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ABSTRACT This paper proposes an optimal coordinated method for electric vehicles (EVs) participating in frequency regula-

tion (FR) under different power system operation states (PSOSs). In the proposed methodology, the FR power of EVs and 

generators is coordinated with different optimization objectives for power system secure and economic operations. When a 

power system operates in normal state, the minimum FR cost is used as an optimization objective considering the battery 

degradation cost. In the abnormal state, the minimum frequency restoring time is considered in the optimization objective. 

Based on the optimized results in different scenarios, the output power coordinated control rule between EVs and generators 

is drawn. Simulations on an interconnected two-area power system have validated the superiority of the proposed optimized 

coordinated control strategy. 

INDEX TERMS Electric vehicles, frequency regulation, operation state, coordinated control, vehicle-to-grid. 

I. INTRODUCTION 

In order to reduce exhaust emissions and protect environ-

ment, many countries encourage renewable energy genera-

tion [1]. In the future, renewable energy sources will be mas-

sively integrated into power grids and the power system will 

face serious challenges. Due to the intermittency and uncer-

tainty of renewable energy sources, it is difficult to meet the 

supply-demand match by only relying on the traditional FR 

resources [2]. EVs are considered as energy storage devices 

[3], [4]. Based on vehicle-to-grid (V2G) technology, EVs 

could charge/discharge from/to power grids [1]. The V2G 

power in United States, UK, Germany, Italy, etc. may reach 

6.8-10 times of their average national load [5], [6], and the 

number of EVs in the United States has reached 1 million [7]. 

The increasing number of EVs will bring new opportunities 

to FR of power system. 

There are three ways for EVs participating in FR. The first 

way is the localized decision-making, for which, each 

charger determines how much charging/discharging power is 

based on local information, such as load fluctuations, the ar-

rival time of each EV and the local frequency information 

[8], [9]. The second way is the decentralized decision-mak-

ing. In this case, the FR signals are sent to the aggregators by 

control center for controlling each charging device based on 

the operating voltage, power loss and so on [6], [10], [11]. 

The last way is the centralized decision-making. With the 

support of the communication system, the chargers are con-

trolled by the control center [7], [12]. 

In the current literature, there are different optimization 

objectives for EVs participating in FR such as reducing fre-

quency deviation (FD), improving FR revenue and EV own-

ers’ satisfaction [13]-[18]. In order to reduce the FD, the co-

ordinated control strategies of different FR resources are pro-

posed and have better performance [19], [20]. This is be-

cause these strategies can utilize the complementarity of dif-

ferent FR resources efficiently. When an operation power 

system is safe enough, the FR revenue could be improved. 

The charging/discharging time of EVs could be optimized, 

for example, EVs charge/discharge from/to grid when the 

electricity price is low/high [20]-[22]. FR cost reduction, 

such as reducing the battery degradation cost, also could im-

prove FR revenue [9], [23]. From the EV owners’ point of 

view, their driving requirements are important and should be 

mailto:binzhou@hnu.edu.cn
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satisfied. Therefore, the state-of-charge (SOC) of EV batter-

ies is necessary to be maximized [24], [25]. 

The PSOSs could be divided into five states based on the 

security level [26]-[28]. The optimization objectives of 

power system depend on the PSOS [29]-[31]. For different 

optimization objectives, the utilization of each FR resource 

is different. This is because some characteristics of resources 

are complementary. For example, the response speed of EVs 

could reach the millisecond level, the thermal power genera-

tors and hydroelectric generators just could reach the sec-

onds level. The response speed of EVs is much faster, but the 

FR cost of them is higher. In our previous research in [13], 

the response priorities for EVs participating in FR under dif-

ferent PSOSs are involved. EVs participate in FR under dif-

ferent PSOSs is investigated, but the optimal model is not yet 

established.  

