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Abstract 

The isobaric-isothermal phase equilibrium (PT Flash) calculation has been an active research 

topic of thermodynamics for decades. In this work, the conventional framework of the PT Flash 

calculation, consisting of stability analysis and phase-split calculation, is briefly reviewed by 

giving the key working equations of the first- and second-order methods. With different type of 

equations of state, the numerical aspects of the PT Flash calculation have been systematically 

investigated for various systems over a wide range of conditions: the significance of the first-

order methods, volume based versus pressure based second-order methods, a safe-unstable 

criterion in stability analysis, comparisons of different models and modelling approaches, as well 

as an iterative reuse of the converged volume as an initial guess in the volume root solver. 

Moreover, the same numerical algorithm is used in the second-order methods for both volume 

and pressure based stability analysis as well as pressure based phase-split calculation for fair 

comparisons to the largest possible extent.  The results reveal that a few iterations of the pressure 

based first-order method will significantly improve the efficiency of stability analysis, and it is 

not more efficient to use a volume based second-order method from an overall point of view. A 

volume based second-order method can improve the efficiency of phase-split calculation, of 

which the extent depends on the systems and models. This study also shows that the efficiency 

deterioration of using association models compared to cubic ones is moderate. 
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1. Introduction 

The isobaric-isothermal phase equilibrium (PT Flash) calculation is one of the most important 

one-stage equilibrium problems. A PT Flash calculation is usually needed when the physical 

properties of a system at given temperature and pressure are required. The PT Flash calculation 

in principle is a global minimization problem, as the objective is to find the number of phases 

and their compositions and amounts that represent the minimum Gibbs free energy of the system. 

The ground-breaking technology of the PT Flash calculation is from Michelsen 
1,2

, of which the 

framework consists of stability analysis, checking if the Gibbs free energy of the system can be 

decreased by adding a new phase, and phase-split calculation, determining the phase types, 

amounts and compositions that give a (local) minimum of the Gibbs free energy. Even though 

there are some other frameworks for solving the PT Flash problem 
3,4,5

, most of the research on 

this topic has been following the idea of Michelsen 
6-19

. This will be the framework used in this 

work as well. 

A typical overall procedure of a PT Flash calculation is presented in Figure S1 in the Support 

Information. The PT Flash calculation may start from either stability analysis or equilibrium K-

factors (see the definition in the Theory section 2.2). If the calculation starts from equilibrium K-

factors, it is customary to obtain the initial values from the Wilson equation when there is no 

advanced information available. In this work, however, the calculation starts from stability 

analysis. If the stability analysis shows that the system is unstable, the output is used to generate 

the initial estimates of K-factors for phase-split calculation. The phase-split calculation then 

determines the number, types, fractions and compositions of the phases at equilibrium. When the 

phase-split calculation finishes, the stability of the new formed system will be analyzed again, 

and the procedure iterates. In principle, this iteration loop shall continue until a stable system is 

revealed by stability analysis, while in practice it would be wise to terminate the iteration loop by 

setting a maximum allowed number of phases in case any numerical failure occurs. Since the 

works of Michelsen 
1,2

, numerous studies have been devoted to this topic. Some developed local 

minimization algorithms and some others proposed global minimization methods for stability 

analysis, phase-split calculation or both 
6- 30

. One of the best references on the PT Flash 

calculation shall be the book from Michelsen and Mollerup 
31

. It is generally considered that 

local minimization algorithms are more efficient, while the global minimization ones are safer. 
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According to the previous experience, a well-organized local minimization algorithm will be 

very robust for general PT Flash problems. Hence, a local minimization approach is used in this 

work. 

The research on using volume instead of pressure as one of the specifications has been becoming 

a hot topic for stability analysis and/or equilibrium calculations 
4,5,11,32-38

. Michelsen presented 

the formula and commented the use of volume based method in stability analysis 
1,31

. Nagarajan 

et al. presented a volume based method in terms of molar densities, and demonstrated its 

robustness in difficult PT Flash problems 
32

. Nichita and co-workers have developed global 

optimization as well as local minimization methods for volume based stability analysis 
33,38,39

. 

Mikyška and co-workers have derived the volume based stability criterion, developed solution 

methods and applied them into isochoric-isothermal equilibrium problems 
34,37

. Castier presented 

the use of a combination of a local minimization algorithm and a global optimization method for 

volume based stability analysis and how the stability analysis results can be used as initial 

estimates for the subsequent phase-split calculation 
36

. It can be seen that the use of volume 

based method for the PT Flash calculation is still limited 
30,33

. On one hand, as pointed out by 

Michelsen 
1,31

, the volume based formula is identical to the pressure based formula for 

determining the stability for a PT (pressure and temperature) specified stability analysis problem. 

As shown by Paterson et al. 
30

, on the other hand, a volume based method can be used to solve 

the PT phase-split calculation. In this work, the usage of volume based second-order (SO) 

methods for both stability analysis and phase-split calculation is investigated and compared with 

the traditional approach, i.e. pressure based methods. The computational efficiency and the 

overall strategy for a general PT Flash calculation are the main focuses. In order to have ‘fair’ 

comparisons to the largest possible extent, the working equations are formulated in a way that 

the same numerical algorithm and different type of equation of state (EOS) models can be used 

for the same systems. 

