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Summary (English)

The goal of this thesis is to develop decision support tools, to optimise the planning of certain
activities within the liner shipping industry. With the emergence of mega-vessels, the planning of
vessel and terminal activities are becoming more and more vital for the liner shipping industry.
This thesis considers two speci�c problems where optimisation methods can be used to help with
the planning. The �rst of these problems aim to improve the utilisation of the vessels, and the
second aim to improve terminal productivity to minimise the time spent at ports for vessels.

For large vessels to achieve economies of scale, it is crucial they be fully utilised. E.g. It requires
a 91% utilisation for an 18000 TEU vessel to be cost-e�ective over a fully loaded 14000 TEU
vessel. When determining a load con�guration (stowage plan), it is of utmost importance to
ensure the vessel do not capsize or break. For this, the weight distribution of the containers
on the vessel plays an essential role. A stowage plan must also conform with the cargo already
loaded on the vessel, the cargo to be loaded while also ensuring the vessel can still be utilised to
its maximum in downstream ports. Given the growth in the size of newly built vessels, this task
is becoming harder and harder, as well as more important. We study this problem and develop
an adaptable framework to help with di�erent kinds of what-if analysis.

While the voyage cost per container is decreased for the mega-vessels, the handling cost is
increased. Hence, terminals are under pressure to increase productivity and minimise the
turnaround time for the vessels. The design of the mega-vessels, however, makes this hard.
These vessels are both higher and wider, requiring cranes to reach further away from the quay
and deeper into the vessel. As an e�ect of the inherent design of the vessels, the (un)loading time
per container is thus increased, compared to smaller vessels. With more mega-vessels coming
shortly it is also expected that yard congestion will be an increasing problem. Without any
signi�cant improvements it is therefore not expected that productivity will increase, and even
maintaining the current level will be a challenge. Decreasing the time spent at port is a shared
goal between the liner and the terminal. For the liner, the operating costs are decreased, while
the terminal can plan the use of their container-handling equipment better, so it can be used for
another vessel. We investigate such a collaboration and how the sharing of data can be used to
optimise the terminal-side planning while ensuring the liner also bene�ts from this.

The results are prototypes of decision support tools, that can be used to automatize the planning
of these activities.
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Resumé (Summary in Danish)

Målet for denne afhandling er at udvikle beslutningsstøtteværktøjer, der kan bruges til at optime-
re planlægningen af aktiviteter inden for container shipping. Med introduktionen af mega-skibe
bliver planlægningen af skibs- og terminalaktiviteter mere og mere afgørende for industrien.
Denne afhandling omhandler to speci�kke problemer, hvor optimeringsmetoder kan bruges til at
hjælpe med planlægningen. Det første af disse problemer sigter mod at forbedre udnyttelsen af
skibene, og det andet fokuserer på at forbedre terminalproduktiviteten for at minimere tiden i
havn for skibene.

For at store skibe kan opnå stordriftsfordele er det afgørende, at kapaciteten udnyttes til ful-
de. Det kræver for eksempel mindst en udnyttelsesgrad på 91% for at et 18000 TEU-skib er
omkostningse�ektivt sammenlignet med et fuldt lastet 14000 TEU-skib. Ved bestemmelse af en
belastningskon�guration (stuvnings plan) er det yderst vigtigt at sikre, at skibet ikke kæntrer
eller knækker. Her spiller vægtfordelingen af containerne på skibet en afgørende rolle. En stuv-
nings plan skal passe med containerne der allerede er lastet på skibet, containerne der skal lastes,
samtidig skal det også sikres at skibet stadig kan udnyttes til fulde i de kommende havne. I
forbindelse med at nybyggede skibe bliver større og større bliver det sværere at bestemme en god
stuvning plan, samtidig med at det også bliver vigtigere. Vi betragter dette problem og udvikler
en �eksibel matematisk metode til at hjælpe med forskellige former for what-if analyser.

Mens fragt omkostningerne pr. container er faldet for mega-skibene, er håndteringsomkostnin-
gerne steget. Derfor er terminalerne under pres for at øge produktiviteten og minimere ekspedi-
tionstiden for skibene. Designet af mega-skibene gør det imidlertid svært. Skibene er både højere
og bredere, hvilket kræver at kranerne skal række længere væk fra kajen og dybere ned i skibet.
Som en e�ekt af skibenes design øges (af)lastetiden per container i forhold til mindre skibe. Med
�ere mega-skibe på vej i den nærmeste fremtid, forventes det også at tra�kpropper i containerter-
minalen vil være et stigende problem. Uden væsentlige forbedringer forventes det derfor ikke, at
produktiviteten vil stige, og selv at opretholde det nuværende niveau vil være en udfordring. At
reducere tiden i havnen er et fælles mål mellem rederiet og terminalen. Driftsomkostningerne for
skibene falder, samtidig med at terminalen kan planlægge brugen af deres containerhåndterings-
udstyr bedre, så det kan bruges til andre skibe. Vi undersøger et sådant samarbejde og hvordan
dataudveksling kan bruges til at optimere terminalplanlægningen, samtidig med at skibene også
drager fordel af dette.
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Resultaterne er prototyper af beslutningsstøtteværktøjer, der kan bruges til at automatisere
planlægningen af disse aktiviteter.



Preface

This thesis was carried out at the Division of Management Science, DTU Management Engineer-
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thesis constitutes a partial ful�lment of the requirements for acquiring a Ph.D. in Engineering.
Associate Professor Dario Pacino supervised the project, and Professor Harilaos Psaraftis acted
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The thesis deals with challenges in the liner shipping industry due to increasing vessel sizes. Two
speci�c problems are detailed, and solution methods are proposed to mitigate these problems.
The solution methods are based on Operations Research techniques, and it is expected that the
reader has knowledge of such methods.

The thesis consists of three main parts. First is the introduction which gives a thorough presen-
tation of the liner shipping industry, and the covered problems. The next part contains three
research papers written as part of the Ph.D. The last part contains additional work related to
the research papers. This work is currently unpublished, but we believe it can be the basis of
one or more journal papers.
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Chapter 1

Introduction

The emergence of container shipping has had a huge impact on today's society. Container
shipping has changed the world through globalisation, and recent research shows that �containers
have boosted globalisation more than all trade agreements in the past 50 years put together � (The
Economist, 2013b). BBC cleverly describes a container, as �the simple steel box that transformed
global trade� (BBC, 2017).

Liner shipping is the industry of shipping containerised goods using high-capacity ocean-going
vessels, operating on regular routes with a �xed schedule. Within the industry, there is a �erce
competition between the di�erent actors, and as a result, container freight rates are historical
low (UNCTAD, 2016). In search of economies of scale, liner companies are ordering bigger and
bigger vessels. The capacity of these mega-vessels now exceeds 18,000 containers, and the growing
�eet leads to planning problems in the industry. This thesis studies two of such problems with
potential for minimisation of operating costs.

Figure 1.1: Global shipping tra�c. Source: Shipmap.org (2016)



2 Introduction

But, how did the container get to play such an important part in transforming global trade?

On April 26, 1956, the old oil tanker Ideal X embarked on its journey from Port Newark in New
Jersey to Port of Houston, Texas. Ideal X had been re�tted and strengthened to accommodate
58 containers, and is today known as the �rst commercially successful container ship. The owner
of Ideal X, Malcolm McLean is accredited with revolutionising international trade and being the
father of containerisation.

Before 1956, most cargoes were loaded and unloaded manually by dockworkers. McLean recalls
the moment that gave birth to the idea of the container: �I watched them take each crate o�
a truck and slip it into a sling, which would then lift the crate into the hold of the ship. Once
there, every sling had to be unloaded, and the cargo stowed properly. The thought occurred to
me, as I waited around that day, that it would be easier to lift my trailer up and, without any of
its contents being touched, put it on the ship� (The Economist, 2001). The current process was
time-consuming, and often ships spent longer time docked than at sea. Moreover, the process
was unreliable, and a lot of the goods were stolen, which in�uenced the cost of insuring the cargo.
(The Economist, 2013b)

The immediate impact of Ideal X was clear; the cost of loading a tonne cargo dropped from
$5.83 to $0.16, more cargo could be transported and unloading time was cut by up to three
weeks. However, not everyone was happy; Freddy Fields, a top o�cial of the International
Longshoremen's Association, was asked what he thought of Ideal X to which he replied �I would
like to sink that son of a bitch� (PCB, 2017). The longshoremen began to strike, but there was
nothing they could do, the future was now, and the demand for labour was decreasing.

The next big breakthrough came in 1968 when the International Standards Organisation, stan-
dardised the dimensions and features of the container. Professor Brian Slack of Montreal's
Concordia University notes: �In terms of containerisation, which became a global phenomenon,
it would have had great di�culty in doing that were it not for the fact that the boxes that ev-
erybody adopted were of �xed dimensions. The key to that is that you could design a ship to �t
exclusively those dimensions of boxes� (Australian Broadcast Company, 2014). Also, trucks and
railway connection could be optimised for these dimensions allowing for inter-modal transport.

Not only longshoremen and related unions struggled with this revolution. It was catastrophic for
many ports. The ports were built to facilitate operations in the old manner, i.e. typical features
were storage sheds and lots of berthing space. Now, instead of storage sheds, you needed space
on the dock to store containers. Existing ports tried to change, but it proved more e�cient
to develop new terminals on new sites instead of re�tting existing ports to accommodate the
container vessels. (Australian Broadcast Company, 2014)

As a consequence of containerization, over a �ve year period (from 1965 to 1970), port produc-
tivity saw an 18-fold increase, and insurance costs a six-fold decrease from ¿0.24 per tonne to
¿0.04, and the number of loading ports in Europe decreased from 11 to 3. (The Economist,
2013a)

During the Vietnam War, the US. government turned to container shipping to getting supplies
to its troops, and container shipping started to prove its worth at an international level. During
the 1970s and 1980s the container shipping industry grew exponentially, and from 1973 to 1983
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the number of Twenty-foot Equivalent Units (TEUs) carried saw a four-fold increase, from 4
million TEUs to 12 million TEUs. (World Shipping Council, 2013)

Except for a bad year in 2009, following the �nancial crisis in 2008, the number of TEUs carried
has kept increasing. Figure 1.2 shows how the demand has grown from 1996 to 2016.
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Figure 1.2: Global containerized trade, 1996�2016. Data Source: UNCTAD (2016)

With the increasing demand, container ships sizes have been growing accordingly. Over the last
decade the average capacity of container ships has doubled, and as of May 2017 OOCL Hong
Kong holds the world record for the largest containership, with a carrying capacity at 21,413
TEU. That is a factor 2.6 increase compared with the ∼8,200 TEU record set in 2003. It is
expected that both the average and maximum size of containerships will grow over the coming
years. With micro-optimisation in the design, new vessels could reach a 22,000 TEU capacity.
Figure 1.3 shows how the maximum TEU capacity has developed since the 1970s. (OOCL, 2017;
OECD/ITF, 2015)

Recently, slower-than-expected demand growth has resulted in historical low freight rates and
surplus capacity. In 2015 the capacity was 7% larger than the demand, leading to 7% of overca-
pacity. In a recent analysis, The Boston Consulting Group expects this to signi�cantly worsen,
and perhaps double by the end of 2020 (Morley, 2016). The global container tra�c is projected
to grow between 2.2% and 3.8% annually from 2016 to 2020, this, however, is lower than the
expected growth in capacity from ordered vessels, further increasing the oversupply of vessel
capacity.

The report further notes �in this challenging market context, companies that embrace digital will
further strengthen their competitive advantage� and continues �smart use of technology can posi-
tion the various players in the value chain (liners, terminals, intermodal players, customers) to
communicate and collaborate more successfully.� Maersk Line must have reached the same con-
clusion, as they are positioning themselves to lead the digital transformation for liner shipping.
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Figure 1.3: Development of container ship size. Data source: OECD/ITF (2015)

Over the coming years, they are installing sensors, bunker �ow metres and updating communi-
cation technology one ship at a time. Niels Bruus, Head of Future solutions, �eet management
and technology says: �The short-term focus is to realise the e�ciency bene�ts of more accurate,
real-time data to optimize our operations. We expect that the impact of this data �ow on our
operational e�ciency will be a signi�cant positive� (Maersk Line, 2016). The data will mainly be
used to optimise operations and will thus mainly be used internally, but commercial opportunities
will be considered in the near future (Maersk Line, 2016).

This thesis takes up this challenge and aims to provide insight into how data and optimisation
methods can be used to improve operational e�ciency within the domain of liner shipping.

1.1 Thesis outline

This thesis is divided into three main parts. First is this introduction to the thesis which
gives a thorough presentation of the liner shipping industry, and the covered problems. The
introduction also contains the scienti�c contributions, conclusions and ideas for future work.
After the introduction, Part I contains the research papers written as part of the Ph.D. For two
of the three research projects considered throughout the Ph.D. there are additional methods and
results that have not been included in the research papers and are currently not submitted to
any journal. These methods and the results thereof are described in Part II. The results are from
new methods, and some of the results improve upon the state-of-the-art. With additional work,
we believe some of these methods and their results can be the base of one or more standalone
journal paper.
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1.2 Introduction to maritime logistics

In the �eld of maritime logistics, you most often distinguish between three di�erent modes
of operation; industrial, tramp and liner shipping. This thesis focuses on planning problems
within liner shipping. However, for the sake of completeness, we will in this section give a
brief introduction to industrial and tramp shipping. After this, the domain of liner shipping is
explained in greater detail.

1.2.1 Industrial and tramp shipping

Tramp shipping is similar to a taxi service. The ships follow the available cargo, and there is
no published schedule. Often operators have a secure income from contracts, binding them to
carry a speci�ed quantity between speci�ed ports within a given time frame. To supplement the
contracts, tramp ships also trade on the spot market, where they can choose to accept optional
cargo if they deem it to be pro�table. The most common ships in tramp shipping are tankers
and bulk carriers. A core planning problem faced by a tramp shipping company is to determine
the split between spot cargo and �xed long-term cargo contracts and construct routes for the
single vessels. When doing so, an estimation of future prices and demand must be taken into
account as well as the �eet composition.

In industrial shipping, the operators most often control the vessels and the cargo shipped, and
they strive to minimise the cost of shipping the cargo. Industrial shipping can be described
as �own shipping�, i.e. companies dealing with high enough volumes that it makes sense to
undertake the shipping themselves. As with tramp shipping, industrial shipping mostly deals
with liquid and dry bulk cargo that is shipped in full shiploads from their origin port to their
destination port. Such cargo includes oil, coal, iron and chemicals.

Christiansen et al. (2007) presents an extensive introduction to maritime transportation and
related optimisation problems faced in this �eld. This includes both tramp, industrial and liner
shipping. The four review papers Ronen (1983), Ronen (1993), Christiansen et al. (2004), and
Christiansen et al. (2013) give a thorough review of ship routing and scheduling problems within
the �eld of operations research.

1.2.2 Liner shipping

Where tramp shipping resembles taxi services, liner shipping is often compared to buses. Similar
to buses, liner vessels operate according to published itineraries and schedules. A round trip
sailed at a �xed frequency is called a service, and the duration of a service usually determines
how many vessels are assigned to it. For a service with a duration of 5 weeks, 5 vessels are
generally assigned to ensure a speci�c departure day from each port. Services can usually be
divided into a cargo intensive part, called the head haul, and a backhaul. On Europe - Asia
services, the Asia to Europe leg of the service is the cargo intensive part as Asia, and especially
China, produces many goods to be exported. The distribution network generally follow the
trade, and is divided into intercontinental routes and regional routes. Intercontinental routes
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transport goods to the desired region, hereafter the regional routes ensure the cargo is delivered
at its desired destination port. Also, feeder lines are used to connect smaller ports with the
intercontinental and regional routes.

The main cost components in liner shipping are vessel costs, cargo handling costs and bunker
costs (the fuel consumed by container vessels). Stopford (2009) break down the major cost
components and estimates that for an 11,000 TEU vessel operating costs account for 7% of the
cost, bunker costs for 39%, port and canal fees for 10% and lastly capital costs for 43%. The
operational costs include crew, maintenance and insurance and capital costs account for the
�nancing of the vessels. The port and canal fees are the fees for calling a port and traversing
canals. Cargo handling costs are not accounted for in the estimate. As the oil prices have been
increasing, operators have started to sail their vessels at a slower speed, known as slow steaming
in the industry. There is a cubic relationship between the speed of the vessel and the bunker
consumption, so sailing slow will decrease the bunker consumption for a �xed distance. Newly
ordered vessels are built with a lower design speed, bene�ting more from slow steaming.

Revenue is obtained by transporting cargo, and as mentioned earlier the freight rates are highly
volatile. With Europe importing more than they are exporting, there is an over�ow of empty
containers ending up in Europe and an imbalance in the trade. For this reason, it is usually
cheaper to transport a container from Europe to Asia, than the other way around. The liner
accepts cheaper rates from Europe to Asia, as they will not need to ship as many empty containers
to where they are needed.

Liner shipping companies organise themselves in alliances. By doing so, all actors in an alliance
pool together their �eet of vessels, and enters vessel sharing agreements. They do so as no carrier
have enough vessels to o�er weekly sailings across every port they serve. Two or more carriers
share a service, and they each deploy a number of vessels ensuring a high frequency. Each carrier
will operate their share of the vessels and have a corresponding share of the capacity on the other
vessels on the same service operated by their partners. Thus each member of an alliance can
o�er a better product for customers at the same operating cost. For smaller carriers, this means
that they have a greater geographic coverage than they would otherwise.

For liners, it is a challenge to get precise demand forecast. For the customer, there is no fee
for booking cargo, and they will only pay for a container transport once it is undertaken by the
liner. Often customers will book more cargo than what they actually will need at the time of
departure; this is to ensure enough slots on the vessels. The carriers know this, and thus expects
a certain amount of no-shows.

The main infrastructure needed to facilitate e�cient and cost-e�ective transportation of contain-
ers include the liner vessels, container terminals, canals and of course the containers themselves.
We will describe this in the following.

1.2.2.1 Containers

The intermodal freight container comes in di�erent sizes and with varying capabilities. Figure 1.4
shows the dimensions of the most common containers. 20 foot containers are 20' long, 8' wide
and 8.6' high. The standard size of a 40 foot container only varies in the length compared to a 20'



1.2 Introduction to maritime logistics 7

container. However, 40 foot high cube containers are 1' higher than the standard size. Containers
with length 45', 48' and 53' also exists, but they are less common. Container capacity is expressed
in Twenty-foot Equivalent Units (TEUs), and one standard 40' container corresponds to 2 TEUs.

Figure 1.4: Dimensions of the most common ISO standard containers. Source: Pacino (2012)

The corner castings in the corners of the containers are used to lock containers securely together.
The containers are structurally enforced in the corners, and for this reason, 20' containers cannot
be stacked above 40' units, at the risk of the container below collapsing under the weight. As
seen in Figure 1.4, 45' containers also have corner castings at the 40' position, ensuring they can
be stacked on top of a 40' container.

Figure 1.5 shows the di�erent types of container. The general purpose container (Figure 1.5a) is
the most common. Refrigerated containers (or reefers) as seen in Figure 1.5b are temperature-
controlled containers and can be used to transport perishable goods, e.g. fruits, vegetables, but
are not limited to foodstu�. Reefers are equipped with a cooling unit but need to be plugged
into an electrical outlet on the ship to get power. The top of an open top container (Figure 1.5c)
is covered by a tarpaulin instead of a �xed roof. This allows oversized goods (in relation to the
door opening) such as timber and metal waste to be loaded from above. Flatrack containers
(Figure 1.5d) are particularly suitable for heavy loads and heavy goods. Platform containers
(Figure 1.5e) can be used for heavy loads and oversized length cargo. Tanks (Figure 1.5f) are
used to transport liquid and gasses, for example, foodstu� (alcohols, fruit juices, edible oils)
or chemical products, e.g. �ammable material and toxic substances. When stowing dangerous
goods containers, certain separation requirements must be obeyed.

As mentioned, there is an imbalance in the trade, and empty containers are being shipped to
where they are needed. This is costly, as an empty container generate no revenue, but still take
up capacity on the vessel. For this reason, collapsible containers are being developed. These
containers can be collapsed when being empty, and four collapsed containers take up space as a
regular container.

Containers are built to support standard shipping, storing and handling conditions, and they
can be used multiple times. The lifespan of a container depends on the usage level, and the
conditions they are exposed to. The lifespan usually ranges from 10 to 15 years.
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(a) General purpose (b) Reefer (c) Open top

(d) Flatrack (e) Platform (f) Tank

Figure 1.5: Type of containers. Copyright: Hapag-Lloyd AG. Source: Hapag-Lloyd (2017).

1.2.2.2 Liner vessels

The worldwide �eet of liner vessels (or container vessels) consists of approximately 6,000 ships,
with a total capacity over 21 million TEU, and the largest having a capacity over 21,000 TEU.
(Alphaliner, 2017; OOCL, 2017). Despite the size of these vessels, they can be operated by a
crew of around 20 members. Containers vessels are classi�ed according to their size and capacity
into the following main groups.

Small Feeders (≤ 1000 TEUs): Small feeders are usually used for short-sea shipping and might
be out�tted with cargo cranes. This allows them to serve small ports where it is not economically
viable to invest in cranes.

Feeders (1000 − 2800 TEUs): These vessels are most often used to feed very large vessels, or
complement the small feeders in servicing markets that are too small for larger vessels.

Panamax (2800− 5100 TEUs): These are the vessels that ful�l the requirements for travelling
through the original Panama Canal opened in 1914.

Post-Panamax (5100 − 10000 TEUs): These are the vessels that exceed the original Panama
canal beam.

New Panamax (12000− 14500 TEUs): In 2009 the Panama Canal Authority published speci-
�cations which would come into e�ect when the new Panama Canal opened in 2016. These are
the vessels that can sail through the new Panama Canal.

ULCV (≥ 14500 TEUs): Ultra Large Container Vessels (ULCVs) are the vessels already larger
than the new Panama Canal, but they are still able to transit the Suez Canal.

The layout of a container vessel is shown in Figure 1.6. As seen in Figure 1.6a the vessel
is longitudinally divided into sections called bays. A single bay is further organised into two
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sections, on-deck and below-deck, separated by a metallic leak-proof structure known as a hatch
cover. Figure 1.6b shows the layout of a single bay, and the standard indexing system used in
the industry. Bays are divided in stacks (horizontal index) and tiers (vertical index). A vertical
position in a stack is called a cell consisting of two slots. A cell usually has a capacity of 2 TEUs,
meaning either two 20' containers or one 40' container can be stowed. Containers below-deck
can only be accessed once all containers on top of the hatch covers are removed as well as the
hatch itself.

Bay

Line of sight
 

Waterline

Statio9478447973

Hatch cover

(a) Example �gure of a container vessel. Source: Christensen and Pacino (2017)
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(b) Bay layout. Inspired by: Kim et al. (2004)

Figure 1.6: A container vessel

Liner vessels are equipped with carefully located ballast tanks along the length of the vessels.
They can be used to change displacement and stability conditions of the vessel, e.g. by allowing
for ballast water to be pumped out to temporarily reduce the draft (distance between the surface
of the water and the lowest point of the vessel) of the vessel when entering shallow water. Some
tanks are placed on the sides of the vessels and can be used to stabilise the vessel during (un)load
operations in port.

1.2.2.3 Container terminals

A container terminal consists of a quayside, a yard, and a landside area. Looking from the sea,
the �rst thing you will notice is the quayside with quay cranes towering above the ships. These
immense structures are used to load and unload the vessels and constitute the backbone of any
container terminal. Most quay cranes are built on tracks in the surface, making it possible to
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move left and right parallel to the berthed vessel. The berth is the place where the vessels moor,
and is the interface between the vessels and the terminal. (Steenken et al., 2004)

Figure 1.7: Container terminal layout. Source: Pacino (2012)

The quay cranes are the main bottleneck of most container terminals and to serve them, trucks
are endlessly arriving and stopping beneath the cranes in precise locations. Either the cranes
are picking a container of the trucks, or they are dropping a newly unloaded container to be
stored in the yard. Di�erent types of transport vehicles exist, from the unmanned Automated
guided vehicles, to the more standard yard truck and straddle carrier. Straddle carriers can lift
and stack containers, and can thus be used to avoid crane waiting time, as containers can be
unloaded on the ground, leading to increased crane productivity. The di�erent transport vehicles
available are described in greater detail in Meisel (2009) and Steenken et al. (2004)

The yard area is used for temporary storage of containers. Here the containers are organised in
multiple blocks, each consisting of several parallel container rows and a number of lengthwise
positions. Multiple tiers of containers can be stacked at each position. In the yard, containers
are usually stacked �ve containers high, and rail mounted gantry cranes (RMGC) serves as
input/output devices to store and retrieve containers from blocks. An RMGC spans up to 13
container rows. Depending on the design of the terminal, either one of the rows is reserved for
serving transport vehicles, or vehicles are served at the front side of a block. The �rst alternative
requires less movement of the gantry crane, whereas the second allows for higher storage capacity.
Not every terminal use RMGCs, terminals using straddle carriers in the yard area also exists
(see Meisel (2009)).

In the yard, there are often speci�c storage areas for export, import, special and empty containers.
A container maintenance area is also located in the yard. The maintenance area is used for
washing or repairing damaged empty containers. Some container terminals also have sheds where
containers are (un)packed and goods can be stored.

At the landside area, containers are (un)loaded on/o� trucks and trains, and thus provide a
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connection to the hinterland. In order to ensure e�cient and e�ective low-cost transportation of
containers for inland customers, many terminals are connected with railway tracks leading into
the terminal, allowing the terminal to serve trains with the gantry cranes. The capacity of one
train is about 120 TEU. Trucks can enter the terminal through the gatehouse. They need to pass
a security check and have their transport document checked. After this, they are sent directly
to a designated area where they will be served. Trucks can have a capacity of up to three TEU.
No trucks entering the gatehouse are allowed to access the quayside. When a container arrives
at the terminal (whether from quayside or landside operations), it is taken to the yard, and from
here another transport vehicle will take it to the next step on its journey when needed.

1.2.2.4 Canals

Transporting goods by sea from the far east to the west can take several weeks, but that would
be even larger had it not been for the Panama- and the Suez Canal.

The Suez Canal connects the Mediterranean Sea to the Red Sea and is one of the worlds busiest
shipping lanes. The 193km stretch of water allows ships to travel between Europe and the Far
East, without sailing around Africa reducing the sea voyage distance by approximately 7000km.
The maximum beam (width) of a vessel passing through the Suez canal is approximately 80m,
but the canal is only opened in one direction at a time, enforcing vessels to wait upwards of
22 hours. With the New Suez Canal, opened in 2015, the waiting time was cut down by more
than 50%, doubling the daily capacity. The Panama Canal connects the Paci�c Ocean with
the Caribbean Sea and the Atlantic Ocean. The strong winds, strong currents, large waves and
icebergs make the Cape Horn route some of the most treacherous waters in the world to navigate.
By using the Panama Canal, ships can avoid navigating around Cape Horn, while also reducing
the length of the route by around 4800km. However, only vessels with a TEU capacity of max.
14500 TEUs can pass through the Panama Canal. Another canal that must be mentioned in this
context is the Kiel Canal, making for easy access from the North Sea to the Baltic Sea, avoiding
sailing around the Jutland peninsula. (Velta, 2016)

While it is costly to transit these main canals, the costs are o�set by the bene�ts. The shorter
transit times allows ships to be utilised for more sailings per year, while also delivering a better
product for the customers. These canal systems also have a tremendous impact on the economy
in the surrounding community. In Egypt, the Suez Canal contribute 2 percent to the economy,
while it is 6 for the Panama Canal. (Dupzyk, 2015)

While the Suez Canal is used for almost all Europe-Far East connections, the picture is a little
more blurry for the Far East-US connections. The length of Far East-Suez Canal-US East-coast
journey is only 5% longer than the Far East-Panama Canal-US East-coast counterpart. As the
Suez Canal can accommodate larger vessels, some liners prefer the Suez Canal. Also, when fuel
prices are low, the Suez is more bene�cial compared to when the fuel is expensive.

Recognising the economic bene�ts, the Nicaraguan parliament has approved plans to build a
Nicaragua Canal. However, with the uncertain status, it might not be built, but competition
could get tougher over the next 15 years. Also, there have been discussions for a Thai Canal set
to divert tra�c from the Strait of Malacca between Malaysia and Indonesia. However, there are
no concrete plans.



12 Introduction

1.3 Liner shipping and operations research

The global container transportation system has reached a size where humans no longer easily
can comprehend the complexities and assess the best con�gurations. Therefore the need for
advanced decision support tools is increasing.

Beginning with the survey Ronen (1983), a survey of research on ship routing and scheduling (and
related) problems have been published every decade (Ronen, 1983; Ronen, 1993; Christiansen
et al., 2004; Christiansen et al., 2013). These surveys provide a comprehensive study of published
scienti�c work on ship routing and scheduling. The surveys mainly focus on the work published
since the last survey, and can thus also be used to reveal trends in research activities within
the domain. In general, the number of newly published research papers about doubles every
decade. Speci�c for liner shipping, the number of published papers in the 5-year period from
2007 to 2011, saw a fast increase compared to the �ve years before. The lack of research on liner
shipping is, therefore, closing fast. (Christiansen et al., 2013)

The survey �Optimization in liner shipping� (Brouer et al., 2017) gives an overview of optimisa-
tion problems faced by the liner company. The problems are classi�ed according to the strategic,
tactical and operational level as seen in Figure 1.8. The most determinative strategic problem is
to determine which markets to serve. Hereafter, the �eet size and mix can be established, which
all provides input to the network design problem. As previously mentioned, bunker consumption
grows cubically with speed. Determining the sailing speed on a leg (Speed Optimization), is,
therefore, an important tactical problem, where the bunker cost must be considered while en-
suring timely delivery for the customers. The cargo routing problem determines how the cargo
should be routed through the network once it has been accepted. Due to the imbalance in the
trade, containers are in short supply at some locations. The empty repositioning problem is a
more operational problem, and concern using residual capacity in the network to provide empty
containers where they are needed. Due to severe weather conditions and delayed terminal op-
erations liner vessels are often delayed. Disruption management problems provide insight how
to handle these disruptions e�ciently. For a comprehensive review and classi�cation of the OR
literature related to liner shipping, we refer to Meng et al. (2014).

The mentioned problems are often highly interdependent. The empty repositioning depends on
the cargo routing which depends on the network design. Instead, of treating this problem as a
single problem, they are often treated independently. Additional costs savings could be gained
by solving the combined problem. However, solving the problems hierarchically already poses
enough challenges, and can still provide valuable business insight.

In this section, di�erent planning problems faced by the liner shipping industry are described
in further details. We do not limit ourselves to problems faced by the liner company, but also
provide an overview of terminal-side planning problems. The purpose is not to give a complete
overview but mainly serve as an introduction to the details and considerations that must be
accounted for.
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Figure 1.8: Main planning problems in liner shipping. Source: Brouer et al. (2017)

1.3.1 Network design

Liner ships operate along published itineraries and schedules. The frequency, timetables and �eet
deployment, may change depending on demand �uctuations, but the routes themselves rarely
change. Therefore the route network design is an important strategic decision. The routes in
the network are identi�ed by the ports they visit, and the order. Additionally, the size of the
ships assigned to a route must also be determined. The problem of constructing routes to serve
is referred to as The Liner Shipping Network Design Problem (LSNDP).

Most modern liner shipping networks are composed in a way similar to a hub-and-spoke network,
with trunk services, connecting hubs from di�erent geographical regions to each other. Feeder
services are the spokes of the network, and are mostly contained within a speci�c region to serve
a main port and a set of smaller ports that do not merit visits by the trunk services. Due to the
structure of the network, only a few direct connections exist (relative to the size of the network).
Instead, a container can be unloaded, and temporarily stored, at an intermediate port until it is
loaded on another ship to reach its next destination. This is called a transhipment and containers
often have 1 or 2 transhipments on its journey to the destination port. For every transhipment,
there is an associated handling cost, and the number of transhipments should thus be kept to a
minimum.

Related to the LSNDP is the Fleet Deployment Problem. Compared to the LSNDP the �eet
deployment problem is a more tactical problem, where the network is considered �xed and vessels
are assigned to routes in the network. A liner shipping company often has some �exibility by in- or
out chartering vessels. If the demand on a speci�c trade route is over-estimated, a liner shipping
company might be able to pro�t by out-chartering vessels. The �eet deployment problem aims
to serve all routes in the network at a minimum cost while ensuring the demand is ful�lled.
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1.3.2 Container stowage planning

A container stowage plan is the allocation of containers to speci�c slots on a vessel. Stowage
plans are made by stowage coordinators at the liner shipping company. They are used in the
terminal to coordinate the load and discharge operations, and thus the stowage coordinator must
complete the stowage plan before the vessel calls into port.

When making a stowage plan, the data available for stowage coordinators include; a loadlist, in-
formation about the vessel condition, port information, and a forecast mainly based on historical
data. The loadlist contains information concerning the containers to be loaded. This includes
information such as weight, height, type, and the discharge port. The vessel data used includes
the status of ballast and fuel tanks, as well as information (height, weight, type and position) of
the containers on the vessel.

Stacking rules impose how the containers must be stacked. As previously mentioned, no 20'
containers can be stacked above 40' units. Also, reefers must be stowed near an electrical outlet
to get power to the cooling unit and dangerous goods containers must be stowed according to
a complex set of separation rules. Normally the weight of containers must decrease upwards in
stacks on deck.

A stowage plan must result in a seaworthy vessel. The captain has the responsibility to declare
the vessel seaworthy. Besides ensuring that the vessel is not defective or undermanned, this also
entails that all container stacking rules are satis�ed, and special containers are handled correctly.
The static stability needs to be correct, and all stress forces must be within limits. The weight of
the cargo causes shearing and bending stresses over the vessel structure, which must be within
limit at certain calculation points. Ensuring the vessel is stable also requires the centre of gravity
to be within de�ned limits. The aft draft is the distance between the waterline and the bottom
of the hull at the stern of the ship, and the fore draft is at the bow. The trim is de�ned as the
di�erence between the aft draft and the fore draft. The trim, fore draft, and aft draft must all
be within limits. To safely navigate, the captain standing on the bridge must be able to see 500
meters ahead of the ship, or the double of the length of the vessel (whichever is smallest). This
line of sight requirement limits the height of a stack on-deck. Additional stability requirements
are described in Delgado (2013) and Pacino (2012).

All data concerning the vessel structure is described in a document called the vessel pro�le. The
vessel pro�le describes the location of the tanks as well as their capacities. It also contains the
weight and capacity limits as well as the hydrostatic table. The hydrostatic table is used to
calculate draft, the centre of gravity and trim.

There might be many stowage plans that result in a seaworthy vessel, and it is the stowage
coordinators responsibility to �nd one that is economically viable as well, while also making sure
the vessel can be fully utilised at downstream ports. As previously mentioned, port costs are a
major cost component of liner shipping, so a good stowage plan is one that helps to minimise the
time at port and secondary reduce fuel consumption. Two main features impact the time at a
port; crane split, and overstowage. Together with the port information, the stowage coordinator
receives information regarding the number of quay cranes assigned to the vessel, and they will
try to distribute the containers evenly along the length of the vessel, to allow for multiple
cranes to have a similar workload. Overstowage leads to extra crane moves, and should thus
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be minimised. There are two kind of overstowage, stack overstowage, and hatch overstowage.
Figure 1.9a illustrates a bay where we have to unload the container with the arrow (green). To
retrieve this container the containers with the crosses (red) needs to be moved as well. If these
containers do not need to be unloaded at the current port, this leads to extra cranes moves.
Figure 1.9b illustrates hatch-overstowage. Here all containers on-deck needs to be moved, before
removing the hatch covers and the single overstowing container below-deck. Concerning fuel
savings, the water in the ballast tanks should be minimised. Ballast water can constitute up
to one-third of the vessels total weight, thus minimising the ballast water can have a drastic
impact on the fuel consumption. Additionally, stowage coordinators aim to distribute the weight
of the containers along the length of the vessel such that the trim is close to optimal and thereby
minimising the drag.
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(b) Hatch overstowage

Figure 1.9: Examples of di�erent kinds of overstowage.

The academic work on stowage planning problems is challenged due to a missing common problem
de�nition. The number of container types considered varies from paper to paper, as does the
importance with respect to stability considerations and the seaworthiness of the vessel. This also
means there is no uni�ed benchmark set for which all solution approaches are tested, thus making
it hard to compare methods to each other. Businesses in the industry are very reluctant to share
real-life vessel data. Thus con�dentiality issues challenge the existence of a uni�ed benchmark.
One could try to generate a vessel pro�le themselves, but without a real hydrostatic table, it is
unsure if the benchmark will be representative of a real-life vessel.

Due to its similarity to work presented in this thesis, we �nd it relevant to review the academic
literature on stowage planning problems. The literature can be divided into two main groups,
Single model approaches and multi-phase methods. The �rst full detailed mathematical model
is presented in Botter and Brinati (1992). Additional approaches based on Mixed Integer Pro-
gramming formulations are the work of Ambrosino et al. (2004) and Li et al. (2008). These
models experience scalability issues due to the large number of variables, thus making them
unsuitable for practical use. Heuristic single model approaches include the placement heuristic
by Aslidis (1984) and the Suspensory Heuristic by Avriel et al. (1998). The suspensory heuristic
only focuses on container stacking constraints and does not include any stability considerations.
Dubrovsky et al. (2002) obtain results similar to the suspensory heuristic but has the possibility
of incorporating simple stability constraints. Ding and Chou (2015) describes a state-of-the-art
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heuristic that improves the results from the suspensory heuristic. The placement heuristic in Low
et al. (2009) is based on the work practice of stowage coordinators, and the similarities to packing
problems are explored in Sciomachen and Tanfani (2003), where a 3D-bin packing heuristic is
used to tackle a stowage problem. Constraint programming approaches worth mentioning for
stowage planning includes the work of Ambrosino and Sciomachen (1998).

The �rst multi-phase method was proposed in Botter and Brinati (1992). However, it was too
computationally expensive. Instead, the problem was solved by a branch-and-bound search. The
�rst multi-phase method that presented promising results was Wilson and Roach (2000). Here,
�rst containers are assigned to general areas on the ship following high-level capacity constraints,
known as the master bay planning problem. Hereafter the speci�c containers are assigned a
speci�c slot (slot planning problem). Kang and Kim (2002) uses the same decomposition but
in an iterative manner. Pacino et al. (2011) solves industrial scale problems using a mixed
integer programming approach for the master bay planning problem, and a mix of a constraint
programming and a constraint-based local search method for the slot planning problem. A
three-step heuristic is introduced in Ambrosino et al. (2009), in which the left and right, and
bow and stern weight di�erences are kept within a tolerance. The slot planning problem has
also received attention. The GRASP approach presented in Parreno et al. (2016) is the current
state-of-the-art. The constraint programming methods of Delgado et al. (2012) and Pacino and
Jensen (2012) must also be mentioned in this context.

Pacino (2012) provides a more in-depth overview of the literature for both single model ap-
proaches and multi-phase methods.

1.3.3 Terminal operations

A container terminal faces planning tasks on all levels of the organisation. Figure 1.10 is an
overview of terminal planning problems grouped according to the organisation planning level
(strategic, tactical and operational) and where the planning problem is located at the terminal
(seaside, yard or landside). The �gure also shows the underlying problem interdependencies. In
the following, a few selected operational problems are described in greater detail. For a more
thorough summary of these problems see Meisel (2009).

Before vessels are moored at the terminal, it must be assigned a berth. In the Berth Allocation
Problem (BAP) a set of vessels to be served within a planning horizon are considered. These
vessels might have di�erent lengths including clearance and draft. A feasible berth-plan is one
where all vessels are given a berthing position and berthing time, ensuring they do not occupy
the same quay space at a time, and they �t within the boundaries of the quay. A good berth-plan
is one that provides fast and reliable service of vessels. In the literature, this is often represented
by minimising the port stay times, i.e. the sum of waiting and handling times.

Beside the quay space, the quay cranes (QCs) are a scarce resource at a container terminal.
Therefore, after the vessels have been assigned berths, the Quay Crane Assignment Problem
(QCAP) aim to assign QCs to vessels optimally. For each vessel, the number of containers to be
loaded and unloaded is known, and the QCAP assigns QCs to vessels ensuring that all containers
from/to the vessel can be (un)loaded. The length of the vessel and the safety distance between
the QCs de�nes the maximum number of QCs that can work on the vessel at a time, while
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Figure 1.10: Planning problems in container terminals. Inspired by: Meisel (2009) and Iris et al. (2016)

contracts (if any) determines the minimum. The QCs can move alongside the quay, but cannot
overtake each other. Therefore, the QCAP both determines the number of QCs assigned, and
which speci�c QCs that make up the full assignment.

In connection with the QCAP is the Quay Crane Scheduling Problem (QCSP). Given a quay
crane assignment and the tasks associated with each QC, a solution for the QCSP de�nes the
order in which the tasks will be processed and the starting times. The tasks are the workload
for the vessel and can either be general bay areas to be (un)loaded, a bay, a stack or down
to (un)loading a speci�c container. Precedence relation between tasks ensures that unloading
operations are handled before loading and that the schedule complies with the stowage plan. For
a QC schedule to be feasible, all tasks must be processed, and a QC must only process one task
at a time. In the QCSP the minimum makespan is usually preferred, as this corresponds to the
turnaround time for the vessel.

These three problems are traditionally solved in a hierarchical fashion, where the solution to the
BAP is used as input to the QCAP, which is then given as input to the QCSP. The underlying
assumption here is that a good solution to an upper-level problem will lead to a good solution
to a lower-level problem. However, this is not always the case, and this leads to suboptimal de-
cision making. Instead, problems are starting to being considered in a more integrated fashion,
where details from more than one problem are being considered together. These problems are
usually harder to solve, and it can be hard to capture all the details of the speci�c problems.
Integrated problems seen in the literature includes Berth Allocation and quay Crane Assignment
Problem (BACAP), Berth Allocation and quay Crane Assignment and Scheduling Problem (BA-
CASP) and Quay Crane Assignment and Scheduling Problem (QCASP). The QCSP is also often
integrated with yard management problems.

Yard management problems include designation of partial yard blocks as bu�ering areas for the
import and export containers for calling vessels. To minimise travelling times, the designated
space should be close to where the vessel is expected to berth, but should also be spread among the
gantry cranes. Additionally, there is the premarshalling problem, where idle times for automated
gantry cranes are used to order the containers in a block. The containers are ordered according
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to at what time they should be retrieved, thereby utilising idle time to minimise waiting time
that might occur at a later point in time.

At the tactical level are problems in the yard related to storage of empty and reefer containers.
These decisions will last for weeks, if not months. The strategic problems mostly concern the
location and layout of the terminal as well as the type of equipment to invest in.

1.4 Thesis contributions

This thesis considers two planning problems that to some extent currently are understudied
in the operations research literature. The thesis thus contributes by formally describing the
problems and introducing them to the OR literature. For both of these problems, novel solution
methods are described and compared with standard techniques. Thus this thesis both contributes
methodologically and computationally. In the following, we introduce the studied problems and
outline the scienti�c contributions for both of them. An overview of the dissemination of the
work is also given.

