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Summary

The energy sector is undergoing a rapid transformation that gives rise to a variety of new
optimization problems to solve. The goal of this thesis is to develop advanced analytical
solutions for sustainable energy operations and investment problems that are subject to
uncertainty. We consider case studies related to both industrial applications and consumer
models, and cover problems related to energy efficiency, renewable energy, and corporate
social and environmental responsibility.

The problems that we consider in this thesis are the following: (i) constructing a power
contract portfolio for companies that commit to reach a renewable energy target, which
means, to procure a specific percentage of electricity demand from renewable energy
sources by a future date; (ii) managing shutdown decisions in commodity and energy
production assets from a social commerce perspective, that is, taking into account the
indirect consequences that a plant shutdown has on the society; (iii) modeling the optimal
market bidding strategies of virtual power generators under a novel proposed electricity
market structure that would favor the integration of renewable production units; and (iv)
investigating the factors behind the consumer investments in energy efficient household
appliances, and the optimal energy saving investments from a consumer and energy system
perspectives.

To tackle these problems, we leverage tools from operations research to design novel
methodology and perform energy analysis. Several problems encountered in this thesis
can be formulated as intractable Markov decision processes (MDPs) with high-dimensional
exogenous and/or endogenous component of the state. To overcome this intractability,
we develop approximate dynamic programming (ADP) methods to compute near optimal
operating and investment policies, and lower and upper bounds on the optimal MDP
value. In particular, the ADP methods that we develop include: (i) an extension of the
regress-later least squares Monte Carlo (LSML) to approximate risk-averse MDPs, (ii)
a combination of LSML and classification to learn decision rules, (iii) a shortest path
reformulation of the reoptimization heuristic, and (iv) a novel use of the information
relaxations and duality framework to extract non-anticipative decision rules from sample
action distributions. We also use more classical scenario-based stochastic programming.
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The contributions of this thesis cover modeling, methodology, and applications. We con-
tribute to the definition, understanding, and resolution of emerging optimization problems
in sustainable energy operations and investments, and provide results and insights that
can be useful for companies and policy makers. We contribute to the development of
new operations research models, algorithms, and theory for solving large-scale stochastic
optimization problems, with particular focus on ADP techniques. Some of the methodol-
ogy developed in this thesis has potential broader relevance in other application contexts,
such as inventory control and financial portfolio optimization.



Resumé (Danish Summary)

Energisektoren er under hastig forandring, hvilket skaber behov for at løse en lang ræk-
ke nye optimeringsproblemer. Form̊alet med denne afhandling er at udvikle avancerede
analytiske løsninger til bæredygtig energiforsyning og investeringsproblemer underlagt
usikkerhed. Vi betragter case studier relateret til b̊ade industrielle anvendelser og hus-
holdninger, og studerer problemer relateret til energieffektivitet, vedvarende energi og
virksomhedernes sociale og miljømæssige ansvar.

Problemer studeret i denne afhandling omfatter: (i) opbygning af en energikontrakt por-
tefølje for virksomheder, der forpligter sig til at n̊a et mål for vedvarende energi, hvilket
betyder at de skal have en bestemt procentdel af elforbruget dækket af vedvarende ener-
gikilder inden for en fremtidig horisont; (ii) optimering af nedluknings-beslutning i r̊avare-
og energiproduktionsaktiver med focus p̊a et socialt perspektiv, det vil sige under hen-
syntagen til de indirekte konsekvenser som en nedlukning af anlægget har for samfundet;
(iii) modellering af optimale markedsbud-strategier for virtuelle kraftgeneratorer under
en ny foresl̊aet elektricitetsmarkedsstruktur, der ville fremme integrering af vedvarende
produktionsenheder; og (iv) undersøge faktorerne bag forbrugerinvesteringer i energieffek-
tive husholdningsapparater, og finde de optimale energibesparende investeringer ud fra et
forbruger- og energisystemperspektiv.

For at løse disse problemer anvender vi værktøjer fra operationsanalyse til at designe ny
metodik og udfører energianalyser. Flere problemer i denne afhandling kan formuleres
som uh̊andterlige Markov-beslutningsprocesser (MDP’er) med multidimensional eksoge-
ne og/eller endogene komponenter i tilstanden. For at overvinde denne uh̊andterbarhed
udvikler vi approximerede dynamisk programmeringsmetoder (ADP) til beregning af nær-
optimale drifts- og investeringsbeslutninger, samt nedre og øvre grænser p̊a den optimale
MDP-værdi. I særdeleshed omfatter ADP-metoderne som vi udvikler: (i) en udvidelse af
regress-senere mindste kvadrater Monte Carlo (LSML) metoden til at tilnærme risikoa-
vers MDP’er, (ii) en kombination af LSML og klassifikation for at lære beslutningsregler
(iii) en kortest-vej reformulering af reoptimiserings heuristikken, og (iv) en ny anvendelse
af informationsrelaxeringerne og dualitetsrammen til at udtrække beslutningsregler uaf-
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hængigt p̊a fremtiden fra testfordelinger. Vi anvender ogs̊a mere klassisk scenarie-baseret
stokastisk programmering.

Bidragene fra denne afhandling omfatter modellering, metodologi og applikationer. Vi
bidrager til definitionen, forst̊aelsen og løsningen af nye optimeringsproblemer inden for
bæredygtig energi og investering, og rapporterer resultater og indsigt som kan være nyttige
for virksomheder og beslutningstagere. Vi bidrager til udviklingen af nye operationsana-
lyse, algoritmer og teori til løsning af stor-skala stokastiske optimeringsproblemer med
særlig fokus p̊a ADP teknikker. Nogle af de metoder, der er udviklet i denne afhandling,
har potentiel bredere relevans i andre anvendelses sammenhæng, s̊asom lagerstyring og
finansiel porteføljeoptimering.
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Chapter 1

Introduction and thesis outline

Driven by the growing international effort towards the climate change mitigation and the

falling costs of solar and wind power production, the energy sector has been undergoing

a transformation during the last decade. Globally, it is estimated that 10 trillion US

dollars will be invested by 2040 in new power generation, with more than 7 trillion of

which invested in clean power assets (BNEF, 2017). In the European Union (EU), the

share of renewable energy consumption has increased from 9% in 2005 to 17% in 2015 due

to strong supporting policy measures and long term targets, and this figure is projected

to double by 2030 reaching 34% (IRENA, 2018). Denmark is at forefront with a non-

dispatchable renewable energy share of 44% in 2017 that is estimated to reach up to

70% in 2022 (IEA, 2017b). Besides renewable energy, energy efficiency is central to

the global energy transition to improve energy security and to reduce energy costs and

greenhouse gas emissions. Without energy efficiency improvements in the period 2000–

2016, it is estimated that 12% more energy would have been consumed worldwide (IEA,

2017a). Moreover, global investments in energy efficiency are increasing and in 2016 they

amounted to 230 billion US dollars, representing 13.6% of the total investments across

the entire energy sector for that year (IEA, 2017a).

The development of a clean energy economy is a major opportunity for new investments,

jobs, and environmental conservation around the world. However, it also introduces a

variety of new challenges such as determining optimal investments in renewable energy

and energy saving projects, implementing effective energy regulations, ensuring the relia-

bility of energy systems with high penetration of renewable energy, and designing efficient

electricity markets (Conejo et al., 2010; Morales et al., 2013). Addressing these challenges
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usually requires making good decisions in the presence of uncertainty (in energy prices,

demand, technology, etc.), which makes modeling and solving these problems generally

harder, but also makes this an exciting time for doing energy research.

In this thesis, we consider problems related to sustainable energy operations and invest-

ments. With sustainability, we mean a broader concept which includes energy efficiency

and savings, renewable energy, and corporate social and environmental responsibility. The

thesis consists of a number of case studies aimed at covering industrial applications as

well as consumer/household models. The focus of this thesis is at the intersection between

application side and methodological side, and the main two objectives of this work are

the following:

• New applications to Sustainable Energy Operations and Investments. We

study emerging optimization problems related to renewable energy, energy efficiency,

and corporate social and environmental responsibility. We contribute to the defi-

nition, understanding, and resolution of these problems and provide insights for

companies and policy makers, with a focus on Denmark in some of the studies.

• Methodological advances in Large-scale Stochastic Optimization. Many of

the problems encountered in this PhD are large-scale sequential decision making

problems under uncertainty. We contribute to the development of new operations

research methodologies, including models, algorithms, and theory, for solving such

problems with particular focus on approximate dynamic programming techniques.

This thesis is divided into two parts. Part I introduces the problems considered in this

thesis, summarizes the contributions and dissemination of the work, and provides an

overview of the background material relevant for understanding models and methods in

the rest of the thesis. Part II is the core part of the thesis and contains the research work

that has been carried out during this PhD project.

The remainder of this chapter is organized as follows. In Section 1.1 we introduce the

context of this PhD project. In Section 1.2, we present the scientific papers that are

part of this thesis and describe the business problems and contributions of each paper.

Conclusions are drawn in Section 1.3 and directions for further research are discussed in

Section 1.4. Additional work done during the PhD study but outside the main scope of

this thesis is briefly presented in Section 1.5.
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1.1 Context: SAVE-E

This PhD thesis is part of a larger interdisciplinary research project called “SAVE-E

Energy Savings: Closing the Energy Efficiency Gap” funded by the Danish Innovation

Fund. The SAVE-E project is composed of seven work packages and the overall research

examines what makes households and companies invest in energy saving solutions, with a

focus on Denmark. The long term goal of this research is to reduce the CO2 emissions and

the dependency of fossil fuels as well as to contribute to meeting the ambitious Danish

energy policy targets in relation to climate and energy efficiency. Each SAVE-E work

package tackles specific aspects of the problem by developing qualitative and quantitative

models, methods, and performing economic analyses.

Within the SAVE-E context, the objective of this PhD project is to develop advanced

analytical tools for decision making problems in energy and energy saving investments

that are subject to uncertainty. We approach this task by considering different case

studies that are related to both industrial and consumer applications, and by covering

with our research problems in energy production, operations, and investments. Some of

the studies in the thesis pertain specifically to a Danish context while in some others the

perspective is broader.

1.2 Papers overview and contributions

Part II of this thesis consists of six research chapters. Chapters 3 and 5–8 are based on

academic journal papers while Chapter 4 is a supplement to Chapter 3. Two of these five

papers are published in international peer-reviewed journals, two papers are currently

under review, and one will be submitted to a journal in the next months. In this section

we introduce the content of these papers, discuss the scientific contributions and give an

overview of the dissemination activities.

Our first case study involves commodity and energy production assets embedding real op-

tionality, that is managerial flexibility, to convert a set of inputs into a set of outputs and

with the option to permanently shut down. Merchant commodity and energy producers

maximize the value of the production asset by adapting this flexibility to the evolution

of uncertain market factors such as prices of commodities and energy sources. However,

given the gravity of a plant shutdown on the society in the form of e.g. loss of employ-

ment, adverse publicity, and political resistance from unions, companies can benefit from

deviating from a pure asset value perspective. Motivated by an aluminum producer, in
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Chapter 3, Managing shutdown decisions in merchant commodity and energy

production: A social commerce perspective, we focus on the management of shut-

down decisions in a social commerce perspective. To mitigate adverse societal impacts

of a shutdown, we prefer plant’s operating policies that (i) delay shutdown decisions to

later parts of the planning horizon and (ii) reduce the likelihood of shutdown within this

horizon. The goal of this paper is thus finding operating policies that can delay and/or

reduce the use of the plant’s shutdown option for small asset value losses.

We approach this problem by formulating a constrained Markov decision process (MDP)

that maximizes the asset value with constraints on the shutdown decisions. Solving our

constrained MDP is more challenging than an unconstrained MDP, which is by itself

hard under realistic high-dimensional models of the market uncertainty. We therefore

approximate this intractable constrained MDP using unconstrained MDPs. Our first

strategy modifies the shutdown cost in a way that is consistent with anticipated regret

theory in behavioural psychology. We compute operating policies from this model by

extending the regress-later least squares Monte Carlo (LSML) method and also defined

a deterministic version of this policy as a shortest path-based reoptimization heuristic.

Our second strategy extends practice-based methods that use switching thresholds on

production margins by determining better thresholds via a combination of LSML and

machine learning classification. We test our methods using real data from an aluminum

producer and an eight-factor stochastic model of the uncertainty calibrated on market

data. We find that our methods can substantially delay and/or reduce the use of the

shutdown option for small asset value losses. Thus, taking a social commerce perspective

in managing a plant’s operating flexibility appears financially viable.

This work contributes to the literature on socially responsible operations and approximate

dynamic programming by developing intuitive and efficient operating policies to manage

the trade-off between asset value and shutdown decisions. These policies approximate in a

tractable manner a complex stochastic optimization problem, that is, a high-dimensional

constrained MDP. We establish properties of the anticipated regret policies and char-

acterize the behaviour of these policies for limiting shutdown aversion preferences. Our

extension of the LSML method to approximate high-dimensional shutdown-averse stochas-

tic dynamic programs (or, in general, with an objective different than the expected asset

value) is new, as it is combining LSML and machine learning techniques to learn policies.

We also show that the reoptimization heuristic presents an efficient directed acyclic short-

est path formulation in the class of stochastic dynamic programs with finite endogenous

state and action sets. Our findings are relevant in commodity and energy production

including metal smelters, refineries, power plants, and also in renewable energy produc-

tion, e.g. in biogas plants, where managing shutdown decisions in important to uphold

the clean asset as a source of power.
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Chapter 4, Managing shutdown decisions in merchant commodity and energy

production: The performance of popular strategies, provides additional material

related to the analysis performed in Chapter 3. When we first approached the problem

of managing shutdown decisions, we defined operating policies based on the dynamic

conditional value-at-risk (CVaR). The dynamic CVaR is in fact a popular risk measure

that has been successfully applied to model risk aversion in multi-stage stochastic dynamic

optimization problems. In our context, however, we find that when risk aversion increases

CVaR favors shutdown as oppose to discouraging such decisions. Therefore, we define an

intuitive modification denoted reverse CVaR (RCVaR) and prove it to reduce the use of

the shutdown option as risk aversion increases. We also formalize a financial strategy

used in practice based on procuring input power using long term forward contracts. We

carry out numerical experiments of CVaR-based and forward contracting strategies using

LSML extensions and find that, unlike the policies in Chapter 3, both these strategies are

unable to manage the shutdown option effectively. Our results suggest caution in using

methods that are not tailored to manage shutdown decisions (e.g., risk measures used for

cash flow risk) as they can lead to incorrect shutdown decisions.

The contributions of this chapter include the formalization and numerical study of CVaR-

based policies and forward contracting policies in the context of shutdown aversion, and

the establishment of some theoretical properties describing the behaviour of CVaR-based

policies. Our assessment of popular strategies used in academia and industry to manage

shutdown decisions can be useful for merchant energy and commodity producers and for

operational researchers who apply dynamic risk measures. The work of Chapters 3–4 has

been disseminated as follows:

- A journal paper co-authored with Selvaprabu Nadarajah, Stein-Erik Fleten,

Denis Mazieres, and David Pisinger is under 2nd round of review in Manu-

facturing & Service Operations Management (Trivella et al., 2018);

- Presentation by Alessio Trivella at ECSO 2017, the 2nd European Confer-

ence on Stochastic Optimization, Rome, Italy (peer-reviewed abstract, invited

talk);

- Presentation by Alessio Trivella at IFORS 2017, the 21st Conference of the

International Federation of OR Societies, Quebec City, Canada (peer-reviewed

abstract, invited talk);

- Presentation by Alessio Trivella at POMS 2017, the 28th Conference of the

Production and Operations Management Society, Seattle, USA (peer-reviewed
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abstract, invited talk);

- Two seminar presentations by Alessio Trivella held in 2017 at the Norwe-

gian University of Science and Technology, Trondheim, Norway, and at the

Technical University of Denmark, Kgs. Lyngby, Denmark;

- Poster presentation by Alessio Trivella at the 2017 PhD Winter School on

Stochastic Programming, Passo del Tonale, Italy;

- Presentation by Alessio Trivella at OR 2016, the International Conference of

the German OR Society, Hamburg, Germany (initial version of this work with

title: “Optimal operation and electricity sourcing in the aluminum industry”).

The rapid evolution of the energy sector and the increasing environmental concerns con-

stantly introduce fresh optimization problems to solve. In Chapter 5, Meeting corpo-

rate renewable power targets using a dual reoptimization scheme, we study an

emerging problem in the context of corporate energy procurement. In the last few years,

many companies (for instance, half of the Fortune 500) have announced commitments to

meet sustainability and climate targets, which include targets on greenhouse gas emissions

reduction, energy efficiency, and renewable energy procurement. In particular, meeting a

renewable energy target for a company refers to satisfying a percentage of its electricity

demand by renewable energy sources by a future target date. The goal of Chapter 5 is

to investigate how a company can set up a power sourcing policy to reach a renewable

energy target and then sustain this target at minimum expected cost.

Constructing a multi-year procurement portfolio to meet a renewable target is challeng-

ing because of the long term planning horizon and also the number of buying options

in the market. We approach this problem by considering two dominant procurement

strategies used by corporations: (i) buying power from the utility (i.e. akin to a spot

purchase) and supplementing it with renewable energy certificates and (ii) entering bilat-

eral contracts known as power purchase agreements (PPAs) to buy power directly from

a renewable generator for a predefined number of years. We formulate a multi-period

stochastic dynamic program (SDP) to minimize the expected procurement cost, where

the company has flexibility to enter at each stage into new contracts of varying size and

length. Computing an optimal policy of this SDP is intractable because its state space

has high-dimensional endogenous and exogenous components, and approximate dynamic

programming techniques to approach this problem are very limited. To overcome this

intractability, we consider the information relaxation approach typically used to obtain

dual bounds, and develop a novel dual average reoptimization heuristic (DRH) that ex-
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tracts a non-anticipative procurement policy by looking at sample action distributions

obtained from solving information relaxation models over a set of Monte Carlo sample

paths of the uncertainty. We find that our approach outperforms commonly used primal

reoptimization methods and simple heuristics on realistic instances.

This work contributes to the corporate energy procurement literature by developing pro-

curement policies for a relevant problem faced by an increasing number of companies

worldwide. Our DRH method contributes to the approximate dynamic programming lit-

erature by providing tractable non-anticipative decision rules for high-dimensional SDPs.

In fact, computing the DRH decision rules only requires (i) simulating the evolution of the

uncertainty in Monte Carlo, and (ii) solving a deterministic dual mathematical program

along individual sample paths. This method thus emerges as a promising approach for

tackling high-dimensional stochastic dynamic programs. The work has been disseminated

as follows:

- A journal paper co-authored with Danial Mohseni-Taheri and Selvaprabu

Nadarajah is being written and will be submitted in the next few months

to a journal among Management Science, Operations Research, and Manufac-

turing & Service Operations Management (Mohseni-Taheri et al., 2018);

- Presentation by Alessio Trivella at CMS 2018, the 15th Conference on Compu-

tational Management Science, Trondheim, Norway (peer-reviewed abstract);

- Presentations planned by Alessio Trivella at EURO 2018, the 29th European

Conference on Operational Research, Valencia, Spain (accepted peer-reviewed

abstract, invited talk);

- A peer-reviewed extended abstract is accepted for MSOM 2018, the Manu-

facturing and Service Operations Management Conference, Dallas, USA;

- Seminar presentation by Alessio Trivella held in 2018 at the Technical Uni-

versity of Denmark, Kgs. Lyngby, Denmark.

Next, we consider an optimization problem that is related to the participation of power

producers to electricity markets. Electricity markets around the world have different

structures but typically are composed by at least a day-ahead market and a balancing

(real-time) market. The market participants, e.g., conventional and renewable producers,

place a market bid at the day-ahead market for the delivery of electricity during the next

day. In determining their day-ahead bid, market participants account for the uncertainty
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in power prices and renewable energy production during the next-day delivery period,

which are not known when the offer is made. Thus, bidding in electricity markets generally

arises as a stochastic optimization problem. The increasing share of renewable (stochastic)

energy sources poses severe challenges to the security and efficiency of energy systems and

markets, consequently, electricity market offering strategies constitute an active area of

research for stochastic optimization experts.

In Chapter 6, Enabling active/passive electricity trading in dual-price bal-

ancing markets, we propose a novel electricity market framework that differs from the

current market structure in the way the balancing market participation is thought. Cur-

rently, controllable production units participate in the balancing market as “active” actors

that offer regulating energy to the system, whereas renewable units are “passive” actors

that create imbalances and hence receive less competitive prices. Motivated by the need

of additional flexibility in the system, our proposed market framework enables instead

participants in the balancing market to be active in some trading intervals and passive in

some others. However, the two participation modes are enforces to be complementary and

agents submitting regulating energy offers for a given trading interval are prevented from

creating imbalances in that interval. To evaluate our “active/passive” balancing market,

we consider the case of a virtual power plant (VPP) trading in a two-settlement electric-

ity market composed of a day-ahead and a dual-price balancing market (e.g., the market

setup in place in Denmark). A VPP is a cluster of generating units (both controllable and

renewable) and storage systems which acts as a single actor in the market and is indeed

a natural market agent who would benefit from our market framework. We formulate the

optimal active/passive VPP bidding strategy as a three-stage stochastic program, and

show with numerical experiments using 300 scenarios that the VPP expected revenue can

increases significantly compared to an as-is market status.

This work contributes to the literature on energy markets and offering strategies by

proposing a new balancing market participation model. This market model is relevant

because (i) the system operator would benefit from more flexible regulating energy to

schedule in real-time, and (ii) it can be seen as a lever to facilitate the integration of

renewable power in the system through the aggregation into VPPs. Another contribution

of this work is the definition of the VPP active/passive offering model as a multi-stage

stochastic program. The work has been disseminated as follows:

- A journal paper co-authored with Nicolò Mazzi and Juan Miguel Morales has

been submitted to IEEE Transactions on Power Systems (Mazzi et al., 2018);
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- Two seminar presentations by Alessio Trivella held in 2017 at the Norwe-

gian University of Science and Technology, Trondheim, Norway, and at the

Technical University of Denmark, Kgs. Lyngby, Denmark.

In Chapter 7, Modelling of electricity savings in the Danish households sector:

From the energy system to the end-user, the focus moves from companies to energy

systems and consumers. In particular, in this chapter we are interested in examining the

value of investing in energy efficient (i.e. high-labelled) household electric appliances. Pur-

chasing energy efficient appliances implies higher upfront costs compared to conventional,

less efficient ones, but also lower electricity consumption and consequently economic sav-

ings over the appliance lifetime. Would these savings be sufficient to recoup the higher

investment cost? The answer to this question depends on many factors including the ap-

pliance investment cost, lifetime, and the amount of savings that is not known exactly due

to uncertain future power prices. Our research question is to quantitatively investigate

this trade-off with the goal to identify the most cost-effective investments. To perform

such analysis, we consider a set of appliance categories constituting the majority of the

electricity consumption in the Danish private household sector (e.g., refrigerator, freezer,

dishwasher, washing machine, dryer), and collect data from multiple sources and vendors

to determine average characteristics for representative energy label classes. Using this

data, we take the perspective of two different and complementary entities: the society

and the individual end-user.

We start considering the societal optimal investments by using an energy system model.

Energy system models are large-scale mathematical models developed to examine the

functioning of a whole energy system with a national or international perspective. Exam-

ples of such models include the well-known TIMES (Loulou et al., 2016), EnergyPLAN

(Lund, 2015), and Balmorel (Ravn et al., 2001; see also Wiese et al., 2018 for a recent

review of studies performed with Balmorel). In particular, in Chapter 7 we use Balmorel,

which is a partial equilibrium model for the heat and power sectors implemented as a

linear programming optimization model, and extend it to endogenously determine the

best investments in energy efficient home appliances. Specifically, a decision to invest is

undertaken if the improved energy efficiency can compete with the cost of electricity sup-

ply from existing or new power plants under different fuel price and availability scenarios.

Next, given that optimal energy system choices do not match with the actual end-user

choices due to different reference electricity prices, we develop a consumer investment

model and link it with Balmorel to compare the two optimal investment solutions.

This work contributes to the energy efficiency investments literature in several directions.
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First, we extend the energy system model Balmorel by including the option to invest in a

variety of major energy efficient appliances. Our extension is coded in the form of an add-

on so that the investment option can be easily activated in Balmorel by the user. Second,

we develop a method to relate the optimal system and consumer investment decisions by

soft-linking the energy system model with a consumer behaviour model designed for the

study. We provide insights on the trade-off between investment cost and energy saving,

quantify average economic and electricity savings on both energy system and consumer

side, and describe the evolution of the energy system under optimal investment decisions.

Our findings are related to the Danish case, however, the methodology that we have intro-

duced could be employed to different countries or geographical regions if the data needed

to model the energy system as well as the appliance investments (e.g., investment costs

and electricity consumption for low and high energy labels) is available. Our results can

be relevant for researchers on energy systems and for policy makers. The work has been

disseminated as follows:

- A journal paper co-authored with Mattia Baldini has been published in Energy

Efficiency (Baldini and Trivella, 2017);

- Presentation by Alessio Trivella at BEHAVE 2016, the 4th European Confer-

ence on Behaviour and Energy Efficiency, Coimbra, Portugal (peer-reviewed

extended abstract; Trivella and Baldini, 2016);

- Seminar presentation by Alessio Trivella held in 2016 at the Technical Uni-

versity of Denmark, Kgs. Lyngby, Denmark.

The consumer investment model developed in Chapter 7 is elementary due to the primary

focus of the study on (i) the energy system, and (ii) the link between energy system and

consumer’s investments. Under this consumer model, investment choices are rational

decisions based on an investment cost recoup criterion (that is, a positive investment net

present value), and they are affected by a generic behavioural uncertainty that is related

to the income level. In reality, though, many more socioeconomic and behavioural factors

may be argued to be connected with the consumer choices.

We address this gap by deepening the consumer behavioural side in relation to energy

efficiency investments in Chapter 8, The impact of socioeconomic and behavioural

factors for purchasing energy efficient household appliances: A case study

for Denmark. The purpose of Chapter 8 is to understand which characteristics lead

Danish consumers to choose energy efficient household electric appliances at the moment
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of purchase. To perform this analysis, we employ empirical data from a survey conducted

by the Danish Energy Agency over a representative set of Danish households, and extract a

number of socioeconomic, demographic, and behavioural variables. Based on this data, we

develop and calibrate a statistically sound logistic regression model to calculate consumer

purchase propensities of choosing an energy efficient investment. We compute propensity

curves to decouple the effect of different variables, and provide a visual representation

of the most relevant factors. Eventually, based on the outcome of the analysis, we draw

suggestions for improved energy efficiency policies and information campaigns by targeting

key demographics.

This paper presents some novel methodology and its findings have practical relevance. On

the methodological side, the contributions of the paper consist on (i) the construction of

an energy efficiency index (EE-index) that gathers and synthesizes a rich set of consumer

behavioural characteristics and daily actions in relations to energy end-use and energy

savings, and (ii) the integration of such index in a consumer choice model to study the

joint effect of socioeconomics, demographic, and behavioural variables on consumer invest-

ment in EE appliances. Moreover, unlike previous studies, (iii) we perform an extensive

investigation of a behavioural index by determining correlation matrices and examining

interrelations between its constituent parts. On the practical side, we find from our sta-

tistical results that socioeconomic and behavioural characteristics are highly significant

when explaining the choice of purchasing EE appliances. Specifically, income, housing

type, quantity of inhabitants, age, and end-use behaviour are predictors for choosing en-

ergy efficient appliances, with EE-index and housing type being the strongest of these

predictors while income is weaker. By providing empirical results on the influence of

socioeconomic and behavioural characteristics on the consumer’s choice, the paper nar-

rows the knowledge gap on household energy consumption behaviour and the drivers of

high-labelled household appliances purchasing. The outcome of work is relevant for policy

makers and energy actors who are in fact increasingly interested in the determining fac-

tors behind the consumer choice of conventional versus high efficiency labeled appliances.

This work has been disseminated as follows:

- A journal paper co-authored with Mattia Baldini and Jordan Wente has been

published in Energy Policy (Baldini et al., 2018);

- A conference paper co-authored with Mattia Baldini and Jordan Wente de-

scribing an earlier version of this work was published in the proceeding of

EEDAL 2017, the 9th International Conference on Energy Efficiency in Do-

mestic Appliances and Lighting, Irvine, USA (Baldini et al., 2017b);
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- A peer-reviewed extended abstract was published in IAEE 2017, the 40th

Conference of the International Association for Energy Economics, Singapore.

This abstract was selected as one of the conference top 5% contributions and

appeared in the IAEE Energy Forum (Baldini et al., 2017a).

1.3 Conclusions

The constantly evolving energy sector is a rich playground for operational researcher since

it gives rise to a variety of important and complex optimization problems under uncer-

tainty to solve. As part of the SAVE-E project, in this thesis we have studied some

emerging problems in the field of energy sustainability, in particular, related to energy

efficiency investments, renewable energy operations and investments, and corporate social

and environmental responsibility. To tackle these problems, we have leveraged tools from

operations research to design novel methodology and perform energy analysis. A spe-

cial focus has been given to extending or developing approximate dynamic programming

techniques in order to solve large-scale stochastic dynamic optimization problems. These

models include high-dimensional constrained MDPs or MDPs with endogenous and ex-

ogenous state components which are both high dimensional, for which methods available

in the literature are limited.

Overall, the results and insights from this thesis can be relevant for a number of different

actors including

1. Companies: we provide managerial insights and define well-performing operating

and investment policies in contexts like managing a production asset shutdown

decisions and meeting a corporate renewable energy target;

2. Policy makers: our results suggest energy policies to increase consumer awareness

towards energy efficiency and savings, for instance, or give ideas on how to design

more flexible electricity markets;

3. Operational researchers: the new approximate dynamic programming methods we

have developed have potential broader relevance in other application contexts.

Through the SAVE-E project, this thesis develops decision support tools for energy saving

and renewable energy investments from the perspective of both companies and consumers,

with the long term goal of reducing greenhouse gas emissions.
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1.4 Further work

Within the scope of the SAVE-E project, it would be worth examining other industrial

case studies than the ones considered in this thesis. For example, many companies in

different industrial sectors have the possibility to invest in various energy saving options

but deciding which investment to undertake can be hard. Consider the case of a liner

shipping company. Due to the increasingly stricter carbon emission regulations in the

shipping industry (IMO, 2018), liner shipping companies often have to undertake large

investments in energy saving technologies for vessels. However, many investment options

are available such as waste heat recovery systems, better coating of vessels, more efficient

engines, better propulsion, LNG and bio-fuels upgrades, or investing in new vessels. As-

sessing the profitability, risk, and correct timing of such investments is challenging due

to long term uncertainty in bunker price, cost of emissions, and regulations. Therefore, a

decision support tool for optimizing an energy saving investment portfolio would be useful

in this context.

Regarding the chapters of this thesis, some of the models and methods could be extended

to handle additional features and/or could be applicable to different contexts. Below we

indicate some directions for further research in connection with our papers.

• Chapters 3–4. The models in these chapters could be applied to other contexts

that involve a non-reversible decision under uncertainty, also beyond energy. One

of such problems could be renting production facilities versus buying production

facilities. Buying a production facilities is a non-reversible decision but it may be a

good strategy to rent the facilities until a given maturity of a production has been

reached. Another problem is modeling the life cycle of new products on the market.

Every new product has a product life cycle where it is first introduced, then the

market grows, it reaches a mature level, and declines. The model could be used to

decide when a portfolio of different products should be terminated.

• Chapter 5. We are currently working on the following two extensions of this chapter

that will be incorporated in a future version of the paper:

– Establishing analytical results and managerial insights that can be useful for

companies using stylized models. We have performed an initial analysis on

simplified two- and three-period stochastic models to minimize the expected

cost of power under a renewable target with one or two PPA options avail-

able. We obtained some preliminary analytical insights that shed light on the

relation between the following three key elements of the problem: (i) the opti-

mal procurement cost, (ii) the level of the renewable target, and (iii) the PPA
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price. These insights can help companies in structuring an electricity portfolio,

negotiating a PPA contract, and quantifying the implications of contract price

and renewable target choice on the long-term procurement costs. More work

has to be done to finalize this analytical study which would so complement the

numerical study focus of current version of the paper.

– Improving the linear dual penalties used in the information relaxation dual

optimization. In the paper, we make use of simple linear dual penalties where

the weight coefficients are chosen manually based on experimentation. This

penalty seems to work well in practice, however, determining such weights in

a more principled manner could improve the performance of both the dual

bound and our dual reoptimization method. To this end, we are investigating

a two-step process where simple penalties are used first to obtain a policy, but

then better weights are learned by using a linear regression over the values of

this policy.

• Chapters 6. The VPP offering model presented in this chapter could be enriched

to take into account more operating features of the conventional power generators.

Moreover, the model currently handles well up to 300 scenarios. Further research

could be done in developing efficient algorithms (e.g. scenario decomposition tech-

niques) to solve the model for a larger number of scenarios.

• Chapters 7–8. In Chapter 7 we integrate an energy system model with a simple

consumer model while in Chapter 8 we develop a more sophisticated consumer

behaviour model. An obvious extension of these papers would be to integrate the

energy system model in Chapter 7 with the more advanced consumer model of

Chapter 8, and examine the effect on system and consumer investment choices.

1.5 Work not included in the thesis

Additional research has been carried out to model energy saving in transportation and

logistics operations. In particular, we use combinatorial optimization techniques to repack

the cargo of a fleet of vehicles in a more efficient and balanced manner so that fuel

consumption can be reduced. The work is based on modelling and solving complex bin-

packing problems and has not been included in this thesis to keep it more focused on

energy applications. However, in the following we provide a minimal description of its

content and contributions.

The bin-packing problem (BPP) is one of the most applicable models in combinatorial
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optimization, and consists in packing a given set of items of different size into the mini-

mum number of identical bins. The multi-dimensional version of the BPP involves two-

or three-dimensional, typically rectangular-shaped items and is notoriously hard to solve

in practice, with mixed-integer programming solvers frequently failing to solve even small

instances of 30 items. In this work, we extend the classical multi-dimensional BPP by

integrating constraints arising from real-world transport applications, such as load bal-

ancing and stability of the packing. In particular, our goal is to find the packing requiring

the minimum number of bins while ensuring that the average center of mass of the loaded

bins falls as close as possible to an idea location inside the bin. The idea is that packing

and balancing the load of a set of items represent two conflicting objectives and it can

be convenient to incorporate them in a single model. This joint problem is relevant in a

number of transportation and logistics applications. For example, loading a truck or an

aircraft cargo in a way that the center of mass remains low and central in the cargo area

is important to make the travel safer and more fuel-efficient. However, this problem has

been scarcely studied in the literature and only in simplified versions, e.g., that consider

a single bin.

This work contributes to the combinatorial optimization and BPP literature. To solve

the joint packing and balancing problem exactly, we developed new mixed-integer linear

formulations addressing both the case where we want to optimally balance a set of items al-

ready assigned to a single bin, and the general load-balanced bin-packing problem. These

formulations are considerably more complex to derive than the standard BPP as several

new sets of support continuous and binary variables as well as conditional constraints are

needed to model the load balancing. Using this model, we were able to solve to optimal-

ity instances up to 20 items. To deal with larger instances, we designed a novel heuristic

based on a multi-level local search concept. A starting bin-packing solution is found using

a greedy randomized constructive heuristic. Our algorithm then takes advantage of a par-

ticular interval graph-based representation of a feasible packing, and iteratively improves

the load balancing of a bin-packing solution using three nested search levels. The first

level explores the space of transitive orientations of the complement graphs associated

with the packing. This is done by exploiting some theoretical properties of the interval

graphs and a map between transitive orientations and feasible packings. The second level

modifies the structure of the interval graphs. The third level exchanges items between

bins by repacking proper n-tuples of weakly balanced bins, and is coded in the form of

a variable depth neighborhood search framework. We also derived a combinatorial lower

bound for the optimal objective value of the joint problem that enabled us to assess an

optimality gap of the heuristic solutions. Computational experiments on instances up to

200 items showed that our new approach can provide near optimal solutions, that is, a

very effective load-balancing, in seconds or minutes. The dissemination activities related
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to these BPP topics include:

- A journal paper co-authored with David Pisinger has been published in Com-

puters & Operations Research (Trivella and Pisinger, 2016);

- Presentation by Alessio Trivella at EURO 2016, the 28th European Conference

on Operational Research, Poznan, Poland (peer-reviewed abstract);

- Presentation by Alessio Trivella at INFORMS TSL 2017, the 1st Conference

of the INFORMS Transportation and Logistics Society, Chicago, USA (peer-

reviewed extended abstract; Trivella and Pisinger, 2017);

- A master thesis at DTU has been co-advised with David Pisinger in 2016,

with title: “A new column generation-based heuristic for the 3D bin-packing

problem”.
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Tveten, T. F. B. Bolkesjø, M. Münster, and H. Ravn (2018). “Balmorel open source

energy system model”. In: Energy Strategy Reviews 20, pp. 26–34.

https://www.iea.org/publications/renewables2017/
https://www.iea.org/publications/renewables2017/
http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/ghg-emissions.aspx
http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/ghg-emissions.aspx
http://www.irena.org/publications/2018/Feb/Renewable-energy-prospects-for-the-EU
http://www.irena.org/publications/2018/Feb/Renewable-energy-prospects-for-the-EU
http://www.iea-etsap.org/web/Documentation.asp
http://www.iea-etsap.org/web/Documentation.asp
http://www.energyplan.eu/training/documentation/
http://balmorel.com/


20 References



Chapter 2

Methodological background

Making decisions in the presence of uncertainty is part of everyday life and spans practi-

cally any business area including healthcare, manufacturing, communications, transporta-

tion, finance, and energy. Optimization under uncertainty, or stochastic optimization,

refers to a collection of quantitative methods that help us making better decisions in the

presence of uncertainty about the future or about our data. While deterministic optimiza-

tion is handled using a rather universal mathematical programming framework, stochastic

optimization encompasses different modeling techniques and solution approaches includ-

ing, for example, stochastic programming, robust optimization, optimal control, optimal

stopping, Markov decision processes, and approximate dynamic programming. Each of

these sub-fields has been developed by a different community and has its own theoretical

background, style, and language. Powell (2018) describes this mix of styles and approaches

as “the jungle of stochastic optimization” and proposes a unified framework for modeling

stochastic optimization problems. Typically, stochastic optimization entails additional

challenges compared to deterministic optimization such as calibrating a stochastic model

for the uncertainty or searching over policies (i.e., collections of functions) instead of

scalars or vectors.

Energy operations and investments usually require making decisions in the presence of

uncertainty that stems from unpredictability, for instance, of energy prices and demand.

Furthermore, these optimization problems are often large scale, which poses additional

challenges to their resolution. In this thesis we indeed faced several large-scale stochastic

optimization problems and some of which were hard to approach by existing techniques

requiring the development of new methodology (e.g. the problems in Chapters 3–5). In
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Figure 2.1, we show the stochastic optimization methods applied in some chapters of the

thesis (3, 4, 5, 6). In this chapter, we present some of these methods keeping our focus

Traditional Operations Research and Machine Learning for ADP

Heuristics

Network algorithms

Multi-stage stochastic programming

Least squares Monte Carlo Decision rules approximation

Large-scale stochastic optimization

Approximate dynamic programming (ADP)

Linear/integer programming

Classification Regression

Information relaxations

Figure 2.1: Stochastic optimization methods used in the thesis.

on energy applications. We start in Section 2.1 by discussing the types of uncertainty

arising in these problems and how to model the uncertainty. We introduce stochastic

programming in Section 2.2. We present the stochastic dynamic programming framework

and some approximate dynamic programming techniques in Section 2.3. In the context of

approximate dynamic programming, as shown in Figure 2.1, we also applied in this thesis

several traditional operations research (OR) and machine learning (ML) techniques that

we assume a reader with basic knowledge in OR/ML is familiar with. Thus, we do not

describe such methods here but refer to the textbooks of Hillier and Lieberman (2010)

and Bishop (2006).

2.1 Uncertainty modeling in energy

Modeling the uncertainty is a key element in any stochastic optimization problem as

it affects the reliability of the model and its solution. In Section 2.1.1, we propose a

categorization of the different types of uncertainty when dealing with energy operation

and investment problems. In Section 2.1.2, we introduce some of the common techniques
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used to model the uncertainty. In Section 2.1.3, we show that modeling the uncertainty

might be challenging by presenting an example based on one the papers in the thesis.

2.1.1 Where is the uncertainty?

Numerous sources of uncertainty affect the decision making processes arising in energy

operations and investments, and identifying the relevant sources of uncertainty in a specific

problem is the first step in developing a stochastic optimization model. In our research, we

faced different types of uncertainty which we categorize, together with other types that we

identified, into six groups displayed in Figure 2.2. This categorization does not attempt

to be comprehensive but it does cover all sources of randomness that show up in our

papers as well as most of the ones considered in the energy optimization literature. Note

that many of these categories are linked and some uncertainty could easily be represented

by more categories. For instance, renewable energy certificates (RECs) prices could fall

under market uncertainty as RECs are tradable commodities but also under regulatory

uncertainty because their procurement is often required from energy regulation. Below

we summarize these categories and relate them to our research.

1. Market uncertainty : Electricity price uncertainty is important in all the chapters

and includes both short-term price uncertainty, that is, day-ahead and balancing

market prices [ch. 6], and uncertainty in long-term electricity prices or futures con-

tracts [ch. 3, 4, 5, 7, 8]. Moreover, we consider uncertainty in the price of other

energy-related commodities and fuels [ch. 3, 4, 7] and exchange rates [ch. 3, 4].

2. Weather uncertainty : This uncertainty is particularly relevant when dealing with

electricity production from renewable energy sources. For example, forecasting and

modeling the uncertainty in wind and solar power production is crucial for wind

and solar power generators participating in an electricity market [ch. 6].

3. Energy supply/demand uncertainty : Uncertainty in power supply and demand is

common when analyzing energy systems [ch. 7] and energy markets. We consider

electricity consumption uncertainty also at a company level [ch. 5].

4. Regulatory uncertainty : By regulatory uncertainty we refer not only to uncertainty

in the energy regulation itself, for example, in the type of support scheme granted

to renewable generators and its level, but also to uncertainty that is induced by

energy regulations such as the trading of RECs or CO2 allowances. We consider

uncertainty in the RECs prices [ch. 5], CO2 prices [ch. 7] and discuss uncertainty in

energy efficiency subsidies [ch. 8].
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Market uncertainty
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Figure 2.2: Uncertainty in energy operations and investments.

5. Behavioural uncertainty : This uncertainty is associated with the stochastic nature

of human behaviour in relation, for instance, to the energy end-use or to consumer

investments in energy efficient household electric appliances [ch. 7, 8]. We also in-

clude in this category uncertainty in the strategy adopted by competitors, which is

common in problems such as the trading of power in electricity markets.

6. Technological uncertainty : Technological uncertainty is associated, for instance, to

the development of new energy production technologies or to the extent of energy

efficiency advances in industrial processes and household appliances. We model the

future investment cost of a renewable energy project [ch. 5] but do not directly
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account for uncertainty in this cost.

2.1.2 How to represent the uncertainty

As shown, randomness of different nature arises in energy applications, and this ran-

domness can affect the parameters of the objective function and/or constraints of an

optimization model. It is often assumed that the uncertain model parameters follow

a probability distribution that is known or can be estimated. A variety of probability

distributions are used in the energy stochastic optimization literature, from the familiar

Gaussian noise to heavy-tail distributions (e.g., to model electricity spot prices) and rare

events (e.g., in the case of production unit failures). In several of the problems that

we consider, decisions are taken sequentially over time and the uncertainty thus evolves

over time in the form of a time series process or stochastic process. Simple single-factor

stochastic processes include the popular geometric Brownian motion that is commonly

used to model the evolution of commodity market prices, and the Ornstein-Uhlenbeck

process. More complex processes are multi-factor models used to describe uncertainty

driven by multiple stochastic factors, which is common to represent the term structure of

commodity prices, for instance. Depending on the problem and the type of uncertainty,

in our research we make use of different stochastic processes including an eight-factor and

multi-commodity stochastic process in Chapter 3. We do not discuss in detail probability

distributions, time series processes and stochastic processes but refer to Madsen (2007)

and Pinsky and Karlin (2010) for a more comprehensive introduction.

Modeling the uncertainty and representing it in a way that is suitable for an optimization

model usually involves the following steps:

1. Selecting a model for the uncertainty, e.g., a stochastic process;

2. Calibrating the parameters of the model using real data, for example, historical or

market data;

3. Generating scenarios of the uncertainty from the calibrated stochastic process.

To elaborate on the latter item, depending on the structure of the underlying decision

making problem and our solution approach, the evolution of the stochastic process over

time can be approximated by a discrete-state scenario process using different techniques.

In Figure 2.3, we illustrate a four-period horizon (i = 0, . . . , 3) with uncertainty repre-

sented in the form of a scenario tree 2.3(a) and a scenario fan 2.3(b).
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𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

(a) Scenario tree

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

(b) Scenario fan

Figure 2.3: Uncertainty representation using a scenario tree (a) and a scenario fan (b)

In both the scenario tree and the scenario fan, a node wi represents a stochastic process

outcome at stage i. In the scenario tree, given wi, the distribution of the next-period un-

certainty wi+1 is characterized by finitely many possible outcomes defined by the branches

exiting wi and probabilities associated with each branch. A scenario is then a path from

the root (i = 0) to a leaf (i = 3 in the figure) as the one marked in red in Figure 2.3(a).

This representation is common in stochastic programming (see Section 2.2), and we use

it in Chapter 6 to model a three-stage stochastic program. The number of nodes and sce-

narios in the tree, however, grows exponentially with the number of time periods, making

scenario trees hard to handle in problems with many decision stages. In contrast, a sce-

nario fan consists of a set of sample paths of the uncertainty typically generated in Monte

Carlo simulation. This representation is rather common in high-dimensional multi-stage

problems with many time periods or sources of uncertainty, solved with approximate dy-

namic programming (see Section 2.3). We use this second representation in Chapters 3,

4, and 5. Alternatively, the stochastic process could also be approximated with a scenario

lattice (Löhndorf et al., 2013) but we do not use this structure in the thesis.

Several scenario reduction frameworks have been developed to reduce the size of a multi-

stage problem (see, e.g., Heitsch and Römisch, 2009 and references therein). Given an

input set of scenarios, these methods typically select the subset that best represents the

original scenario set under some metric, with an iterative or recursive procedure. We use

a similar scenario reduction technique in Chapter 6.
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2.1.3 Challenges in uncertainty modeling: An example

Modeling the uncertainty in a principled manner is in general a complex procedure that

requires multiple steps. These steps consist of selecting an appropriate statistical mod-

el/stochastic process to describe the evolution of the uncertain factors, collecting and

processing historical data, and calibrating the parameters of the model using this data.

Each step has its own challenges. Typical challenges include dealing with seasonality in

the data, dealing with a long time horizon for which market contracts are not traded, and

obtaining a statistically sound model calibration.

In this section, we illustrate an example of such challenges that we encountered in one

of our applications and which involves the modeling of power forward contract prices.

Specifically, in Chapter 3 we define a multi-commodity stochastic process to capture

the joint evolution of power prices as well as prices of other commodities including e.g.

aluminum (see Section 3.5.2 for details). To calibrate this model, we collected forward

contract data with multiple maturities for these commodities but realized that they were

not directly comparable across commodities. Indeed, power contracts deliver electricity

continuously during an interval of time, and the delivery period of contracts of different

lengths can overlap. For a sample trading date, Figure 2.4 shows Nord Pool power forward

contracts with monthly, quarterly, and yearly delivery extending out to 6 months, 8

quarters, and 3 years, respectively. In contrast, forward contracts of the other considered

commodities delivers only at maturity, that is, at a fixed point in time.

0 3 6 9 12 15 18 21 24 27 30 33 36
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40

45

50
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60
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70 Monthly delivery
Quarterly delivery
Yearly delivery

Figure 2.4: Nord Pool power forward contracts traded on October 26th, 2006 with delivery of
power during monthly, quarterly, and yearly periods.
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Inconsistent contract data across commodities would prevent us from calibrating a multi-

commodity stochastic process. To resolve this issue, we employed a smoothing technique

to obtain an implied power forward curve that models settlements at fixed time and

replicates the market average-based forward contracts. This synthetic curve contains

power forward contract prices that are consistent with the ones for the other considered

commodities. Specifically, we used the approach of Benth et al. (2007) that we do not

discuss in the paper for brevity but illustrate instead here.

Suppose at time 0 (today) we observe M average-based forward contracts, where each

contract m has price Pm and delivers power in the interval [T sm, T
e
m] ⊂ R+. These intervals

can overlap as shown in Figure 2.4. Based on these contracts, our goal is to determine a

smooth forward curve F (0, t) = ε(t) + s(t) with delivery at a fixed time t ≥ 0, where s(t)

is a given trigonometric function that captures annual seasonality in the power forward

curve, and ε(t) is a forth-degree smooth polynomial spline that models deviations from

this seasonality (the forth-degree property is needed to ensure a smoothness property; see

Benth et al., 2007 for details). Let {t0, t1, . . . , tn} be the list of sorted dates constructed by

ordering the intervals boundary dates {T sm, T em, m = 1, . . . ,M} and removing duplicates.

The spline ε(t) is defined for each interval t ∈ [tj−1, tj], for j = 1, . . . , n as

ε(t) = ajt
4
j + bjt

3
j + cjt

2
j + djtj + ej.

Considering the full domain [t0, tn], the spline thus contains 5n parameters that we denote

by x> = [a1, b1, c1, d1, e1, . . . , an, bn, cn, dn, en]. We call the parametrized spline ε(t;x) and

determine x by imposing the following set of conditions.

• Arbitrage-free. We require that the synthetic forward curve replicates each average-

based contract m using an arbitrage-free pricing argument. In other words, we

require the average-based contract price Pm to match the average spot price over

the contract delivery interval [T sm, T
e
m], which means

Pm =

∫ T em

T sm

E0[S(t)]dt =

∫ T em

T sm

F (0, t)dt =

∫ T em

T sm

[ε(t;x) + s(t)]dt, (2.1)

where S(·) denotes the power spot price and E0 is the risk-neutral time 0 expectation

(for clarity, condition (2.1) was simplified here and the effect of the risk-free interest

rate is not considered). Equation (2.1) is linear in x.

• Connectivity. We want the spline to be continuous and smoothly connected at

junction points t1, . . . , tn−1. Specifically, we impose ε(t;x), ε′(t;x), and ε′′(t;x) to
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match in adjacent spline components:
(aj+1 − aj)t4j + (bj+1 − bj)t3j + (cj+1 − cj)t2j + (dj+1 − dj)tj + ej+1 − ej = 0

4(aj+1 − aj)t3j + 3(bj+1 − bj)t2j + 2(cj+1 − cj)t2j + dj+1 − dj = 0

12(aj+1 − aj)t2j + 6(bj+1 − bj)t1j + 2(cj+1 − cj)tj = 0,

for j = 1, . . . , n− 1. We also require the curve to end flat: ε′(tn) = 0.

• Smoothness. We want the spline to be as smooth as possible, where smoothness is

defined as mean square value of the second derivative. In other words, we solve

min
x

∫ tn

t0

[ε′′(t;x)]dt = min
x
x>Hx, (2.2)

where H is a 5n× 5n matrix (see Benth et al., 2007 for its full expression).

The problem is thus a quadratic program with objective given by (2.2) and linear equality

constraints Ax = b given by the arbitrage-free and connectivity conditions. It is possible

to reformulate this problem as an unconstrained quadratic program using the Lagrange

Multiplier method as

min
x
x>Hx+ λ(Ax− b),

and solve it as a system of linear equations[
2H A>

A 0

][
x

λ

]
=

[
0

b

]
. (2.3)

The solution of (2.3) contains the parameter vector x which defines the spline ε(t). For

the same trading date used in the example of Figure 2.4, we display the synthetic forward

curve F (0, t) resulting after the described smoothing approach in Figure 2.5.

The forward curve (red curve) is smooth and captures the clear annual season price pat-

tern. Moreover, the curve graphically satisfies the arbitrage-free integral condition (2.1) as

it is never entirely above nor entirely below each of the traded contracts (blue segments).

From this curve, we can then extract maturities (black dots) matching those traded for

the other commodities. Finally, to obtain a complete and consistent cross-commodity

dataset, we repeat this smoothing technique to each trading date in our dataset. Only at

this point we are able to calibrate the stochastic process.
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Figure 2.5: Synthetic power forward curve and extracted maturities obtained after the spline
smoothing process.