In this paper, an optimal coordinated method for EVs par-

ticipating in FR under different PSOSs is proposed. In the 

proposed methodology, the FR power of EVs and generators 

is coordinated with different optimization objectives for 

power system secure and economic operations. When a 

power system operates in normal state, the minimum FR cost 

is used as an optimization objective considering the battery 

degradation cost. In the abnormal state, the minimum fre-

quency restoring time is considered in the optimization ob-

jective. In simulation, a series of random load and step load 

are added in the normal state and abnormal state respectively. 

Based on the proposed optimization method, the coordinated 

control rule between EVs and generators is drawn. The re-

mainder of this paper is arranged as follows. The optimized 

model is established in Section II. The particle swarm opti-

mization algorithm and the fuzzy set theory are employed to 

resolve the optimal model in Section III. In Section IV, the 

proposed coordinated control strategy between EVs and gen-

erators is validated. In Section V, the conclusion is made.  

II. PROBLEM FORMULATION 

An operation power system should maintain balance be-

tween generation and load. Any generation-load mismatch 

will result in FD. When the system operates in a relatively 

safe state, the FD is within a certain small range. As the op-

eration power system is divided five states, only normal state 

is considered relatively safe [27]-[29]. In this paper, the nor-

mal state is classified as normal state, and the others are clas-

sified as abnormal state. 

A. OBJECTIVE FUNCTION 

The formulas on FD is adopted from [6], [30], as shown in (1). 

( )
•

2

1
V G FRR Lf P P P D f

M
 =  + − −               (1) 

2 ,

1

N

V G EV i

i

P P
=

 =                                    (2) 

where ∆ denotes the deviation from the initial steady state; f 

is the system frequency; M is the angular momentum; PV2G is 

the aggregated V2G power of all EVs; PFRR is the output 

power of other FR resources; PL is the frequency nonsensitive 

load power; D is the load-damping coefficient; PEV,i is the V2G 

power of the ith EV; N is the number of the EVs. In this paper, 

the EVs are assumed stay in the charging station for the most 

of time every day. The number of EVs participating in FR 

could be ensured through incentive measures or policies such 

as economic incentive. It is similar to demand response (DR). 

DR is often a cost effective technique that can provide the 

flexibility required to time shift loads either through prices or 

incentive policies [21]. 

The FR cost is formulated as follows: 

= EV mC C C+                                        (3) 

=EV deg char lossC C C C+ +                           (4) 

where C is the FR cost; Cm is the FR cost of generators; CEV is 

the FR cost of EVs, it consists of battery degradation cost Cdeg, 

charging cost Cchar and power loss cost Closs; Cchar is the cost 

for purchasing/selling the power from/to the power grid; Closs 

is the cost for power transmission loss.  

The battery degradation cost is result from the charging/dis-

charging of EV batteries and it is calculated as (5) [12]. 

2 2

, ,

2

W

deg EV it EV it

i I t W i I t

C P P 
   =

= +               (5) 

where α and β are the model parameters; PEV,it is the charging 

power and ∆PEV,it is the charging power fluctuation of the ith 

EV in interval t; W is the interval set; I is the set of EVs; PEV,it 

and ∆PEV,it could affect battery temperature and active material 

of battery, they will result in more battery degradation cost. 

When a power system operates in a relatively safe state, the 

FR cost can be considered to reduce. The objective function is 

shown as follows: 

 

 
max

max

min , , , 0

min , , , 1

aver tate

aver F tate

f f C S

f f t S

  =


  =

                    (6) 

where ∆fmax and ∆faver are the maximum and the average FD 

values during FR process, respectively; tF is the time that the 

FD restores to normal range; State is the PSOS, when the 

system operates in normal state it equals 0, otherwise it equals 

1. 

B. FR CHARACTERISTICS  

1) DYNAMIC CHARACTERISTICS 

The dynamic characteristics of generators mainly depend on 

the time constants of inlet steam chest, reheater and governor. 

