemgribende konklusion er at ikke-

probabilistiske metoder har stort potentiale inden engineering systems design, men deres 

integration i risikostyring og de tilknyttede processer bør planlægges nøje og udføres refleksivt 

for at kunne tøjle og udnytte potentialet, samt opnå en reel indflydelse i praksis. 
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1.  Introduction: Re-thinking risk quantification in 

engineering systems design  
 

“Great Design sprouts when good research grows” 

- M. Cobanli -  

This first chapter introduces the PhD thesis, starting with the overall motivation for the 

research and problem framing (Section 1.1), as well as outlining the industrial context 

surrounding the study. Section 1.2 highlights the challenges of designing engineering systems, 

the current industrial needs and knowledge gaps regarding advanced risk quantification 

methods, and their integration into the overall risk management and design process. Thereafter, 

Section 1.3 lays out the research objectives and the main research questions, based on the need 

and knowledge gaps introduced in the previous section, and links them to the research 

methodology that is further described in Chapter 2. Finally, Section 1.4 provides a brief outline 

of the structure of the thesis. 

 

1.1. Motivation and problem framing: Risk and uncertainty quantification 

in engineering systems design need improvement 

 

This section highlights the following key messages: 1) Many engineering projects 

fail to deliver in terms of time, cost and/or performance; 2) This means that there is great 

incentive to find methods – risk management – that help us assess the risk of failing to 

deliver and of mitigating those risks; risk management is part of project management 

and most engineers’ training; 3) Such methods often need a quantitative estimate of the 

probabilities of adverse events and yet these are difficult to identify, especially in the early 

stages of engineering systems design; 4) This deficiency (lack of reliable quantitative 

probability estimates) is made especially difficult today by the trends toward “systems of 

systems” in engineering, as well as by megaprojects. Ironically, it is in megaprojects that 

the need for risk management is the greatest. For these reasons, this thesis investigates 

methods to improve risk and uncertainty quantification in current practices.  

 There is an ongoing and lively discussion in research communities on why engineering 

systems projects often face challenges to be on time, on budget, and on specifications. In 

particular, much focus is placed on those whose goal is a design of an engineering system (de 
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Weck, Roos, & Magee, 2011). According to de Weck, Roos, and Magee (2011) engineering 

systems are defined as: “A class of systems characterized by a high degree of technical 

complexity, social intricacy, and elaborate processes, aimed at fulfilling important functions 

in society.” The design, delivery and operation of engineering systems are normally executed 

through projects, including products in the systems – aircraft, computers, communications 

equipment etc.  

The issue raised in this thesis is of key relevance for industry. The Project Management 

Institute estimated that more than 40% of engineering projects fail to meet their goals. “We see 

US$122 million wasted for every US$1 billion invested due to poor project performance, a 12 

percent increase over last year.” (PMI, 2016). The main message of their reports is that the 

cost of low performance is high. Apart from this substantial economic factor, engineering 

systems that fail to meet design specifications could potentially have a tremendous effect on 

the quality of thousands or millions of people’s lives.  

Engineering systems play an important role in society, but are also extremely risky 

(Locatelli & Mancini, 2010). Causality with a weak (i.e. often sub-optimal) phase of project 

planning has been researched before, since it leads to underestimations of the costs, 

overestimation of short-term benefits, and strategic misrepresentations (Flyvbjerg, 2006b). 

Merrow (2013) shows that the vast majority of large-scale projects could be considered a failure 

when considering adherence to schedule and budget as well as benefits in operation (Locatelli, 

2018).  

On the other hand, globalization brought integration of multiple engineering systems 

accompanied by designed and integrated services. However, it also brought higher 

competitiveness in the market. This consequently leads to time pressures, tighter budgets and 

a greater need for higher accuracy in estimates at an early design stage. This is even more the 

case when system-ilities are taken into account – properties concerning wider system impacts 

with respect to time and stakeholders (e.g. resilience, flexibility, adaptivity) (Chalupnik, Wynn, 

& Clarkson, 2013). In the case of large-scale engineering systems, the complexities, numbers 

of people involved, long life-cycles and enormous societal effects are even more evident. 

Therefore, such engineering systems are inherently more difficult to describe, understand, 

design, manage, and operate (de Weck, Roos, & Magee, 2011). 
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For instance, one example of poor performance is certainly the Berlin Brandenburg 

Airport. A number of challenges and changes in the design, and a rather long list of identified 

shortcomings led to tripled costs, now estimated to be €5.4 billion (Hammer, 2015). The 

learnings from this example pose the question: What can we do to better support decision 

making in similar cases? There is no doubt that making decisions in engineering systems design 

is a challenging task, but can we do better than this, and how can we make sure that the overall 

quality improves? 

It has been suggested by both researchers and practitioners that the way we manage 

design solutions should keep pace with the complex and changing nature of engineering 

systems (Chang, Lee, & Chen, 2014). Risk management is an important tool to assess the 

environmental, financial, legal, technical and societal impacts of product, system and service 

designs to support achieving predefined goals. These changes lead to the increased importance 

of addressing uncertainty throughout the whole life cycle of a product, system or service. 

Uncertainty considerations are particularly relevant for the accuracy of planning models, and 

thus research, in that direction is of great significance for the field. 

During the last decades, the management of risk in engineering systems design and 

associated projects and services has drawn attention from researchers and practitioners in areas 

such as engineering design (Lough, Stone, & Tumer, 2009), project management (Raz & 

Michael, 2001), and safety-related risk management (Paté-Cornell, 1996; Glendon, Clarke, & 

McKenna, 2016). The Project Management Institute represents the largest professional 

organization dedicated to the project management field, and identifies risk management as one 

of the ten main areas of project management (PMI, 2008). Furthermore, risk management 

courses are usually a part of most training programs for project managers. In accordance with 

the current view of project management as a life cycle process, project risk management is 

often perceived as a process that accompanies a project, from the initiation through the 

planning, execution, monitoring and control phases all the way to the completion and closure 

(Raz & Michael, 2001). Arguably, risk management has become an integral part of many 

formalized design processes for complex technical or socio-technical systems.  

Despite this formalization of risk management in organizations, Flyvbjerg (2007) 

observed that the main challenges of large projects, including the design of engineering 

systems, are incomplete, inadequate, unreliable or misleading information. Decisions made 

during the design process have a significant impact on the strategic value of the asset delivered, 
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and these decisions depend on the quality of the information on which they are based (Eweje, 

Turner, & Müller, 2012).  

Furthermore, it has been shown by empirical studies (Levi, 1990; Sahlin, 2012) that the 

amount and quality of information used to develop probability and utility functions is an 

important factor when making decisions. For example, people tend to make different decisions 

if they are aware of the amount and quality of the data on which probability and utility 

assessments are based. Given that uncertainty plays an important role in decision making, it is 

notable that its quality improves if uncertainty is carefully addressed (e.g. Prelec & 

Loewenstein, 1991; Riabacke, 2006). 

For the last few decades, the probability theory has gained popularity in many 

applications such as modeling and quantifying uncertainty in engineering systems. The 

development of probability as a measurement of uncertainty is based on an axiom that precise 

measurements of uncertainties can be made (Bernardo & Smith, 2009). However, the 

complexity of today’s engineering systems has been increased by various requirements, such 

as high performance, efficiency, and cost reduction. Since a probabilistic risk and uncertainty 

quantification analysis requires extensive information, both scientific and engineering 

communities have recently realized that there are limitations to using probabilistic frameworks 

in their systems, and the precision of estimates has been challenged. Therefore, there is a need 

for exploring advanced methods that could overcome these challenges.  

1.2. Identified need and knowledge gaps: The critical role of knowledge in 

uncertainty quantification 

 

This section highlights that risk management tries to identify what we know about 

the ways in which things could go wrong, and the likelihood of such occurring; this is 

crucially dependent on our knowledge of the project, the engineering, the people involved 

etc. In large-scale engineering systems design this knowledge is very distributed among 

the participants. Hence, this section introduces the reader to epistemic and aleatory 

uncertainty, and ambiguity. Probabilistic methods function well in relation to aleatory 

uncertainty, but to a lesser extent with the other two. Engineering systems design in 

particular needs methods to deal with a lack of knowledge, and I will thus examine non-

probabilistic methods that are nevertheless compatible with Bayesian/classic probability 

in this regard. The non-probabilistic methods have demonstrated reliable results in other 
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fields facing similar challenges, and are therefore worth exploring in the engineering 

systems design context. Methods that focus on ambiguity are outside the scope of the 

thesis. I will examine three different groups of non-probabilistic methods and test their 

application through case studies. This will show how they may be incorporated into 

usable design tools. 

Almost a century ago, Knight (1921) made a distinction between risk and uncertainty. 

Both concepts are described in detail in Chapter 3, where I introduce the definition underlying 

this research. Risk can be defined as “the effect of uncertainty on objectives” (ISO, 2009). 

Furthermore, two types of uncertainty can be distinguished: epistemic uncertainty and 

aleatory uncertainty (e.g. Helton & Burmaster, 1996). Epistemic uncertainty arises due to lack 

of knowledge and can be reduced by collecting and acquiring new knowledge. This is in 

contrast to aleatory uncertainty that is of stochastic nature, and therefore cannot be reduced. In 

addition to the types of uncertainty, there is the concept of ambiguity: it describes how factual 

statements may be interpreted differently by different individuals (Klinke & Renn, 2002). 

Arguably, one of the key challenges in design risk management today is that uncertainty 

quantification relies heavily on probabilistic models (Flage et al., 2014). While these are fully 

capable of describing aleatory uncertainty, they have been challenged when used to model 

epistemic uncertainty (Dubois, 2010) or ambiguity. If used this way, probabilistic approaches 

lead to violations of their initial assumptions and provide arguable precision in their results. 

This thesis examines the current state of the art in practice in six leading, large-scale companies 

in engineering systems design, and documents the existing challenges. That represents the basis 

for the first claim: current risk management practices need improvement, since we only use a 

subset of the quantification methods. 

Understanding current design risk management challenges is a key element to providing 

usable tools to best support industry needs. Thus, this thesis relies heavily on established 

collaborations with practitioners from various engineering systems design domains. The 

collaborations were essential for understanding their risk management process requirements. 

Based on this, better support for decision making in situations dominated by weak 

available information is documented and this is found to be a common issue for multiple 

engineering sectors. It is therefore essential to explore methods to better assess uncertainty 

caused by a lack of knowledge. This sets the basis for the second claim: literature could provide 
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arguments to build theoretical reasoning, and bring formality to the choice of risk management 

methods and their application. 

For the reasons mentioned above, it is necessary to investigate other risk and 

uncertainty quantification methods to advance the support of decision making in situations 

dominated by lack of knowledge. After introducing the research methodology in Chapter 2, 

this thesis first investigates the current state-of-the-art in engineering systems design risk 

management (Chapter 3). Second, the thesis systematically collects and introduces three groups 

of “non-probabilistic” risk and uncertainty quantification methods that promise to better 

address epistemic uncertainty, and discusses their possible application in the context of 

engineering systems design risk management (Chapter 4). These theories are not in conflict 

with Bayesian or classical probability but rather provide tools that complement probabilistic 

methods for risk assessment of systems when data are scarce. However, advanced methods to 

better deal with ambiguity in uncertainty quantification are beyond the scope of the thesis.  

Third, the non-probabilistic methods represent three different angles of adding to the 

existing engineering systems design risk management thinking. These angles are presented 

below (each is introduced and analyzed through one representative approach): 

1. Imprecise probabilities through Coherent upper and lower probabilities (Walley, 1991): 

expand the possibilities of established probabilistic risk quantification to reason more 

reliably with limited information on actual probability distributions. The approach 

allows decision makers to review and discuss coherent and plausible ranges of 

probabilities. 

2. Semi-quantitative approaches through the NUSAP scheme (Funtowicz & Ravetz, 

1990): this can be seen as an extension of established probabilistic modeling of 

uncertainty. NUSAP adds qualitative information to the uncertainty and risk analysis in 

a structured manner, informing the modeling, analysis and decision making process by 

making issues such as data origin, quality and key assumptions transparent. 

3. A family of related approaches for dealing with uncertainty with their roots in 

exploratory modeling, here introduced through robust decision making (Lempert, 

Popper, & Bankes, 2003). The main principles of these methods are to explore a wide 

variety of relevant uncertainties, connect short-term targets to long-term goals, commit 

to short-term actions while keeping options open, continuously monitor the 

environment, and act if necessary. 
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Fourth, improving risk and uncertainty quantification is only one part toward achieving 

higher accuracy in estimates. The choice of risk quantification method and its integration into 

the overall risk management process play a crucial role and also need to be considered (Chapter 

8). 

1.3. Outline of research objective and research questions 

 

Chapter 3 presents the theoretical background that will substantiate the choice of 

research questions in detail, complemented by empirically documented needs. The 

development of the research questions was an iterative process (see Chapter 2 for details), 

where the detailed research questions, particularly research questions 3.1, 3.2, and 3.3, were 

developed and refined during the exploration phase of this PhD project.  

The overall research objective is derived from three interconnected research areas and 

defined as better design and delivery of engineering systems utilizing advanced risk and 

uncertainty quantification (introduced in this thesis under the non-probabilistic framework). 

Chapter 2 and Table 1 describe in detail all steps and rationale behind each of them.  

1.4. Thesis Structure 

 

The thesis consists of ten chapters complemented by references and appendices. In the 

following, the thesis structure is described in relation to the current state-of-the-art and its 

limitations, methodology, data, and research questions. 

The remainder of this thesis is structured as follows: 

•  Chapter 2 describes the employed research methodology in reference to the Design 

Research Methodology and its stages, details the research questions and their rationale, 

and provides information about the empirical studies. 

 

• Chapter 3 addresses research question 1. It provides an overview of the main schools 

of thought in uncertainty quantification. Moreover, it provides an understanding of the 

limitations of the currently most widely employed methods, followed by a number of 

challenges in practice that are documented through case studies. The chapter explains 
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the motivation and sets the basis for investigating advanced methods for risk and 

uncertainty quantification. 

 

• Chapter 4 addresses research question 2. It introduces a number of advanced methods 

for risk and uncertainty quantification that promise to better cope with the challenges 

identified. These methods are introduced under the ‘non-probabilistic’ framework and 

are structured into three groups. The first group of methods is based on imprecise 

probabilities, the second represents a group of semi-quantitative approaches, and the 

third group of methods is based on exploratory modeling. 

 

• Chapter 5 addresses research question 3.1. It illustrates the problem of imprecision and 

how we can employ the first group of non-probabilistic methods (imprecise 

probabilities) to better support decision making. The chapter compares an imprecise 

probability method, i.e. a probability bound analysis, to several traditional subjective 

probability approaches for a case study in the oil and gas industry. 

 

• Chapter 6 addresses research question 3.2. It focuses on the representation of the 

background knowledge in risk and uncertainty assessment. Based on a case study, a set 

of methods from the second group of non-probabilistic approaches (semi-quantitative 

approaches) are applied to visualize uncertainty surrounding data and results. In 

addition, calculations are developed to quantify and correct biases in expert judgment 

in risk assessments, as well as qualitative approaches to inform decision makers’ levels 

of trust in risk quantifications.  

 

• Chapter 7 addresses research question 3.3. It further investigates the third group of 

methods (exploratory modeling) through one representative approach, robust decision 

making, for the challenges related to the life cycle aspects. The challenges of using the 

method in the engineering systems design context are documented, and conceptual 

suggestions to overcome them are proposed.  

 

• Chapter 8 addresses research question 4. It provides practical guidance for tailoring 

risk management. Different needs for risk and uncertainty quantification are discussed, 

and concrete suggestions are provided for designing a risk management process and 



   24 

 

choosing a risk or uncertainty quantification method through a number of representative 

examples.  

 

• Chapter 9 deals with the broader discussion of the integration of this work with the 

current state-of-the-art. The chapter compares the presented methods with several other, 

widely used methods. This is followed by recommendations and overall research 

limitations.  

 

• Chapter 10 concludes and summarizes this thesis and includes a reflection on the 

theoretical and industrial contributions, research and managerial implications, and 

recommendations for future research.  
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2. Research methodology 
 

“Not everything that is faces can be changed, but nothing can be changed until is faced” 

- James Baldwin - 
  

This chapter describes the research methodology applied to this doctoral study. In 

addition to the system of methods employed to acquire, analyze, and interpret empirical data, 

this chapter introduces the logic behind the selected methods in connection to the theoretical 

research approach and its limitations (Blessing & Chakrabarti, 2009). 

The following discusses the methodological approach and research design and provides 

a detailed description of each research stage. The chapter is structured as follows: Section 2.1 

provides a short review of theoretical and empirical considerations related to the methodology 

and frameworks. Section 2.2 further describes the research objectives and questions introduced 

in Chapter 1. Section 2.3 describes the overall stages of the applied Design Research 

Methodology (DRM), and Section 2.4 introduces the case studies and the strategies utilized for 

data gathering, analysis and interpretation. Section 2.5 provides a summary of the presented 

research methodology.  

2.1. Theoretical and empirical approach 

  

 Given that the main research paradigm is within design research, the thesis’s 

methodology is built on the Design Research Methodology (DRM). DRM is also highly 

suitable, as it supports both the literature-based (i.e. Chapters 3, 4, 8) and the empirically-based 

elements (i.e. Chapters 5, 6, 7) of this thesis. Also, the projects used in the empirical 

components of this thesis are either directly situated in a design context, or design new products 

and/or services in their respective contexts (for the overview of the empirical data sources and 

design challenges in question see Section 2.4). The methodology allows a systematic approach 

for conducting design research, with the overall aim “to make design more effective and 

efficient in order to enable design practice to develop more successful products…” (Blessing 

& Chakrabarti, 2009). Such design research/design science is aimed at improving, which is 

expressed as “the purpose of design science is to raise quality of designing and designs …” 

(Argyris & Schon, 1989). This is accomplished by a focus on both creating an understanding 

of the phenomenon in design, and the development and validation of support to improve design 
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practice. Therefore, the DRM framework allows researchers to generate insights into design 

practice, and by developing different support tools strive for a changed, further developed, and 

improved design (practice) (Figure 1). 

 

Figure 1 Design Research Methodology (Blessing & Chakrabarti, 2009). 

 

Research design  

As Chapter 1 indicates, this study uses both qualitative and quantitative methods. This 

research paradigm is known as a mixed-methods approach. The mixed-methods approach has 

its strength in getting the best from the two worlds (Johnson & Onwuegbuzie, 2004). Even 

though the research process seems like a linear sequence of steps, in practice it followed a 

series of iterative steps and customizations toward industry needs.  

The initial literature review on the various limitations in terms of current risk 

management practices sets the basis for collaboration with industry. In fact, during the project, 

interaction with six participating companies took place over the course of three years in 

multiple ways, at different levels, and with varying goals. The research project’s first 

explorative studies were accompanied by the use of semi-structured interviews. This generated 

insights from the industry and real-world practice, provided details on specific risk 

quantification analyses, and enabled the articulation of knowledge gaps and current risk 

methods limitations. These examples lead the interviews in directions of interest to both the 

interviewees and the interviewers. Hereafter, follow-up meetings, student projects, 
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conferences, forums, single-person interviews, and two synthetic case studies for the actual test 

of the developed support from this project increased the involvement with and verification from 

industry.  

A number of analysis methods were used throughout the research project, with iterative 

exploration as the backbone. The process included exploratory meetings with industry 

stakeholders, and an initial literature review in order to identify needs and knowledge gaps. 

Identification and organization of the main industry needs and knowledge gaps helped to align 

academic and industry needs and goals. Initial formulation of research objectives and research 

questions clarified the scope of the project. Exploratory case studies and a second more focused 

literature review were carried out to additionally enrich the non-probabilistic framework. 

Furthermore, the case studies were introduced in which the methods were applied. At the end, 

analysis of the results and evaluation of the framework’s ability to address industrial needs and 

knowledge gaps were documented and discussed with practitioners.  

2.2. Research objectives and research questions  

 

 Before implementing the research design and verifying whether the research questions 

could be answered within the scope of this project, the constructs used in the questions had to 

be developed, detailed and described. This was done mainly to investigate if the constructs can 

be measured, and even more so to establish which methods were suitable for the use in each of 

the DRM research stages (see Table 1).  

The identified needs and knowledge gaps acted as drivers for the thesis and were used 

to determine the goal of this study as well as concrete and feasible research objectives. The 

main unresolved issue for each of the four research objectives was phrased as a research 

question, which also defined the shape of the expected outcomes. Finally, the results/outcomes 

were evaluated based on academic and industrial success criteria.  

The overall research aim, derived from three interconnected research areas, is defined 

as better design and delivery of engineering systems utilizing advanced risk and 

uncertainty quantification. These research areas are first introduced in Sections 1.2 and 1.3 

and further detailed in Chapter 3. As explained in Chapter 1, in the research questions I refer 

to the methods as risk quantification in order to shorten/simplify the wording. In order to 

achieve the aim, four more specific aims were articulated: A) to understand and document the 

current state-of-the-art in current engineering systems design risk management; B) to collect 
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and conceptually develop the non-probabilistic framework; C) to provide prototypical 

applications of the introduced (non-probabilistic) methods, and D) to discuss and develop the 

integration of these methods into the overall risk management processes. 

Table 1 Research questions and respective research aims and objectives 

 

    

Thesis RQ 1 RQ 2 RQ 3 RQ 4 

Research 

question 

What are the 

challenges 

with current 

engineering 

systems 

design risk 

management 

methods? 

What 

advanced risk 

quantification 

methods exist 

that have not 

been widely 

used in the 

engineering 

systems 

design 

context? 

How can advanced risk quantification 

methods be transferred into usable tools? 

 

 

 

During the thesis the question was refined into 

the following sub-questions (see Chapter 4):  

How can we 

effectively 

integrate 

advanced risk 

quantification 

methods into 

the overall 

risk 

management 

process? 

How to use 

(deploy) 

imprecise 

probabilities 

in expert 

judgment 

elicitation? 

How to use 

the NUSAP 

tool to treat 

and manage 

uncertain 

assumptions? 

What 

methods exist 

to support 

long-term 

decision-

making in 

early design 

when facing 

severe 

uncertainties 

and scarce 

information? 

 

Aim and 

objective 

An overview 

of the 

current 

state-of-the-

art in the 

field 

Collection of 

the methods 

and framing 

of the non-

probabilistic 

framework 

Prototypical 

application of 

an advance 

quantification 

method 

Representing 

background 

knowledge 

and 

information 

Exploring 

approaches 

for coping 

with deep 

uncertainty 

Tailoring risk 

management 

(based on the 

maturity of 

risk 

management) 
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A) An overview of the current state-of-the-art in engineering systems design risk 

management  

 The first research objective is to provide an overview of the current engineering systems 

design risk management, articulate the challenges in practice, and conceptually guide the 

remainder of the research. In terms of knowledge gaps, this objective stems from difficulties 

in quantifying and managing uncertainty (i.e. epistemic uncertainty) in design due to its nature, 

and a lack of information at the early stages of design projects. From an industrial point of 

view, the objective emerged from insufficient understanding of uncertainty types and 

respective quantification requirements of associated risks, as well as inability of the available 

methods to address all the challenges practitioners face.  

 The main problem was translated into research question 1: What are the challenges 

with current engineering systems design risk management methods? The answer to the 

first research question should articulate problems with current risk management processes and 

most employed risk quantification methods, document the challenges in practice, and clarify 

the main risk quantification theoretical concepts.  

B) Conceptual development of the non-probabilistic framework and collection of the 

methods 

 The second research objective was to collect advanced risk quantification methods 

developed in other fields that have a potential to address documented challenges in design, and 

to conceptually develop the non-probabilistic framework that provides a clear structure for 

gathering advanced methods. In terms of knowledge gaps, this objective was triggered by the 

latest advancements in other domains (such as mathematics, artificial intelligence, safety 

engineering, water management, etc.). From an industrial point of view, this objective emerged 

from the need to more thoroughly analyze the way we cope with epistemic uncertainty and to 

achieve that in a more systematic way.  

 The main problem was translated into research question 2: What advanced risk 

quantification methods exist that have not been widely used in the engineering systems 

design context? The answer to this question should provide the unique non-probabilistic 

framework that offers a clear structure and collection of the advanced methods.  
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C) Prototypical applications of the non-probabilistic methods 

 The third research objective was to provide means for the non-probabilistic approaches 

to be applicable in practice by transferring them into usable tools. These can be seen as a toolkit 

from which, depending on the design challenge or the risk quantification aspect we want to 

improve, the use of a specific method is recommended. In terms of knowledge gaps, case 

studies were conducted to demonstrate the potential of non-probabilistic approaches, as they 

need to be adjusted to the particular design needs. This objective emerged from an industrial 

point of view, as the more mathematically advanced methods need to be manageable for the 

practitioners; they can utilize the potential of the powerful computers now available in 

companies.  

 The main problem was translated into research question 3: How can advanced risk 

quantification methods be transferred into usable tools? During the thesis the question was 

refined into the following sub-questions, each corresponding to one group of methods from the 

non-probabilistic framework:  

Research question 3.1: How to use (deploy) imprecise probabilities in expert 

judgment elicitation? The answer to this question should introduce the imprecise method 

reasoning and provide an example of how a method from the first group of non-probabilistic 

methods can be applied in practice. 

Research question 3.2: How to use the NUSAP tool to treat and manage uncertain 

assumptions? The answer to this question should provide an example of where and how a 

method from the second group of non-probabilistic approaches can be used.  

Research question 3.3: What methods exist to support long-term decision-making 

in early design when facing severe uncertainties and scarce information? The answer to 

this question should raise awareness of the advancements in IT that now allow advanced 

simulations. A set of methods is introduced and one particular approach from the third group 

of non-probabilistic methods is discussed – robust decision making.  
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D) Tailoring risk management (based on the maturity of a risk management process) 

to specific quantification needs  

 The fourth research objective is to provide a wider process view of the integration of 

risk quantification methods into the overall risk management process. In terms of knowledge 

gaps, this objective emerges from a broad range of risk management processes as well as 

different practical design challenges. From an industrial point of view, companies can have 

different risk management maturity levels, which is why support is needed in planning process 

improvements.  

The main problem was translated into research question 4: How can we effectively 

integrate advanced risk quantification methods into the overall risk management 

process? The answer to this question should provide a tailoring approach that ties risk 

quantification methods to the overall risk management process (proposed in ISO 31000) as a 

basis for systematic improvement of risk management. What needs to be improved is not only 

the quantification itself, but also its communication and its integration into the overall process.  

 

2.3. Design Research Methodology stages  

 

The DRM consists of four stages that were followed to structure the thesis and guide 

the research process: research clarification (Chapters 1 and Section 3.1), descriptive study I 

(Section 3.2 and Chapter 4), prescriptive study, and relative initial stage of descriptive study II 

(Chapters 5, 6, 7, 8). While a descriptive study focuses on investigating and describing 

problems, a prescriptive study develops support that addresses those problems. The first three 

DRM stages were associated with at least one research question (Table 2). The last stage, 

descriptive study II, focuses on “the impact of the support and its ability to realize the desired 

situation” (Blessing & Chakrabarti, 2009), and therefore this stage evaluates whether the 

success criteria were met. For this reason, this stage is discussed as the final part of each of the 

Chapters 5, 6, 7, and 8. 
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Table 2 Research questions and research stages according to DRM 

Thesis 

Chapter 

Research Question RC DS 

I 

PS DS 

II 

Chapter 3 

RQ 1: What are the challenges with current 

engineering systems design risk 

management methods? 

● ●   

Chapter 4 

RQ 2: What advanced risk quantification 

methods exist that have not been widely 

used in the engineering systems design 

context? 

 ●   

Chapter 5 
RQ 3.1: How to use (deploy) imprecise 

probabilities in expert judgment elicitation? 
  ● ● 

Chapter 6 
RQ 3.2: How to use the NUSAP tool to 

treat and manage uncertain assumptions? 
  ● ● 

Chapter 7 

RQ 3.3: What methods exist to support 

long-term decision-making in early design 

when facing severe uncertainties and scarce 

information? 

  ● ● 

Chapter 8 
RQ4: How can we effectively integrate 

advanced risk quantification methods into 

the overall risk management process? 

●  ● ● 

 

The goals and the work carried out at each stage are summarized as follows: 

Research clarification (RC) 

The goal of this stage was to define the key research problems, research objectives, 

theoretical focus and research questions, as well as to identify potential models and methods to 

answer the research questions. The research clarification process was conducted iteratively, 

defining a set of research goals and questions and adjusting these after Descriptive study I. A 

preliminary literature study, based on state-of-the-art design risk management research 

combined with discussions with industry practitioners and researchers, supported the research 
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clarification process and the literature study through the entire research project (reported in 

Chapter 3).  

This stage included an inductive process of increasing the level of abstraction, where 

literature gaps and the discovered needs in practice are framed into approachable research 

questions and linked to the research methodology. The intention was to provide a holistic 

exploration of the problem space that could subsequently be transferred to a suitable model. 

The main results of this stage can be found primarily in Chapter 1, Chapter 2 and Chapter 3. 

Descriptive study I (DS I) 

The goal of this stage was to develop, refine and propose the non-probabilistic 

framework. In order to do so, two exploratory in-depth case studies and interviews (Yin, 2013) 

were carried out in six companies, as well as a literature review (Webster & Watson, 2002). 

This particular stage was also vital in the sense that it was used to align research and industry 

goals, and to establish a sound platform to articulate the problems in a form that corresponds 

to the scope of the project. 

In order to gain an in-depth understanding of the industrial state-of-the-art in terms of 

design risk management, two in-depth case studies (Yin, 2013) were developed. As described 

in Section 3.2, the exploratory case studies look into two different, but currently well used risk 

management tools (Primavera and RamRisk). The studies document some of the limitations in 

their application as well as the challenges regarding the input for decision making.  

These studies were accompanied by a literature review (Webster & Watson, 2002) on 

different risk quantification theories and their limitations. Reviewing the theoretical 

foundations set the basis for articulating the need to more thoroughly explore various ways to 

represent epistemic uncertainty.  

In addition, interviews were carried out with the two case companies but also with four 

other companies (Yin, 2013) in order to broaden the understanding of various design challenges 

and related uncertainties and the applicability of the collected and developed methods. If was 

further confirmed that the tools employed in exploratory studies are part of current best 

practices. Details regarding each set of interviews are available in Section 3.2. The interviews 

were coded and analyzed in ATLAS.ti using grounded theory approach (Corbin & Strauss, 

1990). 
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The results of this stage, conceptual development of non-probabilistic framework in 

design, are found in Section 3.2 and Chapter 4. This stage primarily addresses research question 

2 by building upon research question 1, because the objective was to develop the framework 

and collect advanced risk and uncertainty quantification methods through iterative work with 

the case companies.  

Prescriptive study (PS) 

In this thesis PS is the basis for answering research question 3 (i.e. 3.1, 3.2 and 3.3). 

The objective of this stage was to develop concrete means to support design risk management 

and decision making by utilizing advanced risk and uncertainty quantification. To achieve that, 

the research question was divided into three sub-questions, each corresponding to one group of 

methods from the non-probabilistic framework developed in Chapter 4.  

This stage includes the development of two case studies and one conceptual 

development of the approaches toward the needs in the field. The first step of the development 

of the case studies was to generate the data needed for the analyses in accordance with the 

company’s processes. Second, advanced risk and uncertainty analyses were performed and 

compared with some of the already existing approaches. Finally, the results were presented to 

the practitioners; the feedback is documented and elaborated in the corresponding Chapters 5 

and 6. In the case of the only conceptually developed support for the design needs (Chapter 7), 

the actual synthetic case development was not included due to the limitations of this study and 

data availability. Chapters 5, 6, and 7 include the main results of this stage. 

To answer research question 4, this stage aimed to develop decision making support in 

the form of a tailoring approach (Chapter 8). To do so, first the literature review on risk 

management maturity models was introduced as a basis to further expand on an existing 

maturity model. Additionally, the developed tailoring approach was tied to the overall ISO 

31000 risk management process, allowing immediate implementation of the practices basing 

their risk management process on this standard. The main insights from this stage are 

elaborated in Chapter 8. 

Descriptive study II (DS II) 

 The objective of this stage was an initial evaluation of the support developed during the 

prescriptive studies. A qualitative assessment sought to discover whether the support did or 
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could improve the companies’ processes during the prescriptive case studies. This was 

organized through the follow-up interviews and presentations at two companies, followed by 

practitioners’ feedback. However, the confidentiality, data accessibility, and time 

considerations of this doctoral study did not allow for a comprehensive evaluation, including a 

wide implementation of the proposed approaches in the companies’ processes.  

This stage aimed to demonstrate the overall and preliminary findings, and prepare the 

results for others to pursue additional studies in this direction, highlighting some potential 

limitations or challenges. This corresponds to the definition of an initial study by Blessing and 

Chakrabarti (2009): “An initial study closes a project and involves the first few steps of a 

particular stage to show the consequences of the results and prepare the results for use by 

others.” The results can be found in the final subsections of Chapters 5 to 8 (Sections 5.5, 6.5, 

7.5 and 8.4).  

The following elaborates more on the empirical work conducted in this thesis.  

2.4. Empirical studies 

 

This section introduces the companies involved in this study, the developed case studies 

and the conducted interviews (Table 3). 

Table 3 Overview of industry engagement and corresponding research method 

Method of 

empirical 

data 

collection 

RQ1 + RQ2 RQ 3.1 RQ 3.2 RQ 3.3 RQ 4 

Exploratory 

in-depth 

case studies 

Interviews Case 

study 1 

Case 

study 2 

Interviews Interviews 

Company 1  ●   ● ● 

Company 2  ● ● ●  ● 

Company 3 ● ●    ● 

Company 4      ● 

Company 5  ●    ● 

Company 6 ● ●    ● 

 

Interviews 

 Interviews were used as one of the main research methods throughout the research 

project (RAND Corporation, 2009). Semi-structured interviews (RAND Corporation, 2009) 

were organized in such a way that information regarding the companies’ risk management 
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process, design process and current challenges were documented. The questions were 

developed around open, hypothetical, or comparative lines of questioning (Kvale, 2008). 

Moreover, follow-up interviews (Kvale, 2008) were organized when needed. 

 In total, 36 interviews were conducted. Details regarding each of the interviews, coding 

principles and interviewees can be found in Section 3.2 and Chapter 8. The following sections 

will briefly introduce the six companies that were involved in the interviews and/or case 

studies, in particular their area of work and design challenges. 

Company 1: Design of large-scale engineering systems 

 The first case relates to a large Danish company with extensive experience in designing 

and managing large-scale engineering projects, such as long-life cycle infrastructure systems. 

It works on projects of different sizes (from megaprojects to small design solutions). For 

instance, it designs for first-of-a-kind engineering projects in which it faces severe 

uncertainties, but also helps small practices achieve their goals. Its risk management approach 

needs to provide support for the whole spectrum of different design activities and to ensure 

proper and timely response and monitoring.  

Company 2: Oil and gas exploration, designing new systems 

 The exploration and commercial production of oil and gas is the main business of the 

second case company. A significant risk in the design and early execution of a new production 

project is the placement of exploration drill wells. The objective is to find a new oil or gas field, 

based on a sound analysis of the prospect's risks and potential hydrocarbon volumes: what is 

the chance that a well will find (contain) hydrocarbons, how much could be there? The design 

challenges are to understand the best process and infrastructure design to explore and exploit 

these fields. The company explores different locations and prospects, and its performance 

depends directly on the success rate of drilling, determined in the early design phase of the 

project. Test drillings are very expensive and represent a significant investment. To increase 

the success rate with regard to identifying prospective oil deposits, the opinions of multiple 

experts are solicited as part of the early project design risk management. Given that the 

subsequent detailed design of the whole production system is based on these analyses, attaining 

higher accuracy in the estimates is of great engineering and financial importance.  

Company 3: SME, design in construction 



   37 

 

 The third organization is an engineering and consulting SME that provides design 

services for construction projects. It experienced several risks in the design phase and sees 

severe delays in its currently most challenging project. 

Company 4: Consultancy for the Design phase  

 This international, multidisciplinary engineering consultancy company is an example 

of an organization that provides design services for construction projects. It provides 

consultancy services for projects such as design of airports, design of transportation systems, 

hospitals and similar. It also constructs some projects of its own. 

Company 5: Public Organization  

 This international organization provides design services for a number of different 

projects and systems. It provides services for other NGOs, governments, the private sector and 

private foundations. It mainly focuses on procurement services, project management, and 

infrastructure. In addition, it offers some financial management services (such as managing 

grants) and human resources (some organizations sometimes outsource their recruitment 

process). It is currently designing its risk and quality framework. The biggest challenge is to 

design a framework for the whole spectrum of its practice (applicable and manageable for those 

working in the field in war zones as well as for desk workers). 

Company 6: Large-scale high-tech infrastructure design in energy sector 

 The sixth case company is involved in designing and deploying large-scale high-tech 

infrastructure in the energy sector. Designing and operationalizing both onshore and offshore 

systems is part of its expertise.  

Brief description of exploratory case studies (with companies three and six) 

The exploratory case studies (Yin, 2013) form a coherent body of work with a company for 

each study. This includes a number of continuous empirical engagements that are detailed 

below. 

Exploratory case study 1: 

 To document the current challenges in design risk management practice, an exploratory 

in-depth case study (Yin, 2013) was conducted with a case company involved in designing and 
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deploying large-scale high-tech infrastructure in the energy sector. Its risk management is 

recognized as one of the best practices due to its advanced way of dealing with risk and 

uncertainties throughout the process, as well as the adopted and developed tools and 

decisionmaking processes. The collaboration also included interviews with the company’s 

senior project risk manager, as well as the analysis of the implementation of a complex, 

quantitative engineering design and deployment project risk model in Primavera. The key 

insights of the interviews and the analysis are described in Section 3.4. 

Exploratory case study 2: 

 The second exploratory case study was developed to document the potential, but also 

the limitations of currently one of the most employed risk tools in Nordic risk management 

practice. RamRisk was used to conduct the analysis for a design phase of a construction project. 