2.2 Stochastic programming

One of the important mathematical approaches used in this thesis for modeling opti-

mization problems that include uncertainty is stochastic programming (SP; Birge and

Louveaux, 2011; Kall and Wallace, 1994). SP has been extensively used in the energy

optimization literature, for example, in electricity market bidding problems (Boomsma

et al., 2014; Ottesen et al., 2016, Chapter 6 of this thesis and references therein), unit

commitment (Takriti et al., 1996; Takriti et al., 2000), power generation capacity expan-

sion (Ahmed et al., 2003; López et al., 2007), hydropower production planning (Fleten

and Kristoffersen, 2008), electricity procurement (Carrión et al., 2007), and power port-

folio optimization (Fleten et al., 2002; Sen et al., 2006). See also Wallace and Fleten

(2003) for an overview of energy problems solved with SP including traditional oil and

gas applications. Stochastic programs have two or more stages, where stages represent

discrete points in time when the value of some uncertain parameters become known to

the decision maker. In Section 2.2.1, we introduce the two-stage SP with recourse. Then,

we generalize it to a multi-stage setting in Section 2.2.2.

2.2.1 Two-stage stochastic programs

Consider the decision making problem represented in Figure 2.6 with two periods: i = 0

(now) and i = 1 (future). The known time 0 and random time 1 information is denoted

by w0 and w1, respectively. A first-stage decision x0 ∈ X0 is made at time 0 knowing only
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Figure 2.6: Decision making process in a two-stage SP with recourse.

w0 and resulting in a reward r0(x0, w0) ∈ R. Subsequently, a random event w1 occurs and

a recourse decision x1 ∈ X1 is made at the second stage to compensate the effect of this

event. This decision results in a reward r1(x1, w1) ∈ R. The goal of the decision maker

is to determine a feasible policy that maximizes the total expected reward over the two

periods, where a policy is given by a first-stage decision x0 and a collection of recourse

decisions x1(w1) to be taken in response to each random outcome of w1. This problem

can be formulated as

max
x0∈X0

r0(x0, w0) + E
[

max
x1∈X1(x0,w1)

r1(x1, w1)

∣∣∣∣w0

]
, (2.4)

and is denoted two-stage stochastic program with recourse. The decision variables of this

model are thus divided into two groups:

• The first-stage, or here-and-now, decision variables (x0) are made before the real-

ization of the uncertainty w1;

• The second-stage, or wait-and-see, decision variables (x1) are made after the uncer-

tainty w1 reveals to compensate the outcome of this random event.

In the most common linear case, the reward functions r0 and r1 are linear functions of the

decision variables, and the feasible sets X0, and X1 are polytopes, i.e., they are defined

by sets of linear constraints. In this case, the two-stage SP with recourse (2.4) can be

formulated as

max r>0 x0 + E [max r1(w1)>x1(w1)|w0] (2.5a)

s.t. Ax0 = b (2.5b)

T (w1)x0 +Wx1(w1) = h(w1) (2.5c)

x0 ≥ 0, x1(w1) ≥ 0, (2.5d)

where constraints (2.5b) and (2.5c) define the feasible region, respectively, for the first-

stage variables x0 and for the second-stage variables x1 given x0 and the uncertainty
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realization w1. The optimization problem (2.5) can then be translated in the so called

deterministic equivalent. Consider a discrete and finite set of scenarios K describing

the distribution of the random variables w1, where each scenario k ∈ K has probability

πk ∈ [0, 1] and
∑

k∈K πk = 1. We index the recourse decision by k, i.e. x1,k, since this

decision adapts to the uncertainty outcome. We then write the expectation in (2.5a) and

the constraints (2.5c) with their discrete expressions using the scenarios k ∈ K, resulting

in the following model

max
x

r>0 x0 +
∑
k∈K

πk r
>
1,kx1,k (2.6a)

s.t. Ax0 = b (2.6b)

Tk x0 +Wx1,k = hk, ∀k ∈ K (2.6c)

x0 ≥ 0, x1,k ≥ 0, ∀k ∈ K, (2.6d)

which indeed is a linear program and can be solved with an LP solver. The formulation

of (2.5) and (2.6) with integer or mixed-integer variables is analogous. Note that the size

of model (2.6) increases with the number of scenarios |K| (both the number of variables

and constraints). Thus, this model is often a large-scale model.

2.2.2 Multi-stage stochastic programs

The approach described in the previous section can be generalized to a multi-stage setting

with periods i = 0, . . . , I, by allowing a recourse decision in each periods based on the

uncertainty realized by that period. We illustrate this setting in Figure 2.7 and formulate

a generic multi-stage SP with recourse using the following nested formulation.

max
x0∈X0

r0(x0, w0) + E

[
max

x1∈X1(x0,w1)
r1(x1, w1) + E

[
max

x2∈X2(x1,w2)
r2(x2, w2)

· · ·+ E
[
· · ·+ E

[
max

xI∈XI(xI−1,wI)
rI(xI , wI)

∣∣wI−1

]
· · ·
∣∣∣wi] · · · ∣∣∣∣w1

] ∣∣∣∣∣w0

]
. (2.7)

Similarly to two-stage SPs, multi-stage SPs can be reformulated using a deterministic

equivalent model based on the underlying scenario tree. If functions ri(·, wi) in formulation

(2.7) are linear and sets Xi are polytopes for i = 0 . . . , I, then the resulting deterministic

equivalent is a linear program. We omit this model for brevity (see, e.g., Birge and

Louveaux, 2011, ch. 3). The number of variables and constraints of this model grows

quickly (exponentially) with the number of stages. Therefore, as the number of stages
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Figure 2.7: Decision making process in a multi-stage SP with recourse.

increases, multi-stage SPs become intractable. In practice, the majority of literature in SP

deals with programs with only a few stages (typically two or three). In Chapter 6, we use

two- and three-stage linear mixed-integer stochastic programs to describe the electricity

market offering strategies of particular types of power producers.

Many stochastic programming problems, including the models that we developed in Chap-

ter 6, can be successfully solved by directly using a general purpose LP or MIP solver on

their deterministic equivalent translation. If such a direct attempt fails, the use of special-

ized scenario decomposition techniques is also a popular approach in stochastic program-

ming. For example, the progressive hedging and Uzawa methods decompose the original

problem by means of parallel smaller subproblems defined on each scenario k ∈ K, coor-

dinated and updated by a master algorithm that increasingly enforces non-anticipativity

(see e.g. Leclere, 2014). Stochastic dynamic programming (see next section 2.3) can also

be seen as a decomposition of multi-stage optimization problems over time periods instead,

that is, the problem is solved by smaller sequential subproblems defined on each period i.

2.3 Stochastic dynamic programming

Sequential decision making problems under uncertainty can often be modeled by what is

known as stochastic dynamic programming (SDP; Puterman, 2005; Bertsekas, 2011). In

this section, we introduce the SDP framework and focus on some specific aspects and so-

lution methods employed in this thesis. In Section 2.3.1, we formulate a generic stochastic
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dynamic program to maximize the cumulative reward of a system subject to uncertainty,

and highlight some of the challenges that frequently arise when dealing with these mod-

els. In Sections 2.3.2 and 2.3.3 we introduce two approximate dynamic programming

methods frequently used to solve complex SDPs known as the least squares Monte Carlo

and the reoptimization heuristic, respectively. We conclude in Section 2.3.4 by presenting

techniques to compute dual bounds on the optimal solution value, thus an optimality gap.

2.3.1 Formulation and challenges

Consider an optimization problem involving a system (for instance, a power plant or

an electricity storage) in which decisions are made sequentially over a finite time hori-

zon composed of stages i ∈ I := {0, . . . , I − 1} (see, e.g., Puterman, 2005, ch. 5, for

infinite-horizon models). The system at stage i is represented by a state that contains the

minimally dimensioned function of history necessary and sufficient to model the system

from stage i onward (Powell, 2011). The state of the system at stage i is denoted by

(xi, wi) ∈ Xi×Wi and is composed of an endogenous and an exogenous part of the state.

The endogenous (“physical”) state xi ∈ Xi is controllable, while the exogenous (“informa-

tion”) state wi ∈ Wi are random variables that affect the cash flows and/or the evolution

of the system. We assume that the uncertainties are driven by stochastic factors that

evolve in a Markovian manner, that is, wi carries all the history of information needed to

describe wi+1. To illustrate these concepts, consider the following situations.

• Operating a hydro power system composed by N connected reservoirs that partic-

ipate in a wholesale electricity market. At a given stage i, the endogenous state

space Xi ⊂ RN
+ is the set of all possible reservoir states, that is, xi ∈ Xi is a vector

of N continuous variables xi,n ∈ [Lmin
n , Lmax

n ], n = 1, . . . , N , each representing the

water level in one reservoir. The exogenous state Wi is given by the stochastic en-

vironmental and market factors driving the wholesale electricity prices and natural

water inflows (Löhndorf et al., 2013).

• Operating an aluminum production facility that takes power as input and produces

aluminum to sell to the wholesale market. At each stage i, this plant can: produce

full load (O), temporarily suspend production for maximum three consecutive pe-

riods (S), or permanently shut down (C). In this case, the endogenous state space

is discrete and composed by five states Xi = {O, S1, S2, S3,C}, while the exogenous

state Wi is composed by the market factors driving the evolution of aluminum and

electricity prices (Trivella et al., 2018).
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• Valuing the investment timing and capacity choice of a wind energy project subject

to uncertainty in (i) the price of power to sell to the wholesale market through the

project lifetime, and (ii) the price of steel needed to build the turbines. Assuming

a discrete investment time horizon, the endogenous state xi ∈ Xi ⊂ R+ is a contin-

uous variable representing the project capacity that is installed at stage i, and the

exogenous state Wi is given by electricity and steel spot prices (Boomsma et al.,

2012).

The stage 0 state (x0, w0) is known. At stage i ∈ I and state (xi, wi) ∈ Xi × Wi, a

decision, or action, ai from the feasible action set Ai(xi) is executed, resulting in an

immediate reward ri(xi, wi, ai) ∈ R and a transition to a stage i + 1 operating state

xi+1 = fi(xi, wi, ai) in set Xi+1. We define a terminal stage I where no action is allowed

and a terminal reward rI(xI , wI) is received, with (xI , wI) belonging to a terminal-stage

state space XI ×WI .

Making decisions in such setting requires a policy π, that is, a collection of decision rules

mapping states to actions. At a given stage i, a decision rule Aπi associates the state

(xi, wi) ∈ Xi ×Wi to a feasible action ai ∈ Ai(xi). The policy π is then the collection

{Aπi , i ∈ I}. We denote by Π the set of all feasible policies. An optimal risk-neutral policy

belongs to Π and maximizes the expected cumulative cash flow from applying this policy

over the finite problem horizon. More formally, this policy solves the following Markov

decision process (MDP):

max
π∈Π

E

[∑
i∈I

δiri(x
π
i , wi, A

π
i (xπi , wi)) + δIrI(x

π
I , wI)

∣∣∣∣∣ (x0, w0)

]
, (2.8)

where xπi is the endogenous state reached in stage i by following policy π, and δ ∈ (0, 1] is

the per-stage discount factor. (For finite horizon problems, note that δ could be embedded

directly into the reward function, thus, not considered explicitly in (2.8).) It is well known

that in theory the optimal policy of MDP (2.8) could be obtained with stochastic dynamic

programming, that is, by solving the Bellman equations:

VI(xI , wI) = rI(xI , wI), ∀(xI , wI) ∈ XI ×WI , (2.9a)

Vi(xi, wi) = max
ai∈Ai(xi)

{
ri(xi, wi, ai) + δE

[
Vi+1 (fi(xi, wi, ai), wi+1)

∣∣wi]},
∀(i, xi, wi) ∈ I × Xi ×Wi. (2.9b)

Here Vi(·, ·) is the value function at stage i ∈ I ∪ {I}, representing the optimal utility

of being in a stage i state when following an optimal policy from stage i to I. At the

terminal stage I, the value function is specified in (2.9a) using the terminal reward rI(·, ·).
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In a backward recursion, the value function at stage i ∈ I and state (xi, wi) ∈ Xi ×Wi is

determined using (2.9b). Specifically, (2.9b) chooses the best feasible action ai ∈ Ai(xi)
by maximizing the sum of the immediate reward, ri(xi, wi, ai), and a continuation function

that represents the expected utility of being in the new i + 1 state fi(xi, wi, ai) induced

by action ai. The optimal objective value of (2.8) is given by V0(x0, w0).

Determining an optimal policy to SDP (2.9) is intractable in most real-life applications

due to three possible curses of dimensionality (Powell, 2011):

1. The state space (Xi,Wi) can be high dimensional making it difficult or impossible

to compute and store the value functions in (2.9) for all states. The state can be

high-dimensional in its endogenous component Xi, exogenous component Wi, or

both. For example, if xi = (xi,1, . . . , xi,N) has N dimensions and xi,n can take on H

possible values, then we might have up to NH different states. If xi is continuous,

even if scalar, then we cannot even enumerate all the states. This situation indeed

arise in Chapter 5 in which Xi is a vector of 25 continuous variables. Instead,

our numerical study of Chapter 3 presents a high-dimensional exogenous state Wi

composed by eight continuous random variables.

2. The expectations needed to evaluate the continuation function in (2.9b) can require

solving high-dimensional integrals and thus can be hard to compute.

3. The optimization problem in (2.9b) can be hard to solve due to a high-dimensional

action space Ai(xi) or a difficult problem class. For example, finding the best action

in our numerical study of Chapter 5 requires solving a mixed-integer program.

Developing methods to overcome these curses of dimensionality is an active area of re-

search under the umbrella of approximate dynamic programming (ADP). ADP methods

exploit different types of approximations in SDP (2.9), for instance, of the value function,

to overcome its intractability. A large variety of ADP strategies have been proposed in

the literature. We do not attempt to summarize these strategies here but refer to Pow-

ell (2011) for a classification of policies determined with ADP into four classes: policies

based on (i) policy function approximations, (ii) cost function approximations, (iii) value

function approximations, and (iv) direct lookahead.

In the following, we describe two methods that are used in this thesis to approximate

high-dimensional and intractable SDPs. The first method approximates the SDP value

or continuation function (Chapters 3 and 4), the second is based on iteratively solving

deterministic approximation of the model over time (Chapters 3 and 5).
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2.3.2 Least squares Monte Carlo methods

Least squares Monte Carlo (LSM) is a state-of-the-art ADP technique which overcomes

some of the curses of dimensionality by computing heuristic policies based on low-

dimensional approximations of the SDP continuation or value function. Pioneered by

Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001), LSM is a popular

approach in both academia and industry for solving financial American options and real

options. LSM has been also applied to energy real option problems, for example, in renew-

able energy investments (Boomsma et al., 2012), energy storage management (Arvesen et

al., 2013; Maziéres and Boogert, 2013; Nadarajah et al., 2017), and hydropower-reservoir

management (Carmona and Ludkovski, 2010; Denault et al., 2013). There are two ver-

sions of LSM that we introduce below, mainly following the discussion in Nadarajah et al.

(2017) where these two variants are compared. We assume that at each stage i ∈ I ∪ {I}
the endogenous state space Xi is finite and there is no randomness in endogenous state

transitions, that is, xi+1 = f(xi, ai).

A standard version denoted regress-now LSM (LSMN; Longstaff and Schwartz, 2001;

Tsitsiklis and Van Roy, 2001) approximates the SDP continuation function using basis

functions. Consider at each stage i ∈ I a set of Bi basis functions of the information

state Φi := {Φi,b(wi), b ∈ Bi}, where Bi := {1, . . . , Bi}. These basis functions can be, for

instance, polynomials, radial functions, or Laguerre polynomials (Longstaff and Schwartz,

2001; Stentoft, 2004; Maziéres and Boogert, 2013). LSMN computes a continuation

function approximation (CFA) as a linear combination of these basis functions:

Ĉi(xi+1, wi) :=

Bi∑
b=1

βN
i,xi+1,b

Φi,b(wi) ' E
[
Vi+1 (xi+1, wi+1)

∣∣wi],
where βN

i,xi+1,b
denotes the b-th weight of the linear combination. We denote the vector

of CFA weights by βN
i,xi+1

:= (βN
i,xi+1,1

, . . . , βN
i,xi+1,Bi

). At a high level, LSMN generates

sample paths of the uncertainty using Monte Carlo, and fits the CFA weights using least

squares regression in a backward recursive fashion. The LSMN procedure is illustrated in

Algorithm 1.

The outputs of LSMN are the CFA weight vectors βN
i,xi+1

for each stage i ∈ I and endoge-

nous state xi+1 ∈ Xi+1. Given such weights, the action aN(xi, wi) taken at stage i and

state (xi, wi) is obtained by substituting the CFA in SDP (2.9) and maximizing over the

feasible actions:

aN(xi, wi) = arg max
a∈Ai(xi)

{
ri(xi, wi, a) + δ

Bi∑
b=1

βN
i,fi(xi,a),bΦi,b(wi)

}
. (2.10)
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Algorithm 1 LSMN

Inputs: Initial state (x0, w0) ∈ X0×W0, set of information state sample paths {wpi , (i, p) ∈
I ∪ {I} × P}, and set of basis function vectors {Φi, i ∈ I}.

Initialization: For each xI ∈ XI , compute CFA ĈI−1(xI , w
p
I−1) := rI(xI , w

p
I ) estimates

for p ∈ P and perform a least squares regression on these CFA using basis functions ΦI−1

to determine the vector of CFA weights βN
I−1,xI

.

For each i = I − 2 to 0 do:

For each xi ∈ Xi do:

1. For each p ∈ P do: Compute the CFA estimate

Ĉi(xi+1, w
p
i ) = max

a∈Ai(xi+1)

{
ri+1(xi+1, w

p
i+1, a) + δ

Bi+1∑
b=1

βN
i+1,fi+1(xi+1,a),bΦi+1,b(w

p
i+1)

}
.

2. Perform a least squares regression on the CFA estimates {Ĉi(xi+1, w
p
i ), p ∈ P} using

basis functions Φi to determine the vector of CFA weights βN
i,xi+1

.

Outputs: Vectors of CFA weights βN
i,xi+1

for each (i, xi) ∈ I × Xi+1.

To estimate a lower bound on the optimal policy value, that is, the objective of MDP

(2.8), we generate a second set of evaluation sample paths in Monte Carlo and simulate

the policy along each sample paths according to (2.10). A lower bound estimate is then

computed as a sample average of the time 0 sum of discounted rewards gained along these

sample paths.

A non-standard LSM version approximates instead the value function and is denoted

regress-later LSM (LSML; Glasserman and Yu, 2004; Nadarajah et al., 2017). Consider

for each stage i ∈ {1, . . . , I} a set of Bi basis functions Φi := {Φi,b(wi), b ∈ Bi}, where

Bi := {1, . . . , Bi}. LSML computes a value function approximation (VFA) as a linear

combination

V̂i (xi, wi) :=

Bi∑
b=1

βi,xi,b Φi,b(wi) ' Vi (xi, wi) .

where βL
i,xi,b

denotes the b-th VFA weight. LSML is appealing when the basis functions

expectations can be computed in closed form, that is: E[Φi+1,b(wi+1)|wi] =: Φi,i+1,b(wi).

In this case, sample averages are not needed to evaluate expectations of the next stage
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VFAs because

E
[
V̂i+1

(
xi+1, wi+1

)∣∣wi] = E

[
Bi+1∑
b=1

βi+1,xi+1,b Φi+1,b(wi+1)

∣∣∣∣wi
]

=

Bi+1∑
b=1

βi+1,xi+1,b E
[
Φi+1,b(wi+1)

∣∣wi]
=

Bi+1∑
b=1

βi+1,xi+1,b Φi,i+1,b(wi).

This property is valid, for instance, when using polynomial and call/put option type basis

functions on elements of common log-normal or term structure models. We describe the

LSML procedure in Algorithm 2 for the case this closed-form property holds.

Algorithm 2 LSML

Inputs: Initial state (x0, w0) ∈ X0×W0, set of information state sample paths {wpi , (i, p) ∈
I ∪ {I} × P} and set of basis function vectors {Φi, i ∈ {1, . . . , I}}.

Initialization: For each xI ∈ XI , compute estimates V̂I(xI , w
p
I ) = rI(xI , w

p
I ) for p ∈ P

and perform a least squares regression on these VFAs using basis functions ΦI to determine
the vector of VFA weights βL

I,xI
.

For each i = I − 1 to 1 do:

For each xi ∈ Xi do:

1. For each p ∈ P do: Compute the VFA estimate

V̂i(xi, w
p
i ) = max

a∈Ai(xi)

{
ri(xi, w

p
i , a) + δ

Bi+1∑
b=1

βL
i+1,fi(xi,a),bΦi,i+1,b(w

p
i+1)

}
.

2. Perform a least squares regression on the VFA estimates {V̂i(xi, wpi ), p ∈ P} using
basis functions Φi to determine the vector of VFA weights βL

i,xi
.

Outputs: Vectors of VFA weights βL
i,xi

for each (i, xi) ∈ {1, . . . , I} × Xi.

Given the LSML VFA weights, the action aL(xi, wi) taken at stage i ∈ I and state (xi, wi)

is obtained by substituting the VFA in SDP (2.9) and maximizing over the feasible actions

aL(xi, wi) = arg max
a∈Ai(xi)

{
ri(xi, wi, a) + δ

Bi+1∑
b=1

βL
i+1,fi(xi,a),bΦi,i+1,b(wi)

}
. (2.12)

A lower bound can then be estimated analogously to LSMN but using (2.12) to simulate

the policy along the set of evaluation sample paths.
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As shown by Nadarajah et al. (2017), LSMN and LSML usually produce equally accurate

(and often near-optimal) lower bounds in similar running time. However, these methods

can be also used to estimate dual bounds (see Section 2.3.4), and estimating a dual bound

with an LSML VFA can be orders of magnitude faster than with an LSMN CFA, which

supports the use of LSML to compute dual bounds. Moreover, LSML can be adapted

to more sophisticated settings where the expectation in the SDP continuation function is

replaced by other operators such as risk measures. The use of LSML in fact enabled us

to approximate the shutdown-averse SDPs of Chapters 3–4.

2.3.3 Reoptimization heuristic

The reoptimization heuristic (RH) is based on iteratively solving deterministic approxima-

tions of the original stochastic model (2.8) over time (Wu et al., 2012; Secomandi, 2015;

Löhndorf and Wozabal, 2017; Nadarajah and Secomandi, 2018). At each stage i ∈ I,

this heuristic replaces the future uncertainty wj, j > i by a forecast E[wj|wi], solves a

deterministic model which embeds such forecast, and implements the action pertaining to

this stage alone. At stage i+ 1, new information wi+1 becomes available and the process

is repeated. RH thus accounts for the uncertainty in a reactive manner by reoptimizing

at each stage using updated information. RH can also be applied to models with high-

dimensional endogenous state space Xi. In the following we assume deterministic state

transitions, i.e. xi+1 = f(xi, ai) but RH variants that handle stochastic state transitions

can also be defined.

At stage i and state (xi, wi) ∈ Xi ×Wi, the RH model is formulated as

max
xj ,aj

∑
j∈I,j≥i

δjrj(xj,E[wj|wi], aj) + δIrI(xI ,E[wI |wi]) (2.13a)

s.t.: xj = xi, j = 1 (2.13b)

xj+1 = fj(xj, aj), ∀j ∈ I, j ≥ i, (2.13c)

var.: aj ∈ Aj(xj), ∀j ∈ I, j ≥ i, (2.13d)

xj ∈ Xj, ∀j ∈ I ∪ {I}, j ≥ i. (2.13e)

The decision variables are given by endogenous states and actions for stages i to I. The

objective function (2.13a) is the discounted sum of rewards obtained between i and I

using expected values of uncertainty. Constraint (2.13b) initializes the stage i state to

the current state xi. Constraints (2.13c) model the state transitions and constraints

(2.13d)–(2.13e) ensure the policy is feasible. The model (2.13) is a math program that

can arise, for instance, as a linear, mixed-integer, or non-linear program depending on the
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application. The full RH heuristic is shown in Algorithm 3.

Algorithm 3 RH

Inputs: Initial state (x0, w0) ∈ X0 × W0 and sample path of the uncertainty
{wi, i ∈ I ∪ {I}} conditioned on w0.

Initialization: Define sum of discounted rewards R = 0.

For each i = 0 to I − 1 do:

1. Solve deterministic model (2.13) formulated at stage i and state (xi, wi).

2. Implement optimal stage i decision a∗i at stage i alone, which means:

- Add stage i reward R←− R + δiri(xi, wi, a
∗
i );

- Compute new state xi+1 = fi(xi, a
∗
i ).

Add terminal reward R←− R + δIrI(xI , wI).

Outputs: Sum of discounted rewards R gained along the sample path.

Estimating the value of the RH policy requires generating a set of H sample paths of the

uncertainty conditioned on w0 and simulating the policy according to Algorithm 3. Each

sample path h = 1, . . . , H results in the cumulative reward Rh, and the lower bound is

then computed as a sample average
∑H

h=1 Rh/H.

The RH heuristic is popular in contexts such as the merchant management of commodity

storage, where reoptimization policies (also known as rolling intrinsic in this context) are

used in practice and known to be near optimal (Lai et al., 2010; Secomandi, 2015). In

contrast, RH can be significantly suboptimal in MDPs with irreversible decisions such

as the decision to shutdown a production plant (Chapter 3) or to invest in a long term

power contract (Chapter 5). In the former case, for instance, the RH might incorrectly

choose the permanent decision at a stage i state as a result of not capturing the evolution

of the uncertainty, whereas the optimal policy chooses a different action. This mistake

is irreversible and can result in significant revenue losses. In commodity storage applica-

tions the RH policy can instead offset a potentially incorrect energy injection/withdrawal

decision at stage i using future injection/withdrawal decisions. Another reason why RH is

popular in some practical applications is the following. Suppose the uncertainty is in mar-

ket prices and that market information, as, e.g., forward prices, can be used to evaluate

the expectations in the RH model objective function (2.13a). Then, a stochastic model

for the evolution of market factors is not needed to use the RH policy and this policy is

thus not affected by errors incurred in modeling the uncertainty (Secomandi et al., 2015);

otherwise, it is subject to such errors. In any case, a stochastic model of the uncertainty

is necessary to estimate the value of the RH policy.
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As mentioned, the RH model can be viewed as a deterministic approximation of the

original MDP. In some applications where the endogenous state space is low dimensional

and finite, the RH objective function (2.13a) can be replaced by

max
xj ,aj

∑
j∈I,j≥i

δjE[rj(xj, wj, aj)|wi] + δIEi[rI(xI , wI)|wi], (2.14)

where the expectation is taken to the reward function instead of the uncertainty. This

objective is intuitively preferable as it avoids one approximation step (we indeed use (2.14)

in Chapter 3). We use RH variants or extensions in both Chapters 3 and 5.

2.3.4 Information relaxations

Evaluating the performance of a policy is important, but depending on the problem, one

strategy may be more appropriate than the other. For example one could: (i) consider

a smaller or simplified (but still meaningful) problem that can be solved exactly and

compare the policy value estimate with the optimal solution, (ii) compare the policy

value estimate with simpler policies, e.g. myopic policies which only optimize the current

reward without modeling future decisions, and (iii) assess dual bounds on the optimal

policy value, that is, upper bounds in case of profit maximization as in (2.9). In this

section, we give a brief introduction to the latter strategy.

Typically, the computation of dual bounds relies on relaxing the non-anticipativity con-

straints embedded in the SDP, that is, some future uncertainty is known before making

a decision. Giving to the decision maker more information than what is truly available,

the solution to the relaxed problem represents a dual bound on the optimal value. The

simplest dual bound assumes perfect information of the future. In this case, we consider

H Monte Carlo samples of uncertainty {whi , (i, h) ∈ I ∪ {I} × {1, . . . , H}} and solve the

following deterministic dynamic program on each sample path h:

Uh
I (xI) = rI(xI , w

h
I ), ∀xI ∈ XI ,

Uh
i (xi) = max

ai∈Ai(xi)

{
ri(xi, w

h
i , ai) + δ Uh

i+1

(
f(xi, w

h
i , ai)

)}
, ∀(i, xi) ∈ I × Xi.

A dual bound is then obtained as the sample average
∑H

h=1 U
h
0 (x0)/H. The dual bound

based on perfect information is often rather weak and tighter bounds are generally needed.

An alternative choice is to consider imperfect information relaxations, that is, the decision

maker only knows in advance some of the uncertainty. This approach can be useful when

the resulting problem is significantly easier to solve, for example, when a multi-dimensional
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uncertainty model is reduced to a single stochastic factor.

Another way of computing efficient dual bounds is based on the information relaxation

and duality framework (Brown et al., 2010), which we use in Chapters 3–5. This ap-

proach also relies on relaxing the non-anticipativity constraints, but penalizes knowledge

of future information at time i ∈ I using a penalty function qi (f(xi, ai), wi, wi+1). In a

maximization problem, a feasible dual penalty qi satisfies E[qi (f(xi, ai), wi, wi+1)
∣∣wi] ≤ 0.

Using Monte Carlo samples of uncertainty {whi , (i, h) ∈ I ∪ {I} × {1, . . . , H}}, we solve

the following deterministic dynamic program:

Uh
I (xI) = rI(xI , w

h
I ), ∀xI ∈ XI ,

Uh
i (xi) = max

ai∈Ai(xi)

{
ri(xi, w

h
i , ai)− qi

(
f(xi, w

h
i , ai), w

h
i , w

h
i+1

)
+ δ Uh

i+1

(
f(xi, w

h
i , ai)

)}
, ∀(i, xi) ∈ I × Xi,

for all h ∈ {1, . . . , H}, where qi is a feasible penalty. A dual bound is then obtained as

the sample average
∑H

h=1 U
h
0 (x0)/H.

Regarding the dual penalty choice, it is well known (Brown et al., 2010) that given a VFA

V̂i(·), a feasible dual penalty can be defined for (xi+1, h) ∈ Xi+1 × {1, . . . , H} as follows:

qi
(
xi+1, w

h
i , w

h
i+1

)
= δ

{
V̂i+1

(
xi+1, w

h
i+1

)
− E

[
V̂i+1 (xi+1, wi+1) |whi

]}
. (2.15)

The VFA used in (2.15) can be determined, for example, using an LSM method as we do

in Chapters 3–4. In Chapter 5, obtaining a VFA is hard and we use a linear dual penalty

instead. In the same chapter, we leverage the described information relaxation approach

and combine it with simulation to determine non-anticipative policies.
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Löhndorf, N., D. Wozabal, and S. Minner (2013). “Optimizing Trading Decisions for Hy-

dro Storage Systems using Approximate Dual Dynamic Programming”. In: Operations

Research 61.4, pp. 810–823.

Longstaff, F. A. and E. S. Schwartz (2001). “Valuing American Options by Simulation:

A Least-squares Approach”. In: Review of Financial Studies 14.1, pp. 113–147.
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Abstract: Merchant commodity and energy production assets operate in markets

with volatile prices and exchange rates. Producers can choose in each period be-

tween production, production suspension, and permanent shutdown. Plant closures,

however, adversely affect societal entities beyond the specific plant being shutdown

such as the parent company and the local community. Motivated by an aluminum
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producer, we study if mitigating these hard-to-assess broader impacts of a shutdown

is financially viable using the plant’s operating flexibility. Our social commerce per-

spective towards managing shutdown decisions deviates from the commonly used

asset value maximization objective in merchant operations. We formulate a high-

dimensional constrained Markov decision process to manage shutdown decisions.

We approximate this intractable model using unconstrained stochastic dynamic

programs and define operating policies that account for preferences to delay and

reduce shutdowns. Our first policy leverages anticipated regret theory in behavioral

psychology while the second policy generalizes production margin heuristics used in

practice using machine learning. We compute the former and latter policies using

a least squares Monte Carlo method and combining this method with binary clas-

sification, respectively. We also propose a reoptimization heuristic to simplify the

anticipated-regret policy. We show that anticipated-regret policies possess desirable

asymptotic properties absent in classification- and reoptimization-based policies. On

instances created using real data, anticipated-regret and classification-based policies

outperform practice-based production margin strategies and, to a lesser extent, re-

optimization. Specifically, the former policies decrease the shutdown probability by

25% and, in addition, delay shutdown decisions by an average of 4 years for a 4% as-

set value loss. Our operating policies show that unaccounted social costs amounting

to a few percent of the maximum asset value can justify delaying or avoiding the use

of a plant’s shutdown option by adapting its operating flexibility in our application.

Thus, taking a social commerce perspective towards managing a plant’s operating

flexibility appears financially viable

Keywords: Commodity and energy operations · social commerce · real options ·
shutdown option · approximate dynamic programming

3.1 Introduction

Commodity and energy production assets play a critical role in ensuring the supply of

commodities such as ethanol, aluminum, copper, iron, and steel, and power from coal,

natural gas, and renewable sources. In 2015, iron ore, copper, and aluminum were respec-

tively $225, $130, and $90 billion US dollars annual industries (IMF, 2015), and roughly

$10 trillion US dollars will be invested in new power generation by 2040 (BNEF, 2017).

Based on work with a major base metal producer, we study the management of permanent

shutdown decisions in a merchant commodity and energy production asset. For illustra-

tion, consider an aluminum production facility that takes as inputs bauxite, carbon, and
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electricity, and produces aluminum to be sold into the wholesale market. Production is

economical when the conversion spread between the aluminum price and the input prices

is positive after accounting for production costs. If this spread is negative the merchant

may temporarily suspend production. If a combination of production and suspension

leads to losses it may be economical to permanently shut down the plant.

A merchant commodity and energy producer can maximize the market value of the plant

by adapting production, suspension, and shutdown decisions over time to the evolution of

uncertain market factors such as prices of commodity and energy sources and exchange

rates (Secomandi and Seppi, 2014). While this pure asset value perspective is popular, the

cost of a permanent plant shutdown is hard to assess as it may impact societal entities

outside the specific plant being shut down, which could include the parent company

owning the plant and the local community. For example, aluminum producers often own

both a production plant and an electricity source, such as a dam, due to the large amounts

of power consumed during the production process. It is common for licenses to operate

plants and dams to include social and economic criteria that the producer must meet

(e.g., maintaining local jobs). Abandoning a plant can make the producer default on

these obligations and the government to deny the renewal of operating licenses for the

dam as well as jeopardize licenses for assets in other regions. In addition, such a shutdown

can cause loss of employment and adverse publicity and result in political resistance from

powerful unions and interest groups (see Kasa, 2000 for evidence of institutionalized links

between unions and government).

Given the gravity of a plant shutdown on society, companies deviate from a pure asset

value perspective: several years of severely challenged profitability are typically needed

to justify shutdown to a labor union, but waiting to incur such losses before shutting

down may be at odds with maximizing asset value. This accounting of social impact is

evident, for instance, from the large number of aluminum producers who are members of

the Aluminum Stewardship Initiative, which defines quality and social standards (ASI,

2017). Public web pages of major aluminum producers also signal their focus on “social

commerce” (Alcoa, 2016; Rio Tinto, 2016; Hydro, 2018; see also Kleindorfer et al., 2005;

Lee and Tang, 2017, and references therein, for other examples of socially responsible

operations). In sum, producers would benefit from models and methods to manage asset

value and the broader impact of plant closures in a principled manner under evolving

market factors, which include overproduction, low commodity prices, and volatility in

power prices and exchange rates (The Telegraph, 2012; BI, 2016; The Australian, 2016).

We define the shutdown probability of a plant’s operating policy at a given time as the

probability of it closing down by this time. Each policy can thus be associated with

a shutdown profile, that is, its shutdown probability at each time period over a finite
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planning horizon. From the perspective of mitigating any adverse societal impact of a

shutdown, we prefer an operating policy and an associated shutdown profile that (i) delays

shutdown decisions to later parts of the planning horizon, and (ii) reduces the shutdown

probability at the end of this horizon. The operating policy that maximizes the plant’s

asset value may understandably have an undesirable shutdown profile. If we can improve

the shutdown profile of this policy while incurring only minor losses in asset value, then

producers may be able to justify the operations of the plant for a longer period of time

on the basis of unaccounted social costs.

In this paper, we focus on finding operating policies that trade off asset value for a more

desirable shutdown profile. We formulate a constrained Markov decision process (MDP)

to maximize the plant’s market value subject to restrictions on the shutdown profile of

its operating policy that capture preferences for delaying and reducing the likelihood

of shutdowns. This MDP is a constrained version of the well-known risk-neutral MDP

formulation (henceforth referred to as the shutdown-neutral MDP) that maximizes the

asset value alone (Guthrie, 2009). Solving our constrained MDP is significantly more

challenging than the shutdown-neutral MDP, especially because the MDP state space is

high-dimensional when using realistic models for the evolution of uncertain factors such

as prices and exchange rates. Practical methods to tackle the solution of large scale

constrained MDPs are severely limited (Dufour and Prieto-Rumeau, 2013; Dufour and

Prieto-Rumeau, 2014). We develop two strategies to approximate our constrained MDP

that strive to maintain the familiarity of the shutdown-neutral MDP while accounting for

societal preferences over the shutdown profile of an operating policy.

Our first strategy incorporates the desire for a favorable shutdown profile by modifying

the plant closure cost of the shutdown-neutral MDP in a manner that is consistent with

anticipated regret theory in behavioral psychology (Loomes and Sugden, 1982 and Zee-

lenberg, 1999). This theory and subsequent empirical validation posit that a decision

maker chooses among multiple decisions by accounting for the anticipated regret from

future scenarios where one of the unselected decisions provides higher utility than the

chosen one. Additional experimental research also shows that this regret is large for ir-

reversible decisions and small for reversible decisions (see, e.g., Tsiros and Mittal, 2000),

which supports our inflation of only the shutdown cost – the sole irreversible decision

in our setting. Intuitively, the anticipated regret associated with a shutdown decision at

a given stage and state is the expected increase in some utility along scenarios where a

non-shutdown decision is preferred to a plant closure. We formulate a stochastic dynamic

program (SDP), dubbed the anticipated-regret (AR) SDP, by inflating the shutdown cost

by an anticipated-regret term that includes parameters for controlling the preferences to

delay and reduce shutdowns. We establish that the optimal policy of this SDP is con-

sistent with our constrained MDP in asymptotic regimes where the social preferences
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are either shutdown-neutral or extremely shutdown-averse (i.e., require zero shutdowns).

Computing an AR optimal policy is however challenging due to the high dimensionality

of the AR SDP state space. We thus adapt a least squares Monte Carlo (LSM) approxi-

mate dynamic programming heuristic (Longstaff and Schwartz, 2001; Glasserman and Yu,

2004a; Nadarajah et al., 2017) to compute AR policies. We also define a simpler policy

using a shutdown-averse reoptimization heuristic (RH) that efficiently computes operating

decisions by solving a deterministic version of the AR SDP as a shortest path problem.

Our second solution strategy focuses on production margin-based policies, which choose

to shut down when a sum of current and expected-future production margins are below a

threshold. This structure facilitates showing to external stakeholders the challenged prof-

itability leading to a potential shutdown decision. We formalize production margin poli-

cies used in practice and also combine approximate dynamic programming and machine

learning to improve them. Specifically, we create new policies using binary classification

(Bishop, 2006, chapter 4) where thresholds are determined on training data (i.e. operating

decisions) generated by simulating a shutdown-neutral policy obtained using LSM. These

thresholds are subsequently modified to account for shutdown profile preferences. We

refer to the resulting policy as the classification-based margin (CM) policy.

We perform a numerical study involving the operations of a real aluminum producer over

a forty-year time horizon. Our case study uses operational data from this producer and

market data from the Nord Pool, London Metal Exchange (LME), and FOREX markets.

We calibrate an eight-factor stochastic model to capture the evolution of uncertainty,

which includes electricity and aluminum prices and exchange rates (Farkas et al., 2017).

We use an LSM method to obtain a near optimal Monte Carlo simulation estimate of the

maximum asset value benchmarked against a dual upper bound estimate (Brown et al.,

2010). We also employ LSM to obtain a collection of AR and CM policies for different

preferences over delaying and reducing shutdowns. We find that both policies can sub-

stantially improve the shutdown profile compared to that of the shutdown-neutral policy

for small asset value losses. For instance, AR and CM policies can decrease the shutdown

probability by 25% and, in addition, delay shutdown decisions by an average of 4 years for

a 4% loss in asset value. We also find that the shutdown-averse RH policy improves both

the asset value and shutdown profile compared to an existing shutdown-neutral version of

this policy. Nevertheless, the shutdown-averse RH policy exhibits less stable performance

than AR and CM policies for small asset value losses (e.g. 0-5%) that are most likely to

be acceptable in practice. The CM policies dominate the practice-based margin policies

for managing the trade-off between shutdowns and asset value, even though the latter

rules exhibit good performance from a pure asset value maximization standpoint.

Our findings inform the management of shutdown decisions in merchant production assets.
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Producers could justify significantly delaying and/or reducing the use of the shutdown op-

tion in the presence of unaccounted social and political costs amounting to a few percent

of the maximum asset value. Operating flexibility emerges as a promising lever to achieve

these shutdown profile improvements with the AR and CM policies providing effective

ways to manage the trade-off between shutdown decisions and asset value. The insights

and operating policies in this paper are relevant beyond aluminum production to other

commodity producers, refineries and hydrocarbon crackers in the petro-chemical industry,

and power plants (Brennan and Schwartz, 1985; Tseng and Barz, 2002; Méndez et al.,

2006; Cortazar et al., 2008; Adkins and Paxson, 2011; Boyabatli et al., 2011; Kazaz and

Webster, 2011; Boyabatli, 2015; Nadarajah et al., 2016; Hekimoğlu et al., 2016; Boyabatli

et al., 2017). Managing shutdown decisions is also important in renewable energy pro-

duction, for example in biogas plants, where minimizing its likelihood without significant

asset value loss is important to remain economical and to uphold the plant as a source of

power (Di Corato and Moretto, 2011; Hochloff and Braun, 2014).

Our work on managing the trade-off between shutdown probability and asset value adds

to the literature on merchant commodity and energy operations (Markland, 1975; Geman,

2005; Boogert and De Jong, 2008; Lai et al., 2010; Berling and Mart́ınez-de-Albéniz, 2011;

Devalkar et al., 2011; Wu et al., 2012; Löhndorf et al., 2013; Maziéres and Boogert, 2013;

Nadarajah et al., 2015; Secomandi, 2015; Thompson, 2016; Devalkar et al., 2017; Nadara-

jah et al., 2017), and socially responsible operations (Kleindorfer et al., 2005; Lee and

Tang, 2017). Models of production assets as switching options have been considered, for

example, by Kulatilaka and Trigeorgis (2001); Tseng and Barz (2002), and Adkins and

Paxson (2011). These papers model a temporary shutdown option. Brennan and Schwartz

(1985), Cortazar et al. (2008), Guthrie (2009, ch. 17), Nadarajah and Secomandi (2017b),

and Yang et al. (2017) consider switching options with permanent shutdown but focus

on risk-neutral valuation and operations. The growing literature on socially responsible

operations incorporates social costs into operations and supply chain models but taking a

social commerce view on shutdown decisions in merchant energy production appears new

(see Lee and Tang, 2017 and references therein). We also complement research in this

literature and merchant operations by introducing methods that are grounded in antici-

pated regret theory and practitioner heuristics, as well as applying them to an aluminum

case study based on real data.

Our approach for approximating large-scale MDPs by combining LSM and machine learn-

ing classification methods contributes to the extant research that obtains heuristic policies

to high-dimensional real option problems (see, e.g., Glasserman and Yu, 2004b, Chapter 8,

Cortazar et al., 2008; Boogert and De Jong, 2008; Carmona and Ludkovski, 2010; Maziéres

and Boogert, 2013; Nadarajah et al., 2015; Nadarajah et al., 2017) and the literature on

decision rule approximations (Ben-Tal et al., 2004; Kuhn et al., 2011; Georghiou et al.,
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2015). The LSM approach has regress-now (Longstaff and Schwartz, 2001) and regress-

later (Glasserman and Yu, 2004a; Nadarajah et al., 2017) variants that approximate the

SDP continuation and value functions, respectively. The computation of risk-neutral poli-

cies in a commodity production application with a permanent shutdown decision has been

approached by Cortazar et al. (2008) using regress-now LSM and by Nadarajah and Sec-

omandi (2017b) and Yang et al. (2017) using regress-later LSM. Unlike these papers, we

adapt LSM to account for the shutdown profile of operating policies. Our combination

of regress-later LSM with binary classification to learn margin-based policies, that is the

CM policy, and its modification to satisfy policy constraints are both new and add to

the decision rule approximations literature. Prior work in this literature has considered

affine and piece-wise affine decision rules for approximating stochastic optimization prob-

lems (see, e.g., Georghiou et al., 2011). We leverage the regress-later LSM approach from

Nadarajah et al. (2017) to compute dual upper bounds (Haugh and Kogan, 2004; Brown

et al., 2010) in a merchant production setting as also done in Nadarajah and Secomandi

(2017b) and Yang et al. (2017).

RH has been studied in the merchant operations literature due to its ease of implementa-

tion and applied to operate commodity storage, electricity transport, swing, and tolling

assets (Deng et al., 2001; Keppo, 2004; Wu et al., 2012; Secomandi, 2015; Mahoney, 2016;

Nadarajah and Secomandi, 2017a; Löhndorf and Wozabal, 2017). These applications do

not include irreversible decisions such as permanent shutdown nor consider features of

the policy. Our shutdown-averse RH approach addresses both these gaps in the merchant

operations literature in a novel manner by observing that penalizing irreversible decisions

can improve the RH policy performance in terms of both asset value and shutdown profile.

Moreover, our efficient shortest path approach to compute the RH policy decisions is new

and facilitates the estimation of the value of this policy in Monte Carlo simulation.

The long term planning nature (e.g. 30-40 years) of shutdown decisions in our applica-

tion entails additional challenges in modeling the evolution of uncertainty because traded

contracts are unavailable in the Nord Pool, LME, and FOREX markets over this long

time horizon. For example, single-factor processes such as geometric Brownian motion

and Ornstein-Uhlenbeck, which are easy to calibrate, do not capture the short term and

long term dynamics exhibited by power prices and exchange rates. Multi-factor market

models (Eydeland and Wolyniec, 2003, p. 205, Secomandi et al., 2015; Nadarajah and

Secomandi, 2017b; Nadarajah and Secomandi, 2017a) may be viable for representing the

long-term dynamics of a single commodity under certain parameter assumptions (Thomp-

son, 2016) but extending these assumptions to our multi-commodity setting is difficult.

We thus adapt a state-of-the-art multi-commodity and multi-factor stochastic process

from Farkas et al. (2017), which is an extension of the single-commodity two-factor model

by Schwartz and Smith (2000). Farkas et al. (2017) apply their stochastic process to a
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number of commodities, including power, but do not consider aluminum price and ex-

change rates. We show that this process represents the evolution of aluminum and power

prices and exchange rates in a statistically sound manner and is suitable for long term

operations planning problems.

The rest of this paper is organized as follows. We formulate a model of a merchant

production plant and formalize the notion of shutdown profile in Section 3.2. We introduce

anticipated-regret polices in Section 3.3. We describe production margin-based policies

in Section 3.4. We discuss our numerical study in Section 3.5 followed by conclusions in

Section 3.6. Additional details regarding proofs, model calibration, and algorithms are

provided in the appendix.

3.2 Merchant commodity and energy production

operations

In this section we discuss the merchant operations of commodity/energy production assets.

We present in Section 3.2.1 a model for the operations of such assets that embed a

permanent shutdown option. To identify a specific operating policy, we describe the

known asset value maximization perspective in Section 3.2.2 and then introduce a social

commerce perspective in Section 3.2.3.

3.2.1 Operating model

We consider a commodity and energy production facility operating over I time periods

(stages). This plant produces output and sells it into the wholesale market when prices

are favorable, that is, it operates in a merchant fashion. We model the plant’s operating

problem as an MDP, where at each stage i ∈ I := {0, . . . , I − 1} the plant could be

open or permanently shutdown. Examples of open states include in production, ramping

up/down to a higher/lower production rate, and temporary suspension. We denote the

finite set of open states at stage i by Oi and assume that this set includes at least the state

corresponding to full production labeled O. The permanent shutdown state is represented

by C. The stage i operating status belongs to set Xi := Oi ∪ {C}.

The full state of the production asset is composed of the operating (endogenous) state

component described above as well as a market information (exogenous) state component

that affects the operating cash flows. Let wi denote the vector of stochastic market factors
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at stage i driving the evolution of market information (e.g., commodity/energy prices and

exchange rates). We assume the vector wi evolves in a Markovian manner and denote its

support by Wi.

We assume that the plant is initially in an open state, that is, the known stage 0 state

represented by (x0, w0) satisfies x0 ∈ O0. A decision ai from the feasible action set Ai(xi)
executed at stage i ∈ I and state (xi, wi) ∈ Xi × Wi results in an immediate reward

ri(xi, wi, ai) and a transition to a stage i + 1 operating state fi(xi, ai) in set Xi+1. We

define a terminal stage I where no action is allowed and a terminal reward rI(xI , wI)

is received; the pair (xI , wI) belongs to the terminal-stage state space XI × WI . Since

fi(xi, ai) is an element of Xi+1 we use the next stage operating state as action labels, that

is, taking action ai = xi+1 at stage i and operating state xi results in a transition to the

stage i + 1 operating status fi(xi, xi+1) = xi+1. To account for the permanent nature of

a shutdown decision, we impose the following conditions on the action set and transition

function: Ai(C) = {C} and fi(C,C) = C for all i ∈ I. A shutdown decision at stage

i ∈ I incurs a one time fixed cost, which we model by requiring ri(xi, wi,C) = −K(xi,C)

for all (xi, wi) ∈ Oi ×Wi and ri(C, wi,C) = 0, where K(xi,C) is the strictly positive fixed

cost of shutting down at an open state xi ∈ Oi.

This operating model can be specialized to capture a fairly broad class of production

assets including coal and natural gas power plants, ethanol and biogas plants, and metal

smelters. An example application of this model can be found in Section 3.5, where we use

it to describe the merchant operations of a real aluminum plant as part of our numerical

study.

3.2.2 Asset value maximization perspective

To make decisions in the operating model of Section 3.2.1, the plant manager requires a

policy, which is a collection of stage-specific decision rules. At a given stage i, a decision

rule Aπi specifies a feasible operating decision in Ai(xi) for each state (xi, wi) ∈ Xi ×Wi.

A policy π is then the collection {Aπi , i ∈ I}, and the set of all feasible policies is denoted

by Π. The value of the production asset when using a policy π ∈ Π is the discounted sum

of expected cash flows from using this policy over the finite problem horizon. The policy

that maximizes the asset value thus solves

max
π∈Π

E0

[∑
i∈I

δiri (x
π
i , wi, A

π
i (xπi , wi)) + δIrI (xπI , wI)

]
, (3.1)
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where E0 denotes expectation with respect to a Markovian stochastic process describing

the distribution of wi given the stage 0 information w0 (see (3.9) for an example of such

a process), δ ∈ (0, 1] is the discount factor, and xπi the random endogenous state reached

in stage i by following policy π. We refer to the operating policy solving (3.1) as the

shutdown-neutral optimal policy and name it πSN. It is well known that this policy is the

solution of the following stochastic dynamic program (SDP):

V SN
I (xI , wI) = rI(xI , wI), ∀(xI , wI) ∈ XI ×WI , (3.2a)

V SN,O
i (xi, wi) = max

ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δEi

[
V SN
i+1 (fi(xi, ai), wi+1)

]}
,

∀(i, xi, wi) ∈ I × Xi ×Wi, (3.2b)

V SN
i (xi, wi) = max

{
V SN,O
i (xi, wi),−K(xi,C)

}
, ∀(i, xi, wi) ∈ I × Xi ×Wi. (3.2c)

Here V SN
i (·, ·) denotes the shutdown-neutral value function at stages i in set I ∪ {I}.

The value function at the terminal stage is specified in (3.2a) using the terminal reward

rI(·, ·). In (3.2b), we define an intermediate value function V SN,O
i (xi, wi) that excludes

the shutdown action at stage i. Here Ei denotes expectation given stage i information wi.

We define V SN
i (xi, wi) as the maximum of V SN,O

i (xi, wi) and the shutdown cost in (3.2c),

that is, this equation models the choice between the shutdown action and the best open

action selected in (3.2b).

