

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 23, 2019

Crane Intensity and Block Stowage Strategies in Stowage Planning

Pacino, Dario

Published in:
International Conference on Computational Logistics

Link to article, DOI:
10.1007/978-3-030-00898-7_12

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pacino, D. (2018). Crane Intensity and Block Stowage Strategies in Stowage Planning. In International
Conference on Computational Logistics (Vol. 11184, pp. 191-206). Springer. Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-030-00898-7_12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/189889111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-00898-7_12
https://orbit.dtu.dk/en/publications/crane-intensity-and-block-stowage-strategies-in-stowage-planning(68cb6892-ecf3-421b-8f5b-9d7d726c353b).html
https://doi.org/10.1007/978-3-030-00898-7_12

Crane intensity and block stowage strategies in
stowage planning

Dario Pacino1[0000−0002−7255−004X]

Technical University of Denmark, DTU Management Engineering, darpa@dtu.dk

Abstract. The increasing size of container vessels is raising the com-
plexity of daily operations of both the carrier and the terminal. This
paper focuses on stowage planning, the problem of assigning container to
positions in a vessel. In particular, it studies the implementation of known
planning strategies within an optimisation framework. Block stowage and
crane intensity are presented and mathematically modelled on a simpli-
fied version of the problem. An experimental evaluation, on a large set of
novel benchmark instances, shows that even in this simplified version the
problem is not trivially solved. A matheuristic based on large neighbour-
hood search is presented, which is able to find a solution to all instances
in short computational times.

1 Introduction

The container shipping industry has continuously grown in the past many years,
and though it now experiencing a period with little growth [13], the complexity
of the daily planning operations is still very high. The use of mega-vessels (now
able of carrying more than 20,000 containers), is not only having an impact on
port operations, but it is also making the cargo planning of the vessel a very com-
plex and time-consuming task. This task is known as stowage planning, and it is
often performed by the carrier a few hours before calling each port. In the past
decade, the number of academic works on stowage planning has increased show-
ing a continuous interest from the community. Solution approaches are divided
between theoretical works, where a deeper understanding of specific optimisation
challenges is sought (e.g.[10, 5, 12, 3]), and applied approached where heuristic
and decomposition methods aim at solving rich stowage planning problems that
can be implemented in practice (i.e. [1, 2, 6–8]). Theoretical works are charac-
terised by simple definitions of the problem where e.g. only one container size is
assumed and where stability constraints are ignored. Those works, however, fo-
cus on some particular combinatorial challenges such as allowing containers to be
shuffled along the route or understanding computational complexity. The work
presented in this paper belongs to this category, though it is motivated by more
applied issues. While academic works tend to look at optimal conditions, practi-
cal stowage planners are used to work with uncertain data and rules-of-thumb.
It would then be reasonable to assume that a first professional implementation
of a decision support system for stowage planning would follow current planning

2 D. Pacino

practices. It turns out that current planning practices face hard combinatorial
problems that have not yet been studied and for which, current state-of-the-art
methods are not applicable. One of such problems comes from the concept of
crane intensity. Crane intensity is an estimation of the number of cranes that a
container terminal needs to use to handle a vessel. Crane intensity is calculated
by dividing the total number of container moves by the number of moves the
longest crane will perform. The longest crane is the crane that has the most
moves assigned. To better explain this, consider the example in Figure 1. The
figure shows a vessel which is divided into bays. The number within each bay
represents the number of container moves (load or discharge) that will have to
be performed. Since two handling cranes cannot work on adjacent bays, the in-
tervals below the vessel represent all the possible combination of adjacent bays
and their respective workload. In this example, the longest crane has a total of
150 moves resulting in a crane intensity of 3. The longest crane can be seen as
the handling operations makespan as described in [6]. In the remainder of the
paper, we will refer to the longest crane as the makespan.

70 30 120 20 40

100 140

150 60

longest crane = 150
total moves = 450
crane intensity = 450

150
= 3

Fig. 1: Example of crane intensity calculation.