Details regarding the project, RamRisk, the analysis and the findings are available in Section 

3.4. 

Case study 1 and 2 (with Company two) 

 Overall, the research project includes two different synthetic case studies. Due to 

confidentiality reasons, there was no opportunity to analyze real project data. However, based 

on the work with the industry partners, we developed similar and representative cases without 

revealing any confidential information.  

 Yin (2013) describes a case study as a research strategy within social science research, 

with different case study types to be selected. Case studies are chosen to: “Investigate a 

contemporary phenomenon within a real-life context. Especially when the boundaries between 

phenomenon and context are not clearly evident.” Further details and design of the case 

studies, as well as risk management context of the studies, are available in Chapter 5 and 

Chapter 6. The work was carried out with the large Danish oil and gas company.  
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2.5. Chapter summary 

  

The chapter covers theoretical and practical considerations related to the key 

methodological choices, and in particular the rationale behind the focus on risk and uncertainty 

quantification and its representation. Furthermore, the chapter details the research aims and 

objectives, and research questions that narrowed the scope and organized research. Also, the 

design research methodology stages are described and linked to chapters in the thesis, outlining 

the research questions. Finally, this chapter provides information about the case companies and 

the specific methods used during development and application of the non-probabilistic 

framework. 
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3. Theory of risk quantification and current state-of-the-art 

in risk management practice  

“In theory, theory and practice are the same. In practice, they are not.” 

– Albert Einstein  – 

 

This chapter introduces the key theoretical foundations that create a basis for the work 

presented in the following chapters. More specifically, it presents current perspectives and 

trends on risk and uncertainty quantification. The aim is not an exhaustive presentation, but 

rather a presentation of what recent authoritative sources describe as state-of-the art thinking 

on risk.  

Risk assessment research has traditionally focused on the development of probabilistic 

methods, tools and procedures for risk management and risk analysis (see e.g. Kaplan & 

Garrick, 1981; Dubois & Prade, 2009; Goerlandt & Reniers, 2015). This consequently led to 

tendencies in both research and practice to make risk assessment into a well-defined operation 

for evaluating different hazards, technologies and safety issues (Renn, 1998). The problem with 

such routinization of risk assessment is that formal analysis may obscure a number of the 

conceptual foundations and limitations of the methods used (Aven & Anthony, 2015). 

Additionally, it can also lead to a false degree of certainty when dealing with human actions 

and interventions (Ferson & Ginzburg, 1996). This chapter highlights main strengths and 

weaknesses of the current view on risk and asks whether that view is still feasible. Three main 

aspects are discussed: modeling, data, and human behavior; other general challenges are 

summarized. The chapter concludes that given the increasing scope of large-scale systems (or 

systems of systems), the field needs to more thoroughly consider concepts and theories that 

promise to overcome current limitations in the way we deal with uncertainties. Chapter 4 

further explores possibilities for overcoming these challenges through advanced risk and 

uncertainty quantification. 

This thesis investigates advanced risk and uncertainty quantification methods. In that 

context, this chapter represents the first step: it describes the reasons, needs and motivation for 

advanced risk and uncertainty quantification by documenting the challenges in current practice 

(answering research question 1), based both on the current state in literature, as well as on 

empirical work. 
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The chapter is structured as follows: Section 3.1 provides a short introduction to risk. 

Section 3.2 further introduces and describes uncertainty. Section 3.3 outlines the current state-

of-the-art in engineering systems risk management. In Section 3.4 the exploratory in-depth case 

studies are described and challenges in current practice are documented. In Section 3.5 I open 

the discussion (that continues in Chapter 4 where the methods are introduced) for the need to 

explore alternative approaches. 

3.1. Definitions of Risk 

 

Attempts to manage risks should first start from attempts to answer the question: “What 

is risk?” Risk is ubiquitous in almost every human activity (Bernstein, 1996). We talk about 

the risk of a terrorist attack, risk of losing an investment, risk of falling from a ladder, risk of 

being involved in a traffic accident, risk of contracting a disease, risk of bankruptcy, risk of 

extinction of certain plant species, and so on. These are very different situations, but they share 

some common elements. First, people talking about them care about the outcomes. They are 

concerned about a terrorist attack that can happen and jeopardize their own or other people’s 

lives and property; they can lose their savings or investments, which can even result in 

bankruptcy; they can fall and injure themselves; they can become involved in a traffic accident 

and either be injured or lose their lives; they can have a disease that may influence the quality 

of their lives, etc. That is to say, talking about risk is pertinent when a person, a group of people, 

an organization, or a whole society can be exposed to something they do not want to be exposed 

to (Fischhoff, 1995). They want to avoid being exposed to negative consequences of their or 

others’ activities, that is, they do not want to lose or jeopardize something that they value: their 

lives, property, health, environment, valuable items, including money, etc. 

Ironically, being exposed to the possibility of unwanted events can be a voluntary and 

desirable thing (Rowe, 1975). In the past, the risk of a ship sinking or being robbed by pirates 

on the way from Europe to India was offset by the rewards from selling cargo brought back to 

Europe. People risk their lives in return for the benefits they can get. High risks can simply be 

taken in return for emotional pleasure, honor, and fame. An example is extreme sports. In this 

regard, there is a strong consensus among risk theorists that a risk definition should 

accommodate both undesirable and desirable outcomes (Aven & Renn, 2010). 
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Second, people do not know whether the future unwanted events they may be exposed 

to will happen or not. This means that there is uncertainty about these events happening. Hence, 

exposure and uncertainty are two essential components that constitute risk (Holton, 2004). 

Suppose a man leaps from an airplane without a parachute. If he is certain to die, he 

faces no risk. Risk requires both exposure and uncertainty. There is no uncertainty here. Or we 

can assume he does not value his life. Hence, he faces no risk in losing something that does not 

have any value to him.  

We can look at the concept of risk in different ways. As soon as we have some 

objectives, aims, or targets we run a risk of not fulfilling, achieving, or hitting them. A project’s 

objectives defined upfront may not become fulfilled at the project end. Hence, we can say there 

is risk of not fulfilling them. Aims, objectives and targets and uncertainty about their 

achievements are also the components of risk. From this angle and concisely, risk can be 

defined as the effect of uncertainty on objectives (ISO, 2009). 

There are a number of other definitions of risk that are in line with the above commonly 

accepted foundational components of risk. What is common for them all is that they address 

exposure and uncertainty and accommodate both desirable and undesirable outcomes. A range 

of different definitions used today is summarized by Aven (2011), Kreye (2011) and Aven et 

al. (2015). Renn (1998) summarizes three underlying questions that a proper definition should 

cover (a similar set of questions is formulated by Kaplan and Garrick (1981)):  

1. What are undesirable outcomes and who determines what undesirable means? 

2. How can we specify, qualify or quantify the possibilities of undesirable outcomes?  

3. How do we aggregate different classes of undesirable outcomes into a common 

concept that allows comparisons and the setting of priorities?  

In the following, I provide an overview of various definitions of risks (following Aven, 2011): 

1) Risk = Expected value (loss)  

a) The risk of losing any sum is the reverse of expectation, and the true measure of it is 

the product of the sum adventured multiplied by the probability of the loss.  

b) Risk equals the expected loss. 

c) Risk equals the product of the probability and utility of some future event. 

d) Risk equals the expected disutility.  
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2) Risk = Probability of an (undesirable) event  

a) Risk is the chance of damage or loss.  

b) Risk equals the probability of an undesirable event. 

c) Risk means the likelihood of a specific effect originating from a certain hazard 

occurring within a specified period or in specified circumstances.  

3) Risk = Objective uncertainty  

a) Risk is the objective correlative of the subjective uncertainty; uncertainty considered 

as embodied in the course of events in the external world.  

b) Risk is measurable uncertainty, i.e., uncertainty where the distribution of the 

outcome in a group of instances is known (either through calculation a priori or from 

statistics of past experience). 

4) Risk = Uncertainty  

a) in regard to cost, loss or damage.  

b) about a loss.  

c) of the happening of an unfavorable contingency.  

d) of outcome, of actions and events.  

5) Risk = Potential / possibility of a loss 

a) Risk is the possibility of an unfortunate occurrence. 

b) Risk is the possibility of an unfavorable deviation from expectations. 

c) Risk is the potential for realization of unwanted, negative consequences of an event.  

6) Risk = Probability and scenarios / consequences / severity of consequences  

a) Risk is a combination of hazards measured by probability; a state of the world rather 

than a state of mind.  

b) Risk is a measure of the probability and severity of adverse effects.  

c) Risk is equal to the triplet (si, pi, ci), where si is the ith scenario, pi is the probability 

of that scenario, and ci is the consequence of the ith scenario, i=1,2, …N; i.e. risk 

captures: What can happen? How likely is that to happen? If it does happen, what are 

the consequences?  

d) Risk is the combination of probability and extent of consequences.  

7) Risk = Event or consequence  
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a) Risk is a situation or event where something of human value (including humans 

themselves) is at stake and where the outcome is uncertain. 

b) Risk is an uncertain consequence of an event or an activity with respect to something 

that humans value.  

8) Risk = Consequences/damage/severity of these + uncertainty  

a) Risk = Uncertainty + Damage. 

b) Risk is equal to the two-dimensional combination of events/ consequences (of an 

activity) and associated uncertainties. 

c) Risk is uncertainty about and severity of the consequences (or outcomes) of an 

activity with respect to something that humans value.  

d) Risk is the deviations from a reference level (ideal states, planned values, expected 

values, objectives) and associated uncertainties.  

9) Risk is the effect of uncertainty on objectives (ISO). 

While there is no single agreed definition of risk, the understanding of the risk concept 

has evolved over the last decades. The latest renewed interest of researchers in a definition of 

risk comes from the opinion that if the definition is shaky, the application is shaky (Aven et 

al., 2014). The risk concept (Aven, 2011) should be distinguished from how we measure or 

describe that concept. Several initiatives were carried out in order to bring formality and unity 

to the terminology. The latest one, conducted by The Society for Risk Analysis (SRA), which 

brings together representatives from both academia and industry, suggested a new SRA 

glossary (Aven et al., 2015). The new glossary allows for different perspectives, distinguishing 

various concepts, for which overall qualitative definitions are provided, and the measurements 

of those concepts, for which examples of metrics are provided. There are different ways to 

measure, but they are all based on the same concept of risk having two features – uncertainty 

and consequence. The novel description of risk, first introduced by Aven, Baraldi, Flage and 

Zio (2014) is based on three features: uncertainty, consequence and knowledge. I see this 

research trend as yet further proof that there is a need to carefully address the quality of 

information and background knowledge when analyzing risks in engineering systems and their 

design.  

It is normal in daily life to compare risks when choosing between alternatives. For 

example, one may have reason to assume that the risk of arriving late to an appointment is 

greater if you drive by car through a city center compared to taking the metro. In daily life, we 
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can simply do comparison by gut feeling or rather simple contemplation. However, gut feelings 

would be a very shaky basis for responsible decisions that may result in large losses (Hubbard, 

2009). Engineers make decisions by articulating with numbers. To be able to compare risks we 

need some measures. As there are basically two components of risk: human values that are at 

stake and uncertainties, they must be defined in a way that is susceptible to measuring 

(Hubbard, 2009).  

For that reason, I will continue with understanding and defining the concept of 

uncertainty. 

3.2. Definitions of Uncertainty 

 

Based on Holton's (2004) review of common usage, uncertainty is a state of not 

knowing whether a proposition is true or false. Alternately, uncertainty is defined as the 

complement to certainty (Smithson, 1989) (Figure 2). That is, uncertainty is the lack of 

certainty. If given in this way, it is sensible to ask: what is certainty? Or what statements can 

we be certain about? Rene Descartes’1 best known philosophical statement in this regard was: 

“Cogito ergo sum”, which translates from Latin into English as “I think, therefore I am.” 

According to him, this is the only certain statement one can make. Any others can be doubted; 

thus they are uncertain. Other contemporary thinkers were also rather skeptical about being 

completely certain. For example, Jacob Bronowski’s2 often quoted thought is similar. He says 

that achieving “knowledge is an unending adventure at the edge of uncertainty.” On this very 

general note, uncertainty can be seen as the state of knowledge between complete ignorance 

and certainty (Smithson, 1989).  

However, the division of knowledge into the three categories is too coarse. It can be 

nuanced. Some more recent developments are presented in Chapter 7 (Table 9). As Bertrand 

Russel3 says: “When one admits that nothing is certain one must, I think, also admit that some 

things are more nearly certain than others.” Assume you are going to watch two tennis 

matches: one in which the rank of the contenders is very different: player A is ranked as number 

5, while player B is ranked as number 85; the second match is played by players C and D about 

whom you do not know anything. You will perhaps be much more certain about the statement 

                                                           
1 Rene Descartes is a French philosopher, 1596-1650 
2 Jacob Bronowski is a Polish-born British mathematician, historian, theatre author, poet and inventor, 1908-

1974 
3 Bertrand Russel is a British philosopher, 1872-1970 
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“Player A will win over player B” than about the statement “Player C will win over player D” 

(Hubbard, 2009).  

 

 

Figure 2 Uncertainty as a lack of certainty (following Smithson 1989). 

 

In order to intelligently deal with uncertainty, we need to be able to present it and reason 

about it. There are primarily three ways of reasoning about it: formal logics, fuzzy reasoning 

and statistical reasoning (Nisbett, 1993). By applying a formal logic to a possibly complex 

statement, represented as a set of formulas, one can deduct whether the statement is true or 

false. However, deducting to what extent one statement is more certain than another is not 

possible with this bi-valued logic (Ramsey, 2009). This type of formal logic-based reasoning 

is also referred to as the logic of Aristotle (Carruccio & Quigly, 2006). An alternative is to 

introduce the third value for a statement that is neither true nor false (Lejewski & Łukasiewicz, 

1967). It is also possible to derive four-, five-, and even infinite-valued logic (Dunn & Epstein, 

1977). However, the derivations, which are based on rather complex axiomatic systems, are 

not easily comprehensible and adaptable to observations, and they are exercised in the 

framework of formal and traditional epistemology (Smithson, 1989).  

Lofty Zadeh suggested in his seminal work (Zadeh, 1978) an infinite-valued logic 

known as fuzzy set theory, and its extension as fuzzy logic or fuzzy reasoning. As the key 

concept, the theory proposed the membership function as a degree to which a statement is true 

and false (Lakoff, 1975). A completely new calculus was proposed, which is an alternative way 

of thinking and modeling complex systems using a higher level of abstraction originating from 

our knowledge and experience. Fuzzy logic resembles human reasoning in its use of imprecise 
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information to make decisions. It allows expressing imprecise subjective knowledge such as 

very old and a long time and mapping it into exact numbers within the range [0, 1]. The theory 

captures both the uncertainties associated with human cognitive processes and uncertainties 

resulting from a lack of knowledge on the subject matter of interest (Taroun, 2014). The type 

of uncertainty that can be captured by fuzzy logic is also called ambiguity (Klinke & Renn, 

2002). 

The third way of reasoning about uncertainty is statistical reasoning. It involves various 

methods for representing uncertainty, assessing the measures of uncertainty, modifying the 

assessments to take account of new information, and combining them to calculate other 

quantitative measures and to draw conclusions (Dani & Joan, 2004). The most common 

representation of uncertainty uses probability, but it is by no means the only one (Swart et al., 

2009; Dubois & Prade, 2012). The reason for having many other representations is the rather 

complex nature of uncertainty. In the risk community there is general agreement that there are 

at least two types of uncertainty that should be addressed in risk analyses: aleatory and 

epistemic uncertainty (Helton & Burmaster, 1996).  

Aleatory uncertainty has a stochastic nature and cannot be reduced by acquiring 

relevant knowledge (Bernardo & Smith, 2009). For example, the wind speed in a given 

geographic point at a given point of time in the future is an uncertain value that has a pure 

stochastic nature. Regardless of the number of measurements, one cannot become more certain 

of the speed’s value in a relatively remote future. This type of uncertainty is best represented 

by probability.  

However, the other type of uncertainty – epistemic – arises due to a lack of knowledge 

and can be reduced by collecting data and information, and by acquiring new knowledge (Paté-

Cornell, 1996). For example, the parameters of the probability distribution of time to failure of 

an electronic device produced in large numbers and exploited for a long time in very similar 

environments can be known very precisely. But exploiting the same device in different and 

more aggressive environments will introduce uncertainty over the parameters of the 

distribution that can only be removed by collecting and observing the time to failure in the new 

conditions. The uncertainty about the parameters of a probability distribution is epistemic.  

In contrast to aleatory uncertainty, there are different views on how epistemic 

uncertainty should be represented, which has given rise to the development of different 
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mathematical structures that can capture both aleatory and epistemic uncertainty (Nilsen & 

Aven, 2002). At present, there is no clarity about which of the existing theories should be 

employed when available evidence is provided in very different forms. 

Many of the theories that can capture the two types of uncertainty are covered by the 

generic term ‘Imprecise Probability’. They are mathematical models that measure chance or 

uncertainty without sharp numerical probabilities. These models include Dempster-Shafer 

belief functions, comparative probability orderings, convex sets of probability measures, 

interval-valued probabilities, possibility measures, plausibility measures, and upper and lower 

expectations or previsions. To capture aleatory uncertainty these models use different types of 

probability, while the probabilities are not presented as point-valued quantities in order to 

capture epistemic uncertainty. 

At large, probabilities have two broad categories of interpretations: frequentist and 

subjective (Bernardo & Smith, 2009). The frequentist probabilities are associated with random 

physical phenomena like weather conditions, and systems such as roulette wheels and rolling 

dice. Frequentists posit the probability of an event as its relative frequency of occurrence after 

repeating the attempts to observe the event many times under similar conditions. This is how 

aleatory uncertainty can be characterized numerically. If a fair coin is repeatedly tossed many 

times, the empirical frequency of the two outcomes (head and tail) converges to the limit ½ as 

the number of trials tends to infinity. 

If we denote 𝑛𝐴 the number of occurrences of an event A in N trials, then the probability of 

this event is 𝑃(𝐴) = lim
𝑛→∞

𝑛𝐴

𝑁
. 

The frequentist view has its problems when we are concerned with events in the future 

that have never been observed, but are considered possible, or that have been observed but only 

rarely (possibly only once) or multiple times but under different conditions (Jaynes, 2003). 

These are in fact the situations a risk analyst faces. To be able to resolve the conflict of having 

only few (or no) observations of an event, the risk of which we want to measure, the subjective 

interpretation of probability is invoked (Jaynes, 2003). In this case probability is regarded as a 

measure of the degree of belief of the individual assessing the uncertainty. This probability 

captures both aleatory and epistemic uncertainty, and is often referred to as Bayesian 

probability (Jaynes, 2003). In principle it can be assigned to any statement, even when no 
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random process is involved, for example to the likelihood that a suspect has committed a crime 

based on the existing evidence. 

In process risk analysis both interpretations play a role, as the number of collected 

observations of a failure event can be representative to make an assessment of its objective 

probability as the expected frequency (Poirier, 2014). However, conditions for the failure may 

be unknown, so the “experiment” is no longer random and well-defined. Hence a resultant 

attributed probability can be ‘corrected’ by an expert, which makes it eventually subjective. Or 

the subject can adopt probabilities assessed as frequencies, which is a way of reconciling the 

frequentist and subjectivist view. Generally, risk analysis experts state that all risk calculations 

for slightly complex systems are subjective, because the results cannot be tested against 

experiments. 

The use of Bayesian probability has caused both philosophical and practical debates on 

whether beliefs must follow the laws of probability, whether they should be expressed as a 

single number even though the knowledge support is very poor, or whether it is justifiable to 

use them in safety risk assessments (Beard, 2004). In the latter case, individual assessments by 

those who are not exposed to safety risks influence the safety of the people exposed to them. 

Finally, subjective probabilities can be broadly classified into two different categories 

(interpretations): behavioral and evidential (Jaynes, 2003). The behavioral interpretation is 

given to probability if it is elicited by observing the choices of an individual, or it is provided 

by an individual who commits to acting accordingly when making choices. If we assume that 

the individual is rational, conclusions can be made on his subjective probabilities by offering 

him different options. 

Evidential subjective probabilities reside on a different interpretation “in which the 

probability (…) measures a logical (…) relation between the hypothesis and available 

evidence” (Kyburg, 1987). Individuals provide evidence in some form that can be transformed 

into probabilities by employing sets of axioms or conventions. There is more than one way of 

doing this. Examples are the Dempster-Shafer theory of evidence and Walley’s theory of 

coherent imprecise previsions (Walley, 1991). 

Finer distinctions within the class of subjective probabilities are described by Walley 

(1991). Furthermore, exposure to negative consequences is the second essential component of 

risk. Negative consequences in engineering are as varied as individual industries and 
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construction projects. Figure 3 brings together all the concepts and views introduced above on 

what risk is and how we can reason about it.  

Risk

Uncertainty
Exposure 

• Loss of human life
• Loss of property
• Loss of money
• Loss of social capital
• Worse quality of life
• Lower quality
• Delays
• Environmental damage

Components

AND

Frequentist SubjectiveOR

Probabilities

Formal logics
Fuzzy 

reasoning
OR

Reasoning

Statistical 
reasoning

OR

OR
Aleatory Epistemic

Types

AND

Behavioral EvidentialOR

Interpretation

 

Figure 3 Overview of the concepts introduced so far: Risk components and their taxonomy (following 

Kozin, 2017). 

 

3.3. Current state-of-the-art in risk management   

 

During the last decades, management of risk in engineering design and associated 

projects and systems has attracted attention from researchers and practitioners in areas such as 

engineering design (Lough, Stone,  &. Tumer, 2009), project management (Raz & Michael, 

2001), or safety-related risk management (Paté-Cornell, 1996). The Project Management 

Institute (PMI) represents the largest professional organization dedicated to the project 

management field, and lists risk management as one of the ten main areas of project 

management (PMI, 2008). Furthermore, risk management courses are usually a part of most 

training programs for project managers. In accordance with the current view of project 
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management as a life cycle process, project risk management is often perceived as a process 

that accompanies a project from the initiating through the planning, execution, monitoring and 

control phases all the way to the completion and closure (Raz & Michael, 2001). 

 Arguably, risk management has become an integral part of many formalized design 

processes for complex technical or socio-technical systems (Unger & Eppinger, 2011). The 

comparisons of risk management process steps under various design frameworks (Raz & 

Hillson, 2005; Oehmen et al., 2014), including the generic ISO 31000, illustrate several points 

(Table 4): 1. All risk management process frameworks quantify risks, including qualitative 

ways of representing risks and uncertainty, as in some cases and for some practices that is only 

what is needed or feasible to achieve (e.g. high-medium-low evaluation). 2. Quantification of 

risks is directly linked to improved decision making, program stability and problem solving. 3. 

Risk and uncertainty quantification is only a part of risk analysis (which in turn is only a part 

of the overall risk management process). This implies that we not only need to improve the 

“quality” of numbers we generate during risk quantification, but also the way they are 

integrated into the overall risk management and associated decision making processes. In 

addition, the quality of input data, knowledge and information on which we base our 

assessments also has profound implications on the overall outcome. 

Many of the issues that occur during the design of engineering systems are due to a lack 

of knowledge. It can be argued that epistemic uncertainty might sometimes be reduced by 

additional research and information gathering. However, that might lead to additional and 

hidden costs and delays, thus making it not feasible. This leads to “real-life” situations in design 

where actions that have significant impact on the subsequent processes and outcomes have to 

be taken on the basis of incomplete information. A major weakness of risk management today 

is that the methods used do not fully capture epistemic uncertainty (Aven & Zio, 2011). The 

previously mentioned various ISO standards and different professional and regulatory 

guidelines represent a significant progress in risk management practice. However, it is still 

open to debate how applicable, appropriate, and effective those guidelines are (Pender, 2001; 

Zwikael & Ahn, 2011).  
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Table 4 Comparison of risk management process steps under various design frameworks (adapted from 

Oehmen et al., 2014) 

ISO 31000  

(ISO, 2009) 

PMI  

(PMI, 

2008) 

NASA 

(Dezfuli 

et al., 

2010) 

DoD  

(DoD, 2006) 

INCOSE  

(INCOSE, 

2007) 

SEI 

(Gallagher, 

1999) 

Communi-

cation and 

consultation 

Implicit Commun-

icate 

document 

Implicit Planning Communicate 

Establishing 

the context 

Plan RM Implicit   Implicit 

Risk 

identification 

Identify 

risks 

Identify Risk 

identification 

Risk 

identification 

Identify 

Risk Analysis Risk 

analysis 

Analyze Risk Analysis Risk 

Assessment 

Analyze 

Risk 

Evaluation 

     

Risk treatment Plan risk 

response 

Plan Risk mitigation 

planning 

Risk 

Analysis 

Plan 

   Risk mitigation 

plan 

implementation 

Risk 

Handling 

  

Monitoring 

and review 

Monitor 

and control 

risks 

Track Risk tracking  Track 

Control 

 

  The question: “What is an acceptable way to quantify epistemic uncertainty?” is the 

underlying challenge motivating this study. Unlike for aleatory uncertainty, there is no general 

agreement on how to address epistemic uncertainty (e.g. Oberkampf et al., 2004; Beer, Ferson, 

& Kreinovich, 2013). However, the scientific communities agree that the two types of 

uncertainty should be modeled differently, and yet, there is still a tendency in practice to 

employ one approach (the approach developed for aleatory uncertainty) for coping with all 

types of uncertainty. In other words, it is desirable to have a single method capable of 

quantifying all uncertainty (Goerlandt & Reniers, 2015), or at least a structured method to 

select appropriate methods of uncertainty quantification based on the specific uncertainty 

profile of the situation being analyzed.  

 Over the last decades probabilistic methods have been the predominant choice for risk 

assessments. A number of different approaches have been developed and applied in different 

contexts (for more details, please refer to section Table A.3 in Appendix 3 for a comparison of 

different methods). Practitioners’ standards and guidelines have been developed according to 

such applications and their advancements. 
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 However, a number of challenges have been identified in the established methods and 

in the attempt to use a single method to quantify all uncertainty (the corresponding findings 

from the literature accompanied by the empirical findings from this thesis are presented in 

Section 3.4), and new questions have emerged: Is probabilistic treatment appropriate for 

addressing epistemic uncertainty? Do we need more than probabilistic approaches to quantify 

uncertainty? 

 As a consequence of the identification of these issues, scholars from a probabilistic 

background have begun to acknowledge the limitations of their approaches and suggest 

developing extensions to the approaches that allow epistemic uncertainty to be better addressed 

(Hubbard, 2009).  

 There are also others that challenge that view and instead suggest that other mechanisms 

are needed. As they see probabilistic techniques as inadequate, they developed alternatives – 

non-probabilistic methods – that have certain merits and will be discussed later in the thesis. 

The response from the probabilistic community is that those approaches themselves are limited, 

as uncertainty can only be properly handled in a probabilistic view (Colyvan, 2008). They 

subsequently extended probabilistic techniques in an attempt to deal with the limiting issues 

that were identified (e.g. research on second-order uncertainty (Barrett & Lampard, 1955), 

etc.).  

 We are currently in the situation where sets of competing methods are proposed by the 

academic community – probabilistic and non-probabilistic methods – and without a clear 

understanding of how and when to use what method in order to cope with the challenging risk 

management role in design. 

The thesis helps to address this gap through the following steps:  

1. The thesis provides a summary of the limitations, as identified in the literature, of 

the currently widely used (probabilistic) risk approaches. Furthermore, it 

introduces the reader to the ways probabilistic methods have been extended – and 

to the experiences with those approaches (research question 1 and contribution 1) 

 

 The increased need to adequately cope with epistemic uncertainty also comes from the 

fact that large-scale engineering design solutions today often cover several systems and their 

interconnections, operating over a longer period. Such an evolving, iterative, social, and 
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complex nature of engineering systems design corresponds to a multiplicity of plausible 

futures, several variants for system models, a range of outcomes, and associated weights or 

preferences regarding the various outcomes. In order to apply a certain method, we need to 

simplify a real situation to a “practical” model. More assumptions need to be made in order to 

have calculable data. This is especially the case when using probabilistic methods, as it has 

been proven that those methods face challenges when dealing with a higher level of uncertainty 

(Helton & Oberkampf, 2004; Walker, Lempert, & Kwakkel 2013). It is not justifiable to make 

significant assumptions when the overall level of ignorance is high. To provide more concrete 

insights and to document some of these modeling challenges, and inspired by the aphorism “all 

models are wrong, but some are useful”, the exploratory case studies described in Section 3.4 

consider more details on when the current best-practice modeling becomes arbitrary for use 

and what the industry needs are.  

 In their study, Aven et al. (2014) showed that probabilities can always be assigned 

under the subjective probability approach, but that the origin and amount of information 

supporting the numbers is not reflected by the numbers produced. Their example clarifies that 

one may subjectively assess that two different events have probabilities equal to, say, 0.7, but 

in one case the assignment is supported by a substantial amount of relevant data, whereas in 

the other by effectively no data at all. This is the main argument in the critique of the 

probability-based approach to dealing with epistemic uncertainty. There is a particularly 

interesting case in situations when there is no information at all, in which case probabilistic 

approaches assign 0.5 probability by default (Bernardo & Smith, 2009).  

 Most other challenges are described in the corresponding chapters where the proposed 

alternative method is introduced. For instance, some of the challenges include the choice of a 

prior function in probabilistic modeling (Ferson, Ginzburg, & Akcakaya, 1996), subjectivity in 

expert opinions (Cooke, 1991), interpretation of results (Fortin & Gagnon, 2006), etc. 

 Within the probabilistic view of uncertainty, the research mostly considered further 

improvement of the developed approaches, further verifying and enabling higher precision in 

estimates (e.g. Kwiatkowska, Norman, & Parker, 2011). However, such focus on higher 

accuracy in modeling (providing more decimals or complete/detailed distributions) often leads 

to a false degree of precision (Ferson, 1996). Also, research suggests that predictions that are 

provided by action-outcome probabilities entail a certain degree of (first-order) uncertainty and 

that these probabilities themselves embody second-order uncertainty. Some advancements 
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involve complicated sensitivity studies that are often cumbersome and can be difficult to 

interpret (Renn, Klinke, & Van Asselt, 2011). Conditional probabilities also attract special 

attention from researchers (Hogg, McKean, & Craig, 2005). However, even such extensions 

can be challenged (Sims, 2001). 

 Others significantly contributed to the field by introducing new paradigms/terms such 

as “known unknowns” and “unknown unknowns” (e.g. Pawson, Wong, & Owen, 2011). Tamed 

and wicked problems aimed to provide the context under which a certain modeling is more 

appropriate than others (Atie, 2008).  

 A range of different uncertainty and risk management methods has been applied to the 

mentioned problems. Group processes, such as the Delphi technique (Rowe & Wright, 1999), 

have helped large groups of experts combine their expertise into narratives of the future. This 

can be understood as an advanced method, where plausible future scenarios are developed 

without necessarily quantifying the associated uncertainties. In their work (Ferson & Ginzburg, 

1996) illustrate examples in risk analysis for which classical Monte Carlo methods yield 

incorrect answers when used to quantify higher levels of uncertainty. IT development has 

brought statistical and computer simulation modeling that allows capturing quantitative 

information about the extrapolation of current trends and the implications of new driving 

forces. On the other hand, formal decision analysis can systematically assess the consequences 

of such information. Some more recently developed approaches, such as scenario planning, 

help individuals and groups accept the fundamental uncertainty surrounding the long-term 

future and consider a range of potential paths, including those that may be inconvenient or 

disturbing for organizational, ideological, or political reasons (Schoemaker, 1995). 

2. The thesis explains the opposing views and why they emerged (research question 2 

and contribution 2) 

 

 However, despite this rich legacy of approaches, one key aspect remains a problem. 

The commonly used methods that are briefly outlined above face challenges when dealing with 

long-term multiplicity of plausible futures, unknown causal structures, assigning probabilities 

and difficulty in identifying preferred solutions. In the following, the thesis briefly introduces 

why and which alternative approaches emerged for coping with such situations. More detailed 

descriptions and a broader overview are provided in Appendix 4. 
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 The shift toward the application of analytical tools started in 1980s, mainly through the 

following two approaches. In his seminal work, Lotfi Zadeh (1978) described the concept of 

the Fuzzy Sets Theory introduced in the previous section. On the other hand, the Analytic 

Hierarchy Process (e.g. Dey, 2001; Singh & Singh, 2011) was recognized for its merits in 

relation to qualitative problems and factors that are often complicated and/or conflicting. Such 

a systematic approach allows decision makers to avoid addressing their problems intuitively, 

which suffer from inaccuracy and inconsistency. 

  An initial work on imprecise probabilities in the engineering design context was 

published by Chris Paredis and his colleagues (Aughenbaugh & Paredis, 2005). Even though 

their focus is rather on the technical aspects of design, their approach was not broadly accepted. 

However, after a decade we should revise this direction, as circumstances (computational 

support and maturity of the field) have changed. In contrast, some researchers focused on 

identifying situations for which more information is needed to reliably continue with the 

simulations (Goh, McMahon, & Booker, 2007). 

 Sandia National Laboratories (SNL, 2016) recognized the need to investigate research 

on epistemic uncertainty, and therefore initiated workshops in which approaches (some of 

which are described in this thesis) were presented. They produced reports (Sentz & Ferson, 

2002), as well as guidelines (Ferson et al., 2003) with a slightly more technical and modeling 

focus.  

 Other initiatives for example include workshops and publications on ‘Decoding rings’ 

– the attempt to clarify and unify the terminology on risk and uncertainty (e.g. Aven et al., 

2015); SRA focused on creating a special issue on foundational issues (Aven & Anthony, 2015) 

and questioning the definitions of risk (Aven, 2011; Kaplan & Garrick, 1981). 

 In addition to the previously described theoretical and methodological challenges of the 

most widely used methods, there are challenges that go beyond the quantification challenge 

itself. Different studies report the misuse and/or misrepresentation of probabilistic results 

(Love, Edwards, & Irani, 2012; Cantarelli, Flyvbjerg, Molin, & van Wee, 2010; Flyvbjerg, 

2007; Flyvbjerg, Morris, Pinto, & Söderlund, 2013). Misuse can be due to two reasons: 1) 

inadequate or insufficient understanding/knowledge/skill of the practitioners when using a 

method, or 2) deliberate manipulation of results to support a desired outcome. 
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Misrepresentation can occur on two levels: 1) externally, for bidding purposes and winning 

different contracts, or 2) internally, sending a desired message to the top management.  

 Such findings represent one of the main reasons for clarifying concepts, discussing their 

adequate usage and informing on alternatives. Furthermore, these aspects have been confirmed 

through the empirical work presented in Section 3.4. One of the interviewees explained: “I had 

two types of experiences: when risk owners would ask me to highlight their risk so they can use 

that as an argument to get more funding for their project, and when risk owners would ask me 

to remove a risk from reporting as their boss said anyone with a top-level risk will be fired.”  

 This created the need to research and scientifically confirm methods that could help 

modelers overcome a broad spectrum of issues, both from the practical and academic point of 

view. To involve higher transparency in processes, methods application, background 

knowledge, results and their limitations, but also to clarify assumptions is central to achieving 

this goal. After being introduced to the non-probabilistic framework, one of the interviewees 

described it as: “a more honest approach to the reality of challenges and complexities faced 

when quantifying risk and uncertainty.”  

3. The thesis highlights the merits from applying the non-probabilistic methods and 

presents empirical work on documenting challenges (research question 3 and 

contribution 3) 

 

Other than providing an understanding for the need to further research this topic, the 

thesis highlights the importance of risk and uncertainty quantification in the field. It further 

details the existing challenges and identifies the critical situations for which non -probabilistic 

methods offer better results (Section 9.2). Each group of methods is separately analyzed and 

findings are presented in corresponding chapters (the overall summary is presented in Chapter 

10). 

 

4. The thesis provides advice for the communities on implementing non-probabilistic 

risk management techniques (research question 4 and contribution 4) 

 

 After presenting the work carried out during this PhD project (in Chapters 4, 5, 6, 7 and 

8), a discussion on its integration with the current state-of-the-art is presented in Chapter 9. 
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Recommendations for specific situations are provided, followed by a broader discussion on the 

characteristics of a good quantification practice (Section 9.2). 

The next section reports on the empirical work regarding the challenges in current risk 

management practice.  

 

3.4. Understanding and documenting challenges of existing methods from 

practitioners’ point of view 

 

This section presents the two exploratory case studies. The objective is to address 

research question 1. The research leads to contribution 1, i.e. current risk management faces 

challenges, and the most widely used risk quantification methods need improvement. 

Exploratory case study 1: research design, data collection, coding and analyses  

In order to investigate the industry needs, I conducted the first exploratory in-depth case 

study (Yin, 2013) with a case company involved in designing and deploying large-scale high-

tech infrastructure in the energy sector. The purpose is to describe the current state and to 

address the initial phase of theory building. For this reason, theoretical sampling is appropriate 

(Eisenhardt & Graebner, 2007) as the case company is selected and the case is developed for 

illuminating and extending the relationships and logic among the constructs. As explained in 

Chapter 2, confidentiality concerns limit to what extent I can elaborate on the empirical work 

presented in this chapter. Following Eisenhardt (1989), I build on the argument that replication 

logic is key to theory building from case studies. Furthermore, the exploratory approach is 

applicable as this is the early stage of the theory-building cycle (Cash, 2018). The case study 

data were collected using a multimethod approach consisting of quantitative (probabilistic) 

modeling and interviews over the course of nine months.  

We jointly developed and analyzed the implementation of a complex, quantitative 

engineering design and deployment project risk model in Primavera. A junior risk analyst 

working daily with the tool also helped in this process. The case was designed to illustrate their 

modeling process and availability and the quality of data needed for such types of analyses. 