Computing an optimal shutdown-neutral policy by solving SDP (3.2) is in general in-

tractable due to its high-dimensional state space and potentially hard to compute expec-

tations (Powell, 2011). These curses of dimensionality indeed arise when considering the

aluminum production application described in Section 3.5.1 as the exogenous state that

we model is eight dimensional (see Section 3.5.2 for details on the price model). LSM

is a popular approximate dynamic programming method for computing policies in real

option applications (Longstaff and Schwartz, 2001). We discuss LSM in Appendix 3.7.2

for approximating the shutdown-neutral SDP and other high-dimensional SDPs later in

this paper.

3.2.3 Social commerce perspective

For reasons detailed in Section 3.1, managing plant shutdown decisions is of strategic

importance to a business because closing down a production asset has both direct and in-

direct effects on entities beyond the plant. As a result, delaying and reducing shutdowns is

desirable from a social commerce standpoint. We model these social preferences by associ-

ating a shutdown profile with each policy π ∈ Π, which is the following collection of shut-
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down probabilities: {Pr(xπi = C |x0, w0), i ∈ I ∪ I}. Reducing the shutdown probability

entails finding an operating policy π where the probability at the end of the planning hori-

zon Pr(C;π) := Pr(xπI = C |x0, w0) is smaller than the analogous probability Pr(C;πSN)

under the shutdown-neural policy. Delaying shutdowns on the other hand requires em-

phasizing shutdown probability decreases at early stages more than at later stages, where

delay could be measured by the expected time to shutdown along sample paths of uncer-

tainty where a shutdown decision is chosen. Examples 3.1 and 3.2 illustrate the notions

of shutdown probability reduction and shutdown delay, also highlighting that achieving

a balance between asset value and shutdown profile can be non-trivial. Specifically, Ex-

ample 3.1 shows that multiple policies can result in the same shutdown probability but

different asset value, while Example 3.2 presents a case where multiple policies have the

same combination of asset value and shutdown probability but delay shutdown differently.
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Figure 3.1: Production rewards, probabilities, and policies for examples 3.1 and 3.2.

Example 3.1 (Shutdown probability reduction). Consider the operations of a styl-

ized plant that can either produce or shut down over two periods i ∈ I = {0, 1}. The

cost of shutdown is equal to 2 at each stage. Figure 3.1(a) displays the reward (inside the

rectangular box) from producing at time 0 (now) as well as the two equally likely random

rewards from producing at period 1 (future). We ignore discounting for simplicity. The

optimal shutdown-neutral policy πSN produces in period 0 but shuts down in both states in

period 1 as indicated by the first element of the triples in Figure 3.1(a). The value of this

policy is 10 (= 12− 2 · 0.5− 2 · 0.5) and its shutdown probability is 100%. Next consider

the two policies πA and πB defined by the second and third coordinates, respectively, of the

triples in Figure 3.1(a). Both policies have a shutdown probability of 50% and the values

of πA and πB are 8 (= 12− 2 · 0.5− 6 · 0.5) and 9 (= 12− 4 · 0.5− 2 · 0.5), respectively.

Thus, it is possible to reduce shutdown probability by 50% for a 10% decrease in asset

value using πB, but choosing πA instead entails a 20% decrease in asset value to achieve
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the same shutdown probability reduction.

Example 3.2 (Shutdown delay). Consider a plant operating for three-periods with

production rewards and probabilities summarized in Figure 3.1(b). The shutdown cost at

each stage equals 2. The coordinates of the triples in Figure 3.1(b) contain the decisions

taken by the shutdown-neutral policy πSN and two heuristic policies πA and πB. The value

of πSN is 10 and its shutdown probability is 100%. For both πA and πB, the shutdown

probability and asset value are 50% and 8, respectively, but these policies shutdown at

different periods. The expected time to shutdown on sample paths where πA chooses to

shutdown is equal to 1 (= [0.5 · 1]/0.5). The analogous measure for πB evaluates to 2

(= [0.25 · 2 + 0.25 · 2]/0.5). Therefore, for a 20% decrease in asset value, both πA and

πB reduce shutdown probability by 50% but the latter policy delays shutdown by one more

period on average compared to the former policy.

Finding operating policies to reduce and/or delay shutdowns without losing significant

asset value is critical to the financial viability of partaking in social commerce. Concep-

tually, social preferences on the shutdown profile of a policy can be modeled by adding

bounds on the shutdown probailities at each stage to MDP (3.1):

max
π∈Π

E0

[∑
i∈I

δiri (x
π
i , wi, A

π
i (xπi , wi)) + δIrI (xπI , wI)

]
(3.3a)

s.t. Pr(xπi = C |x0, w0) ≤ ξI−i U, ∀i ∈ I ∪ I. (3.3b)

Here U is an upper bound on the shutdown probability at the terminal stage and ξ is

a parameter that deflates this bound at earlier stages. The parameters U and ξ control

the preferences to reduce and delay shutdown decisions, respectively. If both U and ξ are

equal to 1, then MDP (3.3) reduces to the shutdown-neutral MDP (3.1) which only focuses

on maximizing asset value. The opposing extreme of this trade-off includes policies with

zero shutdowns. Among them, the one maximizing asset value can be obtained by setting

U = 0 in (3.3), that is, removing the shutdown action C. This policy, labeled πSN\{C},

can be determined by solving the following modified version of SDP (3.2):

V
SN\{C}
i (xi, wi) = max

ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δEi

[
V

SN\{C}
i+1 (fi(xi, ai), wi+1)

]}
,

∀(i, xi, wi) ∈ I × Xi ×Wi. (3.4)

We do not write the boundary condition of this SDP and others in the rest of the paper

as they are analogous to (3.2a).

Although the shutdown-neutral and zero-shutdown policies can be characterized, what

is needed in practice is the ability to define a collection of policies that offer different
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trade-offs between shutdown profile and asset value so that managers can choose one

that is acceptable, possibly taking into account the non-financial costs of shutdown and

other strategic considerations. To obtain this collection of policies, ideally we would solve

our constrained MDP (3.3) for different choices of U and ξ. However, the solution of

constrained MDPs is in general considerably more challenging than MDPs (Dufour and

Prieto-Rumeau, 2013; Dufour and Prieto-Rumeau, 2014). The challenge of solving our

constrained MDP is more acute as it is also high-dimensional under realistic models for

the evolution of the uncertainty such as the one used in our numerical study and described

in Section 3.5.2. Therefore, in Section 3.3 and Section 3.4 we approximate our constrained

MDP using SDPs that stay close in structure to the shutdown-neutral SDP and develop

approximate dynamic programming approaches to tackle them.

3.3 Operating policies based on modified shutdown

costs

In this section, we present operating policies that embed preferences for reducing and

delaying shutdowns by modifying the shutdown fixed cost of the shutdown-neutral SDP.

In other words, we use this cost modification to indirectly capture the effect of the shut-

down profile constraints in the constrained MDP (3.3). In Section 3.3.1, we describe a

shutdown-averse SDP based on the aforementioned shutdown cost modification and an

LSM approach to compute shutdown-averse policies. In Section 3.3.2, we introduce a

reoptimization heuristic that solves deterministic versions of the shutdown-averse SDP.

3.3.1 Anticipated-regret SDP

We model aversion to a shutdown action consistent with anticipated regret theory in

behavioral psychology (Loomes and Sugden, 1982; Zeelenberg, 1999). According to this

theory, when choosing among multiple decisions, one accounts for the anticipated regret

from the chosen decision being worse than an alternative under realizations of future

uncertainty. This regret has also been shown to be significantly higher for irreversible

decisions (Tsiros and Mittal, 2000), which is intuitive and also supports our focus on

shutdowns in our merchant production setting. To formalize these ideas, let X(wi+1)

denote a random variable defined at stage i as a function of the random stage i + 1

information state wi+1. Given a κ ∈ R+, we define anticipated regret of X(wi+1) as

Ei [max{X(wi+1) + κ, 0}] .
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To build some intuition, suppose that κ represents the shutdown cost and X(wi+1) is

the random utility from not shutting down the plant at a stage i operating state. The

term X(wi+1) + κ is then the excess of this utility over the shutdown cost κ, which is

the positive regret from shutting down on this specific realization of uncertainty. The

maximum of this term and zero captures the realizations of wi+1 where regret is strictly

positive. Thus, anticipated regret is the expected regret from shutting down along sample

paths where regret is positive. Its usefulness for modeling aversion to shutdown decisions

is illustrated in Example 3.3.

Example 3.3. Consider a production asset operating over 2 stages, that is, I ≡ {0, 1}.
This asset has a single non-shutdown decision and its shutdown cost κ is 11. We consider

two cases for the random stage 1 utility when the decision at stage 0 is not to shut down.

These cases are characterized by discrete reward distributions X1(w1) and X2(w1) defined

as

X1(w1) :=

−12 with probability 0.5,

−28 with probability 0.5;
X2(w1) :=

+4 with probability 0.25,

−28 with probability 0.75.

The expected utility from not shutting down is the same in each case, that is, E[X1(w1)] =

E[X2(w1)] = −20. Thus, the two cases are equivalent from a shutdown-neutral perspective.

Since the expected utility of −20 is smaller than the shutdown cost of −11, the optimal

shutdown-neutral decision at stage 0 is to shut down in both cases. Suppose the producer

now accounts for anticipated regret. The anticipated regret with respect to distribution

X1(w1) is zero because the reward in each scenario of case 1 is lower than −κ. Instead,

this regret for distribution X2(w1) is (4 + 11) · 0.25 = 3.75. A decision maker that heavily

weights anticipated regret would switch to a non-shutdown decision in case 2 but never

switch in case 1.

We next use anticipated regret to modify the shutdown cost in the shutdown-neutral SDP

(3.2). Let Θ denote the triple {λ, ξ̃, η}, which is feasible when λ ≥ 0, ξ̃ ∈ (0, 1], and η ≥ 1.

The AR SDP is defined for each (i, xi, wi) ∈ I × Xi ×Wi as

V A,O
Θ,i (xi, wi) = max

ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δEi

[
V A

Θ,i+1 (fi(xi, ai), wi+1)
]}
, (3.5a)

ARΘ,i(xi, wi) = max
ai∈Ai(xi)\{C}

Ei
[

max{ri(xi, wi, ai)

+ δV A
Θ,i+1(fi(xi, ai), wi+1) + η ·K(xi,C), 0}

]
, (3.5b)

V A
Θ,i(xi, wi) = max

{
V A,O

Θ,i (xi, wi),−K(xi,C) − λξ̃iARΘ,i(xi, wi)
}
. (3.5c)

The structure of the optimization used to compute V A,O
Θ,i (xi, wi) from V A

Θ,i+1 in (3.5a) is
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identical to the one used in the shutdown-neutral setting, that is, (3.2b). However, com-

paring (3.5c) and (3.2c) shows that the shutdown cost is increased by λξ̃iARΘ,i(xi, wi)

in the former case, where the term ARΘ,i(xi, wi) is based on a maximization of the

anticipated regret across non-shutdown decisions. Specifically, the anticipated re-

gret of a non-shutdown action ai ∈ Ai(xi) \ {C} is computed with respect to the

sum of the immediate reward and the random discounted next stage value function,

ri(xi, wi, ai) + δV A
Θ,i+1(fi(xi, ai), wi+1), and the shutdown cost K(xi,C) scaled by η. The

role of ARΘ,i(xi, wi) can be interpreted as a way to dynamically increase the shutdown

cost in a state dependent fashion using the value function.

Parameters λ and ξ̃ model the preferences to reduce and delay shutdowns, respectively.

Increasing λ leads to a larger inflation of the shutdown cost due to the anticipated-regret

term ARΘ,i. Reducing ξ̃ results in discounting ARΘ,i more heavily at later stages than

at earlier stages, which amounts to modeling the preference to delay shutdown. The

effects of changing these parameters indirectly capture the impact of the shutdown profile

constraints in MDP (3.3). The constant η controls the set of states where ARΘ,i(xi, wi) is

positive and can thus cause a reversal of a shutdown decision. As η (≥ 1) increases, the

term ARΘ,i(xi, wi) will become positive at states where it was previously zero due to the

shutdown cost K(xi,C) in its definition being multiplied by η.

Proposition 3.1 establishes properties of the AR value function V A
Θ,i(xi, wi) and policy πA

Θ.

Proposition 3.1. (a) For any feasible Θ, V
SN\{C}
i (xi, wi) ≤ V A

Θ,i(xi, wi) ≤ V SN
i (xi, wi),

∀(i, xi, wi) ∈ I × Xi ×Wi;

(b) If Wi is compact for each stage i ∈ I ∪ {I}, then for each ξ̃ ∈ (0, 1], it holds:

lim
(λ,η)→∞

Pr(C;πA
Θ) = 0 and lim

(λ,η)→∞
V A

Θ,i(xi, wi) = V
SN\{C}
i (xi, wi).

Part (a) of Proposition 3.1 shows that the AR value function is bounded below and above,

respectively, by the shutdown-neutral value functions that incorporate and exclude the

shutdown action. Part (b) establishes that the shutdown probability associated with

policy πA
Θ becomes zero as η and λ are increased to sufficiently large values. In addition,

it shows that the value of the latter policy converges to the value of the policy πSN\{C},

which is optimal among the set of all policies with zero shutdown probability. Therefore,

the anticipated-regret policy exhibits desirable asymptotic behavior with respect to both

shutdown probability and asset value. (We assume a compact set of information states

Wi, i ∈ I ∪ {I}, in part (b) of Proposition 3.1 to avoid the technicalities that arise

when dealing with unbounded distributions.) The asymptotic behavior of the AR policy

with respect to ξ̃ is intuitive. For ξ̃ = 1, the policy is neutral to shutdown delay. As ξ̃

decreases, the shutdown cost is inflated lesser at later stages compared to earlier stages.
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When ξ̃ → 0, there is no preference to delay shutdowns at stages other than stage 0,

which translates to inflating only the shutdown cost at this initial stage.

The optimal policies of the AR SDP (3.5) for different triples Θ provides a family of

shutdown-averse policies. However, solving this SDP is challenging as it suffers from the

curses of dimensionality discussed of the shutdown-neutral SDP in Section 3.2.2, and in

addition, embeds the anticipated regret term that contains more involved expectations.

The regress-later least squares Monte Carlo (LSML) method computes heuristic policies

based on low-dimensional approximations of the SDP value function (Glasserman and

Yu, 2004a; Nadarajah et al., 2017). Specifically, we adapt an LSML approach to compute

heuristic shutdown-averse policies by approximating the AR value function of SDP (3.5).

LSML computes a value function approximation (VFA) at each stage i ∈ {1, . . . , I} that

is a linear combination of a given set of Bi basis functions Φi := {Φi,b(wi), b ∈ Bi},
where Bi := {1, . . . , Bi}. The VFA at stage i and state (xi, wi) is

∑
b∈Bi βi,xi,b Φi,b(wi),

where βi,xi,b denotes the b-th weight of this linear combination. Possible choices for basis

functions include polynomials, radial basis functions, and Laguerre polynomials of the

information state (Longstaff and Schwartz, 2001; Maziéres and Boogert, 2013). At a high

level, the LSML approach generates samples of the information state in Monte Carlo

simulation and then combines backward recursion with regression to compute the VFA

weights. Hard-to-compute expectations are replaced by sample average approximations

in this procedure. For a given Θ, the output of LSML is the VFA weight vectors βA
i,xi

:=

(βA
i,xi,1

, . . . , βA
i,xi,Bi

) for each stage i ∈ {1, . . . , I} and operating state xi ∈ Xi, which

approximate V A
Θ,i(xi, wi) by

∑
b∈Bi β

A
i,xi,b

Φi,b(wi). An AR policy decision can be computed

at stage i and state (xi, wi) by first substituting the aforementioned VFA for V A
Θ,i(xi, wi) in

the right hand side of the AR SDP (3.5) and then solving the maximization over actions.

The appendix 3.7.2 contains the details of the LSML algorithm and describes its use for

approximating the AR SDP (3.5) as well as the shutdown-neutral SDPs (3.2) and (3.4).

By varying our choices of λ and ξ̃ in the triple Θ, LSML can be used to obtain a family of

polices offering different trade-offs between asset value and shutdown profile in a tractable

manner. We set a value for the parameter η in Θ based on Proposition 3.1(b), that is, we

remove η as a policy parameter by fixing it before computing any AR policy. Specifically,

we employ the following steps to choose a large enough value for this parameter so that

increasing λ eventually leads to a zero-shutdown policy: (i) we compute the shutdown-

neutral policy πSN, (ii) we simulate the inflation term ARΘ,i in (3.5b) for different η values,

and measure at each stage the percentage of states where this term is positive, and (iii)

we select the smallest η value so that the coverage is 100% at each stage. Under this

choice, the AR policy converges very close to a zero-shutdown policy as λ is increased.
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3.3.2 Reoptimization heuristic

We focus here on computing shutdown-averse policies based on a static modification of

the shutdown cost, that is, this modification, unlike in the AR policy, does not depend

on the state. Given the parameters λ ≥ 1 and ξ̃ ∈ (0, 1], we define a modified reward

function rλ,ξ̃i (·, ·, ·) by increasing only the shutdown cost: rλ,ξ̃i (xi, wi, C) := −λξ̃iK(xi,C) and

rλ,ξ̃i (xi, wi, ai) := ri(xi, wi, ai) for all (xi, wi, ai) ∈ Xi ×Wi ×Ai(xi) \ {C}. We embed this

static cost modification in a reoptimization heuristic (RH) that solves at each stage i ∈ I
a deterministic version of the AR SDP (3.5). At stage i and open state (xi, wi) ∈ Oi×Wi,

our RH policy solves

max
{(x′j ,aj),j∈I,j≥i}

∑
j∈I,j≥i

δjEi
[
rλ,ξ̃j (x′j, wj, aj)

]
+ δIEi

[
rλ,ξ̃I (x′I , wI)

]
(3.6a)

x′i = xi, (3.6b)

x′j+1 = fj(x
′
j, aj),∀j ∈ I, j ≥ i, (3.6c)

aj ∈ Aj(x′j),∀j ∈ I, j ≥ i, (3.6d)

xj ∈ Xj,∀j ∈ I ∪ {I}, j ≥ i. (3.6e)

The optimization variables are the operating states and actions for stages between i and

I. The objective function (3.6a) is the discounted expected sum of rewards over these

stages conditioned on the market information at stage i. Constraint (3.6b) initializes

the stage i operating status decision variable to the current operating state. Constraints

(3.6c) capture the operating state transition rules. Constraints (3.6d) and (3.6e) restrict

decision variables to their respective discrete feasible domains.

Using the RH policy involves reactively accounting for market information. Specifically,

at a given stage i and open state (xi, wi), this policy solves the optimization problem (3.6)

and implements the optimal decision corresponding to stage i alone. If this decision is to

shut down, then the process ends. Otherwise, the plant remains in an open state in stage

i + 1 and new market information becomes available at this stage. Then a stage i + 1

optimization model is formulated using the updated state information and the process is

repeated. Estimating the value of the RH policy involves executing its decisions along

sample paths of market information generated in Monte Carlo simulation, which requires

solving the RH optimization model for each stage and sample path. Thus, being able to

solve this optimization efficiently is important. Given the discrete nature of states and

actions, the optimization problem (3.6) is in general an integer program but Proposition

3.2 shows that it can be cast as an efficiently solvable shortest path problem. The proof

of this proposition contains the details of a directed acyclic graph representation of the

RH optimization model (3.6) and the associated shortest path problem. Let X be the
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maximum cardinality of the endogenous state sets Xj, j ∈ {i, . . . , I}.

Proposition 3.2. An optimal solution to the RH optimization model (3.6) formulated at

stage i ∈ I can be obtained by solving a shortest path problem in O
(
I · X 2)

time.

3.4 Operating policies based on production margins

In this section, we describe policies that determine operating decisions based on pro-

duction margins. We first formalize a version of such policies used in practice and then

improve on them by combining approximate dynamic programming and machine learning

classification methods.

Stakeholders often consider poor production margins as a factor when making shut down

decisions. Production margin-based policies are appealing as they choose to shut down

when production margins are below a certain threshold. For example, a myopic margin-

based policy would (i) shut down the plant when the immediate production margin is less

than the shutdown cost and (ii) continue to produce otherwise. More formally, assuming

that the plant is producing at stage i and exogenous state wi, a shut down decision is

selected if ri(O, wi,O) < −K(O,C). The shortsighted nature of this policy can be overcome

by modifying it to consider the sum of current and discounted future production margins.

A forward-looking policy that considers T expected-future margins chooses to shut down

at stage i and state (O, wi) if

r̂Ti (wi) := ri(O, wi,O) +

min{T,I−i}∑
j=1

δjEi [ri+j(O, wi+j,O)] < −K(O,C), (3.7)

and continues to produce otherwise.

The aforementioned simple production margin policies use the fixed cost K(O,C) as the

threshold to switch between full production and shutdown. This threshold choice is

somewhat adhoc and, in addition, does not incorporate the effect of shutdown profile

constraints in (3.3b). Moreover, it is unclear how these policies can be extended to ac-

count for the full flexibility of the plant, that is, incorporate operating states other than

full production. We address these issues next by presenting a more principled approach

that first learns thresholds in an attempt to “mimic” the shutdown-neutral policy and

then modifies them to account for the shutdown profile constraints.

Suppose momentarily that the only operating state is full production O. For each stage

i ∈ I, we define a threshold Υi ∈ R on the cumulative margin r̂Ti (wi) below which the de-
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cision switches from full production to shutdown. This threshold is computed as follows.

First, we simulate the shutdown-neutral policy πSN defined in Section 3.2.2 along sample

paths {wpi , (i, p) ∈ I ∪ {I} × P} of the uncertain information state generated in Monte

Carlo simulation (πSN can be approximated using LSML as discussed in Section 3.3.1 and

Appendix 3.7.2). Second, at each stage i ∈ I, we compute for each of the samples p ∈ P
the cumulative margin r̂Ti (wpi ) and an action label from the shutdown-neutral policy πSN,

which is either to continue full production (i.e. O) or shutdown (i.e. C). Finally, based

on these two labels, we partition the sample paths at each stage into two classes. The

value of the threshold Υi is chosen as the cumulative margin value that best discriminates

between (or separates) these two classes. Hence, identifying the shutdown threshold is

equivalent to solving a binary classification problem where r̂Ti (wi) ∈ R is the explanatory

variable and xi+1 ∈ {O,C} is the outcome class (Bishop, 2006). In general, it may not

be possible to find a threshold that perfectly separates the “produce” and “shutdown”

classes, in which case, it is standard to minimize misclassification error to compute the

threshold, where error is measured using a loss function. Common choices in machine

learning include hinge, squared, and logarithmic loss functions (Rosasco et al., 2004).

The above classification procedure can be extended to handle multiple operating states.

To ease exposition, we focus on the case of two operating states, that is, O := {O, S},
where S denotes a temporary suspension of production. The ideas discussed below extend

to handle more than two operating states with straightforward modifications. Suppose the

plant is open at stage i (xi = O) and can transition to state xi+1 ∈ {O, S,C}. We simulate

the shutdown-neutral policy πSN at stage i over multiple sample paths of the uncertain

information state p ∈ P and compute the cumulative margin r̂Ti (wpi ) as before, but divide

the sample paths using three action labels corresponding to the shutdown-neutral policy

choosing to continue full production O, suspend production S, and shutdown C. Imple-

menting a production margin policy entails finding two thresholds Υi(O, S) and Υi(O,C)

to determine when the plant switches from full production to suspension and shutdown,

respectively. We proceed to define these thresholds by converting the multi-class classifica-

tion problem over the three action labels in set {O, S,C} into several binary classification

problems between pairs of such classes, which are {O, S}, {S,C}, and {O,C}. This is

a well-known strategy in machine learning (see, e.g., Bishop, 2006, ch. 4). Applying a

binary classification procedure to each pair would result in three different thresholds, that

is, one more than the required number of thresholds. We resolve this issue by assuming

an adjacency structure over the cumulative margins associated with action labels as illus-

trated in Figure 3.2(a). Specifically, cumulative margins associated with the action labels

O and S as well as S and C are assumed adjacent, while those associated with O and C

are non-adjacent. In other words, the action labels have a weak ordering with respect to

the cumulative margin. Then applying binary classification to {O, S} and {S,C} gives us
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the thresholds Υi(O, S) and Υi(O,C), respectively.

(a) Classification using cumulative margin thresh-
olds.

0 5 10 15 20

(b) Threshold modification using α and ξ̂.

Figure 3.2: Illustration of threshold computation using binary classification with states in set
{O, S,C} and subsequent modification of thresholds to model shutdown profile preferences.

Finally, we modify the shutdown thresholds {Υi(O,C),Υi(S,C), i ∈ I}, which mimic

the shutdown-neutral policy, to account for shutdown profile preferences as illustrated in

Figure 3.2(b). Decreasing the value of these thresholds (blue curve) by a constant at each

stage results in a set of downward-shifted thresholds (orange curve), which will result in

a policy with a smaller shutdown probability. In other words, the threshold levels at each

stage are proportional to the shutdown probability at that stage when using a production

margin policy, thus providing a lever to shape the shutdown profile. As a consequence,

preferences to delay shutdown decisions can be emphasized by decreasing thresholds by a

larger value at earlier stages in the horizon and less aggressively at later periods, which

involves modifying the original shutdown probability thresholds (blue curve) and obtaining

a shifted and tilted set of thresholds (green curve). Formally, given a “shift” parameter

α ≥ 0 and a “tilt” parameter ξ̂ ∈ (0, 1], we define the modified shutdown thresholds as

follows:

Υα,ξ̂
i (O,C) := Υi(O,C)− αξ̂i, ∀i ∈ I,

Υα,ξ̂
i (S,C) := Υi(S,C)− αξ̂i, ∀i ∈ I,

and leave unchanged the non-shutdown thresholds, e.g. Υi(O, S). The parameter α rep-

resents the magnitude of a downward-shift in the thresholds related to shutdown actions,

while ξ̂ tilts the threshold curve to account for shutdown delay. We vary the values of α

and ξ̂ in Monte Carlo simulation to obtain a family of policies with different shutdown

profile preferences. We first fix ξ̂ equal to a constant ξ and then perform a line search on

α to identify its smallest value for which the shutdown probability of the corresponding

production margin policy satisfies the bound U in (3.3b) at the last stage. Modifications

to this procedure are possible, for instance, one could do a grid search over both α and ξ̂,
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if needed. Overall, we have generalized simple practice-based production margin policies

to use thresholds computed in a principled manner while accounting for shutdown profile

preferences and maintaining their intuitive margin structure.

3.5 Numerical study

We numerically evaluate the performance of our methods in this section. In Section 3.5.1,

we introduce a case study of a real aluminum producer, which serves as our application for

this evaluation. In Section 3.5.2, we describe the stochastic process used for modeling the

evolution of uncertainty. In Section 3.5.3, we define the aluminum production instances

used for our experiments and the associated computational setup. In Section 3.5.4, we

discuss our findings.

3.5.1 Aluminum production case study

Our case study is based on a real aluminum producer. Shutting down an aluminum

production plant (often referred to as a smelter) or temporarily suspending its production

are strategic decisions that are re-evaluated on an annual basis. Assessing the shutdown

profile thus requires planning over a long time horizon. Our instance considers a forty-year

horizon (i.e., I = 40) where each stage i corresponds to a year and decisions are made

from i = 0 (present) to I − 1 = 39.

Aluminum production relies on an energy intensive electrolysis process that takes as

inputs alumina from bauxite, carbon, and electricity, and produces aluminum as its main

output. The aluminum producer is vertically integrated and owns bauxite mines and

carbon plants. Therefore, capturing the uncertainty in alumina and carbon prices is not

critical, whereas modeling the volatile electricity and aluminum prices is important. In

addition to price risk, the producer faces exchange rate risk because aluminum is sold

globally in US dollars (USD), electricity is purchased in Euro (EUR) from the Nord Pool

electricity market, and the operating costs are incurred in Norwegian Krone (NOK), that

is, the local currency. Assuming cash flows are measured in USD, the production spread

is exposed to volatile EUR-USD and NOK-USD exchange rates. Thus, we model four

sources of uncertainty in the set
{
PAl
i , PEl

i , PEUR-USD
i , PNOK-USD

i

}
denoting, respectively,

aluminum price, electricity price, and the two exchange rates. We capture the dynamics

of prices and exchange rates using eight stochastic factors wi discussed in Section 3.5.2.
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The specific aluminum plant we model has a shutdown state (C) and open states corre-

sponding to (i) production at full load (O), which we normalize to an output of 1 metric

tonne of aluminum; and (ii) temporary suspension. We denote by Sm the m-th consecutive

year of suspension, where m is restricted to at most 3, that is, m ∈ {1, 2, 3}. Intermediate

production capacity options are not modeled in this case since the electrolysis cells within

a smelter operate in a near continuous fashion, that is, these cells can only be turned off

for a few hours. A prolonged shut off results in cell damage and expensive repairs before

a restart (see, e.g., Øye and Sørlie, 2011). Thus, Oi = {O, S1, S2, S3} for each i ∈ I \ {0}.
We assume that the plant must be either shutdown or in production at the end of the

planning horizon.

Table 3.1: State-action set and reward function in the aluminum production case study.

State [xi] Decision [ai] Reward [ri(xi, wi, ai)]

O

O rO(wi)
S1 −K(O,S1)

C −K(O,C)

Sm, m ∈ {1, 2, 3}
O rO(wi)−K(Sm,O)

Sm+1 (if m < 3) −K(Sm,Sm+1)

C −K(Sm,C)

C C 0

𝑶

𝑪

𝑺𝟏

𝑺𝟐

𝑺𝟑

Figure 3.3: State transitions in the aluminum production case study.

Table 3.1 and Figure 3.3 illustrate the set of feasible actions Ai(xi) at a given operating

state xi ∈ Xi, the resulting reward, and a diagram indicating the next stage operating

state. Here K(xi,xi+1) represents the fixed operating and/or maintenance cost associated

with a state transition from xi to xi+1. The function rO(wi) denotes the profit from

producing aluminum and is defined as

rO(wi) := (1− τ)
[
PAl
i (1 + γAl)− cUSD − cNOK PNOK-USD

i − ρPEl
i PEUR-USD

i

]
, (3.8)
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where τ is the corporate tax rate; γAl the aluminum premium, which is the surcharge

a buyer pays for taking delivery of aluminum; cUSD and cNOK the production fixed costs

incurred in USD and NOK, respectively; and ρ the rate of electricity consumption in the

aluminum production process. We have fixed costs in both USD and NOK because they

include components of the electrolysis and casting costs in each of these currencies.

3.5.2 Model of price and exchange rate dynamics

As discussed in Section 3.5.1, the exogenous market information in our SDP consists of

the factors driving four sources of uncertainty: Aluminum price, electricity price, and two

exchange rates (EUR-USD and NOK-USD). A stochastic process to model the evolution

of these sources of uncertainty can be calibrated using information from financially traded

contracts. Futures contracts on (primary) aluminum are traded at the LME in US dollars

with monthly maturities going out to 10 years. The aluminum contract with a 3-month

maturity is the most liquid. Currency futures are traded in the FOREX market with

monthly maturities up to 3 years. In contrast to aluminum and currencies, power is

traded in regional markets. In the Nord Pool market, which covers Scandinavia and part

of northern Europe, power forward contracts are denominated in Euro and extend out to

10 years. Negative prices present in the electricity spot markets are not a feature seen in

these longer term contract prices. Moreover, none of the aforementioned contracts have

maturities that cover our planning horizon of 40 years.

We capture the dynamics of the four sources of uncertainty using an eight-factor

continuous-time price model, where each source is driven by short term and long term

factors. All the eight factors are correlated. This choice addresses the lack of traded con-

tracts for the entire planning horizon and captures the clear short and long term trends

observed in market data (see page 55 of Section 3.1 for a related discussion), which we il-

lustrate in Figure 3.4 using only the front month contracts from the broader data set used

for calibration. In particular, we denote the short and long term factors by the vectors

Y (t) =
[
Y El
t , Y Al

t , Y EUR-USD
t , Y NOK-USD

t

]
and Z(t) =

[
ZEl
t , ZAl

t , ZEUR-USD
t , ZNOK-USD

t

]
,

respectively. These factors evolve according to the following stochastic differential equa-

tions:

d

[
Y (t)

Z(t)

]
=

[
−Ky(Y (t)− Z(t))

µz −KzZ(t)

]
dt+

[
Σ

1/2
y 0

Σ
1/2
yz Σ

1/2
z

]
d

[
Wy(t)

Wz(t)

]
, (3.9)

where Ky and Kz represent the speeds of mean reversion and are assumed to be diagonal

(4×4) matrices, µz is the long term drift, Σ
1/2
y , Σ

1/2
z , and Σ

1/2
yz are diffusion matrices,

and Wy and Wz are each independent four-dimensional standard Brownian motions. The
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Figure 3.4: Front month futures prices for power and aluminum and exchange rates for EUR-
USD and NOK-USD between 2009 and 2015.

short term factors in this model revert to the long term factors. Moreover, the short term

factors are related to the prices and exchange rates by P k
t = exp

(
Y k
t −ψk(t)

)
, for k ∈ J ,

where ψ(·)(t) is a function that captures seasonality (see Appendix 3.7.3 for details). Our

model can be seen as a multi-commodity extension of the one in Schwartz and Smith

(2000), where we added a cross-commodity correlation structure, and a special case of

the process in Farkas et al. (2017). Under this specification, the information state is

wi = (Yi,k, k ∈ J ) ∪ (Zi,k, k ∈ J ), where Yi,k and Zi,k, respectively, denote the k-th short

and long term factor values at the beginning of stage i. Moreover, Wi = R8
+.

Calibrating our multi-asset and multi-factor stochastic process requires several steps (see

Appendix 3.7.3 for details). We collected futures contract data with multiple maturities

for aluminum, power, and exchange rates from the LME, Nord Pool, and FOREX markets,

respectively. We used interpolation and spline smoothing to ensure that data across

different sources were consistent. We then employed a multi-stage Kalman filter process

to estimate parameters. Our calibrated model provides a statistically sound representation

of market data and allowed us to generate sample paths of the sources of uncertainty in

Monte Carlo simulation needed to implement our algorithms as well as estimate the asset

value and shutdown profile of a policy.
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3.5.3 Instances and computational setup

We define our reference instance using the stochastic process calibration described in

Section 3.5.2 and real operational data from an aluminum producer, which includes pa-

rameter values of the reward function (3.8), the operations and maintenance costs, and

the discount factor. We summarize this information in Table 3.2.

Table 3.2: Parameters for the aluminum production reference instance.

Name Parameter description Value Unit

τ Corporate tax rate 25% -
γAl Aluminum premium as a percentage of aluminum price 5% -
cUSD USD fixed production cost 520 USD/mt
cNOK NOK fixed production cost 6110 NOK/mt
ρ Electricity consumption rate 14 MWh/mt
δ Discount factor 0.971 -
K(O,S1) Switching cost from production to suspension 600 USD/mt
K(O,C) Switching cost from production to shutdown 1200 USD/mt
K(Sm,C) Switching cost from suspension to shutdown 600 USD/mt
K(Sm,O) Switching cost from suspension to production 600 USD/mt
K(Sm,Sm+1) Cost to remain in suspension 0 USD/mt

We define the terminal reward function at a production state by extending the problem

horizon beyond the actual planning horizon, which is standard. Specifically, we choose

rI(O, wI) to represent the value of a plant that operates for 20 years starting from stage I

and state (O, wI) using an LSM approach. We employ the same terminal condition across

all methods for consistency.

By modifying the reference instance described above, we created an extended instance set

to study the performance of our methods when operational and market parameters change.

We increased/decreased the costs cUSD and cNOK, which are the only two parameters in the

reward function (3.8) that are directly related to plant operations. Adjusting these two

parameters result in different effects on the reward function because the first cost cUSD

appears on its own while the second cost cNOK multiplies the exchange rate PNOK-USD
i

(see reward function (3.8)). We changed these costs by ±15% to obtain instances OP1-

OP4 in Table 3.3 because these perturbations resulted in asset value changes of ±40%,

which seem reasonable upper bounds on the changes that can be expected in practice.

We also considered significantly changing the volatility estimates of both the short and

long term factors for aluminum and power by ±30% to obtain instances MP1-MP4 in

Table 3.3. Power price volatilities vary by region while LME is the primary market for

assessing aluminum volatility. Our aluminum price volatility change is consistent with
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historic data: Brunetti and Gilbert (1995) examined the monthly volatility of LME-

traded metals, including aluminum, over a 24-year period and ±30% is representative of

the maximum variations they observe.

Table 3.3: Changes in operational and market parameters of the reference instance to obtain the
extended instance set.

Label Instance description

OP1 Cost cUSD is raised by 15%
OP2 Cost cUSD is reduced by 15
OP3 Cost cNOK is raised by 15%
OP4 Cost cNOK is reduced by 15%
MP1 Power volatility is raised by 30%
MP2 Power volatility is reduced by 30%
MP3 Aluminum volatility is raised by 30%
MP4 Aluminum volatility is reduced by 30%

We next describe our computational setup. To compute AR (i.e., anticipated-regret)

policies, we used LSML as described in Section 3.3.1. We also used LSML to compute

heuristic versions of the shutdown-neutral policy πSN and the zero-shutdown policy πSN\{C}

which include and exclude the shutdown option, respectively. We find the switching

thresholds of the classification based margin policies (i.e., CM policies) while computing

the LSML VFA for πSN. We chose the LSML basis functions to be the following set of

third-degree polynomials of the eight stochastic factors discussed in Section 3.5.2:{
Φi,b(wi)

}Bi
b=1

=
{

1, Yi,k, Zi,k, Yi,k1Yi,k2 , Zi,k1Zi,k2 , Yi,kZi,k,

Yi,k1Yi,k2Yi,k3 , Zi,k1Zi,k2Zi,k3 , Yi,kZ
2
i,k, Y

2
i,kZi,k

∣∣ k, k1, k2, k3 ∈ J
}
.

Based on experimentation, we chose the number of regression samples and inner samples

in LSML (see Algorithm 4 in Appendix 3.7.2) equal to 20,000 and 200, respectively. We

estimated the asset value under each policy in Monte Carlo simulation using 20,000 sample

paths. For consistency, we ensured that the same sample paths were used across policy

evaluations. We also estimated (dual) upper bounds in Monte Carlo simulation using the

LSML VFA (see Appendix 3.7.4 for details). We implemented the binary classification

scheme needed to obtain CM policies with both hinge and squared loss functions, and

found them to perform almost identically. We thus only report results related to the

squared loss case.

We implemented all the algorithms using Matlab R2016b and executed them on a server

equipped with two Intel Xeon E5-2660v3 processors with 10 cores each and a shared

memory of 128 GB RAM. Obtaining families of policies offering different asset value and
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shutdown profile trade-offs required significant computation. We distributed the compu-

tational load across the 20 cores in our server to significantly reduce the run time to obtain

trade-off curves. Specifically, when using 20,000 sample paths on a single core, estimating

the LSML VFA weights consumed about 18 minutes for each of the two shutdown-neutral

policies and 22 minutes on average for the AR policy for each value of λ and ξ̃. Comput-

ing the asset value estimate of one of these policies required roughly the same running

time as estimating the VFA, and estimating a dual bound took about 16 minutes on

average. The RH asset value estimation took 40 minutes on average, mainly due to the

time to compute expected margins. Computing the expected margins in the production

margin-based heuristics used in practice and our extensions thereof required 4 minutes.

Fitting the CM thresholds (including the LSML run) as discussed in Section 3.4 entailed

an additional 18 minutes of CPU time. Updating these thresholds for a given U and ξ̂

took less than 10 seconds on average.

3.5.4 Results

We start by considering the reference instance described in Section 3.5.3. The asset value

estimates for the policies πSN and πSN\{C} are within 2.0% and 2.6% of their respective

dual bound estimates (standard errors of asset value and dual bound estimates are at most

1.23% and 0.10%, respectively). In other words our LSML shutdown-neutral policies are

near optimal. The asset value estimate of πSN will henceforth be referred to as maximum

asset value.

To evaluate the shutdown profile of a policy, we used two metrics: (i) the shutdown

probability, that is, the total percentage of shutdowns at the end of the planning horizon,

and (ii) the shutdown delay, that we measure by computing the expected time to shutdown

(over sample paths where a shutdown decision is made). We begin by assessing the

performance of different policies along the shutdown probability dimension only, that is,

we temporarily neglect the preference to delay shutdown by fixing ξ̃ = 1 in LSML and

ξ̂ = 1 in the threshold shifting procedure at the end of Section 3.4.

Figure 3.5 displays the trade-offs between asset value and shutdown probability for the

policies discussed in Sections 3.3-3.4. Each asset value estimate is expressed as a per-

centage of the maximum asset value (standard errors of the asset value and shutdown

probability are at most 1.24% and 0.35%, respectively). The asterisk in Figure 3.5 la-

beled SN corresponds to the maximum asset value and its shutdown probability is 39.2%.

The asset value estimate of πSN\{C} is only 75.4% of the maximum asset value (i.e., the

asterisk labeled SN\{C} in this figure). Thus, completely removing the shutdown option
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is not a practically viable strategy to reduce shutdown probability as the associated asset

value loss is substantial.
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Figure 3.5: Trade-offs in asset value and shutdown probability.

The AR policies were computed by varying λ from 0 to 10 to obtain policies that range

between the shutdown-neutral policy and the zero-shutdown policy. We find that the

AR approach performs well and achieves substantial shutdown probability reductions for

small asset value losses. For example, the shutdown probability is reduced by 26% and

40% for asset value losses of 2% and 4%, respectively. Consistent with Proposition 3.1,

the AR policies converge to πSN\{C}, which is the optimal zero-shutdown asset value, when

λ is large enough and η is chosen as discussed at the end of Section 3.3.1.

We tested the RH policy for different λ values ranging from 1 to 30, and found that the

standard RH policy (λ = 1) is suboptimal in terms of both asset value and shutdown

probability which are, respectively, 5.3% lower and 25% higher than the same measures

for the shutdown-neutral policy πSN. However, our shutdown-averse RH extension (λ > 1)

not only reduces shutdown probability but also captures additional asset value, and the

asymptotic RH behavior for large asset value losses is efficient.

The production margin-based policies were tested using one or two expected-future mar-

gins, in addition to the current margin, which entails choosing T ∈ {1, 2}. The shutdown

probability U was varied from 40% to 0%. The best asset value achieved by the practice-

based policies (dotted lines) when T equals 2 is only around 1.3% less than the maxi-

mum asset value, but it is 4.8% when T equals 1. Both practice-based policies decrease

shutdown probability in an inefficient manner. We instead find that the CM method
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outperforms the practice-based methods and is more robust, that is, the asset value and

shutdown probability trade-off curves produced by CM for T equals one and two are al-

most identical. The performance of CM is comparable to AR for small asset value losses

but slightly worse for larger losses, which suggests that the favorable asymptotic prop-

erties of AR policies translate into good performance of these policies in non-asymptotic

settings as well. For example, the shutdown probability is reduced by 25% in the CM and

AR polices for asset value losses of 2.2% and 1.8%, respectively.

Overall, the methods we compare exhibit different performance profiles. From a practical

standpoint, the performance for small asset value losses (e.g., right portion of the graph

from 0-5%) is most relevant as these losses have a higher likelihood of being accepted by

the producer when managing shutdown decisions. In this region, practice-based heuristics

are not competitive with AR and CM while the performance of RH is non-monotonic in

λ, which may lead to an increase in shutdown probability when using it. Since the

performance of AR and CM policies are similar for small asset value losses, we focus

on them in the remainder of this section when discussing results pertaining to both the

reduction and delay of shutdowns.

Intuitively, one would expect that delaying shutdown decisions also reduces the shutdown

probability at the end of the horizon. However, this intuition may not be true because

delaying/reducing shutdowns also affects asset value. Therefore, in Figure 3.6 we display

the trade-off between shutdown probability reduction and shutdown delay for fixed asset

value losses. To obtain this figure, we considered ξ̃ ∈ {1, 0.99, 0.98, 0.97, 0.95} for AR

policies and ξ̂ ∈ {1, 0.98, 0.95, 0.93, 0.9} for CM policies with T equal to 2. For each ξ̃

and ξ̂, we computed profiles akin to the ones in Figure 3.5 so that we could choose AR

and CM policies that matched a target asset value within 0.3%.

Figure 3.6 suggests that shutdown delay and shutdown reduction are substitutes for a

fixed asset value and cannot be improved simultaneously. For example, for an asset value

loss of 6%, AR could delay shutdowns by 6 years on average and decrease the shutdown

probability of 23%, or delay shutdowns by an average of only 3 years and capture a

larger shutdown probability decrease of 44%. Furthermore, the concavity of most trade-

off curves in Figure 3.6 suggests diminishing returns: Higher average shutdown delays

imply a higher marginal increment in shutdown probability, and vice versa. The trade-

offs originating from AR slightly dominate the CM ones, that is, for the same asset value

and shutdown probability, AR policies delay shutdown by roughly one additional year on

average relative to the CM policies. As one would expect, it appears harder to manage

the preference to reduce and to delay shutdown decisions substantially for smaller asset

value losses.
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Figure 3.6: Trade-offs in shutdown probability decrease and shutdown delay for AR and CM
policies.

We now consider the performance of AR and CM on the extended instance set, that is,

OP1-OP4 and MP1-MP4 defined in Table 3.3 by varying operational costs and market

volatilities of the reference instance (labeled REF). Table 3.4 reports results that examine

the asset value and shutdown probability trade-off for policies with ξ̃ = ξ̂ = 1 similar to

Figure 3.5. Specifically, for decreases in shutdown probability equal to 10%, 20%, 30%,

and 40%, this table shows the asset value loss expressed as a percentage of the maximum

asset value. We find that AR and CM incur similar asset value losses to achieve a target

shutdown probability reduction on the extended instance set, with the former method per-

forming slightly better than the latter method. For example, both methods reduce shut-

down probability by 10% and 20% in most instances for asset value losses, respectively,

below 1% and 2%. A larger shutdown probability reduction of 40% entails average losses

of 4.7% and 5.7% when using AR and CM, respectively. Changing the fixed cost cNOK

leads to the largest fluctuation in the asset value loss incurred to achieve a shutdown prob-

ability reduction across the extended instance set. For example, reducing the shutdown

probability by 40% requires a roughly 9-12% asset value loss in OP3 while the analogous

loss is less than 2% for OP4. Changing the power (an input) and aluminum (an output)

price volatility have opposite effects. Specifically, the asset value loss to achieve a tar-

get shutdown-probability reduction becomes smaller as power and aluminum volatilities,

respectively, decrease (compare MP2 with MP1) and increase (compare MP3 with MP4).

Table 3.5 analyzes both shutdown reduction and shutdown delay on the extended instance

set. For fixed asset value losses, we determined trade-off curves for AR and CM analogous

to those displayed in Figure 3.6. In particular, we consider the two extreme ends of each

trade-off curve, which correspond to policies computed with (i) ξ̃ = ξ̂ = 1, and (ii)
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Table 3.4: Asset value loss as a percentage of the maximum asset value for 10%, 20%, 30%, and
40% decreases in shutdown probability when using AR and CM with T equal to 2.

Shutdown probability decrease

10% 20% 30% 40%

Instance AR CM AR CM AR CM AR CM

REF 0.7 0.9 1.1 1.6 2.7 3.0 4.0 5.0

OP1 1.0 1.3 1.6 2.8 4.4 5.3 6.4 8.3
OP2 0.5 0.5 0.8 1.0 1.9 2.1 2.7 3.2
OP3 1.2 1.7 3.0 3.9 5.3 7.4 9.3 12.3
OP4 0.2 0.4 0.6 0.6 1.2 1.2 1.8 2.0

MP1 0.7 1.0 1.8 1.9 3.1 3.9 5.2 6.2
MP2 0.3 0.7 1.0 1.4 2.0 2.5 3.7 4.2
MP3 0.2 0.7 0.8 1.2 1.7 2.0 2.6 3.2
MP4 0.8 1.2 1.9 2.2 3.3 4.0 6.2 7.3

Average 0.6 0.9 1.4 1.9 2.8 3.5 4.7 5.7

ξ̃ = 0.95 for AR and ξ̂ = 0.90 for CM (as in Figure 3.6). We refer to the former and

latter policies as shutdown delay-neutral and delay-averse, respectively. The shutdown

probability reduction is expressed as a percentage of the shutdown-neutral probability

computed for the same instance and the average shutdown delay is reported in number

of years and displayed within parenthesis. For a fixed asset value, shutdown probability

reduction and shutdown delay are substitutes on all instances in the extended instance

set. The AR policies manage this substitution slightly better than CM policies on average.

The sensitivity of results to changes in fixed costs and market volatilities are analogous to

those observed in Table 3.4. For asset value losses of 3% and 6%, shutdown decisions can

be delayed by 4-5 years on average across the instances by incurring a larger shutdown

probability later in the horizon. While shutdown probability reduction and shutdown

delay are indeed sensitive to operational and market parameters, our findings underscore

that shutdown decisions can be significantly delayed or made less likely for small asset

value losses. AR and CM emerge as robust methods to obtain these desired shutdown

profile changes.
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3.6 Conclusions

Motivated by an aluminum producer, we studied the management of permanent shutdown

decisions in merchant commodity and energy production assets from a social commerce

perspective, which deviates from the popular asset value maximization approach. We

formulated a constrained MDP to maximize the asset value subject to constraints on the

shutdown profile, that is, we imposed bounds on the shutdown probability of an operating

policy at each period to capture the preferences to delay and reduce the likelihood of a

plant shutdown. We approximated this intractable constrained MDP by defining two poli-

cies: (i) AR policies grounded in anticipated regret theory and determined using LSML,

and (ii) CM policies, which extend production margin-based heuristics used in practice,

computed by combining LSML and binary classification methods in machine learning. We

found on realistic aluminum production instances that both policies can improve the shut-

down profile substantially for small asset value losses. Production margin heuristics used

by practitioners instead incur larger asset value losses to achieve these improvements.

We also developed a reoptimization policy that simplifies the AR policy and solves a

shortest path problem at each period to compute decisions. This reoptimization policy

performed well for high asset value losses but was dominated by AR and CM policies for

smaller losses. Our results highlight that social commerce appears financially viable, that

is, shutdown decisions can be significantly delayed or avoided when unaccounted social

costs amount to a few percent of the plant’s maximum asset value. Moreover, adapting

a plant’s operating flexibility emerges as an effective lever to achieve socially-responsible

shutdown decisions.

3.7 Appendix

3.7.1 Proofs

Proof of Proposition 3.1. Part (a): Our proof is based on backward induction. At the

last stage I, the following inequalities trivially hold as equalities because the terminal

conditions are the same in each SDP:

V
SN\{C}
I (xI , wI) = V A

Θ,I(xI , wI) = V SN
I (xI , wI) = rI(xI , wI), ∀(xI , wI) ∈ XI ×WI . (3.10)

Assume that analogous inequalities hold from stages i + 1 through stage I. Consider

stage i and the inequalities V
SN\{C}
i+1 (xi+1, wi+1) ≤ V A

Θ,i+1(xi+1, wi+1) ≤ V SN
i+1(xi+1, wi+1)

for all (xi+1, wi+1) ∈ Xi+1 ×Wi+1, which hold by the induction hypothesis. Using these
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inequalities, we obtain for each state (xi, wi) ∈ Xi ×Wi and non-shutdown action ai ∈
Ai(xi) \ {C}, the following relationships:

ri(xi, wi, ai) + δEi
[
V

SN\{C}
i+1 (f(xi, ai), wi+1)

]
≤ ri(xi, wi, ai) + δEi

[
V A

Θ,i+1(f(xi, ai), wi+1)
]

≤ ri(xi, wi, ai) + δEi
[
V SN
i+1(f(xi, ai), wi+1)

]
.

Taking a maximum over the non shutdown actions preserves this ordering, that is,

V
SN\{C}
i (xi, wi) ≤ V A,O

Θ,i (xi, wi) ≤ V SN,O
i (xi, wi), ∀(xi, wi) ∈ Xi ×Wi.

Using V
SN\{C}
i (xi, wi) ≤ V A,O

Θ,i (xi, wi) we get for all (xi, wi) ∈ Xi ×Wi:

V
SN\{C}
i (xi, wi) ≤ max

{
V A,O

Θ,i (xi, wi),−K(xi,C) − λξ̃iARΘ,i(xi, wi)
}

= V A
Θ,i(xi, wi).