The dynamic characteristics of EVs mainly depend on time 

constant of battery power adjustment (it can reach up to tens 

of milliseconds [6], [33]). The response speed and FR accu-

racy advantages will be obvious if the number of EVs is suf-

ficient. Otherwise the output power of EVs will be restricted 

by capacity constraint. The output power of the generator is 

restricted by response speed and ramp rate, compared with 

that of EVs. 

2) COST CHARACTERISTIC 

The FR cost of EVs includes battery degradation cost, charg-

ing cost and power loss cost. The charging cost is affected 

by electricity price and charging power, which is expressed 

as (7). It is a positive number when EVs are charging and a 
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negative number when EVs are discharging. In this paper, 

the charging power and discharging power which are pro-

vided for FR, are assumed to be equal. If the electricity price 

for purchasing and selling are also assumed to be equal, the 

charging cost will be zero. Therefore, the charging cost is not 

considered in this paper. The power loss cost results from 

transmission loss and is reflected in charging/discharging ef-

ficiency, which is shown in (14) and (15). 

( )arg arg , , arg , ,EVch e ch e it purchase t disch e it sell t

i I t W

C P z P z
 

= −      (7) 

where Pcharge,it and Pdischarge,it are the charging power and 

discharging power of the ith EV in interval t respectively; 

Zpurchase,t and Zsell,t are the electricity price for purchasing 

power from grid and selling power to grid in interval t 

respectively.  

EV battery has limited cycle life because of the fading of 

active materials caused by the charging and discharging cy-

cles [36]. This cycle aging is caused by the growth of cracks 

in the active materials, a process similar to fatigue in materi-

als subjected to cyclic mechanical loading [36], [37]. The in-

fluence factors can be summarized as ambient temperature, 

cycle depth, charging/discharging power and so on. In [12], 

[36] and [39], the variable of battery degradation cost equa-

tions is V2G power. It could be presumed that the equations 

are established for the ideal operating conditions (for exam-

ple, the ambient temperature is 25 0C). The relationships be-

tween battery degradation cost and V2G power are shown in 

Fig. 1. The Model 1, Model 2 and Model 3 are battery deg-

radation costs which are calculated based on [12], [36] and 

[38], respectively. In Model 2, the cost function is a piece-

wise function, the V2G power in each segment is random. In 

Model 3, the correlation parameters are the average values. 

In order to simplify the cost calculation, the cost equation of 

Model 1 is applied in this paper. 

The battery degradation cost, which is shown as (5), is re-

lated to the total and the fluctuation of output power of EVs 

during t. Over-charging/discharging or over-frequent charg-

ing/discharging will shorten service life of the battery. The 

battery degradation cost is illustrated in Fig. 2, in which 

charging power indicates FR power of EVs within time t. It 

can be seen that the more EVs participate in FR, the lower 

battery degradation cost is. In Fig. 2, battery capacity limit is 

not considered, and it is assumed that the charging power of 

each EV is the same no matter how many EVs participate in 

FR. 

 

FIGURE 1. The battery degradation cost of EVs 

FR cost of generators is shown in (8) [32].  
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 (8) 

where Cgt is the running generation cost of the gth generator 

during time period t; ts is the start time of the generator par-

ticipating in FR; te is the end time of the generator participat-

ing in FR; ugt equals to 1 if the gth generator is on during 

time period t and to 0 if not; Cfix,gt is the gth generator fixed 

generation cost during t; ag and bg are the generation cost pa-

rameters; Ggt is scheduled generation of the gth generator in 

the pre-contingency state during t; qpr,gt is the gth generator 

primary reserve rate during t; rpr,gt is scheduled primary re-

serve of the gth generator during t. As can be seen from (8), 

FR cost of generators is related to output power, generator 

number and reserve capacity. 

C. CONSTRAINTS 

1) SOCS OF EVS 

When EVs participate in FR, the SOC should be considered. 