The practitioners monitored the data used to ensure that the synthetic input to our model 

corresponded to real-world scenarios. Possibilities for different analyses were investigated and 

discussed, such as tornado diagrams, risk correlations, cluster risks, and cascading effects. 
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 Interviews were organized to allow for potential triangulation, enrich the overall setup 

of the performed modeling, support the modeling data, and document additional challenges 

with current approaches (both related to this type of modeling but also more general in risk 

management). I conducted nine interviews with their senior project risk manager, each lasting 

between one to two hours. Three sessions were excluded from the analysis as they served more 

for ‘building relationship’ purposes than establishing content. Additional meetings were 

organized when needed to clarify modeling. It was agreed there will be no recording, and I 

took notes during the meetings. Two senior researchers also attended the first four meetings, 

ensuring that the design and progress of the study were carried out carefully, stepping in with 

additional ‘What if’ questions as appropriate. The follow-up calls were arranged when more 

clarification was needed. The semi-structured interviews (Kvale, 1996) were designed to 

investigate the current risk management practice by asking the participants in three ways. First, 

I asked about what he perceived to be instances of good and bad risk management, encouraging 

him to go into as much detail as possible with the experiences. Second, we discussed modeling 

challenges in current best practices. Third, we discussed the potential of the non-probabilistic 

approaches in current practices.  

 The interviews were iteratively coded and analyzed in ATLAS.ti based on a grounded 

theory approach (Corbin & Strauss, 1990). The process of coding was to use open codes and 

line by line coding as well as second-stage-codes that were then grouped. For an example see 

the figure in Appendix 1. The preliminary conclusions and emerging coding constructs were 

discussed and validated with the company in informal and formal meetings throughout the 

process. In addition, I requested an independent senior researcher from the field to read through 

the data and codes in the process (to reduce the chance of bias and hear about possibilities to 

extend the list of questions/topics). 

It is worth noting that the interviewed manager has more than 20 years of experience. 

He was able to provide many insights from different industries he had the opportunity to work 

in (telecommunication, construction, energy) and highlight areas that would not necessarily 

emerge from the initial literature review. For instance, the importance and impact of 

assumptions made when choosing distributions, gaming and political aspects of decision 

making affecting the analysis, correlations among risks, computational capacity and a “lucky 

manager” problem. 
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Key insights from Exploratory Case Study 1  

Quality of probabilistic models: The key challenges occurred around the issue of model size 

and complexity. The engineering activities at hand generated a large number of activities and 

resources that needed to be modeled, including their dependencies, each of which was analyzed 

in terms of schedule risk. A large number of probabilities and probability distributions is 

required to run risk assessment simulations, e.g. regarding the duration of each task. Quality 

issues arose as to how representative the model actually is of the underlying project. It was 

difficult to justify simplifications that were made during the modeling process, particularly 

regarding the impact on the outcome of the risk assessment.  

Quality of data and results: The data used to generate probabilities and probability 

distributions are perceived to play a critical role in the outcome of the risk assessments. While 

some probability distributions were developed based on similar past projects, others relied on 

expert opinion and group consensus, based on various elicitation techniques. However, their 

representations in the system are identical, and do not reflect the quality or reliability of the 

input data. They are also required to be put in as fixed probabilities and / or probability 

distributions. In addition, various mathematical and computational tools are used during the 

simulations, without always fully appreciating their prerequisites or limitations. 

Use and integration of results: Most analyses rely on advanced mathematical concepts 

employed during the simulation and computation of the risk assessment. Their meaning and 

implications cannot be fully appreciated without a deep understanding of the tools and methods 

used. The same applies to the origin and quality of the data, which can often no longer be 

judged from the presentation of the results. Finally, existing tools do not explicitly address the 

“gaming” aspects of tailoring risk analysis approaches to produce the desired results, or 

interpret results one-dimensionally to suit a particular preconceived notion of a desirable 

outcome. 

An interesting part of the interviews relates to the ‘lucky manager’ problem. The 

problem relates to the possibility of perceiving a manager (or management) lucky in terms of 

a project/portfolio/system performance rather than competent in his/her (their) capacity to 

handle a broad range of activities, including risk management. This was to an extent studied 

by Geraldi, Lee-Kelley and Kutsch (2010). The interviewee raised the question on how to 

distinguish between managers who conducted thorough risk management, but faced major or 
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unlikely risks materializing, and managers that undertook no risk management at all, but did 

not suffer from any larger risks occurring during their projects. After two iterations, it was 

decided that the topic is outside of the thesis’ scope, and it was not coded separately, nor was 

further research carried out. However, I conducted an initial literature review on the topic and 

asked the independent senior researcher if he had any experience with it. 

The senior researcher commented: “There is no such a thing as a lucky manager. One 

can fail in managing large projects in so many ways that an incompetent, but lucky person 

could potentially be lucky in one situation, but for sure not in others. Therefore, if they executed 

a large-scale project efficiently, they knew what they were doing.” 

Exploratory case study 2: research design, data collection, coding and analyses  

To investigate the industry needs in a completely different area of design work and with 

a completely different risk management process, I conducted the second in-depth exploratory 

case study. This study analyzed a design phase of a large construction project in the city center 

of Reykjavik worth almost a billion Icelandic kronor and with project delivery scheduled for 

late 2019. The project includes a hotel, apartments, bars, restaurants and a music hall and is 

managed by an engineering and consulting SME that provides design services for construction 

projects. In general, the study confirms the findings described above. 

The study was designed on the same pillars as the previous one – an exploratory case 

study for which the data were collected as a multimethod study consisting of quantitative 

(probabilistic) modeling and interviews. While the research design was the same, the difference 

is that this case study took fewer iterations than the first one, as it came later in the theory-

building process. The interviews were recorded and transcribed, each lasting from one to one-

and-a-half hours. The study was conducted over the period of six months. More on the specifics 

of the interviewees is available in Section 8.4. As the company does not have an established 

risk management, individual interviews were conducted with an engineer with risk 

management training, a fire and safety engineer, the project manager, a structural engineer, the 

HVAC design manager, an electrical engineer-designer, an architect and design manager, and 

the project owner. Semi-structured interviews (Yin, 2013) were designed to cover three topics: 

the interviewees’ background and experience and relation to managing risk; their role in the 

project and potential issues (risks) they considered; the main challenges they experienced in 

this project and in their practice; their view on the proposed modeling (RamRisk); quality of 
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data in their work. ‘What if’ questions were used as an additional way to draw out the risk 

management challenges for the participants. The wrap-up question encouraged reflections on 

clashes experienced in relation to risk management in projects in which they were involved, 

but also on what would be a way to improve their practice.  

 The second exploratory case study investigated RamRisk in order to document the 

potential, but also the limitations, of one of the currently most widely employed risk tools in 

Nordic risk management practice. Given that the company had no established risk management 

procedures, by using the tool RamRisk it was feasible to demonstrate the benefit of an early 

involvement of such risk analysis, as well as its practicability for the project outcome. An initial 

risk register was taken from available online sources in terms of project cost and schedule. The 

register was then updated and discussed with practitioners who helped assign probabilities for 

the specific risks. Possibilities for different analyses were investigated and discussed, such as 

tornado diagrams, FN curves, and risk matrix. 

The tool allows assigning responsibilities of identified risks to different users, which 

was one of the main needs of the project contractor. However, the insights regarding the 

limitations of the tool are aligned with the previous study: 1) there are challenges in modeling 

and assigning probabilities, 2) the quality and availability of data is a main constraint, as 

there is no developed culture toward documenting and articulating risks, 3) use and 

integration of results is seen as rather challenging, as they first need to establish a culture 

that values and understands the need for risk management, but also that the employees have 

the adequate educational level (possibly achieved through courses and seminars on risk). 

Moreover, a number of behavioral aspects were mentioned, such as lack of interest from the 

managerial side to implement formal procedures, lack of response during data gathering, and 

cross-sectoral learning/knowledge sharing. 

Additional Interviews: data collection, coding and analysis 

The findings from the two exploratory case studies were supplemented by interviews 

in three more companies. These interviews, on the other hand, provided a number of additional 

challenges in current risk management practice that are generally aligned with the literature 

findings described in Section 3.3. I conduced semi-structured interviews according to the topics 

discussed (current tools and methods, quality of data used for analyses, limitations of the 

current methods, communication of the results to decision makers, risk-informed decision 
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making). The types of questions were developed around open, hypothetical, or comparative 

lines of questioning (Kvale, 2008). The findings from the interviews are summarized as follows 

(please see Appendices 1 and 2): 

Current tools and methods: The choice of the case companies was conducted as to cover a 

broad range of design activities and solutions. Accordingly, there was also a large variety of 

methods employed in their practices. Yet, none of the methods or processes used specifically 

focus on epistemic uncertainty. 

Quality of data used for analyses: Only the interviewees in two highly specialized companies 

in terms of risk quantification expressed the importance of the quality and availability of data 

in the whole process. The others did not consider if and how the quality of data impacts their 

risk management process and related decision making. Two companies analyzed if they could 

store data from various projects and implement knowledge sharing across departments.  

Limitations of the current methods: The two companies where risk quantification practices 

are well established reported the inability of their methods (such as the ones used in the 

exploratory in-depth case studies) to represent the quality of data on which they performed the 

analyses. They find it crucial for this to be communicated to decision makers together with the 

results. One company that was only establishing a risk management process explained that the 

issue with implementing formal, quantitative methods lies in the educational level of its 

employees.  

Communication of the results to decision makers: In terms of more advanced quantification, 

communication was seen as challenging as decision makers cannot necessarily comprehend all 

available results. In terms of less quantitatively oriented practices, communication was also 

seen as challenging, as there was not enough awareness and appreciation for discussions 

regarding risk. Moreover, time pressure was a commonly reported issue.  

Risk-informed decision making: What was also commonly reported is that regardless of the 

analyses or the results of a risk assessment, a number of things influence the final decision. 

Managers’ personal ambitions and gaming aspects are recognized as important elements 

influencing the final decision. 
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Reflections 

Some of the limitations resulting from the choice of research methods include: 

 Case studies typically combine data collection methods such as archives, interviews, 

questionnaires, and observations to enrich the findings. However, as their validity can be 

challenged, ways how rigor can be improved are elaborated in Section 9.3.  

The coding scheme in interviews presents several potential problems including non-

reproducibility and subject selection bias due to the author’s field of expertise. The sample 

selection within the second study-company is potentially tainted, as the interviewee choice is 

biased and directed by the initial interviews. 

One limitation comes from the fact that no industry partner in the project was able to 

provide access to project documentation. Significant time and efforts were spent on building 

connections, relationships and trust. Different possibilities for collaboration were discussed, 

but a number of these attempts did not succeed. Study material is potentially not well 

triangulated because of limitations on access to risk documentation. Please refer to Section 9.3 

for more details. Furthermore, interviews with practitioners from one company had to be 

excluded due to the complications with signing the NDA. Furthermore, a three-hour interview 

with the head of the risk management team in a large construction company was also excluded 

as it was established rather late in the process. However, the collected data were aligned with 

the ones described above. This can also be seen as an informal check of the constructs and 

biases developed through the coding.  

 

3.5. Discussion and summary 

 

Considering the importance of design in engineering systems, methods to deal with risk 

and uncertainty are essential. By introducing and reviewing the main streams and concepts in 

literature, and by conducting empirical work, this chapter identified that there is still space for 

improvement both from the risk and uncertainty quantification and risk management process 

point of view. Current methods are not coping with all challenges that appear during an 

engineering systems lifecycle. The following chapters aim to address these gaps (Chapters 4, 
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5, 6 and 7 regarding quantification, and Chapter 8 regarding the whole risk management 

process).  

Starting with the probabilistic treatments of uncertainties and by acknowledging its 

large merit, limitations and challenges are also provided that lead to the need for frameworks 

beyond probability. This highlights the need for a search for alternatives, possible 

improvements of risk and uncertainty representations, and a summary of the main paradigms 

that have to some extent been researched by different communities. As explained, current risk 

management practices rely on available risk management process frameworks that are based 

on the probabilistic view of risk. Methods that can effectively and reliably deal with uncertainty 

due to a lack of knowledge are still missing. A handful of alternative approaches is available, 

but their implementation seems fraught with difficulties.  

Acknowledging risk and uncertainty assessments as decision-support tools requires that 

the meaning and practical interpretation of the computed quantities are presented and 

communicated to the decision makers in an understandable format (Aven et al., 2014). There 

are three critical questions from a decision maker’s perspective:  

1. For a specific situation, which is characterized by a lack of knowledge, what 

options do    

I have?  

2. How reliable is the first answer I get, and can I use it confidently? 

3. How cost-effective is a particular analysis method? 

The thesis argues that non-probabilistic methods allow us to better address these three 

questions. It proposes to use non-probabilistic methods to be transparent when there is a lack 

of knowledge and to address identified issues in a more structured manner, both qualitatively 

and quantitatively, instead of simply ignoring the degree and quality of available knowledge. 

By including additional judgments, we are taking into account available information and yet 

clearly articulate which parts are not known. The use of non-probabilistic methods can 

contribute to current engineering systems design practice, with the goal to faithfully represent 

and express the knowledge available to best inform a decision-maker and support the decision 

making process. 

  As Polanyi, a research philosopher, said: “We can know more than we can tell.” This is 

often how experienced managers’ or experts’ way of working is explained. The current practice 
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needs to take a step forward from relying on “manager’s experience”, which can be seen as a 

simple “way out” to dealing with epistemic uncertainty rather than its management.  
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4. Conceptualization and collection of non-probabilistic    

methods 
 

“We know more than we can tell” 

– Michael Polanyi –  

 

This chapter introduces a collection of advanced methods to risk and uncertainty 

quantification that promise to better cope with the challenges in current practice. These 

methods are introduced under the ‘non-probabilistic’ framework and are structured into three 

groups. The first group of methods is based on imprecise probabilities, the second represents a 

group of semi-quantitative approaches, and the third group of methods is based on exploratory 

modeling. 

As introduced in Chapter 1, uncertainty and risk represent one of the key challenges in 

design-related decision making. “Newness” and lack of knowledge are characteristics of 

design, and yet, typical risk management methods in design rely on probability-based risk 

quantification methods that are heavily dependent on previously collected data (Ferson, 

Ginzburg, & Akcakaya, 1996). In Chapter 3, I discuss to what degree current risk management 

approaches are appropriate for real-world design challenges. The chapter argues that current 

approaches primarily focus on aleatory uncertainty (i.e. uncertainty due to the inherent 

randomness of the physical world) and that other methods are needed to address epistemic 

uncertainty (i.e. uncertainty due to lack of knowledge) and ambiguity (i.e. differing 

interpretation of identical factual information on uncertainty). The non-probabilistic 

framework is then presented and the methods are described. I illustrate the methods with 

application examples in other fields and discuss their relationship to the key challenges in 

decision making processes of designing engineering systems. The chapter concludes with a 

discussion of their application potential in design, as a basis for the following chapters. 

In the context of this thesis, this is an important step: It provides the conceptual 

development of advanced risk and uncertainty quantification methods for design needs and 

establishes the non-probabilistic framework. This chapter describes the methods, and provides 

a unique and clear structure (answering research question 2 by building upon research question 

1). 
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The chapter is structured as follows: Section 4.1 provides a unique set of advanced risk 

and uncertainty methods, structured in three groups. Section 4.2 describes the methods. In 

Section 4.3 their design context is analyzed. In Section 4.4 I acknowledge limitations and 

criticism related to non-probabilistic approaches, and in Section 4.5 a summary of the chapter 

is provided together with a link to the following chapters.  

4.1. Conceptualizing the non-probabilistic framework in the context of 

engineering systems design 

 

It is important to make a distinction between uncertainties that can be treated through 

probabilities and uncertainties that cannot. The thesis acknowledges the large merit of 

probability-based methods when it comes to uncertainties of stochastic nature, but also points 

out limitations that lead to the need for frameworks beyond probability when it comes to 

uncertainties due to lack of knowledge.  

Non-probabilistic methods collected across different domains are here systematically 

presented in three groups as the non-probabilistic framework. The framework supports 

“beyond probabilistic” reasoning by using the non-probabilistic methods and also aligning 

them to the overall design and risk management needs (more details in Chapter 8). From each 

group of methods I briefly describe those that have the potential to better address the industrial 

risk management challenges discussed in Section 3.4. I further provide an overview of the 

fields in which these methods have been broadly discussed and used.  

4.1.1. Imprecise probability 

 

Imprecise probability (Walley, 1991) expands the possibilities of established 

probabilistic risk quantification to reason more reliably with limited information on actual 

probability distributions. The approach allows decision makers to review and discuss coherent 

and plausible ranges of probabilities. Given that probabilities cannot be known precisely if the 

modeler only has partial information at hand, imprecise probability suggests constructing 

probabilistic measures of interest as precisely (or imprecisely) as available data allow, in the 

form of intervals.  

a) Coherent upper and lower probability 

In coherent upper and lower probability, the major novelty is the idea to drop a central 

assumption of Bayesian theory, which states that uncertainty should always be measured by a 
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single (additive) probability measure. There is a large number of arguments that support the 

concept of coherent upper and lower probability and why it is needed (Kozin & Petersen, 1996). 

Given that it does not require unjustified assumptions, which is the case with traditional 

approaches as argued in Section 3.4, the use of this method nicely builds on Colyvan's (2008) 

argumentation. 

 

b) The Dempster-Shafer theory of evidence 

The Dempster-Shafer theory of evidence originates from the work of Dempster (1967) 

in the context of statistical inference. It was later formalized by Shafer as the theory of 

evidence. In their study, Beynon, Curry, and Morgan (2000) pointed out that the Dempster-

Shafer theory of evidence, as a technique for modeling reasoning under uncertain, imprecise 

and incomplete information, seems to have numerous advantages over the more traditional 

statistical methods. The main feature of the Dempster-Shafer theory of evidence is the 

possibility to include additional judgments in evidential reasoning. This permits the theory to 

measure and take into account the weight of evidence, which arguably also addresses the 

argument about ambiguity from the previous chapter.  

4.1.2. Semi-quantitative methods 

 

Semi-quantitative methods represent quantitative methods that are combined with 

additional qualitative information. From the various semi-quantitative representations that are 

developed in different fields (see for example Flage & Terje, 2009; Berner & Flage, 2015; 

Aven, 2008), the NUSAP scheme is presented here (Brocéliande team, 2015).  

 

c) The NUSAP scheme 

The NUSAP scheme (Funtowicz & Ravetz, 1990) can again be seen as an extension of 

established probabilistic modeling of uncertainty. It adds qualitative information to the 

uncertainty and risk analysis in a structured manner, informing the modeling, analysis and 

decision-making process by making issues such as data origin, quality and key assumptions 

transparent. The acronym “NUSAP” stands for Number, Unit, Spread, Assessment, and 

Pedigree – the five elements that constitute an information set regarding uncertainty in the 

method. Connected to the partial information available argument from Section 4.2, it is 

important to note that the NUSAP scheme makes the background knowledge, as well as 

assumptions, transparent. That allows clear and easier communication with parties involved in 
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decision-making processes.  

4.1.3. A family of related conceptual approaches based on Exploratory Modeling 

 

A family of related conceptual approaches is based on exploratory modeling, which 

uses computational experiments to run simulations. It represents the third group of non-

probabilistic methods. The underlying idea is that instead of determining the best predictive 

model and solving for the risk mitigation procedure that is optimal (but fragilely dependent on 

assumptions), it is wiser to seek among the most robust actions when dealing with uncertainty 

due to lack of knowledge. That is, those actions that at least lead to a satisfactory result under 

a large number of possible future development scenarios. Considering the argument about 

limitations of a rational decision maker from Section 4.1, these sets of methods represent a 

completely new way of thinking: instead of the traditional “predict and act” paradigm, they 

bring a “monitor and adapt” one.  

 

A family of conceptually related methods for dealing with uncertainty: 

• Assumption-Based Planning was developed at the RAND Corporation almost 30 years 

ago as a tool for improving the adaptability and robustness of an existing policy/plan/design 

(Dewar et al., 1993) 

• Robust Decision Making (RDM) uses multiple views of the future to iteratively stress test 

one or more candidate strategies over many scenarios and refine the strategies in light of 

this (Walker, Haasnoot, & Kwakkel, 2013)  

• Adaptive Policymaking was specifically developed to support the implementation of long-

term plans despite the presence of uncertainties (Haasnoot et al., 2012) 

• Adaptation Tipping Points and Adaptation Pathways both approach the timing of 

actions and were developed for water management (Haasnoot et al., 2012) 

• Dynamic Adaptive Policy Pathways combines the work on Adaptive Policymaking with 

the work on Adaptation Tipping Points and Adaptation Pathways (Haasnoot, Kwakkel, & 

Walker, 2013). 

In this thesis, I introduce Robust Decision Making, because it is the most developed approach.  

d) Robust Decision Making 

Robust Decision Making (RDM) has been developed over the last 30 years, primarily 

by researchers associated with the RAND Corporation (Dewar et al., 1993). The RDM 
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framework uses multiple views of the future to support a thorough investigation of modeling 

results that helps to identify a policy/plan/design (Lempert, Popper, & Bankes, 2003; Groves 

& Lempert, 2007), that: (1) is robust; (2) avoids most situations in which the 

policy/plan/design/system would fail to meet its goals; and (3) makes clear the remaining 

vulnerabilities. As Chapter 7 explores RDM in depth, a more detailed description and 

discussion is omitted from this chapter.  

 

Since its development, RDM has been applied to strategic planning problems in a 

variety of fields, including climate change (Lempert, Schlesinger, & Bankes, 1996), complex 

systems (Lempert, 2002), economic policy (Seong, Popper, & Zheng, 2005), and flood and 

water risk management (Herman et al., 2014). 

4.2. Description of the methods  

4.2.1. Imprecise Probability 

 

During the last three decades, a number of mathematical structures have been developed 

that relax the strong axioms of probability theory (Kolmogorov’s axioms) and thus allow 

capturing epistemic in addition to aleatory uncertainty. This group of theories is referred to as 

the “theories of imprecise probabilities.” Imprecise probability is a generic term for a range of 

mathematical models that measure chance or uncertainty without sharp numerical probabilities 

(e.g. “can be”, “for example”, interval-valued). These models include belief functions, Choquet 

capacities, comparative probability orderings, convex sets of probability measures, fuzzy 

measures, interval-valued probabilities, possibility measures, plausibility measures, and upper 

and lower expectations or previsions (Walley, 1991). Imprecise probability admits that 

probabilities cannot be known precisely if the modeler only has partial information at hand.  

The major novelty in the concept is to drop a central assumption of Bayesian theory, 

which states that uncertainty should always be measured by a single (additive) probability 

measure. Unlike the Bayesian “dogma of precision”, in order to characterize the uncertainty of 

an event with imprecise probabilities, we need both lower and upper probabilities. 

There are a large number of arguments that support the concept of imprecise 

probabilities. The following list is taken from Kozin and Petersen (1996) and illustrates from 

the practical point of view why imprecision in probabilities is needed:  
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• to reflect the amount of information on which they are based; 

• to model a state of complete ignorance, meaning a total absence of relevant information; 

• to combine several sources of information; 

• to combine different probabilistic judgments generating an imprecise model; 

• to treat disagreement among group members over probabilities obtained by judgments 

in the same way as conflict between several assessments of one individual: both are 

sources of imprecision; 

• to capture uncertainties of some problem situation more faithfully, not only due to 

randomness. 

Football example (Walley, 1996)  

Consider a football game whose possible outcomes are win (W), draw (D) or loss (L) 

for the home team. To express its uncertainty about the outcome, the user makes the judgments: 

Probably not W, 

W is more probable than D, 

      D is more probable than L. 

What can we say about the probabilities of the three outcomes?  

The theory of coherent imprecise probabilities allows computing interval-valued 

probabilities based on the above partial and imprecise statistical information that is closer to 

the natural language, although tied to probability. The answer to the question is: P(W) = [1/3; 

1/2], P(D) = [1/4; 1/2], P(L) = [0; 1/3].  

If more non-conflicting judgments are provided, the bounds for the probabilities 

become tighter. Many other kinds of qualitative or quantitative judgments could be added to 

the three we have considered, for example, 

if not D then W is very likely, 

W is between 1 and 2 times as probable as D, 

I am willing to bet on L at odds of 4 to 1, 

W has precise probability 0.4. 

The theory of coherent imprecise probabilities can also accommodate different 

reliabilities of different sources of information, if there are grounds to assume that one source 

of information is more reliable than another. 
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4.2.2. The Dempster-Shafer Theory of Evidence 

 

Other imprecise probability theories allow deriving interval-valued probabilities given 

a different type of input. One of those theories is the theory of belief functions, the Dempster-

Shafer theory of evidence. In their study, Beynon, Curry, and Morgan (2000) emphasize that 

the theory was popularized in the literature of artificial intelligence and Expert Systems, but it 

has also been applied to certain extents in the fields of face recognition, statistical classification, 

target identification and medical diagnosis. 

The main feature of the Dempster-Shafer theory is the possibility to include additional 

judgments in evidential reasoning. This permits the theory to measure and take into account 

the weight of evidence. Another key feature highlighted by Beynon et al. (2000) is that, unlike 

in possibility theory and statistical reasoning, there is no need to force our probability or belief 

measures to sum a unity. Hence, possibility theory can be considered a special case of 

Dempster-Shafer’s theory. 

The Dempster-Shafer theory of evidence is based on complex mathematical 

explanations, a discussion on which goes beyond the scope of this thesis. One study by Walley 

(1996), where the Dempster-Shafer theory of evidence is mathematically exhaustively 

explained, is followed with a set of six examples, each mathematically grounded. The authors 

of this thesis tried to find an example where an extent knowledge of mathematics is not 

necessary to follow the argumentation, but, having failed to do so, focus on one example of a 

key feature that is mentioned above.  

Example: reliability analysis (quoted from Aven, 2014): 

“To illustrate, suppose that a diagnostic model is available to indicate with reliability 

(i.e. the probability of providing the correct result) of 0.9 when a given system has failed. 

Considering a case in which the model does indeed indicate that the system has failed, this fact 

justifies a 0.9 degree of belief in such an event but only a 0 degree of belief (not 0.1) in the 

event that the system has not failed. This latter belief does not mean that it is certain that the 

system has failed, as a zero probability would; it merely means that the model indication 

provides no evidence to support the fact that the system has not failed. The pair of values {0.9; 

0} constitutes a belief function on the propositions ‘the system has failed’ and ‘the system has 

not failed.’” 
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4.2.3. NUSAP (Number, Units, Spread, Assessment, and Pedigree) tool 

 

In contrast to the previously presented theories, where expert knowledge is required to 

interpret the results, a different technique was developed during the 1980s. The idea is to draw 

attention to the properties of numbers (which are often ignored) and to offer transparency when 

it comes to the quality of information. The NUSAP scheme targets a broader audience and the 

origin of the data plays a bigger role. Funtowicz and Ravetz (1990), alarmed by the misuse of 

numbers in debates about nuclear safety levels, and later by the misuse of scientific findings 

by climate change “skeptics” to delay climate action, constructed the NUSAP notation. With 

the focus on policy-related research, they proposed that nowadays tasks should not only include 

the management of uncertainties, but also the assessment of quality and communication with 

the public.  

This thesis argues that high-quality decision making not necessarily requires the 

elimination of uncertainty, but rather its effective management, as offered by the NUSAP 

scheme. The NUSAP measure can capture more background features than imprecise 

probabilities, however, at the “cost” of being a qualitative measure. Engineering systems design 

risk management approaches must be based on coping with a lack of knowledge at least as 

much as on the application of knowledge (Funtowicz & Ravetz, 1990). The NUSAP measure 

has a large information content, but by being a qualitative expression, there is no strict formal 

way to base decision making on it. 

Funtowicz and Ravetz (1990) coined the term NUSAP as an acronym for the five 

categories of information included in their measure: Number, Units, Spread, Assessment, and 

Pedigree. The essential idea is that a result of any analysis, including risk and uncertainty 

quantification, should not be a single number, but should be accompanied by additional 

information to allow decision makers to interpret its overall meaning value (here introduced 

through the four additional categories). The “unit” measure states whether we are talking about 

percentage, money, or something else. “Spread” and “Assessment” are related to uncertainty. 

Spread is used to express the random error, and the systematic error is expressed by 

Assessment. The most significant novelty comes from the “Pedigree” measure, which informs 

on the information feed, or in other words, the origin and quality of data analyzed. By providing 

detailed information to the decision maker on how data were collected, what the sample size 

and similar measures are, the NUSAP measure lets them judge the overall value and meaning 
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of the presented data. It eliminates uncertainty or misinterpretation on whether for example a 

probability measure is just a guess or based on extensive simulation and testing.  

There are guidelines for NUSAP application (Brocéliande team, 2015) and the 

following list is quoted according to the same source.  

Typical strengths of NUSAP are: 

• NUSAP identifies the different types of uncertainty in quantitative information and 

enables them to be displayed in a standardized and self-explanatory way. Providers and 

users of quantitative information then have a clear and transparent assessment of its 

uncertainties. 

• NUSAP fosters an enhanced appreciation of the issue of quality in information. It 

thereby enables a more effective criticism of quantitative information by providers, 

clients, and, generally, users of all sorts, expert and laypersons. 

• NUSAP provides a useful mean to focus research efforts on the potentially most 

problematic parameters by identifying those parameters, which are critical for the 

quality of the information. 

• The diagnostic diagram, a NUSAP method, provides a convenient way in which to view 

each of the key parameters in terms of two crucial attributes. One is their relative 

contribution to the sensitivity of the output, and the other is their strength. When viewed 

in combination on the diagram, they provide indications of which parameters are the 

most critical for the quality of the result.  

4.3. Applications of non-probabilistic risk and uncertainty quantification 

methods 

4.3.1. Current applications of non-probabilistic methods 

 

Non-probabilistic methods have so far been applied in several areas. To my knowledge, 

the methods have mostly been used outside the design, product development, and project 

management domain even though they were developed some time ago. 

One well-recognized application of imprecise probabilities is in the domain of artificial 

intelligence. In a seminal study, Walley (1996) compares four measures that have been 
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advocated as models for uncertainty in expert systems. The measures are additive probabilities 

(used in the Bayesian theory), coherent lower (or upper) previsions, belief functions (used in 

the Dempster-Shafer theory), and possibility measures (fuzzy logic). His work is considered as 

a reliable scientific background for deeper understanding, mathematical explanations and 

representative examples of the mentioned theories. Findings in his study demonstrate that each 

of the four measures is useful for particular kinds of problems. However, only lower and upper 

previsions, here introduced as coherent upper and lower probability, perform in a sufficiently 

general way to model the most common types of uncertainty. 

The methods have also been introduced and applied to the following fields: 1) 

Civil/structural engineering (Zio, 2009; Berner & Flage, 2015); 2) Risk, resilience and 

vulnerability of critical infrastructures (Zio, 2007); 3) Environmental risk assessment 

(Guyonnet et al., 2003); 4) Offshore oil and gas installations (Lavasani et al., 2011); 5) Risk 

assessment of radioactive waste repositories (Helton, 1993). 

Previous applications of coherent upper and lower probabilities: The potentials of 

coherent upper and lower probabilities have been analyzed in the field of reliability and safety 

assessments (Kozin & Petersen, 1996; Ferson & Ginzburg, 1996). Due to the important impact 

of safety and reliability analyses on human, environmental and economic conditions, it is 

essential they comprise the maximum amount of useful information. The main question in 

those analyses is whether a potentially dangerous technical object meets the regulation values 

or not. In cases of small samples of operational data, precise probabilities represent an arbitrary 

solution. On the other hand, the use of coherent upper and lower probabilities does not offer a 

simple Yes or No answer, but accompanies both answer options, meaning that they offer 

information on what is more probable. That is usually sufficient for judging which hypothetical 

events are most likely to happen. Only when the regulation value lies outside the upper and 

lower interval, it is possible to determine the precise Yes or No answer.  

Previous applications of the Dempster-Shafer theory of evidence: The Dempster-

Shafer theory has also been applied to a certain extent in the fields of facial recognition (Ip & 

Ng, 1994), statistical classification (Denoeux, 1995), target identification (Buede & Girardi, 

1997), medical diagnosis (Yen, 1989), risk assessment and applied biomathematics (Ferson et 

al., 2003) and climate change (Ben Abdallah, Mouhous-Voyneau, & Denœux, 2013). A full 

overview of the research directions is available in (Denoeux, 2016). Significant progress was 
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made in signal processing by implementing imprecise methods thinking for reliability analysis 

(Kozin & Petersen, 1996).  

 

Figure 4 Graphic presentation of an electronic device consisting of components "-" and Integrated 

Circuits (rectangles) (Kozin & Petersen, 1996). 

In this example (Figure 4), the set of all components Ω contains 220 components “-”. 

For the system S, e.g. an electronic device, consists of four integrated circuits n1, n2, n3, n4 

and the rest n5. By knowing the reliabilities of subsystems in case of a system failure, we obtain 

probabilities of finding a failed component in each of the subsystems. By using the Dempster-

Shafer theory of evidence it is possible to calculate same probabilities for other subsystems, 

such as k1, k2, k3. The analogy of this example with clusters-of-risks issue will be elaborated 

in Section 4.4.3. 

To date, the author is aware of only one application of the Dempster-Shafer theory in 

the wider context of engineering projects (Taroun & Yang, 2013). This work shows the 

application of the Dempster-Shafer theory for handling the risk assessment of a construction 

project. To describe the methodology, the authors use an illustrative case study – a real project 

from a large construction company. A senior manager from a large construction company with 

an annual turnover of £4.3 billion participated in this study.  

Taroun and Yang’s study also includes feedback on the methodology introduced from 

a large number of practitioners working in different construction companies. The evaluation 

criteria were based on four aspects: 1) analysis complexity, 2) methodological clarity, 3) time 

and resource consumption, and 4) quality and usefulness of the results. Overall, the feedback 

was positive. The understandable approach based on the use of the Microsoft Excel package 

was marked as simple and practical. What attracted managers’ attention was the concept of 

ignorance and the flexibility of providing incomplete assessments. Interestingly, the 
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practitioners pointed out that they see the method introduced as particularly beneficial for large-

scale and unique projects. However, some of them expressed their concern related to the large 

number of inputs. Finally, one of the conclusions was that in order to master the tool and input 

values it requires some time and understanding of different situations.  

Previous applications of the NUSAP Method: Some of the experiences in applying 

the NUSAP system for environmental uncertainty assessments are summarized in the work of 

van der Sluijs et al. (2005). The authors emphasize that complex environmental problems are 

affected by all types of uncertainty, and that mainstream uncertainty methods such as the Monte 

Carlo analysis are not suitable to address all issues. They also point out that what is 

characteristic for this class of problems is that quantifiable uncertainties are dominated by 

unquantifiable ones. Therefore, they promote the use of both quantitative and qualitative 

assessments that is obtained through the NUSAP tool. Another line of argumentation lies in 

the fact that the NUSAP tool provides more transparency and a better public understanding of 

our actual capacities to understand and predict complex environmental risks. This is again 

closely connected to the role and impact of design and its call to consolidate (unite) different 

aspects, stakeholders and functions in a system. An example how the NUSAP method could 

be used in the oil and gas industry is available in the study by Berner and Flage (2016), and for 

uncertainty communication in environmental assessments in the study by Wardekker et al. 

(2008).  

4.3.3. Discussion of non-probabilistic methods in engineering systems design  

 

In order to avoid a loss of trust in scientific estimations of risks that can occur in the 

design of large-scale engineering systems, we need to carefully address two things. First, it is 

essential to clarify the limitations of our current capacities to avoid unrealistic expectations 

from science. Second, it is important to allow more transparency and more precise clarifications 

of what we know exactly, and of what is not certain, through a decision making process. To 

achieve this, and in order to achieve more concise decision making, we need to carefully 

address the following three aspects.  

1) Quality of models: In addition to leading the research into the improvement of 

existing methods, we need to dedicate more attention to the models that have the explicit 

capability to deal with epistemic uncertainty. In particular, the thesis argues that in situations 

that are dominated by weak knowledge and information, stronger assumptions have to be made. 
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When calculating a single-valued probability those premises should not simply be dismissed, 

but rather elaborated. Even the probabilistic opponents Bernardo and Smith (2009) stated “In 

practice, there might, in fact, be some interval of indifference […].” 

For instance, the application of imprecise probabilities in design risk management 

would allow computing interval-based probabilities when weak information is available, 

instead of unjustified simplifications that can occur during the modeling process. In the 

exploratory case studies, I identified situations where, in order to continue with the modeling, 

experts needed to “guess” the distributions since the information available was not adequate.  

2) Quality of data: The quality of the data used for risk assessments plays a key role. 

A more accurate reflection of the actual state of knowledge used in risk assessment is required. 

The whole risk management process should be transparent and clear about the information 

available, its quality through assumptions made, types of analysis and their limitations, 

representation of the results produced, and finally their interpretation. Furthermore, no 

“impossible predictions” should be expected from the analysts when scarce knowledge has to 

be fitted into a probability distribution. 

For instance, the application of the NUSAP scheme in design risk management would 

allow to inform decision makers about the background quality of the available information. 

Throughout the first exploratory case study, the senior project manager explained that 

transparency in the origin of the data collected is essential when communicating with the 

decision makers, and that this concept allows a systematic and easily understandable 

representation.  

3) Use and interpretation of results: On the other hand, the interpretation of the results 

is equally important. Considering its importance in the decision making process, a general 

understanding of the produced results should be a priority. Higher “decision relevance” in the 

presentation of assessment results is feasible, as additional information is included. That brings 

additional validity to the results.  

 

For instance, the application of Dempster-Shafer in design risk management would 

allow computing natural language statements. In addition, through the exploratory case study 

we identified clusters-of-risk issue that are not supported by current risk management tools 

(Kulikova, 2016). A cluster of risk is a term for the same risks that can occur at different 

locations. In a project it is necessary to know whether to mitigate that risk, rather than which 

specific location will be impacted. Therefore, like in the example of the electronic device, you 
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are interested in the likelihood of a system component failure and not in discovering which 

component is most likely to fail.  

4.4. Limitations and criticism of non-probabilistic methods 

 

There are different opinions on whether non-probabilistic methods are the only right 

choice for such a complex issue as that of this thesis. First of all, putting into operation a new 

method for analysis, planning, and management requires a certain investment. In some cases 

that investment can be significant (Raz & Michael, 2001). The implementation of a novel 

approach in a general sense is usually followed by skepticism, since its usage might reveal 

unpredicted complications. Therefore, the practice needs a solid justification before even 

attempting to involve changes.  