1.4.1 The Cargo Mix Problem

Container vessels constitute an important part of the backbone of international trade. In search
of economies of scale container shipping lines are building bigger and bigger vessels. Comparing
modern ∼19,000 TEU vessels with older ∼15,000 TEU vessels, there are large savings to be
gained. A recent report (OECD/ITF, 2015) estimates that between 55% and 63% of this savings
is due to technological advances and especially design changes. With the growing bunker prices,
modern vessels are being optimised to sail at a lower speed to save costs. Hence, the relative
savings will vanish over time as new medium-sized vessels are being built. (Berglund, 2017;
OECD/ITF, 2015)

For large vessels, it is crucial to utilise their full capacity to sustain being cost e�ective. E.g.
an 18,000 TEU vessel requires a 91% utilisation to be cost-e�ective over a fully loaded 14,000
TEU vessel (OECD/ITF, 2015). Assuming there is enough demand, it is hard to achieve the
maximum capacity due to, e.g. container weight distribution. The weight distribution of the
vessels plays an essential role for the seaworthiness and the safety on board.

Most strategic and tactical decisions in liner shipping are based on the nominal capacities of the
vessels. However, unless the cargo weight distribution is perfect, the nominal intake cannot be
reached. The focus of the cargo-mix problem is to analyse the cargo composition needed for a
vessel to maximise its utilisation on a given service. By cargo-mix, we refer to the composition
of cargo in terms of container types and weights. Such a model can have multiple applications
ranging from driving freight rates, and improving the vessel capacity model in �eet deployment
and network design problems. Aside from strategic applications, it can also be used as an
analytical tool to perform various what-if analyses.

Chapter 2, Chapter 3 and Chapter 5 all deal with the Cargo Mix Problem. We use real-life
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vessel data provided by our industry collaborator. In Chapter 2 we consider the cargo-�ows
(origin-destination container-demand matrix) as being deterministic and known in advance. We
impose a high degree of accuracy concerning stability considerations to ensure the method is
industrially applicable. The existing de�nition of the problem is extended to include a speci�c
stowage strategy used in the industry (block stowage), circular routes, draft restrictions and
cargo �ow limitations. We show that with the extensions, the problem cannot be solved using
standard MIP solvers. The main reason for this is the inclusion of the stowage strategy. Instead,
a matheuristic multi-phase approach is used. In the �rst phase variables related to the stowage
strategy are heuristically set. Hereafter, the next phases assign containers to general areas on the
ship ensuring the decision in the �rst phase is ful�lled. The results show that the matheuristic is
scalable and able to �nd quality solutions for real-life instances within a matter of seconds. This
paper contributes to the state-of-the-art by; 1) Extending the existing de�nition of the problem,
2) extending the existing compact formulation of the problem including the new features, 3)
propose and compare a number of matheuristics that can solve the problem in a matter of
seconds. The work has been disseminated as follows:

� A paper published as J. Christensen and D. Pacino (2017). �A matheuristic for the Cargo
Mix Problem with Block Stowage�. In: Transportation Research Part E: Logistics and
Transportation Review 97, pp. 151�171. issn: 1366-5545 (Christensen and Pacino, 2017).

� Presentation by Dario Pacino at Sixth International Workshop on Freight Transportation
and Logistics (Odysseus 2015) (Christensen et al., 2015b)

� Presentation by Jonas Christensen at the hEART 2015 conference (Christensen et al.,
2015a)

� Presentation by Jonas Christensen at 9th Triennial Symposium on Transportation Analysis
(TRISTAN 2016) (Christensen and Pacino, 2016)

In Chapter 5 two extensions to the existing heuristic is presented. Both methods aim to improve
the decision made related to the stowage strategy. The �rst approach is an iterative method that
iteratively improves these decisions. In the second approach, a MIP model is solved to determine
the stowage strategy decisions. The results show minor changes in the objective value, and there
is still room for improvement.

In Chapter 3 a stochastic version of the cargo mix problem is considered. Here the aim is to
include the unreliability with respect to the demand forecast in the industry by considering
the cargo-�ows as being stochastic. Instead of considering a circular route, a string of ports
are considered, and the vessel is assumed to already be loaded with containers. We show that
the problem cannot be solved using standard MIP solvers. This is mainly attributed to stowage
strategy and the number of scenarios. To deal with this, we heuristically set the stowage strategy
decisions, and a Rolling Horizon Heuristic is used to handle the number of scenarios. This
matheuristic is shown to be scalable and �nds high-quality solutions even for real-life instances.
The contribution of this paper is three-fold. First, the problem de�nition is extended to include
stochastic cargo �ow. Second, the compact formulation is extended to include stochastic cargo
�ows. Lastly, a matheuristic is proposed to solve the problem. The work has been disseminated
as follows:



20 Introduction

� A paper co-authored with Alan Erera and Dario Pacino, soon to be submitted to Trans-
portation Research Part E. (Christensen et al., 2017a)

� Presentation by Jonas Christensen at 7th International Conference on Logistics and Mar-
itime Systems (LOGMS 2017 ). (Christensen et al., 2017b)

1.4.2 The Flexible Ship Loading Problem

Another consequence of the mega-container ships is on the terminal side. Bigger vessels require
more crane moves per vessel, and terminals are under pressure to minimise the turnaround time
for the vessels. Minimizing the turnaround time makes it possible for the carriers to realise more
of the savings potential that comes with the bigger vessels, as they will not have to catch-up on
the sea to stay on schedule because of port delays. For the terminal, improving productivity and
minimising turnaround times helps to free up berth positions, and clears up capacity for another
vessel. (JOC, 2014)

With regards to productivity, Asia's container terminal outranks the U.S. and European coun-
terparts. This is mainly contributed to ports being operated 24 hours a day, a high degree of
automation and a large transhipment volume. However, Subhangshu Dutt, executive director
of Krishnapatnam port in Southeast India has expressed concerns maintaining this productiv-
ity level with bigger vessel becoming more common: �Productivity will not increase, and even
maintaining the level is a challenge. Longer vessels of 440 yards (such as Maersk Line's Triple
E class) will lead to more berth wastage... It appears that productivity levels have plateaued,
and unless there is a totally new innovative concept with regard to yard design, management
and �ows, there may not be any signi�cant improvement�. The Flexible Ship Loading Problem
(FSLP) investigates such an innovative concept using optimisation. (Mooney, 2015; JOC, 2014)

Acknowledging that improving terminal productivity is a shared goal between the carrier and
the terminal, the FSLP investigates a collaboration between the terminal and liner shipping
companies. The liner provides the terminal with a stowage plan based on container classes. The
terminal then has the �exibility of determining the position of the speci�c containers, as long
as it adheres to the provided stowage plan. The terminal will assign containers to speci�c slots
on the vessel, while also scheduling transfer vehicles to retrieve the container from the yard and
deliver it in front of the crane. Doing so the terminal can better plan what container to be loaded
at what time, thus giving the terminal better conditions to minimise the turnaround time for
the vessel. The terminal also bene�ts from this collaboration as they can plan the use of their
container-handling equipment better, so it can be used elsewhere for another vessel.

The �exible ship loading problem is considered in Chapter 4 and Chapter 6. In Chapter 4
the problem is described more thoroughly, and the di�erent components and interactions of the
problem are described. The problem is formulated as a mathematical model, and a number of
valid inequalities are tested. The model can only be used to solve small instances, and instead,
a GRASP heuristic is used. The GRASP heuristic is shown to be scalable and can be used
to �nd high-quality solutions in reasonable time. This paper contributes to the literature by
�rst introducing the problem aimed at improving the productivity of the loading operations at
container terminals. Secondly, the problem is formulated as a mathematical model, and a number
of valid inequalities are described and tested. The model is shown to be intractable for large-scale
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instances, and therefore a heuristic method is proposed. This work has been disseminated as
follows

� A paper co-authored with Çagatay Iris, Dario Pacino, and Stefan Ropke submitted to
Transportation Research Part B. (Iris et al., 2017a)

� Presentation by Dario Pacino at OR2017 Berlin. (Iris et al., 2017b)

Chapter 6 extends the work presented in Chapter 4. A new mathematical formulation is pre-
sented. The revised mathematical formulation is shown to provide better upper and lower bounds
for the problem. Also, a hybrid heuristic based on the GRASP heuristic is presented. The hybrid
heuristic �nds better solutions compared to the GRASP and does so using less time. Chapter 6
also describes a column generation algorithm for the FSLP. The column generation approach
seems promising but requires more work to properly evaluate. With additional work we believe
the work presented in Chapter 6 can be the basis for one or more standalone journal papers.

1.5 Conclusions

In search of economies of scale container shipping lines are building bigger and bigger vessels.
These new mega-vessels provide large unit cost savings compared to older and smaller vessels.
However, a signi�cant amount of the costs savings is attributed to the emergence of slow steaming.
Comparing modern mega-vessels with modern smaller vessels the cost savings are signi�cantly
lower, and the bene�ts of the mega-vessels are thus set to diminish when older medium-sized
vessels are decommissioned. (OECD/ITF, 2015)

While mega-vessels may cut unit costs for carriers, the total system costs are not reduced.
Additional costs for ports, insurance companies and transport providers lead to higher total
system costs as vessel sizes grow. Also, the general network structure leads to more transhipments
and fewer direct services. These added costs to the logistics system may outweigh the bene�ts
of the mega-vessels. Building even bigger vessels is therefore not a viable solution to deal with
the diminishing bene�ts of the mega-vessels. Instead, the industry must improve operational
e�ciency. (UNCTAD, 2016)

One way to improve operational e�ciency is the utilisation of data to make better plans. However,
the global container transportation system has reached a size where humans alone cannot easily
evaluate the best plan. This thesis aims to describe prototypes of advanced decision support
tools to aid in this planning process.

The thesis contributes to the Operations Research (OR) literature by providing insight into how
data and optimisation methods can be used to improve operational e�ciency within the domain
of liner shipping. The work has been disseminated in international peer-review journals and
conferences. The contributions cover modelling, methodology and applications.

Two problems are studied, the Cargo Mix Problem and the Flexible Ship loading Problem.
The Cargo Mix problem (Chapter 2, 3 and 5) aims at analysing the cargo composition needed
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for a vessel to maximise its utilisation on a given service. In Chapter 2 and 5 the problem is
considered as being deterministic, while stochasticity is include in Chapter 3. The applications
of such models are mostly strategic and tactical (driving freight rates, and improving the vessel
capacity model in �eet deployment and network design problems). However, their analytical
strength is better suited at the operational level, e.g. in uptake management. The solution
methods are based on mathematical models, and they are easily adapted to perform various
what-if scenario analysis. To provide value as an analytical tool, it is important the solution
methods be fast so multiple scenarios can be analysed in a few minutes. Therefore the focus
has been to provide fast solutions. However, more accurate versions are also presented which
can have value for strategic and tactical decisions. These models provide insight into how the
loading of di�erent types of containers impacts the utilisation. It can thus be seen as a �rst step
toward a more dynamic pricing scheme. Such a pricing scheme is key for revenue management
systems and intelligent booking systems.

The Flexible Ship Loading Problem (Chapter 4 and 6) studies a collaboration between the
terminal and the liner company. The liner provides the terminal with a stowage plan based on
container classes. The terminal utilises the �exibility within the class-based stowage plan and
makes a detailed operative stowage plan. The terminal does so while considering load sequencing,
transfer vehicle dispatching and scheduling. The objective is to minimise the penalty incurred
by �nishing the operation later than an expected �nishing time and the cost of operating the
transfer vehicles. The terminal clearly bene�ts from this, but so does the liner company, as
the terminal can �nish the loading earlier and the vessel spends less time at port. Multiple
solutions methods are described ranging from exact MIP models to heuristic methods (GRASP
and Hybrid heuristic) and two lower bound methods (Column generation and a MIP model).
This integrated approach is compared to solving it in a hierarchical manner, where the terminal
receives an operative stowage plan. The results show that signi�cant cost savings can be achieved.
For all test cases, the savings is between 35%− 65%, and the average savings is 50%.

1.6 Future work

Liner shipping companies are sensitive towards their operating data and are often described as
being conservative. Instead of advanced planning tools, companies usually prefer their traditional
planning approaches. Therefore, research in the �eld is challenged due to the unavailability of
data. However, recently companies within the domain have started to collaborate with academia.
With the increasing complexities of the planning tasks, one can only assume the openness toward
academia will develop further over time.

For the industry to take advantage of research collaborations, academics must provide business
insights useful for practitioners. Such insights can either be input to policymakers or prototypes
for operational planning tools.

Despite the advancements outlined in this thesis, there is still potential for further improving
operational e�ciency. Operational Alliances are a way to provide a weekly schedule, and today
Vessel Sharing Agreements (VSA) are an important part of liner shipping. This aspect can easily
be incorporated in network design problems, by reducing capacities and �xing edges. However,
careful analysis of dual information of these edges can potentially put a value on the VSAs. This
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may be very valuable during negotiations and give suggestions for which VSAs to pursue.

Further collaboration between liner shipping companies and port operators can potentially im-
prove operating e�ciency for both companies. Vessels are usually assigned a berthing time
window long before calling the port. In practice, it is not uncommon vessels miss the allocated
time. This can lead to congestion at the port and extra waiting time for the vessels. Also,
real-time port updates might make vessels able to anticipate waiting times and therefore lower
its speed, saving bunker.

For researchers, the availability of data is often a problem, and the existence of a benchmark
set can be of great help to stimulate research within the �eld. The LinerLib (Brouer et al.,
2014) is a benchmark set for the Liner Shipping Network Design Problem (LSNDP), and after
making it available, the LSNDP has received more attention by researchers. Additionally, to
be able to compare methods to each other the research community must agree on unifying
problem de�nitions. The industry can bene�t from this increased attention by having faster and
better solution methods. Hopefully, more benchmarks will be published in the future, and more
researchers will use the already existing benchmarks.

In the following, we outline possible future research directions related to the speci�c problems
studied in this thesis.

1.6.1 Improved modelling

The methods described in this thesis can be extended to handle additional details. To cater
for the operational applications of the cargo mix models, one could introduce indicators for the
vessel turnaround time such as crane split. Dispersing the workload over multiple cranes will
improve the crane split and minimise the vessel turnaround time. It is especially important
that the block assignment allows for multiple cranes to unload containers simultaneously. Thus,
crane split considerations can be added to the methods by including it in the model presented
in Section 5.3.

We see multiple ways to improve the modelling of the Flexible Ship Loading Problem. The �rst
extension is to optimise the loading sequence, i.e. the order in which the positions are loaded in.
An easier extension is the addition of TV operating time windows, to symbolise the TV is needed
elsewhere at the terminal. Another possible extension is to pool the Transfer Vehicles (TVs) for
all Quay Cranes (QCs). If pooling is allowed, TV waiting time might be used to retrieve a
container for another crane. In the column generation method described in Section 6.4.1 the
subproblem �nds a plan for a single vehicle, the pooling aspect can thus be included within
the subproblem with only small changes to the master problem. Lastly, by considering unload
operations together with loading operations, the e�ect of dual cycling can be studied.

1.6.2 Improved solution methods

There are multiple ways to extend or improve the methods presented in this thesis. For the
cargo mix problem we saw in Chapter 2 and 3 that the block assignment calculated in Phase I
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contributes to most of the �nal gap. Thus an idea for improving the results is to revise the way
the block assignment is calculated. That is precisely the focus of Chapter 5. The model-based
method did improve the results, but not substantially. However, operational objectives like crane
split can be included in this method. To improve the block assignment for the stochastic version
(Chapter 3) it can be made scenario dependent. Also for the stochastic version, the subproblem
can be solved in parallel and thus speed up the overall method.

The next steps in solving the Flexible Ship Loading Problem should focus on calculating better
lower bounds. The revised model (R-FSLP) in Chapter 6 did improve the lower bounds, but
the relative di�erence between the solutions and the lower bounds are still high. It is unclear if
this is due to poor upper bounds or poor lower bounds. For this reason, we looked into column
generation. While the pooling of vehicle can be added in this method, the chosen decomposition
does not yield better lower bounds. Instead, another way to decompose the problem is suggested
in the conclusion of Chapter 6. The idea here is to generate QC-plans instead of TV-plans. Doing
so, the only constraints in the master problem concerns the number of QC-plans used, container
resource constraints and the calculation of the end time. The calculation of the end time is a
simple constraint as the QC end time is known from the QC-plans. The pricing problem will
be similar to a 1-QC FSLP problem, but with no delay cost. Instead of the delay cost, there is
a cost depending proportionally on the QC end time. We are currently looking into this, and
preliminary results are promising.
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Abstract: The cargo-mix problem aims at selecting the amount of containers of a given
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analysis of a circular route with draft restrictions, limitations on expected cargo and the
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2.1 Introduction

Aside from the few years of �nancial crisis, the liner shipping industry has had a continuous
growth. The demand for e�cient and cheap transportation and a �erce competition has driven
shipping rates down, making it paramount for the carriers to utilise their vessels as e�ciently as
possible.

Focus on vessel intake maximisation is no news for the shipping lines. Container vessels are
delivered with a nominal capacity that ship owners know is only theoretical. Unless the cargo
weight distribution is perfect, the nominal intake cannot be reached. Stowage coordinators �ght
this battle every day. They are the planners of the cargo and have to �nd a load con�guration
(stowage plan) that both suits the current cargo to be loaded but also guarantees that the vessel
can be utilised to its maximum in future ports. The size of nowadays vessels is, however, making
this work harder (Pacino et al., 2011). Moreover, the cargo composition available in the di�erent
ports might not be suitable for the full utilisation of the vessel. To give a brief example, consider
a vessel that has to load a high number of very heavy containers. As a consequence, the draft
of the vessel (the distance between the waterline and the bottom of the hull) will be greater. If
the vessel is scheduled to visit a port with a low water depth, stowage coordinators will have to
leave a number of containers behind to reduce the draft and avoid the risk of running the vessel
aground. Leaving containers behind is clearly not a desirable situation.

The focus of our work is the analysis of vessels' cargo mix (the cargo mix problem), in particular
�nding what cargo composition is needed for a vessel to maximise its utilisation on a given
service. Di�ering from stowage planning, where a list of pre-selected containers must be stowed
on the vessel, the cargo mix problem aims at selecting the quantity of containers of each type
that should be loaded on a vessel to maximise its intake. Moreover, standard stowage planning
approaches only consider the current port, whereas the cargo mix problem considers a cyclic
service with multiple ports. The proposed model can have multiple applications ranging from
driving rates prices, improving �eet composition and network design (Christiansen et al., 2007;
Reinhardt and Pisinger, 2012; Brouer et al., 2014), or analyse the di�erence between an expected
cargo load and an optimal one.

In the work of Delgado (2013), it was shown that a cargo-mix analysis based on simple capacity
limitations greatly overestimates the revenue of the vessel. The presented model, however, did
not include a number of features which we deem essential for a correct capacity or revenue
calculation.

In our work, we propose an extension of the cargo-mix problem that includes draft restrictions
at the visited ports and a block stowage strategy. This last refers to the logical partitioning of
the vessel into blocks. Each block is then allowed to host only containers that have the same
discharge port. This alternative way of stowing containers is aimed at improving operations at
ports, since it makes it possible to perform e.g. dual cycling (where load and discharge operations
are no longer sequential). Examples of block stowage are found in the stowage planning literature
in e.g. Ambrosino et al. (2015a).

Our work contributes to the state-of-the-art in the following way. First we extend the formal
de�nition of the cargo mix problem from Delgado (2013) to include block stowage, circular routes,
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draft restrictions, and cargo �ow limitations. Second, we propose an extension of the compact
formulation of Delgado (2013) where the new problem features are included. We also show that
the new model can no longer be solved via mixed-integer programming. At last, we propose and
compare a number of matheuristics that are able to solve the problem in a matter of seconds.

The remainder of the paper is organised as follows. Section 2.2 presents the necessary background
knowledge. In Section 2.3, the existing relevant literature is reviewed. Section 2.4 describes the
problem in deeper details and presents a compact formulation for the problem. Section 2.5
describes the matheuristic approach. Section 2.6 is a brief explanation of the data used, and
Section 2.7 presents the results for the MIP model as well as the matheuristic. Lastly Section 2.8
contains �nal remarks and conclusions.

2.2 Background

Optimising the intake of a vessel requires deep understanding of vessel architecture, and the
industry as a whole. Liner shipping companies transport containers between ports on a �xed
cyclic schedule. Most containers transported on liner vessels are 8 feet wide, 8'6" high and 20',
40' or 45' long. High-cube containers also exist, which are 9'6" high. Some containers have an
integrated cooling unit for the transport of e.g. perishable goods. These containers are called
reefers and must be plugged into an electrical outlet, and thus can only be stowed where such
a plug is available. Additionally, there are dangerous goods containers (IMO containers) which
must follow strict segregation rules.
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Figure 2.1: Example �gure of a container vessel.

Figure 2.1 shows the layout of a container vessel. A vessel is divided into bays. Each bay is divided
into an on-deck and below-deck part, physically separated by a hatch cover. Hatch covers are �at
leak proof structures that can be removed when loading/unloading containers. Each bay consists
of a number of stacks divided into slots. A slot can hold a single 20' container. Figure 2.2a shows
a transversal section of a bay, where the numbers denote the blocks, and Figure 2.2b shows the
design of a stack within a bay. Two slots side by side are denoted a cell, each consisting of an aft
(towards the stern) and a fore (towards the bow) slot. Each stack has weight and height limits.
A stack has outer and inner supports and, as shown in Figure 2.2b, a 20' container uses the inner
and the outer supports, whereas a 40' container is supported only by the outer supports. A stack
thus has two weight limits, one for the outer supports and one for the inner supports. Due to the
construction of the vessel the inner supports are weaker than the outer supports. Twist locks can
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(a) A bay in the vessel
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(b) The layout of a stack

Figure 2.2: Example �gure showing the design of a bay, and a stack.

be used to lock containers to each other at the corners. There are no such locking mechanisms in
the middle of 40' containers, hence stacking rules impose that 20' containers cannot be stowed
above 40' containers. Twist locks have limited strength, thus container weights must normally
decrease upwards in stacks on deck. Below deck, cell guides secure containers in place.

Vessels capacity is measured in Twenty-foot Equivalent Units (TEU), a 40' standard and 40'
high-cube container are 2 TEU, or 1 FEU (Forty-foot Equivalent Unit). In liner shipping pro�t
comes from the transported containers, and naturally, carriers want to utilise the full capacity to
increase revenue. The main expenses are fuel cost and costs associated with port stays. Reducing
the duration of a port stay can be done by e.g. reducing overstowage. Overstowage happens
when a container is stowed below a container destined for a later port. Containers can overstow
in two di�erent ways. Stack overstowage occurs when the overstowing container is in the same
stack as the overstowed container and hatch overstowage occurs when a container on deck is
overstowing a container below deck. If hatch overstowage occurs all containers above the hatch
cover must be restowed, in order to unload the overstowed container.

A current trend that is becoming popular in the industry, is the notion of block stowage. To
facilitate better planning and ease port handling operations, the ship is divided into blocks (a
logical grouping of stacks). Containers in a block must, as a rule of thumb, have the same
discharge port. There can be di�erent de�nitions of a block, often company dependent. Here,
according to our industrial collaborator, stacks below and above the same hatch-cover belong to
the same block. This means that, given that all containers within the block must have the same
discharge port, overstowage and hatch-overstowage cannot happen. Moreover, as it can also be
seen in Figure 2.2a, external blocks are seen as one to ease transverse stability (as modelled in
e.g. Pacino et al. (2011)).

Any stowage plan must result in a seaworthy vessel. A vessel is declared seaworthy if its static
stability is correct and all stress forces are within limits. Stress limits are only known at speci�c
points across the length of the vessel, these calculation points are called frames. Figure 2.1 shows
a longitudinal section of a vessel with 14 frames. The W curve shows the weight distribution
across the length of the vessel, and the O curve represents the buoyancy force. The arrows show
the resulting force acting on each of the sections. If these sections were allowed to move freely
as independent objects, some of them would sink deeper into the water and some would rise
depending on the resulting force acting on the section. However, they are not allowed to move
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freely, and thus this causes shearing and bending stresses over the vessel structure. The shearing
and bending limits are known for every frame. These limits must be satis�ed when leaving each
port. Shear force is shown in Figure 2.1 as the curve S, and the bending moment is the curve B.

Most container vessels are equipped with ballast tanks. These tanks can be used to load water in
order to achieve a better weight distribution, reduce stress forces, or �x stability issues. However,
the use of these tanks is discouraged as this would increase the total weight (displacement) of
the vessel, thus increasing fuel consumption.

Additional stability limits must be held for the ship to be declared seaworthy, e.g. trim. The aft
draft is the distance between the waterline and the bottom of the hull at the stern of the ship,
and the fore draft is at the bow. Trim is de�ned as the di�erence between the aft draft and the
fore draft, and must be within its limits. Moreover, the height a stack can reach is limited by
the line of sight. The captain standing on the bridge must be able to see a distance equal to the
double of the length of the vessel, or 500 meters, whichever is smallest. The line of sight depends
on the draft of the vessel and is thus not simply a stack capacity reduction. The metacentric
height describes the vessel's ability to return to its initial position when a�ected by an external
force. Figure 2.3 shows the transversal section of a vessel. The metacentric height is de�ned as
the distance between the point M (metacentre) and the point G (the centre of gravity). The
metacentric height must be within operational limits to ensure that the vessel will not capsize.

G
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θheight
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force
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Figure 2.3: Metacentric height of a vessel

If the described stacking rules, stability, and stress limits are held at bay then the vessel can be
declared seaworthy, and can hereafter safely depart.

A vessel is fully described by a document called vessel pro�le, which speci�es all the weight and
capacity limits, a general outline of the vessel etc. The non-linear functions for the draft, centre
of gravity, trim and metacentre are outlined in the hydrostatic table, within the vessel pro�le. We
refer the reader to Delgado (2013) for a more detailed description of the stability requirements
and stacking rules.

2.3 Literature Review

Academic work on the liner shipping cargo mix problem is limited. The �rst formal description
was presented in the PhD thesis of Delgado (2013) where an integer programming model was
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presented. The author shows that for multi-port scenarios the model does not scale. To achieve
scalability, the same decomposition as in earlier stowage planning work (Pacino et al., 2011)
was applied. The results show that the decomposition gives an accurate estimate. Tested on
360 instances, on a service of up to 10 ports, the approach was able to optimally solve 91.7%
of the instances, with a time limit of 60 minutes. In comparison to ours, the work in Delgado
(2013) is only able to analyse a portion of a service and not a full rotation. Moreover, there is no
restriction to the number of containers that can be selected, whereas our version of the problem
is bounded to the expected cargo-�ows of the analysed service, and imposes draft restrictions on
the visited ports. Our work also shows that the inclusion of a block stowage strategy makes the
MIP model proposed in Delgado (2013) intractable for industrial size instances.

In Zurheide and Fischer (2011) the authors presents a slot allocation model which helps the
carrier decide whether to accept or reject a booking request. The decision takes into account
the possibility to postpone a container in order to accept a more bene�cial one. A revenue
model for a short-sea shipping service is also presented in Feng and Chang (2008). The model
disregards major aspects of stowage planning and only consider TEU and weight capacity. In
Delgado (2013), it was shown that this model due to the inaccuracies, in average, overestimates
the revenue by 8%. In this work, we �ll the gaps in the literature by describing a fast and scalable
heuristic that considers cargo �ows, circular routes and draft at port. Inspired by previous work
we solve a master problem based on stowage planning as Delgado (2013) has shown this can be
used to accurately approximate the revenue. In the future, we envision to extend this work by
considering stochastic cargo �ows, and the extension of the analysis to multiple vessels.

Given the limited amount of academic work on liner shipping cargo-mix problems, we �nd it
relevant to introduce the literature related to stowage planning since the Cargo Mix Problem
with Block Stowage (CMPBS) could be seen as a generalisation. The main di�erence between
the CMPBS and stowage planning is that CMPBS performs cargo selection based on a set of
expected cargo �ows between the visited ports, whereas in stowage planning a list of containers
to load has already been selected. Stowage planning is mainly concerned with the loading of the
containers at the current port; in contrast, CMPBS analyses a cyclic route. In the work of Pacino
et al. (2012) it was shown that vessel stability constraints are non-linear if the cargo weight is
variable, which is the case in the CMPBS. These non-linearities, however, can be approximated
with a small number of linear planes without losing too much information, as described in Delgado
(2013). Botter and Brinati (1992) presents an accurate formulation which includes metacentric
height, transversal stability, trim, shear forces, and bending moment as constraints. The model
fails to solve for small vessels with 1000 TEU capacity, and therefore a heuristic decomposition
is proposed. Integer programming models assigning containers to slots are also presented in
Ambrosino et al. (2004) and Li et al. (2008). The main stability consideration enforced in
these models is that the left and right weight di�erence and bow and stern weight di�erence
must be within a certain prede�ned limit. However, scalability issues of these models make
them unsuitable for practical use. Integer programming models for stowage planning, assigning
containers to speci�c slots, experience scalability issues due to the large number of variables and
constraints. Scalable approaches are based on multi-phase methods. Both Kang and Kim (2002)
and Wilson and Roach (2000) describes a 2-phased approach, where the former is of an iterative
nature, and in the latter the �ow of information only goes downward. A three-step heuristic is
introduced in Ambrosino et al. (2009), in which the left and right, and bow and stern weight
di�erences are kept within a tolerance. Pacino et al. (2011) presents a solution method which
takes most of the stability issues into consideration. The approach is a 2-phased method where
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�rst containers are distributed to subsections of the vessel ensuring that the metacentric height,
draft, trim and shear forces are within limits. In the second phase containers are then assigned
to speci�c position. The most accurate published model is, however, the one described in Pacino
et al. (2012) which, along with the stability and stress limits considered in Pacino et al. (2011),
also includes direct linearizations of hydrostatic data and the modelling of ballast tanks.

Ambrosino et al. (2010) compares an ant colony heuristic and a tabu search heuristic, and Avriel
et al. (1998) presents a model that minimise the number of shifts (similar to overstowage) in
stowage planning. However, the model has limited applicability due to scalability issues, and
therefore the authors developed the Suspensory Heuristic. The Suspensory Heuristic only focuses
on container stacking constraints and does not include any stability considerations. Dubrovsky
et al. (2002) presents a genetic algorithm (GA) for the minimum shifts problem. The GA
obtain results similar to those obtained by the Suspensory Heuristic but has the possibility of
incorporating additional constraints, such as simple stability constraints. Ding and Chou (2015)
considers the same problem and describes a state-of-the-art heuristic that improves the results
from the Suspensory Heuristic. Sciomachen and Tanfani (2003) uses a 3D-bin packing heuristic to
tackle the master bay planning problem. Constraint programming approaches worth mentioning
for stowage planning includes Ambrosino and Sciomachen (1998), Delgado et al. (2012) and the
constraint-based local search method in Pacino and Jensen (2012).

Of interest is also the work of Ambrosino et al. (2015b) and Ambrosino et al. (2015a) that tackles
the Multi Port Master Bay Planning Problem (MP-MBPP), where the authors include block
stowage constraints similar to those of the CMPBS. The vessel is divided into sections according
to their hatch covers, and containers in the same section must have the same destination. In
the MP-MBPP all containers must be loaded, and the objective minimises a weighted sum of
the crane makespan and number of hatch-overstowing containers. In Ambrosino et al. (2015b)
the problem is thoroughly described, and formulated as a mixed integer program. In Ambrosino
et al. (2015a) a heuristic based on �xing variables in the MIP model is presented, and it is shown
to outperform the MIP model for the 16 tested instances. The method is tested on ships of
varying size and using a service of 6 ports. The MP-MBPP considers a sequence of ports, and
not a cyclic route as in the CMPBS. Furthermore, the MP-MBPP uses a �xed load list whereas
an expected cargo �ow is used as input to the CMPBS. Also, the CMPBS imposes a higher
degree of accuracy wrt. the stability of the vessel. These di�erences in the two problems make
the heuristic in Ambrosino et al. (2015a) unsuitable for the CMPBS.

2.4 The Cargo Mix Problem

Given a liner service, a vessel pro�le and the expected cargo �ows, the liner shipping CMPBS
aims at �nding a mixture of container types to ideally load on the vessel at each port of call.
The cargo mix must ful�l the stability requirements and respect the expected cargo �ows while
optimising a function of cargo values, which in this work is represented by the intake and the
revenue. The block stowage requirement is strictly enforced in the CMPBS, thus the containers
in each block must have the same discharge port.

The problem is decomposed similarly to earlier work (Kang and Kim, 2002; Wilson and Roach,
2000; Ambrosino et al., 2010; Pacino et al., 2011; Delgado, 2013), instead of assigning speci�c
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containers to a speci�c slot, containers are divided into container types, and container types are
assigned to blocks. Each container type represents a number of containers with the same prop-
erties in terms of weight, height, length and reefer capabilities. The decomposition is illustrated
in Figure 2.4. In the master planning phase, a number of containers from a container type are
assigned to a block while satisfying high-level capacity constraints. The slot planning phase con-
siders each block independently and assigns a speci�c slot for each of the containers assigned in
the master planning phase. In this work, we disregard the slot planning phase since, as Delgado
(2013) have shown, the master planning phase gives an accurate estimation.

Figure 2.4: The two-phase heuristic decomposition

The objective of the CMPBS is not to generate fully feasible stowage plans, but to evaluate the
capacity and utilisation of a vessel, given a service. We consider the most standard containers:
20' dry and reefer containers, 40' dry and reefer containers both normal height and high-cube.
The vessel is enforced to be at even keel (with a trim of zero), and all the previously described
stability and stress limits must be held at bay.

The Cargo Mix Problem with Block Stowage can be modelled as a mixed integer program. First,
de�ne C as the set of container types. A container type, c ∈ C, is de�ned by the dimensions
and properties of the containers and the parameters Γc, Φc, vc describes respectively the TEU
coe�cient (1 for a 20' container, 2 for a 40' container), volume and weight of container type
c ∈ C. The volume is needed for the modelling of the high-cube containers, which need further
restrictions than a simple capacity constraint. Also de�ne the set R ⊂ C, as the set of all reefer
container types, and let the set B be the set of blocks. In the CMPBS a full cyclic service is
considered and P is the set of ports visited in one rotation. The container demand is described
by the set T and the parameter atc. The set T is the set of transports. A transport describes
an origin-destination pair and atc is the number of containers available of type c ∈ C during
transport t ∈ T . The set T ONp is the set of transports where port p is visited between the origin

and destination of the transport. De�ne P ji as the ports visited between i and j, including i but
excluding j, then T ONp is de�ned as follows

T ONp = {t ∈ T | p ∈ P dtot } ∀p ∈ P

Where ot and dt is the origin and destination port of transport t. Thus for a given port p the
set T ONp consists of those transports that visit port p on the route from its origin to destination.
As an example, Figure 2.5 shows a graph of a vessel rotation, the possible transports and the
transports that are in the sets T ONa , T ONb , T ONc .

The main decision variable is ytcb ∈ N de�ning the number of containers of container type c ∈ C
of transport t ∈ T to be stowed in block b ∈ B. Furthermore, to ensure that the containers in
a block have the same destination port, at each port we need to assign a destination for each



2.4 The Cargo Mix Problem 39

c b

a
t ot dt

1 a b
2 a c
3 b c
4 b a
5 c a
6 c b

T ON
a = {1, 2, 6}
T ON
b = {3, 4, 2}
T ON
c = {5, 6, 4}

Figure 2.5: Example illustration of the sets T ON
p

block. This decision is captured in the binary variable σdbp, de�ned as follows

σdbp =

{
1, If block b ∈ B is assigned destination d ∈ P at port p ∈ P
0, Otherwise.

Lastly, let wbp ∈ R+ denote the total weight stowed in block b ∈ B at port p ∈ P.

The main contribution of this paper is not the modelling of the stability constraints. Hence,
to simplify the forthcoming model, we de�ne the polyhedron W as the weight allocations that
results in a stable vessel.

W =
{
w ∈ R|B|·|P| s.t. (2.24)− (2.43)

}

In essence, the polyhedron W, is a set of constraints ensuring the seaworthiness of the vessel.
The constraints are described in Section 2.A, and are based on the work by Delgado (2013) which
also gives a more thorough description. This simpli�es the forthcoming model, and keeps the
focus on our contributions, that is, the addition of the block stowage requirement, circular routes
and cargo �ow limitations.

Below, all the sets, variables, and parameters are summarised, and additional sets and parameters
are introduced.

Sets:

P Set of ports

T Set of transports

T ONp Set of transports that visits port p ∈ P
C Set of container types

C20 ⊂ C Set of container types with length 20 feet.

R ⊂ C Set of reefer container types

R20 ⊂ R Set of reefer container types, with length 20 feet

B Set of blocks.
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Variables:

ytcb ∈ N Number of containers of type c ∈ C of transport t ∈ T
to be stowed in block b ∈ B.

wbp ∈ R+ Weight of the containers stowed in block b ∈ B at port p ∈ P.
σdbp ∈ {0, 1} Variable denoting whether or not block b ∈ B can only contain containers

with destination d ∈ P at port p ∈ P.

Parameters:

f tc ∈ R+ The value of container type c ∈ C of transport t ∈ T .
utc ∈ R+ Revenue of container type c ∈ C of transport t ∈ T .
pt ∈ N Number of ports visited by transport t ∈ T .
dt ∈ P Destination port for transport t ∈ T .
kTEUb ∈ N Teu capacity for block b ∈ B
k20
b ∈ N Capacity for 20' containers for block b ∈ B
rCellb ∈ N Reefer cell capacity of block b ∈ B
rSlotb ∈ N Reefer slot capacity of block b ∈ B
Γc ∈ {1, 2} TEU coe�cient of container type c ∈ C
hb ∈ R+ Volume capacity for block b ∈ B
Φc ∈ R+ Volume coe�cient of container type c ∈ C
vc ∈ R+ Weight of container type c ∈ C
qb ∈ R+ Weight capacity of block b ∈ B
atc ∈ N Number of available containers of type c ∈ C for transport t ∈ T .

With this, the model can be formulated as seen below.

Max Z =
∑

b∈B

∑

t∈T

∑

c∈C
f tcytcb (2.1)

Subject to:

w ∈ W (2.2)
∑

t∈T ON
p

∑

c∈C
vcytcb = wbp ∀b ∈ B, p ∈ P (2.3)

∑

t∈T ON
p

∑

c∈C20

ytcb ≤ k20
b ∀b ∈ B, p ∈ P (2.4)

∑

t∈T ON
p

∑

c∈C
Γcytcb ≤ kTEUb ∀b ∈ B, p ∈ P (2.5)

∑

t∈T ON
p

∑

c∈R20

ytcb ≤ rSlotb ∀b ∈ B, p ∈ P (2.6)

∑

t∈T ON
p

∑

c∈R

1
2Γcytcb ≤ rCellb ∀b ∈ B, p ∈ P (2.7)
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∑

t∈T ON
p

∑

c∈C
Φcytcb ≤ hb ∀b ∈ B, p ∈ P (2.8)

∑

d∈P
σdbp = 1 ∀b ∈ B, p ∈ P (2.9)

ytcb ≤ atcσd
t

bp ∀b ∈ B, c ∈ C, p ∈ P, t ∈ T ONp (2.10)
∑

b∈B
ytcb ≤ atc ∀t ∈ T , c ∈ C (2.11)

0 ≤ wbp ≤ qb ∀b ∈ B, p ∈ P (2.12)

ytcb ∈ N ∀b ∈ B, t ∈ T , c ∈ C (2.13)

σdbp ∈ {0, 1} ∀b ∈ B, d ∈ P, p ∈ P (2.14)

Objective (2.1) maximises the value of the containers loaded, where f tc is a general function
describing the value of each loaded container. This parameter can be changed to accommodate
di�erent objectives. In the case of revenue optimisation, it is

f tc = utc (2.15)

where utc is the revenue of container type c ∈ C of transport t ∈ T (see Section 2.6 for a
description on how the revenue data is generated). In the case of intake optimisation, the
function is

f tc = Γcpt (2.16)

Here Γc is the TEU coe�cient and pt is the number of ports visited by the transport. This
favours the selection of containers for long-haul transport. Constraint (2.2) ensures that the
vessel is seaworthy, and ful�ls all the limits outlined in the vessel pro�le.1 Constraint (2.3) links
the weight variable wbp with the weight of the containers stowed. Equations (2.4)-(2.8) are the
block capacity constraints. For each block of the vessel we distinguish between a TEU and a
20-foot capacity. This is due to the layout of the vessel since not all the blocks can stow 20-foot
containers. In most of the cases k20

b is, however, equal to kTEUb . Constraints (2.4) and (2.5)
ensure that both of these capacities are satis�ed. Similar to the TEU capacity constraints, the
reefer constraints are split into a slot capacity constraint and a cell capacity constraint. Each
reefer container needs to be plugged into an electrical output to get power for the cooling unit
and rSlotb describes the number of such slots in a block b. A reefer cell is a cell where one of the
slots has a reefer plug, and this number is denoted by rCellb , if both slots in a reefer cell have a
reefer plug, then rSlotb = 2rCellb . In more general terms rCellb ≤ rSlotb ≤ 2rCellb will be satis�ed for
all blocks. Constraint (2.6) restricts the number of reefer slots that can be used, and (2.7) is the
reefer cell capacity constraint. Here we multiply with 1

2Γc as a 40-foot container occupies a full
cell, whereas a 20-foot container occupies half a cell, and due to (2.6) the slot capacity will be
satis�ed. Constraint (2.8) limits the total volume of the containers in a block. This is needed
in order to account for the fact that high-cube containers are higher and thus use more than a
simple TEU capacity.

Constraints (2.9) and (2.10) are the block assignment constraints and together they enforce
that no overstowage can occur. Speci�cally, constraint (2.9) ensures that exactly one port is
assigned as the discharge port for every port. Constraint (2.10) makes sure that containers from

1For a complete description of the polyhedron W see Section 2.A.
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a transport t can only be stowed in a block if the assigned destination matches the transports
destination, dt, during the full journey. Constraint (2.9) does not enforce that if σd

′
bp′ = 1 for a

block b then all the ports until d′ must have d′ as discharge port. This will, however, be the case
anyway since constraint (2.10) is posted for every port, which e�ectively disallows the stowage
of containers with another ports of destination.

Constraint (2.11) ensures that no more containers than the ones expected in the cargo-�ow can
be selected for stowage. Finally (2.12)-(2.14) de�nes the variables domain, and (2.12) enforces
the block weight capacity limit. The model includes ballast water within the set W, but only as
a way to �x stability issues, thus the ballast water is not minimised as part of the objective as
in Delgado (2013).

The block stowage requirement is handled similar to how Ambrosino et al. (2015b) and Ambrosino
et al. (2015a) handle it. The main di�erence is that we strictly enforce that overstowage cannot
happen, where it is part of the objective in the MP-MBPP described in Ambrosino et al. (2015b)
and Ambrosino et al. (2015a).

2.5 Solution Method

The model presented in Section 2.4 is in practice intractable to solve using standard MIP solvers
(As shown by Table 2.1). Having integer and binary variables most commonly means that
extra e�ort is needed for a MIP solver, and thus the σdbp variables have a large impact on the
e�ectiveness of the MIP model. Moreover, big-M constraints, as the ones in (2.10) deteriorate the
LP-bound. The basic idea of the forthcoming matheuristic is to use a heuristic to �x the block
assignment and e�ectively remove the σdbp variables from the model. Additionally the equality
requirement in (2.3) enforces a correspondence between the container weight variables and the
total weight of a block. Such constraints often require extra e�ort from MIP solvers, thus the
relaxation of these constraints could speed up the execution.

