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ABSTRACT: Lipoxygenases are a family of cytosolic, peripheral membrane enzymes,
which catalyze the hydroperoxidation of polyunsaturated fatty acids and are implicated
in the pathogenesis of major human diseases. Over the years, a substantial number of
scientific reports have introduced inhibitors active against one or another subtype of the
enzyme, but the selectivity issue has proved to be a major challenge for drug design. In
the present work, we assembled a dataset of 317 structurally diverse molecules hitherto
reported as active against 15S-LOX1, 12S-LOX1, and 15S-LOX2 and identified, using
supervised machine learning, a set of structural descriptors responsible for the binding
selectivity toward the enzyme 15S-LOX1. We subsequently incorporated these
descriptors in the training of QSAR models for LOX1 activity and selectivity. The
best performing classifiers are two stacked models that include an ensemble of support
vector machine, random forest, and k-nearest neighbor algorithms. These models not
only can predict LOX1 activity/inactivity but also can discriminate with high accuracy
between molecules that exhibit selective activity toward either one of the isozymes 15S-
LOX1 and 12S-LOX1.

1. INTRODUCTION

Human lipoxygenases are a structurally related family of
cytosolic, peripheral membrane enzymes, which catalyze the
hydroperoxidation of polyunsaturated fatty acids producing
leukotrienes, lipoxins, and/or hydroxy fatty acids (arachidonic
acid cascade).1−4 These products play important roles in the
development of inflammation, and over the years, an
accumulating number of scientific reports emphatically involves
LOXs in the pathogenesis of almost all the diseases with major
health relevance (bronchial asthma, atherosclerosis, cancer,
obesity, osteoporosis, and neurodegenerative disorders).5−13 As
a result, lipoxygenase (LOX) research is a vital scientific area
today with more than 500 new articles published annually.2

Corresponding to the genes of the human ortholog, LOXs are
named ALOX15, ALOX15B, ALOX12, ALOX12B, and
ALOX5.1 ALOX12B and ALOX15B are mainly expressed in
the skin and other epithelial cells, whereas ALOX15, ALOX12,
and ALOX5 are expressed in hematopoietic/immune cells.13

LOX enzymes have considerable molecular mass (75−81 kDa)
and share highly conserved structural features, as well as the
unique topology of the catalytic (C-terminal) domain. The C-
terminal domain contains both the catalytically active nonheme
iron and the substrate-binding cavity.14 Studies of various
complexes with different inhibitors have found the latter in this
location.15−21 The natural substrate for human LOXs is
arachidonic acid.14,22 With respect to their stereo and positional
specificity of arachidonic acid oxygenation, the conventional
nomenclature classifies human LOXs as 5S-LOX1 (ALOX5),
12R-LOX1 (ALOX12B), 12S-LOX1 (ALOX12), 15S-LOX1
(ALOX15), and 15S-LOX2 (ALOX15B).14,22 Currently,

research is focused on the biological relevance of the different
LOX-isoforms.23 Functional and isoform multiplicity as well as
heterogeneity of the different isoenzymes are confusing
issues.2,23 As a consequence, the arising “selectivity” theme
has made the discovery of LOX inhibitors increasingly
challenging for drug design. Structural studies on these proteins
reveal that although their three-dimensional (3D) structure is
highly conserved, their sequences share low identity and show
both similarities and striking differences at the active site.19,24

These differences are held responsible for substrate selectivity
and are believed to be the key for the design of isoform-
selective inhibitors.23,24 To date, there is only one FDA-
approved drug on the market (Zileuton, 5-LOX1).25