Furthermore, lack of operational meanings and interpretations are the key critique 

points for alternative uncertainty representations and treatment in risk assessment, as stated by 

Flage et al. (2014). In their discussion, Aven and Zio (2011) tackled some researchers’ 

concerns ‒ an imprecise probability result is generally considered to provide a more 

“complicated”, i.e. harder to process, representation of uncertainty. In their study, they 

acknowledge arguments against imprecise probability, such as that simple representation 

should be favored. The use of imprecise probabilities goes against of the idea of simplicity, and 

for many, particularly first-of-a-kind applications, it will lead to initial confusion and 

difficulties. Others strongly defend the Bayesian approach and heavily criticize any other 

attempt to perform uncertainty analysis (Aven & Zio, 2011). 

Implementation of the Dempster-Shafer theory of evidence was not readily accepted in 

the risk community. After several iterations it was proven as a valid method, or at least as a 

mathematically sound one, however, the use of the Dempster rule has been seriously criticized 

when significant conflict in information is encountered (Sentz & Ferson, 2002). Furthermore, 

as stated in the same report, other researchers have developed modified Dempster rules that 

attempt to represent the degree of conflict in the final result. Mathematical representation of 

epistemic uncertainty has proved to be challenging. Calculating Dempster-Shafer intervals can 

be highly computationally expensive (Swiler, Paez, & Mayes, 2009). Several studies, such as 

Bauer's (1997) elaborated on ways and methods to overcome this difficulty. Various 

approximation algorithms have been suggested that aim at reducing the number of important 

elements in the belief functions involved. More recently, Xiao et al. (2015) worked on 
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possibilities to improve the computational efficiency of the evidence theory. One of the 

directions in current research is exactly toward transforming these methods into more 

computationally usable ones, including the development of a “computational toolbox” as it 

exists in various commercial and non-commercial forms for probabilistic risk assessment.  

However, some methods, for example the NUSAP scheme, are at least less complex 

than other methods. According to the Brocéliande team (2015), the NUSAP’s weaknesses are 

the novelty of the method, and the limited, but significant and growing, number of practitioners 

using it. In addition, the Pedigree scoring is to a certain degree subjective. The choice of experts 

to do the scoring is also a potential source of bias (Brocéliande team, 2015). 

The main challenge with exploratory-modeling-based methods is their computational 

complexity and the fact that they provide results that are more complex, contextual and 

provisional (Bankes, Walker, & Kwakkel, 2013). Some of the details are further discussed in 

Chapter 7.  

Reflections 

There are certain limitations in terms of the collection of the non-probabilistic methods.  

The literature review was based on searches conducted in Google Scholar, Web Of 

Science and internal DTUFindIt databases by using keywords. I first performed an exploratory 

search for publications (Rowe, 2014). In this search multiple fields were encountered (such as 

engineering systems design, project management, megaproject management, risk analysis, and 

product development). A large number of articles and books were identified through this search 

approach. The results from the exploratory search served as input for the later more structured 

search that was complemented with the input from subject matter experts within the risk field. 

This was done as a literature review can sometimes encounter challenges in identifying seminal 

works.  

The literature review iterated between four phases: 1) planning and scoping, 2) 

conceptualizing the review, 3) searching, evaluating and selecting literature, and 4) analyzing 

the literature. Initially the collection was limited to the non-probabilistic methods in risk 

analysis and their use outside engineering systems design. Later it was expanded with adjacent 

topics of high relevance such as decision making and expert judgment elicitation. An 

exploratory and systematic search was applied to each new sub-topic, consulting subject matter 
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experts in regard to the keywords. Key concepts within each discipline were identified and 

iteratively served as input for the other sub-topics as they were (to some extent) related. 

The list is not exclusive; it is expandable as the non-probabilistic framework supports 

adding different methods that can fit into one of three groups. If or when developed, a new 

group can be added. 

4.5. Summary 

 

This chapter provides a collection of advanced methods for risk and uncertainty 

quantification by answering research question 2. These methods are introduced under the non-

probabilistic framework and have been organized into three groups. The first group is based on 

imprecise probabilities, the second represents a group of semi-quantitative methods, and the 

third group is based on exploratory modeling. 

 As argued in this chapter, the methods introduced lack concrete application examples 

in order to demonstrate their full potential. That sets the basis for the next three chapters 

(Chapter 5, 6 and 7) in which the respective focus is on one group of methods. For that reason 

research question 3 was refined into the sub-questions (3.1, 3.2, 3.3), each corresponding to 

one group of non-probabilistic methods addressed in the corresponding chapters.  
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5. First group of methods: Improving expert judgment 

elicitation by leveraging different data formats 
 

“An expert is a person who has made all the mistakes that can be made in a very narrow 

field.” 

― Niels Bohr ― 

  

Chapter 5 illustrates the problem of imprecision and how we can employ the first group 

of non-probabilistic approaches to better support decision making. In the context of the thesis 

it represents an important empirically-based step. The chapter summarizes a variety of useful 

data formats and aggregation methods and introduces probability bound analysis, Dempster-

Shafer structures’ mathematical kin. 

Oil and gas investment risk analysis uses elicitation of subjective probabilities to predict 

the size and properties of hydrocarbon deposits and to quantify the relevant uncertainty. These 

risk assessments are a central element of the decision making support for allocating investments 

into designing exploration activities. However, the use of such subjective probabilities to 

describe epistemic uncertainty has been challenged by different scholars (Beer, Ferson, & 

Kreinovich, 2013). I examine the current practice at a large Danish company exploring offshore 

oil and gas reservoirs and identify possibilities for improvements in the use of expert elicitation 

of probabilities. I explore different techniques for generating and aggregating experts’ 

judgments. First, the study introduces different data formats (points, intervals, weighted 

intervals, confidence-boxes, beta distributions, Burgman elicitations) and explores the impact 

of using them in the expert’s ability to provide their assessments. The study finds that it is 

helpful for experts to provide their assessments in the format they are the most comfortable 

with. This depends on the specific situation, their state of knowledge, and personal disposition. 

Second, the study explores the effectiveness (in terms of decision support) of four aggregation 

methods (averaging, mixture, enveloping, pooling). To that end, I interview managers in the 

company regarding the implications of these alternative aggregation methods in their 

managerial practice, as well as their ability to work with the different data formats previously 

studied with the experts. While there are still obstacles to implementing sophisticated expert 

elicitation and aggregation practices, a clear need for such type of analysis is recognized, and 

options for step-by-step implementation are discussed. At the end the challenges are 

highlighted that relate to the impact of the choice of aggregation method on decision making. 

https://izquotes.com/quote/281576
https://izquotes.com/quote/281576
https://izquotes.com/author/niels-bohr
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5.1. Introduction 

 

A common approach to risk analysis is based on using probability models to reflect 

aleatory uncertainties (i.e. variation in large populations of similar units) and using subjective 

probabilities to describe epistemic uncertainties about the unknown parameters of the 

probability models (Nilsen & Aven, 2002). However, the use of subjective probabilities has 

been criticized; it is argued that the approach provides results that are too precise in relation to 

the available information (Beer, Ferson, & Kreinovich, 2013). 

Expert judgments are often unavoidable in risk analysis, decision making, and 

forecasting, as risk analysists do not have access to complete and accurate data (Cooke, 1991). 

The role of experts is important because their judgments can provide valuable information, 

particularly in view of the limited availability of “hard data” regarding many uncertainties in 

risk analysis (Renn, 1998; Zio, 2009). More formally, consulting several experts when 

considering risk estimates and forecasting problems has increasingly become customary 

practice after World War II (Clemen & Winkler, 1999). The motivation for using multiple 

experts is simply the desire to obtain as much information as possible. Expert judgments are 

provided on the probabilities of events of a certain interest. Procedures for combining expert 

judgments are often compartmentalized as mathematical aggregation methods or behavioral 

approaches (Clemen & Winkler, 1999).  

 

In this chapter, I consider the problem of using multiple experts in oil and gas prospect 

risking. In this context, a “prospect” may be defined as “a specific locality within an area where 

we possess or may acquire a lease or concession and which we believe to have geological or 

economic characteristics that may warrant testing by drilling” (Harbaugh, Davis & 

Wendebourg, 1995). The main business of our case company is the exploration and commercial 

production of oil and gas. Exploration activities carry very significant costs, and are thus 

supported by detailed expert risk assessments, i.e. the so-called prospect risking. A decision to 

drill an exploration well with the objective to find a new oil or gas field should be based on a 

sound analysis of the prospect risks and its possible volume: what is the chance that a well will 

contain hydrocarbons, and how much could it be at what level of technical and commercial 

difficulty of extracting it? The company explores different locations and prospects, and its 

performance directly depends on the success rate of drilling. Test drillings are very expensive 

and represent a significant investment. To increase the success rate with regard to identifying 

perspective oil deposits, opinions of multiple experts are solicited. The study reported in this 
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chapter investigated two aspects: 1) The effectiveness of using different “data formats”, i.e. 

uncertainty representations, from the single expert’s point of view; 2) the effectiveness of 

alternate methods of combining single experts’ elicitation into an overall decision-support basis 

for management. Some of the wider literature discussing elicitations is also available (e.g. 

Burgman et al., 2006). 

 

 The work presented here aims to fill a research gap in the practical application of expert 

elicitation in risk assessment. While there has been significant development in terms of 

research in aggregation methods from the mathematical and philosophical point of view 

(described in Section 5.4.1), it has been recognized (Mosleh, Bier, & Apostolakis, 1988; 

Cooke, 1991; Otway & Winterfeldt, 1992; Renn, 1998) that there are challenges in their 

application, but also in the effective representation of epistemic uncertainties (Ferson & 

Ginzburg, 1996; Dubois, 2010). I focus on finding solutions that are feasible to implement in 

practice, given that some of the advanced methods may be either too complicated or simply 

too time consuming to use. Risk analysis in this case can be seen as the basis for decisions to 

drill or not to drill a well, and as such form the link between subsurface evaluation and the 

business aspects of the petroleum industry.  

industry.  

5.2. Case study 

 

Hydrocarbon exploration is a high-risk business that relies heavily upon predictions 

accompanied by significant uncertainty. Thus, there is a need to more thoroughly investigate 

objective means of estimating the outcomes of the exploration of prospects. The search for oil 

and gas can be seen both as a business endeavor and a scientific activity. In exploration, risks 

deal with the potential of loss, such as the cost of drilling a dry exploratory hole versus a 

compensating gain, such as the discovery and production of commercial quantities of 

hydrocarbons.  

The alternative outcomes to the drilling of a prospect can be expressed as a discrete 

probability distribution. There is a probability that the hole will be dry and a complementary 

probability that it will be a discovery well. If it is a discovery, the distribution can be subdivided 

to express the probabilities attached to different volumes of oil that may be discovered at 

different levels of technical difficulty (and cost) of extracting it (Harbaugh, Davis & 

Wendebourg, 1995). If we can estimate the form of this distribution, it can be linked to the 
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financial gains or losses corresponding to each of the alternative outcomes in the distribution. 

This linkage provides a succinct summary of the alternative financial gains and losses resulting 

from drilling a well, and weighs them according to the probability of their occurrence. The 

challenge in assessing risk is to obtain and use the most appropriate probability distribution for 

a prospect, and to use this as an input to financial analysis. 

To properly formulate a decision, the experts in the company are asked to provide their 

opinion on five factors that are of key importance to finding oil and gas in sufficient volume 

and quality. Their competences are related to offshore drilling, where the costs per well-attempt 

are much higher than in onshore drilling and therefore represent a significant investment. In 

our case study, we focus on the five following factors (parameters), which are part of the 

company’s concerns: 

Source (We need a source of the oil - what is the risk that the source rock exists or does not 

exist in the area?) 

Charge and timing (When the oil starts to migrate (bubble off from the source rock) - where 

does it go? Does it go into a structure? Is the area we want to drill favorable to receive the 

oil? When did the oil arrive there?) 

Reservoir (A reservoir consists of reservoir rock that is completely different from the source 

rock. The porosity of this rock must be large, so it can receive the oil. What is the 

probability of reservoir rock presence in that location?) 

Seal (What is the probability of a so-called cap rock existence? We must have a seal on top.)  

Trap geometry (The concept of subsurface heat, the shape of the reservoir. The oil is trapped 

by the combination of seal and shape. Is the geometry of the reservoir suitable for oil to 

stay trapped?) 

At the moment, the way of generating the associated probabilities (i.e. the data used in 

the subsequent analysis) is based on expert elicitation. Sessions with geologists and 

geophysicists are organized, where each of them provide their opinion as a single point estimate 

on each of the five mentioned parameters. The experts then discuss their beliefs and findings 

and jointly agree upon the probabilities.  

Through the interviews with practitioners, several problems were identified with this 

way of working: 

• Single points do not reflect uncertainty around the estimate: 
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Experts are supposed to provide a single point, precise estimate. Many argue that in some 

situations, given the available information, experts might not be able to provide such a 

precise estimate and/or the confidence in such estimates can vary depending on the situation 

or information available. 

This information is also lost when the results are used as input for financial analyses and 

calculations on the strategic level. 

• The final result does not reflect whether there was an agreement among the experts: 

As the first step in current practice, each of the experts provides his/her own estimates. 

Then they discuss their opinions, and after debating reach a common estimate. In this way 

the decision makers lose the information regarding the uncertainty of the results; the more 

disagreement at the beginning, the more uncertain is the result. 

• Dominant person: 

The experts discuss their beliefs and are supposed to agree on the estimates. Here 

behavioral aspects become very important, as it has been noted that normally one dominant 

person takes the lead, so that the rest follow or are overpowered. Experts who have 

legitimate counterexamples are overruled. 

• Background knowledge not presented to the decision maker: 

When results are presented to the decision maker, the background knowledge and 

information on which the judgments were based are not included. The decision maker only 

sees the final estimates, which do not clearly differentiate between assumptions and 

personal biases of the experts. This can significantly impact the decision quality. 

 

The challenges documented above reflect the need to explore various ways of eliciting 

and aggregating the data that would support the decision maker in obtaining a final result in 

these situations. Furthermore, risk and uncertainty are not only associated with drilling 

operations, but also with field development and production after discoveries are made. These 

are important components of risk in the oil and gas industry, but are beyond the scope of this 

thesis which focuses solely on evaluating prospects. However, the approach of this thesis on 

how to generate expert elicitation data and how to aggregate different expert opinions is likely 

to be useful for all of the mentioned situations.  

Section 5.3 suggests several ways of expressing data. Section 5.4 elaborates on 

aggregation methods.  
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5.3. The elicitation of expert opinions through different data formats 

5.3.1. The motivation for reviewing different data formats to elicit expert 

opinions 

 

 The usefulness of the Bayesian approach is well argued and documented for drawing 

inferences and quantifying uncertainty when frequentist data are limited (Jaynes, 2003). 

Nevertheless, several limitations have been acknowledged, and the use of Bayesian probability 

has also been challenged (Colyvan, 2008; Coolen-Schrijner et al., 2011; Aven & Anthony, 

2015). Using a single probability (or a precise probability distribution) to describe uncertainty 

hides how much of the uncertainty is epistemic versus aleatory (Ferson, 1996; Walker, 

Lempert, & Kwakkel, 2013) as well as the strength of the underlying knowledge supporting 

that probability (Flage et al., 2014).  

These issues have led to a discussion regarding the theoretical and practical basis for 

alternative approaches to uncertainty representation in risk assessment (Aven & Anthony, 

2015). The available research indicates that methods by which expert opinions are elicited can 

have a significant effect on the accuracy of the resulting estimates (Flage et al., 2014). 

Therefore, method choice, and the corresponding data format, play a crucial role in the whole 

risk assessment. A choice of an alternative approach to uncertainty representation should be 

accompanied by the corresponding format of elicitation of opinions. 

Literature on the use of expert opinions can roughly be categorized into two areas: 1) 

techniques for improving the accuracy of estimates, and 2) techniques for aggregating the 

opinions of multiple experts. From that perspective this work can be seen as a two-fold 

contribution. First the thesis reviews different data formats. Different formats and ways of 

providing expert judgments vary from field to field. However, the field lacks a comprehensive 

review that summarizes available options. The need for such a review is also confirmed through 

research that concludes that experts may be hesitant to assign subjective (precise) probabilities 

that may be perceived as unreliable or untrustworthy (Hubbard, 2009). Second, the thesis 

applies different aggregation methods for the particular case study in Section 5.4. For both 

parts, I use R as an open source programming language for data analysis and visualization. 

The main streams of literature are provided in the following sections, but additional 

relevant work includes: 
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- Literature reviews on the topic such as: (Ouchi, 2004; Burgman et al., 2006; Werner et 

al., 2017), etc. 

- Seminal and related work such as: (Mosleh, Bier, & Apostolakis, 1988; Otway & 

Winterfeldt, 1992; Cooke & Goossens, 2000; Cooke & Goossens, 2004; Bolger & 

Rowe, 2015). 

5.3.2. Data formats to represent expert elicitation results 

 

 Based on a review of the literature, I consider six different data formats: 

• Points (Otway & Winterfeldt, 1992) 

• Intervals (Speirs-Bridge et al., 2010) 

• Weighted intervals (Cooke, 1991) 

• Confidence-boxes (C-boxes) (Ferson et al., 2003) 

• Beta distributions (Jaynes, 2003), and 

• Burgman elicitations (Burgman et al., 2006). 

 

Confidentiality concerns preclude me from presenting actual elicited data from the case 

company in this thesis. For the purpose of the analysis I wrote the code in the R language 

(Appendix 5) that randomly generated illustrative data, which however correspond to 

“normalized” versions of the actual, observed data. The purpose is to illustrate different 

situations, challenges attached to them, and how differently those challenges can be addressed. 

In practice, the numbers can be easily replaced by the exact estimates of the experts. As a result, 

the written code can be seen as a toolkit that is available for application in a range of specific 

scenarios. 

 

For each of these data formats the thesis generated illustrative values for these four 

cases/situations, visualized in Figure 5: 

• when the experts mostly agree on the estimates (Consistent) 

• when they mostly disagree (Diverse) 

• when there is one outlier (Outlier), and 

• when their opinions can be divided into two groups (Bimodal). 
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Figure 5 Four introduced situations. 

 

The following figures (Figure 6 and Figure 7) show examples of generated data for one 

factor introduced in Section 5.2. In the study, this is repeated for all five factors (source, charge 

and timing, reservoir, seal, and trap geometry). Figure 6 illustrates different data formats 

generated per expert. The code is written for ten experts, however the program visualizes up to 

nine fields at the same time. For that reason, different data formats are plotted for only nine 

experts. Figure 7 illustrates these different data formats for all 10 experts.  
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Figure 6 Generated data per each expert with all data formats. 
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Figure 7 The controversy for each model. 
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5.4. Aggregation of experts’ judgments 

5.4.1. State-of-the-art 

 

Forecast accuracy can be substantially improved through the combination of multiple 

individual forecasts (Paté-Cornell, 1996). Development of the combination of individual 

predictions has taken place within econometric theory (Sharpe, 1964). However, as forecasts 

concern future events that are uncertain, another area of expansion has been the combination 

of                                                                                                                                                                                                                                                  

probabilities, probability distributions, and probabilistic quantities (Clemen, 1989). During the 

last three decades, yet another trend was noticed in the aggregation of probabilistic judgments. 

It is related to the recognition that at least two types of uncertainty can be identified: aleatory 

and epistemic. If individual forecasts are provided in a form that admits epistemic uncertainty, 

a set of specialized combination rules has been developed, which is discussed in the following. 

Clemen and Winkler (1999) distinguish between behavioral and mechanical ways of 

aggregating the judgments of experts. In behavioral aggregation, the experts themselves 

produce a combined or consensus view. To do so, interactive, structured discussion methods 

can be employed, or non-interactive consensus-building techniques be used such as the Delphi 

method. The so-called mechanical aggregation methods combine individual opinions by means 

of mathematical formulas; this process is entirely impersonal as soon as an aggregation 

algorithm is chosen. The simple average of point forecasts is a straightforward approach that 

is computationally efficient. A simple alternative is the geometric average that is defined as the 

n-th root of the product of n numbers (Jaynes, 2003). The conceptual drawbacks of these 

methods are that the aggregates are not sensitive to differential expert information, quality or 

dependence (Clemen, 1989).  

A method compensating for a lack of individual sensitivity is to multiply each opinion 

by a weight that can reflect, for example, the performance of an expert in generating “correct” 

past judgments, or his or her background knowledge on which the judgment is based. The 

weights can be derived from expert calibration sessions (Cooke, 1991) and then a weighted 

average serve as the combined value. This method is rather difficult to implement in practice, 

as it is organizationally complex and time demanding. Furthermore, it is based on a rather 

strong assumption that experts’ performance in new elicitation sessions is as good as in the 

calibration sessions. 
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All methods mentioned above have a common drawback: the degree of disagreement 

among the experts is lost as soon as their opinions are combined. Preserving the disagreement 

may have an important impact on how the decision maker uses the information and what 

conclusions he or she can draw. A way to preserve the level of disagreement is to consider the 

elicited individual point-valued probabilities as the realizations of a random variable, and to fit 

a probability distribution into this sample. This will yield a second-order uncertainty model 

that is uncertainty about the probability of interest (Jaynes, 2003). The beta distribution defined 

by the interval [0, 1] is a natural candidate to model the second-order uncertainty (Goodman & 

Nguyen, 1999). 

Although there are several aggregation methods that can accommodate different 

analysts’ dispositions (as discussed above), there are still two points that motivate a search for 

different approaches. One point is that experts may feel uneasy in providing precise (point-

valued) probabilities on uncertain future events, and may consider that the state of their 

knowledge allows only interval-valued, comparative or other imprecise judgments to manifest 

their degree of epistemic uncertainty on the issue in question. The other point is that subjective 

probabilities are dependent on the subject’s ability to process available probability-related data 

and background information. An inability to address these two points by the “mechanical 

methods” discussed above may lead to questions about the validity of the elicited probabilities. 

Methods that allow for providing interval-valued probability judgments together with 

accounting for knowledge support neither fall in the behavioral nor the mechanical category. 

These methods suggest extracting probability-related knowledge in a predefined format from 

experts and then, by applying mathematical algorithms, producing probabilities. The 

externalized knowledge can be explicitly revised by other parties, and improved and corrected 

if needed. This is conceptually a very different way of deriving probabilities that is transparent, 

traceable and repeatable, and that contributes positively to trust in the results. Let us refer to 

this approach to probability elicitation as post-probabilistic. Figure 8 and Figure 9 illustrate the 

two approaches to deriving subjective probabilities. 
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Figure 8 Direct (conventional) way of eliciting subjective probabilities. 

 

Figure 9 Non-probabilistic way of deriving subjective probabilities. 

A format for extracting expert knowledge can be as comparative judgments, which are 

rooted in the hypothesis of comparable uncertainty (Bourgeois et al., 2016). If a baseline 

probability for comparison is known, the result is an interval-valued probability. For example, 

it may be sensible to assume that the probability of failure of a gas valve being used outdoors 

is equal or greater than the probability of failure of a similar valve deployed indoors. Given the 

latter probability is known, (let denote it by Pind) the interval [Pind, 1] is the extracted 

knowledge. Given the probability of failure of a similar valve working in more aggressive 

environments, say on oil and gas offshore platforms (Poff), a narrower interval can be derived, 

[Pind, Poff]. This type of extracted knowledge obtained from different subjects can be 

combined and, as an outcome, an aggregated probability interval can be algorithmically 

derived. As a more nuanced approach, confidence or reliability factors can be attributed to each 
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extracted interval or comparative judgment; a combined estimate can then be derived by 

applying some algorithmic rules. 

A set of combination rules is available to accommodate a rather wide variety of interval-

valued kinds of information provided by multiple experts, along with different assumptions 

with regard to the confidence level to those judgments (Kozine & Utkin, 2002; Kozine & Utkin, 

2005). For example, by assuming 100% confidence in all provided interval-valued judgments, 

the conjunction rule should be used for combination. By admitting complete ignorance about 

the reliability of the elicited interval-valued judgments, the unanimity rule should be applied. 

Another combination rule should be used if confidence levels are different for all or for some 

judgments (Kozine & Utkin, 2005). Other simple rules are described in (Kozine & Utkin, 2002) 

and can be applied to some special cases possibly encountered in practice. Such special cases 

can for example be nested or adjacent intervals derived from experts. 

In the following section I describe the combination of probabilities elicited from 

multiple experts in different formats. 

5.4.2. Aggregation for the case study  

 

  Systematic comparisons between different approaches can serve to address some of the 

previously raised challenges and provide new insights for practitioners and guide future 

research directions. However, relatively few comparisons between different methods exist. For 

instance, Dubois and Prade (2009) compare Bayesian probabilities, belief functions and 

possibility theory.  

Sandia reports (Sentz and Ferson, 2002; Ferson et al., 2003) provide a general methods 

introduction and examples. A purely mathematical viewpoint could consider arbitrary 

operations for combining estimates involving uncertainty. However, the goal is to combine 

different estimates in a sensible and meaningful way. Therefore, we focus on a more specific 

– case – application that is of high relevance for the field and apply the four aggregation 

methods (averaging, mixture, enveloping and pooling).  

The following aggregation methods were considered in this study: 

Averaging  

Introduced in Section 5.4.1. 

Mixture 
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The idea behind mixture is that there are multiple values of a quantity that are expressed 

at different times, or in different places or under different situations. (Ferson et al., 2003) 

exemplify mixture through the story of blind men who encountered an elephant and all 

recounted very different stories. One, feeling the trunk, said the elephant was like a snake. One, 

feeling the elephant’s leg, insisted the animal was like a tree. A third, feeling the animal’s side, 

asserted that an elephant was like a wall. The point of the statements is that all of these things 

are true at the same time. Stochastic mixture offers a perspective that can see how a quantity, 

like an elephant, can manifest different or conflicting values.  

Pooling 

  Pooling can be seen as a weighted linear combination of the expert’s opinions (Clemen 

& Winkler, 1999). 

Enveloping 

Enveloping should be used to aggregate the estimates into one reliable characterization 

when the reliability of individual estimates is uncertain. Enveloping can be used as a strategy 

that allows a risk analysis to proceed even though the eliminations could not be taken to 

completion to identify a single scenario. For instance, a police officer getting conflicting 

statements from the witnesses while investigating a crime might choose enveloping as a 

strategy (i.e. arresting everyone mentioned as suspicions) (Ferson et al., 2003). 

 

Discussion on the results:  

  The empirical findings are in line with the literature: there is no single all-purpose 

aggregation method for expert opinion (Speirs-Bridge et al., 2010).  

In general, initial results report the following. For Consistent situation (introduced in 

Section 5.3.2), averaging can be used. On the other hand, averaging should not be the first 

choice for Bimodal situation, as the information regarding the two groups of opinions would 

be lost. Instead envelope can be preferred. Pooling on the other hand has the highest potential 

when the estimates are provided in the form of distributions. And mixture has its advantages 

for the situations like Outlier. Figure 10 illustrates introduced aggregation methods for 

generated data in this study.  
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Figure 10 Example of different aggregations (averaging, mixture, pooling, enveloping) for the generated 

data. 

 

5.5. Feedback from the company on different data formats and alternative 

aggregation methods  

 

I discussed our preliminary results with the experts in the company, and interviewed 

the chief analyst about the respective potential of the introduced methods. Furthermore, I asked 

for feedback on both opportunities and challenges that can be noticed at this stage. To 

summarize the insights: 
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• Highly needed: there is a need to further develop the expert judgment elicitation process 

in the company. By introducing “blind risking” and more mathematically-based ways of 

aggregating the estimates, several challenges in the current practice can be addressed 

(dominant person, consensus among the experts, background knowledge, etc.). 

• Geologists’ profession is hierarchical and senior driven: seniority plays a role when 

assigning weighs to the estimates, while this is not necessarily justified. Aggregation 

methods that can overcome this limitation are greatly needed in the field.  

• Flexibility for the experts: The ability to use different data formats represents a major 

contribution that allows the experts to choose the format they feel the most comfortable 

with. Furthermore, this allows them to express uncertainty in their estimates more precisely 

(for instance, by choosing broader ranges for intervals or lower confidence level in 

weighted intervals). Also, they are then able to make a comparison with previous 

cases/projects and elaborate on whether and why their estimates differ from case to case.  

 

The interviews also reveal several challenges with the introduced alternative 

approaches.  

At the moment, there is a gap between the required mathematical skill set and the 

educational background of the employees. Only a small number of employees are 

professionally trained in uncertainty quantification methodologies (two to three persons). The 

introduction of more sophisticated mathematical analyses may therefore present a problem and 

meet with resistance.  

 

Furthermore, communicating the results and different data formats to other departments 

in the company can be complicated. The reservoir analyses and their output need to be aligned 

with the other analyses on the strategic level, such as Expected Monetary Value (EMV). 

 

Some research that confirms this problem is available in the study by Caron and 

Ruggeri (2016). Introducing big changes that would affect many of the company’s procedures 

is very demanding, as changes in data formats would change the overall calculations. Instead, 

a step-by-step implementation with examples from smaller projects can lead to further 

developments. What the practitioners are most interested in is whether, and if so how, the 

decision (to drill or not) can change. If estimates are more accurate when using the alternative 

approaches, it is possible to expect other initiatives. This work is one step toward achieving 

that goal.  
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5.6. Conclusions and future research 

 

 Expert judgment elicitation is an important part of oil and gas risk analysis. A number 

of challenges in combining experts’ judgments have previously been addressed. Mostly, the 

research attention was on foundational and mathematical issues in order to further develop 

methods. However, the practical application of more advanced methods for generating and 

aggregating experts’ elicitation judgments still requires more research (understanding) and in-

depth studies. This chapter emphasizes the need to evaluate and more thoroughly explore 

alternative approaches to generating and aggregating expert judgment elicitations.  

 

Research on this topic is common for multiple domains. Different engineering practices 

use experts in their processes; forecasting (e.g. weather or market analysis) relies heavily on 

combining experts’ judgments. Understanding specific processes and related challenges helps 

developing and applying the methods in the best possible way. The thesis argues that depending 

on the data available, knowledge base and experts’ expertise, different methods and techniques 

should be taken into account. There is no one-method solution for all challenges and practices. 

Furthermore, the choice of an aggregation method can greatly impact decision making. 

Therefore, a careful analysis of the available options is needed, as well as a good understanding 

of the benefits of using each of the methods.  

 

The main contribution of this chapter is to collate different data formats used in expert 

judgment elicitation. For the particular needs of the case study, I provide options regarding 

aggregation methods. Furthermore, the thesis describes the obstacles to the practical 

application of some of the methods. However, the thesis first raises awareness of the lost 

information regarding uncertainty about the numbers produced by experts. Second, the thesis 

provides freedom for the experts to express their opinions in the format they feel most 

comfortable with. Third, the thesis offers a useful toolkit for conducting analyses, not only for 

petroleum exploration practices, but for risk analysis in general.  

 

There are several options to further improve current practices. An interesting area of 

research could be to investigate techniques for the evaluation of aggregation methods. Another 

interesting direction can be seen in decision analysis based on different aggregation methods. 

Moreover, the need is also recognized to explore ways of visualizing uncertainty that are 

sufficiently understandable and useful for communication on all managerial levels. 
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Finally, decision makers should be encouraged to fully take into account the results of 

the analyses. Transparency in the level of uncertainty surrounding the results would help in 

attaining the necessary level of trust in the calculations.  

 

Reflections 

The coding of the collected data was checked in multiple ways. Different subject matter 

experts (researchers) were shown parts of the raw data and the analyses to discuss the method 

of coding as well as the analyses themselves. A professor and two PhD students completely 

independent of the project scrutinized the mathematical approach to aggregation in order to 

verify that the approach is in line with the intent. Even though risk researchers, mathematicians 

and data scientists reviewed the applicability of the method and the application process and 

analysis, there may have been a bias toward certain types of aggregation models that I favored, 

partially due to the extent to which they were discussed and due to my background/skills in 

mathematics.  

The case/sample selection was chosen as a representative case (Flyvbjerg, 2006a; 

Eisenhardt & Graebner, 2007) due to the fact that the company has a mature risk management 

with experienced people and available resources. Many corporations of this size engage in 

purely quantitative risk management that serves as input for decision-making. Case selection 

was performed carefully as the selection process is crucial (Flyvbjerg, 2006a; Gibbert, Ruigrok, 

& Wicki, 2008). The selected company employs a separate risk function and has experience 

with aggregation methods. Expert judgment elicitation is relevant for its decisions.  

The field of oil and gas is highly reliant on expert judgments, making it a very relevant field to 

study. As many other fields employ similar, even identical tactics in equally volatile markets, 

the learnings from this case study may inform other contexts. To strive for improving rigor in 

relation to external validity, an overall nested case study approach was applied (Gibbert, 

Ruigrok, & Wicki, 2008). Multiple case studies were applied within one company (please see 

Chapter 6), which is known as a nested case study. This improves rigor as the studies can 

inform each other and the researcher obtains more complete knowledge (Gibbert, Ruigrok, & 

Wicki, 2008).  
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6.  Second group of methods: Qualifying risk 

quantifications through the application of the NUSAP 

tool and de-biasing of expert judgment 

 “Assumptions are made and most assumptions are wrong” – Albert Einstein 

“Assumptions are dangerous things” – Agatha Christie 

This chapter focuses on the communication, visualization and representation of the 

background knowledge in risk assessment. Based on a case study, a set of methods from the 

second group of non-probabilistic approaches is applied to visualize uncertainty surrounding 

data and risk quantification results. The specific method chosen is NUSAP, as previously 

introduced in Chapter 4. In addition to the general application of the method, the research 

interests developed during the case study to include a deep focus on two aspects of the NUSAP 

method application: Part of the qualification of risk quantification results (as through the 

NUSAP approach applied in this chapter) is to evaluate the degree of expert judgment biases 

in risk quantification. This resulted in the development of an approach to quantify and correct 

biases in expert judgments in risk assessments. Similarly, a key (arguably, the key) aspect of 

NUSAP-type characterization approaches is to inform and to increase decision-makers’ trust 

in risk quantifications. That area will be the second “deep dive” in this chapter, in addition to 

the general NUSAP method application. 

The synthetic case study was developed in collaboration with the company in the oil 

and gas sector, as introduced in Chapter 5, where the company’s risk management and expert 

judgment elicitation processes are described in detail. Here the focus is on the quality of the 

background knowledge available for the assessments, and ways to communicate it when 

presenting the results. For this purpose, first the NUSAP tool is employed. The findings are 

described and documented in Section 6.2, together with feedback for practitioners. This fruitful 

collaboration led to opening two related “deep dive” questions: First, how can we facilitate the 

communication among different stakeholders (both internally and externally) to clearly 

articulate levels of trust. For this purpose, I introduced them to the RiskImaging tool and 

demonstrated how their practice could benefit from such a type of analysis (Section 6.3). 

Second, we developed a tool for calculating and correcting biases identified in their expert 

judgments as presented in 6.4. The chapter summary and conclusions are described in 6.5.  



   103 

 

 I argue that the approaches introduced in this chapter, along with the elaborated 

findings, are applicable to different engineering practices with a similar risk management 

process and/or challenges – they do not depend on the specific application area, but on the set 

of risk management (and risk quantification) methods that are employed by an organization. 

The cases serve to provide guiding examples to practitioners.  

As a general note, the discussions in this chapter are based on representative data 

generated in collaboration with the case study partners. Due to the confidentiality issues, the 

actual data cannot be used.  

6.1. The importance of background knowledge and its representation 

 

 The background knowledge for an analysis refers to the available information and data, 

prior experience and knowledge of the managers and analysts, and the understanding of a 

phenomenon (such as a particular process, technology or system components and their 

interconnection, etc.). The number and strength of assumptions accompanying such analyses 

can vary significantly, and thus impact the quality and trustworthiness of the final risk 

assessment result (Apostolakis, 2004). The treatment and management of uncertain 

assumptions in quantitative risk assessments and during the subsequent processes of risk 

management and decision making have recently attracted attention from a number of 

researchers (Aven, 2013b). One of the reasons for the classification of uncertain assumptions 

is because it can be useful for determining how uncertainty can be treated in a risk assessment. 

However, the benefit of such a classification and clarification can be further improved if the 

critical assumptions can be effectively communicated to the decision makers in order to be able 

to decide how to manage the risk/uncertainty in question, and what the accuracy and overall 

“trustworthiness” of the results is. It is also important that other stakeholders that are not 

directly involved in the implementation of a risk assessment can get an overview of which 

assumptions have been identified as critical. The involvement of other stakeholders (for 

instance team leaders) can in some cases be essential as they can be closer to the operation (the 

execution of an activity) than the decision makers and/or risk managers, making them better 

suited to point out potential deviations from critical assumptions.  

Another underlying premise is that there should be a balance between the resources 

used to treat an assumption and the criticality of the assumption in question. The criticality of 

an assumption can be considered to depend on the assumption setting to which it belongs. Some 
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research on this topic was previously done by (Flage et al., 2014; Berner & Flage, 2016). The 

criticality of assumptions in the different settings ranges from low to high. A setting with high 

criticality has weak background knowledge, a moderate/high belief in a deviation from the 

original assumption, and a moderate/high impact of this deviation on the risk index. An 

example of a range of different settings is provided in Table 5.  

Table 5 Settings faced when making assumptions in risk assessments (based on Berner & Flage, 2015) 

Belief in deviation 

from original 

assumption  

Sensitivity of risk 

index  

Strength of knowledge  

Strong Moderate/Weak 

Low Low Setting I Setting II 

 Moderate/High Setting III Setting IV 

Moderate/High Low 

 Moderate/High Setting V Setting VI 

 

For a critical discussion, I would draw attention to the Setting I as one way to 

characterize black swans. A black swan is described as “a surprising extreme event relative to 

present knowledge and beliefs” (Aven, 2013a). When an assumption is recognized as Setting 

I, it does not mean that the assumption absolutely cannot deviate – it would “just” surprise us, 

as black swans do. Furthermore, in some cases the sensitivity evaluation can be misleading. 