The proposed matheuristic is a three-phase procedure as illustrated in Figure 2.6. The algorithm
takes as input a vessel pro�le, a vessel service, and an expected cargo �ow and returns a feasible
solution. It is a hierarchical algorithm, as the �ow of information only goes downward, and the
lower stages do not feed information back to the upper stages. Phase I heuristically determines
the block assignments at each port. This then becomes a variable �xing of the σdbp variables
in the second phase. In Phase II the weight equality in (2.3) is relaxed, as is the integrality
requirement of the cargo assignment variables (ytcb ). The weight variables wbp are used in the
stability constraints. Therefore, to ensure the stability of the vessel wbp must correspond to the
actual weight stowed in a block. This exact correspondence is broken because of the relaxation
of (2.3) in Phase II. The solution might then result in an unstable vessel. This is corrected
in Phase III which receives as input from Phase II the values of the ytcb variables and solves a
problem where the ytcb values are used as an upper bound on the cargo load, while also ensuring
the solution is feasible wrt. to stability and integrality requirements.
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Vessel Profile

Vessel Service

Cargo Flow

Phase I Phase II Phase III
Feasible

solution

σd
bp ytcb

Figure 2.6: Flow chart outlining the �ow of the matheuristic

2.5.1 Phase I

In the �rst phase, schedules are generated. A schedule s can be thoroughly described by the
following parameter

bdsp =

{
1, if schedule s assigns destination d ∈ P as the discharge port when in port p ∈ P
0, otherwise.

A schedule s de�nes a block assignment for a full rotation, and is similar to the variables σdbp, with

the di�erence that σdbp is for a given block. The �rst phase of the matheuristic must essentially
do two things; generate schedules, and assign schedules to blocks.

When generating schedules, the goal is to �nd good schedules that �t the attributes of a speci�c
type of block. We do so by considering the capacity resource and the possible assignments of
container types. For every block, a schedule is generated by solving a longest path problem in
a directed acyclic graph. Figure 2.7 is an example graph with 3 ports, the label on the nodes is
the port symbolised by the node.

s

a b c a

Ga

b c a b

c a b c

t

Figure 2.7: An example graph G of 3 ports, with the subgraph Ga highlighted.

An edge in the graph G describes a block assignment and a s-t path in G describes a schedule.
If a path in G uses the edge (a, c), the corresponding schedule assigns discharge port c at port
a. At all the ports in between a and c this assignment must be respected, and thus c is assigned
as the discharge port for all these ports as well. Therefore, for the path (s, a, b, a, t) in G the
corresponding schedule, s′, assigns b as the discharge port when in port a, and discharge port a
is assigned for port b and c. In terms of the parameter bbs′a, this corresponds to the following

bbs′a = 1, bas′b = 1, bas′c = 1
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Let G be a weighted directed acyclic graph with V (G) as the vertex set and E(G) as the set of
edges. The graph G consists of a source s, a sink t, and |P | mutually disjoint subgraphs, Gp,
such that

V (G) \ {s, t} =
⋃

p∈P
V (Gp) ∧

⋂

p∈P
V (Gp) = ∅

Each node, i, in Gp symbolises a port in the rotation, this correspondence is described by the
function p(i) (see Figure 2.7 where the subgraph Ga is highlighted). The subgraph Gp′ contains
exactly |P |+ 1 vertices. Let in be the n'th vertex in a topological sorting of the vertices in Gp′ ,
then

p(in) =

{
p′, n = 1

p(in−1) + 1, 2 ≤ n ≤ |P |+ 1.

Where p′ is a port in the rotation and p′ + 1 is the port visited immediately after p′.

Let tp(i) be the position of the vertex i in a topological sorting of the vertices of Gp, then let
δ+
p (i) describe the set of vertices, j, where tp(i) < tp(j). The edge set of Gp can now formally
be de�ned as

δ+
p (i) = {j ∈ V (Gp) | tp(i) < tp(j)} ∀i ∈ V (Gp), p ∈ P

E(Gp) =
{

(i, j) | i ∈ V (Gp), j ∈ δ+
p (i)

}
∀p ∈ P

Along with the edges from the subgraphs, G contains edges that connects the subgraphs to the
source and the sink. Let E(Gbase) be this set of edges de�ned as

E(Gbase) = {(s, j) | ∃p : tp(j) = 1} ∪ {(i, t) | ∃p : tp(i) = |P |+ 1}

With this the edge set of G can be properly de�ned as

E(G) \ E(Gbase) =
⋃

p∈P
E(Gp)

The weight wij , for a given edge (i, j), represents the maximum number of containers that can
be transported on the edge. The weights are heuristically set following the procedure described
in Algorithm 1.

Algorithm 1 takes as input graph G, demand D, value matrix F , the block TEU (τ) and reefer
TEU capacity (τ r). The algorithm returns the edge weight matrix W . For each block b the TEU
and reefer capacities can be de�ned as follows:

τ = max(k20
b , k

TEU
b ), τ r = max(rSlotb , 2rCellb )

For the edges in E(Gbase) the weight is 0, and therefore the loop in line 1 excludes these edges.
Line 2-4 initialises the remaining TEU and reefer capacity for the edge (i, j). For an edge (i, j),
the loop in lines 5 - 21 iterates over all the intermediate ports in the same order as they are

visited, and calculate the weight of this edge. Here, P
p(j)
p(i) is the set of ports visited between port

p(i) and port p(j), including p(i) but excluding p(j). In line 7 the container types are sorted
by value in descending order since we want to assign the most pro�table containers �rst. For
each container type c, we then have to calculate the available capacity. Lines 9-13 calculate the
capacity of the speci�c type. If it is a reefer container we both need to account for the remaining
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Algorithm 1 Calculate wij

Input: G, D, F , τ , τr,
1: for all (i, j) ∈ E(G) \ E(Gbase) do
2: wij ← 0
3: ∆τ ← τ
4: ∆τr ← τr

5: for all k ∈ P p(j)

p(i) do

6: t← The transport 〈k, p(j)〉
7: sortC ← Container types of transport t sorted by descending order of f tc

8: for all c ∈ sortC do
9: if c ∈ R then

10: capacity ← min(∆τ, ∆τr)
11: else

12: capacity ← ∆τ
13: end if

14: load ← min
(
dckp(j),

⌊
capacity

Γc

⌋)
15: wij ← wij + f tcload
16: ∆τ ← ∆τ − Γcload
17: if c ∈ R then

18: ∆τr ← ∆τr − Γcload
19: end if

20: end for

21: end for

22: end for

23: return W

reefer capacity, as well as the remaining TEU capacity, otherwise the remaining TEU capacity
is su�cient. Line 14 determines the number of containers that can be assigned the edge. Here
dckp(j) is the demand from port k to port p(j) of container type c. The number of containers that
can be assigned the edge is the minimum between the demand and the calculated capacity. We
divide the capacity by Γc, the TEU coe�cient, to have the actual number of containers. Line
15 updates the edge weight, while lines 16-19 update the remaining TEU capacity, ∆τ , and the
remaining reefer capacity, ∆τ r.

The edge weights are set in such a way that the longest path in the graph corresponds to a block
assignment where the structure of the demand is taken into account. For instance, ports with
a comparatively high number of unloading containers will be chosen as the destination for more
origin ports. The longest path problem is solved for each block. The assigned cargo is then
subtracted from the demand matrix to account for the cargo the generated schedule can carry.
The edge weights calculations are based on the demand and thus the edge weights are updated
for every block. Therefore, the longest path di�ers from block to block.

The graph G is a directed acyclic graph, and the longest path problem can be solved e�ciently
by topological sorting the vertexes and using a slightly modi�ed version of Dijkstra's algorithm,
such that the longest path is found instead of the shortest.

2.5.2 Phase II

In the second phase the weight equality in (2.3) is relaxed, and a mixed integer programming
model assigns containers to blocks such that the block assignment is satis�ed.
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Let the parameter σ̂dbp describes the block assignment from Phase I as follows:

σ̂dbp =

{
1, If block b ∈ B is assigned destination d ∈ P at port p ∈ P
0, Otherwise.

Hence the interpretation of σ̂dbp is similar to that of the variable σdbp. The integrality constraint

of ytcb are relaxed resulting in the following Phase II model:

Max (2.1)

Subject to:

(2.2)

(2.4)− (2.8)

(2.11)− (2.12)
∑

t∈T ON
p

∑

c∈C
vcytcb ≤ wbp ∀b ∈ B, p ∈ P (2.17)

ytcb ≤ atcσ̂dtbp ∀b ∈ B, c ∈ C, p ∈ P, t ∈ T Onp (2.18)

ytcb ≥ 0 ∀b ∈ B, t ∈ T , c ∈ C (2.19)

Constraint (2.17) is a relaxation of the weight setting constraint (2.3), while (2.18) ensures that
the block assignment from Phase I is satis�ed. We can omit constraint (2.9) since it is implicitly
satis�ed by the �xed variable assignment σ̂dbp. The y

tc
b variables are enforced to be non-negative

in (2.19). Additionally, the integrality requirement is relaxed to speed up the execution of Phase
II.2

Due to the relaxation of (2.3) and (2.19), this model might overestimate the number of loaded
containers, as the weight variables used in the stability calculation is not strictly enforced to
match the actual weight in the block.

Experimental evaluation has shown that this model can �nd high-quality solutions fast. Closing
the �nal gap between the lower and upper bound and proving optimality is, however, time-
consuming. For this reason, we impose an optimality tolerance η, meaning that the solution
process is stopped once the gap between the lower and upper bound reaches this tolerance value.

2.5.3 Phase III

Phase III uses the solution from Phase II as a starting point and ensures that the �nal ves-
sel con�guration is stable, while enforcing the integrality requirement of the cargo assignment
variables.

First let ŷtcb describe the container placement solution from Phase II, and de�ne the variable utcb
∈ N as the number of containers of type c in transport t to be stowed in block b. To decrease

2Due to a binary indicator variable in the stability constraints, the problem is still a MIP.
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the computational e�ort needed to ensure the feasibility of the solution, the utcb variables are
restricted to be less than or equal to ŷtcb .

The model solved in Phase III is the following

Min Z =
∑

b∈B

∑

t∈T

∑

c∈C
f tcŷtcb − f tcutcb (2.20)

Subject to:

(2.2)

(2.12)
∑

t∈T On
p

∑

c∈C
vcutcb = wbp ∀b ∈ B, p ∈ P (2.21)

0 ≤ utcb ≤ ŷtcb ∀b ∈ B, t ∈ T , c ∈ C (2.22)

utcb ∈ N ∀b ∈ B, t ∈ T , c ∈ C (2.23)

The objective function (2.20) minimises the di�erence between the solution from Phase II and
the �nal solution. This corresponds to removing the minimum number of containers, in terms of
objective value. Constraint (2.21) sets the wbp variable, forcing it to be equal to the weight stowed
in block b at port p. Constraint (2.22) restricts the utcb variables to be less than or equal to ŷtcb .
The solution from Phase II respects the capacity constraints, and by only removing containers
these constraints will still be satis�ed. Therefore the capacity constraints can be disregarded in
this phase. Finally (2.23) de�nes the domain for the cargo assignment variables.

2.6 Data Description

The vessel used for the experiments is operated by our industrial collaborator and has approxi-
mately 50 blocks and a TEU capacity of ca. 15,000 TEUs. The vessel data is con�dential, thus
only the vessel capacity can be made public.

Based on this vessel, we have generated a benchmark of 170 demand instances. All instances
have been grouped by the number of ports to visit, which ranges between 4 and 20. Each group
consists of 10 instances with varying demands. The ports are selected randomly from a list of
28 ports that are visited on the Europe-Asia services operated by our industrial collaborator.
The order the ports are visited in is preserved, and the port-to-port demand and port drafts
are based on data from LinerLib (Brouer et al., 2014). The demand from the LinerLib does
not include transhipents (as those are part of the network design problem), however, it can be
used as indication. To make sure that the demand corresponds to a cargo-�ow which tends
to utilize the full vessel capacity, we multiply the demand of each service leg by a scalar γ =
number of ports · nominal intake/LinerLib total demand. Successively the demand of each leg is
decomposed into a demand for each container type by prede�ned probabilities. The probability
for a container being a forty foot container is 40%, the reefer probability is 10%, and high-
cube 10%. These probabilities are based on numbers from our industrial collaborator. The
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probabilities for a container having weight class w is denoted P (w) and a reasonable distribution
could be the following.

P (3) = 5%, P (6) = 10%, P (9) = 15%, P (14) = 25%, P (21) = 25%, P (27) = 20%

These probabilities are su�cient to give a full probability distribution for all container types. The
probability for generating a 40 foot, high-cube non-reefer container of weight 21 is, for example,

0.40 · 0.10 · (1− 0.10) · 0.25 = 0.9%

Finally, using the value of a dry 40-foot container from the LinerLib, we calculate the revenue of
each container type as described in Delgado (2013).

2.7 Computational Results

Four di�erent solution methods have been tested and compared.

• CMPBSMIP - CMPBS Mixed Integer Programming model

The mixed integer programming model as presented in Section 2.4.

• CMPBSHLP - CMPBS Heuristic Linear

The 3-phase matheuristic proposed in Section 2.5.

• CMPBSHIP - CMPBS Heuristic Integer

This is a version of the 3-phase matheuristic where we do not relax the integrality con-
straints on the ytcb variables of Phase II.

• 2-CMPBSH - 2 Phased CMPBS Heuristic

This is a version of the matheuristic where both the integrality constraints of the ytcb
variables and the equality of constraint (2.3) are not relaxed. In this speci�c case, Phase
III is no longer needed.

All methods have been implemented in Java 1.7 and are tested using a 2.30 GHz Intel Xeon
E5 processor. CPLEX v. 12.6.1 is used to solve the MIP models in Section 2.4, Section 2.5.2
and Section 2.5.3 and each model is solved using 8 threads. For CMPBSMIP, a time limit of 1
hour has been used. For the three heuristics, the time limit is 10 minutes. For all methods, an
optimality tolerance η = 0.05% was used.

Since only very few optimal solutions of the CMPBS can be calculated, we propose an upper
bound to estimate the quality of the solution methods. The upper bound was computed by
removing the block stowage requirement from the cargo mix model (constraints (2.9)-(2.10)).
The best dual bound after 30 minutes of solving time is used as the upper bound for the CMPBS,
and it is referred to as UB in the following.
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2.7.1 Intake optimisation

For the intake optimisation, Table 2.1 shows aggregated results for the 4 tested method. Here
|P | describes the number of ports. #Sol is the number of instances where a feasible solution is
found, the x̄ columns are the average solution value, lastly t̄ is the average execution time in
seconds. The solution values reported for CMPBSMIP are from the best feasible solutions found
within the time limit. Thus the values are not ensured to be better than that of the heuristics.

Table 2.1 shows that the CMPBSMIP model is too complex to solve real world sized instances.
For instances with more than 6 ports the quality of the solutions are too bad, and for instances,
with 11 or more ports the MIP model fails to even �nd a feasible solution within an hour. In
total, only 2 instances are solved to optimality, both instances only having 4 ports. CMPBSHLP
�nds good quality solutions in just 14 seconds. Comparing with CMPBSHIP it can be seen
that the relaxation of the cargo variables ytcb does not have a signi�cant impact on solution
quality, but the computational times are increased considerably. The best solutions are found
with 2-CMPBSH. The method, however, is 8 times slower than CMPBSHLP. All three heuristic
methods �nd feasible solutions for all the tested instances.

Table 2.1: Intake optimisation: Aggregated results

UB CMPBSMIP CMPBSHLP CMPBSHIP 2-CMPBSH

|P | x̄ #Sol x̄ t̄ x̄ t̄ x̄ t̄ x̄ t̄

4 53265 10 46352 2957.5 50351 1.3 50551 5.6 50851 4.5
5 68153 8 58514 3600.0 62917 2.1 63090 5.5 63625 6.6
6 85935 5 41543 3600.0 81209 2.0 81472 9.4 81834 17.7
7 102409 4 39484 3600.0 93191 3.9 93490 20.2 94387 27.5
8 122125 7 48448 3600.0 112787 5.2 113198 19.9 113339 23.4
9 131360 1 53942 3600.0 122022 4.4 122375 28.9 122742 38.2
10 149285 3 54073 3600.0 138485 7.5 138996 28.1 139113 55.6
11 170912 0 - 3600.0 155353 7.4 155884 48.0 155967 61.8
12 185836 0 - 3600.0 168760 17.4 169457 63.4 169473 88.9
13 201501 0 - 3600.0 185299 17.4 186007 129.6 186024 100.6
14 212244 0 - 3600.0 196018 13.2 196596 66.5 197172 97.3
15 231770 0 - 3600.0 212763 18.9 213544 82.8 213546 154.3
16 249557 0 - 3600.0 229117 23.2 229921 120.5 229933 187.0
17 265357 0 - 3600.0 245174 19.4 245936 135.0 246106 239.1
18 280448 0 - 3600.0 258001 43.2 258989 201.3 259060 238.2
19 296581 0 - 3600.0 273704 25.7 274680 171.7 274689 246.6
20 308392 0 - 3600.0 285586 24.6 286621 125.5 286935 281.7

Average 183243 48908 3562.2 168867 13.9 169459 74.2 169694 109.9

For the 10 instances with 4 ports, Table 2.2 compares the upper bound with the solution and the
bound after 5 hours of solving the model together with the CMPBSHLP. The '∗' symbol denotes
instances where the model execution was terminated due to the optimality tolerance η = 0.05%.
A time limit of 1 hour or 5 hours does not change the number of optimal solutions found, but
for the non-optimal instances, the solution quality is improved. For all the instances with 4
ports, when given the CMPBSMIP 5 hours instead of 1 hour, the model �nds better solutions
and outperforms the CMPBSHLP heuristic with respect to solution quality. For the two optimal
solutions, the table shows that the upper bound does not di�er much from the optimal solution.
For the rest of the instances, the upper bound is comparable to the bound achieved after 5 hours
of solving the compact model. This indicates that the objective value found by the upper bound
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method is close to the optimal solution.

Table 2.2: Upper bound analysis

UB CMPBSMIP CMPBSHLP

|P | i x x xbound t x t

4 0 41894 41742 41893 18000 39014 1.1
4 1 54016 53992∗ 54017 690 51898 0.8
4 2 59349 57963 59361 18000 55012 2.6
4 3 59314 59202 59314 18000 57387 1.4
4 4 57242 57081 57225 18000 53713 1.0
4 5 45185 45165∗ 45186 311 44339 1.2
4 6 56634 56046 56632 18000 54556 1.7
4 7 47172 47115 47172 18000 45833 1.1
4 8 60146 59260 59832 18000 57001 1.1
4 9 51693 51062 51693 18000 44756 1.4

Average 53265 52863 53233 14500 50351 1.3

Table 2.3 evaluates the quality of the schedules obtained from solving the longest path problem
in Phase I. The graph based method is compared with a random method, where schedules
are generated at random. The table reports the �nal solution after Phase III. The solution in
the Graph column is identical to the CMPBSHLP results from Table 2.1. To account for the
randomness of the Random method, each instance is solved 10 times with a di�erent set of
random schedules. x̄b reports the average of the best solutions for the considered instance group,
and x̄ is the average of all solutions for the instance group. The table shows that the graph based
method substantially outperforms the random method. This is also to be expected as the graph
based method cleverly generates schedules based on the demand.

Table 2.3: Analysis of the quality of the schedules from Phase I.

UB Graph Random

|P | x̄ x̄ x̄ x̄b

4 53265 50351 33383 37037
5 68153 62917 37632 42985
6 85935 81209 49896 55470
7 102409 93191 56833 61875
8 122125 112787 70806 78137
9 131360 122022 72862 81859
10 149285 138485 81115 90149
11 170912 155353 96576 105861
12 185836 168760 109886 120247
13 201501 185299 112737 124068
14 212244 196018 114017 126599
15 231770 212763 124640 139470
16 249557 229117 137357 151468
17 265357 245174 141310 158254
18 280448 258001 155261 169868
19 296581 273704 166183 182065
20 308392 285586 162003 179398

Average 183243 168867 101323 112048

Figure 2.8 shows an analysis of how di�erent factors impact the ship occupancy. Solutions to the
CMPBS tend to load a high number of light containers (as further described in Section 2.7.2).
Figure 2.8a illustrates the occupancy rate of the vessel when the CMPBS is allowed to only load
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Figure 2.8: Ship occupancy analysis

containers of a certain weight class. It can be easily seen that when we force the model to use
the heavier containers, the ship occupancy drops resulting in a smaller intake.

In a similar fashion, the graph in Figure 2.8b illustrates the impact of draft restrictions at port.
The graph shows the average ship occupancy over all instances, where the draft has been �xed
to a single value for all ports. A small draft restricts the total displacement of the vessel, which
means fewer containers can be loaded. When the draft is 15.5m or above the impact of the draft
constraint is minor, and the ship occupancy is nearly constant.

It is worth noticing that the use of ballast tanks, not only helps satisfy the vessel seaworthiness
requirements, they also impact the solution time of the method (Pacino et al., 2012). The
variables that refer to the ballast tanks (see Appendix 2.A) are continuous and behave as slack
variables on the stability constraints. We show this in Figure 2.8c which depicts both the impact
with respect to the ship occupancy and the solution time for the CMPBSHLP method. Each
of the ballast tanks has a maximum capacity, this capacity is multiplied by a number between
0 and 1, to analyse its impact. The graph shows that the ship occupancy slightly increases the
bigger the capacity. This is expected as the more water that can be loaded into the ballast tanks
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the easier it is to satisfy stability issues. Also with respect to solution time the results are as
expected. The graph shows that the higher the tank capacity, the less time is needed to solve
the problem. The impact on the runtime of Phase II is minor. For low tank capacities, more
time is spent in Phase III where the stability constraints are strictly enforced.

2.7.2 Revenue Optimisation

Table 2.4 shows aggregated results for the 4 tested methods when optimising revenue, instead of
intake. The x̄ columns show the average revenue in millions of USD, the rest of the columns are
similar to those of Table 2.1 described in Section 2.7.1. As can be seen, the solution methods
behave, in terms of solution quality and runtime performance, in the same way as for intake
optimisation. The same conclusions can thus be drawn.

Table 2.4: Revenue optimisation: Aggregated results

UB CMPBSMIP CMPBSHLP CMPBSHIP 2-CMPBSH

|P | x̄ (106 $) #Sol x̄ (106 $) t̄ x̄ (106 $) t̄ x̄ (106 $) t̄ x̄ (106 $) t̄

4 29.93 10 29.77 2512.2 28.70 0.9 28.81 2.8 28.95 6.3
5 37.13 10 35.27 3007.2 35.88 1.3 36.00 4.9 36.03 7.5
6 36.99 9 26.76 3600.0 35.15 2.3 35.30 10.1 35.33 18.8
7 40.89 7 16.90 3600.0 39.07 2.9 39.22 20.5 39.37 39.9
8 41.79 7 13.65 3600.0 39.52 4.6 39.69 26.0 39.75 39.7
9 42.68 2 6.08 3600.0 40.54 3.6 40.71 27.6 40.92 65.0
10 43.10 1 1.96 3600.0 40.67 4.3 40.83 20.9 40.96 87.8
11 47.03 1 2.82 3600.0 44.19 10.0 44.39 47.6 44.35 134.9
12 48.19 0 - 3600.0 45.27 9.5 45.46 62.9 45.50 123.9
13 49.67 0 - 3600.0 46.65 13.6 46.84 59.1 47.08 183.4
14 50.50 0 - 3600.0 47.56 8.5 47.73 98.3 47.21 387.0
15 49.40 0 - 3600.0 46.57 17.1 46.73 91.6 46.94 170.7
16 50.26 0 - 3600.0 47.53 20.2 47.73 132.6 47.72 407.0
17 51.93 0 - 3600.0 48.16 18.4 48.34 103.9 48.61 218.5
18 53.98 0 - 3600.0 49.81 25.7 50.00 94.4 50.10 268.5
19 55.51 0 - 3600.0 51.47 33.5 51.68 163.2 49.80 370.7
20 51.83 0 - 3600.0 48.05 27.6 48.22 193.4 48.55 318.2

Average 45.93 16.65 3501.1 43.22 12.0 43.39 68.2 43.36 167.5

The di�erence between intake and revenue optimisation is clearer if we look at the type of cargo
that is being loaded. Figure 2.9 shows a histogram of the containers occupying the vessel during
the full rotation. The data is based on the average over all 170 instances. Figure 2.9a and
Figure 2.9b is for the case of intake optimisation, and Figure 2.9c and Figure 2.9d is for the case
of revenue optimisation. Figure 2.9a and Figure 2.9c show the container types loaded, here the
label corresponds to the type of container, �rst the length, then reefer types are denoted with a R,
and high-cubes with HC. For intake and revenue optimisation the distribution of container types
is similar. The loading of reefer containers is expected to be low, even in revenue optimisation,
as it is constrained by the available reefer plugs in the vessel. High-cubes tend to reduce capacity
due to the extra volume, so it also makes sense that not many of them are loaded in either intake
or revenue optimisation. Figure 2.9b and Figure 2.9d show the weight distribution of the 20′ and
40′ containers types loaded (excluding reefer and high-cubes). When optimising the intake, the
value of a container does not dependent on the weight, and therefore the model has a tendency to
load light and empty containers (3 tonnes). When loading light containers the weight capacity is
of less importance, and thus more containers can be loaded in total. However, empty containers
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distribution
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Figure 2.9: Containers loaded when optimising the intake and the revenue.

do not generate as much revenue, and therefore only a few empties are loaded when optimising
revenue. Though heavier containers generate more revenue, they also reduce vessel capacity since
the weight limits of the stacks are reached faster, as was shown in Figure 2.8a.

Finally in Table 2.5 we show the impact of the relaxation of the weight constraints in Phase II for
the CMPBSHLP matheuristic. Here x̄ is the solution value after the corresponding phase, and t̄
is the average runtime of each phase. The column %Rem is the percentage of removed containers
by Phase III in terms of objective value. In both cases, the most time is spent in Phase II, of
which approximately 10% is spent in Phase III. As can be seen Phase III only removes in average
ca. 0.75% of the containers in terms of objective values.

2.8 Conclusion

In this paper, the Cargo Mix Problem with Block Stowage has been introduced. The problem
has been described thoroughly and formulated as a mathematical model. The mathematical
model is not scalable, and cannot solve any of the real-life sized instances. To overcome this, a
matheuristic has been developed. The method combines a 3-phase decomposition with variable
�xing and heuristic assignments.
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Table 2.5: Detailed results for CMPBSHLP when optimising intake and revenue

Intake Revenue

Phase II Phase III Phase II Phase III

|P | x̄ t̄ x̄ t̄ %Rem x̄ (106 $) t̄ x̄ (106 $) t̄ %Rem

4 50985 1.1 50351 0.3 1.35% 29.00 0.7 28.70 0.2 1.03%
5 63883 1.8 62917 0.3 1.53% 36.04 1.0 35.88 0.2 0.44%
6 82100 1.6 81209 0.4 1.18% 35.36 1.9 35.15 0.4 0.56%
7 94995 3.4 93191 0.5 2.03% 39.49 2.3 39.07 0.6 0.97%
8 113379 4.5 112787 0.7 0.53% 39.77 4.0 39.52 0.6 0.61%
9 122824 3.7 122022 0.7 0.66% 40.96 2.7 40.54 0.9 1.00%
10 139182 6.7 138485 0.8 0.50% 41.01 3.3 40.67 1.0 0.77%
11 156014 6.7 155353 0.7 0.42% 44.43 9.3 44.19 0.7 0.50%
12 169533 16.6 168760 0.9 0.46% 45.52 8.5 45.27 1.0 0.50%
13 186085 16.4 185299 1.0 0.42% 47.26 12.1 46.65 1.4 1.21%
14 197610 12.1 196018 1.1 0.85% 47.94 7.0 47.56 1.5 0.76%
15 213619 18.0 212763 0.9 0.40% 47.02 15.4 46.57 1.7 0.92%
16 230005 22.0 229117 1.2 0.39% 47.84 18.3 47.53 1.9 0.60%
17 246212 17.9 245174 1.5 0.42% 48.66 16.1 48.16 2.3 0.96%
18 259156 41.8 258001 1.4 0.45% 50.24 23.0 49.81 2.7 0.80%
19 274787 24.3 273704 1.4 0.40% 51.78 31.6 51.47 1.9 0.57%
20 287183 23.0 285586 1.5 0.57% 48.63 24.5 48.05 3.1 1.09%

Average 169856 13.0 168867 0.9 0.74% 43.59 10.7 43.22 1.3 0.78%

Three variations of the matheuristic were tested on 170 data instances, both when optimising
revenue and intake. The results showed that the approach �nds high-quality solutions in seconds
and can scale to industrial size instances.

Though the described problem can be seen as a strategic planning tool, its analytical strength
is better suited at the operational level e.g. in uptake management. Since the solution approach
is based on mathematical models, it is easy to add extra constraints to e.g. perform what-if
scenario analysis. To give an example, given the current state of a vessel, meaning its current
load and remaining capacity, it is possible to use the CMPBS to identify an optimised number of
containers to choose from a list of bookings. The impact of a booking could also be compared to
an optimised cargo-mix to estimate the impact it will have on revenue. The authors believe that
the mathematical models and the solution approach could easily be adapted to perform this kind
of analysis within, for example, a decision support system. More so since the presented method
can solve the CMPBS within seconds.

Possible areas of future research can focus on both optimal and heuristic methods. The de-
composition currently adopted could be suitable for the implementation of a column generation
approach where the schedules are dynamically generated. Further research, however, needs to
be done for such an approach to be successful due to the complexity of the resulting reduced
model.

Since the quality of the �nal solution heavily depends on the block assignment in Phase I, an
idea for future research is to improve the way it is computed. This can be done by improving
the way schedules are generated, and thus keeping the hierarchical nature of the algorithm, or
by using an iterative procedure. In an iterative approach, the solution from one of the later
phases is fed back to a previous phase to re-optimise, until some termination criterion is met.
Within a decision support system setting, this approach is, however, not suitable for the current
hierarchical heuristic since it would use an average of ca. 14 seconds for each iteration.
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Furthermore, we plan to extend the problem by considering stochastic cargo �ows, and we also
plan to study how this work can be combined with other important problems in the liner shipping
industry, e.g. service network design and cargo �ow optimisation.
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2.A Stability Constraints

The stability constraints ensure that the vessel does not capsize or break, even in tough weather
conditions. The constraints here uses similar notation as the one introduced in Delgado (2013),
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and the interested reader is invited to look at the source for a more elaborate description.

The main di�erence between the set of constraints presented below and (6.25) - (6.43) of Delgado
(2013), is the draft. Delgado (2013) does not consider draft limit for each port, thus making it
possible for the vessel to have a greater displacement. The introduction of the LinerLib (Brouer
et al., 2014) makes this data easily available, and the draft limit is therefore included in this
work. Also, Delgado considers locations, where this work considers blocks.

The functions describing the metacentre, trim, draft and buoyancy force all depends non-linearly
on the displacement. However, Delgado (2013) shows that these functions can be approximated
by linear planes by splitting the full displacement range into displacement intervals. A displace-
ment interval is thus de�ned as a minimum, maximum (W−i and W+

i ) and an average (Wi)
weight for the interval.

The sets, variables and parameters used in the model are introduced and explained below.

Sets:

P Set of ports.

T Set of ballast tanks.

B Set of blocks.

I Set of displacement intervals.

BS Set of bonjean stations.

F Set of frames.

Decision Variables:

wbp ∈ R+ Weight stowed in block b ∈ B at port p ∈ P.
xtp ∈ R+ Weight of the tank t ∈ T at port p ∈ P.

Auxiliary Variables:

vWp ∈ R+ Vessel Displacement at port p ∈ P.
vWip ∈ R+ Vessel Displacement in interval i ∈ I at port p ∈ P.
vLip ∈ R Longitudinal centre of gravity at displacement interval i ∈ I at port p ∈ P.
ψip ∈ {0, 1} Indicator variable for displacement interval i ∈ I at port p ∈ P.
vVp ∈ R+ Vertical centre of gravity at port p ∈ P.
vVMp ∈ R+ Vertical moment at port p ∈ P.
vMp ∈ R+ Metacentre at port p ∈ P.
vBsbsp ∈ R+ Buoyancy force of section between bonjean station bs and bs+ 1 at port p.

vSfαp ∈ R+ Shear force fore or aft of frame f ∈ F at port p ∈ P.
vBfαp ∈ R+ Bending moment fore or aft of frame f ∈ F at port p ∈ P.

Parameters:
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Various parameters:

WO Weight of the empty vessel.

MinGM Lower bound for metacentric height

MaxDp Maximum draft allowed at port p

Displacement intervals parameters:

W
{−,+}
i Lower (-) and upper (+) bound of displacement interval i ∈ I

Wi Average weight of displacement interval i ∈ I
AW{M,T,D,Bs}(Wi) Weight coe�cient of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), draft (D), and bonjean at station bs (Bs).

AL{M,T,Bs}(Wi) Lcg coe�cient of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), and bonjean at station bs (Bs).

A{M,T,D,Bs}(Wi) Constant of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), draft (D), and bonjean at station bs (Bs).

Centre of gravity parameters:

MinLi /MaxLi Min/maximum longitudinal centre of gravity at displacement interval i ∈ I
D
{L,V }
b Longitudinal (L), and Vertical (V ) centre of gravity of block b ∈ B

D
{L,V,T}
t Longitudinal (L), Vertical (V ), and transversal (T ) centre of gravity

of ballast tank t ∈ T
MaxV Maximum vertical moment possible for the vessel.

LMO Longitudinal moment of the empty vessel including constant weights.

VMO Vertical moment of the empty vessel including constant weights.

TMO Transversal moment of the empty vessel including constant weights.

Bending/Shearing parameters:

WS
fα Constant weights fore or aft of frame f ∈ F

Gα{b,t,bs}f Fraction of block b, ballast tank t, and buoyancy section between bonjean

stations bs and bs+ 1 that lies fore or aft frame f

WB
fα Bending components of the constant weight fore or aft of frame f ∈ F

DBs
b Distance in meters between bonjean stations bs and bs+ 1

multiplied by the density of water

Aα{b, t, bs}f Fore or aft distance from frame f to the longitudinal centre of gravity of

block b, ballast tank t, buoyancy section between bonjean stations bs and bs+ 1

Gf Fore-based fraction of frame f ∈ F , where Gf ∈ [0; 1]. Gf = 1 when f is

is the �rst frame at the bow, and Gf = 0 when f is the �rst frame at the stern.

Min
{S,B}
f Lower bound for shear force (S) and bending moment (B) at frame f ∈ F

Max
{S,B}
f Upper bound for shear force (S) and bending moment (B) at frame f ∈ F
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With these the stability constraints can be modelled as seen below.

∑

t∈T
xtp +

∑

b∈B
wbp +WO = vWp ∀p ∈ P (2.24)

∑

i∈I
W−i ψip ≤ vWp ≤

∑

i∈I
W+
i ψip ∀p ∈ P (2.25)

∑

i∈I
ψip = 1 ∀p ∈ P (2.26)

∑

i∈I
vWip = vWp ∀p ∈ P (2.27)

W−i ψip ≤ vWip ≤W+
i ψip ∀i ∈ I, p ∈ P (2.28)

MinLi ψip ≤ vLip ≤ MaxLi ψip ∀i ∈ I, p ∈ P (2.29)
∑

b∈B
DL
b wbp +

∑

t∈T
DL
t xtp + LMO =

∑

i∈I
Wiv

L
ip ∀p ∈ P (2.30)

vVp Wi + (1− ψip)MaxV ≥ vVMp ∀i ∈ I, p ∈ P (2.31)

vVp Wi − (1− ψip)MaxV ≤ vVMp ∀i ∈ I, p ∈ P (2.32)
∑

b∈B
DV
b wbp +

∑

t∈T
DV
t xtp + VMO = vVMp ∀p ∈ P (2.33)

∑

t∈T
DT
t xtp + TMO = 0 ∀p ∈ P (2.34)

∑

i∈I
AWM (Wi)v

W
ip +ALM (Wi)v

L
ip +AM (Wi)ψip = vMp ∀p ∈ P (2.35)

vMp − vVp ≥ MinGM ∀p ∈ P (2.36)
∑

i∈I
AWT (Wi)v

W
ip +ALT (Wi)v

L
ip +AT (Wi)ψip = 0 ∀p ∈ P (2.37)

∑

i∈I
AWD (Wi)v

W
ip +AD(Wi)ψip ≤ MaxDp ∀p ∈ P (2.38)

∑

s∈{bs,bs+1}

∑

i∈I
AWBs(Wi)v

W
ip +ALBs(Wi)v

L
ip +ABs(Wi)ψip = 2DBs

d vBsbsp ∀bs ∈ BS, p ∈ P (2.39)

WS
fα +

∑

b∈B
Gαbfwbp +

∑

t∈T
Gαtfxtp −

∑

bs∈BS
Gαbsfv

Bs
bsp = vSfαp ∀f ∈ F , α ∈ {A,F},

p ∈ P (2.40)

WB
fα +

∑

b∈B
AαbfG

α
bfwbp +

∑

t∈T
AαtfG

α
tfxtp −

∑

bs∈BS
AαbsfG

α
bsfv

B
bsp = vBfαp ∀f ∈ F , α ∈ {A,F},

p ∈ P (2.41)

MinSf ≤ GfvSf,Fore,p + (1−Gf )vSf,Aft,p ≤ MaxSf ∀f ∈ F , p ∈ P (2.42)

MinBf ≤ GfvBf,Fore,p + (1−Gf )vBf,Aft,p ≤ MaxBf ∀f ∈ F , p ∈ P (2.43)

Constraint (2.24) calculates the displacement of the vessel for every port. The next constraint,
(2.25), sets the displacement interval variables together with (2.26) which ensures that exactly
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one displacement interval is active at each port. Constraint (2.27) and (2.28) de�nes vWip to be
equal to the displacement for the active displacement interval, and 0 for the rest. In a similar
fashion (2.29) and (2.30) calculates the longitudinal centre of gravity (LCG). The centre of
gravity is calculated as the sum of moments divided by the total displacement. The left-hand
side of (2.30) calculates the sum of moments. This is done by considering the longitudinal centre
of gravity for the tanks and blocks and multiplying with the weight stowed in these. The right-
hand side uses the average weight of the displacement interval, instead of the actual displacement.
Similar with vWip vLip is zero for the displacement intervals for which ψi = 0 and for the active
displacement interval it lies within the bounds de�ned by constraint (2.29). Constraint (2.31)-
(2.33) approximates the vertical centre of gravity (VCG). Constraint (2.31) and (2.32) de�nes
bound for the vertical moment for each displacement interval, and in the case when ψi = 1 the
two inequalities turn into an equality vVp Wi = vVMp . For the non-active displacement intervals,
these two constraints have no e�ect. Constraint (2.33) calculates the vertical moment similar to
how the LCG is calculated, but without multiplying the right-hand side with the weight. (2.34)
ensures that the transversal centre of gravity is 0, meaning the middle of the vessel. Due to
the construction of the blocks, the transversal centre of gravity is 0 for all blocks, and thus only
the tanks and the moment of the empty vessel are considered in the calculation. Constraint
(2.35)-(2.39) calculates the metacentre, trim, draft and buoyancy force using the linearization of
the non-linear functions. Each of the planes for the functions is described using three factors,
AW (Wi), A

L(Wi) and A(Wi). A
W (Wi) is the displacement factor, A

L(Wi) is the LCG factor, and
A(Wi) is the constant factor. (2.35) calculates the metacentre, and (2.36) de�nes the metacentric
height to be greater than the minimum metacentric height allowed. In (2.37) the trim is required
to be zero, and (2.38) enforces the draft be less than or equal to MaxDp . As the trim is required to

be zero, the draft does not depend on the LCG, but only the displacement of the vessel. MaxDp
is the minimum draft allowed when leaving port p, and will thus be the minimum of the draft at
port p and port p+ 1. Constraint (2.39) calculates the buoyancy force (bonjean) between station
bs and bs + 1. The last four constraints (2.40)-(2.43) are related to the stress forces. The �rst
two calculates the shearing and bending, and (2.42)-(2.43) de�nes the upper and lower bounds.
The shear force on a vessel, at a given frame, is the integral of forces on either side of the frame,
and the bending moment is the integral of moments on either side of the frame. The buoyancy
forces are only approximated, and thus there is an accumulation of error when calculating the
shear force and the bending moment. To reduce the impact of this error, constraint (2.40) and
(2.41) respectively calculates the shear forces and bending moment with respect to the resulting
forces acting fore and aft of the frame. Hence there are two shear variables for every frame
at each port. Constraint (2.42) and (2.43) respectively sets the limits for the shear force and
bending moment at each frame. The shear force and bending moment at a frame are estimated
as a proportional calculation based on the position of the frame. This reduces the impact of
the error accumulation as the fore-based computation is accurate in the bow and the aft-based
computation is accurate in the stern. All these constraints ensure that the vessel is stable and
can be declared seaworthy if the stacking rules are obeyed.

The set of constraints (2.24)-(2.43) de�nes a polyhedron with the feasible weight allocations.
This polyhedron is denoted by W in the model in Section 2.4.
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3.1 Introduction

Aside from a few years of �nancial crisis, the liner shipping industry has had a continuous growth.
The growing demand has resulted in a �erce competition to deliver the best product concerning
e�ciency, reliability, but most importantly cost. As a result, shipping rates are historically low,
making it vital for the carriers to utilise their vessels as e�cient as possible. In recent years,
carriers have been building bigger and bigger vessels to follow demand trends, but also to achieve
economies of scale.

While academic focus on vessel intake maximisation is relatively new, it is not new in the shipping
industry. Container vessels are delivered with a theoretical nominal capacity. Only if the weight
distribution is perfect can the full nominal capacity be reached, which hardly ever happens.
With the increasing size of the vessels, a small decrease in utilisation results in a few hundred
containers having to be dropped. Stowage coordinators are responsible for planning the cargo
and �nding a load con�guration (stowage plan) that suits the cargo to be loaded at the current
port, while also making sure the vessel can be utilised to its maximum in future ports. The
unreliability wrt. the demand forecast in the industry, makes this problem even harder. For the
shippers, there is no fee for booking shipments, and they will only pay for a container transport
once it is undertaken by the liner. Thus, a booking does not mean the containers will ever arrive
in time. Therefore, it is hard for the stowage coordinators to make a good plan as the high
unreliability is not likely to change without radically changing the cost structure.

The focus of our work is the analysis of vessels' cargo mix (the cargo mix problem), in particular
�nding the cargo composition needed for a vessel to maximise its revenue on a given service. We
include the unreliability of the demand, and model con�rmed bookings as well as the stochasticity
in demand. As for the horizon, we consider a few ports and determines the best cargo-mix for
these ports. Doing so we consider cargo loaded in one of these ports, but to be unloaded at a later
port. This corresponds to optimising the revenue on an interregional leg, while still considering
the revenue obtained by shipping containers within the region. Delgado (2013) shows that a
cargo-mix analysis based on simple capacity constraints overestimates the revenue of the vessel.
Therefore it is important to include additional features and limits to estimate the capacity or
revenue correctly. Additionally, we enforce that the stowage plan adheres to a block stowage
strategy used within the industry. This corresponds to a logical partitioning of the vessel into
blocks, and by enforcing the block strategy, each block is only allowed to host containers that
have the same discharge port. This way of stowing containers is aimed at improving operations at
ports since it makes it possible to perform, e.g. dual cycling (where load and discharge operations
are no longer sequential). Examples of block stowage are found in the stowage planning literature
in e.g. Ambrosino et al. (2015b) and Ambrosino et al. (2015a).

The proposed model can have multiple applications, e.g., driving rate prices, improving �eet
composition and network design. However we see greater potential applying the model as an
analytical tool, and we envision it will mostly be used to perform di�erent what-if analyses. To
allow for multiple what-if analyses to be performed in a short period, the solution method needs
to be fast, and we will put a lower priority of the accuracy wrt. optimality and prioritise an
adaptable, simple and fast solution method.

