

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

A matheuristic for the driver scheduling problem with staff cars

Govinda Raja Perumal, Shyam Sundar; Larsen, Jesper; Lusby, Richard Martin ; Riis, Morten; Sørensen,
Kasper

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Govinda Raja Perumal, S. S., Larsen, J., Lusby, R. M., Riis, M., & Sørensen, K. (2018). A matheuristic for the
driver scheduling problem with staff cars.

http://orbit.dtu.dk/en/publications/a-matheuristic-for-the-driver-scheduling-problem-with-staff-cars(848c68dc-0b0d-44dc-8e8a-57e8594c2fa1).html

A matheuristic for the driver scheduling problem with staff cars

Shyam S. G. Perumal1,2, Jesper Larsen1, Richard M. Lusby1, Morten Riis2, and Kasper S. Sørensen3

1Department of Engineering Management, Technical University of Denmark, Kgs. Lyngby, Denmark
2QAMPO ApS, Aarhus, Denmark

3Trapeze Group Europe A/S, Aarhus, Denmark

Abstract

In the public bus transport industry, it is estimated that the cost of a driver schedule
accounts for approximately 60% of a transport company’s operational expenses. Hence, it
is important for transport companies to minimize the overall cost of driver schedules. A
duty is defined as the work of a driver for a day and the driver scheduling problem (DSP) is
concerned with finding an optimal set of driver duties to cover a set of timetabled bus trips.
Numerous labor regulations and other practical conditions enforce drivers to travel within
the city network to designated bus stops to start/end duty, to take a break or to takeover
a bus from another driver. This paper focuses on the driver scheduling problem with staff
cars (DSPSC), where staff cars can be utilized by the drivers to fulfill their travel activities.
However, staff cars should always be returned to the depot and can perform multiple round
trips during the day. The problem is restricted by the number of cars available at the depot.
We present a matheuristic for solving the DSPSC and the proposed method is tested on
instances from Danish and Swedish companies. A comparison with a state-of-the-art mixed
integer programming (MIP) solver indicates that the matheuristic provides better solutions,
with comparable computation times, for 6 out of 10 large instances. For instances that
have more than 6 staff cars and 1200 bus trips, the improvement is 13-15% on average.

Keywords: Transportation, Driver Scheduling Problem, Heuristics.

1 Introduction

Growing populations in cities worldwide demand well-organized public transport systems that
prevent long travel times, traffic congestion, road accidents and pollution. Public transport
systems are considered to be the backbone of sustainable urban development. The passengers
expect a high level of service; i.e., the transport system should be accessible, comfortable,
affordable and it should be possible to reach destinations quickly. The objective of transport
companies is to provide high quality service to the passengers while minimizing their overall
operational cost (Desaulniers and Hickman [2007]; Ibarra-Rojas et al. [2015]). Transport com-
panies are constantly faced with the challenge of planning for cities with large scale transport
systems. Government and EU policies, labor regulations and other practical conditions further
challenge transport companies to efficiently utilize their resources. As a consequence, over
the years, there has been an increase in the development of decision support tools based on
mathematical programming approaches to aid transport companies in planning (Desrochers
and Soumis [1989]; Wren et al. [2003]; Smith and Wren [1988]; Lourenço et al. [2001]). Typi-
cally, the transport planning process involves solving several planning subproblems as it is too

1

complex to solve the entire planning problem in one integrated step. The planning subproblems
include Timetabling, the Vehicle Scheduling Problem (VSP), the Driver Scheduling Problem
(DSP) and the Driver Rostering Problem (DRP). Public authorities often define the timetabled
trips, where the arrival and departure times at all bus stops in a city network are determined.
The timetabled trips are utilized by transport companies to schedule their buses and drivers.
The VSP assigns buses to the timetabled trips such that every trip is covered by a bus and
the objective is to minimize the operational cost based on bus usage. A bus typically covers a
sequence of trips from the time it leaves the depot until it returns to the depot. A driver duty
is defined as the work of a driver for a day and the DSP is concerned with finding an optimal
set of duties that covers all bus trips. Given a set of generic duties over a certain time horizon,
e.g. a month, the DRP assigns these duties to the available drivers.

In the DSP, transport companies have to plan driver schedules based on known bus
schedules. In most cases, the bus schedules are different on weekdays, weekends and holidays.
Hence, transport companies need to create driver schedule for each of these bus schedules. While
determining the driver schedule, companies must consider two important aspects: minimizing
the cost and ensuring feasibility of driver duties with respect to various labor regulations.
Most commonly, the cost comprises of wages paid to the drivers, which is known to be more
than the operational expenses of buses. It is estimated that the cost of a driver schedule
accounts for approximately 60% of a transport company’s operational expenses. Hence, a small
improvement in the cost of driver schedule can lead to large savings. For a Danish transport
company with over 600 drivers, it was shown that a reduction in cost of 1.2% represents 2-2.5
million DKK in savings in a year. Furthermore, the transport companies have to strictly abide
by the labor rules and regulations. The three most common rules that apply for all transport
companies are maximum working time for a driver, minimum/maximum number of breaks,
and maximum time between breaks. These rules forbid the driver from driving a bus over a
prolonged period and allow the driver to have sufficient breaks during the day. Hence, a driver
may cover only a few consecutive bus trips before the driver takes a break or is relieved of
duty. Another important condition for transport companies is the computation time required
to build a driver schedule. Planning departments of transport companies with their experience
in the bus transport industry and knowledge of the city network take three to four weeks
to manually create a new driver schedule. A decision support tool based on mathematical
programming approaches potentially eliminates the resources and the time required to plan.
Therefore, a decision support tool that provides optimal or near-optimal solutions in quick
computation time would assist transport companies to create and operate efficient transport
systems.

Transport companies must also consider other practical limitations in the city network
during the planning process. These limitations are concerned with the characteristics of the bus
stops. Only at certain bus stops can the driver be allowed to sign on/off duty or to handover
the bus to another driver. Furthermore, the driver is allowed to have a break only at certain
bus stops, which is dependent on the availability of facilities such as restroom and canteen.
Figure 1 illustrates an example of a duty where the driver covers a few trips. As it can be seen
in the figure, the driver usually has to travel during the day of work within the city network
to sign on/off duty, visit a bus stop where taking a break is allowed or takeover a bus from
another driver. If the distance between the bus stops is short, then the driver can travel by foot.
The driver can also travel as a passenger on a bus to designated bus stops. However, in some
cases, a bus stop can only be reached feasibly with use of a car. Transport companies usually
have a fleet of cars, which are defined as staff cars that the drivers could utilize. A driver, as

2

part of his/her travel activity, usually takes a staff car from the depot to visit another bus
stop and parks the staff car at the visited bus stop. Another driver may utilize the parked car
from the same bus stop and drive it back to the depot as part of his/her travel activity during
the duty. A round staff car trip is defined as the combination of a departure trip from the
depot and an arrival trip to the depot. A staff car can perform multiple round trips during
the day; however, a staff car should always be returned to the depot and only the limited cars
that are available at the transport company’s fleet can be used to fulfill the travel activities
of the drivers. Simultaneously, scheduling the drivers and the staff cars for the drivers gives
rise to the driver scheduling problem with staff cars (DSPSC), which is an extension of the
DSP. Such problems have not been reported in the Operations Research (OR) literature to the
best of our knowledge. The DSP is a very complex problem, similar structured problems have
been proven to be NP-hard problems (Fischetti et al. [1987]), and the DSPSC adds further
complexity to the DSP.

18:0417:25

Trip 22

6:25 6:50

Trip 2

7:00 7:44

Trip 3

7:50 8:35

Trip 4

8:45 9:04

Trip 5

5:47

Trip 1Bus 1

Time

Bus 3

10:25 10:50
Trip 52

11:15 11:34

Duty sign-on bus
stop

Longbreak bus
stop

Duty sign-off bus
stop

Travel

Travel Travel

Trip 53

Figure 1: The figure illustrates an example of a duty where the driver covers a few trips of
two buses. The red vertical lines represent the bus stops that the driver can handover/takeover
the bus to/from another driver. The red circles indicate the bus stops that the driver visits
during the duty to sign on/off or take a break.