In the present investigation, our main focus has been the
inhibition of 15S-LOX1. This enzyme is reported to play a
crucial role in obesity, since 15S-LOX1 expression is directly
related with the proliferation and hypertrophy of adipose
cells.50 Furthermore, 15S-LOX1 promotes cancer by amplifying
PPARγ transcription activity, and therefore, 15-LOX1 inhibitors
may be suitable chemotherapy agents in the near future.50 Over
the last years, both industrial and academic laboratories have
been working intensely toward the discovery of potent and
selective 15S-LOX1 inhibitors,5,29−34 but it is noteworthy that
to date, not one of these compounds has been approved for
therapeutic usage.50 Computational methods26−28 have been
employed for the discovery and design of suitable inhibitors,
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natural5,29,30 or synthetic31−34 molecules interacting strongly
and specifically with the protein. A relatively small number of
data-driven models have been generated, concerning mostly the
inhibition of 5S-LOX1, using small datasets of compounds with
structural similarity.35−38 These models, albeit statistically valid,
have a limited scope and are unlikely to accurately predict
chemical structures different from those with which they have
been trained.
In this work, we introduce the training of stacked

classification models built on a dataset of structurally diverse
molecules hitherto reported as active against three LOX
subtypes (15S-LOX1, 12S-LOX1, and 15S-LOX2). The
chemical structures were retrieved from review papers50 and
reports51−79 as well as publicly available data sets80−91

(hundreds to thousands of compounds tested for inhibition
on LOX isozymes). The resulting dataset contains a large
number of compounds with a wide range of molecular weight
(165−597) belonging to different chemical families. Thus, the
algorithms were provided with (a) a sufficient size of samples,
which is essential for any machine learning analysis, and (b) a
large amount of biological activity end points for a wide range
of chemical compounds.
Most importantly, the inhibitory activity toward two other

human LOX subtypes besides 15-LOX1 (12S-LOX1 and 15S-
LOX2) has been taken into consideration.84−87 The resulting
stacked quantitative structure−activity relationship (QSAR)
models have high discriminatory ability and yield statistically
valid predictions on the selective interaction of various
chemicals with 15S-LOX1.

2. RESULTS AND DISCUSSION
2.1. Data Preprocessing and Variable Selection.

Initially, noninformative descriptors were removed, that is, all
variables with missing values and zero variance (zero values for
all ligands). This process reduced the number of descriptors to
236. The dataset was split randomly into an explicit training set
(75%, 239 molecules) and a validation set (25%, 78 molecules)
used to evaluate the performance of the models on unseen data.
Each one of the subsets was a balanced representation of both
the chemical structures and the classes contained in the initial
dataset. An exploratory analysis using unsupervised methods
was carried out on the training set to acquire information
necessary for deciding the best modeling strategy. As many of
the descriptors (134) were highly correlated (>0.75), attempts
to include them all in the analysis led to models with poor
performance. Ideally, it is desirable to have a reduced set of
uncorrelated, nonredundant, and informative descriptors that

would allow us to build interpretable prediction models.
Therefore, we undertook to reduce the initial number of
variables and evaluate the effects on the accuracy of the
classifiers.
First, we employed principal component analysis.96 A

preprocessing of the data was performed, and the descriptor
variables were mean centered and scaled to unit variance. The
scree plot (Figure 1a), where the percentage of the cumulative
variance is explained, shows that the first five principal
components explained 54% of the total variation in the data.
The scatterplot matrix for components 1−5, where the points
are colored by class (Figure 2), reveals a poor separation

between the classes and reflects the low percentage of variance
explained by these components. On the whole, the exploratory
analysis revealed that the separation between the two classes
would be challenging. This challenge we decided to address
with powerful, highly nonlinear models as will be described in
the following section (QSAR modeling). By applying a criterion
of a minimum value (80%) of cumulative percent of variance
accounted for in our data, we selected the first 20 principal
components to be used as variables for building a series of
machine learning models for classifying the dataset into actives
and inactives. These classifiers had moderate performance, and

Figure 1. (a) Scree plot explaining the % percentage of the cumulative variance in the data. The first five principal components explain 54% of the
total variation. (b) Breaks in the data corresponding to components 1−5.

Figure 2. Scatterplot matrix by class for principal components 1−5:
the plot reveals a poor separation between the classes and reflects the
low percentage of variance (54%) explained by these components.
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it became clear that alternative methods for variable reduction
were needed to increase the accuracy and to reduce the
complexity of the models. To this end, we employed two
supervised methods, which evaluated the importance of the
descriptors and subsequently selected a suitable subset of
variables to be used for the modeling.
Our first approach was to use the area under the receiver

operating characteristic (ROC) curve to quantify the relevance
of the descriptors (caret package, varImp algorithm).97 The
descriptor variables were used as inputs into the ROC curve. If
a descriptor could perfectly separate the classes, there would be
a cutoff for that descriptor that would achieve sensitivity and
specificity of 1, and the area under the curve would be one. The
query resulted in a set of 20 uncorrelated descriptors ranked
according to their importance (Figure 3).