Crane intensity is not used by stowage planner as a KPI, it instead used as
a target performance. The planners know by experience that at a given port,
the vessel is usually serviced by a specific number of cranes, f.ex. 3. By forcing
a stowage plan to have a crane intensity of 3, the container assignment will be
forced to distribute containers along the bays such that the 3 cranes are fully
utilised1.

Another important concept is block stowage, which referrers to the practice
of dividing a bay into logical sub-section to which only containers with the same
discharge port can be assigned. This rule is used to avoid overstowage (which
occurs when a container with a later discharge port is stowed over one with an
earlier discharge port), and to improve container handling at the port. When
containers with the same discharge port are clustered together, it is easier for
the terminal to implement more advanced handling operations such as dual-
cycling (interchanging load and discharge operations) and tandem lifts (moving
more than one container at the time). The modelling of block stowage is already
present in the scientific work of e.g [1] and [4]. To the best of the author’s
knowledge, no research has been published on the modelling of crane intensity
and its combination to a block stowage policy.

1 Note that this is a rule-of-thumb used by the industry.

Crane intensity and block stowage strategies in stowage planning 3

This paper presents the Block Stowage Problem with Crane Intensity (BSPCI),
a simplified stowage planning problem that only focuses on the combinatorial in-
terplay between the block stowage strategy and the targeting of a specific crane
intensity. With this new problem, we aim at finding efficient solution methods
which can build the foundation for more rich problem definitions. We propose a
mathematical formulation and a matheuristic based on the Large Neighborhood
Search (LNS) framework. We test the mathematical formulation and the heuris-
tic approach on a benchmark of 600 instances. The results show that the LNS is
able to find solutions for all the instances where the mathematical model fails.
For the remaining instances, the LNS can reach solutions that are either better
or within 10% from the best-known solution in 75% of the cases.

The remainder of the paper is organised as follows. Section 2 formally intro-
duces the problem and the compact formulation, followed by Section 3 where the
design of the matheuristic is presented. Section 4 discussed the computational
results before conclusions are drawn in Section 5.

2 Background and problem definition

A container vessel is a commercial vehicle designed to sail with standardised
cargo containers. The most common containers (ISO containers) are 8’ wide,
8.6’ high, and 20’, 40’ or 45’ long. There exists also a number of containers with
such as refrigerated containers, tanks for special cargo. Each container is stowed
on a cargo hold called a bay. A bay can hold multiple containers arranged in
stacks. A cell indicates the position of a 40’ long container and it is identified by a
stack number and a tier number (the vertical index in the stack). The stowage of
containers in a bay is subject to a number of physical constraints, i.e. maximum
weight limits, availability of power plugs, and capacity limits. Aside from these
stacking constraints, a loaded vessel must also be seaworthy, meaning that it
must be stable while sailing, that it does not run aground when calling a port
etc. We refer the reader to [6, 7] for a detailed description of all the constraints
governing stowage planning in practice. In this paper, we focus on a simplified
version of the problem where only the main combinatorial aspects regarding
crane intensity are taken into account.

We assume the bays of the vessel to be composed of a number of blocks.
Each block can be seen as a logical grouping of stacks (not necessarily adjacent).
The vessel travels on a predefined route, where containers can be loaded or
discharged. The number of containers to transport from each port to any other
port is known in advance. A block is only allowed to stow container destined
to the same port. The port assignment of the block is not predetermined and is
thus a part of the decision. All containers are of the same size and are coupled
with an origin/destination port. The ship is assumed empty in the first port and
after it arrives at the last port. At each port, all the containers destined to that
port are discharged, and container destined to the following ports are loaded.
At each port, the total number of operations in a bay is given by the number
of load and discharge operations to be performed on that bay. Container moves

4 D. Pacino

are performed by the cranes of the container terminal, and no two cranes can
work on adjacent bays. We disregard stacking and stability constraints aside
from limiting the capacities of the blocks.

The BSPCI aims at finding an assignment of containers to blocks through-
out the entire route. The assignment has to minimise the sum of the absolute
difference between the found and the given crane intensity at each port.