It affects the charging/discharging capacity of each EV. 

min , maxini iSOC SOC SOC                           (9) 

( ), max , 0,=c i ini i iE SOC SOC E−                        (10) 

( )d, , min 0,=i ini i iE SOC SOC E−                        (11) 

where SOCmax and SOCmin are the maximum and minimum 

SOC of the EVs respectively; These settings are used for 

avoiding the batteries over-charging/discharging; SOCini,i is 

the initial SOC of the ith EV; Ec,i is the energy of the ith EV 

for charging; Ed,i is the energy of the ith EV for discharging; 

E0,i is the rated capacity of the ith EV battery. 

2) GENERATOR POWER OUTPUT 

In order to avoid the output power of generators is too large 

or too small, the constraint is shown as (12). 

min , , max ,m g m g m gP P P                           (12) 

where ∆Pminm,g is the minimum output power of the gth gen-

erator participating in FR and ∆Pmaxm,g is the maximum out-

put power of the gth generator. 

3) EV CHARGING/DISCHARGING POWER 

As the output power of generators, the constraints for output 

power of EVs can be expressed as follows: 

max , 2 , max ,D i V G i C iP P P                           (13) 

 
'
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where ∆Pmax D,i is the maximum discharging power of the ith 

EV during time period t; ∆Pmax C,i is the maximum charging 

power of the ith EV during time period t; ∆PV2GD,i and 

∆PV2GC,i are actual discharging power and charging power of 

the ith EV; ζ and κ are the transmission loss efficiency 
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coefficients. They are both less than 1. K
Down  

i,k  and K
Up  

i,k  are the 

discharging efficiency and charging efficiency coefficients, 

respectively; ∆P
’  

V2GD,i  and ∆P
’ 

V2GC,i  are the discharging and 

charging power of the ith EV; Psti,down and Psti,up are the lower 

and upper limit capacity of the stith charging station, 

respectively. NEV is the number of EVs stay in charging 

station. ∆P
’ 

V2GD,i and ∆P
’ 

V2GC,i are vary with the SOC of the ith 

EV, which is formulated as (17) - (20) and shown as Fig.3 

[14]. 
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where SOC
max 

i  is the maximum SOC of the ith EV; SOC
min 

i  is 

the minimum SOC of the ith EV; SOC
in 

i  is the initial SOC of 

the ith EV at plug-in time.  

  

FIGURE 2.  Surface chart of battery degradation cost 

  
FIGURE 3.  The output powers for different SOC EVs 
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FIGURE 4.  The flow chart of optimization procedures 
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algorithms (EAS), the optimization result of PSO is overall 

best. In this paper, the PSO algorithm is chosen. The fuzzy 

set theory is employed in this paper to find the best compro-

mise solution. The solution procedures are shown as (21) and 

(22) [34]. The eth objective function of a solution in the set 

Fe is represented by a membership function μe. The flow 

chart of the optimization procedures is shown in Fig. 4. 
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where |Fe|max and |Fe|min are the maximum and minimum 

value of the eth objective function respectively. For each so-

lution θ, the normalized membership function μθ is calcu-

lated as (22). H is the number of solutions. The best compro-

mise solution is the one with the maximum μθ. ξe is the 

weight coefficient of the eth objective function. 

IV.  SIMULATIONS AND RESULTS 

In this paper, the proposed approach is an off-line optimiza-

tion to determine the optimal coordinated control strategy for 

EVs and generators participating in FR. The off-line optimi-

zation process should be implemented with a great variety of 

load disturbances to experience enough power system sce-

narios in a high-accuracy simulation environment, and nu-

merous explorations with EV charging/discharging strate-

gies should be sampled sufficiently in various system opera-

tion states. Consequently, the optimized control strategy can 

then be implemented for on-site operation, and the optimal 

charging/discharging power for each EV can be obtained to 

meet the timeliness requirement based on the current system 

operation state. 