Our second approach was a simple backward selection of
descriptors, that is,recursive feature elimination with random
forest (RF)98 (caret package, RFE algorithm). RF applied a
resampling method of 10-fold cross-validation for the selection
of the descriptors and produced a set of 84 variables ranked
according to accuracy. The top 5 variables were HybRatio,
XLogP, nHBAcc, BCUTc.1h, and ALogP. Both approaches
took into consideration the response variable (active = 1 and
inactive = −1) when evaluating the importance of the selected
descriptors (supervised method).
There was a high consensus between the two methods with

regard to the relevance of the descriptors, as 18 out of 20
descriptors that resulted from the ROC curve were included in
the set of 84 proposed by RF, albeit in different order. Using as
a starting point the descriptors common to both methods, we
created a series of subsets by gradually including more variables
from the list of 84. With these subsets we built a number of
classifiers and compared their accuracy. A careful evaluation of
the results highlighted a subset of 37 most relevant descriptors,
which were subsequently used for the analysis. The selected
variables optimized the accuracy of the models. Any attempt to
increase the number of descriptors beyond that point had a
negative effect on the model performance.

2.2. QSAR Modeling. Initially, a number of machine
learning models were built on the training set using different
algorithms with default parameters, to choose those that would
fit our data best (Table 1). For this process, we used the caret

package in R. We chose both linear and nonlinear algorithms
on the basis of their diversity of learning style, which included
classification and regression trees (CARTs),99 linear discrim-
inant analysis (LDA),100 support vector machines (SVMs) with
radial basis function,101 k-nearest neighbors (KNNs),102 RFs,103

and gradient boosting machines (GBMs).104 The evaluation
metrics used were “accuracy” and “kappa”. The generated
models had different performance characteristics. A 10-fold
cross-validation resampling method with 20 repeats was
employed to get an estimate of the accuracy with which each
model could predict unseen data. A summary table was created
containing the evaluation metrics for each model (Table 1). As
can be seen, the mean accuracy across the board was rather low,
which implied that the classes in the dataset could not be easily
predicted. SVMs and RFs showed comparable performance and
had the highest accuracy on this classification problem (68%),
whereas KNNs were the weakest classifiers (56%). Both SVMs
and RFs are powerful modeling methods and highly nonlinear
functions of the descriptor variables.
The density plot of the distribution of the estimated accuracy

(Figure 4) showed an overlap in the behavior of the algorithms.
Differences in the spread and peaks of the distributions
provided further information on the model performance. The
distributions of the classifiers KNN, SVM, and RF were
depicted as normal distributions (bell-shaped). In the cases of
SVM (light green) and RF (orange), the bells were steep (small
standard deviation), indicating that the data were tightly
clustered around the mean accuracy value (∼68%, Table 1).
This practically meant that the largest part of the data would be
predicted with accuracy close to the mean value. On the other

Figure 3. Variable selection using the area under the ROC curve: a set
of 20 uncorrelated descriptors are ranked according to their
importance.

Table 1. Summary Table Containing the Evaluation Metrics
of Diverse Linear and Nonlinear Algorithms Used for the
Data Analysis

min. mean max.