Let us describe the problem more formally by first introducing the mathe-
matical notation.

Sets
P = {1, 2, . . . , n} The set of visited ports, where n is the last port.

P j
i ⊆ P The set of ports between port i ∈ P and j ∈ P .
C The set of blocks.
B The set of adjacent bay pairs.
Cb ⊂ C The set of blocks belonging to the same pair of adjacent bays

b ∈ B.
T The set of all pair of origin/destination ports {(i, j)|i, j ∈

P, i < j}.
Coefficients
qc The capacity of block c ∈ C.
tmsi The target makespan at port i ∈ P .
ci The cost for exceeding the target makespan at port i ∈ P .
ci The cost for not reaching the target makespan at port i ∈ P .
tij The number of containers to transport from port i ∈ Pn−1

1 to
port j ∈ Pn

i+1.
t̂ij =

∑
k∈P i

1
tkj The total number of j-containers on board upon leaving port

i ∈ P . A j-container is a container destined to port j ∈ P .
Decision variables
xcij ∈ Z+ The number of j-containers (j ∈ Pn

i+1) loaded in block c ∈ C
at port i ∈ Pn−1

1

ycij ∈ B A binary variable equal to 1 if at least one j-container is
stowed in block c ∈ C upon leaving port i ∈ Pn−1

1

zi ∈ R+ The makespan at port i ∈ P
δ∈i R+ Auxiliary variable equal to the difference between zi and the

number of operations in the adjacent bays b ∈ B performed
at port i ∈ P

βb
i ∈ B Auxiliary variable equal to 1 if and only if δbi > 0 for b ∈ B
ui ∈ R+ A variable equal to the deviation from the target makespan

if, at port i, zi is strictly less than tmsi and 0 otherwise
oi ∈ R+ A variable equal to the deviation from the target makespan

if, at port i, zi is strictly greater than tmsi and 0 otherwise

With the presented notation, the BSPCI can be formulated as the following
mixed-integer program:

Crane intensity and block stowage strategies in stowage planning 5

z∗ = min
∑
i∈Pn

1

(cioi + ciui) (1)

s.t.
∑
k∈P i

1

∑
c∈C

xckj = t̂ij (i, j) ∈ T (2)

ycij ≤
∑
k∈P i

1

xckj ≤ qcycij (i, j) ∈ T c ∈ C (3)

∑
j∈Pn

i+1

ycij ≤ 1 i ∈ Pn−1
1 c ∈ C (4)

δb1 +
∑
c∈Cb

∑
j∈Pn

2

xc1j = z1 b ∈ B (5)

δbn +
∑
c∈Cb

∑
i∈Pn−1

1

xcin = zn b ∈ B (6)

δbi +
∑
c∈Cb

(∑
r∈P i−1

1

xcri +
∑

j∈Pn
i+1

xcij

)
= zi i ∈ Pn−1

2 b ∈ B (7)

δbi ≤Mβb
i i ∈ P b ∈ B (8)∑

c∈Ĉ

βc
i ≤ |Ĉ| − 1 i ∈ P (9)

zi + ui − oi = tmsi i ∈ P (10)

xcij ∈ Z+ (i, j) ∈ T c ∈ C (11)

ycij ∈ B (i, j) ∈ T c ∈ C (12)

zi ∈ R+ i ∈ P (13)

δbi ∈ R+ i ∈ P b ∈ B (14)

βb
i ∈ B i ∈ P b ∈ B (15)

ui, oi ∈ R+ i ∈ P (16)

The objective function (1) aims to minimize the weighted sum of the number of
ports where the makespan is not equal to the target makespan. Since all contain-
ers must be stowed, the total number of moves is constant and the crane intesity
measure can be translated to a target makespan. Constraints (2) guarantee that
all container transports are satisfied. Constraints (3) are block capacity con-
straints and act as on-off constraints for the y-variables based on the values of
the x-variables. Constraints (4) are block stowage constraints ensuring that each
block can contain only containers with the same discharge port. Constraints (5)-
(9) set all z-variables equal to the makespan of the number of operations for each
port i ∈ Pn

1 ; in particular, constraints (5) concern port 1, constraints (6) port n,
and constraints (7) ports 2 to n− 1. Constraints (8)-(9) ensure that at least one
β-variable is equal to 0 for each port i, thus setting the corresponding δci equal
to zero and the makespan (i.e., variable zi) equals the number of operations in

6 D. Pacino

the subset of four consecutive blocks. Constraints (10) set ui and oi equal to the
difference between zi and tmsi for each port i ∈ P . Constraints (11)-(16) define
the range of the decision variables.