To prove V A
Θ,i(xi, wi) ≤ V SN

i (xi, wi) we notice that the penalty term ARΘ,i(xi, wi) is always

positive. This implies that

−K(xi,C) − λξ̃iARΘ,i(xi, wi) ≤ −K(xi,C), ∀(xi, wi) ∈ Xi ×Wi. (3.11)

Combining V A,O
Θ,i (xi, wi) ≤ V SN,O

i (xi, wi) with (3.11) results in

V A
Θ,i(xi, wi) = max

{
V A,O

Θ,i (xi, wi),−K(xi,C) − λξ̃iARΘ,i(xi, wi)
}

≤ max
{
V SN,O
i (xi, wi),−K(xi,C)

}
= V SN

i (xi, wi), ∀(xi, wi) ∈ Xi ×Wi.

Part (b): We fix ξ̃ ∈ (0, 1]. To prove the limiting results, it suffices to show that the

shutdown-neutral value function with no shutdown and the anticipated regret value func-

tion coincide for any strictly positive lambda λ and large enough η. This result implies that

for a given λ > 0, lim
η→∞

V A
Θ,i(xi, wi) = V

SN\{C}
I (xi, wi). Moreover, since the value functions

coincide, the associated optimal policies are also equal, which implies that the shutdown

probability under the AR policy is zero, that is, lim
η→∞

Pr(C;πA
Θ) = 0 for any λ > 0.

We proceed to show that for every λ > 0, there exists η∗i ≥ 1 (we suppress the de-

pendence of η∗ on λ) such that V A
Θ,i(xi, wi) = V

SN\{C}
i (xi, wi) for all (xi, wi) ∈ Xi × Wi

and η ≥ η∗i . The statement is proved by backward induction. At stage I, the equality

trivially holds for any η and λ as in (3.10). Assuming that analogous equalities and val-

ues for η exist for stages i + 1 to I, we establish this property at stage i. The equality

V A
Θ,i+1(xi+1, wi+1) = V

SN\{C}
i+1 (xi+1, wi+1) for all (xi+1, wi+1) ∈ Xi+1 ×Wi+1 is true by the

induction hypothesis for η ≥ η∗i+1. Note that V A
Θ,i+1(xi+1, wi+1) = V

SN\{C}
i+1 (xi+1, wi+1) im-
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plies that V A
Θ,i+1(xi+1, wi+1) = V A,O

Θ,i+1(xi+1, wi+1) because the shutdown decision does not

determine the value function. Based on these relationships we replace V A
Θ,i+1(xi+1, wi+1)

in the right hand side of the anticipated regret SDP step (3.5c) with V
SN\{C}
i (xi, wi) and

also use the definition of ARΘ,i(xi, wi) to obtain

V A
Θ,i(xi, wi) = max

{
V

SN\{C}
i (xi, wi),−K(xi,C) − λξ̃i max

ai∈Ai(xi)\{C}
Ei
[

max{ri(xi, wi, ai)

+ δV
SN\{C}
i+1 (fi(xi, ai), wi+1) + η ·K(xi,C), 0}

]}
. (3.12)

Since Wi is compact at each stage by assumption, there exists an L ∈ R+ such that

ri(xi, wi, ai) ≥ −L for all (i, xi, wi, ai) ∈ I × Xi ×Wi × Ai(xi) and rI(xI , wI) ≥ −L for

all (xI , wI) ∈ XI ×WI . An immediate consequence is that the optimal value function is

bounded below, that is, V
SN\{C}
i (xi, wi) ≥ −L(I − i+ 1) for all (i, xi, wi) ∈ I × Xi ×Wi.

To prove that V A
Θ,i(xi, wi) = V

SN\{C}
i (xi, wi) are equal if η is large enough, we show that

shutdown will not be chosen in equation (3.12) by using the following chain of inequalities

for all (xi, wi) ∈ Xi ×Wi:

−K(xi,C) − λξ̃i max
ai∈Ai(xi)\{C}

Ei
[
max

{
ri(xi, wi, ai)

+δV
SN\{C}
i+1 (fi(xi, ai), wi+1) + η ·K(xi,C), 0

}]
≤ −λξ̃i max

ai∈Ai(xi)\{C}
Ei
[
ri(xi, wi, ai) + δV

SN\{C}
i+1 (fi(xi, ai), wi+1) + η ·K(xi,C)

]
(3.13a)

≤ −λξ̃i (−L− δL(I − i) + ηK) (3.13b)

< −L− δL(I − i) (3.13c)

≤ max
ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δEi

[
V

SN\{C}
i+1 (f(xi, ai), wi+1)

]}
(3.13d)

= V
SN\{C}
i (xi, wi). (3.13e)

The first inequality (3.13a) is obtained by dropping the first term −K(xi,C) ≤ 0 and em-

ploying the relation E [max{X, 0}] ≥ E [X]; the second (3.13b) by replacing the reward

function and the value function terms by their lower bounds based on the compactness

of Wi, and the shutdown cost by K = min{K(xi,C) : xi ∈ Xi, i ∈ I} > 0; the third (3.13c)

by choosing η > η∗i = (λξ̃i + 1)(L+ δL(I − i))/(λξ̃iK); the fourth (3.13d) from noticing

that ri(xi, wi, ai) ≥ −L and V
SN\{C}
i+1 (f(xi, ai), wi+1) ≥ −L(I − i); and the final equality

(3.13e) by using the definition of V
SN\{C}
i (xi, wi). Our claim thus holds at stage i and it

is also true at all stages by the principle of mathematical induction.

Proof of Proposition 3.2. Consider the RH optimization problem (3.6) formulated at stage

i where i ∈ {0, . . . , I−1}. We establish that this problem can be formulated as a shortest
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path problem on a directed weighted graph Gi := (Vi,Ei, ψi), where Vi and Ei denote the

node and edge sets, respectively, and ψi ∈ R|Ei| denotes the vector of edge weights. We

construct this graph as follows (see Figure 3.7 for an illustration).

We define the node set as Vi :=
{
νj,xj : (j, xj) ∈ {i, . . . , I} × Xj

}
∪ {νI+1}, where νj,xj

denotes the node corresponding to stage j and endogenous state xj in the set Xj, and

νI+1 represents an artificial sink node. There is a singleton node νi,xi at stage i denoting

the initial operating status with xi ∈ Oi. We use e(νj,xj , νj+1,xj+1
) to denote a directed

edge from node νj,xj to νj+1,xj+1
. A directed edge e(νj,xj , νj+1,xj+1

) belongs to Ei if and

only if the transition from xj to xj+1 is feasible, that is, there exists aj in the action set

Aj(xj) such that fj(xj, aj) = xj+1. Moreover e(νI,xI , νI+1) ∈ Ei for each xI ∈ XI . The

weights are defined as ψi(vj,xj , vj+1,xj+1
) := δjE

[
rλ,ξ̃j (xj, wj, xj+1)|wi

]
and corresponds to

the stage j expected reward from the transition between xj and xj+1 discounted back to

stage zero. Each edge connecting the node vI,xI and the sink node vI+1 has a weight of

zero.

By construction, each path from the node νi,xi to the sink node νI+1 represents a feasible

set of actions at each stage. In addition, the sum of edge weights on this path is the stage

j discounted sum of expected rewards resulting from executing these actions. Thus, a

longest path of Gi is an optimal solution to the RH optimization problem (3.6). Given

that Gi is a directed acyclic graph (arrows follow the direction of time), it is well known

that the longest path in this graph coincides with the shortest path in the augmented

graph G−i := (Vi,Ei,−ψi) with negated weights −ψi and this shortest path can be found

inO(|Vi|+|Ei|) (see, e.g., Sedgewick and Wayne, 2011, Chapter 4). Since nodes correspond

to endogenous states, the time complexity can be represented in terms of the numbers of

stages and endogenous states, that is, O
(
I · X 2)

.
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Figure 3.7: Illustration of the network underlying the shortest path reformulation of the RH
optimization model corresponding to the aluminum production case study of Section 3.5. The
red dashed path is an example of shortest path solution of this model.
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To provide an illustration of the graph, consider the aluminum case study of Sec-

tion 3.5 where the operating states of the production asset correspond to the set

Xi = {O, S1, S2, S3,C} (see Section 3.5.1 for details). In this setting, the graph underlying

the RH shortest path problem is shown in Figure 3.7.

3.7.2 LSML algorithm

We describe in this section the LSML procedure briefly discussed in Section 3.3.1 of the

paper. We primarily focus on tackling the anticipated-regret SDP (3.5) but point out at

the end of this section minor changes that can be made to approximate the shutdown-

neutral SDPs (3.2) and (3.4).

Algorithm 4 summarizes the LSML steps to approximate the anticipated-regret SDP (3.5).

Let βA
i,xi

:= (βA
i,xi,1

, . . . , βA
i,xi,Bi

) be the VFA weight vector for stage i ∈ {1, . . . , I} and op-

erating state xi ∈ Xi. To ease notation, we do not subscript terms in LSML by Θ. The

inputs to LSML are a set of P information state sample paths {wpi , (i, p) ∈ I ∪ {I} × P}
generated in Monte Carlo simulation, where P := {1, . . . , P}; the number of samples N

used to construct sample average approximations of expectations; and a set of VFA basis

functions. LSML initializes the terminal stage VFA weight vector βA
I,xI

by regressing the

basis functions ΦI on evaluations of the terminal reward function for each xI ∈ XI . At

each stage i ∈ I, starting from stage I − 1 and moving backward to stage 1, and for each

operating state xi ∈ Xi it executes Steps 1 and 2.

• In Step 1(a), for each sample path p ∈ P , LSML generates N stage i+1 information

state samples conditioned on wpi . We denote the n-th such sample by w̄p,ni+1 and the

set of these samples by {w̄p,ni+1, n ∈ N}, where N := {1, . . . , N}.

• In Step 1(b), it computes estimates vA
i (xi, w

p
i ) of the stage i AR value function

V A
Θ,i(xi, w

p
i ) by applying to the right hand sides of (3.5a) and (3.5c) the known

stage i + 1 VFA and sample average approximations of expectations based on the

samples generated in the previous step. Specifically, LSML computes vA,O
i (xi, w

p
i )

by replacing Ei[V A
Θ,i+1(fi(xi, ai), wi+1)] in the right hand side of (3.5a) by the sample

average approximation

∑
b∈Bi+1

βA
i+1,fi(xi,ai),b

[
1

N

∑
n∈N

Φi+1,b(w̄
p,n
i+1)

]
,

and obtains vA
i (xi, w

p
i ) by substituting for V A,O

Θ,i (xi, wi) and ARΘ,i(xi, w
p
i ) in the

right hand side of (3.5c), respectively, with vA,O
i (xi, w

p
i ) and the sample average
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approximation

ÂRΘ,i(xi, w
p
i ) := max

ai∈Ai(xi)\{C}

1

N

∑
n∈N

max
{
Q̂(xi, w

p
i , ai, w̄

p,n
i+1) + η ·K(xi,C), 0

}
,

(3.14)

where

Q̂(xi, w
p
i , ai, w̄

p,n
i+1) := ri(xi, w

p
i , ai) + δ

∑
b∈Bi+1

βA
i+1,fi(xi,ai),b

Φi+1,b(w̄
p,n
i+1).

• In Step 2, LSML performs a least squares (2-norm) regression on these estimates to

determine the vector of VFA weights βA
i,xi

.

Algorithm 4 Shutdown-averse LSML

Inputs: Set of information state sample paths {wpi , (i, p) ∈ I ∪ {I} × P}, num-
ber of sample average approximation samples N , and set of basis function vectors
{Φi, i ∈ {1, . . . , I}}.

Initialization: For each xI ∈ XI , compute estimates vA
I (xI , w

p
I ) := rI(xI , w

p
I ) for p ∈ P

and perform a least squares regression on these VFA estimates using basis functions ΦI

to determine the vector of VFA weights βA
I,xI

.

For each i = I − 1 to 1 do:
For each xi ∈ Xi do:

1. For each p ∈ P do:

(a) Sample N stage i+ 1 information state samples conditional on wpi : {w̄
p,n
i+1, n ∈

N}.
(b) Compute the VFA estimates

vA,O
i (xi, w

p
i ) := max

ai∈Ai(xi)\{C}

{
ri(xi, w

p
i , ai) + δ

∑
b∈Bi+1

βA
i+1,fi(xi,ai),b

[
1

N

∑
n∈N

Φi+1,b(w̄
p,n
i+1)

]}
;

vA
i (xi, w

p
i ) := max

{
vA,O
i (xi, w

p
i ),−K(xi,C) − λξ̃iÂRΘ,i(xi, w

p
i )
}
.

2. Perform a least squares regression on the VFA estimates in set {vA
i (xi, w

p
i ), p ∈ P}

using basis functions Φi to determine the vector of VFA weights βA
i,xi

.

Outputs: Vectors of VFA weights βA
i,xi

for each (i, xi) ∈ {1, . . . , I} × Xi.

The outputs of LSML are the vectors of VFA weights βA
i,xi

for each stage i ∈ {1, . . . , I}
and operating state xi ∈ Xi. Given such VFA weights, the action aA

i (xi, wi) taken by the
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anticipated regret policy at stage i and state (xi, wi) is defined as

aA
i (xi, wi) :=


C, if vA,O

i (xi, wi) < −K(xi,C) − λξ̃iÂRΘ,i(xi, wi),

arg max
ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δ

∑
b∈Bi+1

βA
i+1,fi(xi,ai),b

[
1

N

∑
n∈N

Φi+1,b(w
n
i+1)

]}
,

otherwise,

where the sample average approximations are constructed using N next stage information

state samples (wni+1, n ∈ N ) conditioned on wi.

Algorithm 4 can also be used with minor changes to approximate the shutdown-neutral

SDPs (3.2) and (3.4). Specifically, computing a sample average approximation of the

shutdown cost inflation ÂRΘ,i(xi, w
p
i ) as in (3.14) is not needed for the shutdown-neutral

SDPs, thus, this term is replaced by zero.

3.7.3 Calibration of the price and exchange rate dynamics

For all commodities, we considered futures prices for weekly trading dates from November

18th 2008 to December 30th 2015. Aluminum and exchange rate futures contracts have

physical/financial delivery at the end of the contract duration (that is, at maturity). We

collected aluminum futures prices from Bloomberg for maturities extending out 1, 3, 6, 9,

12, 15, 18, 21, 24, and 36 months. Exchange rate futures for EUR-USD and NOK-USD

on Bloomberg were only available for the months of March, June, September, and De-

cember. We applied standard linear interpolation to these rates and obtained a term

structure curve with maturities that match the ones for aluminum contracts (Guthrie,

2009, §12). Nord Pool power contracts were obtained from the information provider Mon-

tel (see www.montel.no). The power delivery duration of these contracts were monthly,

quarterly, or yearly with trading dates extending out to 6 months, 8 quarters, and 3 years,

respectively. In contrast to aluminum and exchange rate futures contracts, power con-

tracts deliver electricity continuously during an interval of time. For example, the first

and second nearest quarterly contracts traded in August 2015 delivered power during,

respectively, the entire 4th quarter (Oct-Dec) of 2015 and 1st quarter (Jan-Mar) of 2016.

Power futures contracts of different lengths can overlap, for instance, the nearest monthly

and quarterly contracts. To obtain implied power futures prices of contracts that deliver

only at maturity, we used the smoothing approach of Benth et al. (2007) (see Fleten

and Lemming, 2003 for an alternative smoothing technique), which determines a smooth

polynomial spline that replicates the observed market prices for each trading date. This

synthetic curve contains power futures contract prices that are consistent with the ones
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for aluminum and currency exchange rates.

We calibrated the parameters of the stochastic process (3.9) by applying a Kalman fil-

ter (Hamilton, 1994, Chapter 13) to match the model-implied log-futures prices with the

data by maximizing the log-likelihood function. The transition and measurement equa-

tions correspond to Farkas et al. (2017) equations (6)-(8) and (15)-(16), respectively. The

integral terms involving matrix exponentials were evaluated numerically using the reduc-

tions to new matrix exponentials described in Carbonell et al. (2008). Due to the large

number of unknown parameters, we followed a multi-step calibration process where pa-

rameters estimated in a given step are kept fixed in future steps, which is common (see,

e.g., Farkas et al., 2017). These steps are the following:

1. We estimated power seasonality ψEl(t) by regressing the function χ1 cos (2πt) +

χ2 sin (2πt) on the log-futures data (Paschke and Prokopczuk, 2009; Farkas et al.,

2017). We set the seasonality for aluminum and exchange rates, that is ψAl(t),

ψEUR-USD(t) and ψNOK-USD(t), to zero as we observed no empirical evidence of sea-

sonal effects.

2. We calibrated single-commodity 2-factor versions of model (3.9) for each commodity

with a single correlation between short and long term factors. We estimated µz, the

short and long term risk premia λy and λz, respectively, the diagonal terms of

Ky, Kz and ρy,z, and the variance of the measurement error. The value of µz for

currencies was not statistically significant and was set to zero. We noticed that the

volatility estimates were unrealistically high. Hence σy and σz were replaced with

data estimates directly from historical data.

3. We calibrated the cross-commodity correlation structure, that is, matrices ρy, ρz
and ρyz keeping all previous estimates fixed. Doing this reduced the number of free

variables to 24, which we could handle in the maximum likelihood estimation.

Below we report the parameter estimates where statistical significance at 1%, 5% and 10%

are indicated by superscripts ∗∗∗, ∗∗ and at ∗, respectively. The order of the commodities

in the vectors and matrices is power, aluminum, EUR-USD rate and NOK-USD rate.

K̂y =


1.904∗∗∗ 0 0 0

0 0.067∗∗∗ 0 0
0 0 0.011∗∗∗ 0
0 0 0 0.010

 , K̂z =


0.055∗∗∗ 0 0 0

0 0.184∗∗∗ 0 0
0 0 0.001 0
0 0 0 0.005





3.7 Appendix 89

µ̂ =


0.19∗

1.41∗∗∗

0
0

 , σ̂y =


0.26
0.12
0.08
0.13

 , σ̂z =


0.11
0.09
0.18
0.15

 , χ̂1 =


0.21

0
0
0

 , χ̂2 =


0.03

0
0
0



ρ̂y =


1 0.79∗∗∗ 0.63∗∗∗ 0.65∗∗∗

0.79∗∗∗ 1 0.72∗∗∗ 0.79∗∗∗

0.63∗∗∗ 0.72∗∗∗ 1 0.83
0.65∗∗∗ 0.79∗∗∗ 0.83 1

 , ρ̂z =


1 0.80∗∗∗ 0.68∗∗∗ −0.73∗

0.80∗∗∗ 1 0.75∗∗∗ −0.72
0.68∗∗∗ 0.75∗∗∗ 1 −0.79∗∗∗

−0.73∗ −0.72 −0.79∗∗∗ 1



ρ̂yz =


0.25∗∗∗ 0.76∗∗∗ 0.71∗∗∗ −0.68∗∗∗

0.81∗∗∗ 0.27∗∗∗ 0.77∗∗∗ −0.73∗

0.61∗∗∗ 0.73 0.02∗∗∗ −0.55
0.65∗∗∗ 0.83∗∗∗ 0.65∗∗∗ −0.09∗∗∗

 λ̂y =


−0.79∗∗∗

−0.59∗∗∗

−0.28∗∗∗

−0.50∗∗∗

 , λ̂z =


0.74∗∗∗

−0.14
3.49∗∗

−3.24∗



Most of the estimates above are statistically significant. There is strong positive corre-

lation between the short term factors of all commodities and some negative correlation

in the long term factors, in particular between the first three assets and NOK-USD. The

estimated covariance matrix Σ was computed as

Σ =

[
diag(σy) 0

0 diag(σz)

][
ρy ρyz
ρTyz ρz

][
diag(σy) 0

0 diag(σz)

]
.

This matrix is in general not positive semi-definite (PSD), which is a property needed

to generate multivariate random draws. Nonetheless, after our calibration Σ was very

close to being PSD (the negative eigenvalues are smaller than 10−2). Therefore, to gain

the desired PSD property, we computed the nearest PSD matrix to Σ by minimizing the

Frobenius norm of the difference (Higham, 1988). This can be seen as a small perturbation

of Σ. Finally, the initial values for the eight factors used in the analysis are based on

representative spot and 1-year futures prices observed during the first quarter of 2017 and

are, respectively, Y0 = log
[
35, 1800, 1.10, 0.12

]>
and Z0 = log

[
33, 1900, 1.25, 0.15

]>
.

3.7.4 Dual bound on the asset value

To obtain a dual (upper) bound on the shutdown-neutral asset value, we use the informa-

tion relaxation and duality framework of Brown et al. (2010). This approach relies on re-

laxing the non-anticipativity constraints embedded in the SDP, and penalizing knowledge

of future information at time i ∈ I using a penalty function qi (f(xi, ai), wi, wi+1). A fea-

sible dual penalty qi satisfies E[qi (f(xi, ai), wi, wi+1)
∣∣wi] ≤ 0. The dual bound estimation

process relies on H Monte Carlo samples of uncertainty {whi , (i, h) ∈ I∪{I}×{1, . . . , H}}.
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We solve the following deterministic dynamic program on each sample path h:

Uh
I (xI) = rI(xI , w

h
I ), ∀xI ∈ XI ,

Uh
i (xi) = max

ai∈Ai(xi)

{
ri(xi, w

h
i , ai)− qi

(
f(xi, ai), w

h
i , w

h
i+1

)
+ δ Uh

i+1 (f(xi, ai))
}
,

∀(i, xi) ∈ I × Xi,

for all h ∈ {1, . . . , H}, where qi is a feasible penalty. A dual bound on the option value

is then obtained as the sample average
∑

h U
h
0 (x0)/H. It is well known (Brown et al.,

2010) that given a VFA V̂i(·), a feasible dual penalty can be defined for (xi+1, h) ∈
Xi+1 × {1, . . . , H} as follows:

qi
(
xi+1, w

h
i , w

h
i+1

)
= δ

{
V̂i+1

(
xi+1, w

h
i+1

)
− E

[
V̂i+1 (xi+1, wi+1) |whi

]}
.

We employed this penalty function in the computation of the dual bounds.
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Abstract: This paper complements the previous chapter by developing additional

methodology and providing findings that could potentially be relevant to researchers

and practitioners. Specifically, we investigate two alternative strategies to manage

shutdown decisions that are popular in academia and industry. The first strategy in-

corporates in our dynamic merchant operations framework the popular conditional
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value-at-risk (CVaR) and an intuitive variant thereof that we define (RCVaR). The

second strategy exploits the firm’s financial flexibility of entering into long term for-

ward contracts, which is common practice to hedge cash flow volatility and we assess

its impact on shutdown probability. We performed numerical experiments consid-

ering the same real aluminum production instances and computational setting from

the previous chapter but, for simplicity, we focused on shutdown reduction neglect-

ing the preference to delay shutdowns. We computed CVaR and RCVaR policies

using a regress-later least squares Monte Carlo (LSML) method, and compared them

with the anticipated-regret (AR) policies. We found that AR policies significantly

outperforms CVaR-based policies and provide more efficient trade-offs between as-

set value and shutdown probability. We computed forward contracting strategies

also using LSML and found that financial flexibility has little impact on shutdown

probability. Our findings suggest caution in using methods that are not tailored

to manage shutdown decisions as they might result in under-performing policies

and incorrect shutdown decisions. Moreover, financial flexibility emerges as a less

efficient lever to manage shutdown decisions compared to operating flexibility.

Keywords: Commodity and energy operations · conditional value-at-risk · forward

contracts · least squares Monte Carlo

4.1 Introduction

Balancing the asset value perspective with a shutdown perspective is of strategic impor-

tance in commodity/energy production. A permanent shutdown decision in fact carries

not only financial losses but also adverse social and political consequences to entities

beyond the specific plant being shut down such as the parent company and the local

community (for details, see Chapter 3 and in particular Section 3.1).

In Chapter 3 we have developed operating policies, namely anticipated-regret (AR) poli-

cies and classification-based margin (CM) policies, that directly trade off asset value for

a more desirable shutdown profile and we have shown that these policies exhibit excellent

numerical performance. In this paper, we investigate two alternative strategies to man-

age shutdown decisions that are commonly used in academia and industry: the first is

based on dynamic risk measures and the second on the use of forward contracts to reduce

the uncertainty. We analyze these two strategies by developing models and theory, and

perform numerical experiments based on the same real aluminum production case study

from the previous chapter. Specifically, we use the same operating model, instances data,
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model of the evolution of the uncertainty and its calibration. We thus refer to Chapter

3 for the definition of these modeling elements and the related notation that we do not

redefine entirely here. We evaluate the new strategies under a simplified shutdown metric

and focus on the trade-off between asset value and shutdown probability. In other words,

we only consider shutdown probability reductions here and neglect the preference to delay

shutdowns to later parts of the planning horizon.

Our first approach considers the use of dynamic risk measures to manage shutdown de-

cisions. Modeling risk aversion in multi-stage decision making applications is an active

area of research (see, e.g., Smith and Nau, 1995; Ruszczyński, 2010; Philpott et al., 2013;

Devalkar et al., 2017; Jiang and Powell, 2017b; Löhndorf and Wozabal, 2017). Multi-

stage risk measures are typically constructed by nesting one-step coherent risk measures

that satisfy axiomatic conditions to ensure the consistency of optimal decisions made over

time. Dynamic conditional value-at-risk (CVaR) is a time-consistent risk measure (see,

e.g., Ruszczyński, 2010; Philpott et al., 2013, and reference therein), and is a popular

approach for modeling risk aversion in multi-stage optimization problems (Philpott et al.,

2013; Jiang and Powell, 2017a; Jiang and Powell, 2017b; Devalkar et al., 2017). Dynamic

CVaR is typically used to model financial risk. In a commodity operations setting, De-

valkar et al. (2017) successfully incorporate dynamic CVaR to capture financial distress

costs. When modeling shutdown decisions, we find that policies based on dynamic CVaR

favor shutdown as opposed to modeling aversion to this decision. However, policies based

on a simple modification of dynamic CVaR, which we dub reverse CVaR (RCVaR), are

averse to shutdown decisions and coincide with the shutdown-neutral policy in the case

of zero risk aversion. Although CVaR/RCVaR are intuitive measures for capturing cash

flow risk, they are harder to interpret in the context of shutdown decisions. Our use of

dynamic CVaR and RCVaR thus adds to this line of work by evaluating whether these

measures are effective for modeling shutdown decisions.

We employ a regress-later least squares Monte Carlo (LSML; see Appendix 3.7.2 in Chap-

ter 3) to obtain a collection of dynamic CVaR-based operating policies for different risk

aversion levels. Our use of LSML builds on the extant literature that uses least squares

Monte Carlo methods to obtain risk-neutral policies to high-dimensional real option prob-

lems. We compare CVaR/RCVaR policies with AR policies (see Chapter 3 for details on

AR policies) and find that the latter policies provide a significantly better trade-off be-

tween shutdown probability and asset value than the former ones, which is consistent

with our theory of asymptotic AR regimes (see Proposition 3.1). Specifically, AR policies

reduce shutdown probability by 25% and 50%, respectively, for 2% and 6% losses in asset

value, whereas RCVaR policies lose roughly 5% and 14% of the asset value to achieve the

same shutdown probability reductions.
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Second, we formalize a strategy that reduces uncertainty by using financial contracts.

Opposed to all approaches previously introduced, this strategy involves adapting the

firm’s financial flexibility rather than the operating flexibility of the production asset. In

particular, it is common practice to hedge cash flow volatility by entering into long term

forward contracts. However, hedging all the sources of uncertainty may be undesirable.

Consider for example our numerical study of Chapter 3 that involves the operations of

a real aluminum producer, where uncertainty is in power price, aluminum price, and

currency exchange rates. This producer does not hedge the selling price of aluminum

(that is, the output) as the entire aluminum market bears this risk (see McKinsey, 2010

for a similar strategy in oil production). Hedging exchange rate risk is also not done at the

level of an individual plant but rather by the holding company that aggregates risk across

several business units (see, e.g., McKinsey, 2015). In contrast, long term contracts are

used to hedge power price and secure supply. There is a preconceived notion that such

forward contracting will help decrease the probability of shutdown as it reduces input

price uncertainty. Although this expectation may be intuitive, the impact of power price

uncertainty on shutdown decisions and shutdown probability is a priori unclear.

To assess this impact, we model fixed sourcing strategies that use long term power con-

tracts with fixed length. This entails modifying the shutdown-neutral SDP to account for

long term power purchases and to allow the sale of power into the wholesale market in

case the production is suspended or shut down before completing the tenure of existing

contract. We solve this modified SDP using LSML on our realistic aluminum instances,

and find that the forward contracting strategy seems to have little impact on reducing

the shutdown probability. Specifically, the shutdown probability varies only marginally

compared to no forward purchasing: It decreases and increases by at most 0.8% and 0.5%,

respectively.

Our findings suggest some caution in using methods, such as RCVaR polices and prac-

tice based forward sourcing strategies, that are not tailored to directly manage shutdown

decisions as they may lead to the incorrect conclusion that a significant shutdown proba-

bility reduction is not possible or implies a large asset value loss. Furthermore, given our

results, operating flexibility using shutdown-specific methods as AR and CM emerges as

a more efficient lever to manage shutdown decisions than financial flexibility.

The rest of this paper is organized as follows. In Section 4.2, we present CVaR and RCVaR

polices and discuss their performance. We describe fixed forward sourcing strategies in

Section 4.3. In Section 4.4, we conclude by analyzing the value of the shutdown option as

further motivation to the work that has been conducted in relation to the management

of shutdown decisions.
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4.2 CVaR-based policies

In this section, we present operating policies that are obtained by leveraging the con-

ditional value-at-risk (CVaR), which is a popular measure for modeling risk aversion in

academia and industry. Specifically, here we explore its suitability for mitigating shut-

down decisions. Let X(wi+1) be a random variable defined at stage i as a function of the

random stage i+1 information state wi+1. CVaR is defined with respect to a risk aversion

level α ∈ [0, 1) as

CVaRα,i[X(wi+1)] := Ei[X(wi+1)|X(wi+1) ≤ VaR1−α,i(X(wi+1))], (4.1)

where VaR1−α,i(X) := inf{x|FX(x) ≥ 1−α} and FX(·) is the cumulative distribution func-

tion of X(wi+1) conditioned on the information state wi. Intuitively, CVaRα,i[X(wi+1)]

computes the expected value of the worst 1− α proportion of realizations of the random

variable X. If α = 0, then the CVaRα,i operator (4.1) reduces to the expectation operator,

that is, CVaR0,i(·) ≡ Ei[·].

Dynamic CVaR is a nested extension of CVaR used in multi-stage decision making ap-

plications (see, e.g., Ruszczyński, 2010; Philpott et al., 2013; Devalkar et al., 2017; Jiang

and Powell, 2017a). For a given α ∈ [0, 1), a risk-averse CVaR optimal policy can be

found by solving the SDP

V CV,O
α,i (xi, wi) = max

ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δCVaRα,i

[
V CV
α,i+1 (fi(xi, ai), wi+1)

]}
,

∀(i, xi, wi) ∈ I × Xi ×Wi, (4.2a)

V CV
α,i (xi, wi) = max

{
V CV,O
α,i (xi, wi),−K(xi,C)

}
,∀(i, xi, wi) ∈ I × Xi ×Wi, (4.2b)

where we omit the terminal (stage I) condition in this and the following SDPs as it is

analogous to the shutdow-neutral terminal reward (3.2a). V CV,O
α,i (xi, wi) and V CV

α,i (xi, wi)

are value functions that represent utilities when using the CVaR measure. Contrast-

ing the shutdown-neutral value function (3.2b) and (4.2a) shows that V CV,O
α,i (xi, wi) is

computed using the left tail of the next-stage value function distribution instead of its ex-

pectation. Because CVaRα,i[X(wi+1)] ≤ Ei[X(wi+1)], the value of V CV,O
α,i (xi, wi) is smaller

than V SN,O
i (xi, wi) and this difference generally increases with α. In addition, (3.2c) and

(4.2b) compare V SN,O
i (xi, wi) and V CV,O

α,i (xi, wi), respectively, with the same shutdown

cost −K(xi,C). Therefore, intuitively, as α is increased, the CVaR-based policy favors the

shutdown decision more relative to the shutdown-neutral policy, which is at odds with

the desired aversion to this decision. We verify this intuition by evaluating numerically

the performance of CVaR policies in Section 4.2.3.
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4.2.1 Reverse CVaR (RCVaR)

Overcoming this issue requires an intuitive modification of the standard CVaR definition

to focus on the 1 − α proportion of the best realizations of a random variable. This

modification, which we denote reverse CVaR (RCVaR), is defined as

RCVaRα,i[X(wi+1)] := Ei[X(wi+1)|X(wi+1) ≥ VaRα,i(X(wi+1))]. (4.3)

For illustration, in Figure 4.1 we contrast the CVaR operator (4.1) with the RCVaR

operator (4.3).
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Figure 4.1: Sample profit distribution X(wi+1) of which CVaRα,i[X(wi+1)] and
RCVaRα,i[X(wi+1)] consider, respectively, the left tail (i.e. the worst realizations) and
the right tail (i.e. the best realizations).

The definition of RCVaR presented in equation (4.3) holds for continuous distributions.

Following Rockafellar and Uryasev (2002), we provide a more general definition that

also handles both continuous and discrete distributions. For consistency with the above

discussion, we consider a random variable X(wi+1) representing a profit function, rather

than a loss function as in Rockafellar and Uryasev (2002). For α ∈ [0, 1), let us define:

VaRα,i(X(wi+1)) := inf {x|FX(x) ≥ α} ,
RCVaR+

α,i[X(wi+1)] := Ei [X(wi+1)|X(wi+1) > VaRα,i(X(wi+1))] .

Then, RCVaRα,i[X(wi+1)] is computed as a weighted average of the two terms
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VaRα,i(X(wi+1)) and RCVaR+
α,i[X(wi+1)]:

RCVaRα,i[X(wi+1)] :=


φα,i(X(wi+1))VaRα,i(X(wi+1)) + (1− φα,i(X(wi+1))) ·

RCVaR+
α [X(wi+1)], if FX(VaRα(X(wi+1))) < 1;

VaRα,i(X(wi+1)) if FX(VaRα,i(X(wi+1))) = 1, (4.5)

where φα,i(X(wi+1)) := (FX(VaRα,i(X(wi+1)))− α) /(1−α). We will show an application

of this general definition to a discrete distribution later in this section.

We use RCVaRα,i to define a set of shutdown-averse policies πRC
α parameterized by α via

the following SDP.

V RC,O
α,i (xi, wi) = max

ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δRCVaRα,i

[
V RC
α,i+1 (fi(xi, ai), wi+1)

]}
,

∀(i, xi, wi) ∈ I × Xi ×Wi, (4.6a)

V RC
α,i (xi, wi) = max

{
V RC,O
α,i (xi, wi),−K(xi,C)

}
,∀(i, xi, wi) ∈ I × Xi ×Wi. (4.6b)

Analogously to CVaR, also the RCVaR operator reduces to the expectation when α = 0,

that is, RCVaR0,i(·) ≡ Ei[·]. However, in contrast to CVaR, for any stage i ∈ I it holds

that

RCVaRα1,i[X(wi+1)] ≥ RCVaRα2,i[X(wi+1)] ≥ Ei[X(wi+1)]

for α1 ≥ α2. Proposition 4.1 establishes that this monotonicity property holds in the

general multi-stage setting, which confirms that the RCVaR policy πRC
α models aversion

to shutdown decisions when α is increased. Let us recall the notation Pr(C;π) to indicate

the shutdown probability at the end of the horizon for the policy π.

Proposition 4.1. Given α1, α2 ∈ [0, 1) such that α1 ≥ α2, it holds that

Pr(C;πRC
α1

) ≤ Pr(C;πRC
α2

).

Proof. It suffices to show that the value function V RC,O
α,i (xi, wi) excluding shutdown is

increasing in α because the policies πRC
α1

and πRC
α2

are determined by comparing this value

function with the same shutdown cost K(xi,C). We thus focus on showing that

V RC,O
α1,i

(xi, wi) ≥ V RC,O
α2,i

(xi, wi), ∀(i, xi, wi) ∈ I × Xi ×Wi (4.7)

for α1, α2 ∈ [0, 1) such that α1 ≥ α2. The proof of (4.7) is based on backward induction.

At stage I, the terminal rewards match: V RC
α1,I

(xI , wI) = V RC
α2,I

(xI , wI) = rI(xI , wI) for all

(xI , wI) ∈ XI ×WI . Assume that analogous inequalities to (4.7) hold from stages i + 1

through stage I and consider stage i. We use the following chain of inequalities for all
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(xi, wi) ∈ Xi ×Wi:

ri(xi, wi, ai) + δRCVaRα1,i

[
V RC
α1,i+1 (fi(xi, ai), wi+1)

]
≥ ri(xi, wi, ai) + δRCVaRα1,i

[
V RC
α2,i+1 (fi(xi, ai), wi+1)

]
≥ ri(xi, wi, ai) + δRCVaRα2,i

[
V RC
α2,i+1 (fi(xi, ai), wi+1)

]
.

We obtain the first inequality using the monotonicity property of RCVaRα[·] with respect

to its argument and the condition V RC
α1,i+1 (fi(xi, ai), wi+1) ≥ V RC

α2,i+1 (fi(xi, ai), wi+1) which

follows from the inequality V RC,O
α1,i+1(xi+1, wi+1) ≥ V RC,O

α2,i+1(xi+1, wi+1) that holds by the in-

duction hypothesis. We derive the second inequality by leveraging the monotonicity of

the RCVaR[·][X] operator with respect to α. Maximizing over actions in Ai \{C} on both

sides of this inequality implies equation (4.7) at stage i. Our claim holds at all stages by

the principle of mathematical induction.

Despite this property, the shutdown probability under πRC
α does not necessarily converge to

zero when α −→ 1. The reasoning behind this statement is the following. RCVaR inflates

the value of the non-shutdown actions by a term RCVaRα,i

[
V RC
α,i+1 (fi(xi, ai), wi+1)

]
which

depends on the next-stage value function distribution shown in Proposition 4.1 to increase

with α. However, even if α is high, this inflation may not be sufficiently high to eliminate

shutdown as an optimal action. For example, given a particular state (xi, wi) and action

ai, suppose the distribution of V RC
α,i+1 (fi(xi, ai), wi+1) with respect to the random next-

stage information state wi+1 is bounded by a constant C. Then the term RCVaRα,i is also

bounded above by C. Therefore, if shutdown is optimal and ri(xi, wi, ai) + C < −K(O,C)

holds for every non-shutdown action ai, then shutdown will remain optimal under an

RCVaR policy for any value of α. There is consequently no guarantee that the RCVaR

policy will converge to zero shutdown probability for α −→ 1. We observed this behavior

in our numerical experiments as well. Moreover, even if this policy reaches zero shutdown

probability, it is in general suboptimal, that is, its corresponding asset value may be

smaller than under the policy πSN\{C} as a result of a possible incorrect use of the non-

shutdown flexibility. Indeed, the RCVaR inflation term is different across actions and can

alter the order preference of the non-shutdown actions compared to πSN\{C} (this instead

does not occur in anticipated regret decision rules as proven by Proposition 3.1).

Both RCVaR and the anticipated regret policies model aversion to a shutdown decision

and are defined through a shutdown-averse SDP. However, in Example 4.1, we highlight

the differences between these two policies showing that they can make opposite decisions.

Example 4.1. Consider a production asset operating over 2 stages (that is, I ≡ {0, 1}),

which has a single non-shutdown decision and shutdown cost κ equal to 11. We consider

two cases for the random stage 1 utility when the decision at stage 0 is not to shut down.
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These cases are characterized by discrete utility distributions X1(w1) and X2(w1) defined

as

X1(w1) :=

−10 with probability 0.5,

−30 with probability 0.5;
X2(w1) :=

+4 with probability 0.25,

−28 with probability 0.75.

The expected utility is the same in each case, that is, E[X1(w1)] = E[X2(w1)] = −20.

Since the expected utility from not shutting down of −20 is smaller than the shutdown cost

of −11, the optimal shutdown-neutral decision at stage 0 is to shut down in both cases.

Next consider the anticipated regret. We have E0[max{X1(w1)+11, 0}] = (−10+11)·0.5 =

0.5 and E0[max{X2(w1) + 11, 0}] = (4 + 11) · 0.25 = 3.75. The anticipated regret is

clearly larger in case 2 than case 1. Thus a producer that accounts for anticipated re-

gret would favor switching to a non-shutdown decision in case 2 compared to case 1.

We show next that an RCVaR policy may do the opposite by choosing α equal to 0.5

for our illustration, that is, we compute the expected value of 50% (1 − α = 0.5) of

the best outcomes. An intuitive RCVaR computation is as follows. In the distribution

X1(w1) the event with the higher utility of −10 has mass exactly equal to 0.5, which

implies that RCVaR0.5,0[X1(w1)] = −10. In contrast, the distribution X2(w1) has a

mass of only 0.25 associated with the outcome 4, and the residual mass of 0.25 needs

to be associated with the outcome −28. Therefore, RCVaR0.5,0[X2(w1)] = (4 · 0.25 − 28 ·
0.25)/0.5 = −12. More formally, let us apply the general RCVaR definition of (4.5). We

start with X(w1) and determine VaR0.5,0(X1(w1)) = −30, RCVaR+
0.5,0[X1(w1)] = −10,

FX1(VaR0.5,0(X1(w1))) = 0.5, and φα,0(X1(w1)) = (0.5−0.5)/(1−0.5) = 0. These compu-

tations imply that RCVaR0.5,0[X1(w1)] = RCVaR+
0.5,0[X1(w1)] = −10. Similarly, we com-

pute VaR0.5,0(X2(w1)) = −28, RCVaR+
0.5,0[X2(w1)] = 4, FX2(VaR0.5,0(X2(w1))) = 0.75,

and φα,0(X2(w1)) = (0.75 − 0.5)/(1 − 0.5) = 0.5, which gives RCVaR0.5,0[X2(w1)] =

0.5 · (−28) + 0.5 · 4 = −12. The RCVaR of X1(w1) and X2(w1) are larger and smaller,

respectively, than the shutdown cost of −11. Hence, the RCVaR policy switches out of the

shutdown decision in case 1 but not in case 2.

Proposition 4.2 establishes that the discrepancy between anticipated regret and RCVaR

shown in Example 4.1 is possible at any shutdown aversion level α.

Proposition 4.2. For a given shutdown aversion level α ∈ (0, 1), shutdown cost κ > 0,

and constant τ , such that τ < −κ, let
{
X(w1; ζ)|ζ ∈ N+, ζ > −τ

}
be a sequence of

distributions where

X(w1; ζ) :=

ζ with probability (1−α)(ζ+τ)
2ζ

,

−ζ with probability 1− (1−α)(ζ+τ)
2ζ

.
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It holds that RCVaRα,0[X(w1; ζ)] = τ and E0[max{X(w1; ζ) + κ, 0}] (i.e., the anticipated

regret) strictly increases with ζ for ζ > −τ .

Proof. Let pζ := (1−α)(ζ + τ)/(2ζ). This probability is strictly positive since ζ > −τ by

assumption. Moreover, pζ < 1− α follows from τ < 0. Since pζ ∈ (0, 1− α) we have

RCVaRα,0[X(w1; ζ)] =
1− pζ − α

1− α
(−ζ) +

(
1− 1− pζ − α

1− α

)
ζ =

2 ζ pζ
1− α

− ζ = τ,

where the first equality follows from the definition of RCVaR (4.5), the second from sim-

plifying, and the last from substituting for pζ using its definition and further simplifying.

Using the definition of anticipated regret and re-arranging terms gives

E0[max{X(w1; ζ) + κ, 0}] = (ζ + κ) pζ =
(ζ + κ) (1− α) (ζ + τ)

2ζ

=
1− α

2

(
ζ + τ + κ+

κτ

ζ

)
.

Therefore, as ζ tends to infinity, the anticipated regret also tends to infinity.

Specifically, this proposition constructs a sequence of utility distributions where the RC-

VaR value as a function of ζ equals a constant that is strictly less than the shutdown

cost, but the anticipated regret strictly increases with ζ and tends to infinity. Hence, the

RCVaR policy always chooses the shutdown action even when the anticipated regret is

arbitrarily large.

4.2.2 Computing CVaR-based policies with LSML

To obtain CVaR and RCVaR policies we used LSML to approximate the SDPs (4.2) and

(4.6), respectively. The computation of these policies is similar to the computation of

AR policies. We thus refer to Algorithm 4 in Appendix 3.7.2 for a detailed description

of the LSML algorithm to approximate the AR shutdown-averse SDP, and only report

the changes needed to compute RCVaR policies here. For a given α ∈ [0, 1), the VFA

estimates to approximate the RCVaR SDP (4.6) are obtained with

vRC,O
α,i (xi, w

p
i ) := max

ai∈Ai(xi)\{C}

{
ri(xi, w

p
i , ai) + δRCVaRα,i

[ ∑
b∈Bi+1

βRCα
i+1,fi(xi,ai),b

· Φi+1,b(w̄
p,n
i+1) : n ∈ N

]}
;
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vRC
α,i (xi, w

p
i ) := max

{
vRC,O
α,i (xi, w

p
i ),−K(xi,C)

}
,

where Φi,b and βRCα
i,xi,b

denote, respectively, the b-th VFA basis function at stage i and

its associated coefficient in the linear combination, and RCVaRα,i is computed using the

definition (4.5). Given VFA weight vectors βRCα
i,xi

for each (i, xi) ∈ {1, . . . , I} × Xi, the

action aRC
α,i (xi, wi) taken by the RCVaRα policy at stage i and state (xi, wi) is

aRC
α,i (xi, wi) :=



C, if vRC,O
α,i (xi, wi) < −K(xi,C),

arg max
ai∈Ai(xi)\{C}

{
ri(xi, wi, ai) + δRCVaRα,i

[ ∑
b∈Bi+1

βRCα
i+1,fi(xi,ai),b

· Φi+1,b(w
n
i+1) : n ∈ N

]}
, otherwise.

Computing CVaR policies is analogous to RCVaR policies but the operator RCVaRα,i[·]
is replaced by CVaRα,i[·].

4.2.3 Results

We used LSML to compute CVaR and RCVaR policies and assess their performance. The

setting used in LSML–including the choice of basis functions and the number of regression

and inner sample paths of the uncertainty–matches the one employed in Chapter 3 (see

the computational setup in Section 3.5.3). For consistency, we also used the same 20.000

sample paths for policy evaluation used in Section 3.5.3.

Figure 4.2 displays the trade-off between asset value and shutdown probability for CVaR

and RCVaR policies corresponding to a range of aversion levels α ∈ [0, 0.35] and α ∈
[0, 0.9], respectively. The figure also reports the trade-off achieved with the shutdown-

neutral policies πSN and πSN\{C}, and the delay-neutral AR policies, that is, AR policies

with ξ̃ = 1 and varying λ values (as in Figure 3.5). Each asset value estimate is expressed

as a percentage of the maximum asset value, that is, the asset value estimate for πSN.

The CVaR and RCVaR standard errors of the asset value and shutdown probability are

at most 1.02% and 0.35%, respectively.

As expected, the trade-off curve corresponding to the standard CVaR is incorrect as

the shutdown probability inflates as α is increased. In contrast, our intuitive RCVaR

modification provides correct trade-offs and the shutdown probability decreases when α is

increased. Contrasting RCVaR and AR, however, highlights that AR policies significantly

outperform RCVaR policies and provide more efficient trade-offs between asset value and



108 Managing shutdown decisions in commodity and energy production

75 80 85 90 95 100
0

10

20

30

40

50

60

70

Figure 4.2: Trade-offs in asset value and shutdown probability when using shutdown-neutral,
CVaR, RCVaR, and AR policies.

shutdown probability. For example, a shutdown probability decrease of 50% is achieved

in the former and latter policies, respectively, for asset value reductions of roughly 6%

and 14%. Moreover, we know from Proposition 3.1 that AR policies present desirable

asymptotic properties and the shutdown probability converges to zero when λ is large

enough. From Figure 4.2, we notice that the same property is instead not true for CVaR-

based policies. Specifically, while both CVaR and RCVaR policies coincide to πSN when

α = 0, the opposite shutdown-averse asymptotic behaviour does not converge to zero

shutdowns, consistently with the discussion in Section 4.2.1.

The algorithms for these experiments were implemented using Matlab R2016b. For a

given α value, estimating the LSML VFA for CVaR and RCVaR policies took on average

24 minutes, and estimating the value of a given policy required roughly the same running

time as estimating the VFA. We employed parallel computing to distribute the load across

multiple cores and drastically reduce the total running time (see Section 3.5.3 for details

on the computational resources used and the parallel computing setting).

This application represents a case in which the popular CVaR measure performs badly,

that is, it does not capture shutdown aversion. Our intuitive adaptation, RCVaR, cap-

tures shutdown aversion but exhibits poor performance. The reason behind this poor

performance might be that CVaR is a metric used for capturing risk aversion but our
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work focuses on aversion to a decision in our control as opposed to the standard risk

aversion in the literature. Shutdown is indeed an option the firm can exercise in response

to movements in costs, prices and exchange rates. Rather than considering risk aversion,

in this work we are optimizing over two metrics: asset value and shutdown probability.

Moreover, CVaR is a generic metric for managing risk aversion while other methods that

we have developed in Chapter 3, especially anticipated regret (AR) and classification

margin (CM) policies, are designed to directly manage shutdown decisions and can thus

have an advantage. We conclude by suggesting caution in using methods that are not

tailored to specifically manage shutdown decisions, even though such methods are popular

in other related contexts as classical financial risk aversion.

4.3 Forward purchasing of power

To assess the impact of power price uncertainty on shutdown probability, we consider

modifications of the shutdown-neutral aluminum production model with front-year pro-

curement of electricity (that is, SDP (3.2) with the reward function (3.8)). Specifically, we

use forward power contracts of fixed length of d years, with d ∈ N, d > 0, for power pur-

chases and allow the sale of power into the wholesale market when the plant is shut down

before completing the tenure of existing contracts. For example, a duration of d = 10

years means that 10-years power contracts are entered at stages 0, 10, 20, and 30, that

is, the contract is renewed every 10 years provided that the plant is not shut down.

The price of a forward power contract with duration d years entered at the beginning

of stage i is denoted PEl
i,d . This price is calculated so that arbitrage opportunities are

precluded from trading in the forward and front-year markets, which corresponds to the

condition
d−1∑
j=0

δj PEl
i,d =

(
1 + γEld

) d−1∑
j=0

δj Ei
[
PEl
i+j

]
, (4.8)

where γEld represents the risk premium to enter a forward power contract with duration

d years. To intuitively understand this relationship, suppose that there is no discounting

and no risk premium, that is, δ = 1 and γEld = 0. In this case, the no arbitrage condition

reduces to the familiar equality

PEl
i,d =

1

d

d−1∑
j=0

Ei
[
PEl
i+j

]
,

where the left-hand side is the contract price and the right-hand side is the average of
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the expected power prices over the contract duration. When discounting is present, we

introduce δj and obtain the summation in the left-hand side of (4.8). The risk premium

is incorporated in (4.8) using the term
(
1 + γEld

)
.

We next define the modifications to the reward function in SDP (3.2) to model forward

contracting. Let ξ(wi) := (1− τ)ρPEUR-USD
i . Denote by i′ = i′(i, d) := i−mod(i, d) the

starting year of the forward contract and by li = l(i, d) := i′ + d− i the number of years

of delivery remaining before renewal. For example, if i = 24 and d = 10, then i′ = 20 and

li = 6. The production cash flow at time i ∈ I under a d-year power contract entered at

i′ ≤ i is

rdO(wi) := (1− τ)
[
PAl
i (1 + γAl)− cUSD − cNOK PNOK-USD

i − ρPEl
i′,dP

EUR-USD
i

]
. (4.9)

Expression (4.9) can be obtained from (3.8) by replacing PEl
i with PEl

i′,d. If the production

is suspended before reaching the tenure of a forward contract, the power for only that

specific suspension year is sold back into the wholesale market for a revenue of ξi(wi) ·
(PEl

i −PEl
i′,d). When the plant is reopened after temporary suspension, the residual portions

of existing contracts entered prior to suspension are still available. In contrast, if the plant

is shut down before the end of a contract tenure, the remaining years of power delivery

are sold back into the wholesale market for a revenue equal to ξi(wi) · (PEl
i −PEl

i′,d) li. The

complete immediate reward function is defined in Table 4.1. The possibility of selling

Table 4.1: Aluminum production asset immediate reward function with power forward contracts.