The rest of this work is organized as follows: the key working equations for both stability 

analysis and phase-split calculation are briefly presented in Section 2; the models and systems 

are introduced in Section 3; the results are presented and discussed in Section 4, followed by the 

conclusions in Section 5. 
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2. Theory 

2.1 Stability analysis 

The necessary and sufficient condition for the stability of a phase at given temperature and 

pressure is that the tangent plane distance is non-negative for any trial phase composition. 

�����, �, �	 = 	�� �����, �, �	�� − ����, �,�	�� �
�

 (1)  

where �, � and � are temperature, pressure and gas constant, respectively. � and � are the mole 

fractions of the trial and tested phase, respectively. � is the mole fraction of component �, and �� 
is the chemical potential of component �, which is given by 

����, �, �	 = 	��∗��, �∗	 + ��ln ���∗ =	��∗��, �∗	 + �� �ln� + ln ��∗ + ln����, �, �	� (2)  

where ��∗ is the chemical potential of component � in the ideal gas state at the reference pressure 

�∗, �� and �� are respectively the fugacity and fugacity coefficient of component �. The �� is a 

homogeneous function of degree zero in number of moles and is calculable 

ln����, �, �	 = 	 ��  !��, ", �	 ��⁄�$� �
%,&

− ln' (3)  

where  ! , "  and '  are the residual Helmholtz free energy, total volume and compressibility 

factor, respectively. �  is the corresponding vector of $� , which is the number of moles of 

component �, and apparently has the following relationship to the mole fraction �, 
� =	 $�∑$� =	

$�$  (4)  

where $ is the total number of moles of the given phase. 

In terms of composition and fugacity coefficient, equation (1) can be rewritten 
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�����, �, �	 = 	��)ln� + ln����, �, �	 − ln*� − ln����, �,�	+
�

=	��)ln� + ln����, �, �	 − ��+
�

 

(5)  

where *� is the mole fraction of component � in the tested phase, and �� is an auxiliary variable. 

The computational approach for stability analysis proposed by Michelsen 
1,31

 is based on the fact 

that the tangent plane distance is non-negative everywhere if and only if it is non-negative at all 

of its stationary points, and the practical approach is to locate the local minima by unconstrained 

optimization methods of the objective function 

�,��, �, �	 = 1 +	�$�)ln$� + ln����, �, �	 − �� − 1+
�

 (6)  

The stationary points of �, satisfy 

��,�$� = ln$� + ln����, �, �	 − �� = 0 (7)  

This immediately gives the successive substitution (SS) procedure 

ln$� = −ln����, �, �	 + �� (8)  

For a SO method, Michelsen 
1,31

 proposed to use 

/� = 21$� 
(9)  

The gradient and Hessian of the objective function equation (6) can then be written 

2� = ��,�/� =
/�2 )ln$� + ln����, �, �	 − ��+ (10) 

3�4 = �5�,�/��/4 =
2�/� 6�4 + 6�4 + /�2 /42 �7$���$4 	 (11) 

where 2� and 3�4 are elements of the gradient 8 and Hessian 9, respectively. 
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The update of the independent variables : is obtained from 

∆: = −9<=8 (12) 

More details are given below in Section 2.3.2 how to solve this set of linear equations.  

Equivalently, equation (1) can be written 

�����, ", �	 = 	�$� �����, ", �	�� − ����, >?, �	�� �
�

− " ����, ", �	�� − �?��� (13) 

where " is the total volume, >? and �? are respectively the molar volume and pressure of the 

tested phase. As pointed out by Michelsen 
1,31

 and discussed by Castier 
36

, this tangent plane 

distance is a homogeneous function of degree one in �", �	, and it allows people to replace " by 

a fixed value and treat � as the only independent variables. Mikyška et al. 
34

 and Nichita 
38

 

discussed that the volume based SS method is neither robust nor efficient to solve equation (13). 

By using the same variables defined in equation (9), we obtain 

2� = /�2 �����, ", �	�� − ����, >?, �	�� � (14) 

3�4 = 2�/� 6�4 +
/�2 /42 @����$4A%,&,BCDE 	 (15) 

Equation (12) can be used to obtain the updates of variables : at each iteration step. 

The main procedure for stability analysis is given in Figure S2 in the Support Information. 

Firstly, the value of �� in equation (5) is setup for each component in the tested phase, and the 

initial estimates of the mole fractions for a selected trial phase are generated. A certain number 

of SS steps, equation (8), is conducted and the SO method is invoked if the SS method is not 

converged. It is possible to use either pressure based equations (10) and (11) or volume based 

equations (14) and (15) in the SO method, in which the same numerical solution method is 

adopted. Several trial phases are tried (more details given in the Section 4.2), and the results with 

the minimum objective function will be chosen for checking the stability.  
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2.2 Phase-split calculation 

With a known number of phases, the objective function for phase-split calculation at constant 

temperature and pressure is the reduced Gibbs free energy. It is commonly formulated 
31

 

FG =	��$�,Hln��,HI�, �, �HJ
K

�L=

M

HL=
 (16) 

with the mass balance 

N� =	�$�,H
M

HL=
=�OH�,H

M

HL=
 (17) 

where FG  is the objective function for the phase-split calculation expressed in temperature, 

pressure and number of moles. P and Q are number of phases and components, respectively. OH 
is the phase fraction of phase R. In this work, R represents the phase index, and it is separated 

from the component index � by a comma. 