Further details on the strategies related to assumption setting and their impact when deciding 

the overall risk management strategies are e.g. elaborated by Berner (2016). 

On the other hand, when involving, informing and/or reporting to the stakeholders on a 

higher hierarchical level, such as corporate portfolio and strategy level, it is of great importance 

to have the ability (in the form of a tool) to communicate the quality of background knowledge 

on which the estimates are made, as it may impact the overall corporate direction or lead to 

additional research. An effective, easy to comprehend and sufficiently informative approach is 

desirable. For these reasons, the chapter explores the NUSAP notational scheme that was 

developed in order to address new types of policy problems referred to as problems “where 

facts are uncertain, values in dispute, stakes high and decisions urgent” (Funtowicz & Ravetz, 

1990).  
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6.2. Visualizing and communicating uncertainty around data and analysis’ 

results 

 

Efforts to develop approaches to represent uncertainty in risk assessments follow both 

quantitative and semi-quantitative lines, where semi-quantitative is to be understood as 

quantitative representation supplemented with qualitative assessments of aspects not 

sufficiently and appropriately captured by the produced numbers. The latter type of approach 

can be referred to as extended quantitative risk assessment, and has parallels with the so-called 

NUSAP notational scheme of uncertainty and quality in science for policy. 

Working in the field of policy-related research, Funtowitcz and Ravetz developed a 

novel approach for dealing with the uncertainty and quality of available information. The 

acronym “NUSAP” stands for Number, Unit, Spread, Assessment and Pedigree, the five 

elements that constitute an information set regarding uncertainty in their method. The 

underlying idea is that a single number does not inform sufficiently, therefore properties of 

numbers should not be ignored. Moreover, the developers’ view on certain uncertainties 

associated with problem framings and assumptions can only be described through a qualitative 

connotation, since those uncertainties cannot be quantified. 

The NUSAP tool allows results of a risk and uncertainty analysis to be represented as 

a “Number” accompanied by additional information to allow decision makers to interpret the 

overall meaning of the value. Here it is introduced through the four additional categories. 

“Unit”, which may also be a conventional kind, expresses whether we are talking about 

percentage, money or something else. Uncertainty is in this case addressed by “Spread” and 

“Assessment”. Spread is characterized by random error or a variance of statistics. Those values 

are obtained through sensitivity analysis, Monte Carlo simulations or in combination with 

experts’ judgments. On the other hand, Assessment expresses the systematic error, which for 

statistical test might be the level of significance or for estimates just the qualifier pessimistic 

vs optimistic. Finally, the novelty of the tool comes with “Pedigree”. This category informs on 

the information feed, or in other words, the origin and quality of data used for the analysis. By 

providing detailed information to the decision makers on how data were collected, what the 

sample size and similar measures are, the NUSAP measure allows them to judge the overall 

value and meaning of the presented results. In order to minimize subjectivity and arbitrariness, 

it eliminates uncertainty or misinterpretation on whether, for example, a probability measure is 
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just a guess or based on extensive simulation and testing. It is given in the form of a matrix, 

where qualitative information for one pedigree criterion is structured. Different Pedigree 

matrixes can be obtained for different sorts of information. Thus, the NUSAP scheme provides 

qualitative information on the degree of aleatory uncertainty. 

One of the biggest strengths of the NUSAP is that it can be combined with already 

existing practices (and methods). The utilization of visualization tools is considered essential, 

as it has been argued that multiple representation techniques are beneficial for learning (for 

instance for remembering) (Cheng, Lowe, & Scaife 2001; Ainsworth & Loizou, 2003). The 

combination of pedigree scores (a sequential representation technique) and radar diagrams (a 

visual representation technique) is an example of a combination of multiple representation 

techniques. In addition, diagrams enable faster scanning (search) through information (Larkin 

& Simon, 1987).  

The case study and data generating process 

The synthetic case development consisted of the following steps: 1) meetings and 

interviews with practitioners, 2) formulating the characters and their personalities, 3) 

discussing the possibilities for the application of the proposed approaches, 4) sampling the data 

needed for the application and evaluation of the proposed approach for communicating the 

uncertainty surrounding the results, which led to 5) identifying the potential experts’ biases and 

other behavioral and organizational aspects that should be taken into account and are of interest 

to a particular company (this would also serve as the input for the additional analyses described 

in the following Sections 6.3 and 6.4). 

The company’s risk management process: As described in the previous chapter, it 

organizes expert elicitation sessions during which the experts are requested to provide their 

estimates as single number inputs. They provide their opinions in the form of estimates for the 

five different factors regarding the company’s oil and gas exploration (Source, Charge and 

timing, Reservoir, Seal and Trap geometry). After that, they need to find a consensus on the 

joint estimates, which is then presented and used for decision making (Figure 10). This input 

is used for deciding on whether or not to invest in drilling in a certain location, or when 

choosing between different locations. The higher need for accuracy in the estimates comes 

from the fact that the market is increasingly competitive, most resources of the North Sea (that 
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is the main location focus for some of the projects) are already found and it takes a while to 

design and then put into operation the whole system once oil and gas are found.  

A number of challenges were identified (during several brainstorming sessions) and 

described in the previous chapter. For instance, it was noted that there is often a dominant 

personality among the experts that takes over the discussion and influences the others’ opinion. 

In addition, the input from younger/less experienced colleagues is taken (valued) notably 

differently from that of the more experienced ones, and so on. Currently, they do not reflect on 

the information/data on which the opinions are based, nor on if there was agreement or 

disagreement among the experts in the first place.  

I generated the data illustrated in Figure 11 based on their current process. After each 

of the experts provides the estimates for the five different factors (Source, Charge and timing, 

Reservoir, Seal, Trap geometry), the total estimates are calculated based on the geometric mean 

for the concrete prospect. Paleocene Prospect represents an area (location) that is well explored 

and understood, but most probably has small quantities of lower-quality oil and gas. On the 

other hand, Triassic Prospect represents an area (location) that has not been explored much, 

maybe in a few test drills, but has the potential for containing large quantities of high-quality 

oil and gas. 

 
Figure 11 The synthetic risk data. 
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The application of the proposed approach  

 The application of the proposed approach consists of the combination that includes the 

NUSAP matrix (Pedigree) and radar diagrams. They are introduced as the extension of the 

current process. As the first addition to providing the regular data/analysis, the expert team is 

asked to deliver the additional two tables. Second, the expert team works on providing radar 

diagrams.  

Step 1: 

 In order to help experts to communicate the two different situations (Paleocene and 

Triassic Prospect), the use of the NUSAP matrix (Pedigree) is proposed. For both cases the 

differences are highlighted (Table 6 and 7).  

Table 6 Pedigree scores for Paleocene Prospect data 

Level Proxy Empirical Theoretical 

basis 

Method Validation 

4 Exact 

measure 

Large sample 

direct 

measurements 

Well 

established 

theory 

Best available 

Practice 

Compared 

with 

independent 

measurements 

of same 

variable 

3 Good fit or 

measure 

Small 

sample 

direct 

measurements 

Accepted 

theory 

partial in 

nature 

Reliable 

method 

commonly 

accepted 

Compared 

with 

independent 

measurements 

of closely 

related 

variable 

2 Well 

correlated 

Modeled/ 

derived data 

Partial theory 

limited 

consensus on 

reliability 

Acceptable 

method 

limited 

consensus 

on reliability 

Compared 

with 

measurements 

not 

independent 

1 Weak 

Correlation 

Educated 

guesses / 

rule of 

thumb estimate 

Preliminary 

theory 

Preliminary 

methods 

unknown 

reliability 

Weak / 

indirect 

validation 

0 Not clearly 

related 

Crude 

speculation 

Crude 

speculation 

No discernible 

rigor 

No 

validation 
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 As illustrated above, the first table corresponds to the Paleocene Prospect for which the 

committee agrees on the overall scoring Level 3. That means that there are ways to measure 

the area (ground) and a number of test results are available (sample size is representative). The 

theory and method used to acquire the data are well-established in the field and used frequently. 

The committee pointed out that for some Paleocene Prospects, scoring can even go to Level 4 

for sample size and theory and method applied. In total, the available background knowledge 

represents a sound basis for conducting risk analysis and supporting related decision making.  

Table 7 Pedigree scores for Triassic Prospect data 

Level Proxy Empirical Theoretical 

basis 

Method Validation 

4 Exact 

measure 

Large sample 

direct 

measurements 

Well 

established 

theory 

Best available 

practice 

Compared 

with 

independent 

measurements 

of same 

variable 

3 Good fit or 

measure 

Small 

sample 

direct 

measurements 

Accepted 

theory 

partial in 

nature 

Reliable 

method 

commonly 

accepted 

Compared 

with 

independent 

measurements 

of closely 

related 

variable 

2 Well 

correlated 

Modeled/ 

derived data 

Partial theory 

limited 

consensus on 

reliability 

Acceptable 

method 

limited 

consensus 

on reliability 

Compared 

with 

measurements 

not 

independent 

1 Weak 

correlation 

Educated 

guesses / 

rule of 

thumb estimate 

Preliminary 

theory 

Preliminary 

methods 

unknown 

reliability 

Weak / 

indirect 

validation 

0 Not clearly 

related 

Crude 

speculation 

Crude 

speculation 

No 

discernible 

rigor 

No 

validation 
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 In case of the Triassic Prospect, the scoring is significantly lower (Table 7). Hardly any 

correlation is available, data are based on educated guesses, and there is just an initial 

understanding of the theoretical and methodological basis for the assessment. In total, the 

available background knowledge is significantly weaker than in the previous case. That is why 

further analyses and knowledge gathering are recommended. 

 Overall, the practitioners consider this step easy to understand and easy to present. It 

provides the means to screen the main information quickly and takes into account valuable 

information (that would otherwise be lost). Furthermore, it is recognized that once the decision-

makers are familiar with this step (table content and format), they can comprehend the 

information faster. That is a big plus as it means that it would not impact the length of the 

meetings needed for reporting, which is of high importance when having limited time available 

with managers.  

Step 2: 

 The already presented work can be further supplemented with the following 

information represented in the form of radar diagrams (Figure 12). In the first place, we inform 

decision makers (through a visual form as well) about 1) the Availability of geological studies 

on which assessments are based. This refers to the fact that depending on the project and the 

potential drilling location, a different number of studies can be available, as well as their details 

(quality). For instance, in some areas the company invested in a number of test drills, where in 

other cases there was less testing. 2) Time for assessment brings the information regarding the 

process for the assessment. If the committee has been requested to provide the opinions under 

time pressure (either due to business/market criticality or organizational reasons) it should be 

noted that such an assessment can lack a detailed analysis. 
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Figure 12 An example of a good quality of inputs for the assessment. 

Furthermore, 3) Method used refers to information regarding the method used to collect, 

analyze and interpret data – if it is a common, well-established approach in the field that all 

experts are aware of, if it is a trial version of a novel approach, a not commonly used one, or if 

only some experts had a previous opportunity to use it. Finally, the 4) Expert consensus 

provides input on whether or not consensus was reached among the experts (the level of 

disagreement among practitioners). Because they need to provide a joint single number 

estimate, the information regarding the level of uncertainty surrounding that single estimate is 

lost. There can be a number of reasons for disagreement among the experts, which should not 

be ignored. On the other hand, if there is one fully shared view on a particular situation, it 

strengthens the argument for a certain decision.  
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Figure 13 The comparison with another project. 

Also, a visual comparison between different projects (Figure 13) allows argumentation 

to the decision makers if 1) more data/time is needed, 2) more research/resource is needed, or 

3) simply elaborating on some detail that in the experts’ view can be of significant value. 

 

Figure 14 An example of a lack of consensus. 

 

Finally, we identified the situation of a particular interest that requires further details. 

In case there is hardly any agreement among the experts, the question is what can we do other 

than just inform the decision makers? This Step 2 supports this need in the form of an additional 
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feature to the already available results. The radar diagram (see Figure 14) enables the 

visualization of this uncertainty and can be used to facilitate the discussion around the need to 

understand where this disagreement comes from and if more information should be collected.  

6.3. Behavioral and organizational aspects 

 

Step 3: 

A better understanding of the team working on the project is seen as one way to further 

understand the above-mentioned type of uncertainty. For each of its projects the company 

engages five to ten of its experts (depending on present availability, size of the project, priority, 

etc.). The “personalities” identified are described below (Table 8).  

For each of the characters/personalities a specific radar diagram is formed. Again, four aspects 

are considered according to the company’s needs: 

1. Experience in the company (knowing the processes, techniques, work environment) 

2. Years of experience (in the field, could be working in different companies) 

3. Similar cases/projects (as projects/locations can vary) 

4. The capability and willingness to “stand out” during a meeting (not everyone is ready 

to confront the others and defend their initial estimate). 

 

Figures illustrating personalities are provided next to the diagrams, for the sake of more 

“commercial” visualization and utilization inside the company (Table 8). The inspiration for 

the characters comes from the children’s stories of Mr. Men and Little Miss (Hargreaves, 

1971).   
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Table 8 Meet the team: Experts' characters and corresponding radar diagrams 

Meet the team 

Character  Character description Character radar diagram 

Mr. Clever (correct 

prospect risk – opposite 

to Mr. Wrong) 
 

 

With 30 years in the 

industry but with no 

international experience 

(due to family reasons) 

this is the company’s 

best and most 

experienced North Sea 

geologist. He always 

undertakes forensic 

levels of technical 

analysis, with an eye for 

detail and loves 

prospect 

characterization. He has 

drilled, seen a huge 

amount of the 

company’s portfolio, 

and has developed a 6th 

sense for risk 

calibration in the North 

Sea. 

 

Little Miss Sunshine 

(wrong risk – opposite to 

Mr. Grumpy) 
 

 

Only 3 years in the 

industry, very keen and 

enthusiastic. Not 

enough experience to be 

jaded, skeptical or even 

realistic yet. After being 

complimented in her 

first appraisal for being 

really positive she has 

since made a virtue of 

pathological optimism. 

Rather than work the 

prospect in any detail, 

she has anchored on the 

play risk as she thinks 

this will provide a 

hiding place in the 

meeting! 
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Mr. Brave (right risk in 

the end but made up of 

extremes) 

 

 
 
 
 
 
 

He gets off the fence 

early and either loves or 

hates each of the 

petroleum systems’ 

elements. He was on a 

training course that 

emphasized polarization 

of risk and he 

emphasizes this all the 

time now. He does not 

do anything by halves! 

 
 

Mr. Grumpy (wrong 

risk with a pessimistic 

bias) 

 

 
 
 

Thirty years with the 

company, and close to 

retirement. He is long in 

the tooth and an old 

skeptic. Thinks the basin 

is old and tired and 

wants our prospecting 

fortunes to reflect his 

basin scale bias. He 

thinks all new concepts 

have been tested, and if 

it works he thinks it will 

be small benefit. A 

classic line in the risk 

meeting was that “he 

worked these prospects 

in 1985 and they were 

rubbish then and still 

rubbish now.”  
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Mr. Fussy (roughly the 

right risk but lots of false 

precision)

 
 

 

 

 

 

 

 

 

 

Tends to work things to 

the nth degree. Cannot 

see the wood for the 

trees and always thinks 

that we know more than 

we actually do. Will 

argue the toss about a 

change from 0.95 to 

0.97 for the sake of 

looking like he was 

“right” and won an 

argument. Loves to de-

rail the meeting and 

twist off about tiny 

changes. Has been seen 

cutting his grass three 

times on the weekend! 

 

 

 
 

Mr. Topsy-Turvy (right 

risk but wrongly 

attributed – seal and trap 

mixed up and source and 

charge mixed up) 

 
 
 
 
 
 
 
 

Mr Topsy-Turvy (right 

risk but wrongly 

attributed – seal and 

trap mixed up and 

source and charge 

mixed up) 
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Mr. Wrong (not a clue! 

- random number 

generation) 
 

 
 

Five years with the 

company but has 

worked for 10 different 

firms already in his 

career (all with different 

risk methodologies). In 

the middle of a messy 

divorce and often not 

fully concentrating 

while at work. Did not 

open the pre-read and 

has no idea about these 

prospects and is hung-

over and off the pace 

today, claiming he had 

a dodgy kebab last 

night! 

 

 

 

 
 

 

 The addressed behavioral aspects support the better understanding of uncertainty 

coming from background knowledge and information. For instance, in the case of an outlier 

(situation Outlier in Chapter 5), the focus could be on that character, looking for the reasons 

why he/she stands out from the group. It should be discussed whether the opinion should be 

ignored in the particular case or accepted/ further analyzed. In the case of a bimodal situation 

(situation Bimodal described in Chapter 5, representing two groups of opinions inside the 

expert committee), the diagrams can be grouped and visually evaluated if the groups are based 

on a certain pattern (i.e. more experienced team members versus less experienced) or not.  

6.4. Analysis of different concepts 

 

Step 4:  

 When considering ways to better understand behavioral and organizational aspects, it 

is essential to explore methods that can support the communication of different perspectives. 

After understanding different personalities (and stakeholders) it is also necessary to facilitate a 

discussion about different views. For that reason, I investigated the RiskImaging tool, which 

was developed in the USA and has been used in the pharmaceutical industry to address similar 

needs (Ramas, 2016). 

 Due to confidentiality reasons, I describe here what the tool enables and how I 

suggested (exemplified for the company’s needs) to use it in its processes/meetings/workshops. 

The goal of using the tool is to predict/document/visualize how risk is perceived by different 
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stakeholders (depending on if we use historical data, current measures, or experts’ judgments). 

The tool allows creating risk profiles – visualizing combined frequency and adversity intervals 

(see Figure 15).  

 Risk profiles visualize uncertainty in terms of estimated frequency and adversity of risk 

(Goerlandt & Reniers, 2015). In case of drilling success, the frequency is estimated for the 

success rate, whereas adversity refers to the amount and quality of oil. Uncertainty (expressed 

in the form of the interval) is based on the collection of experts’ judgments – the more coherent 

and similar their estimates, the tighter the interval, and vice versa. The first risk profile (on the 

left) corresponds to the Paleocene Prospect (higher frequency and lower adversity). The second 

risk profile (on the right) corresponds to the Triassic Prospect (lower frequency of success and 

higher adversity). 

The illustrated risk profiles can be compared with others from different projects, and 

the arguments for deriving decisions can be provided. In case of a large overlap of risk profiles, 

there is a strong argument for deriving the same drilling decision as in the compared project, 

whereas in case of a lack of similarity in risk profiles it becomes evident that either additional 

research is needed, or the decision should be the opposite to that made in the compared project. 

Emotions and attitudes affect perception, which also varies across interest groups. 

Without further discussion on the neuroscience approach of risk perception, the thesis provides 

insights for attitude parameters – burden of proof, dispute tolerance, and uncertainty in 

adversity and frequency. The tool further allows visualizing the estimates of a single expert 

inside the risk profile – enabling discussion on a certain bias of the specific expert. 

Furthermore, the tool allows adding grouped stakeholder views – for example, differentiating 

between managers’, scientists’ or economists’ groups of opinions. 
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Figure 15 Preview of Risk Profiles in Risk Imaging. 

 

Step 5: 

Although simple scaling, shifting, or inflating corrections are widely used to account 

for biases and overconfidence, much better distributional information is usually available to 

the analyst. Fully using this information can yield corrected estimates that properly express 

uncertainty and make them more suitable for use in risk analysis and decision making. These 

advanced corrections express biases as distributions rather than as simple scalar values. 

Such methods (and calculations) are necessary, because in many cases estimates in risk 

analysis have been documented to be biased in a number of different fields (Cooke, 1991). For 

instance, some biases are such that analyses based on these point estimates are guaranteed to 

result in average net losses over time, having exactly the opposite effect of their intended 

purpose. Some of the biases in estimates are just based on negligence concerning model 

assumptions, which would be relatively simple to fix with more correct assumptions, or more 

honest contractors. For example, ignoring the fact that costs of materials increase significantly 

over the time that is required to complete a large public sector project has been found to explain 
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20–25% of bias in estimated costs of these projects (Morris, 1990). Most of the bias, however, 

tends to be related to much more complicated psychological and sociological phenomena, such 

as self-interest bias (or a lack of incentives for accurate estimates, e.g. Flyvbjerg, Holm, & 

Buhl, 2007), undue optimism and risk aversion (Lovallo & Kahneman, 2003), poor 

management, poor communication, bureaucratic fecklessness (Morris, 1990), and many other 

reasons (e.g. Cantarelli et al., 2010). 

First, predictions can be plotted and convolved with an empirical distribution in the 

evidence space of observed errors (from data quality or validation studies) to add uncertainty 

about predictions associated with a model error. Second, predictions can be shifted/adjusted to 

remove some of the uncertainty associated with the measurement protocol. In both of these 

cases, the structure of errors can be characterized as a distribution and transferred into the 

evidence space with arbitrary complexity. The thesis illustrates the requisite calculations to 

make these corrections with numerical examples from the case company. 

The calculations performed during this thesis (Figure 16) propose the correction in the 

evidence space. The main reason for that is the ability to move distributions without exceeding 

0-1 probability limitation. Second, the deviation from the “true value” is easier to spot – as it 

is represented as a distance from the true value on the X axis. The identified personalities from 

Section 6.3 thus have a formula that assesses the deviation.  

The use of such a tool is seen as potentially very useful in practices that have good and 

large historical data sets. They can use the calculations to improve their future estimates by 

correcting the experts’ opinions for the patterns identified in the historical data. The tool has 

great potential for future research.  
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Figure 16 De-biasing of expert judgment in Evidence space. 

6.5. Summary of the findings - Chapter conclusions  

 

In this chapter the answer for research question 3.2 is provided. It focuses on the 

representation of background knowledge in risk and uncertainty assessment. Based on a case 

study, a set of methods from the second group of non-probabilistic approaches (semi-

quantitative approaches) are applied to visualize uncertainty that surrounds data and results. In 

addition, calculations to quantify and correct biases in expert judgment in risk assessments are 

developed, as well as qualitative approaches to inform levels of trust of decision makers into 

risk quantifications.  
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In summary, the key insights obtained through the methods application were: The 

NUSAP tool can successfully represent background knowledge, it is easy to understand, and 

helps the experts to communicate the two different situations (Paleocene and Triassic 

Prospect), which was one of their main problems. Furthermore, it can be incorporated as an 

additional feature to their current practice, without affecting (substantially changing) their 

current process. The development of characters and inclusion of behavioral and organizational 

aspects was greatly appreciated by the practitioners. Risk Imaging allowed visualizing different 

stakeholders’ views, which is important on the individual (different personalities and biases), 

group (financial, legal, procurement, etc. departments have different priorities thus different 

risk profiles), and external levels (the company, competitors, regulatory bodies). The tool helps 

facilitating the conversation about these differences. A great potential is seen in de-biasing 

expert judgment calculations, as it could provide valuable insights from the historical data. It 

is also a step forward toward decreasing the subjective impact of practitioners.  

The categories, aspects, and steps developed in this case study can be updated, changed 

or added depending on a company’s needs. Here, the thesis offers an example of the proposed 

approach (consisting of five separate steps). It can also be seen as a toolkit of methods that 

allow support for different needs (representing and communicating background knowledge, 

visualizing uncertainty surrounding results, better understanding of the behavioral aspects, 

different stakeholders’ perspectives). A company and its practitioners can decide (also on a 

project level), how many steps they want to take – if deep-dives are needed.  

The initial evaluation and feedback from practitioners states that some of the limitations 

are recognized as changing and adding more steps into one type of analysis may lead to 

additional changes in other processes and analyses. All these additional steps should be 

compatible with other processes and e.g. financial analyses for further aggregation inside the 

company – for portfolio and strategy levels. To properly integrate and add the new steps to all 

departments may be a rather long process. Nevertheless, having a handy way is seen as the first 

step in that direction.  

Reflections  

The reflections from the previous chapter are also relevant here (Section 5.6). 

Furthermore, when studying experts’ role in risk management, a number of steps were taken 

to mitigate biases. When discussing experts there is a tendency to favor their duration of 



   123 

 

expertise, but time does not equate quality, so other measures such as the quality of expertise 

must be taken into account. Even when experts themselves try to describe their expertise or the 

rationale of their choices, the really highly skilled may not even themselves understand the 

rationale behind their expertise, as the ‘processing’ is hidden in their subconscious (Malcolm, 

2005), which we are not able to document. There may be biases in the way we understand what 

an expert is and the way we judge the pedigree as well as other parameters included. It is also 

an important consideration if biases are stationary, or if and how much they will change over 

time, or due to events and new experiences. 

The study places relevant focus on the qualitative and human aspects of the 

quantification process. There are potentially contextual limitations to the case study, as the 

methods were customized to the requirements of the company and real-life situations. 

Therefore, the exact methods may not apply in other contexts; they might need additional 

customization for a specific context. This realization is also in line with the topic of tailoring 

risk management (Chapter 8), where I point out a gap as well as a need to adequately choose 

and use methods. It is a limitation that most methods face; they must strive to satisfy contextual 

applicability and not be used ‘right off the shelf’.  
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7.  Third group of methods: Exploring approaches for 

coping with deep uncertainty and introducing Robust 

Decision Making 
 

“When you become comfortable with uncertainty, infinite possibilities open up”  

- Eckhart Tolle - 

Acknowledgement: The content of this chapter is based on the previously published 

article (Tegeltija et al., 2018a). The chapter quotes the article with only minor edits to 

harmonize the language with the remainder of the thesis. As the first author, I have initiated 

the research question, collaboration with a scholar from another University and collaboration 

with industry. I have carried out the empirical work and drafted the first version of the 

manuscript. Lastly, I have consolidated the comments from other authors and polished the final 

version of the manuscript.  

Uncertainty assessment and management, and the associated decision making, are 

increasingly important in a variety of scientific fields. While uncertainty analysis has a long 

tradition, meeting sustainable development goals through decision making in long-term 

engineering system design demands the addressing of “deep uncertainty” (Walker, Lempert, & 

Kwakkel, 2013). Deep uncertainty characterizes situations where there is no agreement on 

exact causal structures, let alone probabilities. In this case, traditional, probability-based 

approaches cannot produce reliable results, as there is a lack of information and experts are 

unlikely to agree upon probabilities. Due to the nature of large-scale engineering systems, this 

chapter argues that methods to better cope with deep uncertainty can make a significant 

contribution to the management of engineering systems design. I introduce a set of methods 

that use computational experiments to analyze deep uncertainty and that have been successfully 

applied in other fields. I describe Robust Decision Making (RDM) as the most promising 

approach for addressing deep uncertainty challenges in engineering systems design. I then 

illustrate the difference between applying traditional risk management approaches and RDM 

through an example, and complement this investigation with findings from an interview with 

a company that puts RDM into practice. I conclude with a discussion on future research 

directions. 
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In the context of this thesis, this is the final step in investigating applications of the non-

probabilistic methods (by answering research question 3.3). In comparison to the previous two 

chapters, this chapter is more literature-based and conceptual, as it does not have the same 

amount of empirical content. This is due to the nature of the methods, which, for an extensive 

assessment and proper case development, require long-term industry collaboration, including 

access to confidential information, which is outside the scope of this thesis. However, an initial 

empirical evaluation is here included and documented in the form of discussion (interviews) 

with the industry (see Section 7.5) to set the basis for further research and application of the 

methods introduced here.  

This chapter discusses the need to go beyond probability-based tools in order to better 

address challenges in engineering systems design, and introduces the notion of deep uncertainty 

and its representations. It is structured into six parts. After the introduction in Section 7.1, the 

notion of deep uncertainty is explained in Section 7.2. An overview of the methods used to 

analyze deep uncertainty is provided in Section 7.3. I then describe one of the methods, RDM, 

in more detail in Section 7.4. The next section, Section 7.5, is a conceptual discussion, where 

I elaborate on RDM in contrast to traditional approaches in the context of engineering systems 

design challenges through an example of water resource management. Moreover, I interviewed 

the head of the risk management department in a large-scale engineering company (introduced 

as Company 1 in Chapter 2) on their experiences with RDM, life cycle engineering and deep 

uncertainty management. The final section, Section 7.6, presents conclusions and a discussion 

of future research directions. 

7.1. Introduction 

 

Over the last few decades, the life cycle engineering (LCE) research field has grown 

significantly. Achieving sustainable design and product development remains one of the central 

issues for the manufacturing industry (Takata & Umeda, 2007), but also for other domains 

where the LCE concept has been disseminated, that is, the food, building and textile industries 

(Alting & Legarth, 1995). Additionally, these industries have dealt with a paradigm shift from 

a product-centric to a service paradigm, which assists customers with accompanying services 

and systems for the products produced (Beuren et al., 2013).  

This transition to a service paradigm brought the need to enable a bigger-picture view 

and management practice that corresponds to such integrated systems and services. In 
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particular, this is the case when the focus is on the sustainability, environmental impacts, and 

life cycle aspects of these solutions/systems. The current trend towards achieving desirable life 

cycle properties (i.e., “-ilities”) of the systems can be carried out through LCE (Alting & 

Legarth, 1995). LCE enables a systemic perspective for achieving sustainability goals in 

engineering systems and their design. That is why I further discuss the introduced methods in 

the context of LCE, as the challenges raised are mostly related to the life cycle aspects of 

engineering systems.  

Both researchers and practitioners have suggested that the development of LCE, and in 

particular life cycle assessment (LCA), should keep pace with the complex and changing 

product development systems (Chang, Lee, & Chen, 2014). LCA is an important tool for 

assessing the environmental impacts of product and service designs to support the achievement 

of sustainability. These changes lead to the increased importance of addressing uncertainty 

throughout the whole life cycle of a product or service. Uncertainty considerations are 

particularly relevant for the accuracy of LCA (Hellweg & Canals, 2014) and, therefore, 

research in that direction is of great significance for the field.  

As discussed in Chapters 3 and 4, design and engineering activities often bring novelty, 

uniqueness, and first-of-a-kind solutions to an engineering problem (Gidel, Gautier, & 

Duchamp, 2005). The most important decision making situations in such cases are dominated 

by so-called “deep uncertainty”: uncertainties for which experts do not agree upon models to 

describe interactions among a system’s components, and subsequently do not agree upon 

corresponding probabilities and possible outcomes (Lempert, Popper, & Bankes, 2003). This 

leads to limited applicability of traditional risk and uncertainty management approaches and 

an increased need for developing novel approaches. While there is no consensus among 

researchers on a single approach for coping with deep uncertainty, there is an agreement about 

the need to model it differently. However, the tendency in practice is still to employ traditional, 

probability-based approaches. The increasing societal and business criticality of product 

development projects raises the need to explore more thoroughly the various fundamental 

approaches to describing and quantifying deep uncertainty as part of LCE and, 

correspondingly, overall engineering systems design. 
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7.2. Deep uncertainty and its representations 

 

It is important to distinguish between uncertainties that can be treated through 

probabilities and uncertainties that cannot. Different taxonomies and representations of 

uncertainty have been developed. An uncertainty matrix is proposed by Walker et al. (2003), 

which synthesizes various taxonomies, frameworks, and typologies of uncertainties from 

different fields. The taxonomy has been further extended by Kwakkel, Walker and Marchau 

(2010) ‒ see Table 9. The goal of this synthesized overview is to support modelers in 

identifying uncertainties and communicating these uncertainties to decision makers. The 

typology of Walker et al. (2003) conceptualizes uncertainty as a three-dimensional concept. 

These three dimensions are 1) the level dimension, 2) the location dimension, and 3) the nature 

dimension. Of these, the level dimension tries to capture differences in the types of scales that 

are used in practice when assigning likelihood to events (Kwakkel, Walker, & Marchau 2010). 

Within this taxonomy, deep uncertainty is understood as Level 4 and Level 5. This 

understanding is broadly consistent with the work of Lempert, Popper, and Bankes (2003), who 

define deep uncertainty as “the condition in which analysts do not know or the parties to a 

decision cannot agree upon 1) the appropriate models to describe interactions among a 

system’s variables, 2) the probability distributions to represent uncertainty about key 

parameters in the models, and/or 3) how to value the desirability of alternative outcomes.” 

In their work, Walker, Lempert, and Kwakkel (2013) further explain and categorize 

each level of uncertainty. Most of the LCE problems faced by decision makers are 

characterized by higher levels of uncertainty. The following include several considerations 

involved in designing a bridge or a tunnel with a 100-year life span: estimating traffic intensity 

for the next hundred years, allowing the chosen design to adapt to the addition of any new 

installations and technologies that can/should be added to the system, estimating changes in 

the sea level, etc. As there is a wide range of outcomes for the alternatives that could take place, 

the question is how to best prepare for any combination of alternatives that may happen. The 

evolving, iterative, social and complex nature of LCE corresponds to a multiplicity of plausible 

futures, several variants for system models, a range of outcomes and associated weights or 

preferences regarding the various outcomes (corresponding to Level 4 or 5 uncertainty, as 

described in Table 9).   
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While many of the traditional analytical quantitative approaches are designed to deal 

with Level 1, Level 2 and Level 3 uncertainties (Paté-Cornell, 1996; Walker, Lempert, & 

Kwakkel, 2013), it has been proven that those methods face challenges when dealing with 

higher level uncertainty, that is, deep uncertainty (Walker, Lempert, & Kwakkel, 2013). It can 

be argued that deep uncertainty may sometimes be reduced by further research and information 

gathering. However, this may lead to additional and hidden costs and delays, thus making it 

infeasible. This leads to “real life” situations in LCE, where actions have to be taken now, that 

we know are based on incomplete information and have significant impact on following 

processes and outcomes. The thesis argues that deep uncertainty-based approaches can offer 

relevant support to these types of decision situations. 

Table 9  Synthesized uncertainty matrix by Kwakkel, Walker and Marchau (2010) and the progressive 

transition of levels of uncertainty from complete certainty to complete ignorance by Walker, Lempert and 

Kwakkel (2013) 

Location Level 
 Level 1 Level 2 Level 3 Level 4 Level 5 

Context A clear 

enough 

future 

Alternate 

futures (with 

probabilities) 

Alternate 

futures with 

ranking 
 

A multi-

plicity of 

plausible 

futures 

An unknown 

future 

 

 

 

 

     

System 

model 

A single 

(determinis-

tic) system 

model 

A single 

(stochastic) 

system model 

Several 

system 

models, one 

of which is 

most likely 

Several 

system 

models, with 

different 

structures 

Unknown 

system 

model; we 

know we 

don’t know 

System 

outcomes 

A point 

estimate for 

each 

outcome 

A confidence 

interval for 

each outcome 

Several sets 

of point 

estimates, 

ranked 

according to 

their per-

ceived 

likelihood 

A known 

range of 

outcomes 

Unknown 

outcomes; 

we know 

we don’t 

know 

Weights on 

outcomes 

A single set 

of weights 

Several sets of 

weights, with 

a probability 

attached to 

each set 

Several sets 

of weights, 

ranked 

according to 

their per-

ceived 

likelihood 

A known 

range of 

weights 

Unknown 

weights; we 

don't know 

we don’t 

know 



   129 

 

A range of traditional uncertainty and risk management methods has been applied to 

Level 4 and Level 5 problems. Group processes, such as the Delphi technique (Rowe & Wright, 

1999), have helped large groups of experts to combine their expertise into narratives of the 

future. This can be understood as a “Level 4” method, where plausible future scenarios are 

developed without necessarily quantifying the associated uncertainties. In their work, Ferson 

and Ginzburg (1996) illustrate examples in risk analysis for which classical Monte Carlo 

methods yield incorrect answers when used to quantify higher levels of uncertainty. On the one 

hand, the development of Information Technology (IT) generated statistical and computer 

simulation modeling that allows the capturing of quantitative information about the 

extrapolation of current trends and the implications of new driving forces. Formal decision 

analysis can systematically assess the consequences of such information. Some more recently 

developed approaches, such as scenario planning, help individuals and groups to accept the 

fundamental uncertainty surrounding the long-term future and consider a range of potential 

paths, including those that may be inconvenient or disturbing for organizational, ideological, 

or political reasons (Schoemaker, 1995). 

However, despite this rich legacy, one key aspect remains a problem. The traditional 

methods briefly outlined above face challenges when dealing with the long-term multiplicity 

of plausible futures, unknown causal structures, probabilities and difficulty in identifying 

preferred solutions. In the following section, I introduce a family of conceptually related 

approaches that are used to cope with such situations, that is, deep uncertainty. 

7.3. A family of related conceptual approaches for coping with deep 

uncertainty  

 

 The deep uncertainty literature rests on three key concepts: 

1) Exploratory modeling: In the face of deep uncertainty, one should explore the 

consequences of the various presently practically irreducible uncertainties for decision making 

(Lempert et al., 2006; Weaver et al., 2013). This exploration uses computational scenario-

based techniques for the systematic exploration of a very large ensemble of plausible futures 

(Bankes, 2002; van Asselt and Rotmans, 2002; Bankes, Walker, & Kwakkel, 2013). 

2) Adaptive planning: Decision robustness can be achieved through plans that can be adapted 

over time in response to how the future actually unfolds (Kwakkel, Walker, & Marchau 2010; 

Wilby & Dessai, 2010; Haasnoot, Kwakkel, & Walker, 2013). 
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3) Decision support: The aim of decision advice is to facilitate learning about a problem and 

potential courses of action, not to dictate the right solution. This entails a shift from a priori to 

a posteriori decision analysis (Tsoukiàs, 2008). 

  One method of decision making would be to determine the best predictive model and 

solve for the optimal uncertainty mitigation procedure. However, this method is fragile, 

depending on assumptions. In conditions of deep uncertainty it is better to seek, among the 

alternative decision options, those actions that are most robust ‒ that achieve a given level of 

goodness across the multitude of models and assumptions consistent with known facts (Walker, 

Hassnoot, & Kwakkel, 2013). From an analyst’s and a manager’s point of view, this means 

that the aim is no longer to answer the question of “What will happen?” but rather “Given the 

agreement that one cannot predict everything, which actions available today are likely to best 

serve me in the future and keep my options open?” 