State [xi] Action [ai] Reward [rdi (xi, wi, ai)]

O

O rdO(wi, P
El
i′,d)

S1 −K(O,S1) + ξi(wi) · (PEl
i − PEl

i′,d)

C

{
−K(O,C) if i = i′

−K(O,C) + ξi(wi) · (PEl
i − PEl

i′,d) li if i 6= i′

Sm, m ∈ {1, 2, 3}

O rdO(wi, P
El
i′,d)−K(Sm,O)

Sm+1 (if m < 3) −K(Sm,Sm+1) + ξi(wi) · (PEl
i − PEl

i′,d)

C

{
−K(Sm,C) if i = i′

−K(Sm,C) + ξi(wi) · (PEl
i − PEl

i′,d) li if i 6= i′

C C 0

power back into the wholesale market affects the smelter operating decisions: It favors

the suspension and shutdown actions when the spread PEl
i −PEl

i′,d is positive and the open

decision when negative.

We employed LSML to compute heuristic operating policies of the SDP (3.2) variant
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based on the reward function of Table 4.1 for d ∈ {1, 2, 4, 5, 10, 20}. We used the same

computational setup from Section 3.5.4 and report the results in Table 4.2. The policy for

d = 1 coincides with πSN. In the experiments, we used a risk premium that grows linearly

with the contract duration d, for d > 1. Specifically, we tested two values: γEld = d · 0.1%

and γEld = d · 0.2%. The latter choice, for example, corresponds to a premium of 2% for

entering into a 10-year power contract. For comparison, we also tested the model where

no sale of power is allowed. This model helps us assess the impact of forward contracts

without the sale of power. The asset value estimates are expressed as percentages of the

estimates for d = 1.

Table 4.2: Estimates of asset value and shutdown probability with forward power contracts.

Power procurement model 1-Y 2-Y 4-Y 5-Y 10-Y 20-Y

Power sales allowed (Table 4.1) Value (% of d = 1) 100.0 100.4 101.1 101.4 102.6 104.5
Risk premium γEld = d · 0.1% Shutdown prob. (%) 39.2 39.2 39.3 39.3 39.2 38.9

Power sales allowed (Table 4.1) (% of d = 1) 100.0 100.1 100.4 100.5 100.7 100.6
Risk premium γEld = d · 0.2% Shutdown prob. (%) 39.2 39.2 39.4 39.4 39.3 39.1

No power sales (Table 3.1) (% of d = 1) 100.0 100.3 101.0 101.3 102.0 102.5
Risk premium γEld = d · 0.1% Shutdown prob. (%) 39.2 39.2 39.5 39.5 39.8 40.3

No power sales (Table 3.1) (% of d = 1) 100.0 100.0 100.3 100.4 100.4 99.3
Risk premium γEld = d · 0.2% Shutdown prob. (%) 39.2 39.3 39.6 39.6 39.6 40.6

We find that the asset value when using forward power contracts can increase by at most

4.5% relative to no forward purchasing. Moreover, the shutdown probability varies only

marginally compared to no forward purchasing: It decreases and increases by at most 0.8%

and 0.5%, respectively. The standard error is at most 0.74% for asset value estimates and

0.35% for shutdown probability estimates.

The increase in asset value and shutdown probability, although unexpected, is determined

by two characteristics of the model. First, when the power price at period i is higher than

the price of the forward contract entered at time i′ < i (that is, the spread PEl
i − PEl

i′,d is

positive), the possibility of selling power makes shutting down a more attractive option

to increase the value of the asset. Second, even if power sales is not allowed, asset value

and shutdown probability can increase when using forward power contracts because of the

quadratic term PEUR-USD
i PEl

i′,d in the reward function (4.9) (we verified that the asset value

is constant when keeping the EUR-USD rate deterministic, that is, using a linear reward

function and a zero risk premium, in which case it is known that forward contracting adds

no value).

Our analysis shows that forward purchasing of power has little impact on shutdown prob-
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ability on our realistic aluminum instances. Moreover, financial hedging in this context

seems to be complex to set up due to a reward function that is non-linear as it includes

products between commodity/energy prices and exchange rates.

4.4 Conclusions: The value of the shutdown option

Reducing shutdown probability using the plant’s operating flexibility involves manag-

ing the use of its shutdown option. A conceptually simple, albeit still computationally

challenging, approach to eliminate shutdown completely involves restricting an operating

policy to choose only among the set of non-shutdown decisions. In other words, we can

solve the shutdown-neutral SDP (3.4), for instance using LSML, to obtain a near optimal

zero-shutdown-probability operating policy. We refer to the difference between the value

of this policy and the maximum asset value (that is, the asset value of the plant including

shutdown action) as the shutdown option value. When this option value is small, man-

aging the trade-off between asset value and shutdown probability may not be as critical

because it will be economically feasible to use an operating policy that does not consider

the shutdown decision. In similar spirit, if the shutdown probability under a near optimal

shutdown-neutral policy obtained from SDP (3.2) is small, then the benefit of reducing

this probability further is likely to be low. In other words, shutdown-averse models and

operating policies are not needed in the preceding two cases.
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Figure 4.3: Shutdown option value percentage and probability as a function of percentage changes
in NOK and USD fixed costs and electricity and aluminum volatilities relative to the reference
instance.

Figure 4.3(a) displays the shutdown option value as a percentage of the maximum asset
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value for changes of the USD and NOK operating fixed costs (cUSD and cNOK) and the

volatilities of power and aluminum price. Specifically, we increase and decrease by up to

25% the fixed costs and calibrated volatilities relative to the reference instance (see Section

3.5.3 for details on the instances). The shutdown option value percentage is 25% for no

parameter change, that is, the reference instance. This option value percentage remains

large for all considered volatility changes (> 18%) and increases with the fixed costs. For

large increases in the NOK fixed cost, the shutdown option value exceeds the maximum

asset value because the asset value without the shutdown decision becomes negative.

Decreasing the fixed cost in USD reduces the shutdown option value percentage, but it

still remains significant and greater than 13%. An analogous statement holds for small

to moderate decreases in the NOK fixed cost, but the shutdown option value percentage

reduces to about 6% when this fixed cost is reduced by 25%. Overall, the shutdown

option value remains large under almost all realistic perturbations of parameters that we

considered in our aluminum production case study.

Figure 4.3(b) reports shutdown probability as a function of the same parameter changes

considered in Figure 4.3(a). As expected, shutdown probability increases with fixed costs

and the volatility of the power price, but surprisingly decreases with the volatility of the

aluminum price. Nevertheless, shutdown probability remains large in all cases.

Based on the above findings, we conclude that managing shutdown decisions is significant

in our aluminum production application for realistic parameter settings, and shutdown-

neutral policies alone are unlikely to provide a practical approach to manage these deci-

sions given the substantial shutdown option value. Therefore, shutdown-averse policies

are needed to manage the trade-off between shutdown probability and asset value. The

policies we have developed, in particular AR and CM, efficiently manage this trade-off

as observed in Chapter 3. On the other hand, we found that popular methods used in

academia and industry such as CVaR-based policies and forward electricity sourcing do

not manage shutdown decisions well or do not reduce shutdown probability significantly.

Managerial implications of our results from this chapter and the previous one include that

(i) adapting the plant’s operating flexibility is effective at reducing shutdown probability–

more in general, at improving the shutdown profile–for small losses in asset value on

realistic instances, but (ii) methods that are not tailored to manage shutdown decisions

should be used with caution as their intuitive link with shutdown might be imprecise and

result in under-performing policies and incorrect shutdown decisions. Finally, (iii) finan-

cial flexibility emerges as a less efficient lever to manage shutdown decisions compared to

operating flexibility.
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Abstract: Large companies have recently started to incorporate renewable en-

ergy standards in their corporate sustainability goals. In this paper, we consider

the problem of a company constructing a dynamic power procurement portfolio to

satisfy a renewable power target, i.e. to procure a specific percentage of its elec-

tricity demand from renewable sources, at minimum expected cost. To meet this

target, the company has the option at each stage of a finite planning horizon to

enter into different short and long term power contracts with renewable generators

and to purchase renewable energy certificates in the spot market. We formulate the

problem as a stochastic dynamic program (SDP) which is high dimensional in both

the endogenous and exogenous components of its state. Approximate dynamic pro-

gramming methods to tackle this highly intractable formulation are very limited. To

overcome this intractability, we consider the information relaxation approach that is
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typically used to obtain dual bounds, and use it to develop a novel dual reoptimiza-

tion scheme (DRH) that extracts non-anticipative decision rules from sample action

distributions. We find that our DRH approach outperforms commonly used pri-

mal reoptimization methods and simple heuristics on realistic instances. Our DRH

framework is applicable beyond the specific application presented in this paper and

emerges as a promising approach to tackle high-dimensional SDPs.

Keywords: Renewable energy targets · power purchase agreements · energy real

options · approximate dynamic programming · information relaxations · reoptimiza-

tion

5.1 Introduction

During the last decade, a large number of companies have started to incorporate renew-

able energy standards into their corporate sustainability goals. Half of the Fortune 500

companies have announced commitments in or before 2016 to sustainability and climate

targets which include targets on greenhouse gas emissions reduction, energy efficiency, and

renewable energy procurement (CDP et al., 2017). One of the main reasons why com-

panies are setting these targets is the increasing environmental attention and regulations

over the past few years. Climate change has become a source of concern for companies

and shareholders which consequently try to implement policies to hedge against possible

regulator expectations and risks (CDP et al., 2017). The second main reason is the in-

creasing competitiveness of renewable energy sources. The levelized cost of the energy

from wind and solar generators has in fact decreased in the recent years, and in some re-

gions this happened so fast that renewable energy generation is now even slightly cheaper

than conventional energy generation (Wiser and Bolinger, 2017).

In this paper, we focus on companies that have committed to a renewable energy target.

Meeting a renewable energy target for a company means procuring a specific percentage

of its electricity demand from renewable power sources by a future date. To illustrate,

assume that a company commits to a 50% renewable energy target by 2025. Then, before

2025 the company has no restrictions on its power procurement but it can enter into

long term contracts with renewable generators that will deliver renewable energy also

beyond 2025. Instead, for each year from 2025 onward, at least 50% of the electricity

demand of the company must be supplied by renewable energy sources. To give some

examples, Procter & Gamble, Intel, and Nike committed to reach a 30%, 75%, and 100%

renewable target, respectively, by 2020, 2020, and 2025. The number of companies that are
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setting this kind of target is rapidly increasing and ten percent of Fortune 500 companies

have committed to a renewable target in or before 2016 (CDP et al., 2017; precisely, 53

companies in 2016 compared to 42 companies in 2014), with several of them striving to

achieve 100% renewable power usage. Regarding the future date by which the target has

to be met, around half of these companies chose the year 2020, which also corresponds to

the expiration date of the production tax credit for renewable energy sources in the U.S.

(DOE, 2016).

Figure 5.1: Renewable energy targets in the Fortune 500 companies.

Figure 5.1 reports the renewable power target distribution among the Fortune 500 divided

into four intervals. Although many companies have chosen a target which is lower than

25% of the power demand, the figure shows that there is also a significant number of

companies that have set a target higher than 75%. The histogram then illustrates how

companies from distinct sectors value the procurement of renewable energy differently,

for instance, financial corporations often have higher targets than industrial corporations.

Companies with higher targets value the sustainability more than those with low targets

and this benefit is clearly diverse across the sectors, resulting in various choices of the

target level.

Despite the increasing trend of companies setting a climate target, most companies have

not committed to one such target yet. According to PWC (2016), the lack of strategic

knowledge about the renewable energy procurement is the main reason that drives com-

panies back from pursuing a renewable energy target. Based on a CDP questionnaire,

44% of the companies without any climate target (that is, on greenhouse gas emissions

reduction, energy efficiency, or renewable energy) were in the process of investigating how

to set up a target and, in case of renewable targets, an associated procurement strategy

(CDP et al., 2017). In this paper, we try to narrow this knowledge gap by constructing in

a principled manner renewable energy procurement strategies over a long-time planning
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horizon to meet a renewable target.

Constructing a multi-year procurement portfolio to meet a renewable target is challenging

because of the long term planning horizon and also the number of buying options in the

market. Thus, navigating the different renewable power procurement options and under-

standing their benefits and potential disadvantages is practically important. To meet a

renewable target, companies can use a variety of approaches including unbundled renew-

able energy certificates (RECs), onsite installations, and offsite purchases via bilateral

contracts known as power purchase agreements (PPAs). These options can provide com-

panies with diversified renewable energy supply sources and can ensure long term power

price stability. In particular, companies have recently paid attention to the PPAs due to

the drop in renewable energy cost. In this analysis, we consider two dominant renewable

energy procurement options (BNEF, 2018) that corporations use to satisfy their renew-

able power target: (i) buying power from the utility (i.e., akin to a spot purchase) and

supplementing it with RECs and (ii) entering into PPAs to receive power directly from a

renewable generator for a predefined number of years. Companies can also combine these

two options. Corporate PPAs and in particular synthetic PPAs (i.e., contracts without

physical delivery of power) are becoming increasingly popular around the world, with 1.6

GW of renewable capacity–mostly wind and solar–contracted through corporate PPAs

in 2015 in the U.S. alone (McKenzie, 2015). Power under such PPAs is purchased at a

fixed and predetermined price per megawatt hour, called strike price, which helps the firm

hedging against the risk of fluctuating power and RECs prices. On the other hand, long

term contracts expose the company to stochastic demand risk which might result in over

procurement. We do not consider electricity storage options in our analysis due to the

long planning horizon of our problem and because electricity storage capacity is still to

expensive for widespread use and very limited, for instance, in the U.S. it is only about

0.15% (excluding pumped hydro) of the total production capacity (EPA, 2018).

In this paper, we study how firms can manage the spot and PPA purchasing options

to reach a renewable target and then sustain this level of renewable procurement in the

future. Within the PPA options, companies have the flexibility to choose size and length of

the contract. For example, in the period 2010–2016 Google entered into 20 different PPAs

with capacity ranging from 26 to 407 MW (Google, 2017), and the duration of a PPA

usually varies between 5 and 30 year (Wiser and Bolinger, 2017). While the problem

of energy and commodity procurement has been studied in the presence of short and

long term contracts/spot and forward markets (Li and Kouvelis, 1999; Kleindorfer and

Wu, 2003; Nascimento and Powell, 2009; Boyabatli et al., 2011; Secomandi and Kekre,

2014), our work is differentiated by the pricing structure of PPAs and the presence of a

renewable energy target. Our research is also related to the literature on corporate social

and environmental responsibility, in that, it also considers deviating from a pure financial
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objective by adding a social/environmental component (Kleindorfer et al., 2005; Atasu,

2016; Lee and Tang, 2017; Trivella et al., 2018; see also Hoejmose and Adrien-Kirby, 2012

for a review on socially and environmentally responsible procurement), but our renewable

energy application and methodological approach are new.

We formulate a multi-period stochastic dynamic program (SDP) to minimize the expected

procurement cost. The company can decide at each stage of a finite planning horizon

whether to enter into new PPAs of varying size and length. We define a PPA strike

price model that accounts for the generator perspective in a way that is consistent with

publicly available software (NREL, 2017). The horizon is divided into two parts: a

reach period where the renewable target does not have to be fulfilled (but contracts

can be signed), and a sustain period where the target must be fulfilled. Computing an

optimal policy of this SDP is intractable because its state space has a high-dimensional

endogenous component corresponding to the pipeline of power inventories from PPAs, and

another high-dimensional exogenous component containing the stochastic factors driving

the evolution of power and RECs prices and demand.

Approximate dynamic programming (ADP) methods are used to solve high-dimensional

SDPs. To understand which ADP options are available in the literature to tackle our

problem, in Table 5.1 we categorize SDPs into four problem classes depending on the

dimensionality of their state, and report popular ADP approaches that can deal with

these problem classes. In problem class 1, the state space is low dimensional and the SDP

Table 5.1: Popular methods for solving different SDP problem classes.

Class
SDP state

MethodsEndogenous Exogenous

1 low-dim. low-dim. stochastic dynamic programming

2 low-dim. HIGH-dim. least squares Monte Carlo

3 HIGH-dim. low-dim.
approximate linear programming,
stochastic dual dynamic programming

4 HIGH-dim. HIGH-dim. limited: complex policy iteration techniques

can be solved exactly (Puterman, 2005). Several well-studied ADP methods exist in the

literature to handle problems with high-dimensional exogenous state but low-dimensional

endogenous state, or vice versa (classes 2–3). These methods include the well-know least

squares Monte Carlo (Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001; Car-

mona and Ludkovski, 2010; Boomsma et al., 2012; Arvesen et al., 2013; Nadarajah et al.,

2017), approximate linear programming (De Farias and Van Roy, 2003; De Farias and

Van Roy, 2004; Desai et al., 2012; Nadarajah et al., 2015; Veatch, 2015), and stochastic
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dual dynamic programming (Pereira and Pinto, 1991; Shapiro, 2011; Shapiro et al., 2013;

Löhndorf et al., 2013). However, ADP options to tackle problems with high dimension-

ality in both endogenous and exogenous state components are limited, and we identified

only a few papers that deal with this latter problem class by developing sophisticated

policy iteration procedures. These papers include Nadarajah and Secomandi (2018) that

consider the merchant operations of a network of gas storage and transport assets with

high-dimensional term structure prices models, and Salas and Powell (2017) that develop

a control algorithm for multiple storage devices under wind, demand, and electricity price

uncertainty.

The standard ADP framework to solve classes 2–4 first computes a value function ap-

proximation (VFA), then uses this VFA to compute a control policy which gives an upper

(primal) bound, finally embeds the VFA in the information relaxation and duality scheme

(Brown et al., 2010) to obtain a lower (dual) bound. However, computing a good-quality

VFA is very hard for class 4 and methods in the literature are limited. Additionally, our

SDP is non-convex when using realistic constraints on the PPA buying options, which

makes it harder or not possible to apply existing methods which rely on value function

approximations or exploit convexity. For these reasons, we overcome the intractability

in our problem by developing a novel ADP framework which does not rely on VFAs to

derive bounds and instead reverse the standard ADP framework. We first consider the

information relaxation approach to estimate lower bounds as done in the literature, where

we adapt linear dual penalty functions (Brown and Smith, 2014; Secomandi et al., 2015;

Nadarajah and Secomandi, 2018). Then, we develop a novel dual reoptimization heuristic

(DRH) that extracts non-anticipative decision rules from distributions of actions obtained

by generating sample paths of the uncertainty in Monte Carlo from the current state, and

solving a dual model with information relaxation on each sample path. Our DRH method

provides an upper bound on the optimal procurement value, and constitutes a rather

general ADP framework which relies on (i) Monte Carlo simulation and (ii) solving de-

terministic dual math programs with a dual penalty on individual sample paths. If the

latter math programs can be solved efficiently, then DRH is tractable also for problem

class 4.

We conduct numerical experiments on realistic instances with PPA contract lengths rang-

ing from 5 to 25 years and a planning horizon of 40 years. We define a PPA pricing model

that is consistent with publicly available software (NREL, 2017), and calibrate to data

a mean reverting process with monthly seasonality, a Jacobi process, and a geometric

Brownian motion for modeling the evolution of power prices, REC prices, and demand,

respectively. Using these models, we benchmark our new DRH policy against three pro-

curement strategies. The first strategy only relies on spot procurement of power and

RECs, that is, it does not consider PPAs. The second strategy uses a single PPA and
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renews this contract each time it expires. The last benchmark is the popular primal

reoptimization technique in the literature that iteratively solves deterministic approxi-

mations of the SDP at each stage (Wu et al., 2012; Secomandi et al., 2015; Löhndorf

and Wozabal, 2017; Nadarajah and Secomandi, 2018). We find that the lower bound

and procurement policy computed by our dual reoptimization method outperforms the

benchmark heuristics on most instances. Specifically, the optimality gap achieved with

DRH and the standard reoptimization policy are, respectively, 3.9% and 9.2% on average.

Moreover, the spot procurement strategy results in a very large optimality gap, meaning

that the long term price hedging effect of PPAs is beneficial to contain the overall power

procurement costs of companies meeting a renewable target.

These findings bode well for the use of our dual approach to make multi-period procure-

ment decisions that meet and sustain a renewable target in the presence of multiple PPA

contracts and spot power purchases. Furthermore, being broadly applicable beyond the

specific application presented in this paper, our dual reoptimization framework emerges as

a promising approach to tackle large-scale SDPs, especially those with high-dimensional

endogenous and exogenous state space for which existing methods are limited or rely on

specific problem structure.

The rest of this paper is organized as follows. We formulate a power procurement model to

reach and sustain a renewable target in Section 5.2. We develop methods to obtain both

primal and dual bounds on the optimal procurement cost in Section 5.3. We define three

procurement strategies that we use as benchmark in Section 5.4. We discuss our numerical

study in Section 5.5 followed by conclusions in Section 5.6. Additional details regarding

extended mathematical programming formulations are provided in the appendix.

5.2 Procurement model

In this section, we formulate a multi-period procurement model for a company to meet

a renewable power target at minimum cost. Companies typically consider power pro-

curement strategies over a long planning horizon (e.g., 30–40 years) and have access to

multiple PPA options. We thus consider a finite decision horizon I = {0, . . . , I − 1} with

discrete stages corresponding to years (we use stages and years interchangeably in the

rest of the paper). In Section 5.2.1, we develop a PPA pricing model that is consistent

with practice. In Section 5.2.2, we formulate the power procurement model as an SDP.
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5.2.1 PPA strike price model

The strike price is one of the main features of a PPA, hence, employing a realistic and

accurate pricing model is critical. We define a PPA strike price model which accounts

for the generator perspective, that is, the incentive of the generator when entering into a

contract.

For an investment in a renewable project to be profitable, the net present value (NPV) of

the project must be positive after accounting for a desired return on investment. Consider

a PPA of length equal to m years signed at the beginning of stage i. We define KNPV
i,m

(USD/MWh) to represent the smallest price of this contract such that the renewable

power generator would recoup its investment cost. We compute this value in a manner

that is consistent with the one used in the System Advisor Model (SAM; NREL, 2017), an

open source performance and financial tool designed by the National Renewable Energy

Laboratory (NREL) to access the feasibility of renewable energy projects (e.g., wind, solar,

or biomass) under different operating and financial conditions. Specifically, assuming that

the generator will receive a fixed “baseline” strike price K̂i (USD/MWh) during its entire

lifetime, then the NPV corresponding to 1 MW of installed capacity at stage i is computed

as follows:

NPVi =
LP∑
l=1

rlθ K̂i +

LT,i∑
l=1

rlθ Ti − CInv
i . (5.1)

In (5.1), r ∈ (0, 1] captures the investor’s desired return on investment (internal rate

of return; IRR), LP (years) is the expected lifetime of the renewable project, and Ti
(USD/MWh) is the production tax credit for the renewable project in place at year i,

that is, when the contract is signed, and effective for a predetermined number of years

LT,i. (Currently in the U.S., for example, only renewable projects which start construction

before 2020 are eligible for this credit, and the duration of the support is 10 years after

the date the facility is in service; DOE, 2016.) The parameter θ is the annual capacity

factor for the project representing the average number of hours of operations in a year. In

case of wind and solar power, for a given technology (e.g., a wind turbine type and size), θ

mainly depends on the geographical location of the generator (Wiser and Bolinger, 2017).

Since our analysis in based on a region served by a single electricity market, for example

PJM, we can consider θ to be a fixed parameter computed as the average capacity factor

for that region. Finally, we define CInv
i (USD) to be the investment cost for acquiring 1

MW of energy generation capacity at stage i. This cost includes material, installation,

operations and administrative costs over the project lifetime. Following NREL (2010),

we use a functional form for CInv
i that decreases over time by a fixed percentage ξ; in

other words, it evolves according to a learning model CInv
i = CInv

0 (1 − ξ)i, where CInv
0

is the investment cost at stage 0. Other model choices for CInv
i include, for instance,
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exponential learning curve models such as CInv
i = CInv

0 (Mi/M0)−ξ where M0 and Mi

denote, respectively, the current and the forecasted stage i installed capacity of a given

generation technology (Adler and Clark, 1991).

We now modify (5.1) by incorporating the PPA contract length in the strike price model.

In particular, we define KNPV
i,m := K̂i ·K+

m, where the parameter K+
m ≥ 1 is a risk factor

of the contract duration m, and KNPV
i,m is the implied contract-dependent strike price. We

assume K+
m = 1 if m = LP (that is, the PPA finances the project for its entire lifetime),

and increases as the contract lengthm decreases to represent the dominant risk a generator

incurs when entering into a contract with shorter duration, which results in an uncertain

cash flow for a number of operating years. Substituting K̂i = KNPV
i,m /K+

m in equation (5.1),

and denoting r′ :=
∑LP

l=1 r
l and r′′i :=

∑LT,i

l=1 rl, the condition NPVi,m = 0 (we introduce

the dependency of the NPV from m) is solved for KNPV
i,m so that the break-even would

determine a floor on the strike price from a generator perspective:

r′θ (KNPV
i,m /K+

m) + r′′i θ Ti − CInv
i = 0 ⇐⇒ KNPV

i,m =

[
CInv
i

r′θ
− r′′i
r′

Ti

]
K+
m.

To summarize, in line with the SAM tool we specify a minimum target IRR r required

for the project, and calculate the price KNPV
i,m as a result, keeping into account the main

cash flow components (SAM handles a more detailed representation of the project costs

CInv
i ) and the contract duration.

Then, we define a second term, Ki,m (USD/MWh), representing the average ex-

pected power price over the contract duration and is computed as Ki,m :=(∑m
l=1 γ

l E
[
Pi+l

∣∣Pi] ) / (∑Lm

l=1 γ
l
)
, where Pi (USD/MWh) is the power price at stage

i and γ ∈ (0, 1] is the per-stage discount factor corresponding to the risk-free interest

rate. Developers consider the average wholesale market price when pricing PPAs (Wiser

and Bolinger, 2017). Therefore, it is expected that the cost of PPAs will not fall signifi-

cantly below the expected power price in the future, which motivates the use of this term

as a lower bound on the strike price. We thus define the effective strike price Ki,m of a

PPA of length equal to m years signed at the beginning of stage i to be the maximum

between the two terms, Ki,m := max
{
KNPV
i,m , Ki,m

}
.

5.2.2 Stochastic dynamic program

We start by formulating the model as a Markov decision process (MDP), and then we

reformulate it as an SDP. At each stage of the decision horizon i ∈ I, the company can

decide whether to enter into new PPAs of different length and size. We assume that a
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renewable power target α ∈ (0, 1], expressed as a the fixed percentage of the (future)

power demand, must be reached within IR stages and must be kept at least at the same

percentage α afterwards, until the end of the problem horizon. The horizon is thus

divided into two terms: a reach period IR = {0, . . . , IR−1} where the renewable target

α does not have to be fulfilled (but PPA contracts can be signed), and a sustain period

IS = {IR, . . . , I − 1} where the target must be fulfilled, hence I = IR ∪ IS. There is a

terminal stage I where PPAs cannot be entered.

We consider a set of PPAs, where each contract is identified by its length m ∈ N (number

of stages). We call the set of lengths M, and the length of the longest contract M =

max{m ∈ M}. We assume the PPAs to have a one-period lead time, meaning that a

PPA m signed at stage i will deliver power from stages i + 1 to i + m. The lead time is

introduced in the model to reflect the installation time of a renewable project once the

PPA is signed. At each stage i ∈ I, the firm can enter into new PPAs from the setM, and

can decide on the contract size. Thus, an action corresponds to a continuous-valued vector

zi = {zi,m,m ∈ M}, where zi,m is the size in megawatt (MW) of the PPA of length m

signed at stage i. PPA contracting involves complex administrative and legal processes so

that only PPAs above a certain size are typically signed. For example, in the period 2010

to 2016 Google entered into 20 PPAs with average and minimum capacity, respectively,

equal to 130 MW and 26 MW (Google, 2017). Therefore, we impose a lower bound on

the project capacity zmin (MW) to avoid entering into very small contracts which are not

found in reality. The feasible action set at each stage is thus given by the non-convex set

Z =
(
{0} ∪ [zmin,+∞)

)|M|
, meaning that the decision regarding each individual contract

m must either be zi,m = 0 (the contract is not entered) or has to satisfy the condition:

zi,m ≥ zmin.

The MDP state at stage i ∈ I ∪ {I} is described by the pair (xi, wi) ∈ Xi × Wi. The

endogenous (controllable) state Xi characterizes all possible PPA portfolio configurations

at the beginning of stage i, that is, the capacity (MW) of each owned PPA m ∈ M for

each of the remaining stages of delivery l ∈ {0, . . . ,m− 1}. The element xi of this space

is naturally written as xi = {xi,m,l} ∈ R|M|
∑
{m∈M}

+ . We notice, however, that a smaller

space is actually sufficient to convey all information needed to model the portfolio from i

onward. In fact, we can use the contract pipeline xi = {xi,l, l ∈ {0, . . . ,M − 1}} ∈ RM
+ ,

where xi,l is the summed capacity of the owned PPAs with delivery in exactly l stages.

This state space reduction is possible by noting that the total cost of a PPA, i.e. the cost

of all future delivery periods, can be accounted for at the stage i in which the PPA is

ordered because the strike price is fixed and hence this cost is known at i. In this way,

we do not need to keep track of individual PPA quantities (and their strike price) but

only of the inventory pipeline. The exogenous (information) state wi ∈ Wi is given by

the stochastic factors wi = {wi,j, j ∈ J } driving the evolution of the uncertainties and
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affecting the cash flows. We assume that the factors wi evolve in a Markovian manner

and that the sources of uncertainty represented by power price Pi (USD/MWh), REC

price Ri (USD/MWh), and electricity demand Di (MWh/year), are functions of wi but

we omit this explicit dependence in the rest of the paper. Specifically, in our numerical

study we use the stochastic models of the uncertainty discussed in Section 5.5.2.

The stage 0 state is known and is denoted by (x0, w0). At stage i ∈ I and state (xi, wi) ∈
Xi ×Wi, the execution of a decision zi ∈ Z results in an immediate cost ci(xi, wi, zi) ∈ R
and a transition to a stage i + 1 state xi+1 = f(xi, zi) in set Xi+1. Each state (xI , wI) in

the terminal-stage state space XI ×WI is associated with a terminal cost cI(xI , wI) ∈ R.

The cost function at stage i includes the investment cost of the newly purchased PPAs

as well as the spot power and RECs needed to supply possible residual demand at stage

i. Specifically, if a PPA of size zi,m is signed at strike price Ki,m, then the company

will receive θ zi,m MWh/year of power from the generator at fixed price Ki,m for the

entire contract duration, where θ (hours/year) is the annual capacity factor (see Section

5.2.1 for details). The PPA size in MW is converted through θ into the annual power

output in MWh/year that is actually produced. Consequently, the fixed value θ Ki,m zi,m
(USD/year) is the per-stage power cost before discounting associated with this contract.

The situation can be more complex as some companies owning PPAs buy power at fixed

price Ki,m from the generator but then sell this power back to the wholesale market

and buy it again from a utility (Google, 2016). This process–buy twice and sell once–

is necessary to ensure a reliable power supply which is not affected by the stochastic

production from the renewable project (for instance, the flat amount of power needed to

run a data center 24/7 cannot be supplied directly from a wind farm). The wholesale

and utility prices are not always correlated, thus, the exposure to the market price is

not entirely eliminated by PPAs. However, large corporations and utilities have recently

entered into agreements where the utility price is set to match the wholesale market price

(Amazon, 2016). Following this trend, we assume that a PPA comprehensively results in

a flat cost based on the strike price Ki,m. The cost function is so calculated with:

ci(xi, wi, zi) =
∑
m∈M

m∑
l=1

γl θ Ki,m zi,m +

Pi ui + Pi vi if i ∈ IR;

(Pi +Ri)ui + Pi vi if i ∈ IS,
(5.2a)

cI(xI , wI) = (PI +RI)uI + PI vI . (5.2b)

The first part of (5.2a) is the PPAs investment cost, ui := max{αDi − θ xi,0, 0} is the

residual power needed to fulfill the renewable target αDi, which has to be supplied with

RECs during IS, and vi := max{Di − θ xi,0 − ui, 0} is the residual power needed to meet

the total demand Di. Due to the presence of the electricity spot market and the RECs

market, the company always meets 100% of both its power demand and renewable target.
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The terminal cost (5.2b) is analogous to (5.2a) but no PPAs are entered at I. Notice that

the cost (5.2) depends not only on the power and RECs prices but also on the demand

through ui and vi. When an action zi ∈ Z is executed at state xi ∈ Xi, the l-th pipeline

element is updated according to

xi+1,l = fi(xi, zi)l =

xi,l+1 +
∑

m>l zi,m if l ∈ {0, . . . ,M − 2};
zi,M if l = M − 1.

(5.3)

In Figure 5.2, we provide an illustration of states, actions, and state transitions. Figure

5.2(a) shows a PPA pipeline xi at stage i. The first element of this pipeline represents

the total owned PPAs that will deliver power at stage i (15 MW). As the contracts expire

over time, the pipeline elements becomes smaller. In Figure 5.2(b) a decision is made to

enter into three PPAs of duration 5, 10, and 15 years with size represented by the height

of the bars. Figure 5.2(c) shows the total power delivery profile resulting from the stage

i PPAs purchase, and accounts for the lead time of one period. Finally, the new xi+1

pipeline is given by adding the stage i purchases to the pipeline xi shifted one year ahead,

as shown in Figure 5.2(d).

(a) Current stage i state xi (b) PPA investment decision at state i

(c) Power delivery profile from PPAs entered at
stage i

(d) New state xi+1

Figure 5.2: Example of PPA inventory pipeline, PPA investment decision, and inventory update.

Making decisions in such a setting requires a policy π, that is, a collection of decision

rules mapping states to actions. At a given stage i, a decision rule Aπi associates the
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state (xi, wi) ∈ Xi ×Wi to a feasible action zi ∈ Z; the policy π is then the collection

{Aπi , i ∈ I}. We denote by Π the set of all feasible policies. An optimal policy belongs to

Π and minimizes the expected cumulative costs from applying this policy over the finite

problem horizon. More formally, this policy solves the MDP:

min
π∈Π

E

[∑
i∈I

γici(x
π
i , wi, A

π
i (xπi , wi)) + γIcI(x

π
I , wI)

∣∣∣∣∣ (x0, w0)

]
, (5.4)

where xπi is the endogenous state reached in stage i when following the policy π. It is

well known that in theory the optimal policy of (5.4) could be obtained with stochastic

dynamic programming, that is, by introducing a value function Vi(·, ·) and solving the

Bellman equations:

VI(xI , wI) = cI(xI , wI), ∀(xI , wI) ∈ XI ×WI , (5.5a)

Vi(xi, wi) = min
zi∈Z

{
ci(xi, wi, zi) + γE

[
Vi+1 (fi(xi, zi), wi+1)

∣∣wi]},
∀(i, xi, wi) ∈ I × Xi ×Wi. (5.5b)

Equation (5.5a) specifies the terminal cost. Equation (5.5b) is applied recursively from

stage i = I − 1 backward to i = 0, and for each state (xi, wi) ∈ Xi ×Wi determines the

best feasible action, that is, the action zi ∈ Z minimizing the sum of the immediate cost

resulting from applying this action and the discounted expected utility from transitioning

to the new state xi+1 = fi(xi, zi).

The SDP (5.5) is intractable as it suffers from well-known curses of dimensionality (Bert-

sekas, 2011; Powell, 2011). In particular, our model has endogenous and exogenous com-

ponents of the state which are both high dimensional: The endogenous state Xi is a

vector of M continuous variables constituting the PPA pipeline (e.g., 25 variables in our

instances), and the exogenous state Wi is composed by the stochastic factors driving

multiple sources of uncertainty including prices and demand. In our study we consider a

three-dimensional continuous exogenous stateWi (see Section 5.5.2 for details) but in gen-

eral higher-dimensional price models such as term structure models are also encountered

in similar applications.

Furthermore, because of the presence of a minimum PPA size requirement, the value

function our SDP is not convex in the endogenous state xi which makes it harder to

determine a good value function approximation. We show that the value function is

non-convex using a counter-example in Appendix 5.7.1.
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5.3 Dual reoptimization heuristic and bounds

In this section we present methods to obtain lower and upper bounds on the exact solution

of SDP (5.5). In Section 5.3.1, we introduce the information relaxation and duality

framework that is commonly used to compute dual bounds. In Section 5.3.2, we present a

reoptimization heuristic that extracts non-anticipative decision rules from sample action

distributions.

5.3.1 Information relaxation and duality

The information relaxation and duality framework (Brown et al., 2010) consists of relaxing

the non-anticipativity constraints of SDP (5.5) and penalizing the knowledge of future

information at stage i ∈ I using a real-valued penalty function qi
(
xi+1, wi

)
, where wi :=

(wi, wi+1, . . . , wI). In a minimization problem, a penalty function is said to be dual-

feasible if it satisfies E[qi
(
xi+1, wi

)∣∣wi] ≥ 0. Using such function, one can estimate a dual

bound by generating H Monte Carlo samples of uncertainty {whi , (i, h) ∈ I ∪ {I} × H}
and solving the following deterministic dynamic program on h:

V IR
I,h(xI) = cI(xI , w

h
I ), ∀xI ∈ XI , (5.6a)

V IR
i,h (xi) = min

zi∈Z

{
ci(xi, w

h
i , zi)− qi

(
fi(xi, zi), w

h
i

)
+ γV IR

i+1,h

(
fi(xi, zi)

)}
, ∀(i, xi) ∈ I × Xi. (5.6b)

The sample average of the stage 0 values
∑

h∈H V
IR

0,h(x0)/H gives a lower bound estimate

of the optimal policy value. In our problem, given the high-dimensional endogenous state

space, instead of the dynamic program (5.6) we solve the math programming formulation

(5.7). (We report a compact/general formulation here and relegate an extended model to

Appendix 5.7.2.)

V IR
0,h(x0) = min

xi,zi

∑
i∈I

γi
[
ci
(
xi, w

h
i , zi

)
− qi

(
xi+1, w

h
i

)]
+ γIcI(xI , w

h
I ) (5.7a)

s.t.: xi = x0, i = 0 (5.7b)

xi+1 = fi(xi, zi), ∀ i ∈ I (5.7c)

var: xi ∈ Xi, ∀ i ∈ I ∪ {I} (5.7d)

zi ∈ Z, ∀ i ∈ I. (5.7e)

The decision variables in this model are the endogenous states and actions for stages from

0 to I. The objective function (5.7a) is the discounted sum of costs over these stages with
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known future uncertainty and correction penalty terms qi. Constraints (5.7b) initialize

the stage 0 state to the current state, (5.7c) enforce feasibility of the state transitions,

and (5.7d)–(5.7e) restrict the decision variables to their respective feasible domains. In

our power procurement case, (5.7) corresponds to a mixed-integer program where binary

variables are necessary to model the non-convex action set Z.

The next step is defining a dual penalty that can be used in (5.6)/(5.7). If the penalty

is set to zero, i.e. qi(·, ·) ≡ 0, then the model assumes perfect information of the future

uncertainty but this generally produces loose lower bounds. It is known (Brown et al.,

2010) that an ideal penalty can be defined for xi+1 ∈ Xi+1 using the exact value function

Vi(·, ·) of (5.5) as:

qi
(
xi+1, wi

)
:= γ

{
Vi+1

(
xi+1, wi+1

)
− E

[
Vi+1 (xi+1, wi+1)

∣∣wi]}. (5.8)

Obviously, the exact value function Vi(·, ·) is not known in reality. Nevertheless, if we are

given a VFA V̂i+1(·, ·), i ∈ I ∪ {I}, then a dual-feasible penalty function (Brown et al.,

2010) can be defined for xi+1 ∈ Xi+1 as:

qi
(
xi+1, w

h
i

)
:= γ

{
V̂i+1

(
xi+1, wi+1

)
− E

[
V̂i+1 (xi+1, wi+1)

∣∣wi]}. (5.9)

Such VFA-based penalty is common and has been successfully used in previous works

to obtain dual bounds (Brown et al., 2010; Brown and Smith, 2011; Nadarajah et al.,

2017). However, as discussed in Section 5.1, obtaining a VFA is hard for our problem. To

overcome this issue, we instead use a linear dual penalty function at stage i ∈ I of the

form:

qi(zi, wi) :=
∑
m∈M

zi,m

m∑
l=1

∑
j∈J

γlθ
(
wi+l,j − E[wi+l,j|wi]

)
ψi,j, (5.10)

where {ψi,j, i ∈ I, j ∈ J } are stage- and factor-dependent weights. This penalty is

trivially dual-feasible since each inner term wi+l,j − E[wi+l,j|wi] has null expectation.

Linear dual penalties on high-dimensional states have been successfully used in Brown

and Smith (2014) and Nadarajah and Secomandi (2018). In our implementation, based

on experimentation we select simple weights {ψi,j, i ∈ I, j ∈ J } equal to 1 for power and

0 for RECs and demand for all stages. Future work could determine such weights in a

more principled two-step process which first uses an initial set of simple weights but then

perform a linear regression over the policy values obtained from sample paths to refine

them. In the following, we show that the discussed information relaxations and duality

framework can be leveraged to determine non-anticipative policies.
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5.3.2 Dual reoptimization heuristic

Assume a decision has to be made at stage i ∈ I and state (xi, wi) ∈ Xi ×Wi, and that

the exact value functions Vj(·, ·) for j ≥ i are known. Proposition 5.1 states that if we

choose any sample path starting at wi and solve the dual model with ideal penalty, then

the resulting decision is optimal regardless of which sample path is chosen.

Proposition 5.1 (Ideal Penalty). Given (i, xi) ∈ I × Xi and any information state

sample path conditioned on wi: wi = {wj, j ∈ I ∪ {I}, j ≥ I}, if the ideal penalty (5.8)

is used in the dual model (5.6), then it holds that:

V IR
j (xj) = Vj(xj, wj), ∀j ∈ I ∪ {I}, j ≥ i, ∀xj ×Xj, (5.11)

and the stage i decision z∗i = arg min
zi∈Z

{
ci(xi, wi, zi)− qi

(
fi(xi, zi), wi

)
+ γV IR

i+1

(
f(xi, zi)

)}
is optimal at state (xi, wi).

Proof. Equation (5.11) trivially holds at stage I, in fact: V IR
I (xI) = cI(xI , wI) =

VI(xI , wI) for each xI ∈ XI . By backward induction, we assume (5.11) is true for j + 1

and prove it for j. Substituting the penalty (5.8) into equation (5.6) for stage i gives:

V IR
j (xj) = min

zj∈Z

{
cj(xj, wj, zj)− γVj+1 (f(xj, zj), wj+1) + γE

[
Vj+1

(
f(xj, zj), wj+1

)∣∣wj]
+ γV IR

j+1 (f(xj, zj))
}
, ∀xj ∈ Xj. (5.12a)

= min
zj∈Z

{
cj(xj, wj, zj) + γE

[
Vj+1

(
f(xj, zj), wj+1

)∣∣wj]}, ∀xj ∈ Xj. (5.12b)

= Vj(xj, wj), ∀xj ∈ Xj, (5.12c)

where (5.12b) follows from the induction hypothesis, and (5.12c) from (5.5b). The relation

(5.11) thus holds at the generic stage j ∈ I ∪{I}, j ≥ i for the principle of mathematical

induction. The optimality of the action is immediate from (5.11).

Since the exact value function is unknown, the result from Proposition 5.1 is not directly

applicable. Therefore, similarly to Proposition 5.1, we show in Proposition 5.2 that if

we have a VFA which is uniformly close to exact value function, then the value function

of the dual model is close to the optimal value function. As a consequence, decisions

made along any sample path of the uncertainty are near optimal regardless of the selected

sample path.
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Proposition 5.2 (VFA-Based Penalty). Consider a stage i ∈ I and a VFA V̂[·](·, ·)
such that∣∣Vj(xj, wj)− V̂j(xj, wj)∣∣ ≤ ε, ∀j ∈ I ∪ {I}, j ≥ i, ∀(xj, wj) ∈ ×Xj ×Wj. (5.13)

Given any information state sample path conditioned on wi: wi = {wj, j ∈ I∪{I}, j ≥ I},
if the VFA-based penalty (5.9) is used in the dual model (5.6), then it holds that:∣∣V IR

j (xj)− Vj(xj, wj)
∣∣ ≤ 2(I − j)ε, ∀j ∈ I ∪ {I}, j ≥ i, ∀xj ×Xj. (5.14)

Proof. Equation (5.14) trivially holds at stage I as both values equal the terminal cost

function. By backward induction, we assume (5.14) is true for stage j + 1 and prove

it for j. Consider a state xj ∈ Xj, an action zj ∈ Z, and the resulting j + 1 state

xj+1 = f(xj, zj). The difference in absolute value of the terms inside the optimization

problems determining the value functions in (5.14) for zj is:∣∣∣cj(xj, wj, zj)− γV̂j+1

(
xj+1, wj+1

)
+ γE

[
V̂j+1 (xj+1, wj+1)

∣∣wj]
+ γV IR

j+1

(
xj+1

)
− cj

(
xj, wj, zj

)
− γE

[
Vj+1 (xj+1, wj+1)

∣∣wj] ∣∣∣
= γ

∣∣∣V IR
j+1

(
xj+1

)
− V̂j+1

(
xj+1, wj+1

)
+ E

[
V̂j+1 (xj+1, wj+1)− Vj+1 (xj+1, wj+1)

∣∣wj] ∣∣∣
(5.15a)

≤ γ
∣∣∣V IR
j+1

(
xj+1

)
− Vj+1

(
xj+1, wj+1

)∣∣∣+ γ
∣∣∣Vj+1

(
xj+1, wj+1

)
− V̂j+1

(
xj+1, wj+1

)∣∣∣
+ γE

[∣∣∣V̂j+1 (xj+1, wj+1)− Vj+1 (xj+1, wj+1)
∣∣∣ ∣∣wj] (5.15b)

≤ 2(I − j − 1)ε+ ε+ ε (5.15c)

= 2(I − j)ε. (5.15d)

where (5.15a) follows from canceling the costs cj out, (5.15b) from adding and removing

the exact value function, and (5.15c) follows from the induction hypothesis, the VFA

assumption (5.13), and from γ ≤ 1. Given that the inequality (5.15) holds for any action

zj ∈ Z, it also holds for the pair of optimal actions determining the value functions in

equation (5.14). The proposition is then true by mathematical induction at all stages

j ∈ I ∪ {I}, j ≥ i.

We introduce a new scheme to obtain non-anticipative policies in a tractable manner for

our SDP with high-dimensional endogenous and exogenous state. This scheme does not

rely on the construction of a VFA; Instead, it is based on the following three steps:

1. Obtain a distribution of actions at a given stage and state by generating sample
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paths of the uncertainty in Monte Carlo and solving a dual model with information

relaxation on each sample path;

2. Extract non-anticipative decision rules from the action distribution;

3. Embed the decision rules in a reoptimization scheme to obtain feasible policies.

Let us consider a decision to be made at stage i and state (xi, wi), and generate a sample

path of the uncertainty in Monte Carlo simulation from i to the end of the planning horizon

I conditioned on the current state wi. Knowing the evolution of the uncertainty along

this sample path does not violate non-anticipativity because this sample path does not

carry true future information. Thus, we can solve the dual program (5.7) with information

relaxations defined on the generated sample path to determine a non-anticipative stage

i action zi. As discussed, this action zi is optimal if the dual program exploits the

ideal penalty (see Proposition 5.1), but such penalty is unknown. Without ideal penalty,

zi is likely to be suboptimal and dependent on the generated sample path. To reduce

the dependency of zi from the chosen sample path and the consequent potential large

decision error, we proceed by repeating this process over N Monte Carlo sample paths

of the uncertainty n ∈ N to obtain an action distribution {zni , n ∈ N}. Then, we can

extract a feasible decision rule from the action distribution, that is, we define a map Ri

as

Ri : Zi(xi)N −→ Zi(xi)
Ri ({zni , n ∈ N}) = zRi , (5.16)

where we use a general stage- and state-dipendent action set Zi(xi) even though in our

case this set is simply Zi(xi) = Z. Finally, we embed this process and the decision rules

Ri in a reoptimization scheme. This means that the described process is performed at

stage i, and the decision zRi corresponding to stage i alone is implemented. Afterwards,

new market information becomes available at stage i + 1, and the stage i + 1 process is

repeated using the updated state information. We denote the resulting feasible policy by

dual reoptimization heuristic (DRH) and detail it in Algorithm 5.

The applicability of the framework outlined in Algorithm 5 transcends our specific ap-

plication and can be used to derive non-anticipative decision rules to MDPs in other

application contexts. Because the algorithm uses inner simulation and solves math pro-

grams on sample paths, the main condition for the algorithm to be applicable is that these

math programs can be solved efficiently, which is usually the case for small to medium-

size linear programs, for instance. Also, the algorithm relies on the definition of a dual

penalty (we could be trivially set to zero).
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Algorithm 5 DRH

Input: Initial state (x0, w0) ∈ X0 ×W0, information state sample path conditioned on
w0: {wi, i ∈ I ∪{I}}, number of inner samples N , dual feasible penalties qi(·, ·) for i ∈ I.

Initialization: Set the initial cost C(x0, w0) = 0.

For each i = 0 to I − 1 do:

1. Generate N information samples conditional on wi: {wnj , (j, n) ∈ {i, . . . , I}×N}.
2. For each n ∈ N do:

(i) Define a stage i dual model (5.7) on inner sample n using initial state xi.

(ii) Solve the model and save the optimal stage i action zn,∗i .

3. Extract a decision rule from the action distribution zRi = Ri ({zn,∗i , n ∈ N}).
4. Implement the stage i decision zRi , which means:

(i) Add the stage i cost C(x0, w0)←− C(x0, w0) + δici
(
xi, wi, z

R
i

)
.

(ii) Compute the new state xi+1 = fi
(
xi, z

R
i

)
.

Add the terminal cost C(x0, w0)←− C(x0, w0) + δIcI (xI , wI).

Output: Cumulative discounted cost C(x0, w0) incurred from stage 0 to I.

In general, different non-anticipative decision rules Ri can be extracted from the sample

action distribution at Step 3 of the algorithm. For example, we can use a naive decision

rule Di which computes the element-wise average decision, that is, zDi = {zDi,m, m ∈M},
where

zDi,m :=
1

N

∑
n∈N

zn,∗i,m, ∀m ∈M. (5.17)

Under ideal dual penalty (5.8), this naive decision rule is optimal as a consequence of

Proposition 5.1. More precisely, with the ideal penalty, the decision zn,∗i made along each

inner sample path n ∈ N at Step 2 of the algorithm is optimal, thus, the action distribu-

tion collapses to a single action which is the optimal action. Without ideal penalty, i.e.

with an actual distribution, the average decision rule defined by (5.17) may be infeasible

in our application due to the minimum PPA quantity zi,m ≥ zmin that each signed con-

tract has to meet. This constraint is satisfied by the dual solutions zn,∗i for n ∈ N but not

necessarily by zDi which averages samples where zn,∗i,m = 0 with samples where zn,∗i,m ≥ zmin.

Therefore, if the average action zDi violates the size constraint for at least one contract

m ∈ M, we compute a “small” perturbation of zDi to satisfy the PPA size requirements.

Specifically, we define a second mapping Li : R|M|+ −→ Z which, given an action zDi ,

returns a feasible action zLi such that the generated power delivery profile is as close as

possible to the original one and the constraints on PPA size are fulfilled (see Figure 5.3

for an example). We define this mapping as the solution to the following optimization



134 Meeting corporate renewable power targets

problem (5.18).

zLi = arg min
Ξ

∑
m∈M

∣∣∣∣ ∑
m′≥m

(
zRi,m′ − zLi,m′

) ∣∣∣∣ (5.18a)

s.t.: ξmz
min ≤ zLi,m ≤ ξmz

max, ∀m ∈M (5.18b)

var: Ξ =
{
zLi,m ≥ 0, ξm ∈ {0, 1}, ∀m ∈M

}
. (5.18c)

The objective function (5.18a) represents the difference in absolute value of the power

delivery profiles and can be easily linearized with standard modeling techniques. The

variables ξm and constraints (5.18b) enforce the minimum contract size. The model (5.18)

is easy to solve as it only contains |M| binary variables and a few continuous variables.