Accuracy
CART 0.375 0.600 0.870
LDA 0.468 0.671 0.848
SVM 0.468 0.679 0.906
KNN 0.322 0.557 0.741
RF 0.515 0.680 0.838
GBM 0.451 0.668 0.870

Kappa
CART −0.250 0.198 0.742
LDA −0.062 0.342 0.695
SVM −0.062 0.356 0.812
KNN −0.364 0.113 0.483
RF 0.029 0.359 0.677
GBM −0.100 0.335 0.741

model correlation

CART LDA SVM KNN RF GBM

CART 1.000 0.365 0.449 0.097 0.379 0.401
LDA 0.365 1.000 0.521 0.045 0.500 0.429
SVM 0.449 0.521 1.000 0.135 0.672 0.530
KNN 0.097 0.045 0.135 1.000 0.180 0.126
RF 0.379 0.500 0.672 0.180 1.000 0.578
GBM 0.401 0.429 0.530 0.126 0.578 1.000
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hand, the normal distribution of KNN (dark green) was
depicted as a flattened bell curve (large standard deviation),
indicating that the data were spread out, and therefore, a large
part would be predicted with accuracy away from the mean
value (55%, Table 1).
Based on the acquired information, we selected the more

promising SVM and RF methods to build a new series of
models with improved accuracy. To this end, parameters were
properly tuned for the two algorithms. SVMs are particularly

sensitive to the values of “gamma” (the width of the kernel
function used for mapping the data into the high-dimensional
space) and “C” (the error penalty parameter).105,106 We
optimized the parameters by performing a grid search. RF is a
less sensitive machine learning technique, protected against
overfitting,103 but good parameter choices give robust models.
The parameters with the biggest effect on the final accuracy of
RF are “ntree” (the number of trees to grow) and “mtry” (the
number of variables randomly sampled as candidates at each
split). For calculating these parameters, we crafted a parameter
search by creating a series of RF models and comparing their
accuracy.
The whole process resulted in a shortlist of SVM and RF

classifiers with an improved performance (Table 2). For
estimating the accuracy of the models, we applied a 10-fold
cross-validation with 20 repeats, and the observed total error
was within a range of 11−23%. Subsequently, the ability to
predict unseen data was evaluated for each model using the
external validation dataset of 78 molecules. The total error of
the models increased, ranging from 22 to 27% with a
corresponding accuracy range of 78 to 73% (Table 2).
In an attempt to boost model accuracy, classifiers from the

list were combined in ensemble predictions, resulting in high-
order models that best combined the predictions of the base
classifiers. To this end, we included in the shortlist the weak
classifier KNN1, and we employed the method of stacking
algorithms.107 We used RF algorithm to combine the
predictions. Combining KNN1 with the SVM and RF
submodels resulted in an impressive improvement of the
evaluation metrics of the stacked RFs (Table 2). As can be seen
(Table 1, Figure 5), the base classifiers were not highly

Figure 4. Density plot showing the distribution of the estimated
accuracy of various algorithms as depicted in Table 1. KNN (dark
green) is the weakest classifier with the lowest mean accuracy (55%),
whereas RF (orange) and SVM (light green) are the strongest with
mean accuracy 68 & 67%, respectively.

Table 2. Evaluation of the Model Performancea

A: evaluation of the model performance with k-fold cross-validation [training set, class: 122 (“−1”), 117 (“1”)]

models
false

positive
false

negative total error % model summary

SVM1 16 25 17.2 k-fold = 3, nrepeat = 20, cost = 4, gamma = 0.01, support vectors (sv) = 174 (86, 88)
SVM3 1 54 23.0 k = 10, nrepeat = 20, cost = 16, gamma = 0.01, sv = 174 (103,71), class.weights (“1” = 0.3, “−1” = 0 0.7)
SVM3(b) 33 12 18.8 k = 10, nrepeat = 20, cost = 4, gamma = 0.01, sv = 181 (103,78), class.weights (“1” = 0.3, “−1” = 0.7)
SVM3(c) 20 7 11.3 k = 10, nrepeat = 20, cost = 16, gamma = 0.01, sv = 168 (75, 93), class.weights (“1” = 0.3, “−1” = 0.7)
ΚΝΝ1 37 48 35.5 k-fold = 10, nrepeat = 20, k-neighbors = 9
RF1 0 0 OOB: 35.2 importance = 148, mtry = 4, ntree = 1000
RF2 0 0 OOB: 34.7 importance = 148, mtry = 3, ntree = 2000

B: evaluation of the model performance with an external validation set [class: 40 (“−1”), 38 (“1”)]

models accuracy sensitivity specificity false positive false negative total error % kappa P-value AUC % 95% CI (DeLong)