 A family of approaches exists for dealing with deep uncertainty: 

Assumption-Based Planning was developed at the RAND Corporation almost 30 

years ago as a tool for improving the adaptability and robustness of an existing 

policy/plan/design (Dewar et al., 1993). 

Robust Decision Making (RDM) uses multiple views of the future to iteratively stress 

test one or more candidate strategies over many scenarios, and refine the strategies in light of 

this (Walker, Haasnoot, & Kwakkel, 2013).  

Adaptive Policymaking was specifically developed to support the implementation of 

long-term plans despite the presence of uncertainties (Haasnoot et al., 2012).  

Adaptation Tipping Points and Adaptation Pathways are both approaches that 

consider the timing of actions and were developed for water management (Haasnoot et al., 

2012). 

Dynamic Adaptive Policy Pathways combines the work on Adaptive Policymaking 

with the work on Adaptation Tipping Points and Adaptation Pathways (Haasnoot, Kwakkel, & 

Walker, 2013). 

RDM is a promising approach to address the challenges in LCE, as it offers a structured 

method for planning under deep uncertainty and it is the best-known deep uncertainty 



   131 

 

approach. Simulation models are used to evaluate different designs over a wide variety of 

different conditions. Next, using scenario discovery (Bryant & Lempert, 2010; Kwakkel & 

Jaxa-Rozen, 2016), the analyst can discover conditions under which designs fail. In light of 

this, designs can be improved. RDM, together with a set of model-based tools, can support 

decision making under deep uncertainty in LCE by providing recommendations that enable 

managers to choose and improve a design that produces satisfying outcomes across a broad 

range of possible future conditions. 

7.4. Robust Decision Making to manage deep uncertainty  

 

RDM has been developed over the last 30 years, primarily by researchers related to the 

RAND Corporation (Dewar et al., 1993). The RDM framework helps decision makers to use 

multiple views of the future in support of a thorough investigation of modeling results that, 

according to Lempert, Popper, and Bankes (2003) and Groves and Lempert (2007), helps to 

identify a design that: 

1) is robust (i.e., it performs “well enough” across a broad range of plausible futures, but may 

not perform optimally in any single future; it also has little regret),  

2) avoids most situations in which the design would fail to meet its goals, and  

3) makes clear the remaining vulnerabilities (i.e., conditions under which the design would fail 

to meet its goals). 

 

According to Walker, Haasnoot, and Kwakkel (2013), RDM includes the following five 

steps: 

1) Scoping ‒ determine the scope of the analysis by identifying exogenous uncertainties, 

modeling options, key relationships, and performance metrics; construct a simulation 

model that relates actions to consequences. 

2) Simulation ‒ identify a candidate model to evaluate and run it against an ensemble of 

scenarios. 

3) Scenario discovery ‒ identify vulnerabilities of the candidate model (i.e., what 

combinations of exogenous uncertainties, and in which ranges, cause the design to fail to 

meet the goals?). 

4) Adaptation ‒ identify hedging actions (modifying existing models or defining new ones) 

to address these vulnerabilities. Repeat Steps 2 and 3 for additional candidate models. 
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5) Display ‒ plot expected outcomes of all models over probabilities of vulnerable 

scenarios, and choose the most robust option for implementation. 

 

Over the years, RDM has been employed to provide support in strategic planning 

problems in a variety of fields, including climate change (Lempert, Schlesinger, & Bankes, 

1996), complex systems (Lempert, 2002), economic policy (Seong, Popper, & Zheng, 2005), 

and flood and water risk management (Lempert, Sriver, & Keller, 2012; Herman et al., 2014). 

7.5. Discussion of uncertainty quantification in LCE  

 

Given the importance of decision support in LCE, it is essential to explore approaches 

for dealing with deep uncertainty. Some of the non-probabilistic methods introduced by Aven 

et al. (2014) try to resolve the problem within the “predict and act” paradigm in risk and 

uncertainty management, by introducing methods that are less reliant on probabilistic data. This 

set of methods corresponds more to the improvement of LCA by allowing better, more accurate 

estimates. In addition, these methods allow the experts to provide information in data formats 

that they feel comfortable with (points, intervals, and ratios as well as their combination), 

depending on the confidence level. Some studies further enhance the usage of non-probabilistic 

methods through comparative analyses with probabilistic approaches (André & Lopes, 2012).  

The approaches discussed in this chapter, on the other hand, drop the “predict and act” 

thinking altogether and introduce a “monitor and adapt” paradigm to replace it. These 

approaches change modeling more fundamentally and have produced reliable results in fields 

such as water management (Herman et al., 2014), climate change (Walker, Hassnoot, & 

Kwakkel, 2013), and policy-related research (Hamarat, Kwakkel, & Pruyt, 2013). Once crucial 

decisions under deep uncertainty have been made and additional information and knowledge 

have been collected, traditional approaches can be employed to continue the uncertainty 

management in LCE.   

Arguably, the challenges that practitioners face in other fields are in many ways close 

to the ones that are often seen in LCE. For instance, such situations are characterized by a large 

number of stakeholders, weak available information, significant impact on the further process 

and a notable societal impact. I focus on the uncertainty quantification and how these methods 

work and the kinds of insights they produce in the context of LCE through the lens of RDM. 
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Traditionally in engineering, when dealing with a lack of hard data, uncertainty analysis 

is based on expert judgment. Experts are asked to provide precise estimates on different 

activities and these estimates are the input for probabilistic analyses (described in more detail 

in Chapter 6). The models used in these analyses need to have all the activities and correlations 

predetermined upfront. For a number of reasons these correlations are not always obvious or 

visible to the modelers. 

With the latest developments in the manufacturing industry it is often not feasible to 

find solid ground for estimating probabilities. Moreover, subjectivity in expert judgment 

remains a challenge (Ellsberg, 1961; Cooke, 1991). Furthermore, the results do not reflect the 

availability and quality of background information, or a number of assumptions behind the 

calculations. 

The current trend towards achieving desirable life cycle properties (i.e., “-ilities”) 

further challenges the applicability of deterministic models (de Weck, Ross, & Rhodes, 2010). 

As stated by Ricci et al. (2014), a survivable, flexible, or evolvable system should be able to 

sustain value delivery over time by responding to exogenous changes in the operational 

environment. To achieve this, we need to allow adaptivity and imprecision throughout the life 

cycle, and explicitly design for this.   

One way to do this is to employ RDM in LCE: a large number of futures are generated 

based on performance criteria. First, RDM is used to sample a wider range of futures, which 

are subsequently assessed to see whether they are dire, benign, or opportunistic. Second, it 

offers a holistic assessment of the performance of generated options over the wider range of 

futures. The idea is that a design solution should work satisfactorily over a broad range of these 

possible futures. RDM also identifies what combinations of uncertain future stresses lead to 

system vulnerabilities through “scenario discovery” (Matrosov, Woods, & Harou, 2013; 

Thissen, Kwakkel, Mens, 2017). The five-step RDM process (see above) is then repeated 

iteratively until a suitably robust solution is found. RDM aims to assist in the development of 

a solution whose performance is good enough over a wide range of futures (i.e., it is robust) 

rather than an optimal solution for a single specific future. 

An example is presented by Matrosov, Woods, and Harou (2013), in which the authors 

applied RDM for a water management problem when statistical distributions of future events 

were poorly known, and they followed the five described steps. In terms of LCE, RDM differs 
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from traditional approaches, for instance Scenario Planning, by sampling a larger number of 

possible scenarios that are further evaluated. In the mentioned example, they generated 311080 

possible simulations/scenarios, whereas Scenario Planning typically involves the evaluation of 

only a few identified scenarios. This provides more thorough analyses (e.g., minimizing life 

cycle regret) that improve the quality of decision making in LCE, which impacts the quality of 

products and systems produced.  

It is worth noting that such analyses are now feasible given the advances in 

computational methods. Moreover, RDM is complementary to other approaches (Matrosov, 

Woods, & Harou, 2013) that provide additional  information to the decision makers when 

managing deep uncertainty. 

This kind of modeling does not require unjustified assumptions and provides a 

structured framework for the iterative refinement of future plans.  

A brief discussion with practitioners on RDM in the LCE context  

 

The case company is a large Danish company with extensive experience in designing 

and managing large engineering projects, including assessing cost and operational life cycle 

properties of complex, long life cycle infrastructure systems. I interviewed the head of the risk 

management department on his experience with RDM. The interview was conducted after the 

interviews presented in Section 8.4.2.1. Details regarding their risk management team and 

process can be found there.  

In their practice they recognized the need to look for alternative approaches that can 

reliably manage deep uncertainty. They analyzed different options and decided to use RDM on 

one of their projects.  

Several limitations were raised regarding RDM: first, in their experience, it is still open 

to debate which design is the best choice when simulating the system’s life cycle properties. 

RDM does not provide a “simple” answer and the analysis results must be further interpreted 

in the decision making process. Second, RDM-based assessments of, for instance, 100-year life 

cycle system properties are based on current data, even if they are analyzed and interpreted 

differently. Third, there are projects where the use of RDM is not justified, that is, projects 

involving only the first three levels of uncertainty, where similar engineering solutions exist, 

where uncertainties of mostly stochastic nature are present, and where the lifetime is fairly 
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short. Clearer guidance is needed about when RDM effectively adds value to LCE decisions, 

and when it does not. 

The case company agrees that there are LCE tasks in projects where higher levels of 

uncertainty are present and that the traditional approaches currently employed only offer 

modeling capabilities corresponding to the first three levels of uncertainty. These cases are 

where the life cycle performances of a one-of-a-kind bridge with a 100-year lifetime have to 

be assessed, and they are dealing with first-of-a-kind solutions for engineering problems, novel 

technologies, new locations, more stakeholders and significantly longer lifetimes. Often, as in 

the water management example, traditional modeling approaches require them to make 

“precise” predictions based on the limited information available. The approaches introduced in 

this chapter can significantly support uncertainty management through their provision of more 

thorough analyses of possible alternative futures.  

 

Reflections  

The theoretical sampling was also appropriate in this case. The chosen company is 

highly specialized in risk management and runs projects that often involve deep uncertainties. 

More interviews would need to be conducted to entirely comprehend their modeling capacities 

with RDM, but informal discussions confirmed their remarkable computational skills. In this 

way, the work presented here constitutes a solid contribution and opens topics up for future 

research (see Section 10.4). 

Despite all these positive aspects, some limitations did emerge. During the PhD project, 

no opportunity arose to check the company’s actual modeling. For instance, the possibility of 

developing a synthetic case with them, on which more detailed discussions provided key 

insights, would have been very relevant and would have allowed findings to emerge that could 

have opened up better possibilities for triangulation.  

7.6. Conclusions 

 

There are a number of methods on hand to deal with uncertainty, so it is important to 

select the method best suited to the particular uncertainty in question. It would be desirable to 
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have a single method capable of quantifying all types of uncertainty. Traditionally, one 

candidate for this task is probability theory. 

As previously mentioned, engineering systems design risk and uncertainty management 

practice have so far relied heavily on probability-based methods when treating uncertainty. I 

acknowledge the great merit of probability-based methods, but I also point out limitations that 

lead to the need for frameworks beyond probability. This has triggered the development of 

alternative approaches in other fields. The methods introduced in this chapter rely on the idea 

that imprecision and adaptivity correspond better to the weak information available in LCE, as 

one approach to ensuring the desirable life cycle properties (i.e., “-ilities”) of engineering 

systems. 

The contribution of this chapter is in the “monitor and adapt” paradigm, which is 

suggested for application in LCE to improve risk and uncertainty management practices. I raise 

the importance of distinguishing deep uncertainty from uncertainty due to variance, and point 

out the complexities that it brings to decision making. Given the evident need to go beyond 

probabilities when dealing with deep uncertainty, I provide insights into the contributions 

offered by novel approaches and where they have been used. These approaches need further 

adaptation to the conditions of LCE.  

I further introduce RDM as a specific method for coping with deep uncertainty in LCE. 

Nevertheless, in order to demonstrate the full benefit of RDM for LCE, real case studies are 

needed, as well as illustrative examples/synthetic cases. Future research in that direction would 

not only allow better treatment of deep uncertainty, but it would also broaden our understanding 

of decision making support in such situations. In my view, it is essential for the field to consider 

these relatively recently developed methods. Of particular significance is their application 

potential when looking for more appropriate solutions to analyzing and quantifying uncertainty 

in LCE and, correspondingly, overall engineering systems design. 
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8. Tailoring risk management: Risk and uncertainty 

quantification as part of the overall risk management 

process  
 

“It’s always the small pieces that make the big picture” 

 -Unknown- 

 

Acknowledgement: The content of this chapter is based on the previously published 

article (Tegeltija et al., 2018b). The chapter quotes the article with only minor edits to 

harmonize the language with the remainder of the thesis. As the first author, I have initiated 

the research question, collaboration with a scholar from another University, collaboration 

with industry and conceptual development of the proposed approach. I have carried out the 

empirical work and drafted the first version of the manuscript. Lastly, I have consolidated the 

comments from other authors and polished the final version of the manuscript. 

While risk quantification research has grown over the last few decades, a limited 

number of studies have addressed the overall process integration of these approaches in 

engineering systems design risk management, that is, tailoring risk management methods to 

the specific requirements and conditions of a design project. This chapter argues that the choice 

of risk quantification method has strong implications for several aspects of the risk 

management process, as well as the integration of risk management results into decision 

making processes. I investigate current risk management maturity models and suggest an 

expansion to accommodate the requirements originating from the choice of quantification 

method, as well as informing the choice of quantification method based on other process 

parameters. This is validated through three case companies. Additionally, three more 

companies were approached to provide their feedback on the developed approach.  

In the context of this thesis, this step is important. Up to this point, the thesis has 

investigated advanced risk and uncertainty quantification methods (introduced under the non-

probabilistic framework). This chapter concerns itself with the broader question of when and 

how to integrate these methods into an overall risk management process (answering research 

question 4). 



   138 

 

The chapter is structured as follows: Section 8.1 provides a short introduction to the 

motivation and need for tailoring risk management in engineering systems design through 

theoretical and empirical considerations related to the current practice. Section 8.2 further 

describes the specifics of risk management in the field and reviews risk management maturity 

models. Section 8.3 describes the conceptual development of the risk management tailoring 

approach, depending on the risk management maturity. In Section 8.4 the approach is 

illustrated through case companies from different sectors and the empirical work is described. 

In Section 8.5 I discuss different risk management tailoring approaches, and lastly, in Section 

8.6, I provide concluding remarks about the presented research and highlight the importance 

of the proper integration of risk quantification in engineering systems design to enhance its full 

potential. 

8.1. Introduction 

 

The positive impact of risk management activities on design and product development 

outcomes has been confirmed multiple times by different scholars (Wieland & Wallenburg, 

2012), but the need for risk management differs between different organizations (Oehmen et 

al., 2014). While some organizations have identified the requirement for rigorous and very 

strict organization-wide risk management processes in all aspects of their businesses, others 

simply require some basic understanding of risk management practice. Different project types 

and the associated risks have to be managed according to the context − one size does not fit all 

− and the enduring need to tailor the wide range of activities and approaches in the field is 

confirmed, for example by recent reviews  (Kaplan & Mikes, 2012; Škec et al., 2014; Herrmann 

et al., 2018).  

One part of the overall risk management process that requires good integration is risk 

and uncertainty quantification – such as the methods developed and discussed in the previous 

chapters of this thesis. Organizations wishing to implement a formal quantification approach, 

or to improve their practices, need a benchmark against which to review their processes. In this 

regard, although a number of risk management maturity frameworks are available in the 

literature, they lack a focus on quantification methods and their impact on and implications for 

the overall design risk management process. This chapter seeks to address this gap through a 

proposed tailoring approach, based on maturity grids, that allows a two-fold tailoring: firstly, 

tailoring the design risk management process to a chosen risk and uncertainty quantification 

approach, and secondly, tailoring risk and uncertainty quantification options to the capabilities 
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of the overall design risk management process. This chapter will introduce the reader to the 

importance of maturity grids in benchmarking and as a strategy for improvement, suggesting 

five categories that will help practitioners choose their risk quantification method: 1) 

understanding of the needs, 2) method sophistication for risk quantification, 3) quality of data, 

4) awareness regarding risk in organizational culture, and 5) impact of risk assessments in 

decision making. Within these categories, improvements are made to the overall risk 

management processes, which will ultimately assist companies in systematically planning their 

desired advancement in practice.  

8.2. Risk and uncertainty in design 

8.2.1. Risk management in design  

 

Engineering systems design is vulnerable to various risks, which can emerge during the 

design process. Some even argue that the design process can be perceived as a process of 

uncertainty and risk management (Gericke, 2011), and suggest that a key attribute of a designer 

is the ability to manage uncertainty (Cross, 2011). Standardized and structured design 

processes, accompanied by the use of appropriate methods and tools (such as lean, six sigma 

and total quality management) may reduce uncertainty and risk in general, but nevertheless a 

considerable amount of residual uncertainty remains, which needs to be addressed and treated 

in design processes. Management of risk in these processes has received attention from 

researchers in engineering design (Lough, Stone, & Tumer, 2009), and related studies have 

been carried out in project management (Raz & Michael, 2001), and safety-related risk 

management (Paté-Cornell, 1996). 

Despite the wide study of risk management in engineering systems design, only a few 

authors have tackled the issue of systematization and classification of risk management 

methods, and especially the need for formulation of recommendations with respect to method 

application and the associated tailoring of the overall risk management process. The application 

of risk management requires familiarity with methods, appropriately trained employees and an 

understanding of context, and if any of the above-mentioned aspects is not implemented 

correctly, the value that risk management brings to design can decrease significantly. For these 

reasons, maturity models have been introduced as one approach to guiding organizations in 

their risk management implementation and benchmarking themselves against best practice 

(Maier, Moultrie, & Clarkson, 2012).  
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8.2.2. Risk management maturity models 

 

Maturity-based assessments, for example, in the form of maturity grids or models, are 

a structured approach to exploring how well the behaviors and practices of an organization are 

adapted to delivering required outcomes, usually expressed as a series of structured levels 

presented in matrix form. For a review of existing models see, for example, Maier, Moultrie, 

and Clarkson (2012). The underlying idea behind maturity-based assessments is that they 

provide a framework that seeks to capture “good practice” in order to guide and structure both 

assessment and improvement in capability. The authors of these models begin with the 

underlying assumption that there is a link between the higher levels of maturity and improved 

performance in the (relevant) organizational capabilities. Organizations advance through a 

series of stages or levels of maturity, with levels often represented as ranging from initial, to 

repeatable, defined, managed, and optimized. While the underlying rationale for the levels may 

differ (Maier, Moultrie, & Clarkson, 2012), the levels often describe an evolutionary path 

ranging, for example, from ad hoc, chaotic processes or capabilities to mature, disciplined 

processes and, in this case, defining the degree to which a process is institutionalized and 

effective. Stepping through the levels can be seen as representing progress towards an optimum 

capability. A prominent example of such a maturity model is the Software Engineering 

Institute’s Capability Maturity Model Integration (CMMI) (Humphrey, 1988). The approach 

has been tailored, modified and further developed for various applications in different domains, 

including the organizational project management maturity model (OPM3) program of the 

Project Management Institute (Pennypacker & Grant, 2003), knowledge management (Paulzen 

et al., 2002) and innovation (Chiesa, Coughlan, & Web, 1996). But while maturity models may 

share a common structure, their content differs, and for this reason maturity models are very 

often developed anew. A review of existing models and guidance for the development of new 

models is given by Maier, Moultrie, and Clarkson (2012). 

In terms of risk management, a maturity model was first introduced by Hillson (1997). 

This was followed by the PMI’s RISKSIG extension of the model with new criteria and a 

further model, with a slight variation, was developed for complex product systems projects 

(Ren & Yeo, 2004). Table 10 shows the PMI RISKSIG’s maturity levels. 

Although a good basis for evaluation, current risk management maturity models have 

some limitations. The underlying assumption of many maturity models is “the higher the 

better.” However, different organizations have different risk management needs, and achieving 
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higher levels of risk management maturity does not necessarily imply a better “fit” of risk 

management to the organization’s requirements. In this thesis, the extension of the model based 

on the proposed tailoring approach allows companies to engage in a discussion around the 

maturity model to find and agree on the most adequate risk quantification approach in their 

case. Furthermore, previous risk management maturity models do not have a strong method 

focus. Finally, a range of models is available, but all of them neglect the impact of a chosen 

method on the overall process; we need to be more explicit about the selection and application 

of the methods. 

Table 10 PMI RISKSIG risk management maturity levels (2002) 

Attribute Level 1  

(Ad hoc) 

Level 2  

(Initial) 

Level 3 

(Repeatable) 

Level 4 

(Managed) 

Definition Unaware of the 

need for 

management of 

uncertainties 

Experimenting 

with RM through a 

small number of 

individuals  

Management of 

uncertainty built 

into all 

organizational 

processes 

Risk-aware 

culture with 

proactive 

approach to risk 

management 

Culture No risk 

awareness 

RM used only on 

selected projects 

Accepted policy 

for RM 

Top-down 

commitment to 

RM, leadership 

by example 

Process No formal 

process 

No generic formal 

process 

Generic 

processes applied 

to most projects 

Risk-based 

organizational 

processes 

Experience No 

understanding 

of risk 

principles of 

practice 

Limited to 

individuals with 

little or no formal 

training 

In-house core of 

expertise 

All staff risk 

aware and able 

to use basic risk 

skills 

Application No structured 

application 

Inconsistent 

application of 

resources 

Routine and 

consistent 

application to all 

projects 

Risk ideas 

applied to all 

activities 

 

8.3. Conceptual development of the risk management tailoring approach 

depending on the risk management maturity level  

 

The wide diversity in engineering systems designs and the uncertainty that arises during 

a design process has led to the development of a number of risk management approaches. To 

support key phases of risk assessment, including risk identification, analysis and evaluation, 

different methods and tools have emerged. Some are qualitative, as they mostly serve for risk 
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identification and for when the information is not very easily quantifiable, such as 

brainstorming, checklists or the Delphi method. Other approaches are semi-quantitative, such 

as interviewing, risk mapping or the NUSAP tool (Brocéliande team, 2015), and provide 

quantitative results accompanied by qualitative, descriptive information. Monte Carlo 

simulations, sensitivity analysis, Bayesian networks and other probability-based approaches 

provide quantitative uncertainty modeling (Cagliano, Grimaldi, & Rafele, 2014).  

I refer to all of the above approaches as “quantification approaches” since organizations 

with lower levels of risk management maturity only need to identify risks and prioritize them 

as the first steps towards reaching higher levels. When feasible, companies with higher levels 

of risk management maturity aim to employ purely quantitative approaches that can vary in 

their level of sophistication − in terms of mathematical complexity and data requirements (Paté-

Cornell, 1996).  

The literature is rich in methods, tools and conceptual frameworks for risk 

quantification. However, scholars have reported limitations and pitfalls in terms of both their 

methodological foundation and their application. For instance, the probability-based 

approaches to risk and uncertainty analysis, as those most commonly applied, can be 

challenged under the frequently found conditions of limited or poor knowledge, in which case 

the information available does not provide a strong basis for a specific probability assignment 

(Walley, 1991; Flage et al., 2014). In such cases, precision in probabilistic results may lead to 

a false degree of certainty (Beer, Ferson, & Kreinovich, 2013). Furthermore, some of the 

limitations of the methods relate to the fact that correlations among risks are often not modeled 

and may lead to serious consequences, if not taken into account (Kujawski & Angelis, 2009). 

Subjectivity in risk assessments is also an issue (Hubbard, 2009). The quality of data used in 

the analyses has strong implications for the reliability of the results, and this is not reflected in 

the current approaches. Risk analyses often involve a number of assumptions that, if not 

presented to decision makers, may lead to false directions (Aven et al., 2014).   

As evidence of the low application of quantitative risk methods, Crossland, Williams 

and McMahon (2003) documented the fact that relatively few engineering systems design 

companies make use of such models in their risk management practices. They demonstrate the 

wide applicability of such approaches to engineering systems design, describing three different 

quantitative modeling approaches and illustrating both the simplicity of the approaches and the 

benefits of their usage.  



   143 

 

The limitations of the current approaches and the gap between practice and research 

has led recent research to be focused on two research themes. The first is research into novel 

(more advanced) approaches that will bridge the existing limitations (Walker, Hassnoot, & 

Kwakkel, 2013;  Flage et al., 2014). For instance, some propose uncertainty modeling (i.e., 

imprecise probabilities) that can be used to explicitly express the precision with which 

something is known (Aughenbaugh & Paredis, 2005). 

The second theme is overviews of existing models, and clarification of both the 

advantages and disadvantages of their usage is increasingly attracting attention. Classifications 

of risk management techniques are available in Cagliano, Grimaldi, and Rafele (2014); Raz 

and Hillson (2005); Dikmen, Birgonul, and Arikan (2004); and Marle and Gidel (2012). To 

support advancements in practice, it is important to clarify and be transparent about these 

limitations and disadvantages, and propose to the practitioners ways to overcome these 

challenges, both when choosing a method and when looking for ways to improve it. 

To overcome some of these limitations and enable companies to knowledgably and 

systematically choose and plan their risk quantification, I propose to extend current risk 

management maturity models with quantification criteria, building on the work of Crossland, 

Williams and McMahon (2003); Grubisic, Gidel and Ogliari (2011); and Škec et al. (2014). I 

derived the five categories from the literature review and our empirical work, and iteratively 

developed this tailoring framework with three engineering companies. The purpose is to 

benchmark risk management quantification processes in the companies and adapt them to their 

needs. The framework itself also serves to codify boundary objects for organizational learning 

about risk management, thereby allowing organizations to understand where specifically to 

improve. 

In particular, I propose a risk management tailoring approach that includes the five 

categories shown in Figure 17 and described below. The five categories were developed to 

support all the steps of the entire risk management process. Starting with the method 

sophistication and quality of data arising from the above-mentioned literature (see also Aven 

& Zio, 2011), I included three more categories (understanding of the needs, awareness 

regarding risk in organizational culture, impact of risk assessments in decision making) to 

incorporate the case companies’ registered necessities and challenges in practice and 

experience. 
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Category 1: Understanding of the needs  

To professionally approach risk and uncertainty in engineering systems design, an organization 

should be able to understand its needs, and those of its stakeholders, and the necessary approach 

to this will depend on the organizational structure, the applicable processes and the types and 

sizes of projects. The understanding of the concepts of risk and uncertainty is important for the 

ability to manage risk. The nature and type of uncertainty determine in part what kinds of 

methods are applicable, and thus a heightened level of understanding of uncertainty enables 

more mature risk management. 

Category 2: Method sophistication for risk quantification 

Higher accuracy of estimates enables better decision making support. Given their design 

challenges, some organizations may only need approaches that allow the identification of risks. 

Others may face challenges that require in-depth analysis. The level of sophistication of 

analysis will depend substantially on the method chosen for the analysis. Any limitations of 

the approach should be reported and communicated to decision makers. To improve their 

quantification, besides choosing a more sophisticated method, practitioners also need to 

synchronize advancements with other categories to ensure the greatest benefits of their risk 

management.   

Category 3: Quality of data 

The quality and availability of data will impact the results, as well as the number of assumptions 

supporting the analysis. In some cases, it is feasible to spend resources on acquiring high-

quality data. In others, we need to proceed with the engineering systems design (often due to 

time pressures) and be aware of the arbitrariness in the quality of data we use and the number 

of assumptions we make prior to the analysis of choice. In the absence of that kind of 

transparency (achieved, for example, through visualization tools), central pitfalls may be 

overlooked. The quality of data should correspond to the method, as using a more sophisticated 

method on a low quality of data arguably does not add desired value.  

Category 4: Awareness regarding risk in organizational culture 

It is of great importance to build awareness of risk management processes, activities, value 

creation and impact for all employees across the different levels of an organization’s hierarchy. 

To properly support decision making, decision makers need to be aware of its value and other 

employees need to be informed about why it is important that they provide certain information, 

attend associated meetings, and why the whole process deserves attention. Communication and 
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(professional) language can vary, even within organizations. While some employees may have 

an educational background that corresponds to risk management needs, the way they inform 

and interact with others in the company needs to be adapted to correspond to their knowledge 

base. 

Category 5: Impact of risk assessments in decision making 

Employees may not appreciate the analysis and may have too little trust in the results to base 

decisions on them. Some of the complex mathematical calculations may be challenging for 

managers to comprehend properly, which may lead to them being neglected. Furthermore, the 

way the responses are planned and handled needs to be synchronized with the overall 

engineering systems design. 

These categories, the associated maturity levels and a mapping of the categories to the 

ISO 31000 process, are shown in Figure 17. The proposed approach consists of the iteration of 

the following steps, inspired by the process outlined in Figure 17: 1) identifying and articulating 

the needs, 2) analyzing the current state of the risk management in the organization and 

identifying existing levels of maturity, 3) re-evaluating the needs to match the desired levels of 

maturity, and finally, 4) developing individual recommendations in order to achieve the desired 

practice according to specific cases. 

 
Figure 17 Relationship of maturity categories and the ISO 31000 risk management process (based on 

Tegeltija et al., 2018b). 
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8.4. Case companies: Validation of proposed tailoring framework for risk 

management in design 

8.4.1. Research method 

 

In order to examine the applicability of the proposed approach for tailoring risk 

management in engineering systems design based on the extension of the risk management 

maturity model, I approached six companies to obtain feedback. As the proposed approach 

aims to provide support for a broader range of different practices, I selected companies with 

completely different application domains (areas of design work) with different risk 

management procedures. 

I conducted semi-structured interviews with employees (as described in detail in the 

following sub-chapters) in order to understand the organizations’ contexts. This also allowed 

me to modify, extend and enrich the initial set of questions and, when needed, to organize 

follow-up interviews. By doing so, I deepened our understanding of the risk management 

practices that were encountered. The guide to interview questions and related grouping of codes 

is available in Appendix 2. 

The first set of interviews included discussions with the interviewees on: 1) their area of 

work and the design challenges they face, in order to understand their specific engineering 

systems design risk and uncertainty profile; 2) their risk management process, how it relates to 

their overall organizational structure, how it is designed and compares with risk management 

standards and maturity models, and 3) the different quantification techniques they use and their 

relationship to the five categories introduced previously. I then analyzed and coded the 

collected data in ATLAS.ti, according to the proposed customization approach, as pilot 

applications, and developed recommendations for process adaptations. This included follow-

up phone calls where clarification was necessary. The results of these pilot applications of the 

proposed customization approach were presented in a second set of interviews, and the 

interviewees were invited to comment on their possible application, usability and contribution, 

as well as any limitations and challenges they might foresee. I used Support Evaluation 

(Blessing & Chakrabarti, 2009) as part of the continuous testing of the design support.  
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Figure 18 Overview of case companies' levels of maturity (1-6) (extended from Tegeltija et al.,    

                2018b). 
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8.4.2. Companies involved and their risk management context 

 

A summary of the risk management maturity of the case companies is shown in Figure 

18. Given the information collected from the practitioners, and based on coding with respect 

to each of the five categories, I evaluated companies on the introduced Level 1 - Level 4 

maturity scale. There is one company with a very ad hoc profile (Company 3) and one that has 

established some initial risk management practice (Company 4). Another company has an 

almost completely managed profile (highly structured approach in Company 1). As a public 

entity, Company 5 has a completely different profile than all the other cases. Finally, Company 

2 and Company 6 have profiles that explicitly illustrate the need for the tailoring being 

addressed by this thesis, as their current quantifications need improvements in terms of the 

other four categories.  

8.4.2.1. Company 1: Design of large-scale engineering systems 

Area of work and design challenges: The first case relates to a large Danish company 

with extensive experience in designing and managing large-scale engineering projects, such as 

long life cycle infrastructure systems. They have projects of different sizes (from megaprojects 

to small design solutions), for instance, they are designing for first-of-a-kind engineering 

projects in which they face severe uncertainties, but they also help small practices achieve their 

goals. Their risk management approach needs to provide support for their whole spectrum of 

design activities and ensure proper and timely responses and monitoring.  

Risk management process and link to other organizational processes: The company 

is a large, highly structured organization comprising many departments. I interviewed the head 

of the risk management department twice. The department was established to oversee risk 

management for the company’s projects as well as to provide consultancy services to other 

companies. The department consists of highly specialized risk (and safety) experts, working on 

different aspects of the risk management process during the design and construction project 

phases. They all have an appropriate educational background, are familiar with the applicable 

standards (ISO, 2009) and practitioners’ guidelines (PMI, 2008) as well as following the 

relevant advances and courses in the field. Furthermore, their project, program and portfolio 

managers are familiar with and rely on the department’s results, and other employees are aware 

that such practice exists in the organization. 
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Given the broad scope of design activities and the number of projects carried out, there 

was a need to engage all sorts of methods (from qualitative, through semi-quantitative to 

quantitative), but also sometimes to employ some of the most sophisticated quantification 

approaches. For each of the projects they would need to select the most appropriate method, 

and after the analyses had been carried out, present and communicate the results to the 

managers. When necessary, special interest and focus would be placed on gathering data. 

Depending on the specific design and associated uncertainties, they use risk registers and 

historical data, and they organize workshops and/or hire experts/consultants for particular 

issues (for instance, when estimating the number of railway passengers in the next 50 years). 

Proposed design risk customization and evaluation: Even though the company has 

already reached a high level of risk management maturity, they still seek frameworks for further 

improvement and carry out constant re-evaluation. They show a high level of understanding of 

the impact and the importance of the choice of risk method and its proper usage, which is why 

my recommendation was to examine the proposed approach in terms of the consultancy 

services they provide. The feedback to the proposed recommendation was that, from their 

perspective, the tailoring approach allows them to systematically, and in a structured way, 

explain and argue why they propose specific risk actions (and even more specifically why they 

use a certain risk method). The risk management maturity of their clients varies a lot and they 

would face challenges in adjusting the recommendations and communication to the clients’ 

level. The selected maturity model and proposed extension are seen as a clear, easily 

understandable and manageable approach for different clients. While until now the clients have 

relied on the manager’s experience to understand their needs and also to convince them of his 

choices, the presented approach, in contrast, would support and clarify the manager’s 

recommendations in those situations. Documenting their practice in such a structured way 

(through discussions and associated decisions for all five categories) would also help to ensure 

a learning and knowledge sharing environment. In this way, other managers, as well as new 

employees, would get a chance to develop their expertise more rapidly.  

8.4.2.2. Company 2: Oil and gas exploration, designing new systems 

Area of work and design challenges: Exploration and commercial production of oil 

and gas are the main business of the second case company. A significant risk in the design and 

early execution of a new production project is the placement of exploration drill wells. Their 

objective is to find new oil or gas fields, based on a sound analysis of the prospect’s risks and 
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of the potential hydrocarbon volumes: what is the chance that a drilling (well) will locate 

hydrocarbons, and what quantity could there be? The design challenges are to understand what 

the best process and infrastructure design are to discover and explore these fields. They explore 

different locations and prospects, and their performance depends directly on the success rate of 

drilling, determined in the early design phase of the project. Test drillings are very expensive 

and represent a significant investment. To increase the success rate with regard to identifying 

prospective oil deposits, the opinions of multiple experts are solicited as part of the early 

engineering systems design risk management. Given that the subsequent detailed design of the 

whole production system is based on these analyses, attaining higher accuracy in their estimates 

is of great engineering and financial importance.   

Risk management process and link to other organizational processes: I interviewed 

the head of enterprise risk management twice as part of this case. The interviewee is in charge 

of facilitating risk quantification workshops. The company reaches high levels of maturity in 

terms of quantification and also has employees with outstanding risk quantification training. 

Furthermore, the overall managerial skills of these employees, in terms of running the whole 

risk management process, are at a high level. Yet there is some space left for improvement, 

mostly regarding the awareness of their work in the organization and communication to 

decision makers on the quality of data aspects. Moreover, the impact of the method choice has 

drawn their attention in recent years, due to the need for greater accuracy in the estimates. As 

they sometimes face severe uncertainties, they have not, until now, had a framework that would 

better support their argument for the additional research needs. 

Proposed design risk customization and evaluation: Their challenge is to ensure that 

all parties (not just highly trained people) follow the rationale for any change introduced during 

and through the risk quantification, and that they are able to illustrate its impact on the different 

levels of the project and organization. The recommendation in this case was to use the tailoring 

approach to facilitate the conversation with less risk-aware managers, but also with those 

managers without an extensive mathematical background. Since they run very complex 

calculations, it is essential that the managers understand the critical issues in terms of data 

quality. This can be achieved through the discussion of the five tailoring categories. The 

feedback I got mostly relates to the fact that the proposed approach would allow a structured 

conversation among different departments and at different hierarchical levels. Yet the desired 

changes in their risk management routine (introducing new quantification and visualization 
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methods with a greater focus on data quality) would also impact other processes, such as 

financial analyses, which can be challenging to achieve, as the organization relies on the current 

estimates at portfolio and strategic levels.  

8.4.2.3. Company three: SME, design in construction 

Area of work and design challenges: The third example organization is an 

engineering and consulting SME that provides design services for construction projects. They 

experienced several risks in the design phase and have heavy delays on their currently most 

challenging project. 

Risk management process and link to other organizational processes: Since there 

is no established culture regarding risk in their practice, there is no awareness of the need for 

it, of ways to incorporate it, or any appreciation of its role in value creation. To understand 

their practice and established ways of working, I talked to key stakeholders of the project. I 

conducted separate interviews with a risk management employee, a fire and safety engineer, 

the project manager, a structural engineer, the HVAC design manager, an electrical engineer-

designer, an architect and design manager, and the project owner. The employees have no 

educational background in risk management, are not aware of any bodies of knowledge, or any 

sort of risk management procedures. However, one of the engineers was actively exploring 

professional risk management online training material and professional conferences. 

Only after one of their larger projects (the design of a hotel complex) faced heavy 

delays, did the organization consider investigating methods to help them manage uncertainties. 

The understanding of such a need comes from managers, whereas some of the engineers see 

absolutely no reason even to jointly discuss possible risks. In their view, they are the experts 

for a particular design matter and they take full responsibility for that aspect, expecting the 

others to do the same in their own domains, without appreciating the potential challenges that 

are present at the intersections of the domains.  