We provide an illustration of this perturbation in Figure 5.3. We eventually select our

non-anticipative and feasible DRH decision rule (5.16) as the composition between average

and perturbation mapping, i.e. Ri := Li ◦Di.

(a) Power delivery profile from average action zDi . (b) Power delivery profile from perturbed action zLi .

Figure 5.3: Action perturbation using contracts from the set M = {5, 10, 15, 20} and zmin = 20
MW.

Estimating the value of the DRH policy relies on generating H Monte Carlo sample paths

of the uncertainty conditioned on w0: {whi , (i, h) ∈ I ∪ {I}×H}, where H = {1, . . . , H}.
For each sample path h ∈ H, decisions are made according to Algorithm 5 with decision

rule from (5.17)–(5.18) which returns the total cost Ch(x0, w0) incurred on sample path

h by executing the DRH policy. An upper bound on the expected power procurement

cost is then given by the sample average
∑

h∈HC
h(x0, w0)/H. Overall, evaluating the

DRH policy can be expensive as it requires–neglecting (5.18)–solving H × I ×N mixed-

integer programs, that is, solving model (5.7) for each evaluation sample path h ∈ H,

stage i ∈ I, and inner sample n ∈ N . Each program in particular has a number of

binary variables to the order of O(I · |M|) that originate from the minimum contract size



5.4 Benchmark policies 135

requirement. To substantially speed up the DRH policy evaluation, we can remove the

PPA size constraints from the dual model (5.7) and the associated binary variables (see

the extended formulation (5.23) in Appendix 5.7.2 for details), and solve a linear program

instead. The perturbation map (5.18) will then ensure that the solution from the linear

programming action distribution fulfills the minimum contract quantity. We do not use

this simplification when using (5.7) to compute a dual bound in order not to decrease

the quality of this bound and because estimating a dual bound only requires solving H

mixed-integer programs.

5.4 Benchmark policies

We test our DRH method against three benchmark strategies: (i) a spot procurement

strategy that ignores PPAs, (ii) a “block” heuristic that uses a single PPA and renews it

at expiration, and (iii) a standard reoptimization heuristic. These strategies are described

in this order in the following.

The simplest power procurement policy satisfying the renewable target consists of procur-

ing the entire power demand Di spot in each stage i ∈ I ∪ {I}, and supplementing with

RECs the percentage corresponding to the target αDi in the sustain period IS ∪ {I}.
This policy has no demand risk but is fully exposed to volatile spot market prices, thus,

it may result in high costs of securing power.

Our second benchmark strategy uses a single PPA of length m and enters into a new

contract every m years, that is, each time a contract expires a new one of the same length

is signed. Precisely, we define this procurement policy such that the first contract is

entered at the last stage of the reach period, IR−1, and delivers power during the first m

stages of the sustain period IS ∪ {I}, contributing so to meeting the renewable target.

The second contract is then ordered one year before the first contract expires to ensure a

continuous delivery of power from PPAs, and so on. Assuming that a new contract has to

be ordered at stage i, the contract quantity zi,m is chosen by solving a deterministic model

that minimizes the total procurement cost defined using a forecast of the uncertainty over

the delivery period of m stages (this model is a small mixed-integer program that we

report in Appendix 5.7.2). If the owned contract is not large enough to meet the target

or satisfy the power demand, then additional power and RECs must be purchased from

the spot market. We call this policy block heuristic (BHm) due to the block structure of

the PPA purchasing.

For illustration, we provide an example of the spot and block procurement strategies
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(a) Spot procurement. (b) Block procurement.

Figure 5.4: Example of spot and 10-year block procurement strategies for a demand sample path.

in Figure 5.4. The green and red lines represent a trajectory for the company’s power

demand and a renewable target of 80% of the demand to reach in 5 years, respectively.

The height of the gray bars in Figures 5.4(b), i.e. the size of the purchased PPA, is chosen

based on expected prices and demand and there is a risk of over procurement (see e.g.

the second contract in the figure).

Our third benchmark policy is a standard reoptimization heuristic (RH) that solves

a deterministic approximation of the MDP (5.4) at each stage. At stage i and state

(xi, wi) ∈ Xi×Wi, the RH policy solves model (5.19) (see Appendix 5.7.2 for an extended

formulation).

min
xj ,zj

∑
j∈I, j≥i

γjcj
(
xj,E[wj|wi], zj

)
+ γIcI

(
xI ,E[wI |wi]

)
(5.19a)

s.t.: xj = xi, j = i (5.19b)

xj+1 = fj(xj, zj), ∀ j ∈ I, j ≥ i (5.19c)

var: xj ∈ Xj, ∀ j ∈ I ∪ {I}, j ≥ i (5.19d)

zj ∈ Z, ∀ j ∈ I, j ≥ i (5.19e)

The objective function (5.19a) represents a deterministic approximation of the future

expected costs in which the uncertainty is replaced by a forecast. The constraints and

decision variables in (5.19b)–(5.19e) are analogous to those discussed in (5.7). To speed

up the RH value estimation process, the same DRH linear programming simplification

scheme could be used here coupled with the perturbation model (5.18) to restore feasibility

when needed. Although both RH and DRH policies are based on a reoptimization scheme,

the respective decision rules are defined using different models as illustrated in Figure 5.5

and are conceptually very different.



5.5 Numerical study 137

(a) RH. (b) DRH.

Figure 5.5: RH and DRH decision rules: The RH decision is based on a forecast of the uncer-
tainty while the DRH decision on an action distribution over Monte Carlo sample paths of the
uncertainty.

5.5 Numerical study

In this section, we numerically assess the performance of the dual bounds and procure-

ment strategies discussed in Sections 5.3–5.4. In Section 5.5.1, we define the reference

PPA instance used in the numerical analysis. In Section 5.5.2, we introduce the stochas-

tic processes used to describe the evolution of the market factors and their calibration.

In Section 5.5.3, we summarize the methods that we test and discuss the computational

setting. In Section 5.5.4, we present and discuss the numerical results, including a sensi-

tivity analysis of the performance of the methods with respect to changes in market and

instance parameters.

5.5.1 PPA instances

In Table 5.2, we define our reference PPA instance. The table contains parameters of the

strike price model in Section 5.2.1 and of the SDP model in Section 5.2.2. The production

tax credit parameters are taken from DOE (2016). In particular, we use Ti = 0 USD/MWh

for i ≥ 5, that is, the tax credit is only granted to those PPAs that are ordered within

the first 5 years of the horizon. The hours of θ correspond to a capacity factor of 35%

which is representative of the average capacity factor from wind farms in the U.S. (EIA,

2018) and common in the wind energy investment literature (Boomsma et al., 2012). The

project cost CInv
0 is representative of new wind projects in the U.S. (Wiser and Bolinger,

2017), and the learning rate value ξ is taken from NREL (2010). The set M and the

minimum quantity zmin are chosen by looking at the PPA portfolio of Google (Google,
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Table 5.2: Parameters defining the reference PPA instance.

Name Value Unit Name Value Unit

LT,i 10 years I 40 years
Ti 23 USD/MWh IR 5 years
LP 30 years α 90% -
θ 3066 hours/year M {5, 10, 15, 20, 25} years
CInv

0 1.7 ml.USD/MW zmin 20 MW
ξ 1% - γ 0.97 -
K5

+ 1.2 - r 0.94 -

2017). We use a maximum risk factor Km
+ = 1.2 for m = 5, i.e. a 20% premium for the

5-year PPAs, which decreases linearly to 1 as m is increased. We use γ corresponding

a to risk-free interest rate of approximately 3%, which equals the 10-year U.S. treasury

rate in May 2018 (Bloomberg, 2018). We choose the IRR to be r = 0.94 corresponding

to an investor return on investment which is approximately twice as large as the risk-free

interest rate.

Starting from this reference instance, in our numerical experiments in Section 5.5.4 we

define an extended data set where we vary some of this parameters to assess the robustness

our the methods and the resulting effect on the procurement strategies.

5.5.2 Model of market dynamics

In this section we present the stochastic processes used to model the three sources of

uncertainty in our procurement model: Power prices, REC prices, and company’s power

demand. We also discuss the calibration of these models and report the parameter esti-

mates.

The evolution of electricity prices has been studied in the field of financial engineering

using different types of stochastic processes. These models often capture features such

as seasonality (Lucia and Schwartz, 2002), mean-reverting behavior and long-term trends

(Schwartz and Smith, 2000 and references therein), and jumps (Weron, 2014; Weron,

2007; Cartea and Figueroa, 2005; Seifert and Uhrig-Homburg, 2007; Escribano et al.,

2011). To obtain a power price model that captures the main features of spot electricity

prices, we construct a mean-reverting stochastic process with jumps and seasonality. We

use a continuous-time process for the power price {Pt, t ∈ R+}, and then consider in our

decision model discrete-time values {Pi, i ∈ I ∪ {I}}, which are the values taken by this

process at the beginning of stages i ∈ I ∪{I}} (analogously we do the same for the other
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uncertainties). The power price model is written as:



ln(Pt) = χt + g(t)

dχt = (νP −KP χt) dt+ σP dWt + J(µJ , σJ) dΠ(λ)

g(t) = φ0 +
12∑
k=1

φkP̂
k
t .

(5.20a)

(5.20b)

(5.20c)

Equation (5.20a) describes the log power price as the sum of a stochastic component χt and

a deterministic component g(t). In the stochastic component of the process (5.20b), KP
is the speed of mean reversion, νP models the drift, σP is the volatility, and Wt is a stan-

dard Brownian motion. We capture spikes in monthly prices by a jump diffusion model

in which the jump size follows a normal distribution J(µJ , σJ) and the jump frequency a

Poisson distribution Π(λ) (Cartea and Figueroa, 2005). The deterministic function g(t)

in (5.20c) models the monthly price seasonality by using a constant φk for each month

k, and binary values P̂ k
t equal to one if time t falls in month k and zero otherwise. We

calibrated the parameters of model (5.20) using historical monthly power price data from

the PJM market in the interval January 2010–August 2017. Analyzing power prices, we

found that the jump frequency and intensity are small when considering the monthly

prices. We thus tested the number of jumps in the monthly power prices using the algo-

rithm presented in Weron (2014, p. 1047), and found the jump diffusion parameters to be

not significant. Therefore, we eventually removed jumps from the model and only focused

on a mean-reverting process with seasonality. We first estimated the seasonality func-

tion g(t) directly from the data using linear regression, resulting in coefficients {φk, k =

0 . . . , 12} = {0.258, 0.163, 0.078,−0.026, 0.003, 0.039, 0.174, 0.013, 0.009,−0.037,−0.038,

0.000, 3.519}. Then, we calibrated the mean reverting coefficients using a maximum like-

lihood estimation, which is common and resulted in KP = 0.295, σP = 0.178 (both with

a p-value below 0.001), and νP = 0. We use the initial point of the process P0 = 31.5

USD/MWh which is the average price observed in 2017. When plotting the scenarios, we

noticed that the mean reversion effect was too strong and so we decreased KP to 0.04 for

our numerical study.

The dynamics of REC prices has been less studied in the literature. Renewable portfolio

standards (RPS) represent one of the prominent support programs for renewable energy

sources. Under RPS, the regulators require producers, distributors, and consumers to

purchase certificates from the REC market. The price of these certificates is stochastic

but is bounded from below by zero and from above by what is called the alternative

compliance payment (ACP), which is the penalty that the regulator imposes if the RPS is

not met. To forecast the evolution of REC prices consistently with these bounds, following

Zeng et al. (2015) we (i) use a Jacobi diffusion process to generate numbers between zero
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and one, and (ii) obtain REC prices as the product between the output of this stochastic

process and the ACP threshold. The stochastic process is defined by:{
drt = (νR −KR rt)dt+ σR

√
rt(1− rt) dWt,

Rt = rtR.

(5.21a)

(5.21b)

In the Jacobi diffusion equation (5.21a), νR and KR are the mean-reverting parameters,

σR is the volatility, and Wt is a standard Brownian motion. The process (5.21a) generates

values rt ∈ [0, 1], which are then scaled in the second equation (5.21b) by the ACP value

R to produce the REC price Rt ∈ [0, R]. There are different RECs markets, in which

the average price can vary from a few U.S. dollars to more than two hundred in the case

of expensive solar RECs. Thus we chose an ACP upper bound of R = 60 USD/MWh

that is more representative of wind RECs. We then estimated the parameters of the

REC price model (5.21a) using monthly data of New Jersey REC prices between May

2015 and December 2017, and used an adaptation of the maximum likelihood estimation

method for Jacobi diffusion processes from Gouriéroux and Valéry (2004). We obtained

the parameter estimates KR = 0.448, νR = 0.080, and σR = 0.109 (p-values are below

0.001). We use the average price in our time series R0 = 17.5 USD/MWh as initial

value of the process. Using this model, however, all the generated sample paths showed

a downward slope, so we adjusted the parameters to νR = 0.03, and σR = 0.10 to obtain

more realistic scenarios presenting both downward and upward slope.

The electricity demand of a company is uncertain due to various factors including technol-

ogy change, company expansion programs, energy efficiency programs, and environmental

conditions that can cause potentially large shifts in the demand. We chose to model power

demand uncertainty using a geometric Brownian motion because this process is often used

for modeling commodity demand in procurement problems (Heath and Jackson, 1994;

Hausman, 1969; Berling and Rosling, 2005; Kouvelis et al., 2013; Secomandi and Kekre,

2014). This process is formulated as:

dDt = µDDt dt+ σDDt dWt, (5.22)

where µD and σD represent, respectively, the drift and volatility of the process, and Wt

is a standard Brownian motion. To estimate the process parameters, we use as reference

the power consumption of a Google data center in the U.S. Considering the total Google

annual power consumption (Google, 2016) and the number of its data centers, we can

say that the consumption of one such facility is approximately 3 · 105 MWh/year. Given

that we consider major power consumers with possibly multiple facilities in a market

zone, we use 6 · 105 MWh/year corresponding to the consumption of two Google data

centers as the initial point D0 of our stochastic process. We then assume that there
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is no drift in data centers power consumption (i.e. µD = 0). In fact, on one hand,

the increasing size and demand for such centers would suggest a positive drift. On the

other hand, improving technology and energy efficiency reduce consumption. Our choice

thus accounts for these two opposite effects assuming that they balance each other out.

Regarding volatility, it is reasonable for industrial levels of natural gas consumption to

use an annual coefficient of variation of 0.05 (Secomandi and Kekre, 2014). Even though

we deal with electricity, the proximity of these commodities provides some support for

the choice of this parameter. This translates in a volatility for the geometric Brownian

process of σD =
√

ln(1 + 0.052) = 0.05.

The calibrated models for power price, RECs, and demand allowed us to generate sample

paths of the uncertainty in Monte Carlo simulation which is needed to estimate the value

of the policies.

5.5.3 Summary of methods and computational setup

In Table 5.3, we summarize the methods previously described to obtain lower and upper

bounds on the optimal policy value and that we use in the numerical study. In the upper

part of the table, we report two information relaxations used for deriving lower bounds.

In the lower part of the table, we display the feasible procurement policies divided into

benchmark heuristics and our new DRH method. We consider two DRH versions that

solve dual programs on the inner sample paths based the same two information relaxations

used to obtain lower bounds.

Table 5.3: Dual bounds and procurement policies

Method Description

Dual
bounds

PI Perfect information

LDP Information relaxation with linear dual penalty

Feasible
policies

Spot Spot purchase of power and RECs
(benchmark)BHm Block heuristic with single PPA m

RH Reoptimization heuristic

DRH-PI Dual reoptimization, PI on inner samples
(new)

DRH-LDP Dual reoptimization, LDP on inner samples

All algorithms were implemented using C++ with Gurobi as solver. For RH and DRH,

we used a cross-sample and cross-inner-sample implementation, that is, at each stage
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i ∈ I we built only one math program from scratch for the first sample path. Then,

for all the evaluation samples h ∈ H and inner samples n ∈ N , we changed the related

coefficients in the objective function and right-hand-side of the constraints, and solved an

updated stage i model. Due to Gurobi’s automatic warm-start, this approach resulted in

a computation several times faster than solving the policy over the entire horizon sample

path by sample path. Based on experimentation, we chose a number of evaluation sample

paths H = 200 because this number was sufficient to obtain a standard error of the lower

and upper bound estimates around 1% of the mean. For the DRH method, we used a

number of inner samples N = 25 since the policy value did not improve (or it did but

very marginally) when this number was increased.

5.5.4 Results

In this section we report the results from our numerical analysis. We start by varying

the required IRR from r = 0.91 to r = 0.96 to test the impact that changes on the

power producers side have on the company procurement strategy. We keep fixed the

other instance parameters as in Table 5.2. In Figure 5.6, we display the optimality gap

for these instances with respect to the best lower bound, which corresponds to LDP in

all instances. Specifically, the LDP bound is much tighter than PI with an improvement

of 6.2% on average. To maintain readability in the graph, we do not display the spot

Figure 5.6: Optimality gap (%LDP) when changing PPA return on investment

strategy because it results in a very high optimality gap of 33% on average. This means

that a portfolio which includes PPAs helps hedging against power and REC price volatility,
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resulting in a significantly lower power procurement cost when a renewable target has to

be met. Overall, the DRH policy achieves the best performance, with the DRH-LDP

variant being 0.7% better than the DRH-PI one on average. It is interesting to see that

DRH also without dual penalties performs well, which is the result of the action averaging

scheme. Despite its simplicity, the BHm heuristic with a single contract m performs well

in some instances but its performance is unstable as it varies significantly across instances.

For example, BH5 is only 0.3% and 1.5% worse, respectively, than DRH-PI and DRH-

LDP when r = 0.96, but it is up to 12.2% worse of these policies for r = 0.91. Similarly,

the performance of BH25 is comparable to DRH (both versions) when r = 0.91, but it is

about 7% worse for r ∈ {0.94, 0.95, 0.96}. The standard RH is overall substantially worse

than DRH with the exception of one instance.

Second, we vary the level of the renewable energy target α from 50% to 100% to test the

impact of different corporate sustainability goals on power procurement. We report the

optimality gap of the methods in Figure 5.7. As before, the LDP bound is substantially

Figure 5.7: Optimality gap (%LDP) when changing the renewable energy target

tighter than PI (9.1% on average) and the spot procurement strategy performs the worst

with an average gap of 28.2%. The standard reoptimization (RH) does not perform well

and the optimality gap is about 10% in all instances. The DRH-LDP achieves the lowest

gap also on these set of instances, which is 3.1% on average. From these results, it appears

harder for the company to obtain policies with low optimality gap when the renewable

target is higher and close to 100%.

Finally, we remove the production tax credit to test the effect of regulatory changes in the

procurement strategies. We show the optimality gap in Table 5.4 and the average power
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portfolio resulting under the DRH-LDP method in Figure 5.8.

Table 5.4: Optimality gap (%LDP) with and without production tax credit

PTC Spot BH5 BH10 BH15 BH20 BH25 RH DRH-PI DRH-LDR

0 USD/MWh 32.88 10.16 10.59 9.42 10.47 10.14 6.00 5.55 4.33
23 USD/MWh 34.27 8.69 8.12 7.18 9.19 10.12 9.83 4.29 3.22

Figure 5.8: Average power portfolio inventory with and without production tax credit

When the PTC is removed, the optimality gap does not change significantly in the meth-

ods, except for RH which improves by about 4% and outperforms the BH methods.

However the effect of the production tax credit is evident on the procurement strategy

from Figure 5.8. In fact, in the presence of a PTC (left side of the figure) the company

enters into PPAs more aggressively in the years in which the PTC is effective (5 years).

Without PTC (right side of the figure), fewer/smaller PPAs are entered in the first 5

years. Yet, some PPAs are signed during the first 5 years in this second case too because

the reach period also corresponds to 5 years. In the long run, the effect of this initial

different purchase reduces and the procurement policies are more similar.

Regarding running times of the methods, evaluating the spot policy on 200 sample paths

took a fraction of a second and the block heuristic less than 5 seconds on average. Evalu-

ating the RH (the linear programming version with perturbation; see Section 5.4) took on

average 1 minute while DRH (both PI and LDP variants) took on average 40–45 minutes.

DRH is obviously computationally more demanding than RH due to the inner sampling

dimension. However, evaluating such policy takes less than one hour which does not seem

problematic for this strategic procurement problem where decision epochs are years. To
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reduce the DRH the running time, one could reoptimize every second year instead of every

year if the solution quality does not decrease. In any case, implementing the policy, that

is, evaluating the single DRH action takes usually less than a second.

5.6 Conclusion

Motivated by the recent global trends in corporate energy procurement, we studied the

problem of companies that committed to satisfy a renewable energy target by a future

date. We formulated a multi-period power procurement model with short and long term

procurement options as an SDP with endogenous and exogenous components of its state

which are both high-dimensional. This model is particularly hard to approach by existing

ADP techniques. Thus, we developed a novel framework (DRH) that uses action distribu-

tions and information relaxations to obtain non-anticipative decision rules, and found it

to outperform standard reoptimization methods and other simpler heuristics on realistic

instances. We currently use simple linear dual penalties in the information relaxations

but further work includes determining the dual penalties in a more principled manner.

The DRH method is broadly applicable beyond our specific power procurement context

as it only requires (i) simulating the evolution of the uncertainty in Monte Carlo, and (ii)

solving deterministic dual math programs on each individual sample path. Consequently,

DRH emerges as a promising approach to tackle high-dimensional SDPs.

5.7 Appendix

5.7.1 Non-convexity of the value function

We show that the value function Vi(·, wi) of the SDP (5.5) is not convex in the state xi by

using a simple counter-example with two periods 0 and 1, in which a PPA can be entered

at stage 0 with delivery at stage 1. We consider a setting where the demand is constant

D0 = D1 = 10 MWh, the power and RECs prices have values P0 = R0 = 10 USD/MWh

and are martingales (i.e. E[P1|P0] = 10 and E[R1|R0] = 10), the strike price is K = 11

USD/MWh, α = 0.8, and zmin = 6 MWh. To ease intuition, we consider the power units

of actions and states in MWh in this example to avoid the conversion from MW to MWh

through θ. Proceeding backward, the terminal value function (stage 1) is trivially convex
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in the state x1 as it is equal to

V1(x1, w1) = P1 max{D1 − x1, 0}+R1 max{αD1 − x1, 0},

which has higher slope P1 +R1 for x1 ∈ [0, αD1], smaller slope P1 for x1 ∈ [αD1, D1], and

is zero if x1 ≥ D1 (this property is always true). Instead, the stage 0 value function is

given by

V0(x0, w0) = min
z0∈Z
{K z + E[P1(D1 − x0 − z0)1{D1>x0+z0}

+R1(αD1 − x0 − z0)1{αD1>x0+z0}|w0]}
= min

z0∈Z
{K z + P0(D0 − x0 − z0)1{D0>x0+z0}

+R0(αD0 − x0 − z0)1{αD0>x0+z0}},

and can be non convex as illustrated in Figure 5.9. In particular, in figure Figure 5.9(a), we

show the value function V1(·, w1) given the realization of the uncertainty P1 = R1 = 10,

and in Figure 5.9(b) we show V0(·, w0). The plateau in the latter function originates

because of a region for x0 where it is optimal to enter into a PPA of size zmin which cause

over-procurement at stage 0.

(a) Value function V1(·, w1) with w1 = (10, 10, 10). (b) Value function V0(·, w0) with w0 = (10, 10, 10).

Figure 5.9: Stage-1 and stage-0 SDP value functions of the endogenous state.

5.7.2 Mathematical programs

In this section, we describe the extended math programming formulations of the opti-

mization models presented in the paper: the information relaxation model with linear
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dual penalty (5.7), the decision rule of the block heuristic, and the decision rule of the

reoptimization heuristic (5.19).

Given the initial inventory x0 ∈ Xi and a sample path of the uncertainty {wi, i ∈ I∪{I}},
the information relaxation model which includes linear dual penalties defined on this

sample path is formulated with the following mixed-integer linear program:

V IR
0,h(x0) = min

Ξ

∑
i∈I

∑
m∈M

m∑
l=1

γi+lθzi,m

[
Ki,m −

∑
j∈J

(wi+l,j − E[wi+l,j|wi])ψi,j
]

+
I∑
i=0

γi
[
(Pi +Ri)ui + Pivi

]
(5.23a)

s.t.: ui + θ xi,0 ≥ αDi, ∀i ∈ IS ∪ {I} (5.23b)

ui + vi + θ xi,0 ≥ Di, ∀i ∈ I ∪ {I} (5.23c)

xi+1,l = xi,l+1 +
∑
m>l

zi,m, ∀i ∈ I, l ∈ {0, . . . ,M − 2} (5.23d)

xi+1,l = zi,m, ∀i ∈ I, l = M − 1, m = M (5.23e)

xi,l = x0,l, i = 0, ∀l ∈ {0, . . . ,M − 1} (5.23f)

ξi,mz
min ≤ zi,m ≤ ξi,mz

max, ∀i ∈ I, m ∈M (5.23g)

var: Ξ =
{
zi,m, ui, vi, xi,l ≥ 0, ξi,m ∈ {0, 1}

}
. (5.23h)

The decision variable zi,m denotes the size of the PPA of length m years entered at stage

i. The variable ui represents the amount of spot power and RECs purchase needed to

meet the renewable target αDi at stage i (if part of the sustain period), while vi models

the additional spot power to meet the company’s demand Di at stage i. Moreover, the

collection of variables xi = {xi,l, l ∈ {0, . . . ,M − 1}} model the stage i PPA pipeline. In

other words, xi,l denotes the total PPAs capacity the firm holds at stage i with delivery

at stage i+ l. The objective function (5.23a) minimizes the total perfect foresight power

procurement cost incurred on the sample path corrected with the linear dual penalty. Due

to the PPAs lead time of one period, the spot cost at stage i is a constant that could

be removed from the objective function of this models and the others in the paper. The

constraints (5.23b)-(5.23c) are used to model the amount of power to be procured spot,

and the constraints (5.23d)-(5.23e) ensure that the pipeline transitions are consistent with

the PPA investment decisions made. The constraints (5.23f) set the initial inventory equal

to the initial stage 0 inventory level x0, and (5.23g) enforces the minimum contract size,

which requires introducing the binary variables ξi,m and a parameter zmax acting as a

“big-M”. Finally, (5.23h) establishes the variables domain.

The block heuristic that uses PPAs of length m, i.e. BHm, enters into a new contract at
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stage i according to the following rule:

zi,m =

z∗ if mod (i+ 1− IR,m) = 0;

0 otherwise,
(5.24)

where z∗ is obtained from solving the deterministic mixed-integer linear program (5.25)

defined at stage i and state (0, wi), and which uses a look-ahead of m periods.

min
Ξ

m∑
l=1

γl
(
θ Ki,mz + E[Pi+l +Ri+l|wi]ui+l + E[Pi+l|wi] vi+l

)
(5.25a)

s.t.: ui+l + θ z ≥ αE[Di+l|wi], ∀l : i+ l ∈ IS ∪ {I} (5.25b)

ui+l + vi+l + θ z ≥ E[Di+l|wi], ∀l : i+ l ∈ I ∪ {I} (5.25c)

ξ zmin ≤ z ≤ ξ zmax (5.25d)

var: Ξ =
{
z, ui+l, vi+l ≥ 0, ξ ∈ {0, 1}

}
. (5.25e)

The decision variable z represents the size of the PPA while ui+l and vi+l denote the

amount of power purchased in the spot market at stage i+ l, respectively, supplemented

with and detached from RECs. The objective function (5.25a) minimizes the power

procurement cost over the delivery period i + 1, . . . , i + m and includes the PPAs cost

(variable z) as well as the spot costs to fulfill the renewable target (variables ui+l) and the

residual power demand (variables vi+l). The constraints (5.25b)-(5.25c) ensure that both

the renewable target and the total electricity demand are satisfied in expectation during

the delivery period, and (5.25d) enforces the minimum contract size. Notice that the use

of a single PPA and the block structure makes the BHm policy simple to implement as the

contract pipeline xi does not need to be stored nor modeled. Moreover, (5.25) contains

only one binary variable and is thus very quick to solve.

Finally, the RH decision model at stage i and state (xi, wi) is formulated as follows.

min
Ξ

∑
j∈I, j≥i

∑
m∈M

m∑
l=1

γj+lθ Kj,mzj,m +
I∑
j=i

γj
(
E[Pj +Rj|wi]uj + E[Pj|wi]vj

)
(5.26a)

s.t.: uj + θ xj,0 ≥ αE[Dj|wi], ∀j ∈ IS ∪ {I}, j ≥ i (5.26b)

uj + vj + θ xj,0 ≥ E[Dj|wi], ∀j ∈ I ∪ {I}, j ≥ i (5.26c)

xj+1,l = xj,l+1 +
∑
m>l

zj,m, ∀j ∈ I, j ≥ i, l ∈ {0, . . . ,M − 2} (5.26d)

xj+1,l = zj,m, ∀j ∈ I, j ≥ i, l = M − 1, m = M (5.26e)

xj,l = xi,l, j = i, ∀l ∈ {0, . . . ,M − 1} (5.26f)

ξj,mz
min ≤ zj,m ≤ ξj,mz

max, ∀j ∈ I, j ≥ i, m ∈M, (5.26g)
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var: Ξ =
{
zj,m, ul, vl, xj,l ≥ 0, ξj,m ∈ {0, 1}

}
(5.26h)

The model (5.26) has essentially the same structure of (5.23) and the decision variables

zj,m, uj, vj, xj,l keep the same interpretation. The main difference with respect to (5.23)

is that the objective function (5.26a) and the constraints (5.26b)–(5.26c) are formulated

using a forecast for the uncertainty instead of the true values on the sample path (the

RH decision rule is in fact non-anticipative), and that there is no dual penalty correction

term.
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Abstract: In electricity markets with a dual-pricing scheme for balancing energy,

controllable production units typically participate in the balancing market as “ac-

tive” actors by offering regulating energy to the system, while renewable stochastic

units are treated as “passive” participants that create imbalances and are subject to

less competitive prices. Against this background, we propose an innovative market

framework whereby the participant in the balancing market is allowed to act as an

active agent (i.e., a provider of regulating energy) in some trading intervals and as

a passive agent (i.e., a user of regulating energy) in some others. To illustrate and

evaluate the proposed market framework, we consider the case of a virtual power

plant (VPP) that trades in a two-settlement electricity market composed of a day-

ahead and a dual-price balancing market. We formulate the optimal market offering
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problem of the VPP as a three-stage stochastic program, where uncertainty is in

the day-ahead electricity prices, balancing prices and the power output from the

renewable units. Computational experiments show that the VPP expected revenues

can increase substantially compared to an active-only or passive-only participation,

and we discuss how the variability of the stochastic sources affects the balancing

market participation choice.

Keywords: Electricity markets · balancing market · virtual power plant · offering

strategy · stochastic programming

6.1 Introduction

Society is moving towards using more renewable energy sources to decrease the depen-

dency on fossil fuels. Governments, seeking to increase the share of renewable energy,

typically support stochastic power sources such as wind and solar power by means of

subsidies. However, with the steep growth and decreasing cost of renewable energy gener-

ation experienced in the recent years, stochastic producers are increasingly required to be

financially responsible for the imbalances created in the real-time. Accordingly, renewable

energy producers access the balancing electricity market as “passive” actors by settling

the deviation from the day-ahead contracted schedule at a less favorable power price.

The imbalance of the system, often caused by forecast errors of power demand and renew-

able generation, is restored by rescheduling the market position of the “active” partici-

pants in the balancing market. Such producers offer to the Transmission System Operator

(TSO) the flexibility to upward or downward adjust their day-ahead contracted schedule,

provided to be remunerated at a more convenient price. However, to qualify as regula-

tors in the balancing market, generators must fulfill specific requirements from the TSO,

which include the ability to always meet the contracted schedule except for unpredictable

unit failures. As a consequence, only conventional generators can currently be qualified

as active balancing market participants. In this context, it is quite straightforward to

distinguish between passive participants (i.e., stochastic producers) that regularly devi-

ate from their contracted schedule, and active participants (i.e., conventional producers)

that can consistently respect their market position and offer additional regulating energy

to the TSO.

Against the current balancing market setup, we propose an innovative and more flexible

framework where the TSO’s requirements needed for the active balancing market partic-
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ipation are loosened. Specifically, our idea is to allow the market participants to actively

sell regulating energy in some trading intervals and passively deviate from their schedule

in others. However, when a market participant commits to sell regulating energy during

a trading interval, it is prevented from generating an imbalance in the same interval.

To illustrate and evaluate the proposed market framework, we analyze the case of a

virtual power plant (VPP), i.e., a cluster of combined generating units, storage systems

and flexible loads that acts as a single participant in the electricity market (Morales et al.,

2013). Under the current market setup, a VPP with both stochastic units (e.g., wind and

solar units) and dispatchable technologies (e.g., conventional generators and batteries) can

hardly fulfill the qualification procedure for being a regulator in the balancing market.

However, such VPP may actually be able to actively provide regulating energy in some

trading intervals. A VPP composed of a PV solar unit and a dispatchable unit, for

instance, can offer regulating energy at night when the output of the stochastic unit is

known with certainty. Differently, during the day it may not be able to internally handle

the PV solar unit fluctuations and will passively deviate from its contracted schedule.

Therefore, a VPP is a natural market participant who could benefit from our proposed

Active/Passive market framework since a more flexible balancing market participation

may translate into higher profits. Nonetheless, this added flexibility leads to a rethinking

of the VPP offering model that we thus examine in this paper.

Indirectly, this new setup can facilitate the development and integration of sustainable

energy through VPPs. Moreover, the TSO may benefit from this innovative market

structure by having more regulating energy available in the real time.

6.1.1 Literature review

The problem of determining the optimal market offer for a stochastic power producer has

been widely studied in the literature. In Bremnes (2004), Pinson et al. (2007) and Bitar

et al. (2012), the optimal quantity to be submitted in the day-ahead market is derived as

a quantile of the probability distribution of the future wind or solar power production. In

Morales et al. (2010), the optimal offering strategy for a wind power producer is solved

using stochastic programming. These models consider the stochastic producer as a passive

actor in the balancing market, i.e., the balancing stage is only used to settle deviations

from the day-ahead contracted schedule.

Similarly, several models have been developed to derive the optimal offering strategy for

a conventional production unit. In Arroyo and Conejo (2000), Arroyo and Conejo (2004),
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and Conejo et al. (2004), the feasible operating region of a thermal unit is formulated using

a mixed-integer linear program (MILP). Other papers combine such operating region with

an electricity market trading problem obtaining different offering strategies (Conejo et al.,

2002; Baillo et al., 2004; Conejo et al., 2010; Maenhoudt and Deconinck, 2014). In contrast

to stochastic units, conventional units are modeled as active participants in the balancing

market, i.e., they access the balancing market to offer regulating energy to the system

operator.

The optimal participation of a VPP in an electricity market has been less investigated.

In Ruiz et al. (2009), a direct load control algorithm is used for managing an aggregate

of controllable loads. Mashhour and Moghaddas-Tafreshi (2011a) and Mashhour and

Moghaddas-Tafreshi (2011b) study the bidding problem of a VPP in a joint market for

energy and reserve. The authors consider a deterministic setting and formulate a mixed-

integer non-linear program solved using a genetic algorithm. In Peik-Herfeh et al. (2013),

a VPP offering strategy is formulated as a unit commitment problem where point esti-

mates are used to model the uncertainty in market prices and power generation. Pandžić

et al. (2013a) proposes a stochastic MILP to derive the optimal self-scheduling of a VPP,

considering a weekly time horizon and including long-term bilateral contracts and tech-

nical constraints of the units. Subsequently, Pandžić et al. (2013b) develop a two-stage

stochastic offering model to maximize the expected profit of a VPP with uncertainty in

electricity prices and power production. Other works, e.g., Kardakos et al. (2016), include

the electricity market clearing process within the optimal offering strategy, resulting in a

hierarchical stochastic optimization model. Finally, we refer to Morales et al. (2013) for

a general VPP modeling approach in which different combinations of generating units,

flexible loads, and storage systems are examined.

6.1.2 Approach and contributions

The VPP offering strategies from the extant literature discussed above model the VPP

as a passive balancing market actor which solely settles the real-time deviations that

cannot be self-balanced by the cluster. In this paper, we propose a novel Active/Passive

balancing market model where agents, and in particular VPPs, can extend their decision

space and offer regulating energy in some trading intervals.

To evaluate the impact of this market setup, we consider a VPP trading in a two-

settlement electricity market composed of a day-ahead and a dual-price balancing market,

and formulate the optimal Active/Passive market offering problem of the VPP as a three-

stage stochastic program. We test the model using 300 scenarios and two VPPs composed
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of a conventional production unit, an electricity storage, and a stochastic production unit

represented by (i) a wind farm or (ii) a PV solar unit. We benchmark the proposed

Active/Passive model against a Passive (i.e., passive-only) and Active (i.e., active-only),

and show that under the former model the expected VPP profit can increase substantially

and up to 8% compared to the other two. We eventually discuss the choice for the VPP

of being active vs. passive participant depending on the uncertainty in market prices and

renewable power production.

6.1.3 Paper structure

The rest of this paper is organized as follows. We start in Section 6.2 by presenting the

electricity market framework, the VPP structure, and characterizing the uncertainty. In

Section 6.3, we formulate the Active/Passive offering strategy as a three-stage stochastic

program. In Section 6.4, we compare this strategy with the Passive and Active strategies

for different VPP configurations. Conclusions are drawn in Section 6.5. We summarize

the nomenclature used in the models in the appendix.

6.2 Market framework and modeling assumptions

6.2.1 Electricity market framework

We consider a two-settlement electricity market composed of a day-ahead and a balancing

market. The day-ahead market is cleared at noon for all 24 hourly trading intervals of

the following day. The accepted day-ahead market offers are settled under a uniform pric-

ing scheme. Subsequently, closer to the real-time operation, a separate balancing market

is cleared for each hourly interval, one hour before operation. At the balancing stage

the active participants submit their offers, in the form of non-decreasing offer curves, for

the provision of regulating energy to the TSO. The accepted offers are priced under a

uniform pricing scheme. Passive participants inform the TSO of their deviations from

the contracted schedule. Such deviations are priced under a dual-price imbalance settle-

ment scheme, i.e., a different price for positive (extra-production) and negative (under-

production) deviations (Morales et al., 2013; Morales et al., 2010).

This balancing market structure (i.e., uniform pricing for settling active offers and dual-

pricing for passive deviations) is widely used across Europe, e.g., in Spain, Portugal, and
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Denmark among other countries (Wang et al., 2015). Our novel Active/Passive market

model thus adapts to one of the major market contexts.

6.2.2 VPP structure

We consider a VPP composed of a stochastic power unit (either wind or solar), a con-

ventional thermal unit, and an electric energy storage. The structure of the VPP is

illustrated in Figure 6.1. The power production of the stochastic unit and of the ther-

Figure 6.1: Illustration of the VPP structure highlighting the energy exchanged with the electric-
ity market platform.

mal unit is denoted by Ek and dk, respectively. The storage unit produces energy when

discharging and consumes energy during the charging phase; the amount of charging and

discharging power is denoted by p
(↑)
k and p

(↓)
k , respectively. The total amount of energy

production (or consumption) of the VPP has to match the amount of energy exchanged

with the electricity market platform. The energy quantity contracted in the day-ahead

market is denoted by qDA
k . We then indicate with qUP

k and qDW
k the upward and downward

adjustments in the balancing market, respectively, which are associated with an active

participation at the balancing stage. Alternatively, the VPP can create a positive q
(+)
k

or negative q
(−)
k deviation in the real-time. Thus, under the Active/Passive participation

model, the “deterministic” energy balance at the hourly interval k between the VPP pro-

duction (or consumption) and the quantity exchanged with the market platform can be



6.2 Market framework and modeling assumptions 161

expressed by

qDA
k + qUP

k − qDW
k + q

(+)
k − q(−)

k = Ek + dk + p
(↓)
k − p

(↑)
k .

The VPP is assumed price-taker in both the day-ahead and the balancing market. Ac-

cordingly, the market prices within its offering strategy are exogenous and uncertain, and

modeled by means of a set of scenarios.

6.2.3 Scenario generation

To derive the offering strategy, the VPP is provided with an input set of scenarios describ-

ing the evolution of uncertain market prices and power production from the wind or PV

power unit. We generate such scenarios starting from probabilistic forecasts. The proba-

bilistic forecasts for the day-ahead and the balancing market prices are obtained through

the fundamental market model proposed in Mazzi et al. (2017), where parametrized sup-

ply and demand curves are used to simulate the market clearing mechanism. Then, by

introducing uncertainty in one or more parameters of the two curves, we obtain proba-

bilistic forecasts of the day-ahead and balancing market prices. For wind and PV power

production we instead use the dataset of probabilistic forecasts, respectively, from Mazzi

et al. (2017) and Pierro et al. (2016).

Probabilistic forecasts describe an estimate of the random variable density function for

each look-ahead time, without any inter-temporal correlation. To include temporal de-

pendencies, starting from the probabilistic forecasts we generate a set of trajectories fol-

lowing the methodology presented in Pinson et al. (2009) and Pinson and Girard (2012).

In brief, series of forecast errors are converted into a multivariate Gaussian random vari-

able, and a unique covariance matrix is used to describe the interdependence structure.

We model this covariance matrix using an exponential covariance function (Pinson and

Girard, 2012) where the exponential parameter controls the correlation among the lead

times. Accordingly, the day-ahead market prices λDA
k are represented by the set of tra-

jectories {λDA
ik : i ∈ I, k ∈ K}. Then, for each day-ahead scenario i, the balancing market

prices λBA
k are modeled using a set J of scenarios {λBA

ijk : i ∈ I, j ∈ J, k ∈ K}. Finally,

the uncertain power production Ek from the stochastic unit is represented by the set of

trajectories {Eωk : ω ∈ W,k ∈ K}.

The number of scenarios needed to accurately represent continuous random variables or

stochastic processes is usually large, leading to intractable stochastic programs. Therefore,

we use the technique of Growe-Kuska et al. (2003) to reduce the number of scenarios while

preserving most of the stochastic information.
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6.3 Optimal offering strategy through multi-stage

stochastic programming

At noon, the VPP submits its day-ahead market offers to the market operator, aiming

to maximize its total expected profit. While determining the optimal day-ahead market

offers, the VPP also takes into account the uncertainty, and endogenously models the

future decisions in the balancing market. This results in a three-stage stochastic pro-

gramming framework that we illustrate in Figure 6.2. The day-ahead quantity offers,

qDA
k , are modeled as first-stage decisions. Then, the up- and down-regulation adjustments

qUP
ik and qDW

ik are chosen after the day-ahead market prices λDA
k realize, and are hence

second-stage decisions. The positive and negative deviations q
(+)
iωk and q

(−)
iωk are third-stage

decisions that have to be made after the disclosure of the uncertain power production Ek.

Finally, the balancing market prices λBA
ijk realize.

Figure 6.2: Representation of the multi-stage stochastic programming setup.

Following the methodology presented in Conejo et al. (2010) and Mazzi et al. (2017), we

make the day-ahead quantities qDA
k scenario i dependent (i.e., qDA

k → qDA
ik ) to build the

non-decreasing offer curves. Despite being built using scenario-dependent price-quantity

offers, the curves adapt to any realization of the uncertainty and are, in fact, scenario-

independent (the non-anticipativity structure of our stochastic program is not violated).

Similarly, the up- and down-regulation adjustments qUP
ik and qDW

ik are made index j de-

pendent (i.e., qUP
ik → qUP

ijk and qDW
ik → qDW

ijk ) to derive the offer curves in the balancing
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market. Finally, the operational variables of the VPP are made dependent on indices i,

j, and ω (e.g., dk → dijωk and p
(↑)
k → p

(↑)
ijωk). To derive its day-ahead market offers, the

VPP solves the following optimization model

max
Ξ

∑
k

ρ̂DA
k + ρ̂Act

k + ρ̂Pas
k − ĉk (6.1a)

s.t. qDA
ik + qUP

ijk − qDW
ijk + q

(+)
iωk − q

(−)
iωk =

Eωk + dijωk + p
(↑)
ijωk − p

(↓)
ijωk, ∀i,∀j,∀ω,∀k

(6.1b)(
ρ̂DA
k , qDA

ik

)
∈ ΠDA, ∀i, ∀k (6.1c)(

ρ̂Act
k , qUP

ijk , q
DW
ijk

)
∈ ΠAct, ∀i,∀j,∀k (6.1d)(

ρ̂Pas
k , q

(+)
ijk , q

(−)
ijk

)
∈ ΠPas, ∀i,∀ω,∀k (6.1e)(

dijωk, p
(↑)
ijωk, p

(↓)
ijωk

)
∈ Ω, ∀i,∀j,∀ω,∀k (6.1f)

ĉk = h({dijωk, ∀i, ∀j,∀ω}) , ∀k (6.1g)(
qUP
ijk , q

DW
ijk , q

(+)
iωk , q

(−)
iωk

)
∈ Γ, ∀i, ∀j,∀ω,∀k (6.1h)

where Ξ =
{
ρ̂DA
k , ρ̂Act

k , ρ̂Pas
k , ĉk, q

DA
ik , q

UP
ijk , q

DW
ijk q

(+)
iωk , q

(−)
iωk , dijωk, p

(↑)
ijωk, p

(↓)
ijωk

}
.

The objective function (6.1a) maximizes the VPP expected revenues considering both the

day-ahead and balancing markets. Constraint (6.1b) imposes the energy balance between

the VPP production (or consumption) and the energy exchanged with the electricity

market. The sets of constraints (6.1c)-(6.1h) are expressed and discussed in detail in the

following.

6.3.1 Linear formulation of ΠDA

The set of constraints (6.1c), denoted by ΠDA, computes the expected profit from the day-

ahead market ρ̂DA
k and includes constraints on the day-ahead offer curve. It is written as

ρ̂DA
k =

∑
i

πDA
i λDA

ik q
DA
ik , ∀k (6.2a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, ∀i′,∀k (6.2b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i,∀i′,∀k (6.2c)

− P (↑) ≤ qDA
ik ≤ D + E + P

(↓)
, ∀i, ∀i′,∀k. (6.2d)
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Constraint (6.2a) yields the expected income of the VPP associated with the day-ahead

market offer curves. Constraints (6.2b) and (6.2c) force the offer curves to be, respectively,

non-decreasing and non-anticipative. Finally, constraints (6.2d) restrict the day-ahead

offer quantities to the VPP capacity.

6.3.2 Linear formulation of ΠAct

The constraints (6.1d), denoted by ΠAct, yield the expected profit ρ̂Act
k from an active

participation in the balancing market, and comprises constraints on the offer curves in

the balancing market. They are formulated as

ρ̂Act
k =

∑
ij

πDA
i πBA

j λBA
ijk

(
qUP
ijk − qDW

ijk

)
, ∀k (6.3a)

qUP
ijk ≥ qUP

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i,∀j,∀j′,∀k (6.3b)

qUP
ijk = qUP

ij′k if λBA
ijk = λBA

ij′k, ∀i, ∀j,∀j′,∀k (6.3c)

qDW
ijk ≤ qDW

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i, ∀j,∀j′, ∀k (6.3d)

qDW
ijk = qDW

ij′k if λBA
ijk = λBA

ij′k, ∀i,∀j,∀j′,∀k (6.3e)

qUP
ijk = 0 if λBA

ijk ≤ λDA
ik , ∀i,∀j,∀k (6.3f)

qDW
ijk = 0 if λBA

ijk ≥ λDA
ik , ∀i, ∀j,∀k (6.3g)

qUP
ijk , q

DW
ijk ≥ 0, ∀i, ∀j,∀k. (6.3h)

Constraint (6.3a) evaluates the expected revenue from the submission of offer curves in

the balancing market as an active participant. Constraints (6.3b) and (6.3c) ensure,

respectively non-decreasing shape and non-anticipativity of the up-regulation offer curve.

Similarly, constraints (6.3d) and (6.3e) do the same for the down-regulation offer curve.

Constraints (6.3f) and (6.3g) restrict the possibility to offer regulating energy to the

scenarios in which it is required. Finally, constraint (6.3h) enforces qUP
ijk and qDW

ijk to be

non-negative variables.

6.3.3 Linear formulation of ΠPas

The constraints (6.1e), denoted by ΠPas, give the expected profit ρ̂Pas
k associated with a

passive participation in the balancing market. They are formulated as

ρ̂Pas
k =

∑
ijω

πDA
i πBA

j πEω

(
λ

(+)
ijk q

(+)
iωk − λ

(−)
ijk q

(−)
iωk

)
, ∀k (6.4a)
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q
(+)
iωk , q

(−)
iωk ≥ 0, ∀i, ∀ω,∀k (6.4b)

where λ
(+)
ijk = min

(
λBA
ijk , λ

DA
ik

)
and λ

(−)
ijk = max

(
λBA
ijk , λ

DA
ik

)
, in accordance with the dual-

price imbalance settlement scheme (Morales et al., 2013; Morales et al., 2010). Constraint

(6.4a) computes the expected income from a passive participation in the balancing stage

and accounts for the imbalances created. Constraint (6.4b) ensures that q
(+)
iωk and q

(−)
iωk are

non-negative variables.

6.3.4 MILP formulation of Ω

The constraints (6.1f), denoted by Ω, establish the feasible operating region of the VPP

and are formulated as

`ijωk = `ijω(k−1) + ηp
(↑)
ijωk − p

(↓)
ijωk, ∀i,∀j,∀ω,∀k (6.5a)

L ≤ `ijωk ≤ L, ∀i, ∀j,∀ω,∀k (6.5b)

0 ≤ p
(↑)
ijωk ≤ P

(↑)
, ∀i, ∀j,∀ω,∀k (6.5c)

0 ≤ p
(↓)
ijωk ≤ P

(↓)
, ∀i, ∀j,∀ω,∀k (6.5d)

uijωkD ≤ dijωk ≤ uijωkD, ∀i, ∀j,∀ω,∀k (6.5e)

dijωk − dijω(k−1) ≤ RUP, ∀i,∀j,∀ω,∀k (6.5f)

dijω(k−1) − dijωk ≤ RDW, ∀i, ∀j,∀ω,∀k (6.5g)

uijωk ∈ {0, 1}, ∀i,∀j,∀ω,∀k. (6.5h)

Constraint (6.5a) represents the energy balance of the storage unit. Constraint (6.5b)

forces the level of energy in the storage `ijωk to lie between its minimum and maximum

limits. Similarly, constraints (6.5c) and (6.5d) do the same for p
(↑)
ijωk and p

(↓)
ijωk, respectively.

Constraint (6.5e) imposes the thermal unit to operate within its minimum output and its

capacity when on-line (i.e., uijωk = 1) and not to produce when off-line (i.e., uijωk = 0).

Constraints (6.5f) and (6.5g) enforce, respectively, the upward and downward ramping

limitations of the thermal unit. Finally, constraint (6.5h) sets the commitment status

uijωk of the thermal unit as a binary variable. Constraint (6.5a) requires the initial level

of the storage as input, and constraints (6.5f)-(6.5g) need the initial production level of

the thermal unit.

Richer models for the feasible operating region of a dispatchable unit exist in the literature.

However, to keep the focus on the Active/Passive offering strategy and its formulation

intuitive, we chose to capture the main operating constraints of the unit limiting the level

of details of the model.
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6.3.5 MILP formulation of h(·)

Constraint (6.1g) computes the expected production cost ĉk associated with the thermal

unit. A possible mixed-integer linear programming formulation of this cost function is

(6.6)

ĉk =
∑
ijω

πDA
i πBA

j πEω (C0uijωk + Cdijωk) , ∀k, (6.6)

where C0 is the fixed cost incurred when the unit is on, and C is the marginal production

cost of the unit.

6.3.6 MILP formulation of Γ

The set of constraints (6.1h), denoted by Γ, enforces complementarity between the active

and passive participation in the balancing market. Γ can be formulated as

qUP
ijk + qDW

ijk ≤ εikM, ∀i, ∀j,∀k (6.7a)

q
(+)
iωk + q

(−)
iωk ≤ (1− εik)M, ∀i, ∀ω,∀k (6.7b)

εik ∈ {0, 1}, ∀i,∀k. (6.7c)

Constraints (6.7a) and (6.7b) force the VPP to be in only one state between active (i.e.,

εik = 1) and passive (i.e., εik = 0) in the balancing market, through the so-called big-M

approach. A natural and sensible choice for the parameter M can be

M := E +D + P
(↑)

+ P
(↓)
.

Finally, constraint (6.7c) forces the variables εik to be binary.