3 LNS based matheuristic

In Section 4, we show that the proposed formulation is not applicable to effi-
ciently solve the BSPCI, thus heuristic methods are sought. It is important to
note, however, that a number of instances can indeed be solved by the mathe-
matical formulation. This insight has inspired us to use a mathematical-based
heuristic to solve the BSPCI. We adopted the LNS framework where, given an
initial solution, at each iteration, a part of the current solution is destroyed using
a destroy operator. A repair heuristic is then used to rebuild the solution. This
process is iterated until a termination criterion is met. Since the LNS framework
is well-known, we refer the reader to [9] for a more in-depth description of the
framework and its extension. The remainder of the section will, instead, present
how each of the main LNS components has been adapted to solve the BSPCI.

3.1 Initial solution

Finding an initial solution to the BSPCI is not trivial. Given that blocks have
different capacities, it is not simple to analytically identify the number of blocks
needed, moreover, this decision is made more difficult by the fact that a discharge
port will also need to be assigned. We propose a 2-phase approach where first a
mathematical model identifies the number of blocks to be used and, subsequently,
a heuristic procedure assigns containers to the blocks.

Since it is reasonable to assume that many blocks in a container vessel will
have the same capacity, let Q be the set of available block capacities, and Cq

be the number of blocks of capacity q ∈ Q. We define a j-block to be a block
assigned to only hold j-containers (where j ∈ P and a j-container is a container
destined to port j). The decision variable of the model, xqij ∈ Z+, identifies the
number of j-blocks with capacity q to be added to the j-blocks used in ports
previous to i. The model is then formulated as follows:

max
∑

i∈Pn−1
1

∑
j∈Pn

i+1

∑
q∈Q

xqij (17)

s.t. ∑
h∈P i

1

∑
q∈Q

qxqhj ≥ t̂ij ∀(i, j) ∈ T (18)

∑
h∈P i

1

∑
j∈Pn

i+1

xqhj ≤ Cq ∀i ∈ Pn−1
1 , q ∈ Q (19)

xqij ∈ Z ∀q ∈ Q, (i, j) ∈ T (20)

Crane intensity and block stowage strategies in stowage planning 7

The objective function (17) maximise the number of used blocks. It is not
strictly necessary to solve the model as an optimisation problem, but we believe
that this will give more flexibility during the subsequent heuristic search since
containers can be distributed to more blocks thus making it easier to stay within
the target makespan. Constraints (18) ensures that at each port we assign enough
j-blocks to fulfil the container demand t̂ij . The number of used blocks is then
restricted by Constraints (19). Finally, the domain of the variables is defined in
Constraint (20).

The mathematical model of the first phase effectively identifies how many
block to use at each port for a specific discharge destination. In the second
phase, Algorithm 1 uses this information to assign containers to each block, at
every port.