At equilibrium, FG reaches to the minimum state, and we have 

ln��,HI�, �, �HJ − ln��,!��, �, �!	 = 0 (18) 

where S is the index of the ‘reference’ phase for component �, and it is commonly to choose the 

last phase or the phase with the largest amount as the ‘reference’ phase 

This is the equation of fugacity equality at the equilibrium condition and it is the basis for the SS 

method for phase-split calculation. First, we transfer this equation to 

Tln�,H + ln��,HI�, �, �HJU − Tln�,! + ln��,!��, �, �!	U = 0 (19) 

 The K-factors are defined 

V�,H = �,H�,! (20) 

When the index of the reference phase S is the same for all components, we apparently have 
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9 

 

	�I�,H − �,!J
K

�L=
= 0 (21) 

With the assistance of equations (17) and (20), equation (21) can be organized into the famous 

Rachford-Rice equation, which can be used to solve the phase fractions. And the composition of 

each phase can be calculated afterwards. In this work, the normal Rachford-Rice equation is used 

for two phases, while the modified version proposed by Michelsen is adapted for multiple phases. 

More details of this method can be found in the book of Michelsen and Mollerup 
31

.  

A new set of K-factors can then be obtained from fugacity coefficients, 

V�,H = ��,!��,H  (22) 

from which new phase fractions and compositions can be calculated. The procedure continues 

until K-factors do not change or a certain number of iterations is reached. 

A SO method may improve the efficiency significantly under certain conditions. With the 

gradient equation (18) available, the Hessian is given 

�5FG�$�,H�$4,W =	�7$��,H�$4,H 6HW + �7$��,!�$4,!  (23) 

In order to better scale the problem, as chosen by Michelsen 
31

, the following independent 

variables are used 

X�,H =	$�,HN�  (24) 

A similar equation to equation (12) is used to calculate the update of the independent variables Y, 

which has a size of �P − 1	 × Q. 

In terms of �, " and �, the objective function in equation (16) can be equivalently written 

F& =	�[�$�,H ��,HI�, "H, �HJ��
K

�L=
− �H − �?�� "H\

M

HL=
 (25) 
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10 

 

where F& is the objective function for the phase-split calculation expressed in temperature, total 

volume and number of moles, �H and �? are the pressure of phase R and the specified pressure, 

respectively. The mass balance is the same one given in equation (17). 

In principle, it is possible to solve the problem following a similar procedure given above as the 

pressure based method, but Paterson and Michelsen et al. 
30

 proposed a new approach, which will 

be followed in this work. At equilibrium, F& reaches to the minimum state, and we have 

��,HI�, "H, �HJ�� − ��,!��, "! , �!	�� = ��,HI�, "H, �HJ�� − ��,?�� = 0 (26) 

�HI�, "H , �HJ�� − �?�� = 0	 (27) 

where the equilibrium chemical potential of each component is introduced by the subscript 0. 

Multiplying number of moles to equation (26) and phase volume to equation (27), we obtain 

�$�,H ��,?��
K

�L=
=	�$�,H ��,HI�, "H , �HJ��

K

�L=
− �H − �?�� "H (28) 

This is the reduced Gibbs free energy of phase R. 
The changes of the number of moles among different phases in the system have to fulfill 

	�∆�H
M

HL=
= 0 (29) 

In order to obtain ∆�H, equation (26) is linearized 

]H�� + �I]H ��⁄ J��H ∆�H + �I]H ��⁄ J�"H ∆"H − ]?�� = 0 (30) 

in which way we can have 

∆�H = ��I]H ��⁄ J��H �<= ^]?�� − ]H��_ + ∆"H"H �H (31) 
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where the homogeneity of Helmholtz free energy (chemical potential) has been used, i.e. 

�I]H ��⁄ J��H �H + �I]H ��⁄ J�"H "H = 0 (32) 

Substituting equation (31) into equation (29), we obtain 

���I]H ��⁄ J��H �<=M

HL=
]?�� + �H ∆"H"H =���I]H ��⁄ J��H �<= ]H��

M

HL=
 (33) 

Now we have P equations (28) and Q equations (33), and we have P + Q variables ∆"H "H⁄  and 

]? ��⁄ . A standard LU decomposition and back substitution method can be used to solve this set 

of linear equations. 

The main procedure of phase-split calculation is given in Figure S3 in the Support Information, 

which consists of both SS and SO methods. With a given set of K-factors, the phase fractions and 

compositions are solved, and the fugacity coefficients are calculated for all phases, from which 

the K-factors are updated. This SS method runs for a number of iterations, and the SO method is 

activated if the SS method is not converged. One SO method is based on pressure, i.e. equations 

(18) and (23), for which the same numerical solution method used in stability analysis is adopted. 

The other SO method is based on volume, i.e. equations (28) and (33), and in this work it 

switches to the pressure based SO method whenever negative phase volumes or number of moles 

are obtained. 