The simulation model based on MATLAB/Simulink is 

shown as Fig. 5. The FR resources of both area A and area B 

include generators and EVs. The model parameters of the 

two-area interconnected system are taken from [6] and [13], 

as shown in Table I-III. The FR signal is based on the area 

control error (ACE) under the TBC control mode, as follows, 

tieACE P B f=  +                           (23) 

In order to simulate the load fluctuation in normal state, a 

series of random load, which fluctuates within a certain range, 

is added in area A and area B. As the unit of the parameters 

in Table IV is hour, the random fluctuation time of the load 

in normal state is set to 1 hour. Two step loads are added in 

area A and area B respectively, for simulating the disturbed 

load in abnormal state of power system, one is -0.8MW the 

other is Pabnormal. 
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FIGURE 5.  Block diagram of FR for two areas with generators and EV charging sta-

tions 

TABLE I PARAMETERS OF THE SIMULATION SYSTEM MODEL 
Parameters Value Parameters Value 

System base (MW) 10 Nominal frequency (Hz) 60 

TG-a, TG-b (sec) 0.5 Da, Db (MW/Hz) 1/6 

TCH-a, TCH-b 0.8 Ra, Rb (Hz/MW) 0.3 
TRH-a, TRH-b (sec) 10 kr-a, kr-b (MW/Hz/sec) 2/15 

Ma, Mb (MW/Hz/s) 2.0 FHP-a, FHP-b 30% 

TABLE II PARAMETERS OF THE EV CHARGING STATION MODEL 
Parameters Value 

EV frequency characteristic coefficient, kev-a, kev-b (MW/Hz) 1.12 

EV battery gain, kch-a, kch-b 1 

EV battery filter time constant, Tch-a, Tch-b (sec) 1 
1st order delay of DC/AC converter, Td-a, Td-b (sec) 2 

The number of EVs in area A 

The number of EVs in area B 
The number of generators in area A 

The number of generators in area B 

817 

817 
1 

1 

A. OPTIMIZATION AND ANALYSIS OF CONTROL STRATEGY  

In this paper, the multiples of FR capacity allocated for EVs 

and generators, express as the ace signals for EVs and gen-

erators, are the decision variables. The relevant parameters 

are shown in Table IV [12]. The optimization objectives in 

different states are formulated as (6). 
TABLE III PARAMETERS OF EVS 

Parameters Value SOC of EVs Number 

SOCmin 0.1 0.9 41 

SOCmax 0.9 0.8 67 

SOCio 0.6 0.7 90 
Battery capacity (kWh) 50 0.6 270 

∆PmaxD,i, 25 0.5 100 

∆PmaxC,i  25 0.4 80 
κ, 0.8 0.3 60 

ζ 0.8 0.2 27 

  0.1 32 

TABLE IV THE FR COST PARAMETERS 
Parameters Value Parameters Value 

Cit ($/h) 10 Number of particles 100 
ait ($/MWh) 9.8 Number of iterations 100 

bit ($/MWh2) 0 vx mj, vx EVj [-1.1] 

qpr,it ($/MWh) 10 c1, c2 0.8 
 ($/KWh2) 3.82610-4 r1, r2 random[0,1] 

β ($/KWh2) 

ξnormal-fmax 

 ξnormal-faverage 
ξnormal-cost 

7.65210-4 

1 

1 
1 

ωm, ωEV 

ξabnormal-faverage 

ξabnormal-faverage 
ξabnormal-t 

1 

1 

1 
1 
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1) NORMAL STATE  

As shown in Fig. 6 and Fig. 7, the sum of output power of 

EVs and generators in normal state fluctuates significantly 

because of the random loads. The sum output power of EVs 

and generators in normal state trends to increase with the in-

crease of Pnormal. The sum output power of EVs is small, and 

the output power at each moment can be negligible.  

2) ABNORMAL STATE 

In the abnormal state, the operation power system is not safe. 