The algorithm assigns containers to blocks starting from the first port and
continuing in order (line 2). At each port, the set of discharge ports are sorted
according to the number of moves to be performed such that the discharge
port with the most containers is assigned first (line 3). The actual container
assignment starts in line 4. We start by assigning the total number of container
move (at the current port) to an auxiliary variable L. So long as L is positive, it
means that we still have containers moves to perform (line 5). We keep count of
the containers destined to discharge port d to be loaded/unloaded at port p, and
we keep a sorted list of blocks (Ĉ). The list sorts the blocks first by descending
objective cost and then by ascending capacity. A block has a positive objective
cost if the block is part of the adjacent bays defining the makespan. The cost of
the block is then equal to the part of the objective cost for port p. The list is
composed of the available blocks for port p ∈ P and discharge port d ∈ D (Ĉpd).
The set of available blocks is computed with a simple procedure. Blocks are
evaluated sequentially starting from the first one. If a block has any remaining
capacity and has been assigned to discharge port d (or it has not yet been
assigned) it is included in the set. We keep adding blocks to the set until we
reach the amount identified in the solution of the first phase. The first block in
the list is then selected for container assignment (line 7). If the block is empty, it
first needs to be assigned to the selected discharge port (lines 8-9). Lines 10-13
assign containers to the block. Since a solution with minimum cost is one that
reaches the target makespan, we first check if the block is affecting the makespan
(line 10). If this is not the case we assign as many containers as we have available,
though at most the amount needed to reach the makespan or the capacity of the
block (line 11). Otherwise, we load as many containers as the capacity of the
block allows. The actual assignment is performed in line 14, which the updates
all the necessary variables. The main idea behind this procedure is of trying
to first load containers in blocks until the makespan is reached. The remaining
containers are then greedily assigned where capacity is available. Once an initial
solution is found, the mathematical model is run for 10 seconds to warmstart
the LNS.

8 D. Pacino

Algorithm 1: 2nd phase of the initial solution procedure

1 Dbp = 0;// Discharge port assignment for block b at port p

2 for each port p ∈ P do
3 for each discharge port d ∈ D sorted by moves do
4 L = t̂pd; // Containers to load

5 while L > 0 do

6 Ĉ = sort(Ĉpd) by cost and capacity;

7 b = POP(Ĉ);
8 if block b is empty then
9 Dbi = d ∀i ∈ P d

p ;

10 if makespan is not reached then
11 L = min(∆Mk, qb, L);

12 else
13 L = min(qb, L);

14 ASSIGN LOAD(L, b, p, d);

3.2 Repair operator

In our adaptation of the LNS framework, we use a single repair operator based
on the mathematical model described in Section 2. As we will see in the next
section, a number of destroy operators are used to select which parts of the
solution have to be removed. Let X̂ be the set of variable assignments which
has to be re-evaluated, where (c, i, j) ∈ X̂ represents the indexes relative to
the variable assignment for block c ∈ C, at port i ∈ P 1

n−1 for discharge port
j ∈ Pn

i+1. Assume that X̄ is the set of all variable assignment indexes in the
current solution, the repair operator solves the model from Section 2 with the
following additional variable fixings:

xcij = vcij ∀(c, i, j) ∈ X̄ \ X̂ (21)

where vcij is value assigned to variable xcij in the current solution.

3.3 Destroy operators

Six destroy operators have been designed for the BSPCI, each targeting special
parts of the problem. The operators are selected at random at each iteration and
they can be roughly classified as random and cost-based, and are described in
the following.

Random destroy This is the simplest of the destroy operators, where variable
assignments are simply selected at random, thus

X̂ = {(c, i, j)|(c, i, j) ∈ X̄, rcij ≤ ρ1},

Crane intensity and block stowage strategies in stowage planning 9

where rcij ∈ [0, 1] is a random value for each variable assignment indexed by

x ∈ X̄, and ρ1 ∈ [0, 1] is a parameter of the algorithm.
Random bin destroy This operator selects bins (sets of adjacent bays) at

random and relaxes all the variable assignments related to the selected bins,
thus

X̂ =
{

(c, i, j)|(c, i, j) ∈ X̄, c ∈ Cb, b ∈ B, rb ≤ ρ2
}
,

where rb ∈ [0, 1] is a random value for each bin, and ρ2 ∈ [0, 1] is a parameter
of the algorithm.

Random discharge port assignment destroy This operator targets blocks
with a specific discharge port assignment. Let d ∈ P be a discharge port
selected uniformly at random. The set of relaxed assignments is then

X̂ =
{

(c, i, j)|(c, i, j) ∈ X̄, j = d, rx ≤ ρ3
}

where rx ∈ [0, 1] is a random value for each variable assignment index x ∈ X̄,
and ρ3 ∈ [0, 1] is a parameter of the algorithm. We use rx in order to limit
the size of the relaxed solution.