2.3 Numerical aspects 

2.3.1 Key working equations 

As discussed by Mikyška et al. 
34

 and Nichita 
38

, the volume based SS method does not work for 

stability analysis and, as pointed out by Paterson and Michelsen et al. 
30

, there is unfortunately no 

a SS method available for the volume based phase-split calculation. Hence, whenever SS is used 

in the following discussions, it is referred to the pressure based approach. The key working 

equations are listed in Table 1. For simpler notations, V-based and P-based are respectively used 

for the volume and pressure based methods hereafter. 
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Table 1. Key working equations of P-based SS and V-based and P-based SO methods  

Order of 

method 

Stability analysis Phase-split calculation 

V-based P-based V-based P-based 

SS None Eq. (8) None Eq. (19) and (21) 

SO Eq. (14) and (15) Eq. (10) and (11) Eq. (28) and (33) Eq. (18) and (23) 

2.3.2 The SO numerical method 

In the SO methods for stability analysis and the P-based phase-split calculation, the Murray’s 

method is used to decompose the Hessian matrix when obtaining the searching direction 

∆` = −I9 + abJ<=8 (34) 

where a is a correction constant when 9 is not positive definite and b is the unit matrix, and ` 
could be either : in stability analysis or Y in phase-split calculation. It is a generalized version of 

equation (12). When the searching direction is ready, the independent variables are updated 

`Bcd = `efg + h∆` (35) 

When a is zero, the full Newton step, i.e. h = 1, is tried first. If the objective function cannot be 

reduced or a is not zero, the line search method proposed by Fletcher 
40

 is used with the full 

Newton step as the upper bound and h = 0.5 as the initial value. 

2.3.3 Criteria 

Criteria are necessary to check convergence. As a standard choice, on one hand, the Euclidean 

norm of the gradient is used to check the convergence for the three minimization problems, 

|8|5 < m (36) 

In stability analysis, the gradient is the right-hand side (RHS) of equations (10) and (14) for the 

P-based and V-based SO methods, respectively. In the P-based phase-split calculation, the 

gradient is the RHS of equation (18). On the other hand, the Euclidean norm of the relative 

change of volume from equations (28) and (33) is used for convergence check in the V-based 

phase-split calculation. The choice of the value m is discussed below. 
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It is recommended to monitor whether the objective function has decreased or not during the 

iteration procedure for a minimization problem. The criterion 10<=? is used for checking if the 

objective function is decreased or not for both stability analysis and phase-split calculation. The 

criterion for instability is −10<n. That means, if the minimum value of the tangent plane distance 

from all trial phases is smaller than −10<n, the system is considered unstable and the converged 

trial phase composition is used to start the phase-split calculation. More discussions are given 

below regarding the usage of a safe unstable criterion for stability analysis in Section 4.4. 

3. Models and systems 

The models used in this work are Soave-Redlick-Kwong (SRK) 
41

, Peng-Robinson (PR) 
42

, 

Cubic Plus Association (CPA), proposed by Kontogeorgis et al. 
43

, and Perturbed-Chain 

Statistical Associating Fluid Theory (PC-SAFT) EOS 
44,45

. Two are cubic models and the other 

two are association ones. The details of these models can be found in the original literature or the 

recent monograph of Kontogeorgis and Folas 
46

. All the models are implemented in the form of 

Helmholtz free energy. It is readily known from Section 2 that the first- and second-order 

derivatives of the Helmholtz free energy with respect to number of moles are needed for both V-

based and P-based SO methods, and the first- and second-order derivatives with respect to 

volume are also needed for the P-based methods. It is necessary to point out that SRK, PR and 

CPA share the same code for the cubic part and the volume root solver. 

In this work, twelve systems are selected. The first four systems are taken from Nichita 
38

, which 

were originally from Mikyška et al. 
34

 These cases are only used for validating the SO method for 

stability analysis, and PR is the only model for them. Three models are applied for each of the 

other systems. As listed in Table 2, these systems cover a wide range of component types: light 

hydrocarbons, heavy hydrocarbons, (acid) gases, water and large polar molecules (asphaltene). 

More information of the composition, pure component parameters, binary interaction parameters 

and conditions is available in the Support Information.  
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Table 2. Systems investigated in this work 

System Description 

S1-S4 The examples Ex1, Ex5, Ex6, Ex7 from Nichita 
38

 

S5 C1-nC4-nC10 from Urlic et al. 
47

 (gas condensate 2 in the original reference) 

S6 C1-H2S-CO2 from Michelsen 
1
 

S7 N2-C1 to nC5 from Avila et al. 
48

 (gas 1 in the original reference) 

S8 
Normal alkanes from C1 to nC8 plus nC10 and nC14 (MY10 mixture) with 16.67% CO2 

added, from Petitfrere 
49

 

S9 C1-H2S-CO2-H2O 

S10 The example 3 from Paterson et al. 
30

 

S11 The Fluid-2 from Arya et al. 
50,51

 

S12 The Fluid-4 from Arya et al. 
50,51

 with 0-20% gas injection 

4. Results and discussion 

4.1 Algorithm validation 

The same numerical algorithm is used in the SO methods for both the V-based and P-based 

stability analysis and the P-based phase-split calculation. It has been applied to the systems S1 to 

S4, for which the performance of a V-based SO method is available in details 
38

. Using the same 

initial guess approaches, i.e. assuming the feed as a vapor-like or liquid-like fluid in two separate 

runs, and the same parameters, i.e. convergence criterion (m=10
-10

), maximum iteration number 

(500), the stability envelopes of the systems S1 to S4 are constructed by the V-based SO method 

in Figure 1. It can be seen that the results are the same as those reported in the literature 
38

. 