Heuristic algorithms that are designed by combining metaheuristics and mathematical
programming techniques are known as matheuristics (Boschetti et al. [2009]). In this paper, we
propose a matheuristic for solving the DSPSC. A mixed integer programming (MIP) model,
exact method, is embedded in an adaptive large neighborhood search (ALNS) heuristic. Large
neighborhood search (LNS) was proposed by Shaw [1998] and the author applied the heuristic
to vehicle routing problems. LNS is based on a local search framework such as simulated
annealing (SA) or hill climber, where an initial solution is gradually improved by iteratively
destroying and repairing the solution using a destroy and a repair method respectively. ALNS
was proposed by Røpke and Pisinger [2006] where multiple destroy and repair methods are
defined within the same search. Each destroy and repair method is assigned a weight that
controls the selection of the particular method during the search. Problems, such as the
DSP, where Dantzig-Wolfe Decomposition has been used with success are good candidates for

3

LNS and ALNS heuristics (Pisinger and Røpke [2010]). Exact approaches are known to be
highly effective for small to medium sized instances of hard problems but are inefficient for
large instances; hence, heuristics are commonly used in practice (Jourdan et al. [2009]; Blum
et al. [2011]). However, metaheuristics based on a local search framework are often ineffective
for highly constrained problems where feasible areas of the solution space are disconnected
(Dumitrescu and Stützle [2003]). Muller et al. [2012] designed a matheuristic based on ALNS
for solving the lot sizing problem (LSP) with setup times. The authors’ motivation for using a
MIP model for the repair phase of the ALNS heuristic was that it could tackle the challenges
of constructing and exploring a neighborhood of a given solution. MIP models can be very
effective for exploring large neighborhoods within a local search procedure and guide the search
to move between feasible regions of the solution space (Jourdan et al. [2009]). Since the DSPSC
is considered to be a tightly constrained problem, where even finding a feasible solution could
be challenging, the matheuristic approach is viewed as a powerful optimization method for
solving it. In 2009, Jourdan et al. [2009] stated that there has been an increase in number
of works carried out on matheuristic approaches. The approach’s ability to simultaneously
exploit advantages of heuristics and exact methods has led to obtaining best solutions for
most practical problems.

Trapeze Group Europe A/S (TGE) is an international provider of decision support tools
within planning and operations for both public and private transport companies. Real-life
instances of the DSPSC from a Danish and a Swedish transport company were acquired from
TGE’s system for this paper. Since DSPSC is a very realistic problem, this paper primarily
contributes to research areas within traditional DSP and within applications of OR techniques
for improving efficiency of transport systems.

This paper is organized as follows. Section 2 gives a description of the existing literature
related to the DSP. In Section 3 we provide a formal description of the DSPSC with the help of
a mathematical model. Section 4 introduces the proposed matheuristic framework for solving
the DSPSC. The section also gives an outline of a greedy heuristic that provides an initial
solution. Section 5 details the computational study based on experimental tests performed
on instances from Danish and Swedish transport companies. Finally, Section 6 concludes the
paper and addresses future directions of research. We also briefly discuss the challenges of
integrating mathematical programming approaches such as the proposed matheuristic into
decision support tools.

2 Related Literature

Common formulations of the DSP are based on set partitioning/covering problem (SCP),
where the formulation is used as a duty selection module with the selected duties covering
all bus trips at minimum cost (Ibarra-Rojas et al. [2015]). To find the optimal solution, all
the feasible duties have to be considered in the SCP formulation. Due to potentially being
a large number of possible duties, the formulation is intractable by exhaustive enumeration
techniques. Some authors, e.g.-Smith and Wren [1988] and Wren et al. [2003], have considered
reducing the number of duties being generated before solving the SCP. Smith and Wren [1988]
heuristically generate a feasible subset of duties for the SCP. The SCP is solved by relaxing the
integrality constraints and an integer solution is found using a branch-and-bound algorithm.
The algorithm terminates when the current integer solution is within 0.5% of the integer
optimum. The authors had developed the method as part of a commercial software system

4

and reported some of the experiments run on the system. The largest instance included 309
constraints (bus trips), 4892 variables (duties) in the SCP formulation and the best integer
solution was found in 238 seconds. Similar to Smith and Wren [1988], Wren et al. [2003] solve
the SCP by considering only a subset of feasible duties. A large set of potential driver duties is
generated and refined by heuristic procedures. The authors focused more on combining theory
and practice to create a user-friendly and flexible system. Portugal et al. [2009] presented SCP
based models that were developed in collaboration with planners and end-users of several
transport companies in Portugal. The authors aimed at developing models to produce solutions
that could be applied in real situations and, hence solution quality was not the only criteria
for evaluating models. The authors tested instances with up to 347 bus trips and 23305 duties
in the SCP formulation.

Exact approaches such as Branch & Price, where SCP implicitly considers all the possible
duties, are commonly used in the literature for generating duties. Desrochers and Soumis
[1989] devised a column generation method for solving real-life instance of a transport company
operating in an American city that had a fleet of 25 buses. The resulting SCP formulation
had 167 bus trips. However, solving large scale instances of the DSP by column generation
approaches is notorious for being computationally expensive due to the need to solve resource
constrained shortest path problem (RCSPP) at every iteration (Wren et al. [2003]; Ibarra-
Rojas et al. [2015]). Yunes et al. [2005] devised a hybrid column generation approach that
used constraint programming (CP) to generated feasible duties. The authors also reported
that solving the RCSPP by dynamic programming techniques suggested by Desrochers and
Soumis [1989] was computationally inefficient for large instances. The authors tested the two
aforementioned methods on instances from a bus company in the city of Belo Horizonte, Brazil.
The sizes of the instances varied from 10 to 210 bus trips. The column generation algorithm
based on dynamic programming could not solve instances more than 90 trips within a time
limit of 24 hours. It was reported that 90% of the total computation time, on average, was
spent on solving the RCSPP. However, the column generation based on CP was able to solve
the largest instance of 210 trips in less than 15 hours. Mauri and Lorena [2007] applied a
metaheuristic method known as the population training algorithm (PTA), a derivation of
the genetic algorithm (GA), as part of the column generation framework to generate feasible
duties. The authors tested the method on randomly generated instances that were based on
real problems of a Brazilian transport company and the sizes of the instances varied from
25 to 500 bus trips. The authors compared the proposed method to a SA approach and the
results for the largest instance indicated that the proposed method was faster than the SA
approach by a factor 20 with an improvement of 0.15% in solution quality. Li et al. [2015]
proposed a column generation approach that is based on a hyper-heuristic, which is similar
to the idea of having multiple repair heuristics in a ALNS. The authors generate all feasible
duties for a given instance and several heuristics (local search, swap heuristic and greedy
based heuristic) are devised to select a subset of feasible duties at each iteration of the column
generation framework. In the method proposed by Li et al. [2015], the hyper-heuristic evaluates
the different heuristics based on their selection of duties that contribute to the improvement
of the objective at each iteration of the column generation framework. The authors tested
the method with instances provided by Mauri and Lorena [2007] and the largest instance
with 500 bus trips had a total of 8.4 million feasible duties. The column generation based on
hyper-heuristics yielded solutions that, on average, had a gap of 2.12% from the best known
solutions, which were provided by the method proposed by Mauri and Lorena [2007]. However,
for the largest instance, the hyper heuristic was faster by a factor 1.63.

5

Heuristic approaches, if designed well, are known to provide good solutions in reasonable
computation time for large scale problems. Lourenço et al. [2001] proposed multiobjective
metaheuristics for solving real-life instances of the DSP. In most formulations of the DSP,
the objective is to minimize cost of driver duties. However, in practice, different transport
companies take several objectives into account while planning. Hence, the authors solved the
DSP involving multiple objectives such as minimizing total number of duties, minimizing
number of bus changes and minimizing number of over-covered bus trips. A large number of
duties that comply with the labor regulations and the transport companies’ rules is heuristically
generated for the SCP formulation. The SCP is solved by metaheuristic methods tabu search
(TS) and GA. The authors also devised a greedy randomized adaptive search procedure
(GRASP) for solving a subroutine of the TS and GA. The proposed methods were tested on
instances with up to 348 bus trips and 74000 duties in the SCP formulation. The devised GA
provided solutions that were comparable to that of linear programming (LP) based algorithm.
For the largest instance, the computation time of the GA was approximately 5 times shorter
than that of the LP based method. Similarly, Li and Kwan [2003] solved the DSP by GA.
The authors tested the algorithm on instances with up to 1873 trips and 50000 duties in
the SCP formulation. The proposed method was able to solve the largest instance in 1350
seconds, which had a gap of 3.89% from the best known solution provided by a MIP solver
with a computation time of more than 10 hours. De Leone et al. [2011a] devised a GRASP for
solving the DSP for instances with up to 161 bus trips from a Italian transport company. The
proposed method was compared with an exact method that uses a MIP solver to solve the
SCP model with up to 2 million feasible duties. The results showed that the exact method
took more than 3 hours to find a feasible integer solution for the largest instance, whereas the
GRASP was able to provide a solution in one minute that was almost 30% better than the
first feasible solution provided by the exact method. The authors, De Leone et al. [2011b], also
compared the devised GRASP heuristic to a hybrid of GRASP and variable neighborhood
search (VNS). The results indicated that the hybrid version provided improved solutions with
comparable computation times. For the largest instance, improvement was found to be 5.2%.
Ma et al. [2016] proposed a VNS heuristic for solving the DSP with instances from a transport
company in Beijing, China that had up to 501 bus trips. The authors compared solutions
from the proposed method to that of the solutions manually created by the planners in the
company. For the largest instance, the VNS heuristic provided, on average, an improvement of
6% with a computation time of 22 minutes, whereas almost five hours was taken to create the
manual plan.