Random Block destroy The two previous destroy operators can be seen as a
version of the Shawn-removal technique [11] used in vehicle routing, where
block assignments (either by discharge port or by bin association) are relaxed
together. This version of the operator is more basic and only selects blocks
at random, thus

X̂ =
{

(c, i, j)|(c, i, j) ∈ X̄, c ∈ C, rc ≤ ρ4
}
,

where rc ∈ [0, 1] is a random value for each block, and ρ4 ∈ [0, 1] is a
parameter of the algorithm.

Random Port destroy This operator aims at re-optimising the portion of the
solution related to a specific port. Given a port p selected uniformly at
random,

X̂ ⊆
{

(c, i, j)|(c, i, j) ∈ X̄, i = p, rx ≤ ρ5
}
,

where rx ∈ [0, 1] is a random value for variable assignment index, and ρ5 ∈
[0, 1] is a parameter of the algorithm.

Cost based bin destroy This and the next three destroy operators are cost
based versions of the operators we have already seen. This particular case
is an extension of the Random bin destroy operator. The aim is to make
the random selection biased toward bins that, if changed, might have an
impact on the objective function. For each bin b ∈ B at every port i ∈ P , we
calculate an impact factor fbi = zbi

zi
where zbi is the total number of moves

to be performed in bin b at port i. In order to mitigate the impact of the
bias, we also draw a random number rb ∈ [0, 1] to be combined with the
impact factor. The set of relaxed variable assignments is then

X̂ =

{
(c, i, j)|(c, i, j) ∈ X̄, c ∈ Cb, b ∈ B,

fbi + rb
2

≤ ρ6
}

10 D. Pacino

Cost based discharge port assignment destroy Using the same cost im-
pact factor as in the previous operator (fbi), this destroy operator imple-
ments a cost based version of the Random discharge port assignment destroy
by defining

X̂ =

{
(c, i, j)|(c, i, j) ∈ X̄, j = d,

maxb∈Bc (fbi) + rx
2

≤ ρ7
}

where Bc is the set of bins including block c.
Cost based block destroy This destroy operator is very similar to the previ-

ous one, with the difference that we do not restrict the variable assignment
selection to specific discharge ports. More formally the set of variable assign-
ments to relax is

X̂ =

{
(c, i, j)|(c, i, j) ∈ X̄, maxb∈Bc

(fbi) + rx
2

≤ ρ8
}
.

Cost based move destroy This is another relational destroy operator. The
main idea is to first relax variables assignments of the bin that determines
the makespan at a port. Let pM ∈ P be a randomly selected port with
a positive impact on the objective function, and bM ∈ B be the bin that
defined the makespan at port pM . The first set of variable assignment to
relax is then indexed by

X̂B =
{

(c, i, j)|(c, i, j) ∈ X̄, i = pM , c ∈ CM
b

}
.

In order to improve the solution we now need to relax variable assignments
that will allow us to either add or remove containers for the bM bin. This can
be achieved by relaxing blocks that have the same discharge port as those
in the bin bM , and which have available capacity. Let D(x) be the discharge
port assigned to block c of the triplet x = (c, i, j). The variable assignment
we want to relax are the indexed by

X̂R =
⋃

d∈{D(x)|x∈X̂′}

(c, i, j)|(c, i, j) ∈ X̄, i = pM , j = d,
∑
j∈P i

i

xcij < qc

 .

Finally we also include variable assignments for blocks that are empty

X̂E =

(c, i, j)|(c, i, j) ∈ X̄, i = pM ,
∑
j∈P i

i

xcij = 0


and the union of all these sets defines the set of variable assignments to relax

X̂ = X̂B ∪ X̂R ∪ X̂E .