The convergence behaviors of the V-based and P-based SO methods for the two systems S1 and 

S4 are compared in Figures 2 and 3, respectively. The same conditions from the literature 
38

 have 

been used in these comparisons. It can be observed that the V-based SO method shows quite 

similar behavior of the system S1 available in the literature, while the convergence behavior of 

the system S4 is not easy to see in the literature due to the scale. It is obvious from Figures 2 and 

3 that the P-based SO method uses fewer iterations to converge for both systems under all four 

conditions, which is also consistent with the conclusion from the literature 
39

. 
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It is observed that the maximum iteration numbers in these practices are smaller than 80 and 25 

for the V-based and P-based SO methods, respectively. Moreover, it is believed that a 

convergence criterion of 10
-7

 is enough for most practical applications. It can be seen from 

Figure 4 that the average number of iterations can be decreased 3-9% by changing the 

convergence criterion from 10
-10

 to 10
-7

 for these systems. The percentage of decrease or 

difference is calculated from 

�o% = Ω5 − Ω=Ω= × 100% (37) 

where Ω may represent the average number of iterations here or other statistic numbers hereafter, 

and subscripts 1 and 2 represent the two different scenarios under comparison. 

Therefore, the maximum number of iterations and the convergence criterion are respectively set 

to 150 and 10
-7

 in the following discussions, and it needs to be pointed out that these values have 

been used as default ones in internal applications for quite a long period. 
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Figure 1. Stability envelopes of the systems S1-S4 from the V-based SO method with no SS steps. 

The conditions are taken from the literature 
38

. 

T
e
m
p
e
ra
tu
re
 (
K
)

Page 16 of 44

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 

 

 

Figure 2. The convergence behavior of the V-based and P-based SO methods for two conditions 

of the system S1 at 300K by considering the feed as a liquid-like fluid. The conditions are given 

in the legend, which are the same ones as those in the literature 
38

.  
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Figure 3. The convergence behavior of the V-based and P-based SO methods for two conditions 

of the system S4 at 300K by considering the feed as a liquid-like fluid. The conditions are taken 

from the literature 
38
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Figure 4. The percentage of decrease of average number of iterations (one point) by changing the 

convergence tolerance from 10
-10

 to 10
-7

 for different methods with different initial guesses for 

the systems S1 to S4. 
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4.2 Stability analysis 

Stability analysis is in principle a global optimization problem. With local minimization methods, 

in order to reliably evaluate the stability of a given system as economically as possible, the 

strategy listed in Table 3 is used for generating initial estimates of the trial phase composition in 

stability analysis for general applications. It is similar to the procedure proposed by Michelsen 
31

, 

of which a modified version has also been discussed and used by some researchers 
16,18,19,36

. In 

this way, there are maximum Q + 3 trial phases and a good balance between robustness and 

efficiency is obtained.   

Table 3. Strategy for generating initial estimates of the trial phase composition 

Seq. No. of 

trial phases 
Initial estimates of the trial phase composition 

1 Based on the phase type of the tested phase, Wilson K-factors are used: $� = *� × V�s or $� = *�/V�s; the mole numbers are normalized. 

2 Based on the phase type of the tested phase, Ideal gas is assumed: $� = m����	 or $� = 1/m����	; the mole numbers are normalized. 

3  If there are more than one phase, the average phase composition is used: $� = ∑ *�,HH Π⁄ ; the mole numbers are normalized. 

4 to Q+3 A near pure liquid phase is used with composition: $� = 1 − �Q − 1	 × 10<n, and $4 = 10<n	�v ≠ �	 
 

The stability envelopes for the systems S5 to S12 are presented in the Support Information. They 

are constructed by running stability analysis at each point over a range of temperature and 

pressure with steps 0.1K and 0.1bar, respectively, except for the last system S12, in which the 

temperature is fixed at 363.15K and the pressure and gas inject amount (percentage) are varied. 

More information of the studied conditions can be found in the Support Information. It is hard to 

determine if any unstable solution has been missed when people look at a single point only, 

while there is no single unsmooth behavior observed in any of these stability envelopes. 

Different combination strategies of SS with both the P-based and V-based SO methods give the 

same stability envelopes. Therefore, we consider that there are no failures and the algorithms are 

robust. 
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It is interesting to point out that on one hand the similarity of the modeling results from different 

models for a given system depends on the conditions. For instance, different models may give 

similar bubble or dew points in a narrow range of temperature and pressure. On the other hand, 

these stability envelops might provide helpful information in choosing a model and/or tuning 

model parameters, as the models usually present different stability boundaries over a wide range 

of temperature and pressure. 