SVM1 0.769 0.762 0.778 8 10 23.1 0.538 2.129 × 10−5 80.72 70.66−90.79
SVM3 0.782 0.850 0.710 6 11 21.8 0.562 8.692 × 10−7 81.71 71.94−91.48
SVM3(b) 0.731 0.732 0.729 10 11 26.9 0.461 0.0001688 78.75 68.40−89.10
SVM3(c) 0.756 0.800 0.721 12 7 24.4 0.514 0.0001442 79.51 69.30−89.71
ΚΝΝ1 0.666 0.675 0.658 13 13 33.3 0.333 0.004299 66.91 54.74−79.07
RF1 0.756 0.775 0.737 9 10 24.4 0.512 8.921 × 10−6 83.06 73.91−92.21
RF2 0.756 0.800 0.710 8 11 24.4 0.511 8.921 × 10−6 83.03 73.90−92.15

Stacked Models (*)
RF4* 0.795 0.900 0.684 4 12 OBB: 20.5 0.587 2.44 × 10−7 80.46 70.94−89.98
RF5* 0.795 0.925 0.658 3 13 OBB: 23.0 0.587 2.44 × 10−7 81.12 71.69−90.55
RF7* 0.808 0.825 0.789 7 8 OBB: 25.6 0.615 6.353 × 10−8 81.74 72.44−91.05
RF8* 0.820 0.875 0.763 5 9 OBB: 26.9 0.639 1.529 × 10−8 86.22 77.82−94.61
RF9* 0.833 0.925 0.737 3 10 OBB: 23.0 0.665 3.384 × 10−9 84.14 75.04−93.25
RF10* 0.846 0.875 0.816 5 7 OBB: 24.3 0.692 6.861e-10 87.99 80.12−95.87

aRF4*: SVM1 + RF1 RF5*: SVM1 + RF2 RF7*: SVM1 + SVM3 + RF1 + RF2 RF8*: SVM1 + SVM3 + RF1 + RF2 + KNN1 RF9*: SVM1 +
SVM3(b) + RF1 + RF2 + KNN1 RF10*: RF2 + SVM1 + SVM3(c) + SVM3(b) + KNN1.
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correlated (<0.75), an indication of them being informative in
different ways, allowing the high-order learner to get the best of
each model. Two powerful new learners, RF9 and RF10, were
thus created (Table 2), (Supporting Information, Table S2).
The ROC curve (Figure 6) illustrating the diagnostic ability of
the stacked model RF10 clearly shows optimized performance
compared to the submodels combined to build it.

The two learners RF9 and RF10 can be used in combination
for the 15S-LOX1 classification problem (Table 2), (Support-
ing Information, Table S2). RF9 is a strong classifier with very
high sensitivity (0.9250) reflected in the small number of
molecules incorrectly classified as active (3 false positive). This
would imply that should this classifier be used for any future
prediction on the biological activity of molecules toward 15S-

LOX1, the chances for inactive molecules to pass the filter
would be very low. On the other hand, RF9 has a somewhat
lower specificity (0.7368) and falsely classifies as inactive more
molecules compared to RF10. Model RF10 is a stronger
classifier and highly successful in identifying true 15S-LOX1
inhibitors. Most importantly, both learners are able to
discriminate accurately between molecules showing selectivity
toward either one of the enzymes 15S-LOX1 and 12S-LOX1
(Supporting Information, Table S2). This discrimination ability
of the stacked models was decisively helpful in our attempt to
explore the selectivity issue later on.