In Christensen and Pacino (2017) a deterministic version of the cargo mix problem is described,
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and multiple matheuristics based on the same idea are compared. This paper can be seen as a
stochastic extension of the method developed in Christensen and Pacino (2017), and thus con-
tributes to the state-of-the-art by �rst extending the formal de�nition of the cargo mix problem
from Christensen and Pacino (2017) to include stochastic cargo �ows and accepted bookings. Sec-
ond, we include the stochasticity in the compact formulation of Christensen and Pacino (2017).
Lastly, we show that the compact formulation can only solve the smallest of the instances using
standard mixed-integer programming methods, and therefore we propose a matheuristic to solve
the problem.

The remainder of the paper is organised as follows. Section 3.2 present background knowledge
of vessel architecture and the industry as a whole. In Section 3.3, relevant existing literature is
reviewed. Section 3.4 gives a detailed description of the problem and presents a compact formu-
lation for the problem. Section 3.5 describes the matheuristic approach. Section 3.6 describes the
data generated and used for this study, and Section 3.7 presents the results for the matheuristic
and compares it with the result for the compact model. Lastly, Section 3.8 contains the �nal
remarks and conclusions.

3.2 Background

Liner shipping is the service of long-haul transportation of goods by using ocean-going vessels.
The vessels used are of high capacity and operate on a �xed route with published schedules.
The high capacity of the vessels helps to keep costs down, and the liner shipping industry is the
cheapest and most energy-e�cient form of international transportation.

The cargo to be transported is packed in standardised containers, which are then are loaded on
vessels. Most containers carried on liner vessels are 8 feet wide, 8'6" high and 20 ', 40' or 45'
long. High-cube containers also exist, which are 9'6" high. Perishable goods are packed in so-
called reefer containers. These are refrigerated containers with an integrated cooling unit to keep
the cargo cool. The cooling unit must get power from the vessel, and thus reefer containers can
only be stowed where an electrical outlet is available. Additionally, there are dangerous goods
containers, which must adhere to a certain safety standard describing the segregation rules for
di�erent kind of dangerous material (e.g. toxic, nuclear or �ammable).

Bay

Line of sight
 

Waterline

Statio9478447973

Hatch cover

Figure 3.1: Example �gure of a container vessel.

Figure 3.1 shows the layout of a vessel. A vessel is divided into bays, and for each bay there is an
on-deck and below-deck part, which are physically separated by a hatch cover. Hatch covers are
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�at and leak-proof structures that can be removed when loading and unloading containers. The
bays are further divided into a number of stacks and cells. A cell can hold a single 40' container
or two 20' containers, and the stack refers to a cell's longitudinal/transversal position on the
vessel. Figure 3.2 outlines the design of a bay. First, Figure 3.2a shows a transversal section of
a bay, where the numbers denote the blocks. Secondly, Figure 3.2b shows the layout of a stack
within a bay.

(a) A bay in the vessel

St ack
Aft

20' Reefer 20'

Fore

40' Reefer

40' 

40' High cube

(b) The layout of a stack

Figure 3.2: Example �gure showing the design of a bay, and a stack.

A cell consists of two slots; an aft (towards the stern) and a fore (towards the bow) slot. For
each stack, there are weight and height limits on the containers stowed. Furthermore, there
are speci�c stacking rules, describing how the containers can be stowed. E.g., 20' containers
cannot be stowed above 40' containers, and generally, the weight of the containers must decrease
upwards in the stacks on deck.

The main cost components in liner shipping are the fuel costs and the costs associated with port
stays. The costs at port depend on the time spent at the port, and thus decreasing the time spent
at the port will most often decrease the associated costs as well. To reduce the time at port, it
is important to avoid overstowage, and especially hatch overstowage. Overstowage occurs when
a container is stowed below a container destined for a later port. Hence, to unload the desired
container, you will need to move the overstowing container �rst. Hatch overstowage happens
when a container on-deck is overstowing a container below deck, in which case all containers
on-deck will need to be moved in order to remove the hatch cover. These excess cranes moves
are costly and take time, and the number of these moves should, therefore, be minimised. The
bene�t of decreasing the time at port is two-fold; the port costs are minimised, and if less time
is spent in port, the vessel can sail slower to the next port and thus save fuel.

The pro�t comes from the transported containers, and naturally, carriers want to maximise the
capacity usage to increase revenue. Vessel's capacities are measured in the number of Twenty-
foot Equivalent Units (TEUs) the vessel can carry under perfect conditions, i.e. the number of
slots on the vessel. A 40' foot standard container and 40' high-cube container are 2 TEU or 1
FEU (Forty-foot Equivalent Unit).

To facilitate better planning and ease port handling operations vessels are divided into blocks (a
virtual grouping of stacks). In the industry, di�erent companies have di�erent de�nitions of a
block. In accordance with our industry collaborator, we de�ne a block such that stacks below
and above the same hatch-cover belong to the same block. When stowing the ship, all containers
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in a block must have the same discharge port. Therefore overstowage and hatch-overstowage
cannot happen.

Before a vessel leaves port, the captain of the ship must deem the vessel seaworthy. Besides
ensuring that the vessel is not defective or undermanned, this also entails that the static stability
is correct and all stress forces are within limits. The weight of the cargo causes shearing and
bending stresses over the vessel structure, which must be within limit at certain calculation
points. Ensuring the vessel is stable also requires the three coordinates of the centre of gravity
(longitudinal, vertical and transversal) to be within de�ned limits. The aft draft is the distance
between the waterline and the bottom of the hull at the stern of the ship, and the fore draft is
at the bow. The trim is de�ned as the di�erence between the aft draft and the fore draft. The
trim, fore draft, and aft draft must all be within limits.

The outline of a vessel is described in a document called the vessel pro�le, which speci�es all
the weight and capacity limits along with the hydrostatic table. Using the hydrostatic table one
can calculate the draft, centre of gravity and metacentre. For a more detailed description of the
stability calculation and requirements see Delgado (2013).

3.3 Literature Review

The existing literature on the liner shipping cargo mix problem is limited. The problem was for-
mally introduced in the PhD thesis of Delgado (2013). Here a mixed integer programming model
was presented, and the multi-port version is shown not to be scalable. To achieve scalability, the
problem is decomposed in a similar way as to what is suggested in earlier stowage planning work
(see Pacino et al. (2011)). The work of Christensen and Pacino (2017) extends the liner shipping
cargo mix problem, by including the concept of block stowage, draft restrictions and restricts the
number of containers that can be selected. The inclusion of the block stowage strategy makes the
MIP model proposed in Delgado (2013) intractable for industrially sized instances. Instead, a
novel matheuristic is developed. Tested on industrially sized instances, the matheuristic is shown
to be scalable and produce high-quality solutions in a matter of seconds. A revenue model for the
short-sea shipping service is presented in Feng and Chang (2008). This model disregards most
aspects of what it means for a vessel to be seaworthy, and only considers the TEU and weight
capacity. In Delgado (2013) it is shown that, due to inaccuracies wrt. stability considerations,
the model in average overestimates the revenue by 8%. To get an accurate estimate on the rev-
enue, we, therefore, believe it is important to consider the seaworthiness of the vessel with care.
Our work di�ers from previous work by also including the unreliability wrt. the demand forecast
within the industry. This is done by considering the cargo �ow as being stochastic instead of
deterministic. Doing so, a list of ports are considered instead of a circular service, and the vessel
is assumed to already be loaded with some containers.

The cargo-mix problem can be seen as a generalisation of a stowage planning problem. Given
the limited amount of existing literature on the cargo mix problem, it is therefore relevant to
introduce relevant literature related to stowage planning. The main di�erence between the cargo
mix problem and stowage planning is that the cargo mix problem considers a set (or in this case;
distribution) of expected containers that is possible to be loaded in the visited ports. Whereas
in stowage planning a list of containers has already been selected, and the main decision is where
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these containers should be stowed on the vessel. In the stowage planning problem literature,
the seaworthiness of the vessels is being considered with varying degree of importance. Botter
and Brinati (1992) presents an accurate formulation which includes limits on the metacentric
height, transversal stability, trim, shear forces and bending moments. The model fails to solve,
and instead, a heuristic decomposition method is used. The approach by Pacino et al. (2011)
considers metacentric height, trim and shear forces as well as draft, and is in Pacino et al. (2012)
extended to also include direct linearization of hydrostatic data and the modelling of ballast
tanks.

Integer programming models assigning containers to speci�c slots on the vessel are presented
in Botter and Brinati (1992), Ambrosino et al. (2004), and Li et al. (2008). All these models
experience scalability issues, due to a large number of variables and constraints. Scalable integer
programming approaches (Wilson and Roach, 2000; Kang and Kim, 2002; Ambrosino et al., 2010;
Pacino et al., 2011) all rely on a multiphase approach. In these approaches, the overall problem is
decomposed into a master planning phase and a slot planning phase. The master planning phase
determines which general area a container should be stowed in following high-level capacity and
stability constraints. In the slot planning phase, individual containers are assigned a speci�c slot.
Delgado (2013) shows that the master planning phase can be used to approximate the revenue
accurately.

In Christensen and Pacino (2017) it is shown that the deterministic cargo mix problem is too
complex to be solved using standard mixed integer programming methods. Based on these results
we do not expect to be able to solve the stochastic version to optimality within a time that makes
it applicable to the industry. It is therefore relevant to look at specialised heuristic methods for
stochastic problems.

Large stochastic MIPs are computationally hard to solve due to a large number of scenarios. One
way to handle this is to use a rolling horizon heuristic (RHH). Such a planning procedure only
considers a portion of the entire planning horizon at a time, solves this reduced problem and
�xes parts of the solution. Rolling horizons schemes have been applied to several problems within
operations management (see Chand et al. (2002) for an extensive review). Due to the myopic
nature of the procedure, it is highly appropriate when only limited information is available.
However, it can also be used to reduce the problem size, and thereby lessen the computational
e�ort to solve the problem.

The literature on rolling horizon heuristics within a maritime setting is limited. Rakke et al.
(2011) describes a rolling horizon heuristic for a maritime routing and inventory management
problem. A reduced version of the mathematical model is used as an improvement heuristic
where the feasible solution found by the RHH is used to reduce the number of variables. The
results show that the RHH outperforms the MIP model, and produces quality solutions in a
relatively short amount of time. Additionally, the improvement heuristic is shown to improve
the result by 2%−10% for the datasets tested. Bredstrom and Rönnqvist (2006) applies a rolling
horizon heuristic to a combined supply chain and ship routing problem. Real-world industrially
sized data is used, and the heuristic is shown to outperform the MIP model.
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3.4 The Stochastic Cargo Mix Problem with Block Stowage
(SCMPBS)

Given a vessel, a string of ports, an initial con�guration of the vessel, a list of accepted bookings
and a distribution of the cargo �ow (i.e. origin-destination demand matrix), the Stochastic Cargo
Mix Problem with Block Stowage (SCMPBS) aims at optimising the expected revenue of the
cargo loaded. A high degree of accuracy is imposed wrt. stability constraints, to ensure the vessel
is seaworthy. Furthermore, the loading must obey the block stowage requirement, ensuring that
all containers in a block must have the same discharge port. We will not assume the vessel is
initially empty, and the initial con�guration of the vessel will describe the cargo already loaded,
as well as their destination.

The string of ports is divided in two; a set of visited ports, for which unload and loading
operations will be planned, and a set of demand ports for which only unload operations will be
scheduled. This separation corresponds to a situation where a vessel is in the Far East, and the
carrier wants to optimise the revenue of the containers it brings to Europe. When the vessel
arrives in Europe, the demand is known more accurately, and the problem can be solved once
again taking the current vessel con�guration into consideration.

The aim is to determine the optimal cargo-mix, and not make a fully feasible stowage plan. In
Pacino et al. (2011) it is shown that working on an aggregated level gives a good approximation
to the full problem. Therefore, the problem is decomposed similarly to earlier work (Wilson
and Roach, 2000; Kang and Kim, 2002; Ambrosino et al., 2010; Pacino et al., 2011; Delgado,
2013), which also helps to ease the computational e�ort needed to solve the problem. Instead of
assigning speci�c containers to speci�c slots on the vessel, containers are grouped in container
types and assigned to blocks. Each container type represents a number of containers with the
same properties wrt. weight, height, length and reefer capabilities. The blocks correspond to
a logical partitioning of the vessel into non-overlapping sections. In the decomposition, the
planning is split in two; �rst, a master planning phase where container types are assigned to
blocks while satisfying high-level capacity constraints. Hereafter, a slot planning phase, consider
each block sequentially and assign a speci�c slot for each of the containers assigned in the master
planning phase. This decomposition is illustrated in Figure 3.3. Delgado (2013) showed that the
master planning phase gives an accurate estimation of the achievable capacity utilisation, as this
is the goal of this study, we disregard the slot planning phase.

Figure 3.3: The two-phase heuristic decomposition

For the container types, we consider the most standard containers: 20' dry and reefer containers,
40' dry and reefer containers both normal height and high-cube. All with a set of weight classes,
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ranging from 3 tonnes (empty) to 27 tonnes (full).

The described problem can be modelled as a multi-stage stochastic programming problem. The
decision process is thus as follows;

Observe demand at port 1→ Decide block assignment for port 1→ Find containers to load at port 1→
Observe demand at port 2→ Decide block assignment for port 2→ Find containers to load at port 2→ . . .→
Observe demand at port n→ Decide block assignment for port n→ Find containers to load at port n

When determining the block assignment at port p, only the blocks being emptied at port p will
need a new destination port assigned. The rest of the blocks will have to keep the destination
that has already been assigned, in order not to move the containers. The decision process can
be illustrated by a scenario tree, as shown in Figure 3.4, where Low, Medium and High describes
three possible realisations of the demand at port a. A scenario is de�ned as a path from the root
of the tree to one of the leaves. The nodes visited by each path corresponds to a realisation of
the random parameters in the model. Let S be the set of scenarios, and N the set of nodes in
the scenario tree, each one of these nodes n ∈ N corresponds to a vector of random parameters
with a particular history up to that node.

.

.

.
.
.
.

.

.

.

· · ·

Port

a

b

c

|Pl\u|

Stage

1

2

3

|Pl\u|

HighMediumLow

Figure 3.4: Scenario tree illustrating the multi-stage decision process.

Let πnn′ be the transitional conditional probability of going from node n to node n′, and fur-
thermore let Πn be the unconditional probability of node n. Πn is computed by multiplying the
conditional probabilities of nodes positioned on the path starting at the root node and ending
at node n.

Πn =
∏

〈n1,n2〉 ∈ path(n)

πn1,n2

Here path(n) describe the path from the root to node n. The scenario probabilities Πs can be
computed similarly.

Along with the sets S and N , de�ne C as the set of container types. A container type, c ∈ C, is
de�ned by the dimensions and properties of the containers. The parameters Γc, Φc, vc describes
respectively the TEU coe�cient (1 for a 20' container, 2 for a 40' container), volume and weight
of container type c ∈ C. The volume is needed for the modelling of the high-cube containers,
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which need further restrictions than a simple capacity constraint. Also, let the set B be the set
of blocks. Let P be the full set of ports, P = P l\u ∪ Pu where P l\u is the set for which both
loading and unloading operations will be planned, and Pu the set of ports where only unloading
operations are planned. The container demand is described by the set T and the parameter adcn .
The set T is the set of transports. A transport describes an origin-destination pair and adcn is the
number of containers available of type c ∈ C during transport t = 〈pn, d〉 in node n ∈ N . Here
pn is the port associated with node n ∈ N . The set T ONp is the set of transports where port p
is visited between the origin and destination of the transport, de�ned as follows.

T ONp = {t ∈ T | ot ≤ p < dt} ∀p ∈ P

Here ot and dt are the origin and destination port of transport t.

The main decision variable is ytcbs ∈ R+, de�ning the (possibly fractional) number of containers
of type c ∈ C of transport t ∈ T to be stowed in block b ∈ B in scenario s ∈ S. Naturally
the container load variables must be an integer, however, as earlier mentioned this work mostly
concerns revenue estimation, and the aim is thus not to generate a fully feasible stowage plan.
Christensen and Pacino (2017) shows that relaxing the integrality requirement of the container
load variables gives an accurate estimation of the revenue, and furthermore describes how the
resulting solution can be converted into a solution with integer container load variables.

Let wbps ∈ R+ be a variable denoting the weight stowed in block b ∈ B at port p ∈ P l\u in
scenario s ∈ S. To enforce the block stowage requirement, we introduce the variable σdbn, de�ned
as follows

σdbn =

{
1 If block b ∈ B is assigned destination d ∈ P in node n ∈ N
0 Otherwise.

Let utc describe the accepted bookings i.e. the number of accepted containers of type c ∈ C
for transport t ∈ T . From the initial con�guration of the vessel we de�ne two parameters, θcbp
and Ωd

bp. θ
c
bp describes the cargo loaded i.e number of containers of type c ∈ C initially loaded

that still occupy block b ∈ B at port p ∈ P, whereas Ωd
bp describe the partial block assignment

imposed by the initial con�guration. That is;

Ωd
bp =





1 If the initial con�guration imposes that block b ∈ B is assigned
destination d ∈ P at port p ∈ P l\u

0 Otherwise.

Let ys ∈ N|B|·|T |·|C| be the vector of ytcbs variables for scenario s ∈ S. Then de�ne the polyhedron
Y as the loading con�gurations that satisfy the capacity constraints for the variables ys.

Y =
{
s ∈ S,ys ∈ R|B|·|T |·|C| s.t (3.35)− (3.39)

}

In essence, the vector ys describe a full solution for a scenario, and the polyhedron Y is a set
of constraints ensuring the solution is feasible wrt. the capacity constraints. Similarly, de�ne
ws ∈ R|B|·|P| as the vector of wbps variables for scenario s ∈ S. Then de�ne the polyhedron W
as follows

W =
{
s ∈ S,ws ∈ R|B|·|P| s.t (3.40)− (3.59)

}
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Here (3.40) - (3.59) describe the feasible weight allocations that ensures the seaworthiness of the
vessel. Where the polyhedron Y describe the feasibility regarding capacity, the polyhedron W
describe the feasibility concerning the seaworthiness of the vessel. The polyhedron Y is formally
described in Section 3.A, and the stability constraints are described in Christensen and Pacino
(2017). For the reader's convenience the description of the stability constraints are attached here
in Section 3.B.

Below, all the sets, variables and parameters are summarized, and additional sets and parameters
are introduced.

Sets:

S Set of scenarios

N Set of nodes

N (s, o, d) Set of nodes for scenario s between port o and d (including o, excluding d)

N (s, o, d) = {n ∈ N|n ∈ s, o ≤ pn ∧ pn < d}
S(n) Set of scenarios having node n ∈ N on the path. (S(n) = {s ∈ S|n ∈ s})
P Set of ports

P l\u ⊂ P Set of load/unload ports

Pu ⊂ P Set of demand ports (only unload operations will be planned)

T Set of transports

T ONp Set of transports that visits port p ∈ P
C Set of container types

B Set of blocks.

Variables:

ytcbs ∈ R+ Number of containers of type c ∈ C of transport t ∈ T
to be stowed in block b ∈ B in scenario s ∈ S.

wbps ∈ R+ Weight of the containers stowed in block b ∈ B at port p ∈ P l\u .
in scenario s ∈ S.

σdbn ∈ {0, 1} Variable denoting whether or not block b ∈ B can only contain containers

with destination d ∈ P in node n ∈ N

Parameters:

Πs ∈ [0; 1] Probability for scenario s ∈ S.
f tc ∈ R+ The value of container type c ∈ C of transport t ∈ T .
pn ∈ P The port associated with node n ∈ N .

vc ∈ R+ Weight of container type c ∈ C
θcbp ∈ N Number of containers of type c ∈ C initially loaded that still occypy

block b ∈ B at port p ∈ P
Ωd
bp ∈ {0, 1} Parameter denoting if block b ∈ B is enforced to only contain containers

with destination d ∈ P at port p ∈ P l\u.
adcn ∈ N Number of available containers of type c ∈ C for transport t = 〈pn, d〉

at node n ∈ N .

utc ∈ N Number of already accepted containers of type c ∈ C for transport t ∈ T .
qb ∈ R+ Weight capacity of block b ∈ B
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With this we can model the problem as follows

Max Z =
∑

s∈S

∑

b∈B

∑

t∈T

∑

c∈C
Πsf

tcytcbs (3.1)

Subject to:

ws ∈ W ∀s ∈ S (3.2)

ys ∈ Y ∀s ∈ S (3.3)

ytcbs = ytcbs′ ∀s ∈ S, n ∈ s, s′ ∈ S(n), b ∈ B,
d ∈ P, t = 〈pn, d〉, c ∈ C (3.4)

∑

t∈T ON
p

∑

c∈C
vcytcbs +

∑

c∈C
vcθcbp ≤ wbps ∀s ∈ S, b ∈ B, p ∈ P l\u (3.5)

σdbn ≥ Ωd
bpn ∀n ∈ N , b ∈ B, d ∈ P (3.6)

∑

d∈P
σdbn = 1 ∀n ∈ N , b ∈ B (3.7)

ytcbs ≤ max
(
adcn , u

tc
)
σdbn′ ∀n ∈ N , s ∈ S(n), b ∈ B, c ∈ C, d ∈ P,

t = 〈pn, d〉, n′ ∈ N (s, pn, d) (3.8)
∑

b∈B
ytcbs ≤ max

(
adcn , u

tc
)

∀n ∈ N , s ∈ S(n), d ∈ P,
c ∈ C, t = 〈pn, d〉 (3.9)

∑

b∈B
ytcbs ≥ utc ∀s ∈ S, t ∈ T , c ∈ C (3.10)

0 ≤ wbps ≤ qb ∀s ∈ S, b ∈ B, p ∈ P l\u (3.11)

ytcbs ∈ R+ ∀s ∈ S, b ∈ B, t ∈ T , c ∈ C (3.12)

σdbn ∈ {0, 1} ∀n ∈ N , b ∈ B, d ∈ P (3.13)

Objective (3.1) maximises the expected value of the containers loaded, where f tc is a general
function describing the value of each container. This parameter can be changed to accommodate
di�erent objectives, e.g. intake maximisation as in Christensen and Pacino (2017). Here it is the
revenue.

Constraint (3.2) and (3.3) ensures that the stowage plans for all the scenarios are feasible with re-
spect to stability and capacity respectively. The parameter θcbp is used in the capacity constraints
to reduce the capacity of the blocks, according to the initially loaded containers.

Constraint (3.4) are the non-anticipativity constraints, making sure that the decisions for two
scenarios with a common history are the same up until that point. In other words; no information
revealed at a later stage is utilised at the current stage. Constraint (3.5) links the weight variables
wbps with the weight of the containers stowed in the scenario plus the weight of the containers
initially on the vessel. Intuitively the left-hand side and right-hand side of (3.5) should be equal.
However, the work of Christensen and Pacino (2017) relies on relaxing this equality constraint,
and later undo the relaxation, ensuring a strict correspondence between the weight variable and
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the weight of the containers. It is shown that the relaxed model gives an accurate revenue
estimation, in considerably less time. Our main focus is to get an accurate revenue estimation
fast, and therefore (3.5) does not impose a strict correspondence for the weight variables.

Constraints (3.6)-(3.8) are the block assignment constraints. Constraint (3.6) makes sure the
block assignment follows that imposed by the initial con�guration. Together (3.7) and (3.8)
enforce that no overstowage can occur. Speci�cally, constraint (3.7) ensures that exactly one
port is assigned as the discharge port for every node. Constraint (3.8) makes sure that containers
to a destination d can only be stowed in a block if the assigned destination matches d, during
the full journey. Constraint (3.7) does not enforce that if σd

′
bn = 1 for a block b then all nodes

with pn < d′ must have d′ as discharge port. This will, however, be the case regardless since
constraint (3.8) is posted for every node, which e�ectively disallows the stowage of containers
with another port of destination.

Constraint (3.9) ensures that no more containers than the ones available in the scenario are
loaded, and constraint (3.10) make sure we load the containers already accepted. Finally con-
straints (3.11)-(3.13) de�nes the variables domain, and (3.11) enforces the block weight capacity
limit. The model includes ballast water within the set W, but only as a way to �x stability
issues, thus the ballast water is not minimised as part of the objective as in Delgado (2013).

3.5 Solution Method

The number of scenarios in the stochastic model in Section 3.4 grows exponentially with the
number of ports considered. As the number of scenarios quickly increases, even more so does
the number of variables. Therefore it is not expected that the model can solve more than the
smallest toy example.

Besides the number of variables, the main contributor to the intractability of the stochastic model
is the binary indicator variables enforcing the block stowage. To overcome this, we will describe a
multiphase hierarchical heuristic where the block assignment is heuristically determined in Phase
I. Hereafter a rolling horizon heuristic is used in Phase II to deal with the stowing of containers.

The solution method bears a resemblance to the solution method proposed in Christensen and
Pacino (2017) in which a deterministic version of the problem is considered.

3.5.1 Phase I

Phase I heuristically determines the block assignment. In Section 3.4 the block assignment is
allowed to be di�erent from scenario to scenario. We will disregard this in this matheuristic,
and just set one full block assignment a priori. The block assignment is determined for all ports
p ∈ P l\u. For all blocks, we want to �nd a block assignment that �t the attributes of the speci�c
block. First, we will describe how the block assignment can be determined if no bookings have
been accepted (utc = 0 for all transports and container types). Hereafter this method will be
extended to handle accepted bookings.
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3.5.1.1 No accepted containers

When no containers has been accepted, the block assignment can be determined by solving a
longest path problem in a directed acyclic graph. Figure 3.5 is an example of such a graph with
|P l\u| = 4 and |Pu| = 4. The ports in P l\u are labelled a, b, c and d, where as the ports labelled
1, 2, 3 and 4 belong to the set Pu. An edge in the graph describes an assignment of a destination
port to an origin port, and a s-t path in the graph G describes a block assignment, in which all
ports in P l\u are assigned a destination port d ∈ P. If a path uses an edge (p′, d′), port d′ will
be assigned as the destination port for port p′. At all ports p ∈ P l\u in between p′ and d′, d′ will
have to be assigned as the destination port as well.

s a b c d

1

2

3

4

t

Ports in P l\u Ports in Pu

Figure 3.5: An example graph G with |P l\u| = |Pu| = 4.

Let G be a weighted directed acyclic graph with V as the vertex set, and E the edge set. The
graph consist of a source s, and a sink node t. Beside these two nodes each port p ∈ P is
represented as a node in the graph, such that

V = {s, t} ∪ P

To de�ne the edge set, let Ebase be the set of base edges, i.e. edges that connect the sink and
source node to the rest of the graph.

Ebase = (s, p0) ∪ {(i, t)|i ∈ Pu}

Where p0 is the �rst port in the service (a in Figure 3.5). De�ne δ+(i) as the set of ports visited
after port i in the service. With this de�ne the full set of edges as

E = Ebase ∪ {(i, j)|i ∈ P l\u, j ∈ δ+(i)}

The initial con�guration implies a partial block assignment for some blocks, which will need to be
satis�ed when generating the full block assignment. We control this by setting the edge weight,
such that the longest path in the graph ensures that the partial block assignment is ful�lled. If
for a block b and port p0 there exists a destination d ∈ P such that Ωd

bp0
= 1, then the destination

at the �rst port is imposed by the initial con�guration of the vessel. In that case, we want to
make sure that port d is assigned as the destination for all ports p visited before port d. Thus we
want to ensure that the longest path in the graph G contains the edge (p0, d). This also excludes
a set of edges we know cannot be used. The set of invalid edges for a block b is denoted as EI(b),
and de�ned as follows.

EI(b) = {(i, j) ∈ E, d ∈ P | i < d, j ∈ δ+(i),Ωd
bp0

= 1} \ (p0, d)
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To ensure the set of invalid edges cannot be part of the longest path we set the weight for all
these edges to −M

wij = −M ∀(i, j) ∈ EI(b)

For all valid, non-base edges ((i, j) ∈ E \ {Ebase ∪ EI(b)}) the weight represent the maximum
revenue that can be transported along this edge. The calculation considers the blocks TEU
capacity, reefer capacity as well as the demand. Algorithm 2 describe how this is calculated.

Algorithm 2 Calculate wij

Input: G, D, F , S, b
1: EI(b)← makeInvalidEdges(G,S, b)
2: for all (i, j) ∈ E \ {Ebase ∪ EI(b)} do
3: wij ← 0
4: ∆τ ← max

(
k20
b , k

TEU
b

)
5: ∆τr ← max

(
rSlot
b , 2rCell

b

)
6: Tij = {t ∈ T |ot ≥ i ∧ dt = j}
7: K ← All tuples 〈t, c, f tc〉 where t ∈ Tij , c ∈ C, and f tc being the value of container type c ∈ C of transport

t ∈ Tij .
8: K ← Sort the set K after descending order of f tc.
9: for all 〈t, c, f tc〉 ∈ K do

10: if c ∈ R then

11: capacity ← min(∆τ, ∆τr)
12: else

13: capacity ← ∆τ
14: end if

15: load ← min
(
dtc,

⌊
capacity

Γc

⌋)
16: wij ← wij + f tcload
17: ∆τ ← ∆τ − Γcload
18: if c ∈ R then

19: ∆τr ← ∆τr − Γcload
20: end if

21: end for

22: end for

23: wij = 0 ∀(i, j) ∈ Ebase

24: wij = −M ∀(i, j) ∈ EI(b)
25: return W

The input for Algorithm 2 is the following: The graph G, average demand- and value matrix D
and F , the initial con�guration S and the block b. The algorithm returns the edge weight matrix
W to be used when calculating the block assignment for the given block. Line 1 makes the set
of invalid edges, and lines 2-22 calculate the edge weight for all valid, non-base edges. Lines 3-5
initialize the weight and the remaining TEU (∆τ) and remaining reefer capacity (∆τ r). The
remaining capacities are initialised using the block capacities de�ned in Section 3.A. In line 6,
the set Tij is created. This set consists of the transports that can have cargo transported by the
block if the considered edge is part of the longest path. The set K is a tuple with all the relevant
transports and container types together with the value. We want to assign the most pro�table
containers �rst, and therefore the set K is sorted according to descending order of f tc in line 8.
In lines 9-21 elements from the set K are processed in order. Lines 10-14 calculate the capacity of
the speci�c type depending on if it is a reefer or not. In line 15 we determine the actual number
of containers of the considered type we can assign. Here we consider the demand (dtc) as well as
the capacity. We divide the capacity by the TEU coe�cient (Γc), to have the actual number of
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containers. Line 16 updates the edge weight and lines 17-20 update the remaining TEU capacity,
∆τ , and the remaining reefer capacity ∆τ r. Lastly lines 23 and 24 respectively set the weight
for the base and invalid edges.

The edge weights are set in such a way that the longest path in the graph corresponds to a block
assignment where the structure of the demand is taken into account as well as the attributes of
the speci�c blocks. The idea here is similar to what Christensen and Pacino (2017) proposed
for the deterministic version of the cargo-mix problem. In Christensen and Pacino (2017) a full
service is considered, and therefore the graph structure is di�erent. Results showed that this
outperformed a random method.

The longest path problem is solved for each block. The assigned cargo is then subtracted from
the demand matrix to account for the cargo the generated schedule can carry. The edge weight
calculations are based on the demand, and thus the edge weights are updated from block to
block. Therefore, the longest path di�ers from block to block.

The graph G is a directed acyclic graph, and the longest path problem can be solved e�ciently
by topologically sorting the vertices and using a slightly modi�ed version of Dijkstra's algorithm,
such that the longest path is found instead of the shortest.

3.5.1.2 Including accepted bookings

The previously described procedure does not ensure that there is enough capacity assigned a
transport t′ to load the cargo that has been accepted for that transport. Assume some cargo has

been accepted for the transport t′ (i.e.
∑

c∈C
ut
′c > 0), then there must exists at least one block

where port dt
′
is assigned as the discharge port for port ot

′
. If this is not the case, the accepted

cargo cannot be loaded, making it impossible to keep the promise to the customer.

Aside from the capacity considerations, the stability of the vessel will also need to be taken
into account when ensuring the accepted cargo can be loaded. With accepted cargo assigned to
blocks, it needs to be possible to load the rest of the ship in a way that makes the vessel stable,
and the overall problem feasible.

Thus, before making the full block assignment (using the graph-based method), we want to
partially �x the block assignment ensuring the accepted cargo can be transported. We want to
do this alongside minimising the capacity usage the partially �xed block assignment takes up.
The partially �xed block assignment can be satis�ed in the graph-based method, by extending
the set of invalid edges (EI(b)).

The problem is formulated as mixed integer programming problem. First let the variable ytcb ∈ R+

be the number of containers of type c ∈ C of transport t ∈ T to be stowed in block b ∈ B. This is
similar to the variable ytcbs (from Section 3.4) but without the scenario index. Similar, de�ne wbp
as the weight stowed in block b ∈ B at port p ∈ P l\u. The main decision variable is σdbp de�ning
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the block assignment

σdbp =

{
1 If block b ∈ B is assigned destination d ∈ P at port p ∈ P l\u
0 Otherwise.

Along with the sets and parameters de�ned in Section 3.4, de�ne T (d) as the set of transports
with d as destination, for which containers has been accepted.

T (d) =

{
t ∈ T |dt = d,

∑

c∈C
utc > 0

}

and de�ne st(d) as the �rst port for which containers destined to d has been accepted

st(d) = min
t∈T (d)

(ot)

With this, the problem can be formulated as follows

Min
∑

d∈P\p0

∑

b∈B
kTEUb σdbd−1 (3.14)

Subject to:

∑

d∈P
σdbp ≤ 1 ∀b ∈ B, p ∈ P l\u (3.15)

σd
t

bp ≥ σd
t

bot ∀b ∈ B, t ∈ T ,
ot ≤ p < min(|P l\u|, dt) (3.16)

σdbp ≥ Ωd
bp ∀b ∈ B, p ∈ P l\u, d ∈ P (3.17)

w ∈ W (3.18)
∑

t∈T ON
p

∑

c∈C
vcytcb ≤ wbp −

∑

c∈C
vcθtcb ∀b ∈ B, p ∈ P l\u (3.19)

∑

b∈B
ytcb ≤ max

(
min
n∈N

(atcn ), utc
)

∀t ∈ T , c ∈ C (3.20)

∑

b∈B
ytcb ≥ utc ∀t ∈ T , c ∈ C (3.21)

∑

t∈T (d)

∑

c∈C
vcytcb ≤

(
qb −

∑

c∈C
vcθcbst(d)

)
σdbst(d) ∀d ∈ P, b ∈ B (3.22)

∑

t∈T (d)

∑

c∈C20

ytcb ≤


k20

b −
∑

c∈C20

θcbst(d)


σdbst(d) ∀d ∈ P, b ∈ B (3.23)

∑

t∈T (d)

∑

c∈C
Γcytcb ≤

(
kTEUb −

∑

c∈C
Γcθcbst(d)

)
σdbst(d) ∀d ∈ P, b ∈ B (3.24)

∑

t∈T (d)

∑

c∈R20

ytcb ≤


rSlotb −

∑

c∈R20

θcbst(d)


σdbst(d) ∀d ∈ P, b ∈ B (3.25)
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∑

t∈T (d)

∑

c∈R

1
2Γcytcb ≤

(
rCellb −

∑

c∈C

1
2Γcθcbst(d)

)
σdbst(d) ∀d ∈ P, b ∈ B (3.26)

∑

t∈T (d)

∑

c∈C
Φcytcb ≤

(
hb −

∑

c∈C
Φcθcbst(d)

)
σdbst(d) ∀d ∈ P, b ∈ B (3.27)

0 ≤ wbp ≤ qb ∀b ∈ B, p ∈ P l\u (3.28)

ytcbs ∈ R+ ∀b ∈ B, t ∈ T , c ∈ C (3.29)

σdbp ∈ {0, 1} ∀b ∈ B, p ∈ P l\u, d ∈ P (3.30)

The objective function (3.14) minimises the TEU capacity occupied by the partial block as-
signment. Here we consider σdbd−1 instead of σdbp to only account for the capacity once for a
destination. Constraints (3.15) - (3.17) de�ne what should be satis�ed for the block assignment,
i.e at most one destination can be assigned a port (3.15), if d is chosen as the destination at port
o, then all ports between o and d must have d as discharge port (3.16), and lastly constraint
(3.17) ensures that the block assignment follows that imposed by the initial con�guration. Con-
straints (3.18)-(3.27) ensure that the partially �xed block assignment results in an overall feasible
problem. Constraints (3.18)-(3.19) ensure the stability of the vessel similar to how it is described
in Section 3.4. In (3.20) we consider the number of containers available in the most conservative
scenario, ensuring that the vessel will be stable in every scenario. Constraint (3.21) ensures that
all the accepted cargo is assigned to a block on the vessel. Constraints (3.22)-(3.27) are capacity
constraints, ensuring enough blocks are allocated to the transports for which we have accepted
containers. These are reformulated capacity constraints, respectively the weight capacity, 20-
foot capacity, TEU capacity, reefer slot capacity, reefer cell capacity and volume capacity (see
Section 3.A for a description of the standard capacity constraints). The left-hand side of these
constraints is the capacity usage of containers with a speci�c destination loaded in the consid-
ered block, and the right-hand side is the capacity. Here the capacity is the original capacity
minus the capacity used by the initially loaded containers in that block. For a speci�c block and
container type, the parameter θcbp is non-increasing as p increases. Therefore we consider the
port st(d) when calculating the capacity used by the initially loaded containers, as this ensures
there is enough capacity during the full journey.

In the above model, only containers from transports with accepted cargo must obey the block
stowage requirement. Additionally, containers from transports with no accepted cargo are not
accounted for, in the capacity constraints. This is intentional and helps to simplify the model.
The main decision variables in the model are the block stowage variables, and the capacity
constraints should only enforce we have enough capacity for the accepted cargo. We assume that
if this model is feasible, then we can achieve a similar weight distribution from loading cargo
satisfying the block stowage constraint and capacity constraints.

From the solution, we extract the partial block assignment which is used to make edges invalid
in the graph-based method. Let Λ(b) describe the partial block assignment for the block b.

Λ(b) = {〈p, d〉 ∈ P i\u × P|d ∈ P, t ∈ T (d), p = ot, σdbp = 1} ∀b ∈ B

Here 〈p, d〉 describes an assignment of d as discharge port for port p. From this we add the
following set of edges to the set of invalid edges

{(i, j) ∈ E|i < p, p > j, j 6= d} ∀b ∈ B, 〈p, d〉 ∈ Λ(b) (3.31)
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{(i, j) ∈ E|i = p, j 6= d} ∀b ∈ B, 〈p, d〉 ∈ Λ(b) (3.32)

Consider a block b, and a block assignment 〈p, d〉, eq. (3.31) makes the edges originating at a
port before p and terminating at a port after p invalid, except the edges terminating at port d.
This ensures that either d is chosen as discharge port for port p, or the block is emptied at port
p, making sure we can assign a new discharge port. If the block is emptied at port p, eq. (3.32)
ensures port d is chosen as the discharge port, as it makes all other edges originating at p invalid.

3.5.2 Phase II

In Phase II the block assignment is �xed. Let σ̂dbp be the block assignment found in Phase I, this

is treated as an input parameter in the model, and will replace the σdbn variables. Note that σ̂dbp
does not depend on the node, but only on the port, as discussed in Section 3.5.1. Phase II aims
at �nding a high-quality, feasible solution to the following problem.

Max (3.1) (3.33)

Subject to:

(3.2)− (3.5)

(3.9)− (3.12)

ytcbs ≤ max(adcn , u
tc)σ̂dbpn ∀n ∈ N , s ∈ S(n), b ∈ B, c ∈ C, d ∈ P, t = 〈pn, d〉 (3.34)

Where constraint (3.34) ensures that the block assignment found in Phase I is satis�ed and it is
thus equivalent to constraint (3.8). Here we only need to check if the container can be loaded in
its origin port. If this is the case, due to the construction of the block assignment, we know the
block assignment will be ensured until its destination. This is not the case with constraint (3.8),
as the block assignment is part of the decision.

By solving this model as is, we will still have the problem that the number of scenarios grows
exponentially. The problem with a large number of scenarios is two-fold; �rst, the computational
e�ort needed to solve the model will increase with the number of scenarios, second, memory
problems might occur making it intractable to even build the model. To alleviate this, we will
use a Rolling Horizon Heuristic (RHH).

The RHH solves the problem by decomposing the full problem into subproblems with shorter
planning horizons. Doing so, the uncertainty in demand is only considered for the next few ports
ahead. The solution to the subproblems is used to �x part of the solution for the full problem.
There are multiple bene�ts in only considering a shorter planning horizon, e.g. the problems
to be solved become smaller and can thus be solved more e�ciently, and the subproblems can
be solved in parallel, and thus take advantage of the power of modern computers. The main
downside is that we will have more problems to solve.

A subproblem considers a subtree (T ′) of the full scenario tree and �xes the solution for the
nodes in the subtree. Let root(T ′) ∈ N be the root of a subtree and let ρ be a parameter
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describing the number of forthcoming ports to consider the stochasticity for, i.e. the horizon.
For a subproblem, SCMPBS(T ′) the subtree T ′ contains the following set of nodes.

N (T ′) =
{
n ∈ N|stage(root(T ′)) ≤ stage(n) ≤ stage(root(T ′)) + ρ, root(T ′) ∈ path(n)

}

Where stage(n) is the stage associated with node n ∈ N . Thus in the subproblem SCMPBS(T ′)
we consider the nodes in the next ρ stages that has root(T ′) on their path. Let S(T ′) be the
scenarios considered in the problem SCMPBS(T ′). Along with the nodes N (T ′), arti�cial nodes
are considered as well. The arti�cial nodes make sure that solution does not only optimise over
the set of ports considered in T ′, but that the forthcoming ports also are taken into account. For
the arti�cial nodes, the uncertainty in demand is not considered, and the average is used as an
estimate for the demand. For all forthcoming ports not considered in T ′ (all ports p > proot(T

′)+ρ)
a single arti�cial node is added for every scenario s ∈ S(T ′). After solving the subproblem
SCMPBS(T ′) the solution is �xed for all nodes n ∈ N (T ′), and we continue with the next
subproblem.

Fixed nodes Nodes in T ′

Artificial nodes Nodes not considered

root(T ′)

Figure 3.6: An example subtree with ρ = 1.

Figure 3.6 shows an example of a subtree T ′ with ρ = 1. In Figure 3.6 the solution for the
diamond-shaped node has already been �xed by another subproblem. The solid circle nodes
make up the set N (T ′), the striped nodes are the arti�cial nodes, and the square nodes are
considered in another subproblem and are thus disregarded in the current.

The parameter ρ describes the subproblems we need to solve to get a full solution. For all the
subtrees T ′ having a root node with the stage within the set {1, 1 + (ρ+ 1), 1 + 2(ρ+ 1), . . . , 1 +
|P l\u|(ρ + 1)} a subproblem SCMPBS(T ′) will be solved. As example, if ρ = 2 and |P l\u| = 7
we need to solve a subproblem for all nodes in the following stages: 1, 4, and 7. For the rest of
the nodes, the solution is �xed in a previously solved subproblem. The subproblems are solved
in order, starting with the subproblem with the lowest stage. Figure 3.7 shows an example of
the RHH with ρ = 2. Figure 3.7a shows the scenario tree for the full problem, and Figure 3.7b
shows how this is decomposed into a set of subproblems. In Figure 3.7b the solid circle nodes
are the nodes N (T ′), the striped nodes are the arti�cial nodes, and the diamond-shaped nodes
are the nodes for which the solution already has been �xed. The numbers within the nodes are
used to identify the nodes from each other. The number in the top left corner is the subproblem
number and shows the order in which the subproblems are solved.
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(a) The full scenario tree for a problem with 5 ports to consider (|P l\u| = 5).
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(b) An example of the Rolling Horizon Heuristic with ρ = 2

Figure 3.7: Explanation of the Rolling Horizon Heuristic

The problem solved for subproblem SCMPBS(T ′) is the same as the problem (3.33)-(3.34), but on
a rede�ned set of scenarios, nodes and ports. The parameter θcbp is updated for every subproblem,
to account for the part of the problem for which the solution has already been �xed.