Proposed design risk customization and evaluation: The challenge they are facing 

is to establish initial risk management practice. The recommendation in this case was to use 

the proposed tailoring approach to facilitate the conversation about their needs and the 

importance of establishing risk management practice, from the beginning informing them that 

the method (tool, technique) they choose should be based on an informed and knowledgeable 

choice, not just something copied from another company. Furthermore, I highlighted the 
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requirement to ensure a discussion took place about what kind of data they need to support the 

chosen analysis and how they can ensure its proper quality. The feedback was that the 

communication through the proposed approach was clear enough for the employees to 

understand and follow the concept, and some initial understanding and awareness of risk 

management was achieved. 

8.4.2.4. Company 4: Consultancy for the Design phase  

Area of work and design challenges: This international, multidisciplinary engineering 

consultancy company is an example of an organization that provides design services for 

construction projects. They provide consultancy services for projects such as the design of 

airports, transportation systems, hospitals and similar projects. They also have some of their 

own projects in construction. 

Risk management process and link to other organizational processes: To 

understand their practice and established ways of working, I talked to their business and risk 

management consultant, who works for many different clients in construction. The risk 

consultant had previously worked across different sectors: the pharmaceutical sector, the utility 

sector, the beer and beverage sector, and others. They have two types of projects: those where 

he works as a risk manager as a specialist and those where his work is incorporated into other 

services provided to the client as part of a bigger service for larger projects, or megaprojects. 

As part of working on the first type of project, they are helping clients to increase their maturity 

in terms of risk management. At the moment, he is the one who has the lead on risk 

management and in terms of resources he collaborates with other departments working on the 

same projects (for example, the financial team, or a planner). They are aware of the ISO 31000 

standard and other practitioners’ guidelines.   

Proposed design risk customization and evaluation: There was recognition of the 

great need to develop this type of tailoring approach. Furthermore, the practitioners from this 

company had been looking into available risk management maturity models before we 

established the collaboration. They appreciated having an overview of the maturity models 

described in Section 8.2.2, as it summarizes the basic information they need.  

However, the proposed approach is not seen as straightforwardly implementable. The 

approach is understandable for a risk manager, risk analyst or those very informed on risk 

management, but in order to present it to the others on the team it would need further 
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adjustments. However, the approach is seen as a valuable supplement to established practice. 

For instance, it could be used to support risk managers in their work and the communication of 

the need to improve the quantification. The interviewee also highlighted the fact that this and 

similar approaches should not be too academic, so as to be more easily applicable in practice.  

8.4.2.5. Company 5: Public Organization  

Area of work and design challenges: An international organization providing design 

services for a number of different projects and systems. They provide services to other NGOs, 

governments and lastly the private sector and private foundations. They are mainly focused on 

procurement services, project management, and infrastructure, plus they offer some financial 

management services (such as managing grants) and human resource services (some 

organizations outsource their recruitment processes). What is very interesting is that they are 

currently designing their risk and quality framework. The biggest challenge is to design a 

framework for the whole spectrum of their practice (applicable and manageable for everyone, 

from those working in the field in war zones to those working in senior positions in offices). 

Risk management process and link to other organizational processes: I conducted 

the interview with their risk and quality group. Previously, risk management was a part of 

project management. However, the decision was made to establish a separate team and dedicate 

more attention to the risk management process. Their risk management is part of the wider 

governance risk and compliance framework. 

They are aware of the standards and the practitioners’ guidelines, and have also got in 

touch with some of the practitioners with other companies that already have established risk 

management. Every project they start has to go through a qualitative risk assessment with 27 

questions divided into four risk categories with predefined answers (the level of criticality from 

0 to 4 that is tailored to each of the 27 questions). This assessment is followed up quarterly and 

updated. Operational risk management is daily risk management. They want to find a common 

basis for everyone to be able to complete their risk management task/report. For more 

systematic and quantitative information, they could use additional forms/questionnaires. 

Proposed design risk customization and evaluation: The proposed approach, in their 

view, requires expertise, and that could be the main challenge for the implementation of the 

approach in their organization. As a public entity, they have quite a wide range of projects. 

Some of the projects involve employees who are aware of risk and project management, but 



   154 

 

some employees need to be introduced to even the basics. They find the discussion on to what 

extent they need to go into analyses very interesting and very relevant. Finding the right balance 

is seen as the key to effective risk management.  

8.4.2.6. Company 6: Large-scale high-tech infrastructure design in energy 

sector 

Area of work and design challenges: The sixth case company is involved in designing 

and deploying large-scale high-tech infrastructure in the energy sector. Designing and 

operationalizing both onshore and offshore systems is part of their expertise.  

Risk management process and link to other organizational processes: Their risk 

management is recognized as one of the best practices, due to their advanced way of dealing 

with risk and uncertainties throughout the process, tools and decision making they have 

adopted and further developed. We previously conducted nine interviews with their senior 

project risk manager on their risk management and challenges in practice, as well as analyzing 

the implementation of a complex, quantitative engineering design and deployment project risk 

model in Primavera. Additionally, we conducted a follow-up interview on the proposed 

approach. 

Proposed design risk customization and evaluation: The company has already 

reached a high level of risk management maturity and, like Company 1, they constantly seek 

frameworks for further improvement and carry out re-evaluation. More concretely, they look 

into ways to improve their processes through advanced risk quantification techniques. 

Undoubtedly, they show a high level of understanding of the impact and the importance of the 

choice of risk method and its proper usage. However, the importance, resources (in terms of 

cost, time, and employees) needed, and the quality of data are some of their main concerns. 

The feedback on the possibilities of using and implementing this approach is therefore mostly 

related to the opportunities it provides in terms of better communication to the managers on 

these two core aspects: why they need better quality of data and why they need to improve their 

quantification. The downside of the approach is seen in the sense that, in order to properly use 

it (go in detail through all the criteria), a lot of time would be required. Often, the managers 

they report to allocate insufficient attention to the long process of reporting (presenting and 

questioning). 

 



   155 

 

8.5. Discussion  

 

The case companies’ interviews supported the view that I had identified in the literature 

about the diversity of engineering systems designs and, consequently, also of risk management 

practice. The first company showed a high level of understanding of the impact and the 

importance of the choice of risk method and its proper usage, and the maturity framework that 

this thesis proposed would help them to identify detailed improvements, especially in their 

consulting activities.  

For the second company, the proposed customizations would support their 

communication to less risk-aware managers, as well as to those without an extensive 

mathematical background. It would also help them identify where they have a greater need for 

better accuracy in their estimates, the approaches they might take to achieve these, and the 

necessary argumentation for additional research. The proposed approach could contribute to 

the sustainability and effectiveness of their risk management process.  

For the third organization, I consider that the proposed approach would be useful to 

help establish a practice to facilitate a conversation about their needs, from the beginning 

informing them that the method (tool, technique) they choose should be based on an informed 

and knowledgeable choice, not just “copied and pasted” from another company.  

The practitioners from the fourth company highly appreciated this research direction. 

While the proposed approach is seen as overly “academic” to be directly used in their practice, 

it is also seen as a valuable way to help risk managers to communicate to others in the company 

the need to improve the quantification.  

The fifth case company has a rather specific risk management profile, due to the nature 

of their organization. The concrete contribution that the approach introduced in this chapter 

could bring to their practice was hard to determine, as they are going through the restructuring 

of risk management process. However, the approach could support their workshops as well as 

enable support from the academic point of view in the argument for the need to approach the 

whole risk management process more structurally.  

And finally, the sixth company showed a high level of understanding of the impact of 

the choice of risk method and especially of its proper usage. The proposed approach would 

help them to start the conversation with their managers about the need to actively improve the 
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quality of data on which they base their assessments, as this represents one of the main concerns 

in their current practice. 

The interviews also supported the view, which I had identified from the research 

literature, of the need for any engineering systems design risk management process to be 

adapted to the particular circumstances of the project and of the organization undertaking it. 

As Loch (2000) demonstrates, based on 90 product development projects, there is no “best 

practice” product development process; rather, a tailoring approach is needed to help 

companies achieve their strategic innovation needs. They propose a strategy deployment 

procedure for product development, which can help an organization to manage its innovation 

efforts proactively. This and our research are aligned with other related work. For example, 

Mulqueen, Maples, and Fabisinski (2012) describe tailoring of systems engineering processes 

with a specific focus on the conceptual design environment. Cabannes et al. (2014) propose an 

approach for taking into account the maturity of information in risk assessments and providing 

meta-information on the risk estimations, given that there is uncertainty related to information 

during the design process (particularly in the early design stages). Fontoura and Price (2008) 

propose a systematic approach to managing risks in software development projects through 

process tailoring, with the aim of elaborating a defined process to a project suitable to the 

project’s context, taking advantage of agile methods, planned or hybrid, while preventing 

identified risks for the project. All these approaches are aligned with the approach we propose. 

However, tailoring is not an easy task; it requires experience and knowledge in related 

processes, and concrete recommendations that go beyond the statement that “you should tailor 

your risk management process” are scarce. Furthermore, changes in large organizations can 

take time and are difficult to implement. Starting from the number of approvals on different 

hierarchical levels needed for proceeding with a change, to training employees for the new 

process, and ensuring proper integration with other processes, implementing change represents 

a challenging task. Therefore, organizations need to treat the implementation itself as a strategic 

change project. This requires articulating clear objectives as well as success criteria, proper 

planning and resources, and effective monitoring and control. 

The approach taken in this chapter, based on existing risk management process maturity 

frameworks, with the addition of specific components that enable a concrete tailoring of risk 

management processes (e.g. decision making) to specific quantification approaches, makes 

contributions in both these respects. 
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The proposed tailoring can also be seen from a fit-for-purpose point of view. We believe 

this also makes the contribution of ensuring that risk management is fit-for-purpose as the 

dimensions we discuss (understanding of the risk management needs; method sophistication 

for risk quantification; quality of data; awareness regarding risk in organizational culture and 

impact of risk assessments in decision making) have a significant impact on it. This promises 

potential to develop the proposed customization framework into a tool incorporating significant 

detail on the process level, thus also enabling organizations with less design risk management 

context knowledge to significantly improve their overall process quality. However, the 

proposed tailoring approach requires further detailing and application in industry. This would 

allow reporting of the potential impact of the approach in an organization and its learning and 

knowledge sharing capacities. 

In summary, the key insights obtained through the case companies’ validation were: 

• Success in using the same tailoring framework at three different companies facing three 

very different risk profiles and design tasks; the three companies approached to provide 

their feedback on the developed approach raise the importance of the approach and suggest 

further improvements; 

• the framework yielded practical suggestions to adapt the design risk management process 

model that were seen both as fitting and relevant by the interview partners; 

• while the current application of the framework still requires significant risk management 

context knowledge (one of the challenges of the current state), the prototypical adaptation 

has already enabled us to collect concrete examples of alternative modes of executing risk 

management when using different quantification techniques.  

8.6. Conclusions 

 

During engineering systems design, companies deal with uncertainty. The types and 

degrees of uncertainty vary significantly as the design process progresses, and the choice of 

methods to deal with risk and uncertainty play a crucial role in achieving the desired results. 

Therefore, in this chapter I present the research on developing a framework to tailor risk 

management to the specific company’s needs. I accomplished this objective by linking risk 

management maturity concepts to previous research on product development, project 

management, and risk management methods, deriving five categories to guide practitioners in 

the choice of the appropriate method. The proposed framework advances the state of the art by 
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taking into account the quality of the available data, the corporate culture and awareness of 

risk, and the way responses are planned. I preliminarily tested the validity of our approach in 

six different companies, showing its value in tailoring risk management to the specific needs 

and challenges of each of the companies. 

Risk management awareness usually occurs after companies have already digested 

other management practices. These companies have usually already adopted strategic 

management cultures and methods such as, for instance, product/project portfolio management. 

The proposed approach enables further improvements of management practices by informing 

different hierarchical levels on the need for a more adequate process/method, accompanied 

awareness and its value.  

As discussed in more detail in Chapter 9, to fully take advantage of the potential that 

advanced risk and uncertainty quantification approaches offer, a company (or the 

analysts/managers responsible) must understand and articulate their overall risk management 

needs and resources available. In order to improve the accuracy of quantities produced, it is not 

enough to simply apply a more advanced method. Often, more resources need to be used, such 

as: hiring trained people or sending already employed experts to training courses, buying new 

software, getting adequate IT (more powerful computers, data storage, etc.), investing in data 

collection when needed and enabling data storage for learning purposes.  

For that reason, in my view, the greatest potential of these methods is by far in large-

scale engineering systems and large-scale projects. It makes sense to invest a bit more in the 

quality of the analyses on which the important decisions are made, given the impact they later 

have, as the difference in terms of the outcome can be significant.  

However, projects and design solutions that are not necessarily large-scale, but that deal 

with deep uncertainties, can also benefit significantly from applying advanced approaches. For 

instance, an IT solution can be designed for a particular online banking service or a tax system, 

or a transportation system that improves the experience for the end user. It impacts a large 

number of users, it becomes part of an extremely large system and better understanding is 

needed of its effect on the overall system. Yet, since it is a first-of-a-kind solution, it cannot be 

tested elsewhere and therefore it should be recognized that there is a need to cope better with 

deep uncertainties.    
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9.  Discussion: The non-probabilistic framework and its 

connection to the current state-of-the-art  
 

“All models are wrong, but some are useful” 

- George E.P. Box –  

To allow a more thorough reflection on the contributions of this PhD thesis and the 

general limitations potentially impacting the results, this chapter intends to wrap up the findings 

of this thesis and elaborate on the replicability and reproducibility of the research.  

In the context of this thesis, this is the final step: up to this point, the thesis has 

investigated advanced risk and uncertainty quantification methods (introduced under the non-

probabilistic framework) and the methods’ integration into the overall risk management 

process. This chapter concerns itself with the broader question of the integration of the non-

probabilistic framework into the existing state of the art in engineering systems design risk 

management, potential recommendations for its usage and specific method selection. This is 

followed by a discussion on methodological reflections and limitations. 

The chapter is structured as follows: Section 9.1 provides a rationale for considering 

the non-probabilistic framework as an additional step ‒ an extension of the current probabilistic 

(view on) risk management. Section 9.2 further describes this extension through the integration 

of risk assessment tools and techniques, and the comparison of probabilistic and non-

probabilistic methods. Additionally, recommendations depending on types of situations in 

engineering systems design are provided. Section 9.3 specifically addresses the limitations.  

9.1. The extension of the probabilistic view on quantification in risk 

management  

 

The methods investigated in this thesis are presented as a complement to probabilistic 

methods to quantify epistemic uncertainty. The basic rationale behind this is that the non-

probabilistic methods introduced in this thesis should complement the probabilistic processes 

in specific situations and scenarios that are dominated by epistemic uncertainty. They are not 

intended to substitute already established (entire) processes and analyses, but rather to support 

them in situations in which it has been demonstrated that conventional approaches face 
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challenges (examples are provided in Sections 3.3 and 3.4). Specific situations are documented, 

and their integration and recommendations are described in Section 9.2. 

Moreover, the literature on uncertainty quantification explains that probabilistic 

methods are basically a special case of the non-probabilistic ones. The main points for making 

such claims are following: 

1. The first group of methods: Mathematically imprecise probabilities are seen as a natural 

extension of probabilities, because different studies show that, with sufficient evidence 

(information), the intervals converge to precise estimates (Walley, 1999; 

Weichselberger, 2000). 

An exception to this line of thinking is Dempster-Shafer theory, which is created on 

completely different pillars: degree of belief and no condition to sum probability 

intervals to unity (Beynon, Curry, & Morgan, 2000). 

2. The second group of methods: Semi quantitative methods are technically a combination 

of probabilistic approaches and qualitative descriptions and/or visualizations that 

support the evidence behind the conducted analyses (Aven, 2008; Boone et al., 2010). 

3. The third group of methods: Exploratory modeling enables the sampling of a large 

number of scenarios for different plausible futures, on a large number of different 

inputs, for which conventional scenario analysis becomes only a subset of the new 

scope (Bankes, Walker, & Kwakkel, 2013). 

These methods are aimed at enabling modeling for system resilience and providing 

business continuity support.  

 

As an example, consider cyber security risks. Over the last five to ten years this type of 

risk has risen significantly in terms of size, number of attacks, their mutation capacities and 

effect. Major organizations can almost certainly expect to be the potential subject of an attack 

speaking in 3-5 year horizon. While they cannot be sure of the exact probability of this 

happening, they can prepare recovery systems, that are as good as and as fast as possible, to 

minimize the potential harm to their systems. In this context, the non-probabilistic methods 

assessment supports such aims.   
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9.2. Overview of the existing approaches and the comparison with non-

probabilistic methods 

To allow a discussion on the integration of the non-probabilistic methods into the 

broader, widely available and used set of methods (a broadly accepted collection), both the 

academic and practitioners’ communities need to consider various angles in which such 

integration contributes to the field. In that view, this thesis adds to the current state of the art 

by: 1) uplifting the importance of specifically addressing epistemic uncertainty, 2) providing 

the means to do so, 3) integrating developed methods into the broadly accepted collection of 

methods and 4) articulating recommendations to both research and practice. 

 In the previous chapters, this thesis has explained the first two aspects. After 

introducing, describing and analyzing different concepts, the explanations for their integration 

into the overall risk management process are discussed through the proposed tailoring 

approach. There is a need to more thoroughly discuss the concrete choice of a specific method. 

The third aspect aims to address this gap. As explained at the beginning of this thesis, the 

methods used in analyzing risks can be qualitative, semi-quantitative or quantitative. The 

degree of detail required will depend upon the particular application, the availability of reliable 

data and the decision-making needs of the organization. Some methods and the degree of detail 

of the analysis may be prescribed by legislation in a field. Other types of design 

solutions/projects may have certain domain tendencies (“common practice”), some can be 

contractual requirements, or there may be no usual approach at all. 

The work presented here builds on the existing literature and what is considered to be 

the best practice. More concretely, the foundation is found in the ISO 31000 risk management 

process description and ISO 31010 list of approaches (Institute, 2011). In light of this, the 

extension of Applicability of Tools used for Risk Assessment in ISO 31010 is presented in 

Appendix 3. Such an extended list allows the creation of awareness about the existence and 

availability of these approaches, and their applicability possibilities.  

Furthermore, a more detailed integration is developed and presented in Appendix 4, 

where methods are briefly described and further characterized. The significant extension here 

lies in two groups of methods: 1) software assessments and 2) non-probabilistic methods.  
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Over the last decade, software (computationally-based and web-based) solutions have 

emerged. As they provide a valuable contribution to the current practices, this thesis suggests 

expanding the current most-widely accepted list of Tools and Techniques with this group of 

methods. Namely, these solutions allow the usage of multiple tools and techniques from the 

same list in a structured, transparent and traceable way. This proposed extension is provided in 

Appendix 4 under “Software Assessment.”  

The included examples are: Oracle’s Primavera Risk Analysis, RamRisk, RAMAS, 

Resilinc, and Risk Calc (for references, please see Appendix 4). These types of methods 

brought a number of benefits, from which some were documented through the empirical work 

presented in Section 3.4. For instance, they allow the integration of both predeveloped risk 

registers and newly developed risk registers, they can identify common scheduling pitfalls, 

they can report confidence levels with regard to finishing dates, costs, internal rates of return, 

and net present values. Important features include more employees having the access to the 

same data and/or analysis at the same time, the possibility of allocating tasks and 

responsibilities, round-the-clock access from multiple devices, confidentiality (possibilities for 

restrictions), customized reporting, mail notifications, data storage, benchmarking against 

peers, etc.  

Therefore, these cloud-based platforms provide a powerful array of tools for risk 

management, model development, benchmarking and business continuity. These methods are 

user friendly, and project members can contribute directly and collaborate efficiently when 

performing analyses. They allow integration of multiple analyses, maturity assessments, and 

the use of various visualization options to customize solutions, access and reporting. For these 

reasons, they represent a valuable contribution to the field.  

The methods introduced in this thesis represent the second important extension of the 

overall collection (see Appendix 4). Non-probabilistic methods are in this way included in the 

list, and their merits have previously been discussed.  

Other than integrating developed methods to the broadly accepted collection of 

methods, this thesis also provides a comparison of the methods with some of the most widely 

used ones (Table 11). As illustrated, it is important to understand what the required inputs are 

for each of the analyses and what the expected outcomes are. The first three methods require 

more specific input, with predefined system variables. The three non-probabilistic methods 
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instead open up various possibilities for situations when such predefined information is not 

available: by elicitation of different formats, by providing qualitative explanations regarding 

the assumptions and by sampling a large number of scenarios.  

The comparison of the outputs reveals that, in the case of the first three methods, we 

can expect a precise outcome and a clear recommendation. In contrast, the non-probabilistic 

methods provide a broader description of a wider range of different outcomes according to the 

initial input. Strengths and weaknesses discussed in this thesis are summarized and presented 

in Table 11.  

Table 11 Comparison of the probabilistic and non-probabilistic methods 

Method Input Output Strengths Weaknesses 
Monte Carlo 

Analysis 
*Largely taken 

from the ISO 

31010 standard  

- Good model 

of the system 

and 

information on 

the types of 

inputs, the 

sources of 

uncertainty 

that are to be 

represented 

and the 

required output 

- Uniform, 

triangular, 

normal and log 

normal 

distributions 

are often used 

for this 

purpose 

- The output 

could be a single 

value 

- It could be a 

result expressed 

as the probability 

or frequency 

distribution 

- It could be the 

identification of 

the main 

Standards’ 

functions within 

the model that 

has the greatest 

impact on the 

output 

- In general, a 

Monte Carlo 

simulation will be 

used to assess 

either the entire 

distribution of 

outcomes or key 

measures from 

the distributions 

- Models are 

relatively simple to 

develop and can be 

extended as the 

need arises 

- Sensitivity 

analysis can be 

applied to identify 

strong and weak 

influences 

- Software is 

readily available 

and relatively 

inexpensive 

 

- The accuracy of 

the solutions 

depends upon the 

number of 

simulations which 

can be performed 

(this limitation is 

becoming less 

important with 

increased computer 

speeds) 

- It relies on being 

able to represent 

uncertainties in 

parameters by a 

valid 

distribution 

- Large and 

complex models 

may be challenging 

to the modeler and 

make it difficult 

for stakeholders to 

engage with the 

process 

- The technique 

may not adequately 

weigh high 

consequence/low 

probability events 

and therefore not 

allow an 

organization’s risk 

appetite to be 

reflected in the 

analysis 
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Consequence 

Probability 

Matrix 
*Largely taken 

from the ISO 

31010 standard 

- Customized 

scales for 

consequence 

and probability 

- A matrix 

which 

combines the 

two 

- The output is a 

rating for each 

risk or a ranked 

list of risk with 

significance 

levels defined 

 

 

 

  

- Relatively easy to 

use 

- Provides a rapid 

ranking of risks 

into different 

significance levels 

- It is difficult to 

define the scales 

unambiguously 

- Use is very 

subjective and there 

tends to be 

significant variation 

between raters 

- Risks cannot be 

aggregated (i.e. one 

cannot define that a 

particular number of 

low risks or a low 

risk identified a 

particular number of 

times is equivalent 

to a medium 

risk) 

- It is difficult to 

combine or compare 

the level of risk for 

different categories 

of consequences 

Bayesian 

analysis 
*Largely taken 

from the ISO 

31010 standard 

- Define 

system 

variables 

- Define causal 

links between 

variables 

- Specify 

conditional and 

prior 

probabilities 

- Add evidence 

to net 

- Perform 

belief updating 

- Extract 

posterior 

beliefs 

- The graphical 

output provides 

an easily 

understood model 

and the data can 

be readily 

modified to 

consider 

correlations and 

sensitivity of 

parameters 

- All that is needed 

is knowledge of the 

priors 

- Inferential 

statements are easy 

to understand 

- Bayes’ rule is all 

that is required 

- It provides a 

mechanism for 

computing 

subjective beliefs 

in a problem 

- Defining all 

interactions in 

Bayes nets for 

complex systems is 

problematic 

- Bayesian approach 

needs the 

knowledge of a 

multitude of 

conditional 

probabilities, 

which are generally 

provided by experts 

- Software tools can 

only provide 

answers based on 

these assumptions 

Imprecise 

Probabilities 
(Coherent upper 

and lower 

probabilities, 

(Walley, 1991)) 

- Expert 

judgments 

elicitation in 

different 

formats 

- Depending on 

the data format, 

the corresponding 

aggregation – 

single point, 

distribution, 

envelope, c-box 

- Various options 

for aggregating 

expert opinions 

- Imprecision 

explicitly manifests 

the degree of 

knowledge or 

ignorance  

- The greater the 

interval the greater 

our ignorance is 

 

- Harder to 

communicate the 

results 

- Harder to compute 

- Immaturity of the 

field  

- Can be a large 

imprecision that 

makes conclusions 

impractical 
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Semi-

quantitative 

methods 
(The NUSAP 

tool, (Funtowicz 

& Ravetz, 1990)) 

- Quantitative 

assessment 

followed by 

qualitative 

information on 

all the steps, 

assumptions 

and potential 

limitations  

- Precise 

quantitative 

output 

supplemented by  

descriptions of 

quality of data 

and 

visualizations 

representing 

uncertainty 

surrounding the 

results 

- Important 

information about 

the assumptions 

included in the 

analysis are 

provided to 

decision makers 

- Facilitate 

conversation about 

uncertainties, 

convenient for 

discussions with 

lay public 

- Not widely used, 

lack of awareness of 

its 

abilities/capacities 

- Can be time 

consuming to 

present all the 

details 

Exploratory 

modeling 
(RDM, (Walker, 

Haasnoot, & 

Kwakkel, 2013)) 

- Development 

of agents 

- Sampling of a 

large number 

of scenarios 

- Use trusted 

simulation 

models to 

consider a 

wide spectrum 

of plausible 

futures, each 

with different 

input 

parameters  

- A robust 

solution for a 

system/design 

that works 

satisfactorily over 

a broad range of 

possible tested 

futures 

- Advanced and 

thorough approach 

- Highly relevant 

for complex 

systems  

- Computational 

complexity 

- Seeks robustness 

rather than optimal 

solution 

- Demands a strong 

set of skills for its 

usage 

 

Regarding the fourth aspect in which this thesis adds to the current state of the art, it 

develops recommendations for the specific situations, previously identified as critical. This 

recommendation is framed as a combination of findings from the comparison of the methods, 

from literature and from the empirical studies (Table 12).  

It is important to clarify the *Resource dependency in the first recommendation. As the 

methods introduced in this thesis can be demanding in terms of resources, a number of other 

factors need to be considered when deciding on the method (apart from risk and uncertainty 

quantification considerations). The scope, size, budget, lifetime, and current level of risk 

management of projects play an important role. For instance, the greatest potential of these 

methods is in large-scale systems, also because of the fact that their budget allows such results 

to bring value to the organization. In the case of smaller systems, it can simply be too costly to 

be appreciated, even though it may lead to better results. Employing these methods involves 

having adequately educated employees, specialized in the topic, which is more reasonably to 

be expected in larger organizations. In the case of time pressures, there is a tendency to neglect 
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all the benefits from a more thorough investigation of system components and use tools that 

allow a rough estimate. 

Table 12 Recommendations for method selection for the key situations 

Situation Probabilistic Non-probabilistic 

“Low likelihood, high 

impact” 

Resource dependent* 

Advantage: Well-known and 

well established in practice. 

Disadvantage: 

Have been challenged in the 

accuracy and reliability of their 

results, making them arbitrary to 

use. 

Do not really cope with black 

swans.  

Advantage: Bring more 

relevant information to 

decision makers. 

Disadvantage: 

Do not provide a single, 

simple, straight forward 

answer, which is harder for 

decision makers to 

comprehend. 

New methods, representing a  

challenge for practice to 

integrate with other 

processes.  

“No information”, or 

hardly any knowledge 

or prior experience 

available. Typically, a 

first-of-a-kind situation 

Advantage: Relying on 

managers’ experience. 

Disadvantage: 

Arbitrary results. 

Possibilities for 

misrepresentation.  

 

Advantage: Recommended, 

by providing the means to do 

so. 

Disadvantage: 

Computational requirements 

and an adequate educational 

level of employees that is 

needed. 

“50-50 %” 

Possibility of 

distinguishing between 

the actual 0.5 outcome 

and default assigned 

probability  

Advantage: 

Disadvantage: 

Assigning 0.5 by default making 

it hard to further explain to 

managers.  

Advantage: Clear. 

Disadvantage: 

A new method that the whole 

team needs to switch to. It 

also needs to be integrated 

into other processes.  
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“Historical data sets 

available”, several 

experienced experts 

involved, experience in 

providing similar 

solutions-systems 

Advantage: Clear. 

Disadvantage: 

Computational complexity and 

costs of conducting the full 

analysis can be high. Time-

consuming when there is a 

pressure to make fast decisions. 

Advantage: 

Disadvantage: 

Add additional complexity 

and costs (in terms of time, 

money and other resources) 

that can be hard to justify.  

 

It is possible to anticipate that in the future, with an advance in methods and 

computational developments, and a wider availability of risk management educational 

programs (MSc studies and PhD projects), that this dependency may no longer be as high. 

However, at the moment, it represents one possibility for future research that would make 

methods more hands-on and their results easier for communication.   

9. 3. Methodological reflections and limitations of the study 

 

This PhD study has been carried out to investigate practical challenges taking place in 

the real world, which is not always controllable. As such, this research differs from studies 

taking place in controlled labs, where replicability can be achieved and demonstrated in an 

easier manner. Thus, the choice of this type of research may have consequences for validity, 

generalizability and repeatability.  

Validity 

Validity refers to the extent to which the findings of a research study accurately reflect 

the studied phenomenon (Collis & Hussey, 2009). There is an ongoing discussion around the 

criticism of case studies in different scientific communities. The most vociferous opponents 

indicate that such studies tend to be subjective and are often biased in the researchers’ 

interpretations. However, others, for example, Flyvbjerg (2006a), argue that case studies are 

neither more subjective nor more biased than other methods of inquiry, if additional wits are 

considered. 

To do so, and by following  Lincoln and Guba (1986), triangulation, peer debriefing 

and member check were applied. I employed method triangulation (Guba, 1981) by combining 
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case studies work with interviewing technique. On the other hand, a noteworthy limitation of 

this study lies in the inability to employ data triangulation. Due to the confidentiality issues, it 

was not feasible to arrange access to actual companies’ documentation and records or to 

perform observations. Such insights could have significantly enriched and strengthened the 

findings.   

Peer debriefing was organized in both the scientific and practitioners’ communities 

(Guba, 1981). As part of the scientific peer debriefing, I shared my research challenges with 

the research group of which I was part, and received critical feedback and challenging questions 

that enabled me to consider various angles and alternatives to my interpretations. During my 

first external research stay at Delft University of Technology, researchers from the Multi-Actor 

Systems Department challenged the extensiveness of the non-probabilistic framework. This 

resulted in the expansion of the framework with a whole new group of methods (the third 

group). During my second external research stay at Applied Biomathematics, USA, the 

researchers working at the Institute challenged the development of the case studies and the 

generalizability of the data. This resulted in me refining my argumentation and improving the 

data collection and coding. Furthermore, I presented subanalyses and received feedback from 

the broader researcher communities (design, project management and risk analysis). 

Peer debriefing in the practitioners’ communities was carried out through participation 

and presentation at professional conferences, seminars and forums, where I received feedback 

from risk managers, project managers, portfolio managers and policy makers, as well as 

business modelers and analysts. Their experiences have put this research into a very practical 

application perspective, encouraging me to develop solutions that seek to be applicable in and 

relevant for practice.  

The third step in improving the validity and reliability of this study was member check, 

which was based on the presentation of initial constructs and results to the interviewees and 

participants of the case studies. This enabled me to validate interpretations and helped me 

clarify that the data generating code was conducting representative samples.  

Generalizability and transferability 

 In research, generalizability refers to the extent to which the results of one study can be 

extended to a wider sample (Collis & Hussey, 2009). More specifically, in his work, Yin (2013) 
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points out the limitations of (single) case study generalizability that applies to this study as 

well. However, by introducing the term “transferability,” Flyvbjerg (2006a) argues that 

achieving learning from examples is a valuable outcome of a case study. Transferability refers 

to the fact that principles from one or more case studies can be transferred to similar contexts. 

While case studies cannot generalize beyond their sample (Kathleen M. Eisenhardt, 1989) and 

create/provide conclusions that will be applicable in all situations, they can result in knowledge 

relevant for similar contexts. Lincoln and Guba (1986) propose two ways to enable 

transferability—purposive sampling and descriptive data. 

As purposive sampling is not intended to be representative of a wider 

sample/population (Guba, 1981), it should allow comparison between cases based on specific 

criteria. The case companies (where interviews were conducted, presented in Chapter 8) were 

selected on the maximum variation criterion, which is a criterion for purposive sampling 

(Flyvbjerg, 2006a). Identification of commonalities across cases that vary to the maximum 

degree are considered highly transferable. However, the focus of sampling was on companies 

within engineering systems design. As such, this sector has characteristics that differ from other 

sectors. To have substantiated arguments for claiming transferability within risk analysis, but 

in other domains (such as ecology, or the pharmaceutical or financial industries), would require 

certain adaption or additional research. However, fields such as project, portfolio and 

megaproject management have significant overlap with design, making the results potentially 

transferable to that domain. 

Descriptive data, on the other hand, provide extensive information about a specific case 

(Lincoln & Guba, 1986). As transferability depends on matching characteristics between 

contexts (Lincoln & Guba, 1986), this thesis includes thorough case descriptions and case 

company descriptions. By providing those data, this thesis enables readers to compare the cases 

with other possible contexts and future applications.  

Repeatability  

As mentioned above, due to the high context dependency, the reliability of case studies 

has been questioned in research communities. This emerges due to the fact that the replication 

of a case study within a different yet related context will not necessarily result in consistent 

findings (Thomas, 2015). Reliability refers to the absence of differences in results if the 
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research is repeated (Collis & Hussey, 2009). However, others suggest that the reliability of 

case studies can be increased through audits (Lincoln & Guba, 1986). 

Audits involve allowing other researchers or companies to check the conducted analysis 

(Lincoln & Guba, 1986). This study involves audit initiatives, both from researchers and 

practitioners. Furthermore, for both case studies, the setup was discussed in another large 

company to ensure its repeatability, consistency and accuracy.  

For all these reasons, I argue that the main principles of the findings and the non-

probabilistic framework followed by the tailoring approach can (with adaptions) be transferred 

to risk management in other sectors. In this way, the findings, the non-probabilistic framework 

and the tailoring approach have potential in the broader context of risk management.   
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10. Conclusions: Learnings from applying advanced risk    

quantification methods to engineering systems design 
 

“We are what we repeatedly do. Excellence, then, is not an act, but a habit.” 

- Aristotle- 

Risk assessment methods have become widespread in supporting decision making 

processes. These methods have to create the necessary level of confidence in their results to 

satisfy the decision makers. To create this confidence in risk management, the key is to have a 

transparent and systematic analysis and representation of uncertainty.  

As outlined in Chapter 3, engineering systems design risk management practice has so 

far widely relied on probability-based methods when treating uncertainty. However, both 

theoretical and practical challenges have emerged, within engineering systems design as well 

as in risk management in other domains. On the other hand, the non-probabilistic methods 

emerged in other fields as alternatives to the challenging, and still not fully understood, 

epistemic uncertainty quantification. Only a few studies have investigated these non-

probabilistic methods, and little or no attention has been devoted to their application and 

integration into engineering systems design. Yet these methods are essential when exploring 

different means to represent uncertainty as part of risk management in engineering systems 

design. Therefore, it is crucial ‒ in terms of both research and practice ‒ to extend our 

knowledge base on risk management (quantification) in engineering systems design. 

As part of a comprehensive investigation and rethinking of uncertainty quantification 

in engineering systems, industry involvement was initiated through conducting case studies 

and interviews with practitioners to extract their professional knowledge (Chapters 3, 5, 6, 7 

and 8). These practical insights provided a unique opportunity to investigate the non-

probabilistic methods in the engineering systems design context and extend our knowledge 

base. The study was guided by four research questions (see Chapter 2) that supported the 

development of the non-probabilistic framework to support: 1) researchers in analyzing and 

representing (epistemic) uncertainty and 2) practitioners in planning, facilitating and 

performing their risk management.  
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The following conclusions summarize the core findings, and relate them to the existing 

research and practice.  

10.1. Core contributions of this thesis 

 

This thesis makes the following contributions: 

1) The thesis clarifies different concepts in uncertainty quantification and their 

limitations, and synthesizes challenges with the currently most widely used methods 

In Chapter 3, this thesis confronts research question 1. The literature review and 

conducted empirical studies provide the following finding: current risk management practice 

has challenges in terms of uncertainty quantification. The specific challenges in terms of 

modeling, quality of background knowledge and use and integration of results are documented 

and discussed. Furthermore, an overview of the main concepts in uncertainty quantification is 

provided, followed by the literature findings on their limitations, misuse or misrepresentation. 

The subsequent finding is that there is a need to investigate alternative approaches to adequately 

represent epistemic uncertainty.  

2) The thesis develops the non-probabilistic framework 

In Chapter 4, this thesis addresses research question 2. The main findings are literature-

based: other fields have dealt with similar issues, with the result that those fields have 

developed advanced methods for coping with uncertainty. The conceptual development here 

argues for the introduction of the methods to the engineering systems design field and exploring 

their application potential in the field. The contribution to our knowledge base in engineering 

systems design is collecting a broad range of methods, providing their systematization and 

categorization, and conceptually discussing their application in the engineering systems design 

context. Furthermore, the literature-based findings about the limitations of the non-

probabilistic methods are acknowledged ‒ their complexity has been recognized as the main 

reason for their not being widely used in terms of the analyses and resources needed. 