Most of the works published in the literature have aimed at developing methods to solve
large sized instances of the DSP, which include complexities that arise in practice. Since the
DSP is a highly relevant problem in the public transport industry, some have considered
implementing the methods as part of a commercial software system. However, none of the
published works address the DSPSC. Several researchers in the 1980s ((Ball et al. [1983];
Darby-Dowman et al. [1988])) recognized the need to integrate the VSP and the DSP (IVDSP),
where scheduling of buses and drivers are simultaneously carried out. The integration of the
two scheduling problems could lead to further cost reductions and efficiency gains for transport
systems (Freling et al. [2003]). However, the IVDSP has received very little attention in the
literature due to its increased complexity of formulating and handling large real-life instances
that require immense computation times to be solved (Borndörfer et al. [2008]; Huisman et al.
[2005]). Combining lagrangian relaxation and column generation have commonly been used to
integrate the problems, e.g. - Huisman et al. [2005], and the IVDSP is known to be a growing

6

area of research. By introducing the DSPSC, we believe that there will be implications on the
IVDSP, which has to be studied further.

3 Problem Description and Mathematical Modelling

This section presents the mathematical model which serves as the formal description of the
problem. Let T be the set of bus trips that need to be covered and let D be the set of all
valid duties that comply with the labor regulations and the company’s operational rules. Each
d ∈ D is checked to see if it requires one or more staff cars as part of its travel activities and all
car travels are grouped into set C. Let N denote the set of nodes that drivers could visit using
a staff car and r ∈ N is denoted as the car depot. Each car travel, i ∈ C has a departure node
ki, an arrival node li, departure time ui and arrival time vi. A departure car travel is defined as
a car travel that departs from depot r. Set of departure car travels is denoted as Ć ⊂ C, where
ki = r, li = n ∈ N\{r} and i ∈ Ć. Similarly, an arrival car travel is defined as a car travel that
arrives at depot r. Set of arrival car travels is denoted as Ĉ ⊂ C, where ki = n ∈ N\{r}, li = r
and i ∈ Ĉ. The cost or paid time associated with duty d ∈ D is represented as cd. Binary
matrix A is defined, where atd is 1 if duty d ∈ D is covering bus trip t ∈ T and 0 otherwise.
Another binary matrix G is defined, where gid is 1 if duty d ∈ D utilizes car travel i ∈ C and 0
otherwise. We define a car match as a combination of a departure car travel from the depot
and an arrival car travel to the depot to form one round trip as depicted in Figure 2. Binary
matrix H is defined, where hij indicates whether two car travels can be matched as one round
trip, i.e. li = kj , vi ≤ uj , i ∈ Ć and j ∈ Ĉ. The time a staff car is idle at a node other than
the depot is defined as car idle time. To simplify the car matches notation, we define H as the
set of all car matches, i.e. H = {(i, j) | hij = 1}.

Duty !

Car travel "
$

Time

Car idle time

#$
Duty %

Car travel &

'()(

'*)*

('*−)()

Figure 2: Staff Car Match. Car travel i of duty d departs from depot r to node n and car
travel j of duty w arrives at depot r from node n. The idle time of the staff car at node n is
calculated as (uj − vi). The figure illustrates an example of a round trip.

Four decision variables are defined in the mathematical model. Binary variable xd indicates
if duty d ∈ D is selected or not and binary variable yt indicates if a bus trip t ∈ T remains
uncovered or not. A penalty of β is incurred if a bus trip is uncovered. Binary variable zi

7

indicates if car travel i ∈ C is used or not and binary variable sij indicates if car travel i ∈ Ć
is matched with car travel j ∈ Ĉ to form one round trip. The maximum number of staff cars
that is available at the depot is denoted as Q. As depicted in Figure 3, a staff car can perform
multiple round trips during the day. To estimate the number of staff cars that are being used
at a particular time, we define O as the set of all departure times of a staff car from the depot,
i.e. {ui} where i ∈ Ć, and Po as the set of all possible car matches that are active at time o,

Po = {(i, j) | (i, j) ∈ H ∧ ui ≤ o ∧ vj ≥ o} ∀o ∈ O (1)

The mathematical formulation of the DSPSC is as follows,

Minimize
∑
d∈D

cd · xd + β
∑
t∈T

yt (2)

subject to: ∑
d∈D

atd · xd + yt ≥ 1 ∀t ∈ T (3)∑
d∈D

gid · xd ≤ zi ·M ∀i ∈ C (4)∑
d∈D

gid · xd ≥ zi ∀i ∈ C (5)∑
j∈Ĉ

hij · sij = zi ∀i ∈ Ć (6)

∑
i∈Ć

hij · sij = zi ∀j ∈ Ĉ (7)

∑
(i,j)∈Po

sij ≤ Q ∀o ∈ O (8)

xd ∈ {0, 1} ∀d ∈ D (9)

yt ∈ {0, 1} ∀t ∈ T (10)

zi ∈ {0, 1} ∀i ∈ C (11)

sij ∈ {0, 1} ∀i ∈ Ć, ∀j ∈ Ĉ (12)

The objective (2) is to minimize the overall cost of driver duties and the penalty for leaving
a bus trip uncovered. Constraints (3) ensure that a bus trip is covered by at least one duty or
is left uncovered. Constraints (4) ensure that a car travel is selected if it is utilized by one or
more duties in the final schedule. M is a large number and can be set as the seating capacity
of the staff cars. Constraints (5) ensure that a car travel is not selected if none of the duties in
the final schedule utilize it. Constraints (6) together with constraints (7) ensure that a selected
departure car travel from the depot is matched with an arrival car travel to the depot to form
one round car trip. Constraints (8) ensure that at all times during the day the number of staff
cars being utilized is not more than the maximum number of staff cars available at the depot.

8

Time

Car Match

Staff Car 1

Staff Car 2

Staff Car 3

!"
Duty #

Car travel $
Duty %

Car travel &

'" '(!(
) *)*

Figure 3: Staff Car Schedule. The final schedule of a staff car can consist of one or more car
matches. Staff cars 1 and 2 in the figure illustrate an example of multiple round trips being
performed.

4 Solution Method

4.1 Greedy heuristic

To construct an initial solution, a basic greedy heuristic is implemented. A duty is selected
based on a evaluation function and added to the solution at each iteration of the greedy
heuristic. For the DSPSC, two evaluation functions are applied; one for selecting duties and
an another for selecting car matches. The duties are evaluated based on a function ∆ and we
determine ∆d = cd + β(Id − Jd +Kd), where Id is the number of trips covered by duty d that
are already covered in the solution, Jd is the number of trips covered by duty d that are not
covered in the solution and Kd is the number of cars travels used by duty d (i.e.

∑
i∈C gid). At

each iteration, the values of Id and Jd are adapted based on the trips being covered in the
solution and duty with minimum ∆d is the best candidate to be added to the solution. The
newly inserted duty potentially involves car travels and they have to be matched. For instance,
duty d might have a departure car travel from depot r to node n and hence would need a
matching car travel that would return the car from node n to depot r to form one complete
round trip. In the greedy heuristic, the matching car travel is selected based on minimum idle
time of the staff car at node n ∈ N\{r}. By returning the staff car quickly back to the depot,
it has the possibility of being used for multiple round trips. Hence, improving the utilization
of the staff cars is the underlying motivation for minimizing car idle time.

The greedy heuristic procedure is shown in Algorithm 1. At each iteration of the greedy
heuristic, a candidate list, q, of duties is created and added to the solution s. E in Line 5
denotes the set of unmatched car travels in the s and is updated (Line 20) when car travels
are matched or new unmatched car travels are added to s. For each i ∈ E, all its matching car
travels, i.e all the car travels that would form a round car trip with car travel i, are collected
in set F . From set F , car travel j that forms a round car trip with minimum car idle time,
carIdleTime(i, j), is selected (Line 10). Set G consists of all the duties with car travel j (Line
11) and duty w = arg minw∈G(∆w) is selected (Line 12) and added to q (Line 13). In some
cases during the advancement of the heuristic, it might select a duty with a car travel that

9

cannot be matched. In such circumstances, the heuristic removes the selected duty from D,
empties q and is forced to select the next best duty in terms of ∆ (Line 15 - Line 17). The
loop (Line 6 - Line 21) terminates when no more unmatched car travels exist in the partial
solution, i.e. set E is empty.

The greedy heuristic terminates when all the bus trips have been covered and all the car
travels in s have been matched. Even though the heuristic tries to improve the utilization of
a staff car through function carIdleTime(), it cannot control the number of cars being used.
Hence, the greedy heuristic often builds an initial solution which does not satisfy the maximum
number of cars condition.

Algorithm 1: Greedy heuristic

1 Initialization: s← ∅, q ← ∅;
2 while stop criterion not met do
3 d← arg mind∈D(∆d);
4 q ← q ∪ {d};
5 Set E = {i | gid = 1, i ∈ C};
6 while E 6= ∅ do
7 for i ∈ E do
8 Set F = {j | (i, j) ∈ H, j ∈ C};
9 if F 6= ∅ then

10 j ← arg minj∈F (carIdleTime(i, j));

11 Set G = {w | gjw = 1, w ∈ D};
12 w ← arg minw∈ G(∆w);
13 q ← q ∪ {w};
14 else
15 D ← D − {d};
16 q ← ∅;
17 go to 3;

18 end

19 end
20 Update E;

21 end
22 s← s ∪ q;
23 q ← ∅;
24 end
25 return s

4.2 Matheuristic

In our matheuristic setting, the mathematical model described in Section 3 is embedded in an
ALNS framework to obtain high-quality solutions in reasonable computation time.