The parameter ρ describes a tradeo� between the complexity of the subproblems, and the number
of subproblems to solve. The higher a value of ρ, the more complex the subproblems are, a lower
value means simpler subproblems, but more will have to be solved. However, a higher value of ρ
should also imply a better solution.

With the rolling horizon heuristic, we can e�ectively handle the exponential growth in the number
of scenarios. Instead, the number of subproblems to solve will grow exponentially, but we are



3.6 Data 81

very unlikely to experience memory problems, and the RHH allows to solve the subproblems in
parallel as the subproblems for a speci�c stage are independent of each other.

3.6 Data

Most liner shipping routes re�ect the nature of an international trade, e.g. the Europe to Far
East services. Here containers are exported from the Far East and imported to Europe. Vessels
seldom docks at ports between the Suez canal, and the Singapore Strait. Due to the length of
this leg, it is the most important concerning revenue optimisation. To re�ect this, we consider 5
Europe-Far East/Far East-Europe services operated by our industry collaborator. These services
will be the basis of our data. All of the services are being considered from both directions. For
the Europe-Far East direction the ports in Europe are considered to be unloading/loading ports,
where as only unload operations are planned for the ports in the Far East, and vice versa for the
Far East-Europe direction. With this separation, we want to maximise the revenue on the most
signi�cant leg, while still considering the in-region revenue. To test how the solution method
scales with respect to the number of loading ports, several instances are made out of each of the
services. We control this by selecting di�erent ports to what we will consider being the start.
We restrict the number of loading ports to be considered to be greater than or equal to 3. The
maximum number of loading ports to consider is determined by the services and is 9. In total
82 instances has been generated.

To generate the initial con�guration of the vessel, a deterministic version of the problem is
considered. Using the method described in Christensen and Pacino (2017) a solution to the
deterministic problem is found. From the solution to the deterministic problem, 50% of the
containers loaded on the vessel when it docks at the �rst loading port is removed, and with this
imposing an initial discharge port for some blocks.

The base port-to-port demand and port drafts are based on data from LinerLib (Brouer et al.,
2014), and multiplied with a scalar to be more suitable for the SCMPBS. Successively the total
demand of each leg is decomposed into a demand for each of the speci�c container types by
using the same prede�ned probabilities as in Christensen and Pacino (2017). The revenue of a
dry 40-foot container is based on data from LinerLib, and from this, we calculate the revenue of
each container type similar as to described in Delgado (2013). In a scenario, all the demand is
multiplied with a scenario dependent scalar, such that the demand for all containers is 'high' in
a 'high' scenario.

Table 3.1 describe how the scenario trees are generated. The scenarios for a port depends on the
distance (in number of ports) from the start port. The farther away, the bigger the uncertainties
are. The second column is the number of scenarios generated for the port. The third and fourth
column describes the demand scenarios with the demand factor and the probabilities. The
numbers in the third column describe the di�erence in percentage with respect to the expected
demand.
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Table 3.1: Scenario Tree generation description

Port distance Number of scenarios Demand scenarios Probabilities

1 3 0, 2.5%, -2.5% 70%, 15%, 15%
2 3 0, 4%, -4% 60%, 20%, 20%
3 3 0, 5%, -5% 50%, 25%, 25%
4 3 0, 7.5%, -7.5% 40%, 30%, 30%
5 4 2.5%, -2.5%, 5%, -5% 35%, 35%, 15%, 15%
6 4 4%, -4%, 7.5, -7.5% 30%, 30%, 20%, 20%
7 5 0, 2.5%, -2.5%, 7.5%, -7.5% 10%, 30%, 30%, 15%, 15%
8 5 0, 5%, -5%, 10%, -10% 10%, 25%, 25%, 20%, 20%
9 5 0, 5%, -5%, 12.5%, -12.5% 10%, 22.5%, 22.5%, 22.5%, 22.5%

3.7 Computational Results

Three di�erent solutions methods have been tested and compared.

• Compact - SCMPBS Mixed Integer Programming model

The mixed integer programming model as presented in Section 3.4.

• RHH - SCMPBS Rolling Horizon Heuristic

The rolling horizon heuristic as described in Section 3.5. All the subproblems are solved
sequentially and not in parallel.

• ModelHeu- SCMPBS Mathematical modelling based heuristic

This is a version of the heuristic where the model (3.33)-(3.34) is used instead of the rolling
horizon heuristic. Phase I remains as described in Section 3.5.1.

All methods have been implemented in Java 1.8 and are tested using a 2.30 GHz Intel Xeon
E5 processor and 128 GB memory. CPLEX v. 12.7.0 is used as the mixed-integer-programming
solver. For the Compact and ModelHeu method, a time limit of 5 hours has been used. For all
methods, an optimality tolerance of 0.05% was used.

An upper bound is calculated by relaxing the non-anticipativity constraints (3.4) in the compact
model. Doing so there are no constraints linking decisions in one scenario to decisions in another
scenario. Thus the problem can be decomposed by scenario. Each scenario-decomposed problem
corresponds to a deterministic problem and can be solved independently from the rest.

Table 3.2 shows the overall results and compares the compact model with the two heuristics.
For the RHH the horizon parameter ρ is 1. The two �rst columns show the number of ports
and the number of instances in the instance class. For the three methods, #Sol is the number
of instances where a feasible solution is found, the #Opt columns show the number of instances
for which the model terminates with the optimal solution (For the ModelHeu method a solution
is optimal if it is proved to be optimal for the �xed block assignment). The x̄ columns are the
average revenue in millions of dollars, Gap is the average relative di�erence between the solution
and the calculated upper bound. Lastly t̄ is the average execution time in seconds. In the table
† means that the model terminated due to insu�cient memory.
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Table 3.2: Overall Results. Here † means that the model terminated due to insu�cient memory.

UB Compact RHH, ρ = 1 ModelHeu

|P l\u| n x̄(106$) #Sol #Opt x̄(106$) Gap t̄ #Sol x̄(106$) Gap t̄ #Sol #Opt x̄(106$) Gap t̄

3 18 15.06 18 9 13.74 11.88% 10451.6 18 14.83 1.73% 6.7 18 18 14.83 1.72% 91.1
4 17 17.89 17 3 9.85 45.38% 15888.5 17 17.64 1.50% 20.6 17 16 17.64 1.50% 4286.8
5 17 20.92 15 0 4.24 74.35% 18000.0 17 20.61 1.54% 58.4 17 4 19.99 7.34% 15375.6
6 12 23.42 0 0 † † † 12 23.10 1.61% 270.0 3 0 22.99 0.81% 18000.0
7 9 24.07 0 0 † † † 9 23.75 1.49% 463.5 0 0 † † †
8 6 23.76 0 0 † † † 6 23.41 1.77% 3278.8 0 0 † † †
9 3 20.03 0 0 † † † 3 19.64 2.46% 9239.1 0 0 † † †

Average 19.89 9.56 42.01% 14569.1 19.60 1.63% 686.2 17.74 3.34% 7089.7

With respect to the compact model, the results show what we would have expected; only the
smallest of the instances can be solved to optimality but uses considerably more time than
the two other methods. The quality of the solutions from the compact model quickly drops
when increasing the instance size, and memory problem occurs for the medium to large sized
instances. Overall, the compact method �nds the optimal solution for 12 of the instances. For
these instances, the average relative di�erence to the calculated upper bound is 0.15%. This
suggests that the upper bound method �nds upper bounds of high quality.

As it also can be seen from Table 3.2 the rolling horizon heuristic �nds high-quality solutions
within a reasonable amount of time. The solution quality is stable around 1.60% with only a
few deviations.

For the 2-phased model based heuristic (ModelHeu), we see a similar behaviour as for the compact
model; the smallest of the instances can be solved, but the largest ones become too big. Looking
at the smallest of the instances (3 and four ports) the solution quality is comparable with the
rolling horizon heuristic, but the RHH is much faster.

Table 3.3 analyses the impact of the horizon parameter ρ in the rolling horizon heuristic. Here
ρ = 0 means that no stochasticity in the demand is considered in the subproblems. Each
subproblem corresponds to a deterministic problem, which is solved to �x the solution in the
root node. The results show that the quality of the solutions is not impacted by a change in the
parameter ρ. However, the execution time is increased by incrementing ρ. Thus, the increase in
the complexity of the subproblems, outweighs the decrease in the number of subproblems that
needs to be solved.

Table 3.3: Rolling horizon heuristic results

UB RHH, ρ = 0 RHH, ρ = 1 RHH, ρ = 2

|P l\u| n x̄(106$) x̄(106$) Gap t̄ x̄(106$) Gap t̄ x̄(106$) Gap t̄

3 18 15.06 14.83 1.73% 3.0 14.83 1.73% 6.7 14.83 1.72% 65.8
4 17 17.89 17.64 1.51% 7.3 17.64 1.50% 20.6 17.64 1.50% 121.9
5 17 20.92 20.61 1.54% 21.8 20.61 1.54% 58.4 20.61 1.54% 1027.1
6 12 23.42 23.09 1.61% 75.2 23.10 1.61% 270.0 23.10 1.60% 3858.1
7 9 24.07 23.75 1.49% 260.2 23.75 1.49% 463.5 23.75 1.48% 7595.6
8 6 23.76 23.40 1.78% 1218.3 23.41 1.77% 3278.8 23.41 1.77% 10738.6
9 3 20.03 19.64 2.47% 9435.2 19.64 2.46% 9239.1 19.59 2.86% 31324.6

Average 19.89 19.60 1.63% 480.6 19.60 1.63% 686.2 19.60 1.64% 3582.7

In the rolling horizon heuristic the block assignment is �xed in Phase I, and in Phase II the
containers are stowed respecting the decisions from Phase I. Due to the splitting of the decisions,
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both phases have an impact on the �nal solution quality. Table 3.4 analyses the two phases of
the rolling horizon heuristic with respect to the solution quality. The table aims to explain how
the �nal gap is split between the two phases. The UB columns is for the upper bound, and RHH
is for the Rolling Horizon Heuristic. For the upper bound, x̄ is an overall upper bound, and
x̄II is an upper bound given the �xed block assignment. The RHH result and x̄II bound are
based on the same block assignment, and thus x̄II is a bound on the solution found in Phase II
of the RHH. After �xing the block assignment, the x̄II bound is calculated by decomposing the
problem similarly as done when calculating the x̄ bound as previously described. For the RHH,
the �rst column is the value of the average solution. The next two columns are the gap to the
two di�erent upper bounds, and the last columns are the average time spent in the two phases.

Table 3.4: Rolling horizon heuristic Phase I and II Results

UB RHH, ρ = 1

|P l\u| n x̄(106$) x̄II(106$) x̄(106$) Gap GapII t̄I t̄II

3 18 15.06 14.83 14.83 1.73% 0.01% 0.6 6.1
4 17 17.89 17.64 17.64 1.51% 0.02% 0.7 19.9
5 17 20.92 20.62 20.61 1.54% 0.04% 1.4 56.9
6 12 23.42 23.10 23.09 1.61% 0.04% 1.3 268.8
7 9 24.07 23.76 23.75 1.49% 0.05% 1.5 462.0
8 6 23.76 23.41 23.40 1.78% 0.05% 2.0 3276.8
9 3 20.03 19.67 19.64 2.47% 0.18% 3.4 9235.6

Average 19.89 19.61 19.60 1.63% 0.04% 1.2 685.0

As also shown in Table 3.2 and Table 3.3, Table 3.4 shows that the average gap for the RHH is
1.63%. When comparing with the upper bound for the problem with the �xed block assignment,
the average gap is only 0.04%, meaning a major part of the 1.63% of the overall gap stems from
the solution to Phase I. Looking at the average time spent for each of the phases, we can see that
Phase II is the most computational expensive phase, and the model for the accepted bookings
in Phase I can easily be solved.

3.8 Conclusion

In this paper, the Stochastic Cargo Mix Problem is studied. The problem aims to �nd the cargo
composition needed for a vessel to maximise its revenue on a given service. A solver for this
problem can be a valuable analysis tool for the industry and can be used to perform various
kinds of what-if analysis. For this sort of analysis, a fast solver is needed.

The results show that the mathematical model can only solve the smallest of the considered
instances. Instead, a rolling horizon based matheuristic is developed. The matheuristic is shown
to �nd high-quality solutions and ful�lling the need for a quick response time. Moreover, the
matheuristic is scalable and can solve industrial size instances. The matheuristic is based on
mathematical modelling techniques, and it is thus simple to add additional constraints, or remove
existing constraints, making it easy to perform various what-if analysis.

The presented solution method is a two-phased matheuristic, and in the computational study, we
experimentally prove that any improvement of the results should come from improving Phase I.
Thus an idea for further research is to improve the way the block assignment is computed in Phase
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I e.g. by making the block assignment scenario dependent. Phase II is the most computationally
expensive part of the method. However, the subproblems solved in Phase II can be solved in
parallel, and the execution of the method can thus be sped up by utilising this.

Furthermore, we plan to study how this work can be combined with other essential problems
in the liner shipping industry, for example, cargo �ow optimisation, service network design or
empty re-positioning.
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3.A Capacity Constraints

To model the capacity constraints, we must introduce additional sets. First let R ⊂ C be the set
of reefer containers, additional let C20 ⊂ C be the set of containers with length 20 feet. The sets
and additional parameters are summarised below.

Sets:

C20 ⊂ C Set of container types with length 20 feet.

R ⊂ C Set of reefer container types

R20 ⊂ R Set of reefer container types, with length 20 feet

T ONp Set of transports that visits port p ∈ P

Parameters:

θcbp ∈ N Number of containers of type c ∈ C initially loaded that still occypy

block b ∈ B at port p ∈ P
kTEUb ∈ N Teu capacity for block b ∈ B
k20
b ∈ N Capacity for 20' containers for block b ∈ B
rCellb ∈ N Reefer cell capacity of block b ∈ B
rSlotb ∈ N Reefer slot capacity of block b ∈ B
Γc ∈ {1, 2} TEU coe�cient of container type c ∈ C
hb ∈ R+ Volume capacity for block b ∈ B
Φc ∈ R+ Volume coe�cient of container type c ∈ C

∑

t∈T ON
p

∑

c∈C20

ytcb ≤ k20
b −

∑

c∈C20

θcbp ∀b ∈ B, p ∈ P l\u (3.35)
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∑

t∈T ON
p

∑

c∈C
Γcytcb ≤ kTEUb −

∑

c∈C
Γcθcbp ∀b ∈ B, p ∈ P l\u (3.36)

∑

t∈T ON
p

∑

c∈R20

ytcb ≤ rSlotb −
∑

c∈R20

θcbp ∀b ∈ B, p ∈ P l\u (3.37)

∑

t∈T ON
p

∑

c∈R

1
2Γcytcb ≤ rCellb −

∑

c∈R

1
2Γcθcbp ∀b ∈ B, p ∈ P l\u (3.38)

∑

t∈T ON
p

∑

c∈C
Φcytcb ≤ hb −

∑

c∈C
Φcθcbp ∀b ∈ B, p ∈ P l\u (3.39)

Equations (3.35)-(3.39) are the block capacity constraints. For each block of the vessel, we
distinguish between a TEU and a 20-foot capacity. This is due to the layout of the vessel since
not all the blocks can stow 20-foot containers. In most of the cases k20

b is, however, equal to
kTEUb . Constraints (3.35) and (3.36) ensure that both of these capacities are satis�ed. Similar to
the TEU capacity constraints, the reefer constraints are split into a slot capacity constraint and a
cell capacity constraint. Each reefer container needs to be plugged into an electrical output to get
power for the cooling unit and rSlotb describes the number of such slots in a block b. A reefer cell
is a cell where one of the slots has a reefer plug, and this number is denoted by rCellb , if both slots
in a reefer cell have a reefer plug, then rSlotb = 2rCellb . In more general terms rCellb ≤ rSlotb ≤ 2rCellb

will be satis�ed for all blocks. Constraint (3.37) restricts the number of reefer slots that can be
used, and (3.38) is the reefer cell capacity constraint. Here we multiply with 1

2Γc as a 40-foot
container occupies a full cell, whereas a 20-foot container occupies half a cell, and due to (3.37)
the slot capacity will be satis�ed. Constraint (3.39) limits the total volume of the containers in
a block. This is needed to account for the fact that high-cube containers are higher and thus use
more than a simple TEU capacity.

The set of constraints (3.35)-(3.39) de�nes a polyhedron with the feasible stowage plans. For the
variables in the vector ys, this polyhedron is denoted by Y in the model in Section 3.4.

3.B Stability Constraints1

The stability constraints ensure that the vessel does not capsize or break, even in tough weather
conditions. The constraints here uses similar notation as the one introduced in Delgado (2013),
and the interested reader is invited to look at the source for a more elaborate description.

The main di�erence between the set of constraints presented below and (6.25) - (6.43) of Delgado
(2013), is the draft. Delgado (2013) does not consider draft limit for each port, thus making it
possible for the vessel to have a greater displacement. The introduction of the LinerLib (Brouer
et al., 2014) makes this data easily available, and the draft limit is therefore included in this
work. Also, Delgado considers locations, where this work considers blocks.

The functions describing the metacentre, trim, draft and buoyancy force all depends non-linearly
on the displacement. However, Delgado (2013) shows that these functions can be approximated

1The stability constraints and explanation thereof in this section is identical to Appendix A of Christensen
and Pacino (2017) and is only included here for the reader's convenience
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by linear planes by splitting the full displacement range into displacement intervals. A displace-
ment interval is thus de�ned as a minimum, maximum (W−i and W+

i ) and an average (Wi)
weight for the interval.

The sets, variables and parameters used in the model are introduced and explained below.

Sets:

P Set of ports.

T Set of ballast tanks.

B Set of blocks.

I Set of displacement intervals.

BS Set of bonjean stations.

F Set of frames.

Decision Variables:

wbp ∈ R+ Weight stowed in block b ∈ B at port p ∈ P.
xtp ∈ R+ Weight of the tank t ∈ T at port p ∈ P.

Auxiliary Variables:

vWp ∈ R+ Vessel Displacement at port p ∈ P.
vWip ∈ R+ Vessel Displacement in interval i ∈ I at port p ∈ P.
vLip ∈ R Longitudinal centre of gravity at displacement interval i ∈ I at port p ∈ P.
ψip ∈ {0, 1} Indicator variable for displacement interval i ∈ I at port p ∈ P.
vVp ∈ R+ Vertical centre of gravity at port p ∈ P.
vVMp ∈ R+ Vertical moment at port p ∈ P.
vMp ∈ R+ Metacentre at port p ∈ P.
vBsbsp ∈ R+ Buoyancy force of section between bonjean station bs and bs+ 1 at port p.

vSfαp ∈ R+ Shear force fore or aft of frame f ∈ F at port p ∈ P.
vBfαp ∈ R+ Bending moment fore or aft of frame f ∈ F at port p ∈ P.

Parameters:

Various parameters:

WO Weight of the empty vessel.

MinGM Lower bound for metacentric height

MaxDp Maximum draft allowed at port p
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Displacement intervals parameters:

W
{−,+}
i Lower (-) and upper (+) bound of displacement interval i ∈ I

Wi Average weight of displacement interval i ∈ I
AW{M,T,D,Bs}(Wi) Weight coe�cient of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), draft (D), and bonjean at station bs (Bs).

AL{M,T,Bs}(Wi) Lcg coe�cient of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), and bonjean at station bs (Bs).

A{M,T,D,Bs}(Wi) Constant of displacement interval i ∈ I for the linearization of

metacentre (M), trim (T ), draft (D), and bonjean at station bs (Bs).

Centre of gravity parameters:

MinLi /MaxLi Min/maximum longitudinal centre of gravity at displacement interval i ∈ I
D
{L,V }
b Longitudinal (L), and Vertical (V ) centre of gravity of block b ∈ B

D
{L,V,T}
t Longitudinal (L), Vertical (V ), and transversal (T ) centre of gravity

of ballast tank t ∈ T
MaxV Maximum vertical moment possible for the vessel.

LMO Longitudinal moment of the empty vessel including constant weights.

VMO Vertical moment of the empty vessel including constant weights.

TMO Transversal moment of the empty vessel including constant weights.

Bending/Shearing parameters:

WS
fα Constant weights fore or aft of frame f ∈ F

Gα{b,t,bs}f Fraction of block b, ballast tank t, and buoyancy section between bonjean

stations bs and bs+ 1 that lies fore or aft frame f

WB
fα Bending components of the constant weight fore or aft of frame f ∈ F

DBs
b Distance in meters between bonjean stations bs and bs+ 1

multiplied by the density of water

Aα{b, t, bs}f Fore or aft distance from frame f to the longitudinal centre of gravity of

block b, ballast tank t, buoyancy section between bonjean stations bs and bs+ 1

Gf Fore-based fraction of frame f ∈ F , where Gf ∈ [0; 1]. Gf = 1 when f is

is the �rst frame at the bow, and Gf = 0 when f is the �rst frame at the stern.

Min
{S,B}
f Lower bound for shear force (S) and bending moment (B) at frame f ∈ F

Max
{S,B}
f Upper bound for shear force (S) and bending moment (B) at frame f ∈ F

With these the stability constraints can be modelled as seen below.

∑

t∈T
xtp +

∑

b∈B
wbp +WO = vWp ∀p ∈ P (3.40)
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∑

i∈I
W−i ψip ≤ vWp ≤

∑

i∈I
W+
i ψip ∀p ∈ P (3.41)

∑

i∈I
ψip = 1 ∀p ∈ P (3.42)

∑

i∈I
vWip = vWp ∀p ∈ P (3.43)

W−i ψip ≤ vWip ≤W+
i ψip ∀i ∈ I, p ∈ P (3.44)

MinLi ψip ≤ vLip ≤ MaxLi ψip ∀i ∈ I, p ∈ P (3.45)
∑

b∈B
DL
b wbp +

∑

t∈T
DL
t xtp + LMO =

∑

i∈I
Wiv

L
ip ∀p ∈ P (3.46)

vVp Wi + (1− ψip)MaxV ≥ vVMp ∀i ∈ I, p ∈ P (3.47)

vVp Wi − (1− ψip)MaxV ≤ vVMp ∀i ∈ I, p ∈ P (3.48)
∑

b∈B
DV
b wbp +

∑

t∈T
DV
t xtp + VMO = vVMp ∀p ∈ P (3.49)

∑

t∈T
DT
t xtp + TMO = 0 ∀p ∈ P (3.50)

∑

i∈I
AWM (Wi)v

W
ip +ALM (Wi)v

L
ip +AM (Wi)ψip = vMp ∀p ∈ P (3.51)

vMp − vVp ≥ MinGM ∀p ∈ P (3.52)
∑

i∈I
AWT (Wi)v

W
ip +ALT (Wi)v

L
ip +AT (Wi)ψip = 0 ∀p ∈ P (3.53)

∑

i∈I
AWD (Wi)v

W
ip +AD(Wi)ψip ≤ MaxDp ∀p ∈ P (3.54)

∑

s∈{bs,bs+1}

∑

i∈I
AWBs(Wi)v

W
ip +ALBs(Wi)v

L
ip +ABs(Wi)ψip = 2DBs

d vBsbsp ∀bs ∈ BS, p ∈ P (3.55)

WS
fα +

∑

b∈B
Gαbfwbp +

∑

t∈T
Gαtfxtp −

∑

bs∈BS
Gαbsfv

Bs
bsp = vSfαp ∀f ∈ F , α ∈ {A,F},

p ∈ P (3.56)

WB
fα +

∑

b∈B
AαbfG

α
bfwbp +

∑

t∈T
AαtfG

α
tfxtp −

∑

bs∈BS
AαbsfG

α
bsfv

B
bsp = vBfαp ∀f ∈ F , α ∈ {A,F},

p ∈ P (3.57)

MinSf ≤ GfvSf,Fore,p + (1−Gf )vSf,Aft,p ≤ MaxSf ∀f ∈ F , p ∈ P (3.58)

MinBf ≤ GfvBf,Fore,p + (1−Gf )vBf,Aft,p ≤ MaxBf ∀f ∈ F , p ∈ P (3.59)

Constraint (3.40) calculates the displacement of the vessel for every port. The next constraint,
(3.41), sets the displacement interval variables together with (3.42) which ensures that exactly
one displacement interval is active at each port. Constraint (3.43) and (3.44) de�nes vWip to be
equal to the displacement for the active displacement interval, and 0 for the rest. In a similar
fashion (3.45) and (3.46) calculates the longitudinal centre of gravity (LCG). The centre of
gravity is calculated as the sum of moments divided by the total displacement. The left-hand
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side of (3.46) calculates the sum of moments. This is done by considering the longitudinal centre
of gravity for the tanks and blocks and multiplying with the weight stowed in these. The right-
hand side uses the average weight of the displacement interval, instead of the actual displacement.
Similar with vWip vLip is zero for the displacement intervals for which ψi = 0 and for the active
displacement interval it lies within the bounds de�ned by constraint (3.45). Constraint (3.47)-
(3.49) approximates the vertical centre of gravity (VCG). Constraint (3.47) and (3.48) de�nes
bound for the vertical moment for each displacement interval, and in the case when ψi = 1 the
two inequalities turn into an equality vVp Wi = vVMp . For the non-active displacement intervals,
these two constraints have no e�ect. Constraint (3.49) calculates the vertical moment similar to
how the LCG is calculated, but without multiplying the right-hand side with the weight. (3.50)
ensures that the transversal centre of gravity is 0, meaning the middle of the vessel. Due to
the construction of the blocks, the transversal centre of gravity is 0 for all blocks, and thus only
the tanks and the moment of the empty vessel are considered in the calculation. Constraint
(3.51)-(3.55) calculates the metacentre, trim, draft and buoyancy force using the linearization of
the non-linear functions. Each of the planes for the functions is described using three factors,
AW (Wi), A

L(Wi) and A(Wi). A
W (Wi) is the displacement factor, A

L(Wi) is the LCG factor, and
A(Wi) is the constant factor. (3.51) calculates the metacentre, and (3.52) de�nes the metacentric
height to be greater than the minimum metacentric height allowed. In (3.53) the trim is required
to be zero, and (3.54) enforces the draft be less than or equal to MaxDp . As the trim is required to

be zero, the draft does not depend on the LCG, but only the displacement of the vessel. MaxDp
is the minimum draft allowed when leaving port p, and will thus be the minimum of the draft at
port p and port p+ 1. Constraint (3.55) calculates the buoyancy force (bonjean) between station
bs and bs + 1. The last four constraints (3.56)-(3.59) are related to the stress forces. The �rst
two calculates the shearing and bending, and (3.58)-(3.59) de�nes the upper and lower bounds.
The shear force on a vessel, at a given frame, is the integral of forces on either side of the frame,
and the bending moment is the integral of moments on either side of the frame. The buoyancy
forces are only approximated, and thus there is an accumulation of error when calculating the
shear force and the bending moment. To reduce the impact of this error, constraint (3.56) and
(3.57) respectively calculates the shear forces and bending moment with respect to the resulting
forces acting fore and aft of the frame. Hence there are two shear variables for every frame
at each port. Constraint (3.58) and (3.59) respectively sets the limits for the shear force and
bending moment at each frame. The shear force and bending moment at a frame are estimated
as a proportional calculation based on the position of the frame. This reduces the impact of
the error accumulation as the fore-based computation is accurate in the bow and the aft-based
computation is accurate in the stern. All these constraints ensure that the vessel is stable and
can be declared seaworthy if the stacking rules are obeyed.

The set of constraints (3.40)-(3.59) de�nes a polyhedron with the feasible weight allocations. For
the variables in the vector ws, This polyhedron is denoted by W in the model in Section 3.4.
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Abstract: This paper presents the �exible containership loading problem for seaport
container terminals. The integrated management of loading operations, planning of the
equipment to use and their scheduling is what we de�ne as the Flexible Ship Loading
Problem (FSLP). The �exibility comes from a cooperative agreement between the terminal
operator and the liner shipping company, specifying that the terminal has the right to decide
which speci�c container to load for each slot obeying the class-based stowage plan received
from the liner. We formulate a mathematical model for the problem. Then we present
various modelling enhancements and a mathematical model to obtain strong lower bounds.
We also propose a heuristic algorithm to solve the problem. It is shown that enhancements
improve the performance of formulation signi�cantly, and the heuristic e�ciently generates
high-quality solutions. Results also point out that substantial cost savings can be achieved
by integrating the ship loading operations.

Keywords: Maritime logistic · Terminal operations · Ship Loading problem · GRASP
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4.1 Introduction

Maritime freight transport constitutes an important part of the global logistics systems. Bene�t-
ing from rapid globalization, the containerized freight transport has been steadily growing over
the past decade apart from the year 2009 with global �nancial crisis. The leading 100 container
terminals have handled 539.2 million Twenty Equivalent Units (TEUs) in 2015 (UNCTAD (2015))
with an increase by 6.8% from 2014. Therefore, the increasing container handling volumes make
operations planning a more complex and signi�cant challenge for container terminals.

Liner shipping companies have adapted to the growth in the transport volumes by increasing
the capacity of their services. This is done by deploying larger vessels of over 20.000 TEUs and
planning more frequent visits to the containers terminals. Capacity is, however, not enough.
A reliable shipping service requires the cargoes to arrive on time, so container terminals are
required to supply reliable and agile operations for their customers. The increase in vessels size
intensi�es the pressure on the container terminals. Meanwhile, shipping companies also expect
terminals to minimize the vessel turnaround (handling) times.

Vessel turnaround times might be reduced by deploying more Quay Cranes (QCs) and Transfer
Vehicles (TVs) on each vessel, however, this does not guarantee an improvement in the service
quality. There is a limited number of equipment that can be assigned to a vessel. Also, ine�-
cient management of this equipment can bring more congestion and deterioration in the overall
performance. Considering that QCs and TVs are limited resources with high operating costs,
terminals should rather optimise the use of these resources.

We refer readers to the literature reviews on decision problems in seaside operations (Carlo et al.
(2013), Bierwirth and Meisel (2015)), transport operations (Steenken et al. (2004), Carlo et al.
(2014b)) and yard operations (Li and Vairaktarakis (2004), Carlo et al. (2014a)) in terminals.
Literature reviews such as Kim and Lee (2015) note that there is a need for �exibility in oper-
ations, and possible collaboration with the liner shipping company can bring some �exibility in
the ship loading related operations.

The e�cient loading of containers to the vessel has become a more complicated problem due to the
increase in vessel size, vessel numbers and complex technicalities. The high degree of industrial
requirements (e.g. lashing patterns, vessel stress forces and sta� working hour regulations)
along with all other mentioned challenges, make e�cient ship loading an even more complicated
problem. It also often happens that some of the containers are ready to be loaded earlier but have
to wait since they would be out of the planned load sequence. Due to the mentioned complexities
and limited handling equipment, most attempts at improving the loading operations should be
based on optimisation methods.

Some liner shipping companies are aware of the challenges that container terminals face, and
have actively started to adapt their stowage plans to be more terminal friendly. A stowage plan
describes the arrangement of containers on the vessel. In recent years, there has been a shift in
the stowage planning policy which is based on an increasing collaboration between the terminal
and the liner shipper. The liner provides the terminal with the stowage plan based on container
classes (a container class is de�ned by the port of discharge, physical container dimensions,
weight, etc.) which we refer to as class-based stowage plan. The terminal has the �exibility of
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determining the position of speci�c containers of the same class obeying the class-based stowage
plan (Monaco et al. (2014)). In this study, we integrate the assignment and scheduling of transfer
vehicles and container load sequencing with the assignment of speci�c containers to the vessel
positions. We call the entire problem the FSLP. We aim at reducing service times of the handling
equipment and meeting the deadlines on the �nishing time of the loading.

The contribution of the study is multi-fold. First, we introduce a new integrated container ter-
minal problem to improve the e�ciency of the loading operations. We formulate a mathematical
model to solve the problem and some enhancements to improve this formulation. Then we sug-
gest a model to obtain lower bounds for the problem. We also propose a heuristic method to
solve it. Computational results show that the enhancements on the model signi�cantly improve
its performance, but still, the mathematical model is intractable for large scale instances. The
results for the heuristic show that it outperforms the mathematical model both in respect to
solution quality and computation time. We also show that there are signi�cant cost savings by
integrating these problems rather than solving them in a hierarchical manner.

The remainder of the paper is organized as follows. Section 4.2 brie�y presents relevant literature.
Section 4.3 includes the problem de�nition. Section 4.4 provides the mathematical model and
enhancements on this formulation, while Section 4.5 presents a new method to obtain lower
bounds. The heuristic is detailed in Section 4.6. The results are discussed in Section 4.7 and
�nally, the conclusions and future research perspectives are presented in the last section.

4.2 Relevant literature

The problem studied in this paper is related to the ship loading operations, and it covers aspects
such as stowage planning, load sequencing, and handling equipment routing and scheduling. A
detailed literature review on all of these components can be found in Iris and Pacino (2015).

The stowage planning problem has been addressed in two di�erent ways in the literature. There
are papers that aim at minimizing handling costs ensuring stability and seaworthiness of a ship
in its route containing multiple ports. These studies agree that the problem belongs to the liner
shipping company (see Pacino et al. (2011), Parreno et al. (2016)). There are also papers that
study a variant of the problem at a single container terminal. We �rst review these studies in the
second category. Imai et al. (2002) is one of the �rst papers that addresses the stowage planning
at a single terminal with the aim of minimizing yard re-handles and the stability measure GM (i.e.
the distance between the center of gravity and the metacenter). Later, Imai et al. (2006) include
trim and healing to the objective function, and they also extend the problem by covering multiple
rows in the yard. In Ambrosino and Sciomachen (2003), a stowage planning problem is solved in
the �rst stage, then two yard-handling strategies are evaluated with the suggested stowage plan.
Vessel stability is re�ected by balancing the front-back and right-left side of the ship (the details
of the stowage planning problem are in Ambrosino et al. (2004)). None of these studies considers
the planning of the yard equipment that transfer containers to the ship, and the sequencing of
the loading. Steenken et al. (2001) solve the stowage planing problem for a single terminal, and
they integrate the problem with the assignment and scheduling of the Straddle Carriers (SCs)
for the loading operations. The authors approach to the problem with a just-in-time method,
they solve a model that assigns each container to a speci�c position and a speci�c SC. The
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model is resolved when enough containers accumulate in the yard. Recently, Monaco et al.
(2014) distinguish between the stowage planning problem solved by the liner shipping company
(resulting in a class-based stowage plan) and the speci�c container assignment problem of the
terminal (called operational stowage planning problem). They solely consider the operational
stowage planning problem, and solve it through a two-phase tabu search method.

The second component of the FSLP is the load sequencing problem in which the loading order
of containers is decided. Such a problem is directly attached to QC assignment and scheduling
problem for a single ship (See examples such as Kim and Park (2004), Legato et al. (2012))
where required QCs are assigned to each set of bays, and the loading order of the bays and
positions are determined for each QC. The load sequencing problem, which also determines the
retrieval order from the yard, is also related to the locations of the containers in the yard (See
papers that determine yard location, e.g. Jiang and Jin (2017)). Ji et al. (2015) address the load
sequencing problem for loading a ship with multiple QCs and yard con�gurations. The authors
suggest three di�erent container relocation strategies which determine the relocation position of
the blocking containers in the yard. Authors solve the problem through a Genetic Algorithm
(GA). Bian et al. (2016) determine the loading sequence considering the number of re-handles in
the yard. Authors assume that a detailed stowage plan is given, and one QC is available to load
the ship. They suggest a two-phase method where they �rst order containers which do not require
any re-handling. Then, they use a dynamic programming algorithm to sequence the remaining
containers. Kim et al. (2004) integrate the load sequencing and Transfer Crane (TC) scheduling
considering a given class-based stowage plan. The vessel stability is ensured by imposing weight
and height limit constraints on the stacks. The load sequencing is optimised, but a column-wise
loading policy is prioritized. A two-stage method is suggested. In the �rst stage, yard-clusters are
sequenced (as in Lee et al. (2005)), while speci�c containers are sequenced in the second stage.
There are also papers that address the integrated load sequencing and QC planning methods
including internal reshu�es within bay of the vessel (e.g. Meisel and Wichmann (2010), Ding
et al. (2017)).

Carlo et al. (2014b) point out that there are many papers about the assignment of the transport
equipment to QCs and/or containers (e.g. Bish et al. (2005)), and the scheduling and routing of
these equipment (e.g. Kim and Kim (1999), Zeng and Yang (2009)) during loading operations.
We solely review studies that integrate the handling equipment planning with load sequenc-
ing and/or stowage planning. Alvarez (2006) integrate reach-stackers scheduling with stowage
planning. The paper assumes that loading policy is either column-wise or layer-by-layer. The
problem aims at minimizing the number of re-handling, the traveling distance and vessel insta-
bility. A Tabu Search (TS) based solution method is suggested. In a later work (Alvarez (2008)),
a Lagrangian Relaxation (LR) based solution approach has been suggested for a similar problem.
Jung and Kim (2006) integrate the load scheduling with equipment assignment (which is yard
crane in this case) problems for a single ship. The authors study the interference between two
yard cranes with the objective of minimizing makespan.

4.3 The Flexible Ship Loading Problem

In Figure 4.1, we illustrate the FSLP as the integration of four planning problems in the terminal,
namely operational stowage planning, load sequencing, equipment assignment and equipment
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scheduling. This problem is con�gured to load a single ship, but it could be extended for
multiple ships.

Flexible Ship Loading Problem

Operational

Stowage

Planning

Load
Sequencing

Equipment

Assignment

Equipment

Scheduling

Figure 4.1: Flexible Ship Loading Problem composition

We now detail the FSLP by describing each of its components and their interactions. The oper-
ative stowage planning problem (Monaco et al. (2014)) deals with assigning speci�c containers
in the yard to one slot (i.e. position) on the vessel with respect to the class-based stowage plan
supplied by liner shipping company. In Figure 4.2, a class-based stowage plan is illustrated for
a bay of a ship. In this �gure, there are four container classes to be loaded into the bay, namely
A, C, D, E, and the positions of containers in the yard area are shown. The operative stowage
plan points out the position for each speci�c container obeying the class-based stowage plan.
Figure 4.2 is a simpli�ed example for one bay and yard, while the problem is solved for all bays
that will be loaded.

Figure 4.2: Class-based stowage plan to operative stowage plan

The �exibility of selecting the speci�c container (among the same class containers) can bring
signi�cant savings on the traveling distance, and consequently the traveling time, of all containers.
Let us consider the example in Figure 4.3 with two containers of the same class (say two 40-foot
containers weighting between 20 and 22 tonnes having the same destination) are to be loaded.
The position of each container in the yard area is also shown, and an arrow represents the
traveling distance needed to bring the container to the vessel. In the �gure on the right side, the
terminal has made a better operative stowage plan that requires less traveling distance compared
to the operative stowage plan on the left side.
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The �exible assignment of containers in the same class helps to integrate the remaining problems
into the FSLP. The operative stowage plan is of no consequence for the liner so long as the
container classes are not changed.

Vessel

A

B

Yard Block Yard Block

B
A

Vessel

B

A

Yard Block Yard Block

B
A

Figure 4.3: Di�erent operative stowage plans: E�ect on travel distance.

The second component of the FSLP is the load sequencing problem which determines the loading
sequence of the containers in the yard. The sequence in which containers will be loaded is
governed by physical rules, and due to the speci�c layout of the vessel some positions must be
loaded before others. The sequence is a�ected by the ready time (i.e. the time a container is
in front of the respective QCs) of each container, and this depends on various factors such as
container locations in the yard, the availability of TVs, the operative stowage plan, etc. The
terminal might reduce the total loading time by e�ciently sequencing containers (See Kim et al.
(2004)).

The load sequencing problem is constrained by the QCs work-schedule. The QCs work-schedule
is a set of decisions that includes the QCs assignment to bays of the vessel and the loading
order between the bays. The QC work-schedule is mostly determined in earlier stages with berth
allocation and QC assignment problem (See Iris et al. (2015), Turkogullari et al. (2016), Iris
et al. (2017)).

The FSLP �nally covers the assignment and scheduling of transport equipment (i.e. transfer
vehicles). Integrating the TVs into the FSLP is vital because they are limited resources in the
terminal, and they might cause a bottleneck during loading operations. Moreover, generating a
feasible schedule of TVs will determine the ready time of each container in front of the respective
QC more accurately. These ready times in�uence the assignments of containers to each position
(operative stowage plan). In this study, time is discretized by minutes, and the time unit is
one minute. The FSLP studied in this paper covers the assignment of speci�c TVs to each QC
and the scheduling of all TVs to load all containers to the vessel. In other words, the problem
deals with determining which speci�c container will be picked up by which TV at what point in
the time. It is very common that the number of TVs that works on each QC change over time
(time-variant TV assignment). This means that for example, a solution can hold 3 TVs working
on a QC for some time then it can be reduced to 2 TVs for the remaining loading time. We
consider such a time-variant TV assignment in this study.

The problem de�nition is based on the following assumptions:

• Unloading operations are performed �rst, then loading operations start (i.e. the problem
does not include dual cycling (Goodchild and Daganzo (2007))).

• The work-schedule for each QC is determined beforehand. This also means that the se-
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quence, in which each position is loaded by each QC, is known. As the load sequencing
policy, "from-sea-to-land" with "stack-wise" sequencing is applied to each QC.

• The retrieval order of containers in the yard does not generate any yard-shifts within the
yard bay (e.g. a variant of the pre-marshalling policy).

• The stability of the vessel is ensured with the class-based stowage-plan.

• Each TV can only work for a single QC during the loading of the vessel. In other words,
it is not allowed to pool TVs for QCs, and all TVs are identical.

• TV operations are non-preemptive. When a TV is assigned to a QC it does not stop until
it �nishes the given tasks on that QC, and each TV is in front of its respective QC in the
initial position.

• The congestion in the yard, the travel speed of a TV with/without a container are all
re�ected in the transportation times between yard positions (or Input/Output points de-
pending on the yard layout type) and QCs.

• There is no container bu�er area under the QC, and this means the TV and QC operations
are not decoupled.

A feasible solution to the FSLP holds the assignment of each container to a vessel position. A
solution also shows which TV will transfer each container to its position, the time of pickup from
the yard block and delivery time in front of the QC. The complete schedule of all TVs is also
made. A feasible solution ful�lls the requirements of the class-based stowage plan, QC work-
schedules and the load sequencing policy. We believe that our study is the �rst to integrate the
above four problems. It utilizes the collaboration between liner shipping company and terminal
operators.

4.4 Mathematical Model for the FSLP

The list of notations, i.e. parameters, decision variables, is as follows:

Parameters and sets:

C Set of containers that will be loaded to vessel
Cp Set of containers belonging to a class suitable for slot position p
Q Set of quay cranes that are assigned to load the vessel
Qp Set of quay crane that loads position p (one element set)
P Set of positions to be loaded
Pi Set of positions that match with the class type of container i
Pq Set of positions that will be loaded by QC q
P cranep Set of positions that are handled by the same crane as position p

S Set of transfer vehicles available to serve the vessel
Sp Set of transfer vehicles that are available to serve position p
Sq Set of transfer vehicles that are available to serve QC q,

Sq ∈
{
s1
q , s

2
q , .., s

|Sq |
q

}



100 Flexible ship loading problem with transfer vehicle assignment and scheduling

T Set of time periods, T ∈ {0, 1, ..,H − 1}, where H is the closing of
planning horizon

τip Time needed for a transfer vehicles to transport container i from its
yard-position to vessel-position p. The time needed is assumed to be
equal in both directions.