2.3. Interpretability of the Models. In this investigation,
apart from the attempt to model chemical structures that are
active against the LOX enzymes in general, the focus has been
to explore the underlying properties (and their combinations)
responsible for selective activity toward 15S-LOX1. The
topology of the catalytic domain is shared by all LOX isozymes.
The binding pocket is lined by hydrophobic residues except for
second shell residues near the catalytic iron.19 In a previous
study, where in an attempt to explore LOX1 inhibition, we
generated a pharmacophore model, we found that the assembly
of the pharmacophore features strongly pointed toward a
hydrophobic active site, which is indeed the case for all LOX
subtypes.2,3,108

However, although the 3D structure of the enzyme’s
subtypes is highly conserved, LOX isozymes share low
sequence identity.19,24 A sequence alignment of the five
human LOX isozymes generated with UniProt109 revealed
that the highest identity between sequences is observed for 15S-
LOX1 and 12S-LOX1 (65.5%), whereas 15S-LOX2, 12R-
LOX1, and 5S-LOX1 share an identity of 39% or lower with
15S-LOX1 (Supporting Information). As a result of the low
sequence identity, apart from the apparent similarities, these
enzymes exhibit striking differences at the active site. The size
and nature of the residues present at the active site are crucial
for determining both the volume of the binding pocket and the
type of interactions that would ensure the binding of any
chemical with the protein.19 In positions 410, 415, 593, 597,
and 716 of the sequence alignment, we can see the five residues
that coordinate the iron with octahedral geometry (iron
ligands) (Supporting Information). Four of them are conserved
for all the enzymes (H410, H415, H593, and I716). Different
amino acids occupy the position 597 in the sequences of 15S-
LOX1 and 12S-LOX1, that is, the electrically charged histidine
(H) and the polar uncharged asparagine (N), respectively.
Mutation experiments have indicated the vital importance of
these five iron ligands for the enzymes’ activity [UniProtKB
(P16050, O15296, P18054, O75342, and P09917)].109

Numerous scientific reports have also considered the
significance of crucial amino acids in other positions, as is the
case with the nonconserved residues in positions 467 and 468
of 15S-LOX1 and 12S-LOX1 sequences, respectively.19 The
residues A467/V468 that occupy these positions in 12S-LOX1
are considerably smaller in size compared to I467/M468 in
15S-LOX1. This difference is responsible for both the increase
of volume (∼6%) in the binding pocket of 12S-LOX1 and for
the change in shape at the bottom of the active site.19 In
conclusion, based on the studies concerning the structure and
the positional specificity of the LOX enzymes, we should expect
that differences in the nature and geometry of crucial residues
would affect the selective binding of ligands with the protein.
In this work, we undertook to explain the biological activity

of the molecules with the help of their structural descriptors.

Figure 5. Scatterplot matrix correlating the predictions from the
algorithms KNN, SVM, and RF used in the analysis (Table 1, model
correlation). The classifiers are not strongly correlated (<0.75); an
indication of them being informative in different ways and, therefore,
suited to be combined in ensemble models.

Figure 6. ROC curves illustrating the diagnostic abilities of the high-
order learner RF10 (red) and the basic classifiers RF2 (black), SVM1
(pink), SVM3(c) (orange), SVM3(b) (yellow), and KNN1 (gray).
RF10 is clearly shown to have an optimized performance compared to
the submodels combined to build it.
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This might seem like a challenge difficult to address without
including in the analysis chemical information on the protein
structure, as would be the case with a proteochemometric
approach.110 Nevertheless, previous knowledge of the nature of
the enzyme proved to be a key ingredient for the decisions
about model development because it allowed for an informed
use of the data. It laid the foundation for predictive models with
good accuracy that helped clarify certain aspects of this
problem. The high-order learner RF10 was able to classify
correctly the molecules as active (1) and inactive (−1) toward
15S-LOX1 to a high degree (Supporting Information, Table
S2). Furthermore, it has been possible to address the selectivity
issue, since RF10 could successfully discriminate those
molecules which, although being active toward other LOX
isozymes (12S-LOX1), were inactive toward 15S-LOX1. We
found these results intriguing, and therefore, we attempted to
link the descriptors of the highest discriminatory affinity with
the molecules’ ability to bind in a certain pocket and not in
another.
As RF10 was a stacked model combining the predictions of

submodels, primarily SVMs and RFs, further knowledge of the
influence of the variables on the submodels was highly
desirable. However, a straightforward interpretation of SVM
and RF models is not possible. Both are “black boxes” that do
not reveal how they relate the descriptors to the response
variable. Nevertheless, RF has an ensemble nature (bagging
trees) and combines the predictions of a large number of
decision trees that are used as base learners. This allows for a
degree of transparency that enabled us to have a measure of the
impact of the descriptors in the base classifiers RF1 and RF2.
Therefore, for these classifiers only, it was possible to gain some
insights into the importance of every variable in classifying the