In order to make the FD restore to the normal range as soon 

as possible, the complementary of EVs and generators 

should be utilized. As shown in Fig. 8 and Fig. 9, in abnormal 

state, the output power of generators increases with the 

increase of Pabnormal and the output power of EVs is always 

the maximum. The output power is the final stable value. In 

abnormal state, the optimized effect of any of these three 

objectives is the same, the minimum FD. Therefore, the 

output power has no rule with the ξabnormal-t. 

 
FIGURE 6.  The sum output power of EVs under different scenarios in normal state 

 
FIGURE 7.  The sum output power of generators under different scenarios in nor-

mal state 

 

FIGURE 8.  The output power of EVs under different scenarios of abnormal state 

In normal state, the output power of EVs can be negligible. 

In abnormal state, the output power of EVs is the maximum. 

The respond speed and FR accuracy of EVs, and the FR ca-

pacity of generators, are effectively utilized. The FR cost is 

considered.  

 

FIGURE 9.  The output power of generators under different scenarios of abnormal 

state 

B. SIMULATION AND DISCUSSION 

The FR strategy, which is shown in area A of Fig. 5, is named 

STRATEGY1. As shown in [13], the FR control strategy is 

named STRATEGY2. In STRATEGY2, the response prior-

ities and control strategies for the FRRs vary with different 

operating states. The FR control strategy optimized by the 

proposed optimization method, which is shown in Table Ⅴ, 

is named STRATEGY3. In STRATEGY3, the number of 

EVs is increased to two times, is named STRATEGY3+.  

In order to evaluate the effectiveness of the FR control 

strategies, the different indicators in different states are cal-

culated and listed in Tables VI. 

1) NORMAL STATE 

TABLE Ⅴ THE COORDINATED CONTROL STRATEGY3 
 Normal state Abnormal state 

PEV 0*ACE 2*ACE 

Pm 0.6*ACE 2*ACE 

 

FIGURE 10.  Random loads fluctuation within one hour in area A (A) and in area B 

(B) 

The random load is assumed to be under the normal distri-

bution [40]-[42], and it is formulated as (24) and is simulated 

as Fig. 10.  

( )random normalP t P randn = +                   (24) 

where Prandom is the load fluctuation in normal state; μ and σ 

are parameters of the normal distribution function, they 

equal to 0 and 0.388. Pnormal is the maximum value of the load 

fluctuation in the most of time, it equals to 0.06 MW in Fig. 

10; randn is a standard normal distribution random number 

in [0,1]. 

The output power of different control strategies is shown 

in Fig. 11. In STRATEGY1 and STRATEGY2, the EVs and 
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generators participate in FR. In STRATEGY3, only the gen-

erators undertake the FR task. In STRATEGY3, the output 

power of generators is the least. 

Tie-line power of different control strategies is shown in 

Fig. 12. In STRATEGY3, the tie-line power fluctuation is 

more dramatic than STRATEGY1 and STRATEGY2. This 

is because the FR power in STRATEGY3 is the least. 

The FD of different coordinated control strategies is 

shown in Fig. 13. The FR power in STRATEGY3 is the least. 

However, the FD of STRATEGY3 is a little less than other 

strategies. As shown in Table Ⅵ, the FR effect of STRAT-

EGY3 is the best, and the FR cost is much less than other 

strategies. This is because the random load fluctuates con-

stantly. The FR cost of STRATEGY2 is less than that of 

STRATEGY2. This is because the output power of genera-

tors in STRATEGY3 is the less. The FR result of STRAT-

EGY3+ is the same with STRATEGY3, this is because EVs 

do not participate in FR. 