β The loading time for each QC, minimum time between two consecutive
container loading operation

EFT Expected �nishing time of operations for the vessel
α The cost of using one TV for one time-unit
γ The cost of exceeding the expected �nishing time (EFT) for one

time-unit
M A large positive number

Decision variables:

tsp ∈ Z+ Time when container for position p has been dropped in front of QC by
TV s (container dropping time)

Starts ∈ Z+ Time when operations of TV s starts
Ends ∈ Z+ Time when operations of TV s ends
z ∈ Z+ Makespan for the loading of entire ship (operations)
∆EFT ∈ Z+ Lateness of operations
xsip ∈ B 1; if the container i is loaded to position p, and it is picked up by TV s,

0 otherwise

As per the second assumption mentioned in Section 4.3, the ordering of the positions is deter-
mined beforehand. We use the notation p′ ≺≺ p to indicate that the position p′ is handled
immediately before position p according to the ordering, while p′ ≺ p indicates that position p′

is loaded before position p, by the same QC.

The binary decision variables xsip correspond to the operative stowage plan and TV assignment
to containers, while integer variables tsp, Starts, Ends handle the TV scheduling. Let us now
introduce the mathematical model:

minα
∑

s∈S
(Ends − Starts) + γ∆EFT (4.1)

subject to
∑

p∈Pi

∑

s∈Sp

xsip = 1 ∀i ∈ C (4.2)

∑

i∈Cp

∑

s∈Sp

xsip = 1 ∀p ∈ P (4.3)

2τip −M(2− xsip −
∑

i′∈Cp′

xsi′p′) ≤ tsp − tsp′ ∀i ∈ C,∀s ∈ S, ∀p ∈ Pi,
p′ ∈ P cranep | p′ ≺ p (4.4)

∑

s∈S
tsp ≥

∑

s∈S
tsp′ + β ∀p ∈ P, p′ ∈ P cranep | p′ ≺≺ p (4.5)

tsp ≤
∑

i∈Cp

Hxsip ∀p ∈ P,∀s ∈ Sp (4.6)
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tsp ≥ 2
∑

i∈C
τipx

s
ip ∀p ∈ P,∀s ∈ Sp (4.7)

tsp − 2
∑

i∈C
τipx

s
ip +H(1−

∑

i∈C
xsip) ≥ Starts ∀s ∈ S, ∀p ∈ P (4.8)

tsp ≤ Ends ∀s ∈ S, ∀p ∈ P (4.9)

Starts ≤ Ends ∀s ∈ S (4.10)

z ≥ tsp + β ∀s ∈ S, ∀p ∈ P (4.11)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sp (4.12)

∆EFT ≥ z − EFT (4.13)

tsp, Starts, Ends, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S, ∀p ∈ P (4.14)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P (4.15)

The objective function (4.1) is a combination of the cost of service times of TVs and the lateness
(if the ship loading �nishes after the expected �nishing time). Constraint (4.2) ensures that each
container will be loaded to a position that matches with its container class. Constraint (4.3)
guarantees that all positions are loaded with a container that matches the container class of that
position. For a given container, TV and position, constraint (4.4) makes sure that the container
dropping time for that position is set correctly. This is done by forcing the di�erence between two
consecutive positions` dropping times to be greater than or equal to the time required to bring the
container (2τip) in front of the QC. The term multiplied byM on the left-hand side in constraint
(4.4) makes sure that the constraint is only active when the two positions which are following
each other in loading sequence are transported by the same TV. Constraint (4.5) ensures that all
positions are loaded in the correct order, and the containers that will arrive at the same QC should
have at least β time apart. Constraint (4.6) ensures that the container dropping time is earlier
than the end of the planning horizon. Constraint (4.7) guarantees that the earliest dropping
time for a position is the transportation time of the container which is loaded to that position.
Constraint (4.8) sets the starting time of each TV operation, while constraint (4.9) sets the ending
time of each TV operation. If a TV is not assigned to any QCs, these variables take a value of
zero. Constraint (4.10) is the link between the starting and ending time for each TV operation.
Constraint (4.11) obtains the makespan, while constraint (4.12) ensures that a container for
position p cannot be picked up by TV s if TV s is not assigned to serve the position. Constraints
(4.14)-(4.15) determine the domain of variables. Firstly, we formulate an upper bound on H
simply by assuming that only one QC and one TV are used. We can, thus, obtain an upper

bound on the planning horizonH = max
{∑

p∈P

{
2 max
c∈Cp

{τcp}+max
{

0, (β−2 min
c∈Cp

{τcp})
}}
, β|P |

}
.

4.4.1 Enhancements for the FSLP model

This section introduces enhancements for our formulation. The enhancements are based on
formulating lower bounds on variables and valid inequalities for the FSLP.
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4.4.1.1 Lower bounds on the variables

Let us �rst formulate the minimum total transportation time that is required to transport con-
tainers that will be loaded by QC q. The minimum overall time needed to transport all containers
of a particular QC q (δqmin) is obtained by solving an assignment problem that minimizes the
total required transportation time. Let xcp be the assignment variable, i.e. xcp = 1 if container
c ∈ C is assigned position p ∈ P , and 0 otherwise. The value of δqmin can be calculated by solv-
ing the model in (4.16). The objective function minimizes the transportation time obeying the
class-based stowage plan, and the �rst constraint ensures that all positions that will be loaded
by QC q must get exactly one container, and the second constraint ensures that each container
can be loaded at most one position.

δqmin = min




∑

c∈C

∑

p∈Pc

2τcpxcp :
∑

c∈Cp

xcp = 1 ∀p ∈ Pq,
∑

p∈Pc

xcp ≤ 1 ∀c ∈ C



 ∀q ∈ Q (4.16)

We now set a lower bound on the completion time (i.e. makespan) variable z in constraint (4.17).
The makespan should be larger than the maximum of the �nishing times of all QCs. The lower
bound on the �nishing time of each QC is obtained by taking the maximum between the total
loading time for QC q and the minimum transportation time needed to load all containers of QC
q.

z ≥ max
q∈Q

{
max{β|Pq|,

⌈
δqmin
|Sq|

⌉}
(4.17)

4.4.1.2 Valid inequalities for the FSLP model

We can formulate a better link between tsp and x
s
cp variables in constraint (4.18). For each position

p, the sum of dropping times (tsp) for all TVs is at least the maximum of the total loading time of
all positions before p and the minimum transportation time required to load all positions before
p.

∑

s∈Sp

tsp ≥ max





∑

p′≺p
β,

∑

p′≺p

∑

c∈Cp′

∑

s∈Sp′

2τcp′x
s
cp′

|SQp |





∀p ∈ P (4.18)

In constraint (4.18), the total loading time for all positions loaded by same QC before p is∑
p′≺p β. To calculate the minimum time to transport all containers before p, we �rst sum all

transportation times for positions before p (
∑

p′≺p
∑

c∈Cp′

∑
s∈Sp′ 2τcp′x

s
cp′), we then divide this

by total number of TVs assigned to that QC. This results in minimum transportation time for
all positions before p. The two parts in constraint (4.18) are split up into two sets of constraints,
to ensure the linearity of the model.

The next set of valid inequalities focuses on the container classes rather than speci�c containers.
Let us name the set of container classes as U and the set of container classes for each QC q as
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Uq. These sets can be easily obtained as we know the QC work-schedules and the class-based
stowage plan. We, also, can obtain the set of containers which is in the class of u (Cu), and the
set of positions which requires a container of class u that will be loaded by QC q (Pqu). Valid
inequality (4.19) ensures that for each QC q and container class u belonging to set Uq, the total
number of containers of class u to be loaded by QC q equals to |Pqu|.

∑

s∈Sq

∑

i∈Cu

∑

p∈Pqu

xsip = |Pqu| ∀q ∈ Q,∀u ∈ Uq (4.19)

We also formulate inequalities to break the symmetry. In this paper, it is assumed that all TVs
available for a QC are identical, hence a generated pickup order for a TV is feasible for all TVs.
This property generates many symmetrical solutions where there are a lot of exactly indi�erent
alternative TV assignments. For each QC, constraint (4.20) ensures that TVs are assigned with
a lexicographical order in each symmetry class for all TVs except the highest indexed one.

Ends − Starts ≥ Ends+1 − Starts+1 ∀q ∈ Q,∀s ∈ Sq \ {s|Sq |
q } (4.20)

Finally, we formulate a valid inequality that better links the assignment (xscp) and scheduling
variables (Ends, Starts). Constraint (4.21) ensures that the service time of TV s (Ends−Starts)
is larger than the total transportation time to load containers that are going to be handled by
that TV s.

Ends − Starts ≥ 2
∑

i∈Cp

∑

p∈Pi

τipx
s
ip ∀s ∈ S (4.21)

We call the enhanced version of the FSLP model as FSLP+.

4.5 New lower bounds for the FSLP

To obtain new lower bounds for the FSLP, we focus on the components of the objective function,
which are the cost of TV service times and the cost of ending later than expected �nishing time.
We formulate a new mathematical model that omits decision variables related to TV scheduling
(tsp, Starts, Ends), and this model obtains a lower bound for the FSLP. Let us �rst show that
we can obtain lower bounds on each objective component by solely using xsip variables.

Proposition 1:
∑

i∈C

∑

p∈Pi

∑

s∈Sp

2τipx
s
ip is a lower bound on

∑

s∈S
(Ends − Starts).

Proof:
∑

i∈C

∑

p∈Pi

∑

s∈Sp

2τipx
s
ip constitutes the total transportation time of all TVs, while

∑

s∈S
(Ends−

Starts) is the service time, and it includes the total transportation time and the TV waiting

times. Then,
∑

i∈C

∑

p∈Pi

∑

s∈Sp

2τipx
s
ip ≤

∑

s∈S
(Ends − Starts) as the waiting time is always non-

negative. �
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Proposition 2: β + max
s∈S

{∑

i∈C

∑

p∈Pi

2τipx
s
ip

}
is a lower bound on z.

Proof: Makespan (z) is bounded by the maximum of the �nishing times of all TVs plus the

loading time (β) of the last container. Then, we have to show that
∑

i∈C

∑

p∈Pi

2τipx
s
ip is a lower

bound on the maximum �nishing time of each TV. The �nishing time of TV s is at least the
summation of all transport times for containers that it will load by that TV. �

Proposition 3: max
q∈Q

{
β|Pq|

}
is a lower bound on z.

Proof: Makespan (z) is bounded by the maximum of the �nishing times of all QCs that work on
the vessel. The �nishing time of one QC is at least loading time of all positions that the QC is
assigned to (β|Pq|). So that, the maximum of all total loading times is a lower bound on z.�

We now suggest a mathematical model to obtain the lower bound on the FSLP using above
propositions, the model uses the same notation and variables of the FSLP model. We introduce
a new integer variable, TTSs, which presents the lower bound on the �nishing time of operations
for TV s. Now, let us introduce the new model which is called lower bound model, and it is
abbreviated as LB-FSLP:

minα
∑

i∈C

∑

p∈Pi

∑

s∈Sp

2τipx
s
ip + γ∆EFT (4.22)

subject to

∑

p∈Pi

∑

s∈Sp

xsip = 1 ∀i ∈ C (4.23)

∑

i∈Cp

∑

s∈Sp

xsip = 1 ∀p ∈ P (4.24)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sp (4.25)

TTSs = β +
∑

i∈C

∑

p∈Pi

2τipx
s
ip ∀s ∈ S (4.26)

z ≥ TTSs ∀s ∈ S (4.27)

z ≥ β|Pq| ∀q ∈ Q (4.28)

z ≥
⌈
δqmin
|Sq|

⌉
∀q ∈ Q (4.29)

∆EFT ≥ z − EFT (4.30)

TTSs, TTQq, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S (4.31)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S,∀p ∈ P (4.32)

The optimal solution to (4.22)-(4.32) is a lower bound on the FSLP. The objective function (4.22)
is a combination of the cost of TV transportation times and the cost of lateness. Constraints
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(4.23)-(4.25) are interpreted in a similar way as with constraints (4.2), (4.3) and (4.12) of the
FSLP model. Constraint (4.26) sets the lower bound on the �nishing time for each TV, constraint
(4.27) uses these variables to obtain a lower bound on the makespan. Constraint (4.28) sets the
lower bound on �nishing time for each QC, where |Pq| refers to the number of positions that will
be loaded by QC q. Constraint (4.29) uses the minimum transportation time to obtain the lower
bound on the makespan for the vessel. Constraints (4.31)-(4.32) de�ne the domains of variables.

4.6 Heuristic approach

Broadly speaking there are two main decisions to be taken in the FSLP. 1) The service times
for the TVs where Ends − Starts is service time for TV s and 2) the container-assignment for
each TV (xsip).

The objective function heavily depends on the service times of the TVs, which on the other hand
depend on the container-assignment. We propose a Greedy Randomised Adaptive Search Pro-
cedure (GRASP) which initially imposes a speci�c service time to each TV. The scheduling and
container-assignment are then created attempting to respect the assigned service times. Within
each GRASP iteration, the generated solution is evaluated. Should a solution be promising
enough, it is improved using a local search method.

4.6.1 Construction heuristic

The heuristic is based on the assumption that it is not important when a TV works, what is
important is the duration i.e. the length of the service window. We do not need to distinguish
between the di�erent characteristics of the TVs, as they are all assumed identical. Given an
arbitrary assigned service time for each of the TV s ∈ Sq of QC q ∈ Q (de�ned by Starts and
Ends), a solution can be constructed with the following four steps:

Step 0: Select QC

The construction heuristic builds the solution by considering the QCs in a sequential order.
The �rst step is thus to select the next QC q to build the solution for.

Step 1: Assign containers to positions

Let 〈c, p〉 be the assignment of container c ∈ Cp to position p ∈ Pq, and Υ(q) be the set
of all container-assignments for the positions serviced by QC q ∈ Q. Starting from the
�rst position to be loaded until the last, the assignment of a container is done greedily
by selecting the closest available container. Thus, for an arbitrary position p we select
container

c = arg min
c′∈Cp(x)

(
2τc′p

)
, (4.33)

where Cp(x) is the set of compatible containers for position p that have not yet been
assigned in solution x.
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Step 2: Assigning TVs to positions

Let 〈c∗, p∗〉 ∈ Υ(q) describe the next container-assignment to which a TV needs to be
dispatched (initially de�ned as the container-assignment for the �rst position in the loading
order of QC q).

For the position p∗ let Υ(q, p∗) be the set of the next ι container-assignments including
〈c∗, p∗〉. Here ι is a parameter controlling the size of the set Υ(q, p∗). Also, let SA be the set
of active TVs s ∈ Sq. A TV is said to be active if it can service the container-assignment
〈c∗, p∗〉 without exceeding the assigned end time (Ends). More formally a TV is active if
max(as + 2τc∗p∗ , dp−1 + β) ≤ Ends, where as is the time TV s is available (i.e. the time at
which it �nished its last container delivery, or if no deliveries have been assigned Starts),
and where dp−1 is the time at which the QC began to service the previous position. If the
QC has not served any position then dp−1 = −β. Should SA = ∅ then we will consider
SA = Sq.

We now select, through complete enumeration, the sequence of active TVs to service each
container-assignment in Υ(q, p∗) which results in the minimum completion time. In this
context, the completion time is the time in which QC q has �nished loading the last
container-assignment of Υ(q, p∗). For few TVs and small ι partitions, the exponential
growth of the number of sequence combinations is not an issue for the complete enumer-
ation. We only consider the active TVs to prioritise the scheduling of TVs that do not
exceed the EFT. This is due to the way TV service times are generated (more details are
provided in Section 4.6.2.2).

Step 3: Assign TV and update times

Given the TV sequence found in Step 2, we only commit to the solution the TV scheduled
for container assignment 〈c∗, p∗〉. Practically we are only assigning the TV to the very
next position to load (p∗). Hereafter, the selected TV available time and the QC time are
updated (as and dp). The container-assignment 〈c∗, p∗〉 is then removed from Υ(q). Should
Υ(q) = ∅, go to Step 0 and process the next QC, otherwise go to Step 2.

4.6.2 GRASP

GRASP (Feo and Resende, 1989; Feo and Resende, 1995), is a multi-start iterative metaheuristic
that combines a constructive phase with an improvement phase. In each iteration, a solution is
built from scratch using a randomised construction heuristic, where a random strategy is used to
provide diversity. The improvement phase consists of a local search method used to improve the
solution found in the constructive phase. The GRASP method has successfully been applied to
many optimisation problems, such as the container stowage slot planning problem (Parreno et
al., 2016), Vehicle routing problems (Kontoravdis and Bard, 1995) and the quadratic assignment
problem (Pardalos and Resende, 1994), among others. A general outline of the GRASP algorithm
for the FSLP is presented in Algorithm 3.

The algorithm begins by generating a solution using a randomised version of the construction
heuristic described earlier (line 3). The randomised construction heuristic is described in Sec-
tion 4.6.2.1.

After a feasible solution has been found, it is then passed to the improvement phase. Two
improvement heuristics have been implemented, each focusing on di�erent aspects of the solution
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Algorithm 3 GRASP

1: xb ← ∅
2: while not Terminate() do
3: x← RandomisedConstructionHeuristic()
4: x← VehicleReassignment(x)
5: if f(x) < f(xb)(1 + κ) then
6: x← ContainerSwap(x)
7: end if

8: UpdateBest(xb, x)
9: end while

10: return xb

and thus complementing each other. The �rst method is aimed at improving the TVs' schedule,
and it is used at every iteration (line 4). The second focuses on the container assignment,
however, due to its computational complexity, it is only used when the cost of the candidate
solution (f(x)) is within κ percentage of the best-found solution cost (f(xb)). The improvement
methods are described in details in Section 4.6.2.3 and Section 4.6.2.4 respectively.

In each iteration, a new solution is made from scratch, and if the newly generated solution is
better than the previous best, it is kept (line 8). Once the termination criterion is reached, the
algorithm returns the best-found solution. In our approach, we use the number of iterations as
the termination criterion. Following we describe the implementation of each GRASP component
in detail.

4.6.2.1 Randomised construction heuristic

Randomization is included into the construction heuristic (Section 4.6.1) in three places: the or-
der in which QCs are processed, the container to position assignment (Step 1), and the generation
of the service times, which the heuristic is based on.

Randomizing the order in which the QCs are processed (Step 0), results in variations on the
assignment of containers to position. For the actual container to position assignment, let ρc be
a random number in the interval [0.5; 1.5]. At each iteration, a random number ρc is sampled
for every container c. The container c that minimises the driving distance times ρc is assigned
to the position p, thus e�ectively changing eq. (4.33) to

c = arg min
c′∈Cp(x)

(
ρc′2τc′p

)
∀p ∈ Pq

The last source of randomisation, the generation of service times, also takes care of the adaptive
part of the procedure (as explained in Section 4.6.2.2). Service times are generated on a per QC
basis using the following concept. Consider a QC q ∈ Q. We de�ne the total service time to be

νq =
∑

s∈Sq

Ends − Starts. Since the TVs are operating in parallel, the largest total service time

that a QC can have, without any delays, is |Sq|EFT . This corresponds to all TVs starting at
time 0 and ending at time EFT . The value of νq can be used to guide the generation of the
service time of each TV. We do so by imposing Starts = 0 for all TVs s ∈ Sq. We then assign
Ends = EFT for as many TVs as possible. Hence exactly

⌊ νq
EFT

⌋
TVs will have this assignment
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for QC q. Any residual value νq −
⌊ νq
EFT

⌋
will be assigned to one TV, while all remaining TVs

are assigned Ends = 0. The service times assignment is the base of the construction heuristic.
Consider now Step 2 of the heuristic. The procedure starts by scheduling only the active TVs,
i.e. the TVs s ∈ Sq that can �nish the next scheduled container-assignment (〈c∗, p∗〉) within
Ends. By doing so, we make sure that no TV is scheduled after the Ends unnecessarily, which
also conforms to the way the service times are generated. Notice, however, that should this not
be possible the heuristic will reset the set of active TVs to be equal to the complete set of TVs
(Sq) thus allowing scheduling beyond Ends.

The randomization of the service time generation is rooted on the selection of the total service
time of each QC (νq). At each iteration the value of νq is selected at random within the range
[EFT ; |Sq|EFT ]. To better guide the selection of νq we partition the range into intervals of size
ε, e�ectively generating the following set of intervals, Iq:

{[EFT ;EFT + ε], [EFT + ε;EFT + 2ε], . . . , [|Sq|EFT − ε; |Sq|EFT ]} ∪
{[EFT ;EFT ], [|Sq|EFT ; |Sq|EFT ]}

The values of νq are then selected at random within one of these range intervals. When the
expected �nishing time is low, it would most likely be best to assign all available TVs. On the
other hand, when EFT is high, one TV operating is likely to be cost optimal. For these reasons,
we have also included the ranges [EFT ;EFT ] and [|Sq|EFT ; |Sq|EFT ] in the set. We call these
range intervals Service Time Intervals (STIs).

4.6.2.2 Adaptivity

When selecting the value νq, a STI (i) is �rst chosen, and νq is selected at uniform within
the range interval described by i. The adaptivity of the GRASP method comes from how the
probability of choosing a STI adaptively changes throughout the execution of the algorithm. For
each STI, let Piq be the probability of choosing STI i for QC q, calculated using the roulette
wheel selection principle

Piq =
wi∑

j∈Iq

wj
∀q ∈ Q, i ∈ Iq (4.34)

Where wi are the weights. This probability is adaptively adjusted in a similar manner as in the
ALNS method described in Ropke and Pisinger (2006).

Throughout the algorithm, we keep track of the best-found solution and its value ẑ. The positions
to be loaded by QC q are pre-determined, thus we also keep track of the best partial solution
scheduling container-assignments for QC q. The cost of a partial QC solution is calculated as

ẑq = α
∑

s∈Sq

(Ends − Starts) + γmax

((
max
s∈Sq

Ends

)
+ β − EFT, 0

)
(4.35)

Where max
((

maxs∈Sq Ends
)

+ β − EFT, 0
)
is the tardiness of the operation for QC q.

The execution of the algorithm is divided into a number of segments i.e. a number of η consecutive
iterations. The score obtained by STI i in segment j (denoted πij) is updated according to the
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following three parameters; σ1, σ2 and σ3. If a new best solution is found, σ1 is added to the
score for all the chosen STIs that contributed to �nding this solution. If the cost for QC q (zq)
is better than the previously best solution for that QC, ẑq, σ2 is added to the score for the STI
chosen for QC q. Last, if for a QC q the cost (zq) is within δ percentage of the best for QC q
(ẑq) then σ3 is added to the score for the chosen STI for QC q.

After η iterations are executed the weights are updated as follows.

wij+1 = wij(1− r) + r
πij
θij

∀q ∈ Q, i ∈ Iq

Here wij is the weight for STI i in segment j, θij is the number of times STI i was chosen in
segment j and r is the reaction factor. The reaction factor controls how quickly the weight
adjustment reacts to changes in the e�ectiveness of each STI.

The adaptivity as described will make the STIs which contributes to �nding good solutions more
probable. Furthermore, it makes the overall heuristic robust towards di�erent characteristics in
the problem that have an impact on the time needed to load the containers for a QC.

4.6.2.3 Vehicle reassignment

The �rst improvement method looks at the TV scheduling for a QC q. The TV scheduling
described in Section 4.6.1 Step 3 is myopic at best, and only aims at minimising tardiness. It
does not consider TV waiting time and the minimization of the total service time.

The TV reassignment procedure is aimed at reducing the service times of each TV. Since the
service time is dictated by the start (Starts) and end (Ends) of a TV operation, for a given
TV s ∈ Sq, we consider the possibility of re-assigning its �rst or last container to a di�erent TV
s′ ∈ Sq \ {s}. For a given QC q we generate all the possible re-assignments of containers to TVs
(which is at most 2|Sq|−1 since we only consider two containers per TV). The re-assignment that
best improves the objective is then applied. The procedure restarts every time a new improving
re-assignment is found until no new re-assignment is available and all the QCs are processed.

4.6.2.4 Container swapping

The second improvement method is a local search based on a swap neighbourhood operator. The
aim of the local search is to �nd improvements in the container assignments. The neighbourhood
is de�ned by all the possible container swaps within the same container class. Here a swap means
that two positions exchange containers, and consequently the two TVs scheduled to the positions
will change the container they pickup. The neighbourhood operator, however, only evaluates a
limited number of swaps to reduce the number of evaluations. The most improving swap is then
applied to the solution. The container swapping procedure is further described in Algorithm 4.

Given an input solution x, Algorithm 4 starts by initializing z∗ and Move which will hold the
best evaluation and swapping move respectively (lines 3-4). The algorithm then proceeds to
evaluate the possible swaps. For each class u, in the set of container classes U , we select |Cu|
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Algorithm 4 ContainerSwap

Input: x
1: Terminate ← false

2: while not Terminate do
3: z∗ ← 0
4: Move ← ∅
5: for all u ∈ U do

6: for i = 1 to |Cu| do
7: c1 ← Random container c ∈ Cu

8: c2 ← Random container c ∈ Cu \ {c1}
9: z ← EvaluateSwapImprovement(x, c1, c2)

10: if z > z∗ then
11: z∗ ← z
12: Move ← {c1, c2}
13: end if

14: i← i+ 1
15: end for

16: end for

17: if z∗ > 0 then

18: x← PerformMove(x, Move)
19: else

20: Terminate ← true

21: end if

22: end while

23: return x

random swaps, where Cu is the set of all containers of class u (lines 5-8). Each swap is evaluated
(line 9) and, if it is improving, its value and move are stored in z∗ and Move (lines 10-13). The
best improving swap is then selected and applied to the solution (lines 17-18). Should we not
be able to �nd such a swap, the procedure terminates and returns the locally improved solution,
(lines 2, 19-23)

Calculating a swap improvement in EvaluateSwapImprovement(x, c1, c2) is the most compu-
tationally expensive part of this method. In Section 4.A, we provide details of how caching
techniques can be used to implement this operation e�ciently.

4.7 Computational analysis

We now analyse the performance of each formulation, valid inequalities and the GRASP heuristic.
All methods are executed using a 2.30 GHz Intel Xeon E5 Processor, and computational times
are reported in seconds. All models are solved using CPLEX 12.7.0. A time limit of 3 hours is
imposed to solve the models with the options of emphasizing optimality. In default conditions,
models are run with four threads.

The GRASP heuristic have been implemented in Java 1.8, and have been tuned using the
Gender-Based Genetic Algorithm for the Automatic Con�guration of Algorithms (gga) described
in Ansótegui and Sellmann (2009). Table 4.2 describes how we tuned the algorithm. The �rst
two columns describe the parameters, �rst brief in text then the symbol used. The next two
column contains information for the tuning, �rst which values we tested, then the start value we
used. For some of the parameters we tested a discrete set of values, and for others we tested all
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integers in a range (symbolised by [min;max]). For the tuner, additional instances have been
generated, and the heuristic terminates with the best-found solution after 30 seconds. The value
in the last column is the value that the tuner �nds perform best.1

Table 4.2: Description of the parameter tuning

Description Symbol Test Start Tuned

STI length ε {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2}EFT 0.1EFT 0.15EFT
Vehicle assignment lookahead ι {1, 2, 3, 4, 5} 4 2
Container swapping use percentage κ {0, 0.05, 0.1, 0.15, 0.2,∞} 0.1 0.2
Reaction factor r {0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2} 0.1 0.1
Segment size η {25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 500} 200 25
STI score update: New best σ1 [30; 75] 50 45
STI score update: New crane best σ2 [20; 50] 33 36
STI score update: New crane solution

σ3 [10; 45] 19 17
within δ of crane best

The δ parameter associated with σ3 δ {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2} 0.05 0.2

4.7.1 Data description

To test the formulations and the heuristic a benchmark set has been generated. The number
of containers to be loaded in the instances are either 60, 240, 500 or 1000, corresponding to
small, medium and large vessels. To describe di�erent yard structures, we test three di�erent
densities. The density will a�ect the travel time to the containers in the yard. The di�erent
densities are Uniform, Scattered and Less Dense. For the Uniform case, all containers are stored
closely together in the yard, minimising the variance in the travel times. In the scattered case
the containers are stored over a larger area, and it implies a higher variance in the travel times.
The Less Dense is a mix between these two densities.

In total 30 instances has been generated. The number of container types ranges from 10 to
100. In the benchmark, there are 3 TVs assigned to a QC, and either 2 or 4 QCs are available
depending on the size of the vessel. The QC loading time β is 1 in all of the instances. See
Tables 4.3 and 4.4 for an overview of the instance characteristics.

The expected �nishing time (EFT) corresponds to the schedule of the vessel. Vessels with the
same number of containers to be loaded will, therefore, have the same EFT, independent of the
yard density, and the number of container types.

4.7.2 Results for the mathematical model and enhancements

In this section, we report the computational results of the FSLP model and analyse the im-
provements achieved with the enhancements for this formulation. The results cover the lower
bounds obtained in the root node of the branch-and-bound tree (xRoot), the best lower bound
(xLP ), and the value of the obtained solution (xUB). The Gap(xUB) columns report the relative
di�erence between the solution value and the best lower bound from the model, and lastly t(s) is

1The value ∞ for κ means that the container swapping method is used in every iteration



the computation time in seconds. The �rst columns in Tables 4.3 and 4.4 describe the instance
characteristics, with the number of containers (|C|), the number of container types (|CT |), the
number of QCs (|Q|) and the density (D). The densities are Less Dense (LD), Scattered (S ) and
Uniform (U ) as described in Section 4.7.1.

To evaluate the bene�t of each of the enhancements, Tables 4.3 and 4.4 present the results for
di�erent versions of the model. The �rst one is the version with all of the enhancements added
(FSLP+), after which results for the standard model with no enhancements (FSLP) are shown.
For the rest of the models, enhancements are removed from the FSLP+ model, e.g. FSLP+ -
(4.19) is the FSLP+ model with constraint (4.19) removed. Note that enhancements are removed
one at a time. This is to show how badly the results are a�ected when an enhancement is not
used in the formulation, and by that see if it is bene�cial to add it.

There are many instances for which CPLEX cannot �nd any feasible solutions within the time
limit (10800 s), this is indicated with '-'. Additionally '†' is used to symbolise that the execution
was terminated due to lack of memory. In most of these cases no bound or solution could
be computed before termination, but in four cases (FSLP+/60/25/2/S, FSLP+/60/10/2/U ,
FSLP+ - (4.21)/60/25/2/LD and FSLP+ - (4.21)/60/25/2/U) a solution had been found, in
which case the time reported is the time at which the execution was terminated. To symbolise
the best bound, or best solution found for the given instance among the alternative models, the
corresponding value is written in bold.

Table 4.3 clearly shows that FSLP+ model outperforms the FSLP model. The FSLP+ model
�nds stronger bounds, and also better feasible solutions. Looking at the results for all models it
can be seen that constraint (4.21) is the main contributor to the improvement of the bounds, but
(4.17) & (4.18) also help to improve the bound. The performance of the three models FSLP+,
FSLP+ - (4.19) and FSLP+ - (4.20) are all comparable to each other. The bounds all coincide
with the best found, and they are all found in the root node and not improved hereafter. The
value of the solutions are di�erent, but for a given instance the solution values are close to each
other for the three models. For what it's worth, FSLP+ - (4.20) seems to �nd the best solution
most often.

For the 500 and 1000 instances, the model becomes intractable to solve; only a few number of
feasible solutions are found within 3 hours.



Table 4.3: Performance of enhancements. '−' symbolises that no feasible solution were found within the time limit, and '†' is used
for the instances where the execution was terminated due to insu�cient memory.

FSLP+ FSLP FSLP+ - (4.17)&(4.18)

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1500 1500 1775 15.5% 10800 10 194 1735 88.8% 10800 1440 1440 1710 15.8% 10800
60 10 2 S 1020 1020 1030 1.0% 10800 30 93 1030 90.9% 10800 1020 1020 1020 0.0% 8246
60 10 2 U 1640 1640 1920 14.6% 9004† 41 139 2250 93.8% 10800 1640 1640 1875 12.5% 10800
60 25 2 LD 2030 2030 2345 13.4% 10800 0 336 2480 86.5% 10800 1790 1790 2285 21.7% 10800
60 25 2 S 1360 1360 1470 7.5% 6215† 0 257 1905 86.5% 10800 1360 1360 1405 3.2% 10800
60 25 2 U 1490 1490 1520 2.0% 10800 0 267 2225 88.0% 10800 1490 1490 1510 1.3% 10800

Average 9.0% 9737 89.1% 10800 9.1% 10374

240 20 2 LD 7850 7850 14795 46.9% 10800 0 100 20170 99.5% 10800 6530 6530 - - 10800
240 20 2 S 4440 4440 8225 46.0% 10800 0 50 109905 100.0% 10800 4440 4440 9040 50.9% 10800
240 20 2 U 6720 6720 11765 42.9% 10800 0 60 19765 99.7% 10800 6720 6720 11435 41.2% 10800
240 60 2 LD 8230 8230 11035 25.4% 10800 0 142 16565 99.1% 10800 6850 6850 10650 35.7% 10800
240 60 2 S 5280 5280 6555 19.5% 10800 0 79 11095 99.3% 10800 5280 5280 7310 27.8% 10800
240 60 2 U 7250 7250 10845 33.1% 10800 0 179 14005 98.7% 10800 7250 7250 10630 31.8% 10800

Average 35.6% 10800 99.4% 10800 37.5% 10800

500 20 4 LD 14390 14390 - - 10800 0 0 - - 10800 12110 12110 - - 10800
500 20 4 S 8250 8250 - - 10800 0 0 - - 10800 8250 8250 - - 10800
500 20 4 U 14350 14350 - - 10800 0 0 - - 10800 13090 13090 - - 10800
500 60 4 LD 14460 14460 - - 10800 0 200 - - 10800 12930 12930 - - 10800
500 60 4 S 11840 11840 - - 10800 0 60 - - 10800 11840 11840 - - 10800
500 60 4 U 15500 15500 264170 94.1% 10800 0 233 30690 99.2% 10800 14240 14240 - - 10800
500 100 4 LD 15390 15390 - - 10800 0 288 40225 99.3% 10800 13860 13860 138790 90.0% 10800
500 100 4 S 9490 9490 - - 10800 0 140 24140 99.4% 10800 9490 9490 16895 43.8% 10800
500 100 4 U 16230 16230 22625 28.3% 10800 0 240 36700 99.3% 10800 14880 14880 - - 10800

Average 61.2% 10800 99.3% 10800 66.9% 10800

1000 20 4 LD † † † † † † † † † † † † † † †
1000 20 4 S † † † † † † † † † † † † † † †
1000 20 4 U † † † † † † † † † † † † † † †
1000 60 4 LD 27070 27070 - - 10800 0 0 - - 10800 24460 24460 - - 10800
1000 60 4 S 17950 17950 - - 10800 0 0 - - 10800 17950 17950 - - 10800
1000 60 4 U 40230 40230 - - 10800 0 0 - - 10800 34320 34320 - - 10800
1000 100 4 LD 28740 28740 - - 10800 0 0 - - 10800 25830 25830 - - 10800
1000 100 4 S 17840 17840 - - 10800 0 0 - - 10800 17840 17840 - - 10800
1000 100 4 U 32180 32180 - - 10800 50 50 - - 10800 29090 29090 - - 10800

Average 10800 10800 10800

Average 27.9% 10564 95.5% 10800 28.9% 10705



Table 4.4: Performance of enhancements. '−' symbolises that no feasible solution were found within the time limit, and '†' is used
for the instances where the execution was terminated due to insu�cient memory.

FSLP+ - (4.19) FSLP+ - (4.20) FSLP+ - (4.21)

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1500 1500 1800 16.7% 10800 1500 1500 1720 12.8% 10800 101 222 1750 87.3% 10800
60 10 2 S 1020 1020 1025 0.5% 10800 1020 1020 1020 0.0% 5612 0 105 1030 89.8% 10800
60 10 2 U 1640 1640 1790 8.4% 10800 1640 1640 1820 9.9% 10800 0 121 1955 93.8% 10800
60 25 2 LD 2030 2030 2350 13.6% 10800 2030 2030 2275 10.8% 10800 241 632 2535 75.1% 7615†
60 25 2 S 1360 1360 1440 5.6% 10800 1360 1360 1580 13.9% 10800 0 307 1760 82.6% 10800
60 25 2 U 1490 1490 1530 2.6% 10800 1490 1490 1515 1.7% 10800 0 401 1740 76.9% 6568†

Average 7.9% 10800 8.2% 9935 84.3% 9564

240 20 2 LD 7850 7850 14795 46.9% 10800 7850 7850 12700 38.2% 10800 1320 1403 19600 92.8% 10800
240 20 2 S 4440 4440 8225 46.0% 10800 4440 4440 6400 30.6% 10800 0 30 10045 99.7% 10800
240 20 2 U 6720 6720 - - 10800 6720 6720 11355 40.8% 10800 0 30 17710 99.8% 10800
240 60 2 LD 8230 8230 10730 23.3% 10800 8230 8230 11705 29.7% 10800 1380 1500 15675 90.4% 10800
240 60 2 S 5280 5280 6680 21.0% 10800 5280 5280 6630 20.4% 10800 11 73 8265 99.1% 10800
240 60 2 U 7250 7250 10185 28.8% 10800 7250 7250 13330 45.6% 10800 0 170 16735 99.0% 10800

Average 33.2% 10800 34.2% 10800 96.8% 10800

500 20 4 LD 14390 14390 - - 10800 14390 14390 - - 10800 2280 2280 - - 10800
500 20 4 S 8250 8250 - - 10800 8250 8250 - - 10800 0 0 - - 10800
500 20 4 U 14350 14350 - - 10800 14350 14350 - - 10800 1260 1260 - - 10800
500 60 4 LD 14460 14460 - - 10800 14460 14460 - - 10800 1530 1750 - - 10800
500 60 4 S 11840 11840 - - 10800 11840 11840 340870 96.5% 10800 0 50 - - 10800
500 60 4 U 15500 15500 - - 10800 15500 15500 - - 10800 1260 1501 - - 10800
500 100 4 LD 15390 15390 21730 29.2% 10800 15390 15390 22695 32.2% 10800 1530 1753 37720 95.4% 10800
500 100 4 S 9490 9490 16220 41.5% 10800 9490 9490 - - 10800 0 140 233945 99.9% 10800
500 100 4 U 16230 16230 - - 10800 16230 16230 - - 10800 1350 1629 41490 96.1% 10800

Average 35.3% 10800 64.4% 10800 97.1% 10800

1000 20 4 LD † † † † † † † † † † † † † † †
1000 20 4 S † † † † † † † † † † † † † † †
1000 20 4 U † † † † † † † † † † † † † † †
1000 60 4 LD - - - - 10800 27070 27070 - - 10800 2610 2610 - - 10800
1000 60 4 S 17950 17950 - - 10800 17950 17950 - - 10800 0 0 - - 10800
1000 60 4 U 40230 40230 - - 10800 40230 40230 - - 10800 5910 5910 - - 10800
1000 100 4 LD 28740 28740 - - 10800 28740 28740 - - 10800 2910 2910 - - 10800
1000 100 4 S 17840 17840 - - 10800 17840 17840 - - 10800 0 0 - - 10800
1000 100 4 U 32180 32180 - - 10800 32180 32180 - - 10800 3090 3090 - - 10800

Average 10800 10800 10800

Average 21.8% 10800 27.4% 10608 91.9% 10525
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4.7.3 Heuristic results

We evaluate the performance of GRASP heuristic, and compare it with the results from the
formulation FSLP+ and the lower bound model (LB-FSLP) presented in Section 4.5. Table 4.5
reports the results for the FSLP+ formulation, the lower bounds from LB-FSLP and the GRASP
results on the instances from the benchmark. In Table 4.5, xR is the lower bound from the LB-
FSLP model and t(s) reports the computational time to obtain these lower bounds. For the
FSLP+ model, xLB and xUB is the lower bound, and upper bound obtained. Gap(xUB) is the
gap, comparing the best feasible solution with the best found lower bound. For the heuristic,
each instance is solved ten times, to account for the randomness. The best solution and average
solution for the ten runs are reported. For the GRASP heuristic, the following are reported in
Table 4.5; the best solution (xb), average solution (x̄), best and average gap with respect to
LB-FSLP (Gap(xb), Gap(x̄)) and the run time in seconds (t̄). The average solution which are
better than the FSLP+ formulation is written in bold.

We �rst evaluate the lower bounds obtained with LB-FSLP model. Table 4.5 points out that
the lower bounds obtained with the LB-FSLP model are no worse than the xLB values from the
FSLP+ model, in some cases the LB-FSLP model even �nds a better lower bound. Moreover,
the bounds are computed in just 3 seconds on average. This indicates that the lower bounds
obtained with LB-FSLP can be used to evaluate the performance of the GRASP heuristic.

The results in Table 4.5 show the GRASP heuristic �nds feasible solutions for all of the instances,
with an average gap of 10.9% in approx. 10 minutes on average. The gap calculates the relative
di�erence to the lower bound, as seen in Section 4.7.2 only one instance has been solved to
optimality, for the rest of the instances we have no indication of the quality of this lower bound,
and how far it is from being optimal. The quality of the solutions found by the GRASP heuristic
is stable with respect to the number of containers.

Looking at the 500 and 1000 container instances we see a clear tendency; the Less Dense instances
require considerably more e�ort to solve, compared with the Scattered instances. The e�ort
needed for the Uniform instances lies in between the two others. By looking at the underlying
data, the explanation can be found in the time spent on the Improvement Phase. Excluding that
time, there are only small deviations in the total time used.

Figure 4.4 shows how much the two improvement methods contribute to the quality of the �nal
solution. The plots show how the average gap converges over time when using both improvement
methods, only the container swapping method, only the vehicle reassignment method and no
improvement methods. For each setting, the data is grounded on ten runs of each instance. The
plots show that of the two, the container swapping method improves the solution the most, but
is also the most time consuming one. From the plot, it is also clear that both of the improvement
methods improves the solution noticeably.