It is common practice to apply the SS method in the PT specified stability analysis 
31

. The 

efficiency of using different SS steps has been investigated for the systems S5-S12. The average 

running time of one point is defined 

� = �x�y7	Sz$$�$2	��,m{|e�B} × {!c|c~}  (38) 

where {|e�B} is the number of points and {!c|c~} is the repetitions of calculations for each point, 

� is the average running time of one point, which includes the running cost from SS steps and that 

of the SO method if there is any. 

The results of using 0, 4 and 7 SS steps before switching to the V-based or P-based SO method 

are presented in Figure 5 for the systems S5-S12. As aforementioned, these approaches give the 

same stability envelopes. The running time statistics depend on the computer, compiler and 

implementations very much. In this work, the calculations are conducted in a Windows 7 desktop 

computer with a processor Intel(R) Core™ i5-4590 CPU @ 3.30GHz. The codes are compiled in 

Intel Fortran 2018 integrated with Visual Studio 2017. There is no third-party library used. The 

detailed information on temperature, pressure and composition can be found in the Support 

Information. In all these calculations, {!c|c~}  is 100, and the statistics were also tried with 

{!c|c~} equal to 200 and 1000. The differences of the average running time of one point among 

these investigations are within the uncertainty, of which the average value is less than 0.2% with 

a maximum deviation within 1-2% for stability analysis. 

Despite the P-based SO method converges in fewer iterations as shown in Figures 2 and 3, it can 

be seen from Figure 5 that the V-based SO method is actually faster than the P-based SO method 

for most cases with only one exception (PC-SAFT in S11). This is because the P-based SO 

method needs to solve the volume before calculating the first- and second-order derivatives of 
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Helmholtz free energy with respect to number of moles. The P-based SO method becomes more 

competitive, however, when 4 or 7 SS steps are introduced before the SO method. Moreover, 

there is no doubt that running 4 SS steps before the SO method can significantly improve the 

efficiency. Running 7 SS steps has almost the same performance for many cases, and it becomes 

even more pronounced as the number of components increases. Therefore, the combination of 7 

SS steps and the P-based SO method are used for stability analysis in the following PT Flash 

calculations. 

It is commonly considered that the association models are slower than the cubic ones. Figure 5 

shows that the more complex models, CPA and PC-SAFT, cost more in general, while there are 

some exceptions, for example in the systems S7 and S8. There are no associating fluids in the 

systems S5-S8, two types of associating sites with CPA-1 and five types of associating sites with 

CPA-2 in the systems S9 and S10, three types of associating sites with CPA and PC-SAFT in the 

systems S11 and S12. It is hard to make a completely fair comparison for the computational 

efficiency among different models over a wide range of systems and conditions, as the stability 

envelopes are usually different. However, it is meaningful to point out that the running costs of 

these complex models in stability analysis are on average less than 2 times of those of cubic EOS, 

as statistically reported in these figures. 
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Figure 5. Average running time of one point stability analysis versus number of SS steps. The 

legends are the same for the sub-figures of the systems S5-S8, S9-S10 and S11-S12, respectively. 

Solid and dash lines are the results with the P-based and V-based SO methods, respectively. 
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4.3 PT Flash 

The phase envelopes of the systems S5 to S12 are presented together with the stability envelopes 

in the Support Information. These phase envelopes are constructed in the same way as in the 

stability envelopes. Again, unsmooth behaviors have not been observed in any of these phase 

envelopes with any of the combination strategies of SS steps and the P-based or V-based SO 

methods discussed below. Therefore, it is considered that there are no failures and the algorithms 

are robust. As expected, the phase envelope is the same as the stability envelope when there are 

no three-phase regions, e.g. the systems S5, S7 and S8. A similar information as revealed from 

the stability envelopes is obtained: the similarity of the models for a given system largely 

depends on the conditions. As seen from these figures, different models may give similar phase 

boundary (dew/bubble points) in a narrow range of temperature and pressures for most of the 

systems. However, they may show quite different behavior over a wide range of conditions. The 

most significant cases are S9 and S10, in which SRK and two modeling approaches of CPA are 

applied. In the first approach, CPA-1, only water is considered as a self-associating fluid, and 

there is no solvation (cross-association) between water and CO2/H2S. In the second approach, 

CPA-2, both water and H2S are considered as self-associating fluids, and there are solvation 

interactions between water and CO2, as well as between water and H2S. The parameters are taken 

from Paterson et al. 
30

, which were originally developed by Tsivintzelis et al. 
52,53

 It is interesting 

to note that the two CPA approaches present quite similar phase envelopes for the system S10, 

while they give different stability envelopes and three-phase envelopes respectively in the high 

temperature and pressure region and in the low to medium temperature and pressure region for 

the system S9. Moreover, SRK and CPA present significantly different two-phase and three-

phase regions in the system S10, in which situation it is necessary to have experimental data in 

order to select a correct model.  

It is common practice to run SS steps for phase-split calculation, of which the purpose could be 

to solve the problem alone without using a SO method or to provide good initial estimates for a 

SO method. The influence of the number of SS steps with the P-based SO method is presented in 

Figure 6. Two-phase and three-phase phase equilibria correspond to the systems S5-S8 and S9-

S12, respectively. It turns out, from a statistical point of view, that 4 SS steps give the best 

performance in most of the investigated cases, and it may not be necessary to take 15 SS steps, as 
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it deteriorates the performance. Therefore, 4 SS steps are used before switching to the SO method 

as the default option for phase-split calculation in the following investigations. 