6.4 Case study

Next we present a case study to test the offering strategy of Section 6.3. The aim is to

analyze whether the proposed Active/Passive balancing participation setup may drive the

VPP to offer its flexibility when available.

The scenarios provided as input to the offering model are generated as described in Section

6.2.3. First, we generate 300 scenarios for the day-ahead market price λDA
ik and keep the

ten most representative ones. Then, for each day-ahead scenario i, we randomly sample
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300 scenarios of the balancing market price λBA
ik and select the six most significant. Finally,

we generate 300 trajectories of the renewable energy production Eωk (wind or solar power)

and keep the five most representative. This results in a scenario tree with 300 branches

(10 × 6 × 5). The parameters of the thermal unit are shown in Table 6.1. Similarly, the

characteristics of the storage unit are presented in Table 6.2. The programs are modeled

in Python environment and solved with Gurobi.

Table 6.1: Parameters of the thermal unit.

D D RUP RDW C0 C
(MW) (MW) (MW/h) (MW/h) (EUR) (EUR/MWh)

0 70 30 30 0 45

Table 6.2: Parameters of the electric storage unit.

L L P
(↑)

P
(↓)

η
(MWh) (MWh) (MW) (MW)

0 80 30 30 0.81

The Active/Passive offering strategy is compared against two benchmarks: a Passive

and an Active offering strategy. Based on the Passive approach, the VPP is assumed to

be always a passive participant in the balancing market. Differently, under the Active

strategy, the VPP is an active actor in the balancing stage for the entire trading horizon.

These two alternative models can be derived from the optimization model (6.1) by fixing

the binary variables εik = 0, ∀i, ∀k for the Passive strategy, or εik = 1, ∀i, ∀k for the

Active one.

6.4.1 VPP with wind farm

Figure 6.3 shows the ten selected trajectories for the day-ahead market price λDA
ik , the six

chosen balancing price scenarios λBA
ijk for a sample day-ahead trajectory i, and the five

selected trajectories for the wind power production Eωk (in p.u.).

The wind farm capacity E is initially set to 50 MW. We solve the Active/Passive offering

model (6.1) using as input the scenarios shown in Figure 6.3. The complementarity

between the active/passive choice is enforced through the binary variables εik. If εik = 1,

the VPP is predicting to act as an active participant during the interval k of the balancing

stage, provided that the day-ahead price scenario i realizes. For the same scenario i and

interval k, if εik = 0, then the VPP is expecting to behave passively. Being ε∗ik the optimal
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Figure 6.3: Input day-ahead market price (top), balancing price (middle), and wind power pro-
duction scenarios (bottom) to the offering model.

solution, then the probability that the VPP will be active is computed as
∑

i π
DA
i ε∗ik, and

the probability that it will be passive as
∑

i π
DA
i (1−ε∗ik). These probabilities are illustrated

in Figure 6.4.

Figure 6.4: Probability of being active vs. passive (E = 50 MW).

From midnight to 10 a.m., the VPP will decide to be either active or passive depending

on the day-ahead price realization i. On one hand, the uncertainty in the wind power

production is limited in this trading interval, which would benefit an active approach as

the flexibility of the controllable units could be used to offer regulating energy. On the
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other hand, even if uncertain, the spread between the balancing price scenarios and the

day-ahead prices is also limited, leading consequently to low additional profits resulting

from an active participation. Then, from 10 a.m. to 4 p.m., the VPP decides to be a

passive participant for each realization i of the day-ahead price. Indeed, the uncertainty

in the balancing market prices is limited while the amount of wind power production is

very uncertain. Finally, from 6 p.m. to midnight, the VPP is almost sure to sell regulating

energy in the balancing market. This translates into internally handling the wind power

production fluctuations, which is highly uncertain in these time intervals as it can vary

from 20% to almost 80% of the wind farm capacity. However, the balancing market

price scenarios are going to be far-off the day-ahead market price with high probability;

accordingly, passive deviations from the day-ahead schedule may result in heavy penalties,

while selling regulating energy can be very profitable.

As an example, Figure 6.5 illustrates the day-ahead market offer curves for the interval

k = 15 obtained when using the Active/Passive strategy (left), Active strategy (middle),

and Passive strategy (right). The VPP is willing to produce 91.1 MWh (Active/Passive

and Passive) or 92.1 MWh (Active) provided that λDA
15 ≥ 58.2. Then, if λDA

15 ≥ 65.3 the

Active/Passive and the Active approach contract additional 6.8 MWh and 13.3 MWh,

respectively. Differently, the Passive approach increases its production to 106.5 MWh if

λDA
15 ≥ 67.4. Finally, if λDA

15 ≥ 75.1 the Active/Passive and the Passive approach further

increase the production level to 121.1 MWh. From Figure 6.5, we note that the Active

approach appears to be less “reactive” to the day-ahead market price compared to the

other strategies, and no additional quantity is scheduled for high values of the day-ahead

market price. Indeed, the position of the VPP after the day-ahead market affects its

capability to internally compensate for the wind power fluctuations. Therefore, the VPP

position is more constrained and driven by feasibility limitations compared to the other

two strategies.

Figure 6.5: Day-ahead market offer curves at k = 15 (E = 50 MW).
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Finally, in Table 6.3 we compare the expected profit of the three offering models for

different values of the wind farm capacity E, ranging from 10 to 90 MW. When E = 10

MW, the expected profit increment under the Active/Passive approach is 0.6% and 8.1%

compared to the Active and Passive strategies, respectively. In effect, if the capacity of

the stochastic unit is small, then the VPP can internally handle most of the wind power

deviations and offer its regulating energy into the balancing market. Accordingly, the

increase in profit compared to the Active strategy is limited whereas the Passive strategy

is strongly outperformed. This trend progressively changes as the wind farm capacity E

increases. As E grows, the VPP based on an Active/Passive participation is more likely

to settle deviations in the balancing stage and has less flexibility to offer in the balancing

market. When E = 90 MW, the increase in profit is 4.6% compared to the Active strategy

and 2.1% compared to the Passive one.

Table 6.3: Expected profit for the three offering strategies for different values of the wind farm
capacity E.

E (MW) Expected profit (103 EUR)
Active/Passive Active Passive

10 18.16 18.06 16.81
30 22.89 22.48 21.69
50 27.59 26.85 26.57
70 32.35 31.16 31.45
90 37.07 35.44 36.32

6.4.2 VPP with PV solar

Figure 6.6 shows the ten selected trajectories for the day-ahead market price λDA
ik , the six

chosen balancing price scenarios λBA
ijk for a sample day-ahead trajectory i, and the five

selected trajectories for the solar power production Eωk (in p.u.).

The PV solar unit is initially considered with capacity E = 50 MW. We run the Active/-

Passive offering model (6.1), and in Figure 6.7 show the probabilities of the VPP being

active and passive in the trading horizon, computed as in Section 6.4.1. From midnight

to 6 a.m. and from 8 p.m. to midnight, the VPP decides to be active in the balancing

market for each day-ahead scenario i. Indeed, these time intervals are before and after

the sunset, and the VPP is certain that the output of its PV solar unit will be zero.

Differently, from 10 a.m. to 5 p.m., the VPP is almost sure that it will passively deviate

from its contracted schedule to compensate for the fluctuations from the PV solar unit.

In this time horizon, the PV power production is very uncertain (e.g., at 2 p.m. it can
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Figure 6.6: Input day-ahead market price (top), balancing price (middle), and PV solar power
production scenarios (bottom) to the offering model.

Figure 6.7: Probability of being active vs. passive (E = 50 MW).

vary from 20% to 70% of the unit capacity), and it is more convenient to settle deviations

in the balancing market. Finally, from 6 a.m. to 9 a.m., the VPP will decide whether the

active or the passive participation is more profitable depending on the day-ahead price

realization i, and the associated amount of energy contracted. In this time interval, the

uncertainty of the PV solar production is in fact limited, which would suggest that an

active participation may be preferable. However, the possibility of gaining extra profits

from the balancing market is low as the balancing market price scenarios are very close
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to the day-ahead price. Differently, from 6 p.m. to 8 p.m., an active participation is more

attractive since the balancing market price scenarios give the opportunity to gain extra

profits.

In Figure 6.8, we plot the day-ahead market offer curves from the three VPP strategies

Active/Passive (left), Active (middle), and Passive (right) at k = 5. In this interval, the

offer curves derived for the Active/Passive and Active strategy are equivalent, which is

consistent with the results shown in Figure 6.7 where the VPP decides to be always active

from midnight to 6 a.m.. Under these two models, the VPP is willing to consume (buy)

14.4 MWh provided that λDA
5 ≤ 36.4. This energy is used to charge the electric storage

unit. Then, the VPP schedules to produce 40.0 MWh when λDA
5 ≥ 46.7 and it does not

produce if 36.4 < λDA
5 < 46.7. Differently, the Passive strategy suggests to schedule 40.0

MWh when λDA
5 ≥ 43.5 and to increase the production by extra 30.0 MWh if λDA

5 ≥ 48.0.

Thus, the Passive strategy schedules more energy in the day-ahead as the VPP is less

driven by feasibility constraints.

Figure 6.8: Day-ahead market offer curves at k = 5. (E = 50 MW).

Lastly, we compare the expected profit obtained with the three offering models for in-

creasing capacity of the PV unit, E, from 10 to 90 MW. We show the results in Table 6.4.

When E = 10 MW, the expected profit of the Active/Passive and the Active approach

are similar. Indeed, as the capacity of the PV unit is small, the VPP can easily handle

the PV solar fluctuations internally and offer the remaining flexibility in the balancing

market. The expected profit increase under the Active/Passive approach is 1.7% and

6.0% compared to the Active and the Passive strategies, respectively. As the PV unit

capacity increases, the Passive strategy becomes more competitive as it can benefit from

a more flexible VPP operation, and can consequently contract more profitable positions

in the day-ahead market. Instead, as E grows, the Active approach becomes increasingly

constrained in its operation. First, it has less flexibility to offer in the balancing stage as
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it needs to allocate it to balance the PV unit fluctuations. Second, the day-ahead position

is more constrained by ensuring a feasible real-time operation, thus it is less driven by

the market prices.

Table 6.4: Expected profit for the three offering strategies for different values of the PV solar
unit capacity E.

E (MW) Expected profit (103 EUR)
Active/Passive Active Passive

10 18.59 18.27 17.54
30 22.19 21.28 21.15
50 25.79 24.24 24.76
70 29.39 27.17 28.36
90 32.98 30.08 31.97

6.5 Conclusions

In this paper we proposed an innovative participation model for the balancing market,

denoted by Active/Passive, aimed to increase the flexibility of market participants as well

as the amount of regulating energy available to the TSO in the real-time. Specifically,

we suggest to allow market agents such as VPPs to actively offer regulating energy in

time intervals where they can ensure to internally handle the eventual fluctuations from

the stochastic energy sources, while passively deviating from their day-ahead schedule

in other intervals. We enforced these two participation modes (active and passive) to

be complementary, and agents submitting regulating energy offers for a specific trading

interval are prevented from creating an imbalance in the same interval.

To analyze this novel participation model, we took the perspective of a VPP that includes

both controllable and stochastic generation units, and that trades in a two-settlement

electricity market. The Active/Passive offering strategy arises as a three-stage decision

making problem. We formulated this problem as a MILP in which binary variables are

introduced to model the feasible operating region of conventional production units and

the complementarity between active and passive participation in the balancing stage.

Compared to an Active and a Passive strategy, computational experiments showed that

an Active/Passive approach can result in a significantly higher VPP expected profit (up

to 8% higher). The analysis reveals that the active participation is more attractive for

the VPP in the hourly intervals with limited production uncertainty from the stochastic

sources and profitable balancing market price scenarios, and the passive one when highly
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uncertain renewable energy production is combined with narrow balancing market price

scenarios (i.e., close to the day-ahead price).

The proposed framework is potentially relevant from a system operator perspective which

would benefit from more flexible regulating energy to schedule in real-time, and can be

also seen as a lever to facilitate the integration of renewable power in the system through

the aggregation into VPPs.

The focus of this work was to provide useful insights on the proposed Active/Passive par-

ticipation model. Therefore, we presented a case study with 300 scenarios and a simplified

operating region of the dispatchable generators to keep the model intuitive and solvable

in about 30 minutes. Further research may be in the direction of developing more efficient

algorithms capable of solving the model for a larger number of scenarios or including more

operating details of the units.

Nomenclature

Indices and Sets

i, i′ ∈ I Indices of day-ahead market price scenarios

j, j′ ∈ J Indices of balancing market price scenarios

ω ∈ W Index of renewable energy generation scenarios

k ∈ K Index of time intervals

ΠDA Feasible region of the day-ahead market offers

ΠAct Feasible region of the active participation

ΠPas Feasible region of the passive participation

Ω Feasible region of the VPP’s operation

Γ Feasible region of Active/Passive participation

Parameters

λDA
ik Day-ahead market price (EUR/MWh)

λBA
ijk Balancing market price (EUR/MWh)

Eωk Wind (or solar) power generation (MWh)

E Capacity of the wind (or solar) unit (MW)

D Capacity of the thermal unit (MW)

D Minimum power limit of the thermal unit (MW)

RUP, RDW Thermal unit ramp-up and -down limits (MW/h)

P
(↑)
, P

(↓)
Charging/discharging power limits (MW)
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L,L Minimum/maximum level of the storage (MWh)

η Round-trip efficiency of the energy storage

C Marginal cost of the thermal unit (EUR/MWh)

C0 Fixed cost of the thermal unit (EUR)

πDA
i Probability of day-ahead price scenario i

πBA
ij Probability of balancing price scenario j, provided that day-ahead

price scenario i realizes

πE
ω Probability of renewable energy production scenario ω

Variables

qDA
ik Quantity offer at day-ahead market (MWh)

qUP
ijk , q

DW
ijk Up/down regulation quantity offer (MWh)

q
(+)
iωk , q

(−)
iωk Positive/negative real-time deviation (MWh)

dijωk Thermal unit energy production (MWh)

p
(↑)
ijωk, p

(↓)
ijωk Charging/discharging quantities (MWh)

`ijωk Energy storage level (MWh)

ρ̂DA
k Expected day-ahead market profit (EUR)

ρ̂Act
k Expected profit of the active participation (EUR)

ρ̂Pas
k Expected profit of the passive participation (EUR)

ĉk Expected operational cost (EUR)

uijωk Commitment (binary) status of the thermal unit

εik Auxiliary binary variables to enforce complementarity of the

Active/Passive participation
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Abstract: In this paper we examine the value of investing in energy-efficient

household appliances from both an energy system and end-user perspectives. We

consider a set of appliance categories constituting the majority of the electricity con-

sumption in the private household sector, and focus on the stock of products which

need to be replaced. First, we look at the energy system and investigate whether

investing in improved energy efficiency can compete with the cost of electricity sup-

ply from existing or new power plants. To assess the analysis, Balmorel, a linear

optimization model for the heat and power sectors, has been extended in order to

endogenously determine the best possible investments in more efficient home appli-

ances. Second, we propose a method to relate the optimal energy system solution to

the end-user choices by incorporating consumer behaviour and electricity price addi-

tion due to taxes. The model is non-exclusively tested on the Danish energy system
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under different scenarios. Computational experiments show that several energy effi-

ciency measures in the household sector should be regarded as valuable investments

(e.g. an efficient lighting system) while others would require some form of support

to become profitable. The analysis quantifies energy and economic savings from the

consumer side and reveals the impacts on the Danish power system and surrounding

countries. Compared to a business-as-usual energy scenario, the end-user attains

net economic savings in the range of 30–40 EUR per year, and the system can ben-

efit of an annual electricity demand reduction of 140–150 GWh. The paper enriches

the existing literature about energy efficiency modelling in households, contributing

with novel models, methods, and findings related to the Danish case.

Keywords: Energy efficiency · Household appliances · Consumer investments ·
Energy system modelling · Emissions reduction

7.1 Introduction

In compliance with the recent international effort towards the climate change mitigation

(European Commission, 2010), Denmark has set its goals for the year 2020 and is working

to fulfil the targets concerning renewable energy (RE) integration in the system and energy

efficiency (EE) improvements. Compared to the 1990 levels, Denmark has reduced its

greenhouse gas emissions by more than 30% and, according to the current policies and

trends, the Danish Energy Agency forecasts that the reduction will reach almost 40%

by 2020 (Breum, 2015), thus exceeding the legally binding EU commitment of 34%.

Denmark can vaunt one of the highest contributions of renewables in any energy system

worldwide (excluding hydro-power), with a 56% contribution in 2014. In particular, in

2015, more than 40% of the Danish electricity demand was satisfied by wind energy, and

this figure is expected to increase up to 50% by 2020 (Breum, 2015). Besides the effort

in integrating renewables in the energy system, the Danish government has set a number

of targets for the further development of EE measures. According to the National 2020

Energy Efficiency Targets, Denmark is aiming to reduce the primary and final energy

consumption by 12.6 and 7.2%, respectively, compared to 2006 (Danish Energy Agency,

2014).

Both RE and EE measures have been identified by the European Commission as the most

suitable options to evolve the national energy systems towards greener configurations

(European Commission, 2012). Nevertheless, if not properly enforced, the simultaneous

implementation of RE and EE can lead to suboptimal investment planning and missed
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cost-saving opportunities (Baldini and Klinge Jacobsen, 2016). The challenge is to identify

the optimal trade-off between EE levels and power system configurations while exploring

future scenarios, i.e. understanding where to invest in order to obtain the most cost-

effective energy system given a target on emissions reduction. Several studies, for instance,

have shown that enhancing EE is likely the most cost-effective way to reduce carbon

emissions in the medium term (Enkvist et al., 2007; López-Peña et al., 2012).

The literature has then considered the modelling of EE in households along two main

lines: the heat and electricity sectors. Available literature presents many examples from

the Danish heating context, while EE literature from the electricity sector is lacking,

whereby we broaden our perspective.

On the heat sector side, Zvingilaite (2013) models heat savings in the Danish building

sector using a heat and power optimization model, showing that the attainable level of

heat savings can reach up to 11% of the projected heat demand in 2025. At the time

of publication, the study represented the front-runner implementation of heat savings as

endogenous investment variables in an energy system model, thus providing a first esti-

mation of the cost-effective heat savings level from a socio-economic perspective. Several

studies target environmental goals as CO2 emission reduction, stressing the need to iden-

tify the trade-off between heat savings and heat supply. Connolly et al. (2014) examine

the joint role of district heating and heat savings to decarbonise the EU energy system,

and conclude that coupling the two measures can help reducing primary energy supply

and CO2 emissions at the lowest costs compared to other alternatives. Zvingilaite and

Klinge Jacobsen (2015) investigate the trade-off between heat savings and heat gener-

ation technologies in the Danish energy system, focusing on the residential investment

behaviour and including health costs. The study reveals that savings up to 24% of the

heat demand can be achieved with an optimal configuration of investments in heat savings

and heat generation technologies. Hansen et al. (2016) estimate the optimal heat savings

investment levels within various European countries. This level is identified in invest-

ments aimed to reduce the projected heat demand of about 30–40%, while supplying the

remaining demand with sustainable heat technologies.

On the electricity side, the literature suggests that disaggregating the household electricity

demand into different appliances is the starting point for modelling EE measures and

the attitude of consumers towards them (Lefebvre and Desbiens, 2002; Evora et al.,

2011; Batih and Sorapipatana, 2016). Rodŕıguez Fernández et al. (2016) propose the

use of machine learning techniques to identify individual electrical devices in households

based on power consumption, so that specific appliances can be targeted for efficiency

improvement. Numerous authors then focused on the trade-off between electric energy

savings in households and power supply with interesting examples, close to the direction of
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our work, in an Asian context. Parikh and Parikh (2016) examine the potential energy and

emission savings from choosing energy-efficient home appliances in India. Based on the

5-star-rating EE promotion programme, the authors modelled the attitude of consumers

(poor and rich) in adopting more efficient appliances. The results show that, given the

awareness of consumers concerning the various options of efficient appliances, a demand

and emission reduction from households exceeding 30% can be reached in 2030. Batih

and Sorapipatana (2016) analyse the electricity consumption of urban households and

its saving potential in Indonesia. Similar to the Indian’s case, the results illustrate how

implementing specific EE improvements can lead to a reduction of 21% of both power

demand and CO2 emissions from households by 2030. Xie et al. (2016) prove that energy

management strategies in the Chinese household sector should include investments in

energy-efficient home appliances. The policy recommendation is thus in terms of subsidies

driving customers to purchase a higher share of energy-labelled appliances. Mizobuchi and

Takeuchi (2016) examine the influence of an increase in purchasing energy-efficient home

appliances on the power system in Japan. The conclusions are in line with previous

studies, showing that households with new energy-efficient appliances can save a large

amount of electricity, but also that the rebound effect may cancel part of the savings out

due to a more intense use of the appliance. Finally, a few studies consider the contribution

of appliances to the household electricity use with a global scope, illustrating the huge

potential of energy efficiency improvements in the global residential sector (Wada et al.,

2012; Cabeza et al., 2014).

As indicated by the consistent amount of literature, in the residential sector lies a large

potential for EE improvements. In Denmark, electricity consumption from private house-

holds exceeds 20% of the total load (Klinge Jacobsen and Juul, 2015). This figure is also

expected to increase in the next years due to the upcoming electrification of the household

facilities, and should then be balanced with improvements in energy efficiency measures

(Bartiaux and Gram-Hanssen, 2005). The electricity consumption in the household sector

is mainly related to the different home appliances. Therefore, if electricity savings could

be targeted to the different appliance categories, then lower consumption profiles associ-

ated to the households could lead to savings for the system in terms of necessary power

plants, capacity investments and emissions. Furthermore, the electricity savings may have

different effects on the power system depending on the hourly consumption profile of the

appliance category whose demand is reduced.

Using a bottom-up approach (Swan and Ugursal, 2009), the analysis proposed in this

paper will make use of hourly consumption profiles of home appliances determined in

previous studies (Klinge Jacobsen and Juul, 2015) to investigate the effect of EE im-

provements in the Danish energy system. In particular, the aim of this paper is threefold:
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1. to evaluate from a system perspective whether it is worth to invest in more energy-

efficient appliances rather than install new power plants, and observe the effects on

the energy mix;

2. to assess from an end-user perspective which energy-efficient appliance should be

regarded as a profitable investment, taking into account the behavioural dimension

of the consumer;

3. to compare the investment choices of the model according to the system and con-

sumer perspectives.

The paper enriches the existing literature about EE modelling in households, contributing

with new models, methods, and findings related to the Danish case.

7.2 Methodology

7.2.1 Overview of Balmorel

Balmorel is a linear programming-based optimization model for the energy sector, origi-

nally developed in 2001 to analyse the Baltic system (Balmorel, 2017). The model finds

economically efficient dispatches and optimal capacity investments for the energy system.

The emphasis is on the electricity and combined heat and power (CHP) sectors, and the

major technologies for electricity, heat generation and storage are included in the model.

The model consists of a set of neighbouring countries that participate in various elec-

tricity markets. Each country is then split into one or more regions, depending on the

market features, where electricity can be traded with constraints. Denmark, for instance,

is modelled using two electricity zones, Denmark East and Denmark West (in the follow-

ing DK-E and DK-W), according to the NordPool system. The electricity transmission

between adjacent zones is limited by a given transmission capacity. Moreover, to model

the CHP sector, each electricity region is further divided into several district heating

areas.

Time in Balmorel is organized into three step categories: years, seasons (weeks), and

individual time units (hours). Each year is composed of 52 weeks and each season is, in

turn, composed of 168 time units. The time is however flexible and the user can decide

how many seasons and time units to use in the model. The choice depends on the needs for

the specific investigation and typically ranges from weeks, when the focus is operational,
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to years, common for investment analyses. The running time of the model is influenced

by the time aggregation used, and varies from minutes to several hours. The main output

is, among others, electricity and heat production levels, electricity prices, system costs,

electricity transmission, and emissions.

Despite being used in the industry (Balmorel, 2017), Balmorel has been applied by the

research community to several energy systems worldwide and for a wide range of purposes,

from the integration of renewable technologies in the energy mix, to the analysis of market

conditions, policies implementation, and future role of district heating in energy systems

(Ball et al., 2007; Jensen and Meibom, 2008; Karlsson and Meibom, 2008; Münster et

al., 2012; Münster and Meibom, 2010). Balmorel has also been used to integrate heat

savings and residential investment behaviour into the energy systems (Zvingilaite, 2013;

Zvingilaite and Balyk, 2014; Zvingilaite and Klinge Jacobsen, 2015).

7.2.2 Modelling investments in household appliances

Consider a set of home appliances i ∈ {1, . . . , I}, and a set of electricity zones r ∈
{1, . . . , R} where we allow investments in energy-efficient appliances (in our study, DK-E

and DK-W). To extend Balmorel with EE investments, we need to introduce first the

following group of parameters. The assumptions behind data and how data is collected

will be topic of the next section.

• ξmax
i = maximum consumption reduction for appliance i with respect to a baseline

new, non-EE appliance of the same type and functionality (kWh/year). For ex-

ample, assume that the average consumption for new, non-EE refrigerators is 300

kWh/year, and the average consumption of the most efficient refrigerators, of same

type and functionality, available in the market is 180 kWh/year, then the maximum

annual electricity saving from a refrigerator is ξmax
i = 300− 180 = 120 kWh/year.

• ci = additional cost of investing in a single appliance i with maximum saving of

ξmax
i (EUR) with respect to the cost of a baseline consumption class. For example,

assume that the baseline refrigerator efficiency class is A with average cost of EUR

650, and the most efficient is A+++ with average cost of EUR 1000, then ci = EUR

350.

• ρ = discount rate, used to annuitize the investment cost of new appliances. More

comments on the discount rate are provided in the case study.

• Li = average lifetime of appliance i (years). The lifetime is used to annuitize the
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investment cost and to approximate the annual substitution rate of the appliances,

by computing 1/Li.

• Nir = estimated number of appliances i in region r. It can be approximated by mul-

tiplying the share of an appliance with the number of households; for example, if the

share of washing machines is 0.80 (items/household) and the number of households

in DK-W is 1.4 mln., then Nir is 0.80 × 1.4 = 1.12 mln. Our construction of Nir

applies if the total stock of appliances is fixed over time, as it is for the Danish mar-

ket where household growth is very low. For developing economies, such as China

or India, Nir should be time-dependent.

• nir = Nir/Li = estimated number of appliances i in region r which are replaced on

average every year (e.g. because they are too old and not well-functioning anymore).

For instance, if the average lifetime of a dishwasher is Li = 10 years and the existing

stock in DK-E is Nir = 1 mln., then approximately nir = 0.1 mln. dishwashers are

expected to be purchased in DK-E during a year.

• dirt = gross electricity consumption (MWh) in region r due to the appliance category

i at hour t of the year. We also define the total annual consumption of appliance i

in region r as Dir =
∑

t dirt, and we will refer to the collection {dirt}t as the yearly

consumption profile of appliance i in region r.

We summarize the set of parameters necessary to implement the model in Table 7.1.

Table 7.1: Data required to implement the model extension

Name Description For each

ξmax
i Max. consumption reduction Appliance

ci Extra cost of more efficient appliance Appliance

Li Lifetime of appliance Appliance

Nir Stock of existing home appliances Appliance and region

ρ Discount rate -

dirt Hourly consumption profile Appliance and region

It is now possible to compute the annuitized extra investment cost of a new EE appliance,

cai [EUR], as

cai =
ρ ci

1− 1/ (1 + ρ)Li
.

Then, we define the decision variables xir ∈ [0, 1] as the percentage of new appliances of

type i that are replaced with the most energy-efficient version in region r. In particular,
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xir = 0 means that there is no investment in more efficient appliances of category i, while

xir = 1 means that the full amount nir of appliances i in the region is upgraded. In this

case, the system will benefit of an annual electricity saving of ξmax
i nir for the lifetime of

the appliance.

The introduction of investments in EE has two main effects in the energy system model.

First, the investment cost represents a new contribution in the objective function, given

by

min : SysCost +
I∑
i=1

R∑
r=1

cai nir xir (7.1)

where SysCost is the original objective function in Balmorel representing the total cost of

the energy system, and includes the cost of fuel consumption, operation and maintenance

cost for the different technologies, investment cost in new generation and storage capacity,

emission and fuel taxes, etc. Second, the demand profile is reduced according to the saving

associated with xir. The saving is spread over the whole year and applies with the same

percentage across the consumption profile of the appliance. We can consequently work

hour by hour and, denoting with drt the electricity demand in region r and time t, we

define a new power balance equation

(electricity supply in r at t) = drt −
I∑
i=1

dirt ξ
max
i nir xir
Dir

. (7.2)

For instance, if there is no investment in EE, meaning xir = 0 for all appliances i, then

the summation term (i.e. the saving) is zero and the equation reduces to the original one.

If the investment is maximum for appliance i, i.e. xir = 1, then the demand is reduced

by a factor dirt ξ
max
i nir/Dir. This amount corresponds to the annual saving ξmax

i nir from

appliance i, scaled with the fraction of total demand Dir occurring in hour t, dirt /Dir.

In line with the other investments in Balmorel, in (7.2) it is implicitly assumed that new

appliances are purchased and installed in the first hour of the year.

In addition, several studies suggest that the gains achieved from new energy saving mea-

sures are usually slightly lower than what initially expected, due to the so-called rebound

effect (Khazzoom, 1980; Buluş and Topalli, 2011; Shrestha and Marpaung, 2006; Galvin,

2010; Farinelli et al., 2005; Galarraga et al., 2013; Carnall et al., 2015). This happens

because the consumer typically responds to new EE measures in a way that tends to offset

the effects of the changes. In more practical words, if we have a more efficient appliance

or service, we tend to use it more because its use is cheaper, and we may also purchase

additional appliances of the same type. We include the rebound effect in our model and

characterize it as a linear response. Introducing βir ∈ [0, 1] and indicating with Dr the
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total yearly electricity demand in region r, we extend (7.2) with

(electricity supply in r at t) = drt −
I∑
i=1

dirt ξ
max
i nir xir
Dir

+ drt

∑I
i=1 Dir

Dr

∑I
i=1 ξ

max
i βir xir∑I

i=1 ξ
max
i

. (7.3)

Even though the magnitude of the effect might change depending on appliance and region,

in the following we set all variables to be the same (βir = β).

To summarize, investing in efficient household appliances reduces the electricity consump-

tion as in (7.3). Less demand implies that less production technologies to operate or install

are needed to supply electricity, which in turn implies lower costs for the system. The op-

timization process will then implicitly compare this economic saving with the investment

cost added to (7.1) and, if convenient, will endogenously trigger the investment.

7.2.3 From the energy system to the end-user

The model presented optimizes investments from a system perspective. It is a socio-

economic analysis and does not include taxes on the consumer side. This means that the

solution resulting from the optimization process should be interpreted as the least expen-

sive solution for the whole energy system, and investments in energy-efficient appliances

implicitly compete with the supply of electricity at the system price, i.e. the wholesale

market price. However, the analysis currently disregards a representation of the end-user

choices, which are relevant since in practice investments in home appliances are made by

end-users. The consumer pays a higher price for electricity due to additional taxes on e.g.

transmission, distribution, and policy costs for promotion of renewables. In Denmark, the

tax addition to the electricity price is a fixed additive amount that makes the consumer’s

price up to ten times higher than the system price (Energitilsynet, 2016). As a conse-

quence, investments which are not worth for the society might be actually profitable for

the single user, who individually evaluates an EE investment.

To include the consumer utility in the analysis, we propose the following sequential ap-

proach. First, the consumer observes the annual electricity price profile generated from

the system model and estimates the consumer price by considering an average overpric-

ing factor. Second, the consumer determines whether investing in more energy-efficient

appliances is profitable by comparing the extra investment cost with the economic saving

implied by the consumption reduction. Third, the energy system model is solved for the
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second time embedding the investment decisions of the consumer. New electricity prices

are generated, and the actual saving on the consumer side is determined together with

possible changes in the energy system. Figure 7.1 summarizes the sequential process.

Perspective

- Fix investment variables xi

- Run the extended version of Balmorel

1

2

3

System

Consumer

System

4
System and 
consumer

Analyse the results

Electricity
prices P

Run the base version of Balmorel

- Compute consumer price Pc

- Solve consumer investment problem
Consumer 

investments xi

New electricity
prices P2

Action OutputStep

Figure 7.1: Sequential process to analyse investment decisions for end-users

Let us focus on the consumer model. When should a consumer purchase a new energy-

efficient appliance, e.g. a refrigerator? If the refrigerator is well-functioning, one would

generally need some strong incentive to replace it with a more efficient product. However,

as discussed earlier, by introducing a substitution rate we limit the analysis to the sub-

group already needing to replace the given appliance due to capital depreciation. Thus, the

question we try to answer is more specific: I need to purchase a new refrigerator, should I

invest in a very energy-efficient product, paying an extra cost but having an annual energy

saving, or should I buy an average refrigerator similar to what I had before? A rational

consumer would compare the extra investment cost of the more efficient product with

the expected economic saving resulting from the consumption reduction throughout the

appliance lifetime, and would undertake the EE investment in case of positive net present

value (NPV) of cash flows. In particular, we denote with prt the system price of electricity,

which in Balmorel corresponds to the dual value of the power balance equation, and with γ

the average price overcharge on the consumer side. The consumer price is then estimated

by pcrt = prt +γ, and the NPV of an EE investment is computed for every appliance i and
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region r with

NPVir = −ci +

Li∑
y=1

αy

(1 + ρ)y−1

(
T∑
t=1

pcrt dirt ξ
max
i /Dir

)
. (7.4)

Equation (7.4) represents the trade-off between extra investment cost and cumulative

annual saving. The expression inside brackets is the economic saving for the current year,

calculated by multiplying the consumer price at a given hour t with the consumption

reduction achieved in t, then summing over the whole year (T = 8760 is the number of

hours in a year). This expression is then summed over a number of years corresponding

to the lifetime of the appliance Li, discounted, and multiplied by a factor αy indicating

the expected change (increase or decrease) of electricity prices for year y.

In practice, however, a consumer does not act in a fully economically rational way, and

there are behavioural aspects that may influence the investment decision. The consumer

behaviour is difficult to capture and model since it is by definition subjective. Previous

research tried to quantify the correlation between the propensity to invest in EE (intended

as both housing renovation and the purchase of energy-efficient appliances) and factors

like income, age and education (Hausman, 1979; Mills and Schleich, 2010; Ward et al.,

2011; Murray and Mills, 2011; Allcott, 2011b; Davis and E. Metcalf, 2014; Houde, 2014;

Newell and Siikamäki, 2013; Schaffrin and Reibling, 2015; Bartiaux and Gram-Hanssen,

2005). Most of the studies agree on a positive correlation between household’s income and

investments level. In contrast, conclusions regarding other factors (age, education etc.)

often show ambiguity and there is generally no statistical significance in the correlation

with investment.

In line with these studies, we include in the model a behavioural uncertainty related

to the household’s income level. A low-income household might not be willing to pay

a high up-front cost for relatively small annual electricity savings. Consequently, even

though the EE investment turns out to be profitable according to (7.4), it may not be

undertaken because the payback period is too long. The choice also depends on the other

expenses of the households in the same period, i.e. your overall liquidity constraints. On

the other hand, the up-front investment cost for a high-income household is typically not

a constraint, and, if the EE investment is profitable, then it will be undertaken. It can

be seen as a sort of budget constraint and a linear probability model is used to describe

it. Moreover, as suggested by some authors (Allcott, 2011b; Ward et al., 2011; Cooper,

2011), the opposite phenomenon is also possible: a high-income consumer may invest

in an efficient appliance ‘just’ because it is the green option, also when the choice is

not profitable from a strictly economic perspective. Thus, similarly as before, we assign

a probability of purchasing the energy-efficient appliance when the investment is not
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profitable.

The curves in Figure 7.2 represent the probability of purchasing an energy-efficient product

when economically profitable and when not. They are constructed partly based on the

results from Allcott (2011b); Ward et al. (2011); Cooper (2011) and partly by using

data about income and annual expenditure in appliances by households from Statistics

Denmark (2016). The curves are employed as model assumptions as no empirical evidence

for the functional slope is available in the literature. We also assume that the curves are

not static but dependent on the specific appliance: if the NPV is positive but the payoff

takes many years, then the blue curve shifts down, and vice versa. In the analysis, we are

not incorporating possible variations of the number of appliances and replacement rate

by income class, and we equally split the stock among the classes.
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Figure 7.2: Probability of purchasing an energy-efficient appliance when economically profitable
(blue line) and when not profitable (red line). On the x-axis are the deciles of the income
distribution of Danish households.

In reality, the consumer choice is also subject to uncertainty regarding the information

available (e.g. electricity prices and products on the market) and errors in computing

the economic convenience. This uncertainty is already included in the consumer model,

indeed, for instance, the adoption rate of profitable products by the highest income class

is lower than 100%.
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Coming back to the sequential approach, notice that also other authors have incorporated

consumer classes (income deciles) with different behavioural profiles into a model which

ultimately solves as a system optimization, for example Bunch et al. (2015). We conclude

the section with a few remarks.

1. After new electricity prices are generated, the end-user’s model could be executed

once again leading to a potentially different investment decision. This new decision

could be plugged into the system model, and the sequential approach iterated until

convergence (i.e. when there are no changes in electricity prices between two itera-

tions). However, in all our experiments the model converged after the first iteration,

thus we neglect the convergence topic in the following discussion.

2. In (7.4) savings are modelled using flexible electricity pricing. Even though most of

the Danish households currently pay electricity based on a flat tariff (Energitilsynet,

2016), in the last few years smart meters have been spreading, reaching almost 50%

of the of the Danish households in 2015 and aiming at 100% for 2020 (Danish

Ministry of Energy Utilities and Climate, 2013; Danish Ministry of Energy Utilities

and Climate, 2014). With smart meters and exposition to real-time rates, the

adoption of flexible pricing is expected to quickly increase (Allcott, 2011a; Katz et

al., 2016; Katz, 2014; Krishnamurti et al., 2012; Broman Toft et al., 2014; Faruqui

et al., 2010).

7.3 Case study

The proposed model extension has been tested on the Danish energy system. However,

the test is non-exclusive, and the same analysis could be performed on a different system,

provided that all the input data needed to run the model is available.

7.3.1 Scenario description

We characterize the scenarios based on three main elements on the input side: simula-

tion year, fuel price forecast, and fuel availability. Two different simulation years are

considered:

• 2015: serves as an ex-post analysis to understand how the known energy system

would have changed if consumer (or society) had invested in EE in an optimal
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way. For this case, the system is fully determined exogenously and we do not allow

investments in new power plants. Thus, the model is in an operational simulation

mode.

• 2025: to assess the saving analysis on a future energy system. For this case, the

energy system is also allowed to evolve by endogenously investing in new power

plants and decommissioning the old and unproductive ones.

To cope with the uncertainty in fuel and emission prices in 2025, following Zvingilaite

(2013) we identify a range of price values presented in Table 7.2: from a low price scenario

to a high price scenario. The low price scenario has been constructed with the guidelines

of the Danish Energy Agency for future socio-economic analyses (Danish Energy Agency,

2016b). The high price scenario is based on the oil price development in Oilprice.com

(2016) and IEA (2016), with the assumption that the high prices for other fuels follow

the price of oil with certain elasticity, as indicated e.g. in Karlsson and Meibom (2008).

The cost of municipal waste is assumed to be negative and constant, since in Denmark,

the waste incineration plants are paid to treat the waste (Münster, 2009). Regarding

CO2, the low price scenario is based on the carbon trading price, which in fall 2009 was

around 15 EUR/t (Reuters, 2016), whereas the high price scenario is based on the IPCC

considerations (IPCC, 2007). In the table, we also report the average price scenario.

Table 7.2: Prices of fuels and emissions in 2025 according to different scenarios. Prices for
renewable sources, e.g. wind, sun and hydro, are assumed to be zero.

Low price Average price High price
(EUR/GJ) (EUR/GJ) (EUR/GJ)

Fuel oil 13.33 17.24 21.14

Natural gas 12.01 15.02 18.02

Municipal waste −3.60 −3.60 −3.60

Coal 5.05 6.97 8.89

Wood pellets 12.25 13.03 13.82

Straw 7.69 8.47 9.25

CO2 [EUR/t] 18.02 39.04 60.07

In addition, we model availability constraints on the main input fuel sources for 2025. The

limitations are decided according to the 4 degree scenario proposed by the IEA in the

Nordic Energy Technology Perspective (IEA, 2016). Table 7.3 reports the most relevant

values.
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Table 7.3: Fuel availability for 2025 (fuel input for power, heat and CHP plants), NETP (IEA,
2016)

DK SE NO FI

Coal (PJ) 99.2 9.4 0.0 87.8

Oil (PJ) 1.9 4.4 0.1 1.7

Gas (PJ) 21.4 3.6 0.0 34.8

The scenarios are tested using four representative weeks of the year (weeks 09, 22, 32, and

51), where each week is composed by the full hourly resolution (168 h), giving a total of

672 time steps for the simulation. In this way, we are able to obtain sufficiently accurate

results, keeping the size of the model and its running time limited. Even though we deal

with an investment analysis, the hourly resolution is needed here to entirely capture the

differences of consumption profiles of the various home appliances.

7.3.2 Relevant parameters

A set of input data for each of the two Danish electricity zones must be collected. In

Table 7.4 we report some of the most relevant parameters along with the reference.

Table 7.4: Relevant model parameters: values and references

Data Zone Value Source

Electricity demand (TWh) DK-E 13.70 NordPoolSpot (2016)

Electricity demand (TWh) DK-W 20.44 NordPoolSpot (2016)

Number of households (mln.) DK-E 1.15 Statistics Denmark (2016)

Number of households (mln.) DK-W 1.41 Statistics Denmark (2016)

Electricity tax addition (EUR/MWh) DK 265 Energitilsynet (2016)

Discount rate (%) DK 3 Danmark NationalBank (2016)

Rebound effect (%) DK 3 Nässén and Holmberg (2009)

Nowadays, the risk-free investment rate in Denmark is very close to zero (Danmark Na-

tionalBank, 2016). However, in our analysis we also account for the expected uncertainty

from EE investments (given e.g. fuel price volatility and regulatory uncertainty). There-

fore, ρ is increased and set equal to 3%, like the value used in Zvingilaite (2013) for heat

saving investments in Denmark. The magnitude of the rebound effect related to EE, a

debated topic in the literature, can vary from moderate to negligible levels depending on

the analysis. In our model, we use a rebound effect level of 3% related to household elec-

tric appliances (Nässén and Holmberg, 2009). The tax addition to the electricity system
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price in Denmark is estimated to be 265 EUR/MWh according to Energitilsynet (2016),

and is expected to remain stable in the near future.

7.3.3 Appliances data

We selected the subset of 11 home appliance categories listed in Table 7.5. This set is

chosen for several reasons. First of all these devices, together, constitute approximately

80% of the electricity demand of the private household sector in Denmark; hence, they are

the most interesting to study from an energy consumption perspective. The electricity

demand of residential air-conditioning systems, for instance, is negligible in the Danish

context, and such appliance is therefore excluded from the study. Second, given the

high energy consumption of the chosen appliances, the price of purchasing a new product

reflects in a good extent its efficiency: when buying e.g. a new refrigerator of a given

volume, the energy use of the product is typically the main factor driving the choice. On

the other hand, for more high-tech appliances such as desktops, laptops, and printers,

this is generally not true, and price difference between two products or brands is given by

the functionalities rather than the consumption. Third, most of the selected appliances

fall under the EU energy labelling programme, therefore it is easier to collect the relevant

data and assess the relationship between price and efficiency.

Table 7.5: List of household appliances considered in the analysis. The second and third columns
refer to the annual consumption reduction and extra cost with respect to an average consumption
class.

Appliance category Saving [kWh/y] ∆ cost [EUR] lifetime [years]

Stand-alone refrigerator 50 413 15

Stand-alone freezer 88 138 20

Refrigerator-freezer 152 605 17

Washing machine 109 242 12

Dish washer 65 572 10

Dryer 118 605 13

Lighting living room 29 9 6

Lighting secondary rooms 25 9 7

Cooker 52 435 12

TV LCD 24 243 7

Vacuum cleaner 11 130 7

The saving and cost data in Table 7.5 are averages over different products and brands,

but with same volume or size, taken from some of the major producers and retailers
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active in Denmark (Bosch, Siemens, Electrolux, Miele, Aeg etc.). In the table, cooker

refers to both electric hobs and electric baking oven. The lighting system is split in two

components to account for the different use: one main room (living room) with an higher

usage and the other secondary rooms. The extra cost is generally rather high since we

model investments in appliances with the highest available efficiency class (e.g. A++ or

A+++). Limiting the investment analysis to Denmark, we assume there are no differences

in the performance or cost characteristics of existing or new appliances between the two

regions DK-E and DK-W.

The presented model uses linear cost-efficiency relations for appliances, i.e. the purchasing

cost of an appliance grows linearly with the consumption reduction. In practice, there

may be differences between the appliances and more complex cost-efficiency relations.

However, the data collected supports the assumption that a linear fitting describes the

relation sufficiently well for our purposes. Figure 7.3 illustrates the cost-efficiency relation

for two sample appliances.
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Figure 7.3: Cost-efficiency relations for refrigerators (left) and dishwashers (right), classes A+
to A+++. The dots represent average cost and consumption of a number of products of the
same efficiency class; the blue line is the linear interpolation between them.

Regarding demand profiles, we rely on the results from Klinge Jacobsen and Juul (2015)

who investigated the electricity consumption of a typical Danish household and deter-

mined consumption profiles for each appliance category. The profiles of the 11 appliances

included in the analysis are illustrated in Figure 7.4, summing DK-E and DK-W.

As expected, the profile changes considerably between the different categories. For ex-

ample, the cold appliances (refrigerator, freezer) manifest a fairly flat profile while other

appliances like lighting more contribute to the peaks, especially during the evening hours.

Differences can be also found between working days and weekend: in the weekend the
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kitchen equipment is used more, in particular during lunch hours, and the use of the

vacuum cleaner is higher too.
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Figure 7.4: Electricity consumption profile during a sample week (week 09) of the 11 home
appliances included in the analysis.

In Figure 7.5, we show how the aggregated profile of the 11 appliances contributes to the

total electricity demand of households and of all sectors in Denmark.
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Figure 7.5: Aggregated profile of the 11 appliances compared to the total electricity demand in a
sample week (week 09)
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7.4 Results and discussion

A sensitivity analysis of the model using fuel and CO2 costs for 2025 reported in Figure

7.2 was made, resulting in similar electricity prices prt (although a different capacity mix

is installed). This limited local sensitivity to scenario prices occurs because, given the

replacement rate, only a small component of the energy demand is affected by the EE

investments. As a consequence, we noticed no or very little change in the consumer choices

(but different CO2 implications) and, throughout the section, we will present the results

for the average cost scenario for 2025.

7.4.1 Preliminary check

The driver for the investment choice lies in the economic profitability of adopting a par-

ticular appliance, based on the cumulative savings achieved during its entire lifetime. To

get a first idea of the potential of investing in the different appliances, in Figure 7.6, we

compute the amount of energy per unit that could be saved if an EE investment of 1 EUR

is made in one of the examined appliances.
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Figure 7.6: Annual electricity saving per 1-EUR investment.

As can be seen, the gap between lighting and other appliances is large: investing 1 EUR

in lights results in an annual saving of around 3 kWh, while for other appliances it ranges
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from 0.1 to 0.6 kWh, i.e. an order of magnitude lower. Excluding lighting, from the

picture, it emerges that freezers and washing machines provide the best saving per unit

investment, compared to the rest of the stock. Although Figure 7.6 gives a picture of

the potential benefit of investing in the different devices, the final investment choices

also depend on the hourly electricity price and the consumption profile of each specific

appliance.

7.4.2 EE investments

The investments in EE appliances resulting from the simulations are shown in Figure

7.7. The left graph illustrates the optimal levels when the system model with endogenous

investments is used, whereas the right graph represents the consumer choices after the

sequential model is run. In the following, the values for DK-E and DK-W are presented

as merged, even though they are separate zones from a model logic.
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Figure 7.7: Investments in efficient appliances with the system model (left) and consumer model
(right). The amount on the x-axis corresponds only to the extra cost with respect to the baseline
efficiency class, and not to the overall investment cost in new appliances.

When the system is considered, the economic/energy saving criterion shows that the only

EE investments worth doing are efficient lighting replacements. For 2025, the investment

level in lighting for the living room is higher than 2015 due to the corresponding higher

system prices of electricity for that year. This price difference develops because the

system prices for the future energy system include long-term investments in renewable

technologies and other system adjustments. Finally, given the lower saving per unit cost,

no investment in other EE appliances is triggered during the optimization process.

In contrast, the end-user economic convenience is based on the consumer electricity price
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and more diversified investments occur. Due to the consumer’s behavioural dimension

and the incompleteness of information, however, not all investments with positive NPV

are undertaken, and vice versa, some investments in appliances with negative NPV occur.

For instance, the investment level in lighting for secondary rooms (NPV> 0) are lower

than 100% (as they are in the system model), and some investments in EE refrigerators

(NPV< 0) take place. The consumer investments in EE exceed the system investments

by 95 mln. EUR in 2015 and 105 mln. EUR in 2025.

Overall, the two years investigated show small differences in consumer choices, and in-

vestments in 2025 are only slightly higher than those in 2015. Indeed, even if the system

prices of electricity are higher in 2025, the additive nature of the tax component makes

the difference perceived by consumers less pronounced. The combined refrigerator-freezer

represents an exception; in fact, the NPV becomes positive for some consumer classes

between the two years, leading to a substantial increase for 2025.

To better understand the results, in Figure 7.8, we compare the lifetime of a new and

more efficient household electric device with the discounted payback period (DPP) of its

extra investment cost, i.e. the time needed for the EE investment to break even. As can
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Figure 7.8: Lifetime versus discounted payback period (discount rate 3%) in the consumer per-
spective.

be seen, the DPP of an efficient lighting is approximately 1 year, for freezer and washing

machine, it is about 5 and 8 years, respectively, and for all other appliances, it is longer

than 15 years. For a rational consumer with no liquidity constraints, an investment is

deemed worthy if the DPP is lower than the lifetime of the appliance, meaning that the
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appliance will be paid-off before the end of its expected lifetime (this is the same to having

a positive NPV). The analysis shows that this criterion applies for lights, stand-alone

freezers, washing machines, and combined refrigerator-freezers which are at the borderline.

Specifically, one can notice that, although similar savings can be achieved with efficient

washing machines and dryers (Table 7.5), the investment profitability differs substantially.

Indeed, the most energy-efficient dryers are still very expensive, and the extra investment

cost is higher than in washing machines. Moreover, among the cold appliances, we notice

that the profitability of EE freezers is higher than that of EE refrigerators.

In Table 7.6, we report the details of the investments, quantifying the adoption and

effectiveness of energy-efficient appliances. Consider for instance 2015: with an up-front

extra cost of 138 mln. EUR, the resulting energy and economic savings is 141 GWh

and 41 mln. EUR per year respectively. Including the lifetime of the appliances and

the discounting, this translates into revenues of 222 mln. EUR, i.e. a net discounted

saving equal to 84 mln. EUR for Danish consumers investing in energy-efficient appliances

(similar for 2025).