A neighborhood is defined as the set of neighboring solutions of a current solution and
a local search procedure iteratively moves the current solution to a neighboring solution. In
LNS, the neighboring solutions could be reached by applying a destroy method and then a
repair method to the current solution. Hence, the neighborhood is implicitly defined by the

10

destroy and repair methods. In ALNS, multiple destroy and repair methods are applied and
hence different neighborhoods can be explored within the same search. Each of the destroy and
repair methods is assigned a modifiable weight which is updated based on the performances
of the methods during the course of the search. Røpke and Pisinger [2006] state that not all
destroy and repair methods perform equally well and that, for example, one method might be
very well-suited for one type of instance and another method might be well-suited for another
instance. The diverse and robust nature of the ALNS heuristic has led to its gain in popularity
in recent years and has been applied to a large selection of different optimization problems.
Some applications include the capacitated arc-routing problem (Laporte et al. [2010]), the
vehicle routing problem (Pisinger and Røpke [2007]) and the patient admission scheduling
problem (Lusby et al. [2016]).

Algorithm 2: Adaptive Large Neighborhood search

1 Initialization: s← InitialSolution(), s∗ ← s;
2 ρ ← InitializeMethodWeights();
3 while stop criteria not met do
4 Select destroy and repair methods µ ∈ τ− and γ ∈ τ+ using ρ;
5 s′ ← Destroy(s, µ) ;
6 s′ ← Repair(s′, γ) ;
7 if Accept(s, s′) then
8 s← s′;
9 end

10 if f(s′) < f(s∗) then
11 s∗ ← s′;
12 end
13 ρ ← UpdateMethodWeights();

14 end
15 return s∗

Algorithm 2 outlines the ALNS procedure where s denotes the current solution, s′ is the
neighboring solution and s∗ is the best solution. The set of all destroy methods is denoted as
τ− and the set of repair methods is denoted as τ+. As shown in Line 4, at each iteration of
the heuristic a destroy method µ ∈ τ− and a repair method γ ∈ τ+ are selected to perform
an operation on the current solution. The selection of the methods are dependent on the
weights of the methods, ρµ and ργ , which are dynamically updated during the execution of
the heuristic. Well-performing methods have a high weight and thus would have a higher
probability of being selected. The probability of a destroy method being selected is determined
as,

ζµ =
ρµ∑
l∈τ− ρ

l
∀µ ∈ τ− (13)

Similarly, the probability of selecting a repair method is determined as,

ζγ =
ργ∑
l∈τ+ ρ

l
∀γ ∈ τ+ (14)

11

The selection of the destroy and the repair method is made based on a roulette wheel
principle using the probabilities calculated in Equations (13) and (14). The entire search is
divided into nseg segments and each segment is defined by niter iterations. At the end of each
segment, the weights of the methods are updated, as shown in Line 13. For each destroy
method µ ∈ τ− and repair method γ ∈ τ+, Ωµ and Ωγ define the accumulated score. The
number of times a destroy method and a repair method have been selected during a segment
is given by νµ and νγ respectively. At each iteration of the heuristic, a score of ψ is awarded
to the chosen destroy and repair method and added to Ωµ and Ωγ . The score is given based on
the quality of the solution obtained and could be one of ψ1, ψ2, ψ3 or ψ4. The description of
the score parameters is shown in Table 1, where ψ1 > ψ2 > ψ3 > ψ4. The weights of destroy
and repair methods are initialized to 1 and after each segment, the weights are updated as
follows,

ρµ = (1− λ) · ρµ + λ · Ωµ

νµ
∀µ ∈ τ− (15)

ργ = (1− λ) · ργ + λ · Ωγ

νγ
∀γ ∈ τ+ (16)

At the start of each segment, Ωµ, Ωγ , νµ and νγ are set to 0. λ ∈ [0, 1] is known as the
reaction factor which controls the changes in weights. If λ = 1 then the roulette wheel selection
is only based on the scores of the most recent segment and if λ = 0 then the weights are kept
constant at the initial level. The past performances of the methods are taken into account
when 0 < λ < 1. The weight of a method remains unchanged if it was not selected in the
segment.

Score(ψ) Description

ψ1 if the new solution is a new best solution
ψ2 if the new solution is better than the current solution
ψ3 if the new solution is accepted
ψ4 if the new solution is rejected

Table 1: Score parameters for ALNS

Shaw [1998] proposed a hill climber accept criterion in a LNS framework where only
improving solutions are accepted. This acceptance criterion, however, has the tendency to get
trapped in a local optimum. To diversify the search, solutions that are worse than the current
solution should be accepted occasionally. Hence, a score of ψ3 is rewarded to methods that
are able to visit unexplored solution spaces. One approach of introducing diversification to
the search procedure is the simulated annealing (SA) acceptance criterion which has been
successfully used in an ALNS framework by some authors(see eg. Røpke and Pisinger [2006]
and Lusby et al. [2016]). Given a current solution s, a worse solution s′ is accepted with a

probability of exp−f(s′)− f(s)

θ
, where θ > 0 is the temperature. The heuristic starts with

an initial temperature, θ = θstart, and this is gradually decreased during the course of the
heuristic with the aid of a cooling factor α ∈ (0, 1). The temperature is decreased to θ = θ · α
at the end of each segment. During the last iterations of the ALNS, worse solutions are unlikely

12

to be accepted and hence the framework behaves like a hill climber. Similar to authors Røpke
and Pisinger [2006], we determine θstart based on the problem instance at hand, i.e. θstart is
set such that a solution ω% worse than the initial solution is accepted with probability 0.5. In
our case, the initial solution is obtained from the greedy heuristic for the DSPSC described
in Section 4.1. However, the greedy heuristic does not ensure feasibility with respect to the
number of staff cars being used. In order to avoid setting θstart too large, the penalty incurred
for violating the maximum number of staff cars constraint (8) is disregarded. The heuristic
terminates when it has performed nseg segments.

Because the greedy heuristic often results in an infeasible solution, the ALNS heuristic is
restarted when it reaches the first feasible solution. When restarting the heuristic, the weights
of the methods are also reinitialized and θstart is recalculated based on the first feasible solution.
However during the execution of the heuristic, we allow it to visit infeasible regions of the
solution space. It is believed that local search heuristics often have difficulties in moving from
one promising area of the solution space to another in tightly constrained problems (Røpke and
Pisinger [2006]). To tackle this, some authors, e.g.- Cordeau et al. [2001] and Lourenço et al.
[2001], allow the search to visit infeasible solutions by relaxing some constraints. Similarly,
in addition to the maximum number of staff cars constraint (8), we relax the car matching
constraints (6) and (7) to allow for unmatched car travels in the solution; however, a penalty
is added to the objective function when a car travel is unmatched.

4.2.1 Destroy Methods

Given a solution, let D̄, C̄ and H̄ denote the set of duties, car travels and car matches in the
solution respectively. Sets D′ , C′ and H′ denote the duties, car travels and car matches not in
the solution. For the DSPSC, we propose three destroy methods and these are as follows,

1. Random removal of duties
To diversify the search, random duties are removed from D̄ and the set of removed duties
is denoted as DR. The number of duties to be removed, |DR|, is controlled by the degree
of destruction parameter, ξ, and is determined as 1 ≤ |DR| ≤ ξ · |D̄|. The car travels to
be removed from the solution are dependent on the duties removed from the solution, i.e.
CR = {i | gid = 1, i ∈ C̄, d ∈ DR}, and the car matches to be removed are determined
as HR = {(i, j) | (i, j) ∈ H̄ ∧ (i ∈ CR ∨ j ∈ CR)}. In most cases, when car travels and
car matches are removed from the solution, the destroyed solution consists of unmatched
car travels. For instance, a car travel i is in the solution but its matching car travel j was
removed from the solution. The set of unmatched car travels in the destroyed solution is
represented as CU = {i | (i, j) ∈ HR, i ∈ C̄, j ∈ CR}.

2. Worst removal of duties
The function ∆, as described in Section 4.1, prefers duties that cover many of the
bus trips with minimum overcoverage and car travels. Hence, as part of intensification
strategy, duty d given by arg maxd∈D̄(∆d) is likely to be removed from the solution.
Duties in the solution, D̄, are sorted in descending order of ∆d. The duties to be removed
are determined as, DR = DR ∪ D̄[qB · |D̄|] where q is a random number in the interval
[0,1) and B ≥ 1 is a degree of randomization parameter that controls the randomness in
the selection of the duties. A low value of B corresponds to random selection of duties
and a high value corresponds to selecting duty with highest ∆d value. The number of

13

duties to be removed, |DR| is determined in the similar manner as the random removal
of duties using the ξ parameter.