Crane intensity and block stowage strategies in stowage planning 11

3.4 Acceptance and termination criteria

A new solution s′ is accepted if its objective value (f(s′)) is better than that
of the current solution s. Non-improving solutions that have the same objective
value as the current solution are accepted only if they have not been visited be-
fore. An hash-key is generated for each solution and used to individually identify
already visited configurations. A time limit of 300 seconds has been selected as
termination criteria for the heuristics.

4 Computational results

The LNS matheuristic and the mathematical formulations have been tested on a
2.30 GHz Intel Xeon E5 Processor with 128GB of RAM. The heuristic has been
implemented using C++ and all models have been solved using CPLEX version
12.8.

The experiments are based on a randomly generated set of 600 benchmark
instances composed of 8 vessels with a capacity to carry from 1,200 to 18,000
containers (see Table 1 for details). For each of these vessels, an instance group is
generated assuming a route visiting 5, 10, 15, 20 and 25 ports. For each of these
groups, sub-groups are created to target specific origin/destination patterns: long
distance, short distance and mixed distances as defined in [3]. Five instances are
then generated for each sub-group2. According to our industrial collaborator,
exceeding the target makepasan should be double as expensive as not reaching
it, we have thus assigned ci = 2 and ci = 1 for all ports i ∈ P .

Vessels

A B C D E F G H

Bays 10 10 18 18 20 20 24 24
Bay capacity 120 210 180 300 420 600 624 750
Larger block capacity 80 140 120 200 280 400 416 500
Smaller block capacity 40 70 60 100 140 200 208 250
Vessel capacity 1,200 2,100 3,240 5,400 8,400 12,000 14,976 18,000

Table 1: Vessels’ capacity. Each bay is assumed to be composed of two blocks.
A larger one representing the outer stacks, and a smaller one representing the
central stacks.

4.1 Evaluation of the compact model

The large set of benchmark instances has been designed to evaluate the impact
each instance feature has on the solution of the compact formulation. With a

2 The instances can be obtained upon request to the author.

12 D. Pacino

time limit of one hour, the model is able to find optimal solutions for only 20
instances. Feasible solutions are found for 431, while 149 instances are not solved.
Though the formulation is able to find a large number of feasible solutions, the
average gap to the lower bound is ca. 65%. Figure 2 shows a histogram of the
gap distribution among the solved instances, where it is possible to see that most
solutions have more than 50% gap.

Fig. 2: Histogram representing the distribution of the gap between feasible solu-
tions and CPLEX lower bound.

Figures 3 and 4 show the distribution of feasible, optimal and unsolved in-
stances with respect to vessel size and number of visited ports, respectively. As
expected, the larger the vessels and the number of visited ports the harder the
problem it is to solve with the compact formulation. Tests have also been run
to identify patterns between the size of the problem and the optimality gap,
however, they did not produce any results worth mentioning.

More interesting are the results obtained when the objective weights are
changed. Figure 5 presents an histogram for different combinations of cost coef-
ficients. E.g. column ”U:1 O:2” represents a cost coefficient assignment of ci = 1
and ci = 2 for all ports i ∈ P . As expected, simple feasibility problems (U:0 O:0)
are easier to solve and the more components we add to the objective function
the harder it is to find optimal solutions. For all of the presented combinations
there exists a number of instances for which a solution is never found.

4.2 Evaluation of the LNS

Compared to the compact formulation, the LNS algorithm is able to find feasible
solutions for all problem instances i.e 149 instances more than the mathematical
model. For the instances where the compact formulation finds optimal solutions,
the matheuristic is able to match those with an average optimality gap of 0.2%.
Figure 6 depicts an analysis of the quality of the solutions found by the LNS and
the feasible solutions found by the compact formulation. As is can be seen, in
most cases, the two solutions differ only by a few hundred containers during the
entire voyage. There do exist outliers where either approach finds much better

Crane intensity and block stowage strategies in stowage planning 13

Fig. 3: Solved solutions by vessel size.

Fig. 4: Solved solutions by number of visited ports.