3) The thesis creates a usable, practical toolkit for practitioners  

In Chapters 5, 6 and 7, this thesis addresses research question 3. It transfers more 

general non-probabilistic methods into usable tools: a method for eliciting expert judgment in 

different data formats, a method for aggregating different data formats in expert judgment, a 
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qualitative Pedigree scoring for quality of data, a visualization method for uncertainty around 

data, and a bias correction method. This is done through examples of case study applications 

in the oil and gas industry (Chapters 5 and 6), followed by their comparison with several 

traditional probability approaches in representative situations (Chapter 9). The main findings 

here are based on empirical research work: for the engineering design situations and scenarios 

tested in this thesis, the non-probabilistic methods provided a more reliable representation of 

uncertainty. 

4) The thesis develops a tailoring approach to tie the quantification needs to the overall 

risk management process capabilities 

In Chapter 8, this thesis addresses research question 4. After introducing, describing 

and analyzing different concepts, the explanations for their integration into the overall risk 

management process are discussed through the proposed tailoring approach. The main finding 

highlights the fact that the success of choosing a specific quantification method from the 

available options is context dependent, and a broader risk management process view needs to 

be carefully considered when tailoring risk management to specific design situations, rather 

than the simple picking of a specific advanced quantification method. 

In the end, there is a need to discuss more thoroughly the actual choice of a specific 

method. Appendices 3 and 4 provide insights into the rich set of available methods (including 

the non-probabilistic extension) to fit and address different problems. This thesis proposes that 

the choice of the methods is dependent on context, resources and capabilities (the discussion is 

opened in Chapter 9). This means that once practitioners have understood their needs (through 

the proposed tailoring approach), a conscious choice needs to be made in terms of the allocation 

of resources, the adequate usage of a method, and the acknowledgement of each method’s 

limitations (instead of hiding such obstacles). Furthermore, the importance of an adequate level 

of employees’ education (in terms of risk management and risk quantification) is raised, as 

methods involving higher mathematical sophistication require certain skills in both conducting 

analyses and presenting, communicating and explaining the results to various stakeholders 

involved in decision making.  

10.2. Implications for research in engineering systems design  

 

This thesis has the following implications for research: 
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• The thesis offers a clarification of different concepts of risk and uncertainty quantification, 

documenting the challenges and limitations of the current practice of uncertainty 

quantification. Researchers can use this information to guide the development of 

approaches to overcome these limitations. Furthermore, the clarification provided in this 

thesis could be a good starting point for young researchers seeking to explore their research 

directions.  

 

• The field of engineering systems design is enriched by a collection of advanced risk and 

uncertainty representation approaches, introduced through the non-probabilistic 

framework. The non-probabilistic methods extend the umbrella of available approaches, 

which can also be researched in other case applications.  

 

• The field of risk management is enhanced by concrete examples and case studies for the 

particular needs of one insufficiently researched domain: engineering systems design. This 

contributes to the overall verification of risk management methods and tools and their 

applicability, usability and generality. 

 

• It is critical to clarify the fact that we should not expect unrealistic answers from science. 

The intention of quantification methods is not to eliminate uncertainty, but rather to provide 

its effective management. It is necessary to raise awareness about this central distinction 

among other researchers in the community, as well as the lay public.  

 

10.3. Implications for practice in risk management 

 

This thesis has the following implications for practice: 

• Managerial implications include support for decision making under uncertainty in 

engineering systems design. This can help practitioners to be aware of the pitfalls of current 

practices and reflect on the opportunities for improving their risk management process. 

 

• Throughout the project, one of the main goals and contributions to the practice has been 

ensuring a higher level of understanding of uncertainty, its nature and types, and the need 

to cope with it knowledgably in the field by presenting and participating in various events. 
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Another goal was ensuring practitioners’ greater awareness of the need to more thoroughly 

revise the way they decide on a risk quantification method and, in particular, how they deal 

with epistemic uncertainty, through active industry engagement, different industry 

involvement and presentation across various levels of managerial hierarchy. 

 

• A tailoring risk management approach is developed, based on a risk management maturity 

model, which can be seen as an extension of or additional feature of the ISO 31000 Standard 

and the risk management process. The extended process view provided through this 

tailoring approach enables a better understanding of the need for and applicability of the 

approaches introduced in this thesis. 

 

• The contributions are highlighted through the lens of the current trends in design, such as 

industrial product-service systems and the integration of various systems (particularly those 

that face epistemic uncertainty due to their innovative nature and first-of-a-kind solutions). 

Globalization and rapid technological changes demand proactive monitoring and timely 

reactions and decisions, while keeping options open for future possibilities. Risk 

management should therefore keep pace with the evolving and dynamic nature of 

engineering systems.  

10.4. Directions for future research  

 

 The paragraphs that follow contain suggestions for relevant future research in relation 

to the four core findings and the non-probabilistic framework. Future studies can continue the 

development of “beyond probabilistic” thinking in risk and uncertainty quantification in design 

as this thesis provides the basis for 1) collecting/adding/developing more (and new) methods, 

2) addressing particular challenges through the application of selected approaches in specific 

design situations, and 3) further fostering the impact of such applications on decision making 

processes and the overall quality of design solutions.  

 Core contribution 1 and related findings open up the need for future research of other 

types of risk management challenges in engineering systems design. For instance, purely 

behavioral aspects are discussed only to a certain degree in this thesis. Different perceptions of 

different stakeholders when communicating non-probabilistic results are still to be 
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investigated. Additionally, methods that specifically address or integrate the treatment of 

ambiguity are an interesting direction. 

 Core contribution 2 and related findings suggest further investigation of other 

alternative approaches and their integration into the non-probabilistic framework. For instance, 

specific literature searches in fields such as mechanical engineering or IT have been outside of 

the scope of this thesis, but could potentially provide more resources.  

Core contribution 3 and related findings reveal opportunities for various types of 

research. First, additional cases from different industries and different contexts would help in 

identifying and documenting both opportunities for, and the limitations of, the application of 

the approaches introduced in this thesis. As the generalizability of the conducted studies is 

limited, these additional studies would allow a clearer understanding of specific boundaries. 

Second, applications in real case studies, or even past projects (but on actual data) would 

provide new insights. Such applications would enable further adjustments of the methods for 

particular cases and design challenges. Those adjustments would provide practitioners with 

more hands-on tools, and provide researchers with the ability to streamline some of the more 

mathematically complex approaches and to seek other application domains.  

Third, analyzing actual data is of great importance as it could demonstrate the ability 

of the introduced approaches to cope with “the noise.” Often, due to time pressures, mistakes 

or intentional approximations of some form accompany the documentation recorded in 

organizations. Many of the approaches can first be tested on the historical data (which is the 

biggest strength for the companies that store this information). Such valuable material can 

allow the comparison of the approaches and their results, and inform on the level of 

professionals’ ability to read and comprehend the results on different levels.  

Finally, the diversity of design projects and their solution space have a broad range. 

Core finding 4 and related findings allow a proper understanding of the particular needs in 

terms of risk management, highlighting specific situations in which advanced methods are 

essential. The positive feedback on the tailoring approach opened the door for additional 

discussions, implementation examples and the commercialization potential of the approach. In 

this way, it could be the basis for the systematic improvement of risk management and its 

integration into the broader managerial processes. Future studies could apply the approach in 

different companies, making the findings more generalizable and opening up the possibility of 
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a bigger scientific contribution. The proposed methods, and the related tailoring approach and 

gained knowledge, can also be introduced and used in other domains, such as project and 

program management and supply change management, where many of the challenges are based 

on design issues or are emerging in design.  

An acceptable and largely affordable way for companies to further explore non-

probabilistic methods could be through encouraging and supporting its employees to study 

further and engage in MSc projects and other research activities. In this way, a company could 

potentially benefit from the results of the application of the methods, educating its employees 

and possibly identifying areas for improvement in its risk management process.  

My recommendation for future studies is, if feasible, to design a study over a longer 

period of time. This would enable the capturing of a more nuanced research process and allow 

sufficient time to provide a significant amount of detail in each of the analyses conducted. I 

would seek to develop case studies in various companies involved in engineering systems 

design, evaluating their processes and methods applications. It is essential to establish a fruitful 

industrial collaboration built on mutual trust and respect, and to be open to understanding 

practitioners’ needs (both short- and long-term ones). This is a key element in adjusting risk 

and uncertainty quantification methods for their direct, practical usage, and in opening 

supplementary research questions.  

This thesis concludes with the following insight: there is no single best method for 

quantifying every type of uncertainty. Context, resources and application skills play a major 

role, as well as a proper understanding of different schools of thought when applying methods. 

The thesis looks into and identifies situations when the non-probabilistic methods are more 

adequate to use, describes these situations and provides the means (tools) to apply them in the 

identified contexts. Nevertheless, this high potential of the non-probabilistic methods in 

engineering systems design is dependent on their integration into the overall risk management 

and associated processes. These must be carefully and knowledgably planned and carried out 

in order to harness this potential and to achieve an actual design impact in practice. 
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Appendix 2: Interview Guides  
 

Interview guide for documenting challenges in risk management practice  

Introduction  I introduce myself and my background.  

I briefly present the PhD project.  

This includes an explanation of the expectations of the interview and 

plans for its use. 

Background of 

the interviewee 

Can you give me a short introduction to your current position 

(including exact title, hierarchical level, etc.)? 

Also about your professional background, including examples of 

previous projects, tasks, duties? 

What are your current roles and responsibilities in the organization? 

Previous 

experience with 

risk management 

Are you aware of risk management standards and procedures? 

Have you had any prior experience with risk management? What was 

it? 

Educational level—ask for details if relevant. 

Have you had any training on the topic? 

Design (solution) 

in question 

What kind of design work does your organization do? 

Who are the users of your solutions? (Affecting whom?) 

What is the scope/budget and lifetime of your projects? (Portfolio of 

design activities.) 

Do you cover an entire system’s life-cycle or only the design? 

The project you are currently working on is in which design phase? 

Risk management 

in the 

organization  

Can you briefly present how risk management is performed in your 

practice? 

Do you rely on the current best-practice recommendations (ISO 

31000, PMBok guide, etc.)? 

How applicable are those recommendations to your practice? 

How would you describe the position of risk management (risk 

managers) in your organization? (The 1st, 2nd or 3rd line of defense?) 

Who is in the team? 

Who do they report to? On what? How often? 

In which form (written reports, presentations, oral-dialog)? 

Risk 

quantification 

(Risk and 

uncertainty 

modelling) 

In your practice do you rely on any quantification methods? 

If yes, which ones? If not, what do you use instead? 

What are the tools you currently use? Do you use one or more 

methods? How many of you work on it? 

Can you share more about your experiences with employing the 

method? 

Do you focus on representing epistemic uncertainty? 

Data collection Data availability: 

What kind of data do you use in your assessments? 

How are they collected? 

Who has the access to it? How sensitive is it? 

Data quality: 

Do you consider how reliable your data are? 
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How do you challenge the accuracy of the experts’ estimates 

(surveys, measurements or other ways in which you collect your 

data)? 

Lack of data: 

In case of missing data, what do you do? 

Do you sometimes experience time pressures? If so, how does that 

affect your modeling process and/or data quality? 

Do you have means (tools, protocols, visualizations) to report and 

separately discuss the quality of data on which you performed the 

analyses (within the risk management team and with decision 

makers)? 

Limitations of the 

chosen approach 

What are the challenges with the method you are using? Please 

elaborate.  

What additional features of the method would you like/need to have? 

How much time do you need to perform your assessment?  

What resources you need in order to do so? 

Do you have managerial support for collecting all the information 

you need? 

Communication 

of the results 

How do you prepare for the communication of the results? 

What is your main concern when doing so, what do you try to 

highlight?  

What is the main message you send? Only the top risks or the overall 

findings? Or more? 

Is a discussion on data included? Is the reliability of results 

considered? 

What is your biggest challenge when communicating the result? 

Risk-informed 

decision making  

How are the results of your assessment taken into account? 

What challenges do you experience? 

Do you experience any follow-ups, meaning requests for additional 

research/assessment/analyses? 

What other aspects can impact decision making? 

Other 

(Some of the often 

recognized, 

additional, 

questions) 

Do you store your data and knowledge as some form of historical 

data? 

Is there a possibility for knowledge sharing from project to project? 

What additional challenges have you noticed in today’s risk 

management? 

If you had the opportunity to choose, would you change the tool you 

are using?  

What happens if you are dealing with a first-of-a-kind solution, for 

which you do not have prior experience? Please describe how you 

approach modeling (assessment) in such a case.  

Did you try using other methods, for instance Monte Carlo 

simulation? What are your experiences? 

Do you consider having insurance to cover some of the risks 

materializing? Who decides on when and which ones? Did you try 

using other methods, for instance Monte Carlo simulation? What are 

your experiences? 

Do you consider having insurance to cover some of the risks 

materializing? Which ones, who and when decides on that? 
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Interview guide for the risk management tailoring approach  

Introduction  

(shortened if the 

interviewee was 

previously 

contacted) 

I introduce myself and my background.  

I briefly present the PhD project.  

This includes an explanation of the expectations of the interview and 

plans for its use. 

Background of the 

interviewee 

(shortened if the 

interviewee was 

previously 

contacted) 

Can you give me a short introduction to your current position 

(including exact title, hierarchical level, etc.)? 

Also about your professional background, including examples of 

previous projects, tasks, duties? 

What are your current roles and responsibilities in the organization? 

Previous 

experience with 

risk management 

(shortened if the 

interviewee was 

previously 

contacted) 

Are you aware of risk management standards and procedures? 

Have you had prior experience with risk management? What was it? 

Educational level ‒ ask for details if relevant. 

Have you had any training on the topic? 

Area of work and 

design (solution) 

in question 

What kind of design work does your organization do? 

Who are the users of your solutions? (Affecting whom?) 

What is the scope/budget and lifetime of your projects? (Portfolio of 

design activities). 

Do you cover an entire system’s life-cycle or only the design? 

The project you are currently working on is in which design phase? 

Challenges with 

the type of design  

What are the challenges with the solutions you are developing (in 

your organization)? 

How much novelty or new technology do they include? 

Do you have first-of-a-kind solutions? 

How dynamic is the market? How competitive is the field? 

What is the time horizon of the solutions that you are developing? 

How do you integrate and prioritize your activities? 

How early in the process do you take risk and uncertainty into 

account? 

What are the milestones? 

Risk management 

in the 

organization  

Can you briefly present how risk management is performed in your 

practice? 

Do you rely on the current best-practice recommendations (ISO 

31000, PMBok guide, etc.)? 

How applicable are those recommendations to your practice? 

How would you describe the position of risk management (risk 

managers) in your organization? (The 1st, 2nd or 3rd line of defense?) 

Who is in the team? 

Who do they report to? On what? How often? 

In which form (written reports, presentations, oral-dialog)? 

Do you benchmark your practice to others? Do you use maturity 

models? How? 

How is risk management integrated into the overall organizational 

structure? 
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Details regarding 

the approach 

An explanation from my side.  

Figure 17 Relationship of maturity categories and the ISO 31000 risk 

management process, from this thesis. 

Understanding of 

the needs 

Do you consider the broader impact and integration of risk 

management in your organization? 

How are resources distributed and how much is allocated for this 

type of analysis (in terms of employees, software, access to different 

information, etc.)? 

Do you discuss project types and sizes? Do they differ in terms of 

risk management needs? 

Do you distinguish between aleatory and epistemic uncertainty?  

Do you focus on representing epistemic uncertainty? 

What are your needs in terms of quantification? 

Method 

sophistication for 

risk quantification 

(Risk and 

uncertainty 

modelling) 

In your practice do you rely on any quantification methods? 

If yes, which ones? If not, what do you use instead? 

What are the current tools you use? Do you use one or more 

methods? How many of you work on it? 

Can you share more about your experiences with employing the 

method? 

How did you choose that approach?  

What did you use before? Did you try any other methods? 

How much time do you need to perform your assessment?  

How computationally demanding (mathematically sophisticated) is 

it?  

Quality of data  

 

What kind of data do you use in your assessments? 

How are they collected? 

Who has the access to it? How sensitive is it? 

What kinds of measurements (and data collection methods) do you 

use? 

How do you challenge the accuracy of the experts’ estimates 

(surveys, measurements or other ways in which you collect your 

data)? 

In case of missing data, what do you do? 

Do you sometimes experience time pressures? If so, how does that 

affect your modeling process and/or data quality? 

Do you have means (tools, protocols, visualizations) to report and 

separately discuss the quality of data on which you performed the 

analyses (within the risk management team and with decision 

makers)? 

How do you get the budget for additional research—data collection 

(in terms of time, costs and trained employees)? 

Do you have managerial support for collecting all the information 

you need? 

Awareness 

regarding risk in 

organizational 

culture  

How do you prepare for the communication of the results? 

What is your main concern when doing so, what do you try to 

highlight?  

What is the main massage you send? Only top risks or the overall 

findings? Or more? 

What is your biggest challenge when communicating results? 
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That is when communicating to your colleagues from the team or 

your superiors. But what about other employees? 

How do others perceive your work (risk management related tasks)? 

How would you describe the risk management culture in your 

organization? Do they understand the value it creates? 

Do you and how do you adjust your communication and vocabulary 

depending on the position of the employee you are interacting with 

(some may have had no experience with risk management and 

therefore need some basic explanations)? 

Do you get the opportunity to attend professional conferences or 

other types of training? 

Is there an opportunity for knowledge sharing from project to 

project? 

Impact of risk 

assessments in 

decision making  

How are the results of your assessment taken into account? 

Generally, do you perceive there is trust in the results? Please 

elaborate.  

Is there a discussion on data included? Is the reliability of results 

considered? Does it comply with the development of the responses? 

What challenges do you experience? 

Do you experience any follow-ups, meaning requests for additional 

research/assessment/analyses? 

What other aspects can impact decision making? 

Feedback In your opinion, which criteria from the tailoring approach need to be 

specifically addressed within your organization? 

What are the challenges with the proposed approach? 

Where do you see it having the highest potential? How would it 

support your current practice? 

Other 

(Some of the often 

recognized, 

additional, 

questions) 

What additional challenges have you noticed in today’s risk 

management? 

If you had the opportunity to choose, would you change the tool you 

are using?  

What happens if you are dealing with first-of-a-kind solutions, of 

which you do not have prior experience? Please describe how you 

approach modeling (assessment) in such a case.  

If you consider the approach too “academic,” can you please 

elaborate why you think so? Which parts are too demanding? 
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Appendix 3: Tools and Techniques  
 

*Table adapted and extended from the ISO31010 Standard. 

Table A.3 Applicability of tools used for Risk Assessment 

Tools and 

Techniques 

Risk Assessment Process 

Risk 

Identification 

Risk Analysis Risk 

Evaluation Consequence Probability Level of 

risk 

Brainstorming SA1 NA2 NA NA NA 

Structured or 

Semi-Structured 

Interviews 

 SA NA NA NA NA 

Delphi SA NA NA NA NA 

Checklists SA NA NA NA NA 

Primary Hazard 

Analysis 

SA NA NA NA NA 

Hazard and 

Operability 

Studies 

(HAZOP) 

SA SA A3 A A 

 Hazard Analysis 

and Critical 

Control Points 

(HACCP) 

SA SA NA NA SA 

Environmental 

Risk 

Assessment 

SA NA NA NA NA 

Structure 

<<What if?>> 

(SWIFT) 

SA NA NA NA NA 

Scenario 

Analysis 

SA SA A A A 

Business Impact 

Analysis 

A SA A A A 

Root Cause 

Analysis 

NA SA SA SA SA 

Failure Mode 

Effect Analysis 

SA SA SA SA SA 

Fault Tree 

Analysis 

A NA SA A A 

Event Tree 

Analysis 

A  SA A A NA 

Cause and 

Consequence 

Analysis 

A SA SA A A 
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Cause-and-

Effect Analysis 

SA SA NA NA NA 

Layer 

Protection 

Analysis 

(LOPA) 

A SA A A NA 

Decision Tree NA SA SA A A 

Human 

Reliability 

Analysis 

SA SA SA SA A 

Bow Tie 

Analysis 

NA A SA SA A 

Reliability 

Centered 

Maintenance 

SA SA SA SA SA 

Sneak Circuit 

Analysis 

A NA NA NA NA 

Markov 

Analysis 

A SA NA NA NA 

Monte Carlo 

Simulation 

NA NA NA NA SA 

Bayesian 

Statistics and 

Bayes Nets 

NA SA NA NA SA 

FN Curves A SA SA A SA 

Risk Indices A SA SA A SA 

Consequence/Pr

obability Matrix 

SA SA SA SA A 

Cost/Benefit 

Analysis 

A  SA A A A 

Multi-Criteria 

Decision 

Analysis 

(MCDA) 

A  SA A SA A 

Expert 

judgement 

elicitation 

process with 

IPs 

SA SA SA SA SA 

The NUSAP 

tool 

A A A SA SA 

Robust 

Decision 

Making 

SA SA SA SA A 

1 Strongly Applicable. 
2 Not Applicable. 
3 Applicable. 
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Appendix 4: Types of Risk Assessment Tools  
 

*Table adapted and extended from the ISO31010 Standard. 

Table A.4 Attributes of a Selection of Risk Assessment Tool 

Type of Risk 

Assessment 

Technique 

Description Relevance of Influencing 

Factors 

Can 

Provide 

Quantitative 

Output 
Resources 

and 

Capability 

Nature and 

degree of 

Uncertainty 

Complexity 

LOOK-UP METHODS 

Checklists A simple form of risk identification. 
A technique which provides a listing 
of typical uncertainties which need 
to be considered. Users refer to a 
previously developed list, codes or 
standards. 

Low Low Low No 

Primary 

Hazard 

Analysis 

A simple inductive method of 
analysis whose objective is to 
identify the hazards and 
hazardous situations and events 
that can cause harm for a given 
activity, facility or system. 

Low High Medium No 

SUPPORTING METHODS 

Structured 

Interview and 

Brainstorming 

A means of collecting a broad 
set of ideas and evaluation, 
ranking them by a team. 
Brainstorming may be stimulated 
by prompts or by one-on-one 
and one-on-many interview 
techniques. 

Low Low Low No 

Delphi 

Technique 

A means of combining expert 
opinions that may support the 
source and influence 
identification, probability and 
consequence estimation and risk 
evaluation. It is a collaborative 
technique for building consensus 
among experts. Involving 
independent analysis and voting 
by experts. 

Medium Medium Medium No 

SWIFT 

Structured 

<<What-If>> 

A system for prompting a team 
to identify risks. Normally used 
within a facilitated workshop. 
Normally linked to a risk analysis 
and evaluation technique. 

Medium Medium Any No 

Human 

Reliability 

Analysis 

(HRA) 

Human reliability assessment 
(HRA) deals with the impact of 
humans on system performance 
and can be used to evaluate 
human error influences on the 
system. 

Medium Medium Medium Yes 

SCENARIO ANALYSIS 

Root Cause 

Analysis 

(Single 

Loss Analysis) 

A single loss that has occurred 
is analyzed in order to 
understand contributory causes 
and how the system or process 
can be improved to avoid such 
future losses. The analysis shall 
consider what controls were in 
place at the time the loss 
occurred and how controls might 
be improved. 

Medium Low Medium No 
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Scenario 

Analysis 

Possible future scenarios are 
identified through imagination or 
extrapolation from the present 
and different risks considered 
assuming each of these 
scenarios might occur. This can 
be done formally or informally 
qualitatively or quantitatively. 

Medium High Medium No 

Toxicological 

Risk 

Assessment  

Hazards are identified and 
analyzed and possible pathways 
by which a specified target might 
be exposed to the hazard are 
identified. Information on the 
level of exposure and the nature 
of harm caused by a given level 
of exposure are combined to 
give a measure of the probability 
that the specified harm will 
occur. 

High High Medium Yes 

Business 

Impact 

Analysis 

Provides an analysis of how key 
disruption risks could affect an 
organization’s operations and 
identifies and quantifies the 
capabilities that would be 
required to manage it. 

Medium Medium Medium No 

Fault Tree 

Analysis 

A technique which starts with the 
undesired event (top event) and 
determines all the ways in which 
it could occur. These are 
displayed graphically in a logical 
tree diagram. Once the fault tree 
has been developed, 
consideration should be given to 
ways of reducing or eliminating 
potential causes/sources. 

High High Medium Yes 

Event Tree 

Analysis 

Using inductive reasoning to 
translate probabilities of different 
initiating events into possible 
outcomes. 

Medium Medium Medium Yes 

Cause/ 

Consequence 

Analysis 

A combination of fault and event 
tree analysis that allows 
inclusion of time delays. Both 
causes and consequences of an 
initiating event are considered. 

High Medium High Yes 

Cause-and-

Effect 

Analysis 

An effect can have a number of 
contributory factors which may 
be grouped into different 
categories. Contributory factors 
are identified often through 
brainstorming and displayed in a 
tree structure or fishbone 
diagram. 

Low Low Medium No 

FUNCTION ANALYSIS 

FMEA and 

FMECA 

FMEA (Failure Mode and Effect 
Analysis) is a technique which 
identifies failure modes and 
mechanisms, and their effects. 
There are several types of 
FMEA: Design (or product) 
FMEA which is used for 
components and products. 
System FMEA which is used for 
systems. Process FMEA which 
is used for manufacturing and 
assembly processes. Service 
FMEA and Software FMEA. 
FMEA may be followed by a 
criticality analysis which defines 
the significance of each failure 
mode, qualitatively, semi-
qualitatively, or quantitatively 
(FMECA). The criticality analysis 
may be based on the probability 
that the failure mode will result in 

Medium Medium Medium Yes 
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system failure, or the level of risk 
associated with the failure mode, 
or a risk priority number. 

Reliability-

Centered 

Maintenance 

A method to identify the policies 
that should be implemented to 
manage failures so as to 
efficiently and effectively achieve 
the required safety, availability 
and economy of operation for all 
types of equipment. 

Medium Medium Medium Yes 

Sneak 

Analysis 

(Sneak 

Circuit 

Analysis) 

A methodology for identifying 
design errors. A sneak condition 
is a latent hardware, software, or 
integrated condition that may 
cause an unwanted event to 
occur or may inhibit a desired 
event and is not caused by 
component failure. These 
conditions are characterized by 
their random nature and ability 
to escape detection during the 
most rigorous of standardized 
system tests. Sneak conditions 
can cause improper operation, 
loss of system availability, 
program delays, or even death 
or injury to personnel. 

Medium Medium Medium No 

HAZOP  

Hazard and 

Operability 

Studies 

A general process of risk 
identification to define possible 
deviations from the expected or 
intended performance. It uses a 
guideword based system. 
The criticalities of the deviations 
are assessed. 

Medium High High No 

HACCP 

Hazard 

Analysis and 

Critical 

Control 

Points 

A systematic, proactive, and 
preventive system for assuring 
product quality, reliability and 
safety of processes by 
measuring and monitoring 
specific characteristics which are 
required to be within defined 
limits. 

Medium Medium Medium No 

    CONTROLS ASSESSMENT 

LOPA 

(Layers of 

Protection 

Analysis) 

(May also be called barrier 
analysis). It allows controls and 
their effectiveness to be 
evaluated. 

Medium Medium Medium Yes 

Bow Tie 

Analysis 

A simple diagrammatic way of 
describing and analyzing the 
pathways of a risk from hazards 
to outcomes and reviewing 
controls. It can be considered to 
be a combination of the logic of 
a fault tree analyzing the cause 
of an event (represented by the 
knot of a bow tie) and an event 
tree analyzing the 
consequences. 

Medium High Medium Yes 

STATISTICAL METHODS 

Markov 

Analysis 

Markov analysis, sometimes 
called State-space analysis, is 
commonly used in the analysis 
of repairable complex systems 
that can exist in multiple states, 
including various degraded 
states. 

High Low High Yes 
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Monte 

Carlo 

Analysis 

Monte Carlo simulation is used 
to establish the aggregate 
variation in a system resulting 
from variations in the system, for 
a number of inputs, where each 
input has a defined distribution 
and the inputs are related to the 
output via defined relationships. 
The analysis can be used for a 
specific model where the 
interactions of the various inputs 
can be mathematically defined. 
The inputs can be based upon a 
variety of distribution types 
according to the nature of the 
uncertainty they are intended to 
represent. For risk assessment, 
triangular distributions or beta 
distributions are commonly 
used. 

High Low High Yes 

Bayesian 

Analysis 

A statistical procedure which 
utilizes prior distribution data to 
assess the probability of the 
result. Bayesian analysis 
depends upon the accuracy of 
the prior distribution to deduce 
an accurate result. Bayesian 
belief networks model cause-
and-effect in a variety of 
domains by capturing 
probabilistic relationships of 
variable inputs to derive a result. 

High Low High Yes 

SOWFTWARE ASSESSMENT (Examples) 

Oracle’s 

Primavera 

Risk 

Analysis 

Primavera Risk Analysis 
integrates directly with project 
schedules and cost estimates to 
provide quick and easy 
techniques to model risks and 
analyze the cost and schedule 
impacts of mitigating them. 
Use distribution to determine 
confidence levels for project 
pans and schedule and cost 
contingencies.* Available at:  
https://www.oracle.com/applicati
ons/primavera/products/risk-
analysis.html 

High Medium High Yes 

RamRisk RamRisk is a web-based risk 
register specifically developed to 
support the optimal handling of 
risks and opportunities. 
RamRisk complies fully with ISO 
31000, 'Risk management – 
Principles and guidelines'. User-
friendly and flexible user 
interface that makes it easy to 
setup new projects with 
templates and make personal 
user defined views* Available at: 
https://ramrisk.com/ 

High Medium High Yes 

RAMAS RAMAS Risk Calc 4.0 computes 
with scalars, intervals, fuzzy 
numbers, probability 
distributions, and interval 
bounds on probability 
distributions. * Available at: 
http://www.ramas.com/ 

High High High Yes 

Resilinc The Resilinc is the standard for 
measuring, benchmarking, and 
tracking companies’ supply 
chain risk and resiliency. It is a 
comprehensive assessment of a 
company’s supply chain 
resiliency. The metric is based 

High Medium High No 

 

 

https://www.oracle.com/applications/primavera/products/risk-analysis.html
https://www.oracle.com/applications/primavera/products/risk-analysis.html
https://www.oracle.com/applications/primavera/products/risk-analysis.html
https://ramrisk.com/
http://www.ramas.com/
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on extensive data collected by 
Resilinc working with tens of 
thousands of organizations as 
part of our global supply chain 
visibility initiative. It builds on key 
metrics: Transparency, Network 
Resiliency, Continuity 
Robustness, Performance and 
Supply Chain Risk Program 
Maturity.* Available at: 
https://www.resilinc.com/ 

RiskCalc The cloud-based platform 
provides a powerful array of 
tools for risk management, 
model development, 
benchmarking, impairment 
analysis, capital allocation and 
strategic business decision 
making.* Available at: 
https://rafa.moodysanalytics.com
/riskcalc 

High Medium High Yes 

 

 

NON-PROBABILISTIC METHODS 

Imprecise 

Probabilities 

Expand the possibilities of 
established probabilistic risk 
quantification to reason more 
reliably with limited information 
on actual probability 
distributions. The approach 
allows decision makers to review 
and discuss coherent and 
plausible ranges of probabilities. 

High High High Yes 

The NUSAP 

Tool 

The NUSAP Tool adds 
qualitative information to the 
uncertainty and risk analysis in a 
structured manner, informing the 
modelling, analysis and decision 
making process by making 
issues such as data origin, 
quality and key assumptions 
transparent. 

High Medium High Yes 

Robust 

Decision 

Making  

The main principles of Robust 
Decision Making are: to explore 
a wide variety of relevant 
uncertainties, connect short-term 
targets to long-term goals, 
commit to short-term actions 
while keeping options open and 
continuously monitor the 
environment and take actions if 
necessary. 

High High High Yes 

 

 

 

 

 

 

 

 

https://www.resilinc.com/
https://rafa.moodysanalytics.com/riskcalc
https://rafa.moodysanalytics.com/riskcalc
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Appendix 5: Code in R 
 

Code in R 

# 10 experts (replicates of each other; could be 20) 

# 6 models (c-boxes, beta distributions, point values, intervals, weighted intervals, Burgman 

elicitations) 

# 4 aggregation methods (average, mixture, enveloping, pooling) 

##################################################################################

# 

# number of experts 

some = 10             # but note that only a max of 9 are plotted 

##################################################################################

# 

# MODELS 

# natural frequencies 

n = floor(rexp(some,1/15))    # randomly constructed 

k = floor(runif(some,0,n))    # randomly constructed 

 

# confidence boxes 

CBox <- function(k,n) return(env(beta(k, n-k+1), beta(k+1, n-k))) 

c = rep(CBox(0,0),some) 

for (i in 1:some) c[[i]] = CBox(k[[i]],n[[i]]) 

 

# beta distributions 

b = rep(beta(1,1),some) 

for (i in 1:some) b[[i]] = beta(0.5+k[[i]],0.5+n[[i]]-k[[i]]) 

 

# point values 
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x = rep(0,some) 

for (i in 1:some) x[[i]] = midpoint(mean(c[[i]])) 

 

# intervals 

ci <- function(b,level=0.95,p1=(1-level)/2,p2=1-(1-level)/2) interval(left(cut(b,p1)), right(cut(b,p2))) 

v=w=NULL; for (i in 1:some) { CI = ci(c[[i]]); v = c(v,left(CI)); w = c(w,right(CI)) } 

 

# weighted intervals 

l = runif(some, 0.5, 1) 

y=z=NULL; for (i in 1:some) { CI = ci(c[[i]], level=l[[i]]); y = c(y,left(CI)); z = c(z,right(CI)) } 

yzl = list(y=y,z=z,l=l) 

 

# Burgman elicitations 

yzlx = list(y=y,z=z,l=l,x=x) 

 

 

##################################################################################

# 

# Plot the controversy for each model 

 

par(mfrow=c(2,3)) 

 

blank <- function() plot(NULL,xlim=c(0,1), ylim=c(0,1), xlab ='', ylab = '') 

blank(); title(main = 'C-Box', xlab ='Estimates', ylab = 'Cumulative probability'); for (i in 1:some) 

lines(c[[i]], col = i) 

blank(); title(main = 'Beta', xlab ='Estimates', ylab = 'Cumulative probability' ); for (i in 1:some) 

lines(b[[i]], col = i) 

plot(density(x), xlim = c(0, 1), main = 'Estimates Density', xlab ='Estimates') 
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plot(NULL, xlim = c(0,1), ylim = c(1,10), main = 'Intervals', xlab ='Estimates', ylab = 'Expert ID'); for (i 

in 1:some){ lines(c(v[[i]],w[[i]]),rep(i,2), col = i, lwd = 2); points(x[i],i, col = i, pch = 19);} 

plot(NULL, xlim = c(0,1), ylim = c(1,10), main = 'Weighted Intervals', xlab ='Estimates', ylab = 'Expert 

ID'); for (i in 1:some){ lines(c(y[[i]],z[[i]]),rep(i,2), col = i, lwd = 2); points(x[i],i, col = i, pch = 19);} 

 

##################################################################################

# 

# Plot each expert with all models 

 

par(mfrow=c(3,3)) 

par(mar=c(2.1,4.1,2.1,1.1)) 

for (i in 1:min(some,9)) {  

  plot(c[[i]],col='blue', main = paste('Expert ', i, sep = ''));  

  lines(b[[i]],col='red', lwd = 1);  

  lines(c(v[[i]],w[[i]]),c(0.3,0.3), lwd = 2) 

  lines(c(y[[i]],z[[i]]),c(0.5,0.5), lwd = 2, col = 'green') 

  points(x[[i]],0.5, pch = 19, cex=1.5) 

  } 

 

par(mfrow=c(1,1)) 
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##################################################################################

# 

 

# AGGREGATIONS 

##################################################################################

# 

# average 

 

Ac = c[[1]]; for (i in 2:some) Ac = Ac %|+|% c[[i]]; Ac = Ac / some   # convolutive average 

Ab = b[[1]]; for (i in 2:some) Ab = Ab %|+|% b[[i]]; Ab = Ab / some   # convolutive average 

Ax = mean(x) 

Avw = c(mean(v), mean(w)) 

Ayzl = c(sum(y*l) / sum(l), sum(z*l) / sum(l)) 

Ayzlx = c(Ayzl, Ax) 

otherAyzl = Ayzl                    

Y = (y - x) * (0.95 / l) + x 

Z = (z - x) * (0.95 / l) + x 

Y = pmax(0,Y)                      # cannot exceed zero or one 

Z = pmin(1,Z)                      # cannot exceed zero or one 

Ayzl = c(mean(Y), mean(Z)) 

 

Ayzlx = c(Ayzl, Ax) 

 

# debug 

# plot(Z, ylim=c(0,1)) 

# for (i in 1:some) lines(c(i,i), c(y[[i]],z[[i]]), col='blue') 

# points(x, col='red') 

# lines(l) 
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# points(Y) 

# points(Z) 

 

 

######################################################################### 

# mixture 

 

Mc = mixture.pbox(c) 

Mb = mixture.pbox(b) 

Mx = histogram(x, mn=0, mx=1,conf=0) 

I = rep(pbox(0,0),some) 

for (i in 1:some) I[[i]] = pbox(interval(v[[i]],w[[i]])) 

Mvw = mixture.pbox(I) 

for (i in 1:some) I[[i]] = pbox(interval(y[[i]],z[[i]])) 

Myzl = mixture.pbox(I,w=l) 

for (i in 1:some) I[[i]] = pbox(interval(Y[[i]],Z[[i]])) # use extrapolations Y and Z 

Myzlx = mixture.pbox(I) 

 

 

####################################################################### 

# enveloping  

 

Ec = env(c) 

Eb = env(b) 

Ex = range(x) 

Evw = range(c(v,w))     # i.e., c(min(v), max(w)) 

Eyzl = range(c(y,z))     # i.e., c(min(y), max(z))   # ignores levels l 
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Eyzlx = list(range = Eyzl, mean = Ex) 

 

 

####################################################################### 

# pooling 

 

Pc = CBox(sum(k),sum(n)) 

Pb = beta(0.5+sum(k),0.5+sum(n)-sum(k))  
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“Everything that can be counted does not necessarily count; 

everything that counts cannot necessarily be counted.” 

 

- Albert Einstein - 
 

 

 