Table 7.6: Summary table for the scenarios analysis, 2015 and 2025

Investments Investments Economic savings Electricity
[K units] [mln. EUR] [mln. EUR] savings [GWh/y]

Appliance 2015 2025 2015 2025 2015 2025 2015 2025

Refrigerator 15.4 15.4 6.3 6.3 0.22 0.25 0.77 0.77

Refr.-freez. 9.0 42.2 5.5 25.5 0.40 2.13 1.37 6.42

Freezer 54.6 54.7 7.5 7.6 1.39 1.60 4.80 4.82

Wash.mach. 117.0 117.3 28.3 28.4 3.71 4.33 12.76 12.79

Dish washer 26.5 26.5 15.1 15.1 0.50 0.58 1.72 1.72

Dryer 15.4 15.4 10.4 10.4 0.53 0.61 1.81 1.81

Light L.R. 1892 1904 17.5 17.6 16.00 19.03 54.87 55.23

Light S.R. 2423 2438 22.4 22.6 17.67 20.97 60.57 60.95

Cooker 31.4 31.4 13.6 13.6 0.47 0.56 1.63 1.63

TV LCD 27.4 27.4 6.7 6.7 0.19 0.22 0.66 0.66

Vacuum cl. 38.4 38.4 5.0 2.2 0.12 0.14 0.42 0.42

Total 4650 4711 138.3 156.0 41.2 50.4 141.4 147.2

In Table 7.7, we report the analysis of the benefits on the consumer side, highlighting

the annual economic and energy savings resulting from the investments. The saving for

2025 is slightly higher because of the higher electricity prices. Notice that the saving is

spread over the entire Danish population, disregarding the fact that only a portion of it

is actually replacing a given appliance.
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Table 7.7: Average electricity and economic saving for Danish households

Extra-investment Annual electricity Annual economic Net economic
Year costs (EUR) saving (kWh/year) saving (EUR/year) saving (EUR/year)

2015 54.0 55.2 16.1 32.5

2025 62.0 57.5 19.7 44.2

In the methodology section, we discussed the ability to afford investments according to

the income class. In Figure 7.9, we illustrate the investment levels for each appliance

disaggregated per class. The graph shows that the higher the income, the higher the

share of the investment, reflecting the trends defined in the linear consumer model of

Figure 7.2.
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Figure 7.9: Investments in energy-efficient appliances according to the income class (2025)

7.4.3 System changes and comparison of perspectives

One of the main purposes of modelling the consumer behaviour is to determine its impact

on the energy system. To assess the changes, we focus on two key parameters, CO2

emissions and electricity demand reduction, and summarize the results in Table 7.8.

For 2015, we notice that introducing a consumer model leads to higher electricity savings

compared to the optimal system investments (141 GWh vs. 123 GWh). With the imple-
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Table 7.8: Total electricity and CO2 savings.

Electricity savings CO2 savings

Amount % house- % DK Amount % system % DK
(GWh) holds DK (Kton CO2)

2015 Sys 123 1.88 0.38 83.7 0.020 0.34

2015 Cons 141 2.15 0.43 117.2 0.030 0.48

2025 Sys 157 2.44 0.49 32.8 0.017 0.87

2025 Cons 147 2.29 0.46 19.2 0.010 0.51

mented savings, Denmark could cut its CO2 emissions of almost 0.48% according to the

consumer model. Although this percentage seems small, the reader should keep in mind

that a similar saving will occur in the years succeeding the investment. Considering the

lifetime of the appliances and the substitution rate of the yearly stock, the cumulative

savings will result higher in the long term.

A different configuration emerges for 2025 where the level of electricity savings achieved in

both models is higher than that in 2015. Nevertheless, the total amount of CO2 reduction

is lower. Indeed, the future energy system in 2025 will be highly based on renewable energy

sources, especially wind, and several fossil fuels power plants will be decommissioned by

then. Although the emissions reduction is lower, we notice that in percentage we obtained

a CO2 cut of almost 1%, implying a larger impact of the savings on the system. Moreover,

for 2025, the savings achieved are higher in the system perspective. Indeed, in the system

model, more investments in lights take place which, as shown in Figure 7.6, contribute

more effectively to the electricity demand reduction.
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Figure 7.10: CO2 emissions reduction in 2015 (left) and 2025 (right).

Figure 7.10 provides a graphical representation of the emissions reduction divided by coun-

try. It is interesting to see that, although a demand reduction via EE was implemented

in the model only for Denmark, the decrease in CO2 emission takes place in several other
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countries connected with Denmark. This highlights the influence of the interconnections

between countries and proves that changes occurring in the Danish system have an impact

on the electricity production not only of Denmark itself but also of the other countries.

For 2015, the largest emissions reduction occurs in Germany, where the simulation shows

that future use of nuclear, natural gas, coal, and lignite decreases while the power pro-

duction from wind, wood pellets, and municipal waste increases. Denmark comes after

together with Finland; energy mix highly based on hydro and nuclear power, as Norway

and Sweden, is not greatly influenced by small changes in the demand of a surround-

ing country. For 2025, instead, Denmark contributes more to the total CO2 emissions

reduction with 55 and 74% for the system and consumer perspectives, respectively.

The EE investments also affects the electricity consumption profile, as reported in Figure

7.11 for a sample week. The two different models, system and consumer, influence the

demand in diverse ways. As can be noticed, the investments in the system model are

entirely based on lights and mainly contributes to reducing the peaks. This is also in line

with results from previous studies (Klinge Jacobsen and Juul, 2015). In contrast, being the

consumer’s investments more diversified, the demand is reduced homogeneously through

the year, including hours outside peak loads.
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Even though investments are generally higher and more variegated for the consumer
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model, the overall demand reduction is similar in the two cases. In fact, the slightly higher

investment in efficient lighting for the system model results in total savings comparable

to that of all the other appliances chosen by consumers together.

7.5 Conclusions

The goal of this paper was to investigate the value of investments in more energy-efficient

home appliances compared to a business-as-usual electricity supply scenario.

Two different perspectives have been examined: energy system and end-user. When the

system is given the possibility to invest in efficient appliances, only investments in the

lighting sector take place. In contrast, when the consumer has the choice, the investments

are more diversified and generally higher. This highlights the different selection criteria

for the two models: the system considers purely economical convenience, whereas for

consumers a behavioural dimension comes into play. Moreover, two main factors have been

considered when modelling the choices of the end-users: economic profitability and ‘green

investments’ propensity according to the income class. This last component, together with

the different electricity prices, represents the reason for the diverse investments compared

to the system perspective.

The findings presented in the paper are the result of a soft-linking between a well-known

energy system model and a consumer-behaviour model designed for the study. The inter-

actions between the two models is the key for understanding the impact of the consumer

choices on the energy system. When compared to a business-as-usual energy scenario,

with the investment solution resulting from the model, the end-user ends up on average

with a net economic savings in the range of 30–40 EUR per year. Moreover, the system

benefits of a total electricity savings of 141 GWh in 2015 and 147 GWh in 2025, and

CO2 emission reduction of 117 Kton in 2015 and 19 Kton in 2025. Because of the interna-

tional interconnections and energy markets, changes in the energy system (e.g. in installed

capacity, fuel consumption, emissions) occur not only in the country the consumer be-

longs to, but also in the surrounding countries. The decision of a single consumer, thus,

contributes to the diversification and transformation of the global energy system.

The study also reveals the potential appliances that will be attractive from a system

perspective and, despite the simplicity of the consumer choice model, it provides a first

indication of the profitability of investments for private consumers. The closing con-

siderations have highlighted the relevance of this analysis for a country that is aiming

at important targets in terms of environmental issues. Therefore, this study should be
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pushed forwards.

7.5.1 Future work

The presented study could be extended in several key directions. One way is to include a

more sophisticated consumer behaviour into the investment decision function. The data

from a survey conducted from the Danish Energy Agency1 over a representing set of

houses serve as the starting point for the new thorough analysis. Using this dataset, an

exclusive, latent class logistic model could be employed to categorize the consumers into

subsets with respective propensities to purchase (Shen and Saijo, 2009; Murray and Mills,

2011; Mills and Schleich, 2010). This could also help to better assess the functional slope

of the purchase propensity by income class proposed in this paper. Using different discount

rates could also be a natural way to incorporate several of the behavioural differences that

are noted between consumer income classes. Of additional interest, Danish specific data

and appliance purchasing behaviour is currently under investigation by UserTEC (2016)

and could potentially be included. The end goal intended is then to incorporate the

consumer categories into Balmorel to compute a more realistic energy savings scenario.

Additionally, this analysis can be extended to re-examine the efficacy of Denmark’s im-

posed policies (i.e. EU driven energy labelling programme and overall energy efficiency

targets). Analyses in 2013 (Danish Energy Agency, 2016a) predicted savings of 5640

GWh/year by the year 2020 as a result of ecodesign requirements and the labelling pro-

gramme. With updated data on actual adoption, these projections can be re-examined.

Additionally, these propensity estimates can inform investigation into the potential ben-

efits of energy-efficient appliance support schemes.

Another avenue could be to explore the interaction and/or trade-off between reduced con-

sumption and smart consumption. Indeed, in a decentralized system, EE means not only

energy consumption reduction anymore, but also smart energy consumption. Denmark is

still committed to equipping every household with a smart electricity meter by 2020. De-

spite much interest in intelligent demand response, such a sporadic system could diminish

the service aspect of energy use. Thus, a comparative analysis into the savings provided

by smart use versus efficient investment could be explored via Balmorel.

1At the time of the article writing (October 2016), this data is not available and is expected to be
released in the upcoming months.
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Abstract: Increasing the share of evermore energy efficient household electric ap-

pliances is one strategy to address environmental impacts arising from residential

electricity demand. Hence, governments and energy actors are interested in the de-

termining factors behind the consumer choice of conventional versus high efficiency

labelled appliances. This study employs empirical survey data from the Danish En-

ergy Agency to model influential factors behind Danish consumer choice of energy

efficient appliances. To estimate consumer propensities, we use a logistic regression

model over a set of socioeconomic, demographic, and behavioural variables. The

study regresses over this unique combination of end-use behavioural variables by cre-

ating an energy efficiency index. Statistical results show that housing type, quantity
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of inhabitants, age, and end-use behaviour are strong predictors for choosing energy

efficient appliances. Interestingly, income is a weaker predictor. Despite a relatively

wealthy national income and well-educated population, information campaigns have

been largely ineffective in driving high efficiency investments. In light of this study’s

results and exogenous factors such as urbanising demographics and shifting Danish

housing stock towards apartments, the study suggests improved information cam-

paigns by targeting key demographics.

Keywords: Consumer behaviour · energy efficiency · household appliances · pur-

chase propensity · regression model

8.1 Introduction

Like other Western European nations, Danish household electricity consumption accounts

for more than 20% of total electricity demand (Gaspar and Antunes, 2011). Electric

devices such as dishwashers, washing machines, cooking hobs, microwaves, fridges and

freezers account for 50% of this figure (FEHA, 2017). The quantity of household ap-

pliances, due to rising wealth and access to technology, has increased dramatically over

the last decades according to the Danish Association for Suppliers of Electrical Domestic

Appliances (FEHA).

In 1992, the European Union (EU) addressed rising household electricity demand and its

environmental impacts with the EU Directive 92/75/EC establishing the energy consump-

tion labelling scheme for most white goods and light bulbs (EU, 1992). Its aim was to

increase consumer awareness of energy consumption by demanding clearly visible labels

classifying electric devices from the most energy efficient (Class A) to the least (Class

G). Since 1995, EU consumers have been exposed to this letter-grade labelling system.

Given increasing appliance energy efficiency, the EU extended the labelling system with

Directive 2010/30/EU by introducing classes A+, A++ and A+++, and is planning to

rescale the metric to the A-G scale in the future (see EU, 2015 and EU, 2017 for details).

In light of EU energy saving efforts, the purchasing propensity for EE (energy efficient)

appliances, coupled with efficient end-use, now carry greater importance. The drivers

of appliance purchasing are diverse: short and long run household economics, attitudes

towards the environment, and casual choice, among others. By addressing these factors,

governments may improve efficiency standards and labelling campaigns. Due to their

diverse nature, though, leveraging these factors and estimating their effect on appliance
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purchasing might be challenging. Data from surveys assessing consumer preferences could

represent an initial valuable source of information while tools like consumer choice models,

for instance, could help drawing considerations about purchasing choices.

Our study is motivated by the following research questions. Which socioeconomic charac-

teristics best predict the consumer selection of high-labelled household appliances? What

impact has the end-user behaviour, in relation to energy use and savings, on purchasing

such household appliances? Which energy end-use daily actions are more relevant for

predicting the purchase of appliances? Accordingly, which polices can increase consumer

consciousness of energy efficiency so as to adopt high-labelled household appliances thus

reducing CO2 emissions?

To address these research questions, we considered the results of a Danish Energy Agency

(DEA) survey over a representative housing sample, and developed a logistic regression

model to predict the propensity of the Danish consumer to choose a new, highest-labelled

household appliance. In this model, we employed socioeconomic and demographic vari-

ables (e.g., income, age, job of the consumer, housing type, size, year built, and number

of inhabitants) as well as a behavioural energy efficiency variable (EE-index) calculated

from a set of consumer energy end-use behavioural questions (e.g., turning off the power

sockets during the night and adapting the heating system to the seasons). Based on the

model results, we estimated propensities of Danish consumers to choose more efficient

appliances at the moment of purchase. Eventually, we drew policy recommendations,

relevant beyond the Danish context, to foster energy efficient behaviours and increase the

purchase of EE appliances in the residential sector.

This paper contributes to the field by developing novel methodology resulting in practi-

cal findings that can be useful for policy makers and governmental institutions. On the

methodological side, the contributions of the paper consist of (i) the construction of the

EE-index that gathers and synthesizes a rich set of consumer behavioural characteristics

and daily actions regarding energy end-use and energy savings, and (ii) the integration

of such index in a consumer choice model to study the joint effect of socioeconomic, de-

mographic, and behavioural variables on consumers energy efficiency investment choices.

Finally, unlike previous studies, (iii) we performed an extensive investigation of a be-

havioural index through correlation matrices and by examining interrelations between its

constituent parts.

On the practical side, we find from our statistical results that socioeconomic and be-

havioural characteristics are highly significant when explaining the choice of purchasing

EE appliances. Specifically, income, housing type, quantity of inhabitants, age, and end-

use behaviour are predictors for choosing energy efficient appliances, with EE-index and
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housing type being the strongest of these predictors while income is weaker. From our

analysis of the EE-index, we identify that specific daily actions are correlated with invest-

ment in efficient household appliances. Furthermore, by analyzing the correlations within

the EE-index, we found that respondents generalize their EE behaviour by appliance type

and that efficient end-use behaviours are related with particular living conditions, e.g.,

housing type.

By providing empirical results on the influence of both socioeconomic and behavioural

variables on consumer choice, the paper narrows the knowledge gap on household energy

consumption behaviour and broadens knowledge on the drivers of purchasing high-labelled

household appliances.

The remainder of the paper is organized as follows. In Section 8.2, we review the literature

on household energy consumption behaviour. In Section 8.3, we introduce the survey data

and describe the consumer investment model based on logistic regression. In Section 8.4,

we present the model estimation results and discuss the effect of different socioeconomic,

demographic, and behavioural variables in the choice of EE appliances. We conclude in

Section 8.5 by drawing practical policy suggestions based on our findings.

8.2 Literature review

The study of household energy consumption behaviour focuses on understanding the

reasons why end-users adopt particular consumption patterns. Four key questions are

the focus of debate: (1) What is driving energy consumption; (2) How does lifestyle and

habits influence the use of energy; (3) Which models can closely describe the consumer

behaviour; and (4) Which policies can be proposed to decrease total energy use.

Socioeconomic characteristics are often cited as significant drivers of household energy

consumption. Global research programs, conducted via household surveys, suggest that

demographic and socioeconomic factors, such as income level, ownership, dwelling type

and number of inhabitants, are correlated with the energy use (De Almeida et al., 2011;

Bedir et al., 2013; Wyatt, 2013; Zhou and Teng, 2013; Hayn et al., 2014; Huebner et al.,

2015; Murphy, 2014; Jones and Lomas, 2016; Zhou and Yang, 2016; Girod et al., 2017).

Beyond these factors, researchers stress the focus on energy consumers’ end-use behaviour.

Lifestyle and habits impact the final use of energy, most often in an unpredictable way

(Zhou and Teng, 2013; Gram-Hanssen, 2014; Frederiks et al., 2015). Empirical research

indicates that behaviour (or comfort preference) is related to the socioeconomic charac-
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teristics, including income (Vassileva et al., 2012), household type (Bedir et al., 2013;

Huebner et al., 2015; Jones and Lomas, 2016; Girod et al., 2017), family age composition

(Mills and Schleich, 2012), and employment (Hayn et al., 2014). Additionally, ulterior

motives influence behaviour such as environmental consciousness (Gram-Hanssen, 2014;

Zhou and Yang, 2016), environmental innovation intention (Long et al., 2017b) and at-

titude towards environmental behaviour (Long et al., 2017a) which, ultimately, has an

impact on consumer’s intentions (Ajzen, 1991; Abrahamse and Steg, 2009).

The aforementioned socioeconomic and behavioural characteristics are also studied as

relevant reasons prompting consumers to choose high-labelled appliances. The results

from a 2014 Organisation for Economic Co-operation and Development (OECD) survey

on household environmental behaviour and attitudes identified potential factors behind

consumer choices on energy efficiency investments as home ownership, income, social con-

text, and household energy conservation practices (Ameli and Brandt, 2015). Various

analyses, based on different surveys in an international context, resulted in similar con-

clusions (Mills and Schleich, 2010b; Gaspar and Antunes, 2011; Qiu et al., 2014; Jacobsen,

2015). In the Danish context, although previous studies have used survey results to assess

the factors influencing household electricity consumption (Bartiaux and Gram-Hanssen,

2005), efficient utilization of household appliances (Nielsen, 1993), and patterns of do-

mestic electricity use (Gram-Hanssen et al., 2004), to the best of our knowledge none

has focused on purchase propensities in relation to energy efficient household appliances.

Moreover, while other studies made use of energy-related behaviours and habits in con-

sumer models (Gaspar and Antunes, 2011; Kavousian et al., 2013; Krishnamurthy and

Kriström, 2015; Ameli and Brandt, 2015), none has performed an extensive investiga-

tion of such energy end-use behaviours. In fact, in this paper we analyze interrelations

among various behavioural components to investigate which actions make the consumer

more likely to invest in EE appliances and if specific end-use behaviours are related to

particular living conditions.

The science of consumer behaviour and energy literacy–that is, the ability of consumers to

make rational decisions on EE investments (Brounen et al., 2013)–adopts and employs en-

ergy efficient behavioural measures, equipment, intentions and planned behaviour (Abra-

hamse and Steg, 2009; Ajzen, 1991; Long et al., 2017a). Often, when designing appropri-

ate tools, the economic theories on consumer’s choices are based on rational maximizing

models describing how consumers should choose (normative theories) rather than how

they do choose (descriptive theory). Results from orthodox-economic models where the

consumer is depicted as a robot-like expert, can thus be a poor prediction of the actual

behaviour of the average consumer (Thaler, 1980). Realistic empirical studies provide

evidence that consumers don’t always act rationally and their choices are influenced by a

myriad of non-rational influences. Thus, consumer behaviour models, if wrongly formu-
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lated, can lead to misleading outcomes (Thaler, 1981). Realistic consumer behaviour is

crucial when designing proper tools for predicting or describing consumer choices. With

this in mind, in this paper we built a logistic regression model–validated using different

statistical tests–that accounts for socioeconomic and demographic variables as well as

behaviours, trying to capture non-rational influences on consumer choices. This model

provided us with interesting insights on the characteristics influencing the decision process

of the consumers when purchasing high-labelled household appliances.

Studies investigating the success of policies implemented, such as the ENERGY STAR

in the U.S. or A-G energy labels in Europe, show that financial incentives (subsidies),

energy audits, minimum energy performance standards (MEPS), energy literacy and re-

duced value added taxes for EE technologies contribute positively to the uptake of energy

efficient appliances and replacement of old equipment (De Almeida et al., 2011; Mills

and Schleich, 2012; Brounen et al., 2013; OECD, 2013; Murphy, 2014; Krishnamurthy

and Kriström, 2015; Datta and Filippini, 2016; Zhou and Yang, 2016; Girod et al., 2017).

Similar to MEPS, mandated energy efficiency measures (for new equipment) coupled with

properly designed and implemented public awareness campaigns results in legitimate en-

ergy savings (Wyatt, 2013; Frederiks et al., 2015; Young, 2008). A recent analysis on the

Danish market, for example, showed that new labelling schemes lead to a notable increase

in the sales of EE appliances (Bjerregaard and Framroze Møller, 2017). However, in con-

trast, some of the literature on the efficacy of policies and information campaigns showed

that a large portion of the population is still unaware of energy labelling (De Almeida

et al., 2011; McMichael and Shipworth, 2013; OECD, 2013; Zhou and Yang, 2016) or

energy conservation behaviour measures (Brounen et al., 2013). Finally, recent research

has shown that policies and actions need be tailored to specific households, tenants and

technologies since a generalized approach might not work as efficiently and lead to less

than desirable outcomes (Vassileva et al., 2012; Frederiks et al., 2015; Krishnamurthy and

Kriström, 2015; Jones and Lomas, 2016; Chai and Samatha, 2017; Girod et al., 2017).

Following this literature, in this paper we suggest improved energy efficiency policies that

indeed target key demographics identified through our purchase propensity analysis.

8.3 Data and model

The primary dataset analysed in this study is the DEA’s bi-annual survey “El-model

Bolig”, the goal of which was to collect information about consumers’ purchasing and use

of household appliances. Although the survey is performed every two years, the 2012 set

was chosen over the most recent dissemination because the 2012 survey uniquely contains

questions on the efficiency labelling of major household appliances. The total number
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of survey respondents, or observations, was 2053; however, we removed 337 observations

due to missing values giving a final sample size of n = 1716. The survey comprises about

340 questions in total. The number of questions for each respondent, though, depends

on logical operators and reported ownership–for instance, a respondent without a freezer

will not be asked questions about its usage. The sampling was conducted under random

block design as to approximately represent Denmark’s geographic and housing category

distributions (apartments, farmhouses etc.), and was not stratified with respect to other

socioeconomic and demographic variables.

8.3.1 Socioeconomic, demographic, and behavioural variables

The primary variables of interest from the survey are the socioeconomic and demographic

variables listed below, chosen with the intention of predicting investment in the highest

EE labelling.

• Age: an ordered categorical variable whereby Age 1 = 18–29 years, Age 2 = 30–39

years, Age 3 = 40–49 years, Age 4 = 50–59 years, and Age 5 = 60 years or older.

• Quantity of inhabitants: recorded as a continuous variable in the original survey

dataset, counting the total number of adults and children living in the respondents’

household.

• Housing type: four choice levels given by apartment, farmhouse, single/detached

(referred to as “single” henceforth), and townhouse.

• House size: an ordered categorical variable with 8 levels from less than 39m2 to

over 200m2 interior floor space.

• Year built: an ordered categorical variable with 6 levels for the year a house/apart-

ment was constructed, ranging from before 1900 to 2001 or newer.

• Income: gross household income (before taxes).

• Investments in EE appliances, that is, the labelling of most recent purchased appli-

ance.

Beyond questions about appliance investment and ownership, the survey contains a wealth

of questions regarding end-use behaviour for appliances and heating systems. Several of

these questions can capture whether the consumer performs daily activities classifiable

as energy efficient behaviour. Questions like “How full do you fill your clothes/washing
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machine on a normal use” or “Do you turn off the power socket during the night” have

thus been used (see Appendix 8.6.1 for the full list of questions included in the index). We

incorporated these unique responses by computing a behavioural energy efficiency index,

abbreviated throughout the paper as EE-index. The combination of these variables in

the index represents a level of energy consciousness and intent to save energy for both

electricity and heating. For example, managing heating between night and day (turn heat

down at night) or removing power sockets after use are all positive EE indicators.

To compute the EE-index, we assigned each question an equally weighted point: 1 for

positive energy saving behaviour, 0 for poor behaviour. Although in theory different

actions can result in different levels of energy savings, the survey does not contain detailed

appliance and action characteristics (e.g., appliance type, capacity, consumption, time

of use) that enable directly quantified savings nor define action-specific weights. All

questions are weighted equally with scores normalised per each respondent’s appliance

portfolio. Of course, not all respondents own oil or natural gas heating, for instance.

Thus, to compare respondents with differing levels of appliance ownership, the individual

scores were standardized by their individually maximum possible score (see Appendix

8.6.1 for the percentage of respondents eligible for each question). The score is defined

for each consumer j ∈ {1, . . . , n = 1716} in the sample as

EE-indexj =
1

Qj

Q∑
i=1

Zij,

where Q is the total number of questions, Qj is the count of eligible questions for re-

spondent j, and Zij equals 1 for a point awarded to respondent j for question i. Eligible

questions Qj are counted according to the appliance ownership profile of respondent j. For

example, a respondent without a washing machine will not be scored nor counted in Qj

for questions pertaining to washing machine use. The index is on a [0, 1] scale. Of course,

more appliances (greater summed Qj) will decrease the marginal weight of each point,

that is, the index is less sensitive to those with many appliances or eligible questions.

The survey also contains additional questions regarding profession of respondent and

spouse, lighting system and electricity consumption. In addition to the EE-index, we

thus calculated:

• a “job index” whereby the respondents’ professions were ranked per average years

of training or education on a scale from 1 to 10 for the job categories included in the

survey. This job index was then considered a potential predictor of EE appliance

investment.
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• a “light score” assessing the respondents’ ownership of EE lighting. The light score

is calculated as the ratio of reported saving light bulbs, or EE lighting (for instance,

LEDs and compact fluorescent lamps), to the total sum of both EE lighting and

traditional incandescent light bulbs. Thus, the score is normalised on a [0, 1] scale.

• the “know el.”, representing a non-socioeconomic binary variable equalling 1 if the

respondent reports to currently know her annual electricity consumption, and 0 if

the respondent reports not knowing.

Table 8.1: Explanatory variable name, type, and description

Explanatory variable Type Description

Qty. inhabitants continuous Number of household inhabitants, from 1 to ≥ 8

House type categorical 4 levels: apartment, farmhouse, single house, townhouse

House size categorical 8 levels, from less than 39m2 to over 200m2

Year-built categorical 6 levels, from < 1900 to ≥ 2001

Age categorical 5 levels: 18–29, 30–39, 40–49, 50–59, 60 or older

Income continuous Gross household income, in [0,+∞]

EE-index continuous Behavioural energy efficiency index, in [0,1]

Job index continuous Average years of education/training, in [1,10]

Light score continuous Energy efficiency lighting ownership, in [0,1]

Know el. categorical Knowledge of own electricity consumption, in {0,1}

In Table 8.1 we present a summary of the explanatory variables used in the model, and

their characteristics. Lastly, we are interested in the investments in EE labelled appli-

ances. The survey asked each respondent to state the energy labelling of a given appliance

they report to own or which they had recently purchased. The full set of appliances in

the survey are: combination washer-dryer, washing machine (standalone), dryer (stan-

dalone), dishwasher, combination fridge/freezer, fridge with integrated box freezer, fridge

(standalone), chest-freezer, and a standing freezer. For some of the appliances (e.g., chest-

freezer) too few respondents reported ownership, not allowing us to make a meaningful

analysis per each individual appliance. Thus, the set is aggregated to a singular latent

variable: “for her most recent purchase in any one of these appliances, has the consumer

invested in the rating A+ or higher?” Because of such aggregation, 68% of respondents

reported EE investment while 32% did not. The rest of the paper focuses on identifying

which of the explanatory variables best distinguish these two groups of consumers. We

first present descriptive statistics for the modelling sample and compare them against

national statistics.
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8.3.2 Dataset validation

To verify that our dataset provides a good representation of Denmark, we compared

the distribution of the socioeconomic factors in our modelling sample against the 2012

national statistics from Statistics Denmark (DS; see DS, 2017b).

The age distributions of the survey sample and DS are displayed in Figure 8.1. The

distribution of the survey sample is slightly skewed towards middle and elder ages since,

typically, it is the head of the household who is answering the survey. This explains why

age level 1 is only 7% of the survey sample while age level 4 is 32%. The remaining classes

are similar to those of DS.
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Figure 8.1: Age of respondents: survey sample and national statistics

The survey distribution of the number of inhabitants is displayed in Figure 8.2 and is

deemed fairly representative. Some differences compared to the national statistics hold

for one and two inhabitants per household, but overall are acceptable.
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Figure 8.2: Quantity of inhabitants: survey sample and national statistics

Regarding housing age, Table 8.2 shows that the 2012 distribution of year built in the

survey sample closely matches that of official registries, thus, it is representative of Den-

mark.

The variables for which a comparison was not possible include housing type and income.

Regarding housing type, the categories used in the survey diverge from those recorded
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Table 8.2: Housing year built: survey sample and DS.

Year built Sample DS
Before 1900 8% 9%

1900–1925 11% 12%

1926–1950 15% 16%

1951–1975 34% 32%

1976–2000 25% 23%

2001 or newer 7% 8%

in the official statistics. For example, DS includes student housing and cottages, which

are ignored by the survey. Moreover, DS includes some detached housing types in its

farmhouse category, whereas the survey farmhouse category explicitly pertains to prop-

erties with land holding. As a consequence, a comparison between DS and the survey

housing type distributions would be misleading. Regarding income, the survey originally

reported the total household income before taxes, whereas DS reported the “disposable

equivalised income”, which is the household income after taxation divided by a weighted

number of adults and dependents living in the given household (DS, 2015). Therefore, any

comparison would be inaccurate due to the different income calculation and the inability

to assume taxation rates on the survey’s gross incomes and convert gross incomes into

disposable incomes.

8.3.3 Consumer investment model

Consumer behaviour in relation to investments in household energy efficient appliances

is evaluated with a discrete choice model. The merit of this modelling framework is the

ability to empirically test the predictive strength of the survey’s explanatory variables.

Specifically, we use a logistic regression model that is constructed as follows. The EE

investment is considered as a binary outcome Y (1 = investment, 0 = no investment) and

the model assumes that

logit(P (Y = 1 |X1 = x1, ..., Xn = xn)) = log
P (Y = 1 |X1 = x1, ..., Xn = xn)

1− P (Y = 1 |X1 = x1, ..., Xn = xn)

=β0 + β1x1 + ...+ βnxn,

where X = [X1, . . . , Xn] represents the vector of all explanatory variables discussed in

Section 8.3.1 (age, income, type of house, EE-index etc.) and β = [β0, . . . , βn] the weight

vector. The dependent variable Y represents a single investment in an A+ or higher

labelled appliance among a set of nine appliances listed in the survey (the set of appliances
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is considered as aggregated to maintain an adequate sampling size and distribution, as

discussed in Section 8.3.1).

To estimate the model, the weights β are fitted through logistic regression on the survey

data via the logit maximum likelihood function. Then, given the estimates β̂ = [β̂0, . . . , β̂n]

and the characteristics of a consumer x = [x1, . . . , xn], the resulting predicted joint-

probability of EE appliance investment π, or the probability that Y = 1, is computed

as:

π = P (Y = 1|X1 = x1, ..., Xn = xn) =
exp(β̂0 + β̂1x1 + ...+ β̂nxn)

1 + exp(β̂0 + β̂1x1 + ...+ β̂nxn)
.

8.4 Results and discussion

8.4.1 Model estimation

Table 8.3 reports the outcome of the multivariate regression consumer investment model,

computed with the software R. The final regressors are chosen, according to common

practice, using a backwards elimination process until the model only contains statistically

significant explanatory variables (Derksen and Keselman, 1992). The factor levels age

Table 8.3: Consumer investment model estimates. Significance codes for p-values: 0.001 ‘***’,
0.01 ‘**’, 0.05 ‘*’, 0.1 ‘.’

Explanatory variable β̂ estimate Std. error p-value Significance level

Intercept -2.001 0.295 < 0.001 ***
Income 0.076 0.030 0.013 *
Light score 0.480 0.180 0.007 **
EE-index 0.762 0.303 0.010 *
Know el. 0.221 0.127 0.082 *
Qty. inhabitants 0.198 0.066 0.002 **
Farmhouse 0.673 0.230 0.003 **
Single house 0.550 0.142 < 0.001 ***
Townhouse 0.304 0.173 0.079 .
Age group 2 0.674 0.267 0.011 **
Age group 3 0.683 0.245 0.005 **
Age group 4 0.712 0.242 0.003 **
Age group 5 0.849 0.244 < 0.001 ***

group 1 and apartment are considered model reference levels and thus do not respectively

have model terms. The joint probability for age group 1 and apartment is considered
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to be the estimate of the model intercept, or the probability of investing when all other

variables are set to 0. One can see that the explanatory variables positively affect the total

probability of EE investment choice. For example, assuming all other variables constant,

by increasing income of one unit (100,000 DKK), the expected odds of choosing an EE

appliance will be 1.079 times greater (since exp(0.076) = 1.079).

The values in Table 8.3 represent the outcome of the final model only. Other explanatory

variables, as house size or job of the respondent, were included in a previous larger model

but discarded in the backward elimination process. Table 8.4 reports the dropped ex-

planatory variables (that is, with p-values higher than 0.1) along with their β̂ estimates.

The dropped model estimates show that the year in which the building was built, the size

of the households and the job of the respondent appear not to be relevant characteristics

to predict selection of EE appliances.

Table 8.4: Consumer investment model estimates for the dropped explanatory variables.

Explanatory variable β̂ estimate Std. error p-value

Year-built 0.045 0.044 0.313
House size 0.005 0.032 0.867
Job index 0.014 0.017 0.410

The final model adapted for the analysis has been validated to prove the consistency of

the findings and assess the reliability of the model. Different criteria have been used for

model diagnostics:

1. The Hosmer-Lemeshow’s Goodness of Fit test is widely used in logistic regression

to prove the fit between the model and the data (Hosmer and Lemesbow, 1980).

It tests against the null hypothesis H0 of observed investment rates matching the

predicted ones, and returns a p-value. A p-value lower than 0.05 suggests that the

model does not adequately predict the binary outcome of Y and should be rejected.

The outcome of the test was a p-value of 0.33, meaning there is no evidence to reject

the model.

2. The McFadden R-squared test is similar to the R-squared test but based on the

rho-squared measure (McFadden, 1977). The test returns a value representing the

predictive ability of the fitted model compared to the null model, that is, a model

with only an intercept and no covariates. According to the test, any result between

0.2 and 0.4 represents an excellent fit. The outcome for our model was a value of 0.21.
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8.4.2 EE-index and light score

We summarise the most important variables in the EE-index composition in the form of

a heatmap in Figure 8.3. The EE-index variables are divided by housing type and, for

brevity, they are listed in their coded format (see the Appendix for full description). The

graph reports the ratio r whereby the numerator is the total sum of points for question

i for all of respondents in housing type k, and the denominator is the sum of eligible

respondents per question, per housing type. The ratio r allows for relative comparisons

within and between each housing type: a block at 100% indicates that all respondents of

housing type k received points for that particular question. For example, question X587

has one of the greatest relative importance for farmhouses (indicating whether or not the

respondent turns her natural gas heating to summer mode).

Apt

Farmhouse

Single

Town

X
31

7

X
25

59

X
31

8

X
32

2

X
33

4

X
40

1

X
34

2

X
35

9

X
48

7

X
49

0

X
25

7

X
25

9

X
52

3

X
53

2

X
53

5

X
55

1

X
55

2

X
58

0

X
58

1

X
58

3

X
58

4

X
58

5

X
58

6

X
58

7

X
62

8

X
66

4

X
66

5

X
66

6

Question in EE_index calculation

H
ou

si
ng

 ty
pe

0.25 0.50 0.75 1.00
# of points per housing per question / # questions eligible per housing per question

Figure 8.3: Heatmap with ratio r showing relative percentage of EE-index points by housing type.

We noticed that the housing types differ with respect to the EE-index and its composition.

Some questions as X359 and X401 are relevant for all housings types with scoring close

to 100% (one point awarded if the dishwasher and washing machine, respectively, are

filled to over 50% per average use). In contrast, question X334 is relatively less important

for apartments (one point awarded if owners of standalone washing machines normally

wash at the highest RPM setting). Some questions carry little weight in the final score

calculations since they pertain to specific heating technology behaviours such as X666 (a

point awarded if the respondent applies a normal step circulation pump in her radiant

heating system).

Figure 8.4 shows the correlation between each of the EE-index questions. The purpose of

the graph is (i) to assess whether performing a specific energy end-use action is correlated

to other actions, and (ii) to identify overall trends in end-use from the survey sample

data.

An examination of these correlations reveals that there are several clusters of positively

correlated variables, indicated by the dark blue colours. For example, one cluster is for
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Figure 8.4: Correlation matrix of all EE-index questions

variables X317, X318, and X322, all related to dryer usage. Another positive cluster

includes X487, X490, X523, X532, X551, and X552 which pertain to whether or not

the respondent removes a specific appliance from the power socket after use. Also, a

cluster includes variables X664, X665, and X666, pertaining to behaviour with heating

technologies, such as turning your circulation pump to summer mode. The prevalence of

these positively correlated clusters suggests that consumers generalize their behaviour by

appliance. For example, a consumer who normally washes clothes at a low temperature

is more likely to report EE conscious behaviour on remaining washing machine questions.

The correlation analysis also shows that there are few negatively correlated variables.

Figure 8.5: Probability distributions for EE-index (left) and light score (right).

The EE-index scores, shown in Figure 8.5 (left), present a distribution with a mean of
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0.49 and a standard deviation of 0.17 which resembles a normal distribution. In Figure

8.5 (right) we also display the distribution of the light score. The score is highly left tail

skewed. Moreover, more than 30% of respondents reported having only EE lighting (no

incandescent lights), explaining the peak corresponding to an index value in the interval

[0.9, 1].

8.4.3 Purchase propensity curves

Propensity curves have been computed to study how the predicted probabilities in EE

appliance choice change per variations in the explanatory variables. The curves are evalu-

ated varying one variable at a time, while keeping the others fixed to the following values:

income is kept fixed to 400,000 DKK, EE-index, light score and know el. are kept fixed

to 0.5, number of inhabitants to 2 and age to class 3.

Figure 8.6 shows the development of the expected probabilities for different levels of in-

come. The trends suggest that the higher the income, and consequently wealth, of the

respondent, the higher is the probability that the same respondent will choose more effi-

cient household appliances when investing. The curves are reported for the different type

of dwellings to simplify the understanding of the analysis. The differing levels (intercepts)

of the curves illustrates the importance of the house type factor: the propensity curves

for choosing energy efficient appliances for farmhouses and single houses are on average

more than 10% higher than apartments, and up to 15-17% higher for low income levels.
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Figure 8.6: Predicted probability of investing in EE appliance by income.

Figure 8.7 and 8.8 report the development of the probabilities for the number of inhabi-

tants and EE-index, respectively. The figures show that a higher number of people living
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in the dwelling, as well as a higher EE-index, results in a greater predicted propensity

for choosing energy efficient appliances. The curve levels for different housing types are

consistent with those of Figure 8.6, with farmhouses and single houses being substantially

higher than apartments.
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Figure 8.7: Predicted probability of investing in EE appliance by inhabitants.
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Figure 8.8: Predicted probability of investing in EE appliance by EE-index

Figures 8.9 and 8.10 illustrate respectively, the point-wise estimated probability for vary-

ing age and housing type, along with 95% confidence intervals. The results suggest that

older respondents have a higher propensity to choose energy efficient appliances, as only

the groups 2 through 5 differ significantly from group 1. Likewise, the range of the

confidence intervals varies for the different type of dwellings. The apartments and sin-

gle family houses present larger variation compared to other housing types. Also, the

predicted probability is the highest for farmhouses and the lowest for apartments.

The probabilities of choosing EE investments resulting from the model can be perceived

as generally high (e.g., the average rates are above 50–60%). This is explained by the

original distribution of the reported survey data. Finally, we assessed the robustness of
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Figure 8.9: Predicted probability of investing in EE appliance by age.
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Figure 8.10: Predicted probability of investing in EE appliance by housing type.

the model using a marginal effect plot with a bootstrap error, displayed in Figure 8.11

for the different variables.

This analysis is employed to assess the sensitivity of the originally computed model es-

timates to statistical assumptions. The bootstrap method draws 1000 random samples

from the original survey data, recalculating model estimates 1000 different times. If the

bootstrapped estimates and standard errors deviate substantially from the original val-

ues, there is evidence of major violations of statistical assumptions (that is, collinearity or

low predicting power resulting from few observations). Like the original coefficients, the

marginal effects can be seen as partial derivatives of total joint-probability function. The

average of the re-sampled marginal effects is the midpoint, while the tails illustrate the

95% confidence interval. The bootstrapping shows that the income is hardly significant

and casts some doubt about the strength of income to predict EE investment choice, com-

pared to the more qualitative EE-index and house setting. Given the results, farmhouses

are more likely to choose EE appliances when compared to other house types.
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Figure 8.11: Marginal effects with bootstrap errors of the explanatory variables

8.4.4 Discussion of the results

The positive correlation between household income and EE appliances adoption concurs

with previous studies (Long, 1993; Mills and Schleich, 2010a; Sardianou and Genoudi,

2013; Ameli and Brandt, 2015). However, our results show that income is not one of

the strongest predictors to EE appliance purchases when compared to other variables

considered. This finding might be specific to Denmark, a country with relatively high

income and social welfare; in other countries, household income could possibly reveal to

be the strongest predictor. Moreover, given the available data and logistic modelling

assumptions, there is no convergence to 100% probability of investment for the highest

income classes. In fact, even the highest earning consumers are unpredictable in their

choices, and as mentioned, driving factors extend beyond energy efficiency to include

cost, quality, brand, and functionality (Gaspar and Antunes, 2011; Baldini and Trivella,

2017).

The building type is one of the strongest predictors of EE appliance choice. In particular,

the values of the estimates in Table 8.3 show that farmhouses and single family homes

residents are significantly more likely to choose EE investments than apartment residents.

The related purchase propensity curves in Figures 8.6–8.8 also highlight the relevance of

the household type for this analysis. The curves vary because consumers living in dif-

ferent housing types, on average, own a different number of household appliances and

have different levels of wealth and lifestyle. This translates into an energy end-use and

attitude towards energy efficiency and environment that can vary substantially among
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these groups. Apartments, for example, are associated with a lower probability of pur-

chase because they are often rented out, and renters are less sensitive to energy-efficiency

investments due to the short length of the stay (see our related discussion Section 8.5.2).

In contrast, farmhouse dwellers typically own the property. Moreover, they are in general

more sensitive towards energy-efficiency because farmhouses are, on average, larger than

apartments and contain more appliances thus incurring higher expenses for electricity

and heating. This leads to a higher purchase propensity as also confirmed by our results.

Consistently with this discussion, single houses and townhouses lie somewhere in between

as shown in Figures 8.6–8.8. Previous studies focusing on more specific investments (heat

pumps, EE windows) agree with such correlation (Mills and Schleich, 2009; Michelsen

and Madlener, 2012; Ameli and Brandt, 2015). More technical housing variables such as

house size or year of construction appear instead to be insignificant.

Regarding age, respondents younger than 30 years are significantly less likely to invest

in EE appliances. Other studies suggest that age, as a predictor, is sensitive to specific

technologies: older consumers are more likely to invest in EE light bulbs (Mills and

Schleich, 2010a; Mills and Schleich, 2010b), renewable energy technologies as wind mills

and solar photovoltaic (Willis et al., 2011), but not heat pumps (Mills and Schleich, 2009;

Willis et al., 2011; Michelsen and Madlener, 2012).

On the quantity of inhabitants, the estimates confirm the positive relationship: the odds

of investing in EE appliances increase with inhabitants. Several other studies achieved

a similar conclusion (Mills and Schleich, 2010b; Mills and Schleich, 2012; Ameli and

Brandt, 2015). A larger household inhabitancy results in greater and more intensive

energy consumption; reasonably, these households would have a greater incentive to invest

in energy savings assuming rational economic behaviour (Bartiaux and Gram-Hanssen,

2005).

The variables light score and know el. result in comparatively strong, positive parameter

estimates. Respondents with more EE lighting and those who report knowing their own

consumption choose more efficient appliances at the moment of purchase; this suggests

that one EE conscious behaviour begets the next.

The EE-index’s high significance (and especially large parameter estimate) shows how

daily energy conservation actions such as turning off the power socket by night and

adapting the heating system to the seasons strongly predict the choice of investing in

EE appliances. The positive relationship could be expected since it alludes indirectly

to environmental stewardship and energy savings attitudes (and also economic savings).

Nevertheless, this paper provides empirical evidence that energy end-use daily actions

are correlated with EE investment. Furthermore, the correlation matrix of all the EE-
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index questions, showing the correlation between the pertinent energy-savings end-uses,

has highlighted that particular EE conscious behaviour begets some others. Thus, an-

other practical finding from the EE-index analysis is that respondents generalize their EE

behaviour by appliance group.

The correlation between overall high EE-index scores and A+ label investment poses

a future research question: do respondents generalize their appliance specific behaviour

because they purchased an A+ label (i.e., I buy green therefore I act green), or do re-

spondents seek A+ appliances because they perceive their previous behaviours as green

and efficient. One avenue for future research could be to test this relationship through

a combination of surveying and direct end-use observations. Observational data is now

possible through advanced metering infrastructure and smart appliances. Though there

are privacy concerns, observational data would greatly complement a survey sampling

which are inherently prone to bias and response errors.

8.5 Conclusions and policy implications

The study aimed to understand which characteristics lead consumers to choose energy

efficient appliances at the moment of purchase. Using data from a DEA survey and

a statistically sound logistic regression model, socioeconomic, behavioural, and housing

characteristics were found to be highly significant when explaining the choice of invest-

ments in EE appliances, with housing type and EE-index being the strongest of these

predictors. Particular focus was given to the EE-index, combining all behavioural charac-

teristics pertinent to energy savings, and proving that consumers who performed energy

conservation actions regularly were more likely to choose EE appliances.

The outcomes of the study spark suggestions about relevant policy measures. Even though

energy efficiency continues to rise among most appliances (Barbieri and Palma, 2017),

there are still large groups of the population that for many reasons do not invest in EE

appliances. Given the importance of socioeconomic characteristics highlighted by our re-

sults, existing labelling directives should be assisted by product designs and promotion

targeting citizen with such characteristics, for instance, using subsidised rebates and dis-

counts for consumers who are least likely to undertake the investment. Following the

results of this work, we identified three major points that should be addressed while

outlining energy saving policies: (i) future development of appliance ownership and pop-

ulation housing, (ii) building ownership versus renting, and (iii) evolution of information

campaigns.
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8.5.1 Trends of appliance ownership and population housing

As policies are meant to be effective in the long term, it is fundamental to consider the

future evolution trends of the appliances. The online tool El-model Bolig - prognose

(El-model buildings - prognosis, in English; DEA, 2017b), developed by DEA, provides

forecasts of appliance ownership based on the same 2012 El-model Bolig survey data

employed in this analysis, as well as other survey editions (2006, 2008, 2010, 2012 and

2014). The tool allows user-specified inputs and can produce either linear or Gompertz

forecasts of appliances’ characteristics such as lifetime, sales, quantity, energy use and

sales number. Figure 8.12 reports Gompertz forecasts for the sales of five of the major

energy intensive household appliances for apartments (left) and detached houses (right),

for the period 2017–2050. The forecasts do not contain labelling information, but provide

a projection based on simple historical ownership data.
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Figure 8.12: Sales forecasts of different appliance categories for apartments (left) and detached
houses (right).

The projections for the apartments and detached housing illustrate increasing ownership,

suggesting that residents of apartments and detached houses should be targeted for energy

efficiency policy related actions. The raising trend of appliances for these housing types

is largely due to an underlying increase in Danish urban populations and housing centres

(Trading Economics, 2017). Broadening the scale, this trend is consistent with the recent

global trends showing that world’s population is increasingly urban with more than half

living in urban areas (UN, 2014). As urban populations and the number of urban centres

continue to grow, rural populations are expected to decrease. These trends entail a shift

of housing conditions to more apartments, implying a change in the energy consumption.

Considering these trends and the results of our study, the authors suggest that policy

makers emphasise energy efficiency awareness campaigns for urban citizens, for example,

by establishing energy audits to sensitise these users on the contribution of each appliance

to total household energy consumption and on the benefits that specific energy efficiency

investments would bring in the short and long run. With the underlying assumptions that
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the population does not choose EE appliances partly due to lack of knowledge regarding

the benefits of energy saving, subsidies should thus be directed to increase the awareness

of energy efficient appliance choice with additional focus on end-use behaviour. This

should lead to more conscious energy use and savings, which in turn, as suggested by our

findings, is correlated to a higher uptake of energy efficient appliances.

8.5.2 Building ownership versus renters

The status of home ownership should also be considered for targeted information cam-

paigns. Intuitively, renters are less likely to choose EE appliances as it is improbable that

such investments will break-even; in other words, renters would not enjoy the long run eco-

nomic benefits of investing in energy efficiency. In fact, the payback time of investments in

EE appliances is usually in the range of 5–25 years (Baldini and Trivella, 2017) while the

average stay for a renter is shorter. Also, the lifetime of new appliances generally overruns

the stay of renters within the building or even in the city and furthermore, particularly

for large appliances such as fridge or dishwasher, the transfer to a new location implies

logistic challenges. Empirical analyses have also found that renters were significantly less

likely to invest in EE refrigerators, clothes washers, dishwashers, and lighting, for example

(Davis, 2012; Krishnamurthy and Kriström, 2015). Special focus should be on designing

subsidies for short term renters, like students, who are usually the least likely to undertake

high upfront investment. In addition to living in rented apartments, students have low or

no income and are generally younger than 30, all being socioeconomic factors leading to

a low adoption rate of EE investments, as indicated by this study. To this end, dwelling

owners could benefit from discount rebates when purchasing high-labelled household ap-

pliances for renting purposes. This would consequently help short term renters and in

particular students who would enjoy EE appliances without bearing high investment cost.

In Denmark, home ownership levels are geographically disparate, being higher in country-

side municipalities (50–65%) and lower in the main cities (e.g., only 20% in Copenhagen)

(Kristensen, 2007). Moreover, population forecasts project growth rates of 5–10% across

Danish urban centres contrasted to decreasing population rates in rural Western areas

(DS, 2017a), supporting our overall recommendation of information campaigns directed

especially towards apartment renters.
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8.5.3 Evolution of information campaigns

In the past years, Denmark has been active concerning energy efficiency awareness cam-

paigns. Beyond the EU labelling scheme, Ecodesign requirements, and other broad-stroke

energy savings targets, there are several Denmark-specific examples pertinent to this

study. SparEnergi.dk (DEA, 2017c) represents Denmark government’s most advanced

platform for helping consumers to make energy savings decisions. Launched in Novem-

ber 2013 by DEA, the website contains a wide range of information on how to interpret

the current energy labelling for appliance groups (washing machines, dryers, fridge and

freezers, lights), along with minimum labelling recommendations (e.g., A for combined

washing machine/dryers, A++ for standalone dryers). The guidelines also focus on the

size of the appliances and the monetary and energy savings resulting from the choice of a

more efficient appliance compared to another. The platform provides suggestions about

consumers’ end-use behaviour; for example “fill the machine completely”, “turn down the

temperature”, “short program”, “clean filters”, “leave room for ventilation” are all listed

as means to reduce the energy consumption and achieve savings.

Therefore, the problem seems to be not the information itself, or lack of, but rather

dissemination. Policy makers should thus improve the means of communication regarding

energy efficiency. With respect to the degree of labelling influence, a recent analysis of

EU-member residential energy efficiency policy over the period 1974–2016 casts doubt

(Filippini et al., 2014). The study indicated that information campaigns such as labelling

did not have a significant effect in promoting energy efficiency improvements over that

time period. This result, combined with the findings of our study, suggests that the

focus for future policies should extend beyond developing the labelling metric itself, to

considering what that metric actually means to the consumer in the moment of purchase.

A personalised app or a feature on a merchant website could convey a simplified trade-

off between energy efficiency and cost, such as payback times on a price-premium, for

instance, going from a dryer label A to A+++. On the matter, SparEnergi.dk has just

recently started operating free counselling services through popular social medias (Face-

book) and call centres (DEA, 2017a; Viegand Maagøe, 2017), to answer questions related

to household energy consumption. Given the recent progress and broad access to technol-

ogy, information campaigns should extend to technology-based platforms such as mobile

apps or social media so that they can reach a broader population. For example, local ad-

ministrations could create and manage a municipality-based social media page, explaining

the main factors contributing to the local household energy consumption and providing

recommendations on how to reduce it. After the first sparks, the “neighbours effect”

should induces the learning process and the dissemination of knowledge through families
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and networked communities, leading to a likelihood increase of adoption rates (McMichael

and Shipworth, 2013). Also, information and communication technologies can facilitate

the transition towards a smarter use of energy by increasing consumer awareness on the

impacts related to the number of devices as well as the importance of energy efficiency

(Røpke et al., 2010; De Almeida et al., 2011; Zhou and Yang, 2016). For example, smart

meters can play an important role by providing visual information about the disaggre-

gated consumption of household appliances or suggesting the consumer to conserve energy

during peak hours (Allcott, 2011).

8.6 Appendix

8.6.1 EE-index composition

Table 5 details the rationale and summary of all the variables included in the EE-index.

In particular, the table reports variable name, code, and the total number of respondents

that are eligible for scoring, meaning that they own the appliance the question refers to

and thus can be scored accordingly.
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