14 D. Pacino

Fig. 5: Sensitivity analysis of the objective cost coefficients.

solutions than the other, which is to be expected due to the computational com-
plexity of the problem. Notice, however, that the LNS is an anytime algorithm
that is able to solve all the 149 instances that the compact formulation could
not.

Fig. 6: Histogram over difference in objective function between the LNS and the
campact model.

A more in-depth look at the experimental results confirms that the LNS be-
comes more efficient as the mathematical formulation starts degrading. Figure 7
shows two bar charts with the y-axis indicating the average gap between the
LNS and the solution found the by the mathematical model. The changes are
shown as a function of the vessel size (Figure 7a) and the number of visited
ports (Figure 7b). Here we see the opposite tendency than the one shown in
Section 4.1. As the size of the problem increases, the LNS reduces its gap since
the compact formulation has a harder time finding solutions. Note that due to
the outliers the average gap is not a good indication of the quality of the LNS.
Figure 7 can be reproduced using the median as a measure, which will result in
the same conclusion but where the highest median gap is only 10%.

Crane intensity and block stowage strategies in stowage planning 15

(a) Based on number of visited ports. (b) Based on vessel size.

Fig. 7: LNS average gap to the solution found by the compact model.

5 Conclusions

In this paper, we have presented a new variation of the stowage planning problem
which includes block stowage and crane intensity strategies. Though the problem
was greatly simplified, due to its combinatorial nature, it has been proven hard to
solve. A compact formulation was presented and a matheuristic based on the LNS
framework was implemented to solve the problem. Experiments on a randomly
generated set of benchmark instances have shown that the LNS can be used
to quickly find solution comparable to those of the mathematical formulation.
Further research is, however, needed to both improve the LNS approach and to
extend it to a more rich problem definition.

Acknowledgments

The author would like to thank the Danish Maritime Foundation for supporting
this research under the project 2015-119 DTU Transport, Dynastow. Thanks are
also due to Roberto Roberti for the fruitful discussions about the mathematical
formulations.

References

1. Ambrosino, D., Paolucci, M., Sciomachen, A.: A MIP Heuristic for Multi Port
Stowage Planning. Transportation Research Procedia 10, 725–734 (jan 2015)

2. Ambrosino, D., Paolucci, M., Sciomachen, A.: Computational evaluation of a MIP
model for multi-port stowage planning problems. Soft Computing 21(7), 1753–1763
(apr 2017)

3. Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container
ships to reduce the number of shifts. Annals of Operations Research 76(0), 55–71
(1998)

16 D. Pacino

4. Christensen, J., Pacino, D.: A matheuristic for the Cargo Mix Problem with Block
Stowage. Transportation Research Part E: Logistics and Transportation Review
97, 151–171 (jan 2017)

5. Ding, D., Chou, M.C.: Stowage planning for container ships: A heuristic algorithm
to reduce the number of shifts. European Journal of Operational Research 246(1),
242–249 (oct 2015)

6. Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast Generation of Near-
Optimal Plans for Eco-Efficient Stowage of Large Container Vessels. In: Compu-
tational Logistics, pp. 286–301. Springer, Berlin, Heidelberg (2011)

7. Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: An Accurate Model for
Seaworthy Container Vessel Stowage Planning with Ballast Tanks. In: Computa-
tional Logistics, pp. 17–32. Springer, Berlin, Heidelberg (2012)

8. Parreño, F., Pacino, D., Alvarez-Valdes, R.: A GRASP algorithm for the container
stowage slot planning problem. Transportation Research Part E: Logistics and
Transportation Review 94, 141–157 (oct 2016)

9. Pisinger, D., Ropke, S.: Large neighborhood search. In: Handbook of metaheuris-
tics, pp. 399–419. Springer (2010)

10. Roberti, R., Pacino, D.: A decomposition method for finding optimal container
stowage plans (2018), accepted manuscript to appear in Transportation Science

11. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Ve-
hicle Routing Problems, pp. 417–431. Springer Berlin Heidelberg (1998)

12. Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage
planning problems. Discrete Applied Mathematics 169, 225–230 (may 2014)

13. UNCTAD: Review of maritime transport 2017 (2017)