3. Random removal of car travel matches
The aforementioned destroy methods do not specifically target the car schedule in
the solution where there are probably a larger number of staff cars being used than
strictly required. The methods leave partial car matches in the solution and hence do
no guarantee making significant changes in the car schedule. To address this issue, car
matches in the solution, H̄, are randomly selected and removed from the solution with
the objective of reducing the number of cars. The set of car matches to be removed is
denoted as HR = {(i, j) | (i, j) ∈ H̄} and is also controlled by the degree of destruction
parameter such as 1 ≤ |HR| ≤ ξ · |H̄|.
CR is defined as the set of all car travels in HR and DR is defined as the set of duties in
solution that contain removed car travels, i.e. DR = {d | gid = 1, i ∈ CR, d ∈ D̄}.

The removed duties, car travels and car matches, DR, CR and HR, are added to D′ , C′ and
H′ respectively.

4.2.2 Repair Methods

The repair methods of the ALNS are mainly intended to be fast heuristics; simple greedy
insertion and regret heuristics have regularly been applied as repair methods (Pisinger and
Røpke [2007]; Lusby et al. [2016]). The DSPSC is a very tightly constrained problem where
exploring a neighborhood for a feasible solution could be a challenge. To tackle the challenge of
finding feasible solutions for the lot sizing problem, Muller et al. [2012] used a MIP solver for
repairing solution. Similarly, we use a MIP solver (ILOG CPLEX) as part of the repair phase
of the heuristic. Muller et al. [2012] define two MIP based repair methods and differentiate
them by either fixing or bounding the variables based on their values in the destroyed solution.
However, in our approach, we differentiate the repair methods by the neighborhood defined for
the MIP solver. The variables in the destroyed solution, given by D̄, C̄ and H̄, are used as a
starting solution for the MIP solver but are set as “free” variables. The repair methods reduce
the search space by defining the neighborhoods, DN , CN and HN , for the MIP solver which is
capable of exploring numerous solutions within the defined neighborhood. Consequently, the
repair methods are evaluated based on the quality of the constructed neighborhoods.

By solving a restricted subproblem, the MIP solver helps the local search to move from
the current solution to a neighboring solution and the new improved solution determines the
neighborhood that will be defined by the local search. Limiting the number of branch nodes to
be explored or the time permitted for the MIP solver were suggested by Muller et al. [2012] in
order to speed up the solution process. We keep a time limit, ntime, and the solution generated
by the MIP solver is used to evaluate the repair methods.

After a solution has been destroyed, there are unmatched car travels, CU , and uncovered
bus trips, T U = {t |

∑
d∈D̄ atd = 0, t ∈ T } in the solution. Hence, we define a repair method

that constructs a neighborhood to focus primarily on covering the uncovered bus trips in the
solution and another repair method that focuses on matching the unmatched car travels in
the solution. The descriptions of the repair methods are as follows,

14

1. Neighborhood defined by duties that cover the uncovered bus trips
Given a set of uncovered bus trips in the solution, T U , the neighborhood is formally
defined as the set of duties that cover at least one of the trips as shown in Equation (17).

DN = {d |
∑
t∈T U

atd ≥ 1, d ∈ D′} (17)

Depending on the duties in the neighborhood, the set of car travels in the neighborhood
is defined as CN = {i | gid = 1, i ∈ C′ , d ∈ DN} and subsequently the neighborhood car
matches as HN = {(i, j) | (i, j) ∈ H′ , i ∈ CN , j ∈ CN}.

2. Neighborhood defined by duties that match with the unmatched car travels
Given a set of unmatched car travels in the solution, CU , we denote CM as the set of
car travels from C′ that can match with the unmatched car travels. For instance, car
travel j ∈ C′ can match with unmatched car travel i ∈ C̄, i.e (i, j) ∈ H′ . Consequently,
the set is defined as CM = {j | (i, j) ∈ H′ , i ∈ C̄, j ∈ C′}. Therefore, the neighborhood
is defined as the set of duties that contain one or more car travels that can match with
the unmatched car travels in the solution as shown in Equation (18). The car travels
and car matches in the neighborhood are defined based on DN in similar manner as the
previously described repair neighborhood.

DN = {d | gid = 1, d ∈ D′ , i ∈ CM} (18)

The size of the neighborhood, DN , depends on the impact of the destroy methods and
in most instances, destroying even a small fraction of the current solution creates a large
neighborhood. For the DSP, Lourenço et al. [2001] considered a candidate list strategy where
duties were evaluated based on a penalized cost and only duties with a cost less than or equal
to the average cost were inserted in the candidate list. Similarly, we create a duty candidate
list, where only the best ηduty duties in terms of ∆d, where d ∈ DN , are considered. The
candidate list makes the subproblem tractable for the MIP solver and provides solutions in
quick computation time. The size of HN could also potentially be quite large and hence the
size of the neighborhood is controlled by carIdleTime() of car matches. For example, the
staff car match candidate list only considers matches that are less than a maximum car idle
time (ηcar) of 120 minutes, i.e. carIdleTime(i, j) ≤ 120 where (i, j) ∈ HN . The matheuristic
procedure is shown in Algorithm 3.

5 Computational Study

5.1 Instances

Table 2 provides an overview of the test instances obtained from a Danish and a Swedish
transport company. SE1 OP represents the instances from the Swedish company and the
instances from the Danish company are represented by DK1 OP and DK2 OP. Instances
SE1 OP5, DK1 OP6 and DK2 OP9 are known to be the complete instances that were used
to extract other instances. The three complete instances are highlighted in light gray in
Table 2. The instances were categorized into small, medium and large sized instances so that
the matheuristic could be tested for a wide range of instances. Some of the instances are

15

Algorithm 3: Matheuristic

1 Initialization: s← GreedyAlgorithm(), s∗ ← s;
2 θ ← CalculateInitialTemperature(s, ω);
3 ρ ← InitializeMethodWeights();
4 Ω ← InitializeMethodScores();
5 ν ← InitializeMethodAttempts();
6 for κ← 1, nseg do
7 for η ← 1, niter do
8 Select destroy and repair methods µ ∈ τ− and γ ∈ τ+ using ρ;
9 s′ ←Destroy(s, µ, ξ, B);

10 s′ ←Repair(s′, γ, ηduty, ηcar, ntime); // Solve using MIP solver

11 δ ← f(s′)− f(s);

12 if δ < 0 or exp
−δ
θ
> random[0, 1) then

13 s← s′;
14 end
15 if f(s′) < f(s∗) then
16 s∗ ← s′;
17 end
18 Ω ←UpdateMethodScores(ψ);
19 ν ← UpdateMethodAttempts();

20 end
21 ρ ← UpdateMethodWeights(Ω, ν , λ);
22 Ω ← ResetMethodScores();
23 ν ← ResetMethodAttempts();
24 θ ← θ · α;

25 end
26 return s∗

larger than what one would find currently in the literature. The instances are available at
http://doi.org/10.5281/zenodo.1442661 and access can be granted on request.

Table 2 shows that all instances involve the use of staff cars. In the DSP, travels by foot
for short distances and bus travels are commonly allowed. A bus travel usually occurs when
the driver is a passenger on another bus to reach a designated bus stop and the set covering
constraints (3) allow drivers to use bus travels. One could argue that staff cars may not be
needed if bus stops could be reached by bus or by foot. To analyze the importance of staff
cars, the small and medium sized instances are tested with and without car travels. It was
found that all bus trips could be covered when staff cars are put into use. However, when the
instances do not involve car travels, it was found that, on an average, 41% of the bus trips could
not be covered. The labor rules such as the minimum number of breaks and maximum time
between breaks highly influence the feasibility of driver duties. Moreover, due to limitations
in the city network where breaks are allowed only at a few bus stops, drivers have to travel
between bus stops to have sufficient breaks during the day. Car travel is the most suitable
option that allows drivers to reach bus stops in a timely manner and it is, hence, argued that
staff cars are often necessary to generate feasible driver duties.

16

http://doi.org/10.5281/zenodo.1442661

Category Instance |T | |D| |C| |H| Q

Small

SE1 OP1 44 1239 91 345 4
SE1 OP2 39 8880 100 391 1
DK1 OP1 23 754 65 148 1
DK2 OP1 73 1789 140 781 1
DK1 OP2 84 7660 149 2621 2
DK2 OP2 96 18370 280 4134 1

Medium

SE1 OP3 131 39683 294 3081 4
DK1 OP3 152 41908 302 8176 2
SE1 OP4 217 193652 501 8372 5
DK1 OP4 279 195972 710 17744 4
DK2 OP3 305 86703 753 20330 3

Large

SE1 OP5 293 621508 731 12293 6
DK1 OP5 384 686499 1149 34558 5
DK2 OP4 649 511803 1514 64238 4
DK2 OP5 840 686370 1862 77778 5
DK2 OP6 924 752705 2141 91371 6
DK1 OP6 571 1205058 1746 50023 6
DK2 OP7 1211 1015011 2852 150205 8
DK2 OP8 1414 1187194 3512 189671 12
DK2 OP9 1769 1738055 4560 267506 16
DK2 OP10 1769 1738055 4560 267506 15

Table 2: Size of test instances. |T | represents the number of bus trips, |D| represents the
number of duties generated, |C| represents the number of number of car travels, |H| represents
the number of car matches and Q represents the number of staff cars at the depot.