The more complex models, CPA and PC-SAFT, cost more time in most cases except the systems 

S7 and S8 with PC-SAFT and S10 with CPA-1. It is interesting to notice, despite of presenting 

quite similar results in the system S10, that CPA-2 cost up to 1.5 times of CPA-1, of which the 

efficiency is comparable to that of SRK. In the asphaltene systems S11 and S12, CPA and PC-

SAFT run slower than SRK, but the efficiency deterioration is moderate. As statistically reported 

in these figures, the running costs of these association models of one point PT Flash calculation 

are on average less than 2 times of those of cubic models, which is the same behavior observed 

in stability analysis discussed above. 

The V-based and P-based SO methods are compared in Figure 7, which presents the percentage 

of difference of the average running time of one point. The percentage of difference is calculated 

via the equation (37), in which the average running time of one point with the P-based SO 

method is Ω=, and that with the V-based SO method is Ω5. As aforementioned, 4 SS steps are 

used before the SO method in phase-split calculation. Statistically, the figure shows that the V-

based SO method is more efficient except for the system S12 with CPA. This is because that the 

feed composition of the system S12 are changing instead of temperature, and there are failures in 

the V-based SO method, and these failure points are converged by the P-based SO method. In the 

other cases, the performance improvement using the V-based SO method depends on the systems 

and models. The results shown in Figure 9 are not as pronounced as the values reported in the 

literature 
30

, because the average running time presented in this work is the total one from both 

stability analysis and phase-split calculation. However, the conclusion is consistent with the 

literature 
30

 that the improvement is more pronounced for more complex models, e.g. PC-SAFT, 

for which 5-10% running time decrease could be expected.  
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Figure 6. Average running time of one point PT Flash calculation versus number of SS steps. The 

legends information is the same as in Figure 5. 
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Figure 7. The percentage of difference of average running time of one point PT Flash calculation 

with the P-based and V-based SO methods in phase-split calculation. The details of 

corresponding conditions of each system are given in the Support Information. The lines are just 

used to connect the points. 

4.4 Efficiency improvements 

The purpose of stability analysis is to determine if a given fluid is stable or not, and it also 

provides initial estimates for the following-up calculations. Therefore, people can terminate 

stability analysis if instability can be secured, i.e. the objective function of stability analysis 

smaller than a negative enough number. It is proposed to use -0.01 as such a criterion in this 

work. It is arguable, on one hand, if such a safe unstable criterion will destroy the robustness of 

the entire PT Flash calculation. There are no failures observed due to this safe unstable criterion 

in any of the systems investigated in this work as well as all the cases that we have worked 

previously. Moreover, decrease of the objective function of phase-split calculation can be 

secured as long as a minimization method is used. On the other hand, it may be arguable if -0.01 
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is the best value for this safe unstable criterion. A smaller number could be used, which may 

need systematic investigation for many systems over a wide range of conditions. 

The effect of using such a safe unstable criterion on the efficiency can be found in Figures 8 and 

9. As suggested above, 7 SS steps and 4 SS steps are respectively used in stability analysis and 

phase-split calculation before the SO methods in these figures. It shall be mentioned that the P-

based SO method is used in stability analysis before phase-split calculation with both the P-based 

and V-based SO methods. Firstly, the efficiency improvement apparently depends more on the 

systems and conditions than on the models. As seen from Figure 8, the average running time of 

one point stability analysis has decreased around 70% for all the models in the systems S9 and 

S10, which contain the same components CH4, CO2, H2S and H2O, while the decrease is from 10% 

to 40% in other systems for stability analysis. Regarding the effect of such a safe unstable 

criterion on PT Flash calculations, as shown in Figure 9, the largest decrease of the running time 

of one point is seen in the systems S8 and S10, which is around 50%. Secondly, it is seen that 

this safe unstable criterion shows a comparable impact on the P-base and V-based SO methods 

for both stability analysis and the entire PT Flash calculation with exception for the system S12. 

Thirdly, it is interesting to notice that PC-SAFT is slightly more insensitive to this safe unstable 

than the cubic EOS in both stability analysis and the entire PT Flash calculation with again an 

exception for the system S12. With these exceptions, we may speculate that it might not be  very 

suitable to make statistics based on composition variations for the PT Flash calculation at one 

condition. Overall, around 30% running time decrease could be expected in general when such a 

safe unstable criterion is applied. 

If the safe unstable criterion is not met, all the C+3 initial estimates are converged in stability 

analysis, while it may not be necessary to converge all the trial phases in many real applications. 

As suggested by Michelsen 
31

, it may be enough to converge the most promising candidate trial 

phase, i.e. with the smallest objective function after a few SS steps. This is investigated in Figure 

10 for the entire PT Flash calculation with 7 SS steps to find the most promising candidate in 

stability analysis. It shows that 10-25% efficiency improvement could be obtained on average. 