To visualise the impact of the STIs, Figure 4.5 shows the probabilities for QC 2 during a single
execution of the algorithm on the instance 60/25/2/LD. The �gure shows the probability of
selecting a speci�c STI for the QC in an iteration. The probabilities are shown for 3 of the STIs,
for the remaining STIs only a few improvements are found, and thus they become less and less
probable. The probabilities for the STIs not shown in Figure 4.5 are below 0.1% from iteration
5000 until the end. The legends describe the range of the STI, i.e. the interval in which νq is
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Table 4.5: Results overview: Comparison between the formulations and the
GRASP heuristic. '−' is used when no feasible solution were found within the
timelimit

LB-FSLP FSLP+ GRASP

|C| |CT | |Q| D xR t(s) xLB xUB Gap(xUB) xb x̄ Gap(xb) Gap(x̄) t̄ (s)

60 10 2 LD 1530 0.1 1500 1775 15.49% 1805 1814.5 15.24% 15.68% 9.9
60 10 2 S 1020 0.0 1020 1030 0.97% 1060 1067 3.77% 4.40% 7.5
60 10 2 U 1670 0.1 1640 1920 14.58% 1895 1902.5 11.87% 12.22% 8.8
60 25 2 LD 2060 0.0 2030 2345 13.43% 2435 2435 15.40% 15.40% 10.4
60 25 2 S 1360 0.0 1360 1470 7.48% 1425 1436.5 4.56% 5.32% 10.1
60 25 2 U 1490 0.0 1490 1520 1.97% 1545 1552.5 3.56% 4.02% 8.5

Average 0.1 9.07% 9.51% 9.2

240 20 2 LD 7880 0.3 7850 14795 46.94% 9430 9448 16.44% 16.60% 80.5
240 20 2 S 4440 0.1 4440 8225 46.02% 4790 4807.5 7.31% 7.64% 36.2
240 20 2 U 6720 0.7 6720 11765 42.88% 8140 8333.5 17.44% 19.35% 36.8
240 60 2 LD 8260 0.1 8230 11035 25.42% 10105 10123 18.26% 18.40% 131.1
240 60 2 S 5280 0.1 5280 6555 19.45% 5660 5706.5 6.71% 7.47% 53.4
240 60 2 U 7580 0.2 7250 10845 33.15% 9065 9140.5 16.38% 17.07% 52.8

Average 0.2 13.76% 14.42% 65.1

500 20 4 LD 14420 1.4 14390 - - 15585 15639 7.48% 7.79% 538.7
500 20 4 S 8250 1.3 8250 - - 9020 9129.5 8.54% 9.63% 75.0
500 20 4 U 14380 2.0 14350 - - 15585 15594.5 7.73% 7.79% 381.9
500 60 4 LD 14520 4.2 14460 - - 16130 16225.5 9.98% 10.51% 648.3
500 60 4 S 11840 0.2 11840 - - 13005 13080 8.96% 9.48% 72.2
500 60 4 U 15530 0.2 15500 264170 94.13% 17125 17173 9.31% 9.57% 287.1
500 100 4 LD 15450 0.5 15390 - - 17475 17562 11.59% 12.03% 627.7
500 100 4 S 9490 0.1 9490 - - 10425 10547.5 8.97% 10.02% 73.6
500 100 4 U 16290 0.6 16230 22625 28.27% 18495 18544 11.92% 12.15% 282.8

Average 1.2 9.39% 9.89% 331.9

1000 20 4 LD 21990 9.4 - - - 24225 24277 9.23% 9.42% 1984.0
1000 20 4 S 14570 1.7 - - - 16230 16414 10.23% 11.23% 292.2
1000 20 4 U 25980 49.9 - - - 28295 28354.5 8.18% 8.37% 1730.9
1000 60 4 LD 27100 3.2 27070 - - 30000 30074 9.67% 9.89% 2821.9
1000 60 4 S 17950 0.7 17950 - - 20305 20599 11.60% 12.85% 174.8
1000 60 4 U 40260 2.1 40230 - - 44055 44095.5 8.61% 8.70% 1209.3
1000 100 4 LD 28770 1.7 28740 - - 32330 32372 11.01% 11.13% 3129.7
1000 100 4 S 17840 0.5 17840 - - 20150 20347 11.46% 12.32% 177.2
1000 100 4 U 32210 1.4 32180 - - 36160 36228 10.92% 11.09% 2194.8

Average 7.8 10.10% 10.56% 1523.9

Average 2.8 10.41% 10.92% 571.6
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Figure 4.4: The impact of the improvement methods on time, and solution quality

randomly sampled when the STI is selected. Figure 4.5 shows that the most probable STIs (for
this QC/instance combination) are towards the end of the full range for νq. The interval range
for the high probability STIs is close to each other. This is as expected; if one STI provides good
results, the following, or preceding is likely to perform semi good as well.
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Figure 4.5: The STI probability during an execution of the algorithm on the instance 60/25/2/LD for
QC 2

There are 2 parts to the objective function (4.1), �rst a cost of TVs services (α
∑

s∈S(Ends −
Starts)) and a cost of lateness (γ∆EFT ). Figure 4.6 shows the impact on the cost structure
when changing the QC loading time, β and the EFT. Figure 4.6a analyses the impact of changing
β and Figure 4.6b of changing the EFT. The data is an average of 10 runs of the heuristic on
every instance. Figure 4.6a shows what we would expect, increasing β increases both the TV
service cost and the cost of lateness. This is important for the terminal as crane operators will
load the containers faster/slower depending on their skill level. Figure 4.6b shows the impact

of changing the EFT. Here the EFT is recalculated as ÊFT = m̂EFT , where m̂ is a multiplier
and EFT is the original EFT . Intuitively you would expect that a lower EFT means a higher
cost of lateness, which Figure 4.6b con�rms. Increasing the EFT mostly have an impact on the
TV service cost for an instance when the lateness cost is 0 for that instance. This makes sense
as fewer TVs can be used, and the loading be completed as expected. Using fewer TVs means
less unproductive waiting time incurred by the loading order and β.
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Figure 4.6: Impact of β and the EFT on the cost structure.

4.7.4 Hierarchical vs integrated planning: value of integration

We also investigate the cost savings with the integration of the operative stowage planning and
TV assignment/scheduling. We compare results of the integrated FSLP with the hierarchical
planning method. The hierarchical planning is simulated in two stages. In the �rst stage, we
solve the lower bound model (LB-FSLP in Section 4.5) where the assignment decisions are solely
made without considering the feasible TV scheduling.

The assignment decisions made in (4.22)-(4.32) will always generate feasible solutions for the
integrated FSLP. This is because the remainder problem is a TV scheduling problem with
predetermined assignments (xsip). In the second stage, we �x the assignment variables obtained
in the �rst stage and solve the TV scheduling problem. With the assignment �xed, the TV
scheduling problem can be solved as a Linear Program. De�ne tp ∈ R+ as the time the container
for position p is dropped in front of the QC. Let cp be the container to be loaded in position
p ∈ P (which is known). Let fs and ls be the �rst and last position served by TV s ∈ S and let
A(s) describe the full container/position assignment for that TV. With this, the TV scheduling
problem can be modelled as follows:

Min Z = α
∑

s∈S
tls − (tfs − 2τcfs ,fs) + γ∆EFT (4.36)

subject to

tp ≥ tp′ + β ∀q ∈ Q, p ∈ Pq \ {1}, p′ ≺≺ p (4.37)

tp ≥ 2τc(p),p ∀s ∈ S, p = fs (4.38)

tp ≥ tPrev(s,p) + 2τcp,p ∀s ∈ S, p ∈ A(s) \ {fs} (4.39)

z ≥ tp + β ∀q ∈ Q, p = |Pq| (4.40)

∆EFT ≥ z − EFT (4.41)

The objective function (4.36) can be read in the same way as for the FSLP model. Here tls is
equivalent to Ends, and (tfs − 2τcfs ,fs) is equivalent to Starts. In constraint (4.37), p′ is the
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position loaded just before position p, and the constraint thus ensures that the loading time
is respected. Constraints (4.38) and (4.39) ensure the transportation times are respected. For
all vehicles, constraint (4.38) makes sure that the transportation time to the �rst assignment is
respected. For all other assignments (4.39) have e�ect. Constraint (4.39) ensures that the earliest
a TV can drop a container in front of the QC is the time it dropped its last container (tPrev(s,p))
plus the time it takes to get the current container. Constraint (4.40)-(4.41) is equivalent to
constraints (4.11) and (4.13) of the FSLP model.

Table 4.6: Integrated vs. hierarchical planning of FSLP

Hierarchical Integrated Value of Integration

|C| |CT | |Q| D xUB t1(s) t2(s) t(s) xUB t̄ ∆ %

60 10 2 LD 3585 0.1 0.0 0.1 1814.5 9.9 1770.5 49.39%
60 10 2 S 2010 0.0 0.0 0.0 1067.0 7.5 943.0 46.92%
60 10 2 U 4105 0.1 0.0 0.1 1902.5 8.8 2202.5 53.65%
60 25 2 LD 3895 0.0 0.0 0.0 2435.0 10.4 1460.0 37.48%
60 25 2 S 3530 0.0 0.0 0.0 1436.5 10.1 2093.5 59.31%
60 25 2 U 3760 0.0 0.0 0.0 1552.5 8.5 2207.5 58.71%

Average 50.91%

240 20 2 LD 20880 0.3 0.0 0.3 9448.0 80.5 11432.0 54.75%
240 20 2 S 10975 0.1 0.0 0.1 4807.5 36.2 6167.5 56.20%
240 20 2 U 17455 0.7 0.0 0.7 8333.5 36.8 9121.5 52.26%
240 60 2 LD 19530 0.1 0.0 0.1 10123.0 131.1 9407.0 48.17%
240 60 2 S 15245 0.1 0.0 0.1 5706.5 53.4 9538.5 62.57%
240 60 2 U 20215 0.2 0.0 0.2 9140.5 52.8 11074.5 54.78%

Average 54.79%

500 20 4 LD 33755 1.4 0.0 1.4 15639.0 538.7 18116.0 53.67%
500 20 4 S 19320 1.3 0.0 1.3 9129.5 75.0 10190.5 52.75%
500 20 4 U 32180 2.0 0.0 2.0 15594.5 381.9 16585.5 51.54%
500 60 4 LD 30235 4.2 0.0 4.2 16225.5 648.3 14009.5 46.34%
500 60 4 S 26185 0.2 0.0 0.2 13080.0 72.2 13105.0 50.05%
500 60 4 U 32395 0.2 0.0 0.2 17173.0 287.1 15222.0 46.99%
500 100 4 LD 32590 0.5 0.0 0.5 17562.0 627.7 15028.0 46.11%
500 100 4 S 21270 0.1 0.0 0.1 10547.5 73.6 10722.5 50.41%
500 100 4 U 36815 0.6 0.0 0.6 18544.0 282.8 18271.0 49.63%

Average 49.72%

1000 20 4 LD 55815 9.4 0.0 9.4 24277.0 1984.0 31538.0 56.50%
1000 20 4 S 33375 1.7 0.0 1.7 16414.0 292.2 16961.0 50.82%
1000 20 4 U 58910 49.9 0.0 49.9 28354.5 1730.9 30555.5 51.87%
1000 60 4 LD 63880 3.2 0.0 3.2 30074.0 2821.9 33806.0 52.92%
1000 60 4 S 44300 0.7 0.0 0.7 20599.0 174.8 23701.0 53.50%
1000 60 4 U 82770 2.1 0.0 2.1 44095.5 1209.3 38674.5 46.73%
1000 100 4 LD 64735 1.7 0.0 1.7 32372.0 3129.7 32363.0 49.99%
1000 100 4 S 43030 0.5 0.0 0.5 20347.0 177.2 22683.0 52.71%
1000 100 4 U 69275 1.4 0.0 1.4 36228.0 2194.8 33047.0 47.70%

Average 51.42%

Average 51.48%

In Table 4.6, instance properties are reported in the �rst four columns. The table is divided
to sections presenting hierarchical, integrated and value of integration results. Column xUB

presents objective function values, while t variants present the time to obtain the xUB values. In
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hierarchical planning, t(s) is the sum of two values, t1(s) and t2(s). The �rst value (t1(s)) is the
time to run �rst stage model (i.e. LB-FSLP), while the second value (t2(s)) is the running time
of the second stage model ((4.36) - (4.41)). Column ∆ points out the cost reduction achieved
(cost savings) by solving the integrated problem, while % is the percentage of decrease in the
cost value (i.e. (Hierarchical-Integrated)/Hierarchical).

Results show that the average cost savings through integration are 51.48%. This suggests that
there is a signi�cant potential for savings for the terminal operators with such an integrated
problem. Instances with 1000 containers obtain 51.42% savings, while 500, 240 and 60 containers
instances result in 49.72%, 54.79% and 50.91% savings, respectively.

4.8 Conclusion and future research direction

In this paper, we have proposed a novel integrated container terminal problem. This problem
focuses on the ship loading operations and aims at integrating the aspects of operative stowage
planning with assignment and scheduling of transport vehicles. The problem has been formulated
as a mathematical model. To improve the model, novel enhancements are described, and the
computational results show that they improve the performance of the mathematical model.
However, the exact method becomes computationally intractable for real-life instances. To deal
with this, a GRASP heuristic has been implemented. The GRASP heuristic is shown to be
scalable and can be used to �nd high-quality solutions in reasonable time.

The bene�t of solving the integrated problem rather than in a hierarchical fashion has also been
investigated. Results show that signi�cant cost savings can be achieved with an e�cient solution
to the integrated problem.

We see many strong future research directions both on the problem de�nition and the solution
method. With respect to the problem, we aim at going beyond some of the assumptions in the
�rst place. The �rst clear addition would be integrating optimisation of the load sequencing
within the FSLP. This extension will make the problem more complicated. However, the careful
implementation of novel solution methods might obtain further cost savings. Another very
promising research direction is to allow vehicle pooling and not restrict a given vehicle to only
work for a single QC. Such an extension will allow for better utilisation of the TVs. Researchers
could consider load and unload operations simultaneously, thus allowing for dual cycling to
increase the utilisation of the QCs. Lastly, a terminal allocation problem with inter-terminal
transshipment �ows/movements, e.g. Zhen et al. (2016), can be integrated.

Regarding the solution method, we see three research perspectives. The �rst is to improve the
exact solution method, either by decomposing the problem or reformulating the compact model.
Secondly, we aim to improve the heuristic procedure, and lastly, we wish to devise a new method
to calculate better lower bounds.
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4.A Container swapping: Speed up

As mentioned in Section 4.6.2.4, calculating the improvement from performing a swap is the most
computationally expensive part of the container swapping improvement method. This appendix
describes how costs calculated previously can be reused, thus speeding up the overall method.
Algorithm 5 describes how the improvement of swapping two containers (in terms of objective
value) is calculated.

Algorithm 5 EvaluateSwapImprovement

Input: x, c1, c2
1: if τc1,p(c1) = τc2,p(c1) and τc2,p(c2) = τc1,p(c2) then

2: if q(c1) = q(c2) then
3: swapAndUpdateTimes(x, c1, c2)
4: workSaved ← calculateWorkSaved(x, c1, c2)

5: newFinishTime ← max

(
calculateFinishTime(x, c1, c2), max

q∈Q\{q(c1)}
(craneFinishTime(x, q))

)
6: lateSaved ← calculateLateSaved(x,newFinishTime)
7: return α·workSaved+γ·lateSaved
8: else

9: workSaved1, newFinishTime1 ← saveSwapProfit(x, p(c1), τc2,p(c1), c1, c2)
10: workSaved2, newFinishTime2 ← saveSwapProfit(x, p(c2), τc1,p(c2), c2, c1)
11: workSaved ← workSaved1 + workSaved2

12: newFinishTime ← max

(
newFinishTime1,newFinishTime2, max

q∈Q\{q(c1),q(c2)}
(craneFinishTime(x, q))

)
13: lateSaved ← calculateLateSaved(x,newFinishTime)
14: return α·workSaved+γ·lateSaved
15: end if

16: else

17: return 0
18: end if
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Consider two containers c1 and c2 their respective position in the current solution p(c1), p(c2),
and their QCs q(c1) and q(c2). First observe that if the swap implies no change in the driving
times, then the objective will not change due to the swap (lines 1, 16-17). If the driving times are
di�erent, the algorithm considers two cases; q(c1) and q(c2) are the same, or they are di�erent
(lines 2 and 8).

In the case when the two considered QCs are identical, the improvement is calculated by swapping
the containers and iteratively updating the delivery times for the container-assignments (line 3).
With the times updated the work saved and the time saved in lateness is easily computed by
comparing with the solution x (lines 4-6).

In the case when the two considered QCs are di�erent, the cost calculation is done container for
container (lines 9-10). The procedure saveSwapImprovement(x, p, τ, c1, c2) takes two containers
as input and returns the work saved and the new �nishing time for QC q(c1) when swapping
containers c1 and c2. Hereafter the cost improvement is calculated similarly to the previous case
(lines 11-13).

The fundamental idea behind saveSwapImprovement(x, p, τ, c1, c2) is that you can compute the
costs when needed, and reuse these costs when appropriate instead of calculating it again. Keep
in mind that this swapping method does not put a position on a new TV, but simple changes
the container to be loaded on a position to another compatible container. The important thing
here is the driving time to the new container. Consider the following situation; you have two
candidates swaps {c1, c2} and {c1, c3} where q(c1) 6= q(c2) and q(c1) 6= q(c3). The changes in
the cost for QC q(c1) only depends on the driving time to the new container. If the driving
time from position p(c1) to container c2 is the same as the driving time to c3, then you know
the cost for QC q(c1) will be the same for these two swaps. Therefore you really only need to
calculate the cost once, store it and reuse it for the second case. This is exactly what is done in
saveSwapImprovement(x, p, τ, c1, c2) as seen in Algorithm 6.

Algorithm 6 saveSwapImprovement

Input: x, p, τ, c1, c2
1: workSaved ←W(c1, τ)
2: newFinishTime ← F(c1, τ)
3: if workSaved = ∅ then
4: swapAndUpdateTimes(x, c1, c2)
5: workSaved ← calculateWorkSaved(x, c1, c2)
6: newFinishTime ← calculateFinishTime(x, c1, c2)
7: W(c1, τ̂) ← workSaved
8: F(c1, τ̂) ← newFinishTime
9: end if

10: return workSaved, newFinishTime

The costs, as well as the �nishing time for QC q(c1), are stored in W(c1, τ) and F(c1, τ). If we
have not calculated the cost yet we calculate the cost and store it (lines 3-8), otherwise, we reuse
what we have calculated (lines 1-2). W and F are stored globally and can be reused between
moves within the improvement method. Only when making changes to a QC q do we have to
reset the costs for all containers using QC q, as these costs are no longer ensured to be valid.
When doing so the cost for picking up a container with the same driving time as the current one
is set to 0, and the �nish time is set to the �nishing time for QC q

W(c, τc,p(c)) = 0 ∀c ∈ {c′ ∈ C | q(c′) = q}
F(c, τc,p(c)) = craneFinishTime(x, q) ∀c ∈ {c′ ∈ C | q(c′) = q}



Part II

Additional Work





Chapter 5

Additional work for the Cargo Mix
Problem with Block Stowage

5.1 Introduction

This chapter extends the heuristic of the paper �A Matheuristic for the Cargo Mix Problem with
Block Stowage� presented in Chapter 2. The extensions focus on Phase I and try to improve the
block assignment. In the following, we will describe an iterative approach and a MIP model for
Phase I.

While interesting from a methodological point of view, the results from the Iterative method
does not justify the increase in the runtime. The MIP model for Phase I approach improves the
results, and only uses little extra time. Results for both of the methods show there is still room
for improvement.

The rest of the chapter is organised as follows; Section 5.2 describes the iterative approach,
and Section 5.3 describe the Phase I model. In Section 5.4 the results for the two methods are
reported, and lastly Section 5.5 concludes on the work presented in this chapter.

5.2 Iterative method

To improve the solutions found by the CMPBSHLP heuristic described in Section 2.5, an iterative
method has been developed. The iterative method is an improvement heuristic that improves a
current solution by de�ning a neighbourhood that is explored using a MIP.

First de�ne a schedule, s, as a block assignment for a full rotation. Let this schedule be described
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by the parameter bdsp de�ned as follows.

bdsp =

{
1 If schedule s ∈ Ω assigns destination d ∈ P as the discharge port when in port p ∈ P
0 Otherwise.

Where Ω is the full set of possible schedules. Furthermore, de�ne the variable rbs

rbs =

{
1 If block b ∈ B uses schedule s ∈ Ω

0 Otherwise.

With this constraint (2.9), (2.10) and (2.14) can be exchanged with the following

∑

s∈Ω

rbs ≤ 1 ∀b ∈ B (5.1)

ytcb ≤ atc
∑

s∈Ω

bd
t

sprbs ∀b ∈ B, c ∈ C, p ∈ P, t ∈ T Onp (5.2)

rbs ∈ {0, 1} ∀b ∈ B, s ∈ Ω (5.3)

Here constraint (5.1) substitutes for constraint (2.9) ensuring that at most a single schedule is
chosen for a block, and (5.2) is similar to (2.10) and ensures we can only place a container if the
container matches the discharge port as determined by the schedule. Now consider the following
model

Max (2.1)

Subject to:

(2.2)− (2.8) (5.4)

(5.1)− (5.3) (5.5)

(2.11)− (2.13) (5.6)

This model is another way to model the Cargo Mix Problem with Block Stowage, and can thus
be used as a substitute for the model presented in Section 2.4. The di�erence between the two
models is that here, the block assignment is de�ned on schedule variables instead of the σdbp
variables.

The size of Ω grows exponentially with the number of ports in the rotation, and it is ine�cient
to enumerate all these for all but the smallest instances. Instead, let Ωgen be the set of unique
schedules that are generated in Phase I as described in Section 2.5.1. The iterative method
consists of 2 main steps, namely an Improvement step where a set of new block assignments are
found, and an Evaluation step where these are evaluated to select the best.

5.2.1 Improvement Step

To get a feasible solution to improve, the CMPBSHLP heuristic from Section 2.5 is used, and
r̂bs is set to 1 if schedule s ∈ Ωgen is used for block b, and 0 otherwise. Additionally, let ŷtcb be



5.2 Iterative method 129

the solution obtained from Phase II. De�ne the set BA as the set of 〈b, s〉 combinations where
r̂bs is 1 in the current solution, i.e BA = {b ∈ B, s ∈ Ωgen : r̂bs = 1}. The set BA thus de�nes
the block assignment. To improve the solution, we would like to �nd a new and improved block
assignment. Instead of trying random block assignments and evaluate them, we will formulate
a MIP model to �nd a new block assignment that is similar to the current one. We will thus
de�ne a neighbourhood using the following constraint.

∑

〈b,s〉/∈BA

rbs +
∑

〈b,s〉∈BA

1− rbs ≤ k (5.7)

Where k is a parameter de�ning the size of the neighbourhood. With this constraint at most
bk2c blocks can change schedule to another schedule from the set Ωgen. The full model solved in
the improvement step is thus

Max (2.1)

Subject to:

(2.2)

(2.4)− (2.8)

(5.1)− (5.3)

(5.7)

(2.11)− (2.12)

(2.17)

(2.19)

When solving this model the solution de�ned by ŷtcb is used as a warm-start. In the improvement
step we are interested in �nding a new block assignment, thus we do not need to solve to
optimality. Instead, only the root node is solved to bene�t from the cuts applied by CPLEX.
If after this, no unexplored block assignment is found we continue solving until a new block
assignment is found. Let IS be the set of all new block assignments found. From the improvement
step, we go to an evaluation step, where each block assignment BA ∈ IS is evaluated, and the
best one is used in the next iteration of the improvement step.

5.2.2 Evaluation Step

All newly found block assignments are evaluated to select the one that seems the most promising.
For all block assignments BA ∈ IS de�ne σ̂dbp(BA) as follows

σ̂dbp(BA) =

{
1 ∃s ∈ Ωgen : 〈b, s〉 ∈ BA ∧ bdspr̂bs = 1

0 Otherwise.
∀BA ∈ IS, b ∈ B, p ∈ P, d ∈ P

The interpretation of σ̂dbp(BA) is thus similar to σ̂dbp from Section 2.5.2, as it de�nes the block
assignment for BA. Now let Phase II(BA) be the model solved in Phase II of the CMPBSHLP
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heuristic (see Section 2.5.2) with σ̂dbp(BA) as the block assignment. To evaluate the block as-
signment BA ∈ IS we solve the root node of the model Phase II(BA). Stopping after the root
node yields a good upper bound, xub(BA), which can be used to evaluate the quality of the best
possible solution found with the block assignment BA. The upper bound is compared to the
upper bound for the current block assignment. If we in the evaluation step �nd a new bound
improving block assignment, BA, we again solve Phase II(BA), but here we continue solving
until the optimality tolerance η is reached. This is done to improve the warm start used in the
improvement step. Hereafter we go back to the improvement step and de�ne a new neighbour-
hood and start looking for a new set of block assignments. If we in the evaluation step fail to
�nd a bound improving schedule we do not change the block assignment and instead continue
solving the improvement model with the saved Branch and bound tree.

The termination criteria for this algorithm can either be based on convergence, a time limit, or
the number of iterations. Our termination criteria is based on the runtime.

5.2.3 Increasing the Neighborhood

If we fail to �nd a new block assignment and instead solve the improvement step model to op-
timality, then we know we have a locally optimal solution. In this case, we increase the size of
the neighbourhood and solve again. To control the neighbourhood size we de�ne 4 parameters,
kinit, k+, kmax and ω+. Here kinit is the initial value of k, k+ describes the number to add to
the neighbourhood size k, and kmax is the maximum allowed value of k. If the maximum value
of k is reached and we solve the improvement model to optimality, we will �nd and add ω+

new schedules to the set Ωgen. When generating new schedules, we use the same procedure as
described in Section 2.5.1, with average TEU capacity and average reefer TEU capacity instead
of block capacities. After solving the described longest path problem, we check if this schedule
already has been generated, if not we add it to the set Ωgen, and check if we have added ω+ new
schedules, if not we continue generating schedules.

The Iterative Method as described here does not ensure feasibility. The weight constraints (2.3)
is relaxed, and the container assignment variables are continuous. We could, however, keep all
block assignments in memory as well as the values ŷbct (BA), and solve multiple Phase III models
(see Section 2.5.3) for these inputs and then return the best feasible solution.

5.3 Phase I model

In Phase I of the CMPBSHLP heuristic, schedules are generated by solving a longest path
problem. However, the sequence in which the blocks are treated is not considered. Changing the
sequence will result in another block assignment, one that possibly is better. However, there is
no way to determine a priori if a speci�c sequence will result in a better or worse solution, and
trying all sequences is computationally intractable.

In this section, we will try to alleviate this by formulating and solving, a mixed integer program-
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ming model that, based on the uniquely generated schedules, assign schedules to blocks. The
graph-based method described in Section 2.5.1 is executed as normally, but we also keep track
of the number of TEUs of transport t assigned to a schedule s. After the graph-based method is
�nished, we can de�ne Ωgen as the set of uniquely generated schedules, and ats as the number of
TEUs of transport t ∈ T assigned schedule s ∈ Ωgen. In the model we assign schedules to blocks,
ensuring the blocks TEU capacity is satis�ed. To keep the model simple we only consider the
TEU capacity. To further lessen the complexity we also enforce an upper bound corresponding
to the number of TEUs assigned to a schedule in the graph-based method.

The decision variables in the model are ybs and xtbs. Where ybs is a binary variable denoting
whether or not block b ∈ B is assigned schedule s ∈ Ωgen, and xtbs is the number of TEUs of
transport t ∈ T assigned block b ∈ B from schedule s ∈ Ωgen. Below the sets, variables and
parameters are summarized.

Sets:

Ωgen Set of unique generated schedules

B Set of blocks

P Set of ports

T Set of transports

T ONp Set of transports that visits port p ∈ P

Variables:

ybs ∈ {0, 1} 1 if block b ∈ B is assigned schedule s ∈ Ωgen, 0 otherwise.

xtbs ∈ N Number of TEUs of transport t ∈ T assigned block b ∈ B
from schedule s ∈ Ωgen

Parameters:

ats Number of TEUs of transport t ∈ T assigned schedule s ∈ Ωgen.

kb TEU capacity for block b ∈ B
pt Number of ports visited by transport t ∈ T

With this, the problem can be formulated as follows.

Max Z =
∑

b∈B

∑

s∈Ωgen

∑

t∈T
ptxtbs (5.8)

Subject to:

∑

s∈Ωgen

ysb = 1 ∀b ∈ B (5.9)
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∑

s∈Ωgen

∑

t∈T ON
p

xtbs ≤ kb ∀b ∈ B, p ∈ P (5.10)

xtbs ≤ atsybs ∀b ∈ B, s ∈ Ωgen, t ∈ T (5.11)
∑

b∈B
xtbs ≤ ats ∀s ∈ Ωgen, t ∈ T (5.12)

ybs ∈ {0, 1} ∀b ∈ B, s ∈ Ωgen (5.13)

xtbs ∈ N ∀b ∈ B, s ∈ Ωgen, t ∈ T (5.14)

Here the objective (5.8) aims to optimise the intake. This is the most obvious objective when
the overall objective is to maximise the intake, but the same objective is used when the overall
revenue is optimised. If we instead were to optimise the revenue in the model (5.8)-(5.14) we
would need to distinguish between the di�erent container types, adding extra complexity to the
model. We do not believe it is worth it to add the extra complexity and we believe optimising
the intake here will also result in a good block assignment when the objective is changed in
Phase II and Phase III. Constraint (5.9) ensures exactly one schedule is assigned every block,
and constraint (5.10) enforces that the block TEU capacity is satis�ed. Constraint (5.11) makes
sure that we can only assign container to a schedule if the block uses the corresponding schedule,
and in constraint (5.12) it is ensured we do not assign more containers to a schedule than we did
in the graph-based method. Lastly, constraint (5.13) and (5.14) de�nes the variable domains.

We will call this revised method for R-CMPBSHLP, which uses Phase I as described here. Phase
II and Phase III remains unchanged, and is as described in Section 2.5.

5.4 Results

5.4.1 Results for the Iterative method

When testing the iterative method the following parameters were used; kinit = 4, k+ = 2,
kmax = 10, and ω+ = 1. The algorithm was given 30 minutes to optimise and has been tested
when optimising intake. In Table 5.1 the result from the iterative method is compared with the
result obtained after Phase II of the CMPBSHLP heuristic.1 In Table 5.1 the results for the
CMPBSHLP heuristic is the same as the result reported for Phase II in Table 2.5. Table 5.1
shows the results for the smallest of the instances.2 In the table, x̄ is the average value of
the solution, t̄ is the average time, and for the iterative method #Ite is the average number of
iterations completed within the time limit.

The iterative method improves the solutions found by the heuristic, but not enough to justify the
steep increase in the runtime needed. The improvement was to be expected as the CMPBSHLP
heuristic is used to de�ne the start solution and thus cannot perform any worse than the heuristic.
The major bene�ts for the original heuristic are the scalability and the fast response time. As
shown in the Chapter 2 it scales well with the number of ports and manages to keep running

1As mentioned, the iterative method does not ensure a feasible solution, and thus it is more fair to compare it
with the results obtained after Phase II in the heuristic.

2Due to an out of memory error only 11 out of the remaining 90 instances completed the run.
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Table 5.1: Results for the Iterative Method

UB CMPBSHLP Iterative

|P | x̄ x̄ t̄ #Ite x̄ t̄

4 53265 50985 1.1 15.5 52899 1800
5 68153 63883 1.8 10.7 65943 1800
6 85935 82100 1.6 6 83986 1800
7 102409 94995 3.4 3.4 98193 1800
8 122125 113379 4.5 1.6 113959 1800
9 131360 122824 3.7 1.3 123869 1800
10 149285 139182 6.7 2.1 139335 1800
11 170912 156014 6.7 1 157050 1800

times low. The iterative method does not scale well as can be seen in the number of iterations
performed. When the number of ports is above 7 barely any iterations are performed, which
means that the root node in the model solved in the improvement step cannot be solved, even
with the small neighbourhood (kinit = 4).

5.4.2 Results for the Phase I Model

The revised heuristic is tested on same instances as in Chapter 2 and a time limit of 60 seconds
is used for the Phase I Model. Table 5.2 presents the results when optimizing the intake. Here
the results are compared with the result from the heuristic presented in Chapter 2. In the table
x̄ is the average solution, t̄ is the time in seconds, and t̄I is the time for the model used in Phase
I.

Table 5.2: Results for the R-CMPBSHLP Method

UB CMPBSHLP R-CMPBSHLP

|P | x̄ x̄ t̄ t̄I x̄

4 53265 50351 1.3 0.4 50615
5 68153 62917 2.1 0.9 63713
6 85935 81209 2 2.3 81470
7 102409 93191 3.9 2.8 95200
8 122125 112787 5.2 3.9 112988
9 131360 122022 4.4 6.7 122661
10 149285 138485 7.5 8.1 139370
11 170912 155353 7.4 0.7 155561
12 185836 168760 17.4 8.3 169500
13 201501 185299 17.4 10.4 185932
14 212244 196018 13.2 4.0 197135
15 231770 212763 18.9 4.2 213150
16 249557 229117 23.2 9.7 229541
17 265357 245174 19.4 8.4 245197
18 280448 258001 43.2 13.5 257741
19 296581 273704 25.7 14.2 275290
20 308392 285586 24.6 29.8 286612

Average 183243 168867 13.9 7.5 169510

The result in Table 5.2 shows that the model described in Section 5.3 can be solved using
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7.5 seconds on average. Of the 170 instances, only 7 is terminated due to the time limit (60
seconds). For these 7 instances, the average gap at termination was 0.70%. This illustrates
that the model can be solved relative fast. However, looking at the solution quality, we only see
minor improvements. This is both good and bad; good because this means that the graph-based
method does a good job at assigning schedules to blocks. However, bad because, this means that
the revised method does not yield signi�cantly better solutions.

5.5 Conclusion

In this chapter, we have proposed two methods for improving the block assignment for the Cargo
Mix Problem with Block Stowage. First, an Iterative method is described, and then an extension
to the heuristic presented in Chapter 2 is proposed.

An iterative method must focus on changing the block assignment, and to evaluate a block
assignment we must solve a MIP. Solving the MIP is time-consuming, and therefore we do
not believe randomly assigning schedules is a good idea as we will spend most of the time
evaluating the block assignments, incurring a high run time. Here we have tried to de�ne a
small neighbourhood which is then explored by a MIP, in that way we can evaluate the block
assignments while searching for a new. However, the method does not scale well, and the results
cannot justify the increase in the runtime. Therefore, for an iterative approach to work, we
believe that much more work or a radically di�erent approach is needed.

The proposed Phase I model extension aims to assign schedules to blocks better, using the
schedules generated by the graph-based method described in Chapter 2. The extension only
add little extra time to the overall method, making sure the overall method is still useful for a
decision support system. However, it only slightly improves the solutions.

We have in this chapter focused on improving the block assignment for the CMPBS, and as the
results show there is still potential to improve, thus an idea for further research is to improve
the way the block assignment is computed.



Chapter 6

Additional work for the Flexible Ship
Loading Problem

6.1 Introduction

This chapter can be seen as an extension of the paper �Flexible ship loading problem with transfer
vehicle assignment and scheduling� presented in Chapter 4 where the same problem is considered.
In the following, a new mathematical model for the Flexible Ship Loading Problem (FSLP) is
formulated, and a new hybrid heuristic is described to solve the problem. Both the model and
heuristic improve the state-of-the-art. Lastly, a column generation algorithm is proposed. The
column generation method can be seen as a starting point for a Branch-and-Price algorithm.

We believe the chapter, in its current form, is too unfocused and spans too wide to be published
'as is'. With additional work, we believe this chapter can be published as two standalone papers;
One based on the revised model and the hybrid heuristic, and one focusing on a Branch-and-Price
algorithm based on the column generation method here presented.

The rest of the chapter is organised as follows; Section 6.2 reiterate the problem de�nition in
broader terms and presents a revised mathematical formulation and enhancements. Section 6.3
describes the hybrid heuristic, and Section 6.4 is a description of the column generation method.
The results of these three methods are shown in Section 6.5 and lastly, Section 6.6 concludes on
the work presented in this chapter.

6.2 Revised Flexible Ship Loading Problem model

In the FSLP a liner vessel docked at a port is considered. The containers destined for the port
have been unloaded, and a set of containers are to be loaded on the ship. The liner provides the
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terminal with a class-based stowage plan. A class based stowage speci�es that a container of a
speci�c class is to be loaded at a given position of the vessel. Here, a container class corresponds
to the dimensions of the container, properties (reefer or dry cargo container), destination and
weight of the container (e.g. light, medium or heavy). The exact weight of the container might
not have an impact on the feasibility of the stowage plan, and thus it is su�cient to consider
weight classes. The terminal is responsible for loading the vessel, following the stowage plan.
The class-based stowage plan leaves much freedom for the terminal which they wish to exploit,
to optimise their operations. The terminal might have multiple containers of the same type, and
thus they want to determine which container goes where on the vessel, to optimise their workload
while ensuring the vessel leaves as planned.

Consider a set of containers (C) to be loaded in positions on the ship (P) by a set of Quay Cranes
(QCs) (the set Q). The FSLP covers the assignment and scheduling of Transfer Vehicles (TVs)
(set S) to retrieve the containers from the yard and deliver in front of the QC. We assume that
the loading order for each QC is determined beforehand, and is known. We use p′ ≺ p to specify
that the position p′ will be loaded before p by the the same crane, and p′ ≺≺ p speci�es that
p′ will be loaded immediately before p. The crane loading time is β, and thus there must be at
least β time units between the loading of two successive positions.

The contract between the terminal and the liner speci�es that with the amount of containers to
be unloaded, the terminal is expected to �nish loading the vessel at a given time - the expected
�nishing time (EFT). If this is not ensured the terminal must pay a penalty of γ for every time
unit the vessel is delayed. The terminal must pay the operators operating the TVs, for the time
they work. The time unit cost of this is α, and we assume this cost also includes equipment wear
and tear and maintenance. The terminal aims to minimise the sum of these two costs.

The variables in this model are the same as in Chapter 4, i.e. xscp ∈ {0, 1} denote the assignment

xscp =

{
1, If container c ∈ C is loaded to position p ∈ P and picked up by TV s ∈ S
0, Otherwise.

and the variable tsp ∈ N denote the time at which TV s ∈ S drops the container for position
p ∈ P in front of the QC. Also, let Starts and Ends be the start and end time of the service
window for TV s. To account for the lateness of operation, de�ne z as the makespan for loading
the entire ship, and ∆EFT as the lateness of operations.

The model is similar to the model presented in Chapter 4, the main di�erence lies in how the
drop o� times (tsp) are handled. The model in Chapter 4 ensures that the drop o� time is zero
if a TV does not serve a position. This makes it necessary to have more big-M constraints
deteriorating the LP bound. In the model presented here, if a TV, s, does not serve a position
p, tsp is constrained to be greater than or equal to the time at which the TV dropped o� the
previous container. Compared to the model in Chapter 4, this model has fewer constraints and
does not have as many big-M constraints, this should make the model easier to solve. We refer
to this model as the revised �exible ship loading problem (R-FSLP) model.

Below, all the sets, variables, and parameters are summarised, and additional sets and parameters
are introduced.
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Sets:

C Set of containers

Cp Set of containers compatible with position p ∈ P
P Set of positions to be loaded

Pc Set of positions combatible with container c ∈ C
Pq Set of positions loaded by quay crane q ∈ Q
S Set of transfer vehicles

Sp Set of transfer vehicle, that are available to serve position p ∈ P
Sq Set of transfer vehicle, that are available to serve position quay crane q ∈ Q
Q Set of quay cranes

qp The quay crane scheduled to load position p ∈ P
Kp The container-TV combinations that are compatible with position p

Kp = {〈c, s〉 ∈ C × S|c ∈ Cp ∧ s ∈ Sp}

Variables:

xscp ∈ {0, 1} 1 if container c ∈ C is loaded to position p ∈ P and picked up by

TV s ∈ S, 0 otherwise.
tsp ∈ Z+ Time at which TV s ∈ S drop the container for position p ∈ P

in front of the QC.

Starts ∈ Z+ The time at which TV begins its service window

Ends ∈ Z+ The time at which TV stops working

z ∈ Z+ The time at which the loading of the entire ship is �nished

∆EFT ∈ Z+ The tardiness of the operations.

Parameters:

τcp The time needed for a TV to transport container c from its position in the yard

to the vessel-position p. The time is assumed to be equal in both directions.

β The crane loading time.

α The cost of using a TV for one time-unit.

γ The cost of exceeding the EFT by one time-unit.

EFT The expected �nishing time

With this, the problem can be modelled as seen below.

Min Z = α
∑

s∈S
(Ends − Starts) + γ∆EFT (6.1)

Subject to:

∑

c∈Cp

∑

s∈Sp

xscp = 1 ∀p ∈ P (6.2)
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∑

p∈Pc

∑

s∈Sp

xscp = 1 ∀c ∈ C (6.3)

xscp = 0 ∀p ∈ P, 〈c, s〉 /∈ Kp (6.4)

tsp′ +
∑

c∈Cp

2τcpx
s
cp ≤ tsp ∀p ∈ P, s ∈ Sp, p′ ≺≺ p (6.5)

ts
′
p′ + β ≤ tsp +H


1−

∑

c∈Cp

xscp


 ∀p ∈ P, s, s′ ∈ Sp′ , p′ ≺≺ p (6.6)

Starts ≤ tsp −
∑

c∈Cp

2τcpx
s
cp ∀p ∈ P, s ∈ Sp (6.7)

tsp ≤ Ends ∀q ∈ Q, s ∈ Sq, p = |Pq| (6.8)

z ≥ Ends + β ∀s ∈ S (6.9)

∆EFT ≥ z − EFT (6.10)

xscp ∈ {0, 1} ∀c ∈ C, p ∈ P, s ∈ S (6.11)

tsp ∈ Z+ ∀p ∈ P, s ∈ S (6.12)

Starts, Ends ∈ Z+ ∀s ∈ S (6.13)

z,∆EFT ∈ Z+ (6.14)

Objective (6.1) minimises the cost for loading the ship. Constraints (6.2) and (6.3) ensures that
a container is loaded in every position, and all containers are loaded on the ship. Constraint
(6.4) ensures that no incompatible assignment is made. Constraints (6.5) and (6.6) updates the
time if a TV serves a position. Here the position p′ is the position served immediately before
position p according to the loading order for the crane qp. Speci�cally (6.5) ensure that there is
enough time for the TV to pickup the assigned container, and deliver it in front of the QC, where
as (6.6) make sure the crane loading time is satis�ed. Constraint (6.6) is a linearised version of
the following non-linear constraint.

∑

c∈Cp

xscp = 1⇒ max
s′∈Sp′

(ts
′
p′) + β ≤ tsp ∀p ∈ P, s ∈ Sp, p′ ≺≺ p

The constraint have been linearised using the big-M -method, where H is the maximum time
the loading can take. Constraints (6.7) and (6.8) sets the start and end time for the TVs. The
makespan and the tardiness is calculate in constraints (6.9) and (6.10). Lastly (6.11) - (6.14)
de�nes the variable domains.

In Chapter 4, a number of valid inequalities were added to the base model, which helped to
improve the lower bound. The valid inequality that helped the most was the following

Ends − Starts ≥
∑

c∈C

∑

p∈Pc

2τcpx
s
cp ∀s ∈ S (6.15)

This ensures that the total time a TV works is greater than or equal to the total transportation
time needed for that TV. The combination of (6.5), (6.7) and (6.8) of the R-FSLP model already
ensures that the valid inequality (6.15) is satis�ed, and will thus only add extra complexity to the
model if it is added. However, the valid inequalities (4.17) and (4.19) can be used here as well.
Instead of the symmetry breaking constraint (4.20) based on the working time of the vehicles we
here de�ne a symmetry breaking constraint based on the container assignment. The container
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assignment variables are the main variables in the model, and we therefore expect a symmetry
breaking constraint on those variables to be better than a symmetry breaking constraint on
auxiliary variables. The symmetry breaking constraint is the following

∑

p∈Pq

∑

c∈Cp

xscp ≤
∑

p∈Pq

∑

c∈Cp

xs+1
cp ∀q ∈ Q, s ∈ Sq \ {s|Sq |q } (6.16)

Here it is enforces, that of two vehicles for the same QC, the one with the higher index cannot
be assigned more containers than the one with the lower index.

We use R-FSLP+ to denote the model R-FSLP with the extra constraints (4.17), (4.19) and
(6.16).

6.3 A Hybrid heuristic for the FSLP

In Chapter 4 a GRASP heuristic is presented for the FSLP. The heuristic splits the decisions
in two. First, the service times for the TVs are chosen after which container/position are as-
signed to TVs following the assigned service times. The adaptive control method governs how
the service times are determined. In each iteration, a solution is built from scratch, and the
only information shared between two iterations is how to select the service times. To extend
the algorithm presented in Chapter 4 we will present a hybrid heuristic, combining a genetic
algorithm with the GRASP method. The genetic algorithm will combine two solutions, and this
way information from a previous solution is reused in a later iteration. The GRASP method is
used to provide diversity to the population considered in the genetic algorithm.