The mathematical formulation (2) - (12) solves the DSPSC using an integrated approach
where the drivers and the staff cars are scheduled simultaneously. Another method of solving
the DSPSC is by a sequential approach, where the DSP is solved first and independent of the
staff car problem. After solving the DSP, car travels in the final set of duties are chosen as the
input for the staff car problem, which is concerned with finding a feasible set of car matches that
respect the number of staff cars available at the depot. The small and medium sized instances
are solved by integrated and sequential approaches using a MIP solver. Table 3 compares the
two approaches and the results show that the sequential approach is superior to the integrated
approach in terms of total paid time for drivers, where the average improvement for small and
medium sized instances are 5.31% and 2.13% respectively. However, the sequential approach
often leads to infeasible solutions with the medium sized instances having, on an average, 10
unmatched car travels out of 47. The integrated approach provides feasible solutions; however,
the computation time required to solve the DSPSC is significantly larger than that of the
sequential approach. For example, the integrated approach did not find the optimal solution in
10 hours for the medium sized instance DK2 OP3, whereas only 18 seconds were required by
the sequential approach. This computational study shows that simultaneously scheduling the
drivers and the staff cars is a highly complex problem that often requires long computation
times. Due to the computational advantage of the sequential approach, it can be considered
for solving the DSPSC with alternative services. For example, taxis can be used by transport
companies to fulfill the unmatched car travels in the solution. Transport companies would
have to consider the commercial viability of using taxis to fulfill such car travels without

17

losing much of the 2.13% savings made by the sequential approach for medium sized instances.
However, the vehicle policies of companies we work with do not allow for any outsourced
services and the drivers are required to use the staff cars. Hence, the DSPSC only considers
solving the problem with a given number of staff cars at the depot and the work carried out
in this paper does not consider alternative services.

Category Instance
Integrated Sequential

solution gap(%) |C̄| |CU | time (sec) solution gap(%) |C̄| |CU | time (sec)

Small

SE1 OP1 4883 0.00 24 0 0.39 4473 0.00 26 2 0.08
SE1 OP2 3144 0.00 4 0 0.66 2925 0.00 8 6 0.07
DK1 OP1 1914 0.00 12 0 0.08 1914 0.00 12 0 0.02
DK2 OP1 3120 0.00 22 0 0.72 2945 0.00 4 4 0.03
DK1 OP2 5867 0.00 26 0 1.7 5867 0.00 25 1 0.24
DK2 OP2 2795 0.00 20 0 105.75 2494 0.00 4 4 0.16

Medium

SE1 OP3 10925 0.00 30 0 265.06 10700 0.00 30 8 2.05
DK1 OP3 10927 0.00 54 0 62.23 10890 0.00 51 7 1.66
SE1 OP4 17861 1.36 46 0 36000.55 17424 0.00 44 12 14.16
DK1 OP4 20253 0.00 88 0 4282.08 20226 0.00 80 6 18.69
DK2 OP3 12641 2.32 40 0 36000.59 11925 0.00 28 16 17.58

Table 3: Comparison between integrated and sequential approaches. |C̄| represents the number
of car travels in the final solutions and |CU | represents the number of unmatched car travels
in the solution.

5.2 Parameter setup

The number of segments, nseg, is set to 50 and the number of iterations to be performed in
each segment, niter, is 15. For the SA accept criterion, θstart is calculated such that a solution

5% (ω) worse than f(s) is accepted with probability 0.5, i.e θstart =
−f(s) ∗ 0.05

log 0.5
, and α is

set to 0.8. Table 4 shows the results for different values of α. The average number of solutions
accepted in the SA framework decreases as α is decreased. The solution quality is determined
by calculating the average gap between the solutions obtained from the matheuristic and the
best known solution obtained from the MIP solver.

α 0.99 0.9 0.8 0.7

Avg. accepted solutions 107.8 67.4 40 23.8
Avg. gap(%) -1.03 -2.23 -2.51 -2.02

Table 4: Test results for parameter α.

The score parameters of the matheuristic are ψ1 = 25, ψ2 = 15, ψ3 = 5 and ψ4 = 0,
and the reaction factor λ is set to 0.1. For the destroy methods, the degree of destruction
parameter, ξ, is set to 0.2, 0.1 and 0.025 for small, medium and large instances respectively.
The degree of randomization B for the worst removal is set to 4. The time limit ntime of the
MIP solver in the repair methods is set to 0.5, 2 and 3 seconds for small, medium and large
instances respectively. For setting ηduty and ηcar, tests were performed on a Danish (DK2 OP9)
and a Swedish instance (SE1 OP5). Table 5 shows that the size of the neighborhood varies

18

depending on the problem instance and on the applied repair method. Parameter ηduty was
tested with different values as shown in Table 6, where it can be seen that the average size of
HN increases as ηduty is increased. The chosen value for parameter ηduty is 6000 and parameter
ηcar is adapted based on the size of HN . If |HN | ≥ 14000, which is the approximate average
from Table 6, then ηCar is set to 120 else it is set to 180.

Instance Repair method 1 Repair method 2

DK2 OP9 117227.67 149249.63
SE1 OP5 40072.08 31851.04

Table 5: Average size of DN defined by the repair methods.

Instance
ηduty

5000 6000 7000

DK2 OP9 20636.87 22320.3 24381.63
SE1 OP5 5538.86 5939.23 6226.83

Table 6: Average size of HN for different values of parameter ηduty.

5.3 Performance of destroy and repair methods

Instances SE1 OP5 and DK2 OP9 are tested with different combinations of destroy and repair
methods of the matheuristic as shown in Table 7. Each combination or strategy is tested 5
times on the instances and Table 7 reports the average of the 5 runs. An observation made
from the study is that strategies involving repair method 2 comparatively provide weaker
solutions and, in some cases, do not yield feasible solutions within the iteration limit of the
matheuristic. Repair method 1 consistently performs well when combined with the destroy
methods. Figures 4 and 5 show an example of how the weights of the repair and destroy
methods progressed during the execution of the matheuristic for the instances from the Swedish
and Danish transport companies. The figures illustrate that the neighborhood based on the
uncovered bus trips (repair method 1) outperforms the neighborhood based on unmatched
car travels (repair method 2). For DK2 OP9 instance, it was observed that strategies with
repair method 2 often created a large neighborhood that increased the computation time
required for defining the duty candidate list ηduty. Hence, the computation time for strategies
with repair method 2 was, on average, 1.5 times longer than that of the strategies with repair
method 1. Moreover, since repair method 2 does not consider the uncovered bus trips in the
destroyed solution, it appears to define an ineffective neighborhood. Repair method 2 was
initially developed for diversifying the search space; however, the results clearly indicate that
the method does not aid the matheuristic much in improving the solution quality. Thus, it is
decided to remove repair method 2 from the matheuristic setup.

5.4 Results

The solutions obtained from the MIP solver (ILOG CPLEX 12.8) are used as benchmarks
to evaluate the performance of the matheuristic. The instances are solved by the MIP solver

19

Instance Strategy Avg. gap (%) Avg. time (sec)

SE1 OP5

Destroy method 1, Repair method 1 5.35 2355.27
Destroy method 2, Repair method 1 5.89 1728.54
Destroy method 3, Repair method 1 4.64 3350.43

All destroy methods, Repair method 1 3.69 2245.61
Destroy method 1, Repair method 2 inf 2567.84
Destroy method 2, Repair method 2 inf 2933.47
Destroy method 3, Repair method 2 15.09 1452.27

All destroy methods, Repair method 2 inf 2312.02
All destroy methods, all repair methods 4.26 2192.77

DK2 OP9

Destroy method 1, Repair method 1 -1.21 4879.65
Destroy method 2, Repair method 1 -1.8 3962.99
Destroy method 3, Repair method 1 -1.78 4213.43

All destroy methods, Repair method 1 -2.69 4435.53
Destroy method 1, Repair method 2 6.41 7070.09
Destroy method 2, Repair method 2 8.23 7933.52
Destroy method 3, Repair method 2 4.08 6180.8

All destroy methods, Repair method 2 3.56 6567.9
All destroy methods, all repair methods -1.67 5078.36

Table 7: Performance of destroy and repair methods. The results are based on an average of
5 runs and ’inf’ indicates that a feasible solution could not be found within the iteration limit
of the matheuristic in any one of the runs.

on an Intel Xeon E5-2680 v2 @ 2.80GHz with 128 GB memory and the results from using
single thread and multi threads (10 threads) are reported in Table 8. The time limit of the
MIP solver is 36,000 seconds (10 hours). Due to practical limitations of extracting data from
TGE’s integrated system, the matheuristic could not be tested on the machine that was
used to provide the benchmark solutions. Table 9 shows the summary of the results from
the matheuristic that was tested on an Intel core i5-5287U @ 2.9 GHz machine with 16 GB
memory. The matheuristic is implemented in Java and has been run 10 times for each instance
and the results are calculated as the average of the 10 runs.