This approach, converging the most promising candidate trial phase only, gives the same results 

as the general strategy for all the investigated PT Flash calculations. However, it has to be 

pointed out that it might affect the robustness when the condition locates in the critical region. 
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An example is presented in Figure 11 for the PR EOS in the system S5. More discussions on 

addressing this problem with alternative approaches can be found in the literature 
1,31

. 

 

 
Figure 8. The effect of a safe unstable criterion on the average running time of one point stability 

analysis. 
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Figure 9. The effect of a safe unstable criterion on the average running time of one point PT 

Flash calculation. 
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Figure 10. The effect of converging the most promising candidate trial phase against converging 

all the trial phases on the average running time of one point PT Flash calculation. 
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Figure 11. Stability envelopes of the system S5 with the PR EOS from the approaches of 

converging all the trial phases and converging the most promising candidate trial phase. The 

enlarged critical region has been placed in the center of the plot. 
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For the P-based SO method, the effect of using the volume from the previous iteration for the 

consecutive step has been investigated for PC-SAFT, and the result is present in Figure 12. In 

these calculations, as recommended above, 7 SS steps and 4 SS steps are respectively used in 

stability analysis and phase-split calculation before entering the P-based SO methods. The 

stability and phase envelopes have not been affected by this approach. Figure 12 shows that 15-

30% running time decrease could be obtained for PC-SAFT. 

 

 

Figure 12. The effect of using the converged volume as an initial guess for the volume-root 

solver of the PC-SAFT EOS in the P-based SO methods on the average running time of one point 

PT Flash calculation. 
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5. Conclusion 

In this work, the conventional isobaric-isothermal flash framework is briefly reviewed, in a way 

of presenting the key working equations for their usages in numerical implementations, along 

with which the computational flowcharts are also given in the Support Information. The V-based 

and P-based SO methods for stability analysis and the P-based SO method for phase-split 

calculation are using the same numerical procedure – a modified Newton method for obtaining 

the searching direction plus a line-search algorithm if the Newton step does not lead to a 

decrease of the objective function. 

In stability analysis, the V-based SO method is found to be more efficient than the P-based SO 

method when there are no SS steps taken, even though the later method converges in fewer 

iterations. However, a few SS steps before entering the SO methods can significantly improve the 

overall efficiency of stability analysis. It is recommended to use 7 SS steps before the SO method 

for general applications, in which way the P-based and V-based SO methods show comparable 

performance. In phase-split calculation, 4 SS steps are recommended before the SO method. An 

appropriate use of the V-based SO method in phase-split calculation can improve the overall 

efficiency further. By using a safe unstable criterion, e.g. -0.01, in stability analysis, 30% 

decrease of the running time could be expected for PT Flash calculations on average. By using 

the volume iteratively in consecutive steps in the volume root solver for the P-based SO methods, 

the running time can be further decreased, e.g. 15-30% for PC-SAFT. This study also shows that 

different models may give similar phase boundaries in a certain range of conditions, while they 

in general present different phase envelopes over a wide range of conditions, and the efficiency 

deterioration shall not be overlooked when choosing an association model in real applications. 

Support Information 

The computational flowcharts, details of system composition, model parameters, as well as the 

results of stability envelopes and PT phase envelopes, along with the average running time 

statistics are given in the Support Information. Up on request, a demo tool is available for 

producing some of the presented results.  
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List of Symbols 

Abbreviations 

PT Flash = Isobaric-isothermal flash (equilibrium)  

SS = Successive substitution 

SO = Second-order 

EOS = Equation(s) of state 

SRK = Soave-Redlich-Kwong  

PR = Peng-Robinson 

CPA = Cubic Plus Association 

PC-SAFT = Perturbed Chain Statistical Associating Fluid Theory  

Variables 

T = Temperature (K) 

P = Pressure (Pa)  

V = Volume (m
3
)  

R = Ideal gas constant (J/mol-K)  

Z = Compressibility factor 

ρ = Molar density (mol/m
3
)  

 ! = Helmholtz free energy (J)  

$� = Number of moles of component i (mol)  

� = Number of moles of components (mol)  

$ = Total number of moles (mol) 

� = Mole fraction of component i 

� = Mole fraction of components 

N� = Mole fraction of component i in the feed 

� = Mole fraction of components in the feed 

*� = Mole fraction of component i in the tested phase 

� = Mole fraction of components in the tested phase 

�� = Chemical potential of component i (J/mol)  

�� = Fugacity of component i (Pa)  
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�� = Fugacity coefficient of component i 

V�,H = Equilibrium factor (K-factor)  

/� = Auxiliary variable for scaled mole numbers of component i 

X�,H = Auxiliary variable for scaled mole numbers of component i in phase j 

Π = Number of phases 

C = Number of component  

tpd = Tangent plane distance 

tm = Tangent (plane distance) modified  

Q = Objective function symbol 

2� = Gradient element 

8 = Gradient vector 

3�4 = Hessian element 

9 = Hessian matrix  

b = Identity matrix or unit matrix  

a = Correction number for a non-positive definite matrix 

h = Line search length 

m = Convergence criterion 

� = Average running time for one point (�� or ,�)  

6HW = The Kronecker delta function  

�, v = Subscripts for components 

R,,, S = Subscripts for phases 
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