 
FIGURE 11.  The output power of EVs with STRATEGY1 (A1), of generators with 

STRATEGY1 (B1), of EVs with STRATEGY2 (A2), of generators with STRATEGY2 

(B2), of EVs with STRATEGY3 (A3) and of generators with STRATEGY3 (B3) in 

the normal state 

 
FIGURE 12.  The tie-line power with STRATEGY1 (A), with STRATEGY2 (B) and 

with STRATEGY3 (C) in the normal state 

 

FIGURE 13.  The FD with STRATEGY1 (A), with STRATEGY2 (B) and 

STRATEGY3 (C) in the normal state 

2) ABNORMAL STATE 

A -0.8MW load and an 1.6MW load are added in area A at 

the 10th second and area B at the 15th second respectively. 

The output power of different strategies is shown as Fig. 14. 

In STRATEGY2, EVs participate FR when the ACE reaches 

response thresholds. In STRATEGY3, the output power of 

EVs response faster than STRATEGY1 and STRATEGY2. 

The tie-line power and FD of different strategies are 

shown in Fig. 15 and Fig. 16 respectively. As shown in Table 

Ⅵ, the performance of STRATEGY3 is the best, and the per-

formance of STRATEGY3+ is better than STRATEGY3 be-

cause that there are more EVs participating in FR and more 

quick response power. The performance of STRATEGY3+ 

is a little better because of the capacity constraint of EVs. 

 
(a) 

 
(b) 

FIGURE 14.  The output power of EVs (a) and generators (b) with strategies in the 

abnormal state 

 
FIGURE 15.  The tie-line power with strategies in the abnormal operating state  

In the normal state, the power system is operating in a rela-

tively safe state and the FD fluctuates within a certain range. 

Therefore, the output power of FR resources could be less 

for FR cost reduction. In the abnormal state, the only goal is 

to improve system security. Therefore, the response speed 

and FR accuracy advantages of EVs should be utilized. 
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Based on the optimized results, the output power of genera-

tors is appropriately less and the output power of EVs is as 

less as possible in normal state, and the output power of EVs 

is as much as possible and the remainder of the FR power is 

the output power of generators in abnormal state. 

 

FIGURE 16.  The FD with strategies in the abnormal operating state 

 
FIGURE 17.  The output powers for different SOC EVs in abnormal state 

 

TABLE Ⅵ SIMULATION RESULTS OF DIFFERENT METHODS 

  STRATEGY1 STRATEGY2 STRATEGY3 STRATEGY3+ 

The normal state 

The maximum FD (Hz) 0.0552 0.0542 0.0549 0.0549 
The average FD (Hz) 0.0120 0.0122 0.0106 0.0106 
The FR cost of generators ($) 276.1746 211.3497 231.0159 231.0159 
The FR cost of EVs ($) 541.3750 485.6162 0 0 

The total cost ($) 817.5496 696.9659 231.0159 231.0159 

The abnormal 

state 

The maximum FD (Hz) 0.9557 0.9552 0.9347 0.9346 

The average FD (Hz) 0.0134 0.0134 0.0096 0.0096 
The recovery time (s) 85.1717 85.1716 42.9876 42.9874 

V.  CONCLUSION 

In this paper, an optimal coordinated method for EVs partic-

ipating in FR under different PSOSs is proposed. In the pro-

posed methodology, the complementarity of EVs and gener-

ators under different PSOSs is utilized. In normal state, the 

power system is relatively safe, while in the abnormal state, 

the FD must be restored to normal range as soon as possible. 

When a power system operates in normal state, the minimum 

FR cost is used as an optimization objective considering the 

battery degradation cost. In the abnormal state, the minimum 

frequency restoring time is considered in the optimization 

objective. In this paper, the FR cost of EVs is higher but the 

response speed is more rapidly. In the simulation examples, 

a series of random load in an hour and step load are added as 

disturbed loads. Based on the optimized results in different 

scenarios, the optimal coordinated control rule between EVs 

and generators is drawn. The output power of EVs and gen-

erators is suggested to be less in normal state and the output 

power of EVs is suggested to be more in abnormal state. The 

simulation results have proved that the FR cost is reduced in 

normal state and the frequency recovery time and the FD are 

improved in abnormal sate with the proposed coordinated 

method. 
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