For single thread applications, the processor used to test the matheuristic is comparable
to the processor used to run the MIP solver in terms of speed1. However, the overall CPU
benchmarks reveal that the processor used for the MIP solver is approximately 3.4 times
faster than the processor used to test the matheuristic2. The results in Table 8 and Table
9 are reported as observed. The best solution obtained from running the MIP solver single
and multi threaded is used to evaluate the performance of the matheuristic. In most cases,
the MIP solver provided best solutions in the multi thread environment. For two instances
(DK2 OP6 and DK2 OP7), the best solutions are obtained in the single thread environment.

The small instances are solved to optimality with ease by the MIP solver. The matheuristic
achieves comparable results for all small instances except one (DK2 OP2), which has an
average gap of 2.33% from the optimal solution. For medium sized instances, the MIP solver
fails to prove optimality for two instances (SE1 OP4 and DK2 OP3) within the time limit (10
hours); however, the integrality gap is very small (< 1%). The matheuristic provides solutions

1According to CPUbenchmark, the processor used to run the MIP solver has a single thread rating of 1810,
whereas the single thread rating of the processor used to test the matheuristic is 1847.

2The overall CPU rating of the processor used for the MIP solver is 15752 while that of the mathheuristic is
4681.

20

https://www.cpubenchmark.net

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Random removal of duties Worst removal of duties Random removal of car travel matches

(a) Destroy methods

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Neighborhood duties based on uncovered trips Neighborhood duties based on unmatched car travels

(b) Repair methods

Figure 4: An example of performance of destroy and methods for an instance from Swedish
transport company. (x-axis shows the iteration number and y-axis shows the weight of the
methods.)

less than 2.5% from optimality for instances with optimal solutions. For the two instances
that could not be solved to optimality, the gaps are found to be 3.72% and 5.93% respectively.
For large instances, the MIP solver could prove optimality for only one instance (DK1 OP5)
and the integrality gap for large instances of DK2 OP (DK2 OP7 to DK2 OP10) is quite
large, an average gap of 14.89%. The matheuristic finds improved solutions for 4 out of the 10
large instances and the improvement is found to be 0.28 to 6.95% on average. Moreover, the
time taken to obtain these solutions are less than 80 minutes. One of the major drawbacks
of the heuristic is that it does not provide any lower bound (LB) information that could
be used to evaluate the quality of the improved solutions. However, by considering the LB
information provided by the MIP solver, it is estimated that the 4 improved instances are
around 11 to 12.77% from the optimal solution. Table 9 also shows the average time taken
by the matheuristic to find the first feasible solution. With the aid of the greedy heuristic
(Algorithm 1), feasible solutions for large instances are found in the range of 37 seconds to 14

21

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Random removal of duties Worst removal of duties Random removal of car travel matches

(a) Destroy methods

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Neighborhood duties based on uncovered trips Neighborhood duties based on unmatched car travels

(b) Repair methods

Figure 5: An example of performance of destroy and methods for an instance from Danish
transport company. (x-axis shows the iteration number and y-axis shows the weight of the
methods.)

minutes.
Since the processors used for testing the two methods are different and their computation

times vary, it is difficult to directly compare their performances. Hence, the MIP solver is
tested with a time limit of 2 hours, which is comparable to the computation times of the
matheuristic and Table 10 compares the results of the matheuristic to that of the MIP solver.
The matheuristic outperforms the MIP solver for 6 out of the 10 large instances and the
improvement is found to be 7 to 15% on average.

5.5 Sensitivity analysis

The matheuristic involves 14 parameters and finding the optimal values of parameters for each
instance is a very tedious and time consuming process. In this paper, we chose a common set
of parameter values for each category that was based on the sizes of the instances. However,
it is believed that the structure and the characteristics of the instances also have to be

22

Category Instance
MIP (single thread) MIP (multi thread)

solution gap(%) time (sec) solution gap(%) time (sec)

Small

SE1 OP1 4883 0.00 0.38 4883 0.00 0.33
SE1 OP2 3144 0.00 0.79 3144 0.00 0.44
DK1 OP1 1914 0.00 0.09 1914 0.00 0.11
DK2 OP1 3120 0.00 0.99 3120 0.00 0.49
DK1 OP2 5867 0.00 1.28 5867 0.00 1.1
DK2 OP2 2795 0.00 127.72 2795 0.00 40.35

Medium

SE1 OP3 10925 0.00 488.64 10925 0.00 130.31
DK1 OP3 10927 0.00 178.42 10927 0.00 48.21
SE1 OP4 17765 0.8 36000.2 17765 0.43 36005
DK1 OP4 20253 0.00 5476.36 20253 0.00 1002.92
DK2 OP3 12650 2.83 36000.3 12466 0.91 36003.9

Large

SE1 OP5 23833 2.01 36000.4 23506 0.25 36004
DK1 OP5 27773 0.00 7604.25 27773 0.00 3687.24
DK2 OP4 26606 14.71 36000.5 25347 10.63 36002
DK2 OP5 36568 15.4 36002 35056 11.75 36002.9
DK2 OP6 39081 10.72 36003.4 39743 12.2 36003.5
DK1 OP6 42713 1.8 36000.2 42348 0.92 36005.7
DK2 OP7 57507 11.27 36003.6 63053 19.03 36005.7
DK2 OP8 76733 16.61 36010.5 74222 13.63 36009.3
DK2 OP9 96603 21.14 36014.3 90094 15.46 36021.7
DK2 OP10 97374 22.16 36017.6 94247 19.19 36013.2

Table 8: Results from the MIP solver.

Category Instance
Gap (%) Time (sec)

best worst avg. avg.
avg. to find

first feasible solution

Small

SE1 OP1 0.00 0.1 0.02 60.08 0.18
SE1 OP2 0.00 3.63 0.36 134.13 0.26
DK1 OP1 0.00 0.00 0.00 22.89 0.14
DK2 OP1 0.00 4.26 0.43 53.76 0.19
DK1 OP2 0.00 0.55 0.05 310.61 1.13
DK2 OP2 0.11 6.69 2.33 341.29 4.00

Medium

SE1 OP3 0.61 3.73 2.33 883.29 7.75
DK1 OP3 0.66 3.39 1.93 1715.3 3.85
SE1 OP4 2.86 4.85 3.72 2576.29 112.19
DK1 OP4 0.78 1.68 1.25 1708.71 10.94
DK2 OP3 3.87 9.04 5.93 2092.41 16.35

Large

SE1 OP5 2.72 4.51 3.91 2383.63 137.35
DK1 OP5 3.91 5.53 4.48 1870.26 36.88
DK2 OP4 1.08 5.23 3.47 2334.22 63.38
DK2 OP5 -1.92 2.49 0.25 2704.05 120.55
DK2 OP6 -0.09 2.11 1.28 3414.22 812.76
DK1 OP6 3.53 5.86 4.32 2440.03 151.53
DK2 OP7 -0.76 0.57 -0.28 3389.88 176.25
DK2 OP8 -4.26 -3.2 -3.77 4197.76 658.68
DK2 OP9 -3.48 -1.63 -2.69 4700.99 433.54
DK2 OP10 -8.17 -5.68 -6.95 4726.6 475.82

Table 9: Results from the matheuristic.

23

Category Instance
MIP (multi thread) Matheuristic

solution gap(%) time (sec) avg. gap(%) avg. time(sec)

Medium

SE1 OP3 10925 0.00 130.31 2.33 883.29
DK1 OP3 10927 0.00 48.21 1.93 1715.3
SE1 OP4 17836 1.27 7200.4 3.31 2576.29
DK1 OP4 20253 0.00 1002.92 1.25 1708.71
DK2 OP3 12554 1.99 7200.34 5.19 2092.41

Large

SE1 OP5 23631 1.18 7201.98 3.36 2383.63
DK1 OP5 27773 0.00 3687.24 4.48 1870.26
DK2 OP4 25875 19.85 7201.69 1.36 2334.22
DK2 OP5 37651 17.95 7203.34 -6.66 2704.05
DK2 OP6 43492 12.57 7203.33 -8.99 3414.22
DK1 OP6 42394 1.07 7204.23 4.21 2440.03
DK2 OP7 65658 22.27 7205.68 -12.66 3389.88
DK2 OP8 83117 23.81 7206.42 -14.07 4197.76
DK2 OP9 102831 26.88 7215.21 -14.74 4700.99
DK2 OP10 102844 26.92 7213.6 -14.72 4726.6

Table 10: Comparison of results from the MIP solver and results from the matheuristic.

considered when tuning the parameters. For the largest category, Swedish (SE1 OP5) and
Danish (DK2 OP9) instances were taken as the training instances and parameter ηcar was
adapted such that if |HN | ≥ 14000 then it was set to 120 otherwise it was set to 180. Hence,
the matheuristic is over-fitted for the aforementioned instances and is potentially prone to
a large deviation in performance for an unseen test instance, which may possess different
characteristics. To analyze the sensitivity of the matheuristic, we tested DK2 OP9 instance
with different threshold values of |HN | and values of ηcar as shown in Table 11. The best known
solution provided by the MIP solver is used to calculate the average gap (%) of solutions yielded
by different settings. The results show that the performance of the matheuristic deteriorates
with increase in threshold value of |HN | and value of ηcar, which indicate that the matheuristic
is sensitive to parameter values.

|HN | ≥
10000 12000 14000 16000 18000 20000

ηcar

60 -2.34 -2.7 -1.83 -1.85 -1.51 -1.01
90 -2.74 -2.77 -2.04 -1.45 -1.16 -1.02
120 -2.73 -2.71 -2.52 -1.42 -1.4 0.43
150 -2.36 -2.21 -1.36 -1.29 0.63 1.59
180 -1.44 -1.61 -1.03 2.29 3.75 3.8

Table 11: Sensitivity analysis of the matheuristic for different threshold values of |HN | and
values of ηcar.