A feasible solution to the FSLP can be seen as a combination of partial solutions, one for each
QC. In this context, a partial solution (also denoted QC solution) only assigns containers/TVs to
the positions to be served by a single QC. In a full solution, some of the partial solutions might
be bad, while others might be good. Thus combining two solutions using a genetic algorithm
could result in a better overall solution

Using a crossover method we will combine partial solutions from two parent solutions into an
o�spring solution. Consider a population of |Π| individuals, (i.e solutions), the proposed genetic
algorithm randomly selects 4 individuals, x1, x2, x3, x4. Based on these 4 solutions two parents
solutions are selected

p1 = arg min
x∈{x1 ∪x2}

(f(x)) , p2 = arg min
x∈{x3 ∪x4}

(f(x)) (6.17)

where f(x) is the �tness of the individual x. In eq. (6.17) the most �t of the �rst two individuals
is selected as the �rst parent, and the most �t between the last two individuals is the second
parent. Based on the two parents, two o�springs are made. For the crossover method, let Ω1 ⊂ Q
be a subset of cranes. For all q ∈ Ω1 the QC solution for q will be copied from parent p1 to
the �rst o�spring. For all q ∈ Q \ Ω1 the QC solutions from p2 is used. In a similar fashion let
Ω2 = Q \ Ω1 be the cranes for which the QC solution from p1 should be copied to the second
o�spring. Figure 6.1 illustrates the crossover method. In the example there are 3 QCs and all of
them has to load 3 positions. Each of the QCs have 3 TVs assigned to them, numbered 1, 2, 3
for q1, 4, 5, 6 for q2, and 7, 8, 9 for q3. The numbers are of the format (c, s), and represent a
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container c to be picked up by TV s, to be loaded to the position. Figure 6.1a shows two parents
solutions, and Figure 6.1b are the o�spring when Ω1 = {1, 3} and Ω2 = {2}.

q1 q2 q3

q1 q2 q3

p1

p2

(4, 1)

(3, 2)

(8, 1)

(5, 4)

(2, 5)

(7, 6)

(9, 7)

(1, 7)

(6, 7)

(3, 1)

(1, 2)

(5, 2)

(9, 5)

(4, 5)

(7, 4)

(8, 8)

(2, 8)

(6, 7)

(a) Parent solutions

q1 q2 q3

q1 q2 q3

p1

p2

(4, 1)

(3, 2)

(8, 1)

(9, 5)

(4, 5)

(7, 4)

(9, 7)

(1, 7)

(6, 7)

(3, 1)

(1, 2)

(5, 2)

(5, 4)

(2, 5)

(7, 6)

(8, 8)

(2, 8)

(6, 7)

×

×

× ×

×

×

× ×

(b) O�spring solutions

Figure 6.1: Illustration of the crossover method with Ω1 = {1, 3} and Ω2 = {2}

The crossover method does not automatically result in a feasible solution. In Figure 6.1b the
crosses represents the containers that have been scheduled for multiple positions. To restore
feasibility of the o�spring solutions we use a mutation method. The mutation method identi�es
and removes all occurrences of containers that are scheduled for multiple positions. Along with
the containers not scheduled, the removed containers are then distributed randomly to the, now
unserviced compatible positions, and thus ensuring a feasible solution. While doing so, the
assignment of vehicles to position remains unchanged, but the scheduled times might change due
to new travelling times.

By using the described crossover method, the population will quickly converge, thus limiting
the applicability of this approach. To counter this, we combine the genetic algorithm with the
GRASP heuristic described in Chapter 4. The parameter ρ describes the probability of generating
a new solution instead of using the crossover method. The GRASP method is then used for
nGRASP iterations, and the best solution is included in the population. The adaptiveness of the
GRASP method is preserved, and the quality of the solutions generated should thus increase
during the execution of the hybrid algorithm. Here nGRASP should be kept low to ensure the
execution time does not increase considerably. The GRASP method is also used to initialize the
population Π.

The overall hybrid algorithm can be seen in Algorithm 7. The hybrid algorithm receives the
three parameters, |Π|, ρ and nGRASP as input and line 1 initialises the population Π by using
the GRASP method. Here |Π| iterations are performed, and each solution is included in the
population. The while loop in lines 2-24 runs until it is terminated. The termination criterion
used here is based on the number of iterations n. Lines 3-7 selects the two parents solutions and
generates the sets Ω1 and Ω2 as previously described. Lines 8-23 generates two new solutions
and include those in the population. Based on the value of r, line 10 determines if the crossover
method or the GRASP method should be used. In line 11 the new solution is made based on the
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Algorithm 7 Hybrid Algorithm

Input: |Π|, ρ, nGRASP

1: Π ← InitializePopulation(|Π|)
2: while !Terminate do

3: x1, x2, x3, x4 ← 4 random distinct individuals from Π
4: p1 ← arg min

x∈{x1 ∪ x2}
(f(x))

5: p2 arg min
x∈{x3 ∪ x4}

(f(x))

6: Ω1 ← Uniform random set of cranes. 1 ≤ |Ω1| < |Q|
7: Ω2 ← Q \Q1

8: for all ω ∈ {Ω1 ∪ Ω2} do
9: r ← Uniform random number in [0; 1]

10: if r < 1− ρ then
11: c ← Crossover(p1, p2, ω)
12: Mutate(c)
13: VehicleReassignment(c)
14: else

15: c ← GenerateSolution(nGRASP )
16: end if

17: if !FitnessValueInPopulation(f(c)) then
18: y1, y2 ← 2 random distinct individuals from Π
19: d ← arg max

y∈{y1 ∪ y2}
(f(y))

20: Π.remove(d)
21: Π.add(c)
22: end if

23: end for

24: end while

25: return arg min
x∈Π

(f(x))
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two parents solution, and the crossover set ω, the Mutate method in 12 ensures the feasibility as
previously described. The VehicleReassignment in line 13 is an improvement method based on
reassigning the TVs. This method is also used as part of the GRASP method, and is described in
Chapter 4. If the crossover method is not used then a solution is generated by using the GRASP
method in line 15. Lines 17-22 updates the population. Here FitnessValueInPopulation(f(c))
checks if the population contains an individual with the �tness f(c), if so the solution c is not
included in the population. Lines 18-20 selects two random solutions from the population and
removes the worst of those from the population. Instead, the new individual c is added. Lastly,
line 25 returns the best solution in the population as the best-found solution.

6.4 Column Generation for the FSLP

We now present a column generation approach for FSLP. The aim of this is to provide a starting
point which further research can be built on, to provide better lower bounds for the FSLP, or
ultimately solve the problem using Branch-and-Price.

6.4.1 The master problem

An alternative way to model the problem is to consider all the feasible assignments for a single
vehicle. Here an assignment describes the containers and positions a vehicle will serve, and at
which time. In this problem, all times (β, EFT and all τcp parameters) are assumed to be
integer. Thus there is no accuracy loss by discretising the times in time steps of 1 unit. Let T
be the set of all discretised times, from 0 to H with steps of 1 unit. Also, de�ne Ω(q) as the set
of all feasible TV assignments for a QC q. For a given assignment a, let aac and bap describe
the containers and positions the assignment serves, i.e. aac is 1 if assignment a assigns container
c to a position and 0 otherwise, and bap is 1 if assignment a assigns a container to position p
and 0 otherwise. If an assignment assigns a container to a position p, then tpa denotes the time
at which it is scheduled to be delivered in front of the QC. Given an assignment, we can easily
calculate the service length (νq) and the time at which it ends the operation. Speci�cally, let
Endta = 1 if assignment a ends at time t ∈ T . To model the problem, introduce yqa as a binary
variable.

yqa =

{
1, If quay crane q uses assignment a

0, Otherwise.

and let the variable zt ∈ {0, 1} be 1 if the operation is �nished at time t. With this and the
notation introduced in Section 6.2, the problem can be modelled as follows.

Min Z = α
∑

q∈Q

∑

a∈Ω(q)

νayqa + γ∆EFT (6.18)

Subject to:
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∑

a∈Ω(q)

yqa ≤ |Sq| ∀q ∈ Q (6.19)

∑

a∈Ω(q)

aacyqa = 1 ∀c ∈ C (6.20)

∑

a∈Ω(q)

bapyqa = 1 ∀q ∈ Q, p ∈ Pq (6.21)

∑

a∈Ω(q)

tp′abap′yqa + β ≤
∑

a∈Ω(q)

tpabapyqa ∀q ∈ Q, p ∈ Pq, p′ ≺≺ p (6.22)

|T |∑

t′=t

|Sq|zt
′ ≥

∑

a∈Ω(q)

|T |∑

t′=t

Endt
′
a yqa ∀q ∈ Q, t ∈ T (6.23)

∆EFT ≥
∑

t∈T
tzt − EFT (6.24)

yqa ∈ {0, 1} ∀q ∈ Q, a ∈ Ω(q) (6.25)

zt ∈ {0, 1} ∀t ∈ T (6.26)

∆EFT ∈ Z+ (6.27)

The objective (6.18) is equivalent to (6.1), and thus minimises the cost for the terminal. The
�rst constraint (6.19) guarantees that we only selects as many assignments for a crane as we have
vehicles available. Constraints (6.20) and (6.21) corresponds to (6.2) and (6.3) of Section 6.2, and
ensures that all containers and positions are served exactly once. Constraint (6.22) calculates the
time at which two consecutive positions are served, and enforces that the time between is greater
than or equal to β. Constraint (6.23) ensures that if the operations for a chosen assignment
ends at time t then at least one zt

′
= 1 for t′ ∈ {t . . . |T |} and constraint (6.24) combined with

the objective ensures that zt = 1 for the earliest time at which the total operation is �nished.
Eq. (6.24) also sets the variable ∆EFT . Lastly constraints (6.25)-(6.27) de�nes the variable
domains.

The drawback of the model (6.18)-(6.27) is that it requires the enumeration of all feasible assign-
ments. This makes the model computationally intractable, as the number of feasible assignments
grows exponentially. However, only a small number of the all the variables will be used in an
optimal solution. Therefore, instead of considering the full subset of the assignments, we can
consider a smaller subset of generated assignments Ωgen(q), and generate more assignments along
the way.

This is exactly the idea of column generation, and for this we make a continuous relaxation of the
yqa and z

t variables. Additionally, we de�ne δq as the dual variables associated with constraint
(6.19), and let θc be the dual variables for constraint (6.20), λp for (6.21), πp for (6.22) and lastly
the dual variables for (6.23) are denoted µqt. These dual variables will be used to calculate the
reduced cost of a variable in the pricing problem.
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6.4.2 The pricing problem

The pricing problem generates assignments, and thus adds variables to the master problem. The
purpose of the pricing problem is two-fold: First, if any negative reduced costs assignments
exist it should identify at least one to add to the master. Secondly, prove that no reduced costs
assignments exist. In our case, we will solve |Q| pricing problems in every iteration, one for every
QC. The pricing problem can be modelled as a mixed integer programming problem. For this
let the variable xcp ∈ {0, 1} denote if container c is assigned to position p, and let wtp ∈ {0, 1}
be 1 if position p is served at time t, 0 otherwise. Also, let Endt ∈ {0, 1} be 1 if the assignment
end at time t, 0 otherwise. Lastly de�ne Start as the start time, and z as the end time of the
operation. With this and the notation introduced in Section 6.2, the pricing problem for the QC
q can be modelled as seen below.

Min Z = α(z − Start)− δq −
∑

p∈Pq

∑

c∈Cp

(θc + λp)xcp −
∑

t∈T

t∑

t′=0

µqt′End
t−
∑

p∈Pq

∑

t∈T
(twtp′ − twtp)πp

(6.28)

Subject to:

∑

p∈Pq

xcp ≤ 1 ∀c ∈ C (6.29)

∑

c∈Cp

xcp ≤ 1 ∀p ∈ Pq (6.30)

xcp = 0 ∀p ∈ Pq, c /∈ Cp (6.31)
∑

c∈Cp

xcp =
∑

t∈T
wtp ∀p ∈ Pq (6.32)

∑

t∈T
twtp′ +

∑

c∈Cp

max
(
(p− p′)β, 2τcp

)
xcp ≤

∑

t∈T
twtp +H(1−

∑

c∈Cp

xcp) ∀p ∈ Pq, p′ ≺ p (6.33)

∑

t∈T
twtp −

∑

c∈Cp

2τcpxcp +H(1−
∑

c∈Cp

xcp) ≥ Start ∀p ∈ Pq (6.34)

z ≥
∑

t∈T
twtp ∀p ∈ Pq (6.35)

∑

t∈T
tEndt ≥ z (6.36)

∑

t∈T
Endt ≤ 1 (6.37)

Start ≤ z (6.38)

xcp ∈ {0, 1} ∀c ∈ C, p ∈ Pq (6.39)

wtp ∈ {0, 1} ∀p ∈ Pq, t ∈ T (6.40)

Endt ∈ {0, 1} ∀t ∈ T (6.41)
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Start, z ∈ Z+ (6.42)

The objective (6.28) minimises the reduced costs, and thus guarantees to �nd a negative reduced
cost assignment if one exists. Otherwise, it will prove that no reduced costs assignments exist.
The constraints (6.29) and (6.30) guarantees that a container and position is served at most
once. In (6.31) it is ensured that no incompatible assignment is made and (6.32) enforces that
if a container is assigned a position, a time must be chosen as well. Constraint (6.33) ensures
that there is enough time between two served positions. Here p′ is a position before p in the
loading order, and (p′ − p) is the number of positions between the two positions. Constraint
(6.34) set the Start variable, and constraint (6.35) sets the z variable. Constraint (6.36) links
the Endt variables with the z variable, and constraint (6.37) ensures at most one of the Endt

variable is one. Constraint (6.38) is needed in the case where no containers are assigned to a
position, to ensure that the term α(z−Start) in the objective function does not become negative.
Constraints (6.39)-(6.42) de�nes the domain for the variables.

Solving the model (6.28)-(6.42) |Q| times per iteration will be computationally expensive, con-
sequently slowing down the overall method. However, with minor modi�cations to the problem,
it can be solved as a simple shortest path problem in a time-expanded graph.

6.4.3 The pricing problem as a shortest path problem

Constraint (6.29) of the pricing problem makes certain that an assignment only schedules a
container to at most a single position. However, if we allow assignments to assign the same
container to multiple positions, the pricing problem can be solved as a simple shortest path
problem.

Let G be a weighted directed acyclic graph with V (G) as the vertex set and E(G) as the set of
edges. A vertex symbolizes a container c to be loaded onto position p at time t. Thus a vertex i
can be described by the tuple 〈p, c, t〉. Figure 6.2 shows an example graph with 1 QC, 3 positions
and containers, H = 4 and β = 1. Figure 6.2 illustrate the vertices, and the labels on top and to
the left describe which position/container the node is for, and the number within the node is the
time associated with the node. As can be seen from the graph, not all containers are compatible
with all positions. The time it takes to go from the QC to the containers yard position and back
to the QC is the time 2τcp shown in the table in Figure 6.2.

Besides the source and the terminal, we de�ne two sets of vertices; delivery vertices and dummy
vertices. The delivery vertices are for scheduled deliveries, and the dummy vertices help to satisfy
the constraints of the problem. For a position p there is a set of vertices for every container c
that is compatible with position p. For a given position-container combination we calculate the
earliest possible time this container c can be delivered for position p. For this, let qf be the �rst
position served by the considered QC q. Thus qf − p is the number of positions the crane will
load before loading position p, and the earliest possible time the container can be loaded is thus
max((p − qf )β, 2τcp). Here we both consider the crane loading time and the travelling time to
retrieve the considered container. Therefore the set of delivery nodes can be de�ned as follows.

VDelivery = {i = 〈p, c, t〉 | p ∈ Pq ∧ c ∈ Cp ∧ t ∈ Z+ ∧ max((p− qf )β, 2τcp) ≤ t ≤ H} (6.43)
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s

Position 1 Position 2 Position 3

Container 1

Container 2

Container 3

0 1 2 3 4 1 2 3 4 2 3 4

2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

3 4

t

c p 2τcp
1 1 2
1 2 -
1 3 1
2 1 -
2 2 1
2 3 1
3 1 1
3 2 3
3 3 -

Delivery Nodes Dummy Nodes

Figure 6.2: Vertex illustration. The numbers within the nodes describes the time the node is associated
with, and the table describe the travelling times for the position/container combinations.

For every delivery node, there is one single out-going edge to the dummy node for the same
time and position. There is no container attached to the dummy nodes, and they can thus be
described by the tuple 〈p, ∅, t〉. The out-going edges of the dummy nodes ensure that there is
su�cient time between two deliveries of an assignment. The dummy nodes can be de�ned as
follows.

VDummy = {i = 〈p, ∅, t〉 | p ∈ Pq ∧ t ∈ Z+ ∧ (p− qf )β ≤ t ≤ H} (6.44)

Finally, we have a source, s, and a terminal t. Hence the full set of vertices is

V (G) = s ∪ t ∪ VDelivery ∪ VDummy

The full set of edges E(G) can be split up into 4 sets of edges. First, the edges leaving the source
node (E−s ). Second, the edges leaving the dummy nodes excluding the ones to the terminal vertex
(E−Dummy). Third, the edges leaving the delivery nodes (E−Delivery), and lastly the set of edges

entering the terminal vertex (E+
t ). These edges are illustrated in Figure 6.3. In Figure 6.3b only

edges from the shown dummy nodes are illustrated. The edges from the set E−Dummy ensures
there that there is su�cient time between two containers scheduled in the assignment.

From the source vertex there are edges going out to all the dummy nodes, and all the delivery
nodes for the �rst served position.

E−s = {(s, i)|i ∈ VDelivery(qf ) ∨ i ∈ VDummy} (6.45)

Here VDelivery(qf ) are the set of delivery vertices for the position qf . A dummy node has edges
going to all compatible delivery nodes. In this context, two nodes are compatible if the time
di�erence is su�ciently large, considered the travelling time and crane loading time. Let pi be
the position for node i and ti the time for node i, with this the set E−Dummy can be de�ned as
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(a) Illustration of the edges from the set E−s
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(b) Illustration of the edges from the set
E−Dummy. Only the edges from the shown
dummy nodes are illustrated.

s

E−
Delivery

0 1 2 3 4 1 2 3 4 2 3 4

2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

3 4

t

(c) Illustration of the edges from the set
E−Delivery
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(d) Illustration of the edges from the set E+
t

Figure 6.3: Illustration of the edges

follows.

E−Dummy = {(i, j), i ∈ VDummy, j = 〈p, c, t〉|p > pi ∧ c ∈ Cp ∧ ti + max(2τcp, (p− pi)β) ≤ t ≤ H}
(6.46)

As mentioned earlier, all delivery nodes only have a single out-going edge, namely to the associ-
ated dummy node.

E−Delivery = {(i, j), i ∈ VDelivery, j = 〈p, ∅, t〉|p = pi, t = ti} (6.47)

From all the dummy nodes there are an edge to the terminal vertex, and E+
t can thus be de�ned

as follows.

E+
t = {(i, t)|i ∈ VDummy} (6.48)

The full set of edges is then

E(G) = E−s ∪ E−Dummy ∪ E−Delivery ∪ E+
t

The s − t-path shown in Figure 6.2 corresponds to an assignment where position 1 is served at
time 1 with container 3 and position 3 is served at time 3 with container 1.

The weight of the edges depends on the dual variables from the master, and the cost of any s− t-
path must coincide with the reduced cost of the corresponding variable. For this, we split the
weight of an edge up into four sub parts. First, a cost for moving forward in the time dimension
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(w(α)). Second, one for picking up containers and servicing a position (w(θ, λ)). Third, one
depending on the time a position is served (w(π)), and lastly one depending on the end time
(w(µ)). The total weight of an edge can be written as

w = w(α) + w(θ, λ) + w(π) + w(µ)

Table 6.1 breaks down the value of each of the four sub parts, depending on the type of edge.
Here the set E−s if broken in two, one for the edges going to delivery nodes, and one for the edges
going to dummy nodes. Let R be the set of edges in the shortest s− t-path. Then∑e∈R e(w(α))
will be the time cost for the assignment, and thus corresponds to the �rst term in (6.28). Here
e(w(α)) is the value of w(α) for the edge e.

∑
e∈R e(w(θ, λ)) will coincide with the third term,

and
∑

e∈R e(w(µ)) will be the fourth term. Lastly
∑

e∈R e(w(π)) will be equal to the �fth term.
The reduced cost of the corresponding variable will be

r =
∑

e∈R
e(w)− δq

if r < 0 the variable corresponding to the path has negative reduced cost and is then added to
the master problem.

Table 6.1: Breakdown of the edge weights.

E−s,delivery E−s,dummy E−Dummy E−Delivery E+
t

w(α) αtj 0 α(tj − ti) 0 0
w(θ, λ) -(θcj + λpj ) 0 -(θcj + λpj ) 0 0
w(π) 0 0 0 -(tiπpi − tiπpi+1) 0

w(µ) 0 0 0 0 -

ti+β∑

t=0

µqt

The graph as described here is a directed acyclic graph, and thus the shortest path can be
calculated in linear time by sorting the vertices in a topologically order, before using Dijkstra's
algorithm.

6.5 Results

In this section, we report the results of the presented models and methods. The methods pre-
sented have been tested using a 2.30 GHz Intel Xeon E5 Processor. All models are solved using
CPLEX version 12.7.

6.5.1 Results for the R-FSLP model

To compare the results from the R-FSLP model with the FSLP+ model from Chapter 4, it has
been tested under similar conditions; A time limit of 3 hours is imposed, and the models are run
with four threads.

Table 6.2 and Table 6.3 shows the result from the R-FSLP model, and its extensions. The �rst
columns describe the instance characteristics, with |C| being the number of containers, |CT |
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the number of container types and |Q| the number of QCs. D is the density, which describes
the distance between the containers in the yard. The densities are Less Dense (LD), Scattered
(S ) and Uniform (U). For all of the tested models, the table reports the solution in the root
node (xRoot), the �nal lower bound (xLB), the value of the �nal solution (xUB). In the tables,
Gap(xUB) is the relative di�erence between the lower bound and �nal solution and t(s) is the
time spent in seconds. The values for the best found bound, and the best-found solution is
written in bold.

Table 6.2 reports the results for the R-FSLP and R-FSLP+ model and compares with the results
from the FSLP+ model from Chapter 4. Comparing R-FSLP and FSLP+, it is clear that R-
FSLP is a better model than FSLP+. The gap is substantially improved in almost all of the
test instances. The improvement is both due to improved lower bounds and better solutions.
Comparing R-FSLP with R-FSLP+, it can be seen that adding the extra constraints ((4.17),
(4.19), and (6.16)) does not improve the performance, but the contrary. A reason for this could
be that the added complexity outweighs the bene�ts with regards to bound improvements and
generated cuts.

Table 6.3 evaluate the bene�t of each of the valid inequalities. Here we remove constraints
from the extended model (R-FSLP+) one at a time. Comparing with the results from the
extended model we can then evaluate the bene�t of adding the constraints. Table 6.3 shows that
the symmetry breaking constraint (6.16) deteriorates the model. Removing the constraint, the
performance of the model is comparable to the simple model R-FSLP.



Table 6.2: Performance of enhancements. '−' symbolises that no feasible solution were found within the time limit, and '†' is used
for the instances where the execution was terminated due to insu�cient memory.

FSLP+ R-FSLP R-FSLP+

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1500 1500 1775 15.5% 10800 1530 1563 1665 6.10% 10800 1530 1560 1710 8.77% 10800
60 10 2 S 1020 1020 1030 1.0% 10800 1020 1020 1020 0.00% 50 1020 1020 1020 0.00% 208
60 10 2 U 1640 1640 1920 14.6% 9004† 1652 1680 1770 5.08% 10800 1652 1680 1825 7.95% 10800
60 25 2 LD 2030 2030 2345 13.4% 10800 2060 2199 2265 2.89% 10800 2060 2220 2250 1.33% 10800
60 25 2 S 1360 1360 1470 7.5% 6215† 1360 1360 1410 3.55% 10800 1360 1360 1395 2.51% 10800
60 25 2 U 1490 1490 1520 2.0% 10800 1490 1490 1490 0.00% 379 1490 1490 1490 0.00% 227

Average 9.0% 9737 2.94% 7271 3.43% 7273

240 20 2 LD 7850 7850 14795 46.9% 10800 7880 7880 11690 32.59% 10800 7880 7880 11065 28.78% 10800
240 20 2 S 4440 4440 8225 46.0% 10800 4440 4440 4950 10.30% 10800 4440 4440 5040 11.90% 10800
240 20 2 U 6720 6720 11765 42.9% 10800 6720 6720 8425 20.24% 10800 6720 6720 9380 28.36% 10800
240 60 2 LD 8230 8230 11035 25.4% 10800 8260 8260 10240 19.34% 10800 8260 8260 10860 23.94% 10800
240 60 2 S 5280 5280 6555 19.5% 10800 5280 5280 6555 19.45% 10800 5280 5280 6535 19.20% 10100†
240 60 2 U 7250 7250 10845 33.1% 10800 7580 7610 10235 25.65% 10800 7580 7610 9435 19.34% 10600†

Average 35.6% 10800 21.26% 10800 21.92% 10650

500 20 4 LD 14390 14390 - - 10800 14420 14420 21445 32.76% 10800 14420 14420 20820 30.74% 10800
500 20 4 S 8250 8250 - - 10800 8250 8250 11315 27.09% 10800 8250 8250 11775 29.94% 10800
500 20 4 U 14350 14350 - - 10800 14380 14410 19120 24.63% 10800 14380 14380 22180 35.17% 10800
500 60 4 LD 14460 14460 - - 10800 14490 14490 19660 26.30% 10800 14490 14520 24740 41.31% 10800
500 60 4 S 11840 11840 - - 10800 11840 11840 15110 21.64% 10800 11840 11840 14035 15.64% 10800
500 60 4 U 15500 15500 264170 94.1% 10800 15530 15540 20020 22.38% 10800 15530 15530 21680 28.37% 10800
500 100 4 LD 15390 15390 - - 10800 15420 15450 19205 19.55% 10800 15420 15450 19355 20.18% 10800
500 100 4 S 9490 9490 - - 10800 9490 9490 10610 10.56% 10800 9490 9490 10575 10.26% 10800
500 100 4 U 16230 16230 22625 28.3% 10800 16260 16290 19390 15.99% 10800 16260 16290 20030 18.67% 10800

Average 61.2% 10800 22.32% 10800 25.59% 10800

1000 20 4 LD † † † † † 21970 21990 48185 54.36% 10800 21970 21990 - - 10800
1000 20 4 S † † † † † 14570 14570 - - 10800 14570 14570 - - 10800
1000 20 4 U † † † † † 25950 25950 63125 58.89% 10800 25940 25980 58680 55.73% 10800
1000 60 4 LD 27070 27070 - - 10800 27080 27100 63770 57.50% 10800 27100 27100 - - 10800
1000 60 4 S 17950 17950 - - 10800 17950 17950 50210 64.25% 10800 17950 17950 56485 68.22% 10800
1000 60 4 U 40230 40230 - - 10800 40260 40260 405115 90.06% 10800 40260 40260 402555 90.00% 10800
1000 100 4 LD 28740 28740 - - 10800 28770 28770 - - 10800 28770 28770 308400 90.67% 10800
1000 100 4 S 17840 17840 - - 10800 17840 17840 264100 93.24% 10800 17840 17840 - - 10800
1000 100 4 U 32180 32180 - - 10800 32210 32210 86965 62.96% 10800 32210 32210 66580 51.62% 10800

Average - 10800 68.75% 10800 71.25% 10800



Table 6.3: Performance of enhancements. '−' symbolises that no feasible solution were found within the time limit, and '†' is used
for the instances where the execution was terminated due to insu�cient memory.

R-FSLP+ - (4.17) R-FSLP+ - (4.19) R-FSLP+ - (6.16)

|C| |CT | |Q| D xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s) xRoot xLB xUB Gap(xUB) t(s)

60 10 2 LD 1530 1560 1710 8.77% 10800 1530 1562 1665 6.19% 10800 1530 1560 1710 8.77% 10800
60 10 2 S 1020 1020 1020 0.00% 207 1020 1020 1020 0.00% 252 1020 1020 1020 0.00% 26
60 10 2 U 1652 1680 1825 7.95% 10800 1652 1680 1900 11.58% 10800 1652 1680 1830 8.20% 10800
60 25 2 LD 2060 2141 2250 4.86% 10800 2060 2180 2265 3.75% 10800 2060 2250 2250 0.00% 5468
60 25 2 S 1360 1360 1395 2.51% 10800 1360 1360 1420 4.23% 10800 1360 1361 1395 2.45% 10800
60 25 2 U 1490 1490 1490 0.00% 228 1490 1490 1490 0.00% 251 1490 1490 1490 0.00% 297

Average 4.01% 7272 4.29% 7284 3.24% 6365

240 20 2 LD 7880 7880 10920 27.84% 10800 7880 7880 11065 28.78% 10800 7880 7880 10760 26.77% 10800
240 20 2 S 4440 4440 5040 11.90% 10800 4440 4440 5040 11.90% 10800 4440 4440 4950 10.30% 10800
240 20 2 U 6720 6720 9380 28.36% 10800 6720 6720 9380 28.36% 10800 6720 6720 8425 20.24% 10800
240 60 2 LD 8260 8260 10285 19.69% 10800 8260 8260 10630 22.30% 10800 8260 8260 10415 20.69% 10800
240 60 2 S 5280 5280 6535 19.20% 10100† 5280 5280 6540 19.27% 10800 5280 5280 6660 20.72% 10800
240 60 2 U 7580 7610 9435 19.34% 10500† 7580 7610 10380 26.69% 10800 7580 7610 9790 22.27% 8000†

Average 21.06% 10633 22.88% 10800 20.16% 10333

500 20 4 LD 14420 14420 19820 27.25% 10800 14420 14420 20820 30.74% 10800 14420 14420 22540 36.02% 10800
500 20 4 S 8250 8250 11775 29.94% 10800 8250 8250 11775 29.94% 10800 8250 8250 11300 26.99% 10800
500 20 4 U 14380 14410 19975 27.86% 10800 14380 14380 22180 35.17% 10800 14380 14380 20870 31.10% 10800
500 60 4 LD 14490 14520 18075 19.67% 10800 14490 14520 19065 23.84% 10800 14490 14520 17850 18.66% 10800
500 60 4 S 11840 11840 14035 15.64% 10800 11840 11840 16065 26.30% 10800 11840 11840 14095 16.00% 10800
500 60 4 U 15530 15530 19460 20.20% 10800 15530 15530 23130 32.86% 10800 15530 15560 20200 22.97% 10800
500 100 4 LD 15420 15450 18285 15.50% 10800 15420 15450 19960 22.60% 10800 15420 15450 18000 14.17% 10800
500 100 4 S 9490 9490 10575 10.26% 10800 9490 9490 11125 14.70% 10800 9490 9490 10790 12.05% 10800
500 100 4 U 16260 16290 20000 18.55% 10800 16260 16290 20100 18.96% 10800 16260 16260 18650 12.82% 10800

Average 20.54% 10800 26.12% 10800 21.20% 10800

1000 20 4 LD 21970 21990 - - 10800 21970 21990 - - 10800 21970 21990 74560 70.51% 10800
1000 20 4 S 14570 14570 - - 10800 14570 14570 - - 10800 14570 14570 - - 10800
1000 20 4 U 25940 25980 315260 91.76% 10800 25940 25980 58680 55.73% 10800 25950 25980 660910 96.07% 10800
1000 60 4 LD 27080 27100 - - 10800 27080 27100 409460 93.38% 10800 27080 27100 63465 57.30% 10800
1000 60 4 S 17950 17950 56485 68.22% 10800 17950 17950 288695 93.78% 10800 17950 17950 - - 10800
1000 60 4 U 40260 40260 405255 90.07% 10800 40260 40260 126105 68.07% 10800 40260 40260 85390 52.85% 10800
1000 100 4 LD 28750 28770 62720 54.13% 10800 28750 28770 55870 48.51% 10800 28750 28770 674000 95.73% 10800
1000 100 4 S 17840 17840 - - 10800 17840 17840 349010 94.89% 10800 17840 17840 30920 42.30% 10800
1000 100 4 U 32210 32210 72745 55.72% 10800 32210 32210 286495 88.76% 10800 32210 32210 250080 87.12% 10800

Average 71.98% 10800 77.59% 10800 71.70% 10800
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6.5.2 Results for the hybrid heuristic

When testing the hybrid heuristic, the following values are used

|Π| = 30 ρ = 25% nGRASP = 1

As for the stopping criteria we use n = 100, 000. The implementation of the hybrid heuristic
uses the same implementation of the GRASP heuristic as the one described in Chapter 4 and
the parameter values are reused as well. To account for the randomness, the hybrid heuristic is
executed 10 times for each instance. Table 6.4 shows the results for the hybrid heuristic, and
compares with the results from the GRASP method as presented in Chapter 4.1 The �rst four
columns in Table 6.4 reports the instance characteristics similar to Table 6.2-6.3. The next three
columns show the best known lower bound, and best known upper bound from Table 6.2 and
Table 6.3, and the gap between these. For the two heuristics Table 6.4 reports the value of the
best-found solution (xb), the average value of the solutions (x̄), and the best and average gap
(Gap(xb), Gap(x̄)) with respect to best known lower bound. The columns t̄ (s) is the average
time spent in seconds.

Table 6.4: Heuristic results: Comparison between the GRASP heuristic and
the hybrid heuristic

Best Known GRASP Hybrid

|C| |CT | |Q| D xLB xUB Gap(xUB) xb x̄ Gap(xb) Gap(x̄) t̄ (s) xb x̄ Gap(xb) Gap(x̄) t̄ (s)

60 10 2 LD 1563 1665 6.10% 1805 1814.5 13.38% 13.83% 9.9 1795 1797 12.90% 13.00% 9.8
60 10 2 S 1020 1020 0.0% 1060 1067 3.77% 4.40% 7.5 1020 1032 0.00% 1.15% 8.2
60 10 2 U 1680 1770 5.08% 1895 1902.5 11.35% 11.69% 8.8 1845 1867 8.94% 10.01% 9.1
60 25 2 LD 2250 2250 0.0% 2435 2435 7.60% 7.60% 10.4 2435 2435 7.60% 7.60% 9.4
60 25 2 S 1361 1395 2.45% 1425 1436.5 4.50% 5.27% 10.1 1395 1413 2.45% 3.69% 9.3
60 25 2 U 1490 1490 0.0% 1545 1552.5 3.56% 4.02% 8.5 1510 1527.5 1.32% 2.45% 8.3

Average 2.27% 7.36% 7.80% 9.2 5.54% 6.32% 9.0

240 20 2 LD 7880 10760 26.77% 9430 9448 16.44% 16.60% 80.5 9365 9391.5 15.86% 16.09% 66.7
240 20 2 S 4440 4950 10.30% 4790 4807.5 7.31% 7.64% 36.2 4720 4757.5 5.93% 6.67% 33.5
240 20 2 U 6720 8425 20.24% 8140 8333.5 17.44% 19.35% 36.8 7735 7955.5 13.12% 15.50% 34.8
240 60 2 LD 8260 10240 19.34% 10105 10123 18.26% 18.40% 131.1 10085 10105.5 18.10% 18.26% 70.3
240 60 2 S 5280 6535 19.20% 5660 5706.5 6.71% 7.47% 53.4 5520 5604 4.35% 5.78% 45.8
240 60 2 U 7610 9435 19.34% 9065 9140.5 16.05% 16.74% 52.8 8675 8889 12.28% 14.38% 41.2

Average 19.20% 13.70% 14.37% 65.1 11.61% 12.78% 48.7

500 20 4 LD 14420 19820 27.25% 15585 15639 7.48% 7.79% 538.7 15400 15528 6.36% 7.13% 258.9
500 20 4 S 8250 11300 26.99% 9020 9129.5 8.54% 9.63% 75.0 8865 8925 6.94% 7.56% 72.7
500 20 4 U 14410 19120 24.63% 15585 15594.5 7.54% 7.60% 381.9 15400 15482 6.43% 6.92% 201.5
500 60 4 LD 14520 17850 18.66% 16130 16225.5 9.98% 10.51% 648.3 15950 16022.5 8.97% 9.38% 289.3
500 60 4 S 11840 14035 15.64% 13005 13080 8.96% 9.48% 72.2 12510 12718 5.36% 6.89% 69.4
500 60 4 U 15560 19460 20.04% 17125 17173 9.14% 9.39% 287.1 17075 17111 8.87% 9.06% 176.1
500 100 4 LD 15450 18000 14.17% 17475 17562 11.59% 12.03% 627.7 17185 17324.5 10.10% 10.82% 286.3
500 100 4 S 9490 10575 10.26% 10425 10547.5 8.97% 10.02% 73.6 10190 10415 6.87% 8.87% 71.2
500 100 4 U 16290 18650 12.65% 18495 18544 11.92% 12.15% 282.8 18290 18379 10.93% 11.37% 181.2

Average 18.92% 9.35% 9.84% 331.9 7.87% 8.67% 178.5

1000 20 4 LD 21990 48185 54.36% 24225 24277 9.23% 9.42% 1984.0 24130 24201.5 8.87% 9.14% 818.6
1000 20 4 S 14570 - - 16230 16414 10.23% 11.23% 292.2 15945 16152.5 8.62% 9.79% 237.8
1000 20 4 U 25980 58680 55.73% 28295 28354.5 8.18% 8.37% 1730.9 28235 28303.5 7.99% 8.21% 783.5
1000 60 4 LD 27100 63465 57.30% 30000 30074 9.67% 9.89% 2821.9 29810 29882.5 9.09% 9.31% 1159.2
1000 60 4 S 17950 50210 64.25% 20305 20599 11.60% 12.85% 174.8 19590 20244 8.37% 11.31% 171.7
1000 60 4 U 40260 85390 52.85% 44055 44095.5 8.61% 8.70% 1209.3 43855 43991.5 8.20% 8.48% 618.3
1000 100 4 LD 28770 55870 48.51% 32330 32372 11.01% 11.13% 3129.7 32040 32206.5 10.21% 10.67% 1220.7
1000 100 4 S 17840 30920 42.30% 20150 20347 11.46% 12.32% 177.2 19830 20057.5 10.04% 11.05% 172.9
1000 100 4 U 32210 66580 51.62% 36160 36228 10.92% 11.09% 2194.8 35940 36014.5 10.38% 10.56% 804.8

Average 53.37% 10.10% 10.56% 1523.9 9.08% 9.84% 665.3

Average 25.04% 10.05% 10.55% 571.6 8.51% 9.37% 264.7

1Compared with Chapter 4, some of the gaps for the GRASP method are lower here. This is due to the
improvement of the lower bounds.
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The results in Table 6.4 shows that the hybrid heuristic �nds solutions with an average gap of
9.37%, in approx. 5 min on average. When evaluating the heuristic based on the gap, we need to
account for the quality of the lower bound. For the smallest instances (|C| = 60) the best-known
gap is only 2%, and thus we have reason to believe the lower bounds for those instances are
better than for the rest of the instances. Now, focusing on the hybrid heuristic for the smallest
instances we see that the gap here is lower compared to the rest of the instances. Leaving us to
believe that there is as much further research to be done on improving the lower bounds as there
is to improve the heuristic.

Comparing the GRASP and the hybrid heuristic, we see that the hybrid heuristic �nds better
solutions using approximately half of the time. The expected number of GRASP iterations for
the hybrid heuristic is

|Π|+ 2nρnGRASP = 50030

The GRASP iterations are the most computationally expensive part of the method, and therefore
it is expected that the hybrid heuristic is faster, as fewer GRASP iterations are performed
compared to the GRASP standalone heuristic presented in Chapter 4.

Figure 6.4 shows how the two heuristics converge towards the �nal solution. The data is grounded
on ten runs of each instance. Figure 6.4a shows how the two heuristics converge per iteration,
and Figure 6.4b is the convergence over time. The graphs show what we also see in Table 6.4;
i.e. the hybrid heuristic �nds better solutions, using only half of the time.
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Figure 6.4: Convergence of the GRASP heuristic and the hybrid heuristic.

6.5.3 Column generation results

The column generation procedure as described in Section 6.4 solves an LP-relaxation and com-
putes a lower bound. Therefore the results are compared with the linear relaxation of the models
FSLP+ (LP-FSLP+) and R-FSLP (LP-R-FSLP). Table 6.5 shows the result. For the three test
models, x is the value of the linear relaxation, and t is the time in seconds used to solve the
relaxation. Along with these the column generation method also reports the number of itera-
tions (Ite), the number of columns added to the �nal master problem (|Ωgen|) and the time spent
generating variables in the pricing problem tprice.
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Table 6.5: Results for the column generation procedure.

LP-FSLP+ LP-R-FSLP Column Generation

|C| |CT | |Q| D x t(s) x t(s) Ite |Ωgen| x tprice(s) t(s)

60 10 2 LD 1500 0.38 1530 0.07 195 394 1500 29.59 31.98
60 10 2 S 1020 0.32 1020 0.05 196 394 1020 21.67 23.98
60 10 2 U 1640 0.33 1645 0.05 251 481 1640 41.04 44.81
60 25 2 LD 2030 0.14 2060 0.02 135 269 2030 12.15 13.58
60 25 2 S 1360 0.17 1360 0.02 169 333 1360 8.57 10.00
60 25 2 U 1490 0.25 1490 0.04 158 316 1490 11.42 12.92

Table 6.5 shows that the column generation procedure �nds the same lower bound as the LP-
relaxation of the model FSLP+ from Chapter 4. For half of the instances, the LP-relaxation of
R-FSLP gives a stronger lower bound. Looking at the times for the column generation method,
it can be seen that most of the time is spent in the pricing problem. Comparing the times for
the three methods, we can see that the column generation method is much slower than the two
others.

6.6 Conclusion

In this chapter we have proposed a set of new solution approaches for the Flexible Ship Loading
Problem. The studied problem aims to integrate terminal-oriented stowage planning with the
routing and scheduling of transfer vehicles. First, we have formulated a mathematical model for
the problem, which outperforms the state-of-the-art. The revised model both �nds better solu-
tions and improves the previously best known lower bounds. Secondly, a novel hybrid heuristic
has been proposed. The hybrid heuristic is a hybridization between the GRASP heuristic pre-
sented in Chapter 4, and a genetic algorithm. The heuristic improves the state-of-art and does
so using considerably less computational e�ort. In the results section, it is argued that the lower
bounds found by the mathematical model are of poor quality for the medium to large instances.
To lay the foundation for improving the lower bounds, a column-generation algorithm has been
described. However, the column-generation algorithm does not improve the lower bounds. To
improve the lower bounds, we plan to devise di�erent cuts to add to the existing decomposed
model, or by decomposing the problem di�erently. Another way to decompose the problem could
be to generate crane-plans instead of vehicle-plans, as is done currently. Doing so the time aspect
can be handled in the pricing problem, making the master problem easier. The pricing problem
will, however, be more complex, but it should also correspond to an improved lower bound.

Additional ideas for further research is to go beyond some of the underlying assumptions of
this problem, e.g. include the load sequencing as part of the decision, or allowing a vehicle
to transport containers to be loaded by di�erent QCs, i.e. allowing for vehicle pooling. The
decomposed model presented here can handle vehicle pooling naturally. The master problem
will largely remain the same, and only the subproblem will need to change to allow for vehicle
pooling.
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