6 Conclusion

In this paper, we have introduced the DSPSC and presented a matheuristic to solve the
problem. Computational study with real-life instances from Denmark and Sweden revealed
that small and medium sized instances were solved with ease by the MIP solver. However, for
larger instances with more than 6 cars and 1200 bus trips, the integrality gap on average was

24

around 14.89%. The matheuristic provided better solutions, with comparable computation
times, for 6 out of the 10 large instances. On larger instances, the improvement is approximately
13-15% on average.

Therefore, in most cases, the proposed method is superior than an approach based on
solving the problem as a MIP problem for large instances in terms of solution quality and
computation time. However, integrating the matheuristic as part of a decision support tool
could be a challenging task. For solving the DSP, other practical conditions may exist such
as maximum number of duties, maximum/minimum average working time of the duties and
occasionally the objective is to minimize the total number of duties rather than minimizing
the cost. Hence, in addition to solution quality and computation time, the transport industry
demands a flexible decision support tool that allows for analyzing various scenarios, which
will be beneficial during the planning process. Consequently, the devised matheuristic should
have the ability to adapt to the diverse requirements from the users of the decision support
tool. Since the users of the tool generally have limited knowledge of OR, user-friendliness is
considered to be another key factor for successful integration of heuristics into decision support
tools. The work carried out in this paper aimed at testing the matheuristic for a wide variety
of problems from Danish and Swedish transport companies and creating a set of parameter
values for each category. However, if a new set of problems with varying sizes is given, it may
possess different characteristics. Parameter tuning is considered to be a time consuming and
tedious process, and approaches such as F-RaceBirattari et al. [2010] have been addressed
in the literature for automatic parameter configuration. Furthermore, problem-dependent
knowledge may still be needed to make the heuristic effective and perform consistently, which
requires highly skilled practitioners. In conclusion, the need to design flexible and user-friendly
heuristics is considered as a primary challenge for real-life implementation and could, hence,
be seen as future areas of research.

The DSPSC is a practical problem with many variations and we hope to inspire other
researchers in the area of vehicle and driver scheduling. One interesting variation of the
problem, which is of significant importance to the transport industry, is a car routing problem
that could have cars visiting multiple nodes, rather than a single node, before returning to the
depot.

Acknowledgement

This work was supported by the Innovation Fund Denmark [grant number 5189-00128B].

References

M. Ball, L. Bodin, and R. Dial. A matching based heuristic for scheduling mass transit crews
and vehicles. Transportation Science, 17(1):4–31, 1983. ISSN 15265447, 00411655. doi:
10.1287/trsc.17.1.4.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated f-race: An overview.
Experimental Methods for the Analysis of Optimization Algorithms, pages 311–336, 2010.

C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11:4135–4151, 2011.

25

R. Borndörfer, A. Löbel, and S. Weider. A bundle method for integrated multi-depot vehicle
and duty scheduling in public transit. Lecture Notes in Economics and Mathematical
Systems, 600:3–24, 2008. ISSN 21969957, 00758442.

M. A. Boschetti, V. Maniezzo, M. Roffilli, and A. Bolufe Roehler. Matheuristics: Optimization,
simulation and control. Lecture Notes in Computer Science, 5818:171–177, 2009.

J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle routing
problems with time windows. Journal of the Operational Research Society, 52:928–936, 2001.

K. Darby-Dowman, J. K. Jachnik, R. L. Lewis, and G. Mitra. Integrated decision support
systems for urban transport scheduling: discussion of implementation and experience.
Computer-aided Transit Scheduling. Proceedings of the Fourth International Workshop on
Computer-aided Scheduling of Public Transport, pages 226–239, 1988.

R. De Leone, P. Festa, and E. Marchitto. A bus driver scheduling problem: a new mathematical
model and a grasp approximate solution. Journal of Heuristics, 17:441–466, 2011a.

R. De Leone, P. Festa, and E. Marchitto. Solving a bus driver scheduling problem with
randomized multistart heuristics. International Transactions in Operational Research, 18
(6):707–727, 2011b. ISSN 14753995, 09696016. doi: 10.1111/j.1475-3995.2011.00827.x.

G. Desaulniers and M. D. Hickman. Public transit. In Handbook in Operations Research and
Management Science, volume 14, pages 69–127. Elsevier, 2007.

M. Desrochers and F. Soumis. A column generation approach to the urban transit crew
scheduling problem. Transportation Science, 23(1):1–13, 1989.

I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms. Lecture
Notes in Computer Science, 2611:211–223, 2003.

M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with spread-time
constraints. Operations Research, 35(6):849–858, 1987.

R. Freling, D. Huisman, and A. Wagelmans. Models and algorithms for integration of vehicle
and crew scheduling. Journal of Scheduling, 6(1):63–85, 2003. ISSN 10991425, 10946136.
doi: 10.1023/A:1022287504028.

D. Huisman, R. Freling, and A. Wagelmans. Multiple-depot integrated vehicle and crew
scheduling. Transportation Science, 39(4):491–502, 2005. ISSN 15265447, 00411655. doi:
10.1287/trsc.1040.0104.

O. Ibarra-Rojas, F. Delgado, R. Giesen, and J. Muñoz. Planning, operation, and control of
bus transport systems: A literature review. Transportation Research Part B, 77:38–75, 2015.

L. Jourdan, M. Basseur, and E.-G. Talbi. Hybridizing exact methods and metaheuristics: A
taxonomy. European Journal of Operational Research, 199:620–629, 2009.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighborhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science,
44(1):125–135, 2010.

26

H. Li, Y. Wang, S. Li, and S. Li. A column generation based hyper-heuristic to the bus driver
scheduling problem. Discrete Dynamics in Nature and Society, 2015:1–10, 2015. ISSN
1607887x, 10260226. doi: 10.1155/2015/638104.

J. Li and R. S. Kwan. A fuzzy genetic algorithm for driver scheduling. European Journal of
Operational Research, 147:334–344, 2003.

H. R. Lourenço, J. P. Paixão, and R. Portugal. Multiobjective metaheuristics for the bus
driver scheduling problem. Transportation Science, 35(3):331–343, 2001.

R. M. Lusby, M. Schwierz, M. R. Troels, and J. Larsen. An adaptive large neighborhood
search procedure applied to the dynamic patient admission scheduling problem. Artificial
Intelligence in Medicine, 74:21–31, 2016.

J. Ma, A. A. Ceder, Y. Yang, T. Liu, and W. Guan. A case study of beijing bus crew
scheduling: a variable neighborhood-based approach. Journal of Advanced Transportation,
50(4):434–445, 2016. ISSN 20423195, 01976729. doi: 10.1002/atr.1333.

G. Mauri and L. Lorena. A new hybrid heuristic for driver scheduling. International Journal
of Hybrid Intelligent Systems, 4(1):39–47, 2007. ISSN 18758819, 14485869. doi: 10.3233/
HIS-2007-4105.

L. F. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. European Journal of Operational Research, 218:
614–623, 2012.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34:2403–2435, 2007.

D. Pisinger and S. Røpke. Large neighborhood search. In M. Gendreau (Ed.), Handbook of
Metaheuristics, 2nd ed., pages 399–420. Springer, 2010.

R. Portugal, H. R. Lourenço, and J. P. Paixão. Driver scheduling problem modelling. Public
Transport, 1(2):103–120, 2009. ISSN 16137159, 1866749x. doi: 10.1007/s12469-008-0007-0.

S. Røpke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP ’98 Proceedings of the 4th International Conference on Principles and
Practice of Constraint Programming, pages 417–431, 1998.

B. M. Smith and A. Wren. A bus crew scheduling system using a set covering formulation.
Transportation Research Part A, 22(2):97–108, 1988.

A. Wren, S. Fores, A. Kwan, R. Kwan, M. Parker, and L. Proll. A flexible system for scheduling
drivers. Journal of Scheduling, 6:437–455, 2003.

T. Yunes, A. Moura, and C. de Souza. Hybrid column generation approaches for urban transit
crew management problems. Transportation Science, 39(2):273–288, 2005. ISSN 15265447,
00411655. doi: 10.1287/trsc.1030.0078.

27

	Introduction
	Related Literature
	Problem Description and Mathematical Modelling
	Solution Method
	Greedy heuristic
	Matheuristic
	Destroy Methods
	Repair Methods

	Computational Study
	Instances
	Parameter setup
	Performance of destroy and repair methods
	Results
	Sensitivity analysis

	Conclusion