data, the decrease in accuracy of the RF models after the
exclusion of a single variable (mean decrease accuracy), and the
average gain of purity by splits of every given variable (mean
decrease Gini) (Supporting Information, Table S3).
Across the two supervised methods employed for evaluating

the relevance of descriptors, the following were ranked very
high: the number of hydrogen bond acceptors (nHBAcc),
descriptors related to hydrophobicity (the octanol/water
partition coefficients Xlog P and Alog P), two topological
descriptors related to carbon hybridization (HybRatio and
C2SP2), and a molecular descriptor related to partial charges
(BCUTc.1h). Hydrophobicity and hydrogen bond acceptors
were prominent pharmacophore features, and we had found
this to be true in our previous investigation.108 A molecule must
be hydrophobic and possess lone electron pairs to bind with the
protein. These results were generally in accord with the
evaluation of descriptors performed later by the RF algorithms
(RF1 & RF2) as part of the learning process, while the actual
models were being generated (Supporting Information, Table
S3), (Figure 7).
The classifiers identified the aforementioned variables as the

most important, although in different order. In addition, three
descriptors were ranked very highly by RF1 and RF2: (a) the
topological weighted path descriptor WTPT.3, which is based
on the molecular identification number and characterizes
molecular branching. Descriptor WTPT.3 gives the sum of
weighted paths starting from heteroatoms and111 (b) the two
valence chain descriptors VCH.6 and VCH.7.95

Shown in Table 3 are the values of the 10 top descriptors for
a number of compounds from the validation set, which were
correctly classified by RF10 (chemical structures of selective
15S-LOX1 (A) and 12S-LOX1 (B) inhibitors from Table 3 are

Figure 7. Scatter plot matrix by class of the descriptors with highest relevance for the LOX classification analysis. Descriptor ranking was performed
by the RF classifier RF2.
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shown in Chart 1). The ranking of the descriptors was
performed by RF2, a submodel of RF10. The compounds are
divided in four groups according to their inhibitory activity
toward LOX, that is, selective 15S-LOX1 inhibitors (A),
selective 12S-LOX1 inhibitors (B), nonselective inhibitors with
strong preference for the 15S-LOX1 pocket (C), and inactive
molecules (D) (Supporting Information, Table S1). At a first
glance, an interesting observation could be made in regard to
differences between the groups A and B, concerning the values
of descriptors HybRatio and WTPT.3. Low values of HybRatio
in combination with high values of WTPT.3 seemed to favor
selectivity toward 12S-LOX1. On the other hand, ALogP
seemed to be significant for the discrimination between the
inhibitors in groups A, B, and C, and the inactive molecules in

the group D. Large negative ALogP values were in most cases
associated with inactivity toward the protein.
However, as already mentioned, it is impossible to elucidate

how RFs actually combined the descriptors and linked them to
the response variable. This is even more the case for the
support vector machine models used as base learners for the
ensemble model RF10. Nevertheless, since our aim has been to
acquire some elemental insights into how decisions were made,
without necessarily knowing every detail of the full model, a
simpler explanation could be sufficient. To this end, we used
the rpart algorithm to create a single decision tree on the
validation set using the 10 top descriptors as ranked by RF2.
The decision path clarified which features were associated with
every decision (Figure 8). We see that 3 of the top 10

Table 3. Values of the 10 Top Descriptors (as Evaluated by RF2) for Selected Compounds from the Validation Set Correctly
Classified by RF10b

indexa nHBAcc XLogP ALogP AMR HybRatio WTPT.3 BCUTc.1h VCH.6 VCH.7 nAtomP class

6A 2 8.531 −1.655 76.42 0.850 5.316 0.261 0.068 0.048 3 1
7A 7 2.885 −0.892 108.5 0.608 19.34 0.296 0.315 0.413 6 1
29A 3 1.030 0.948 59.93 0.400 14.35 0.229 0.277 0.514 10 1
50A 3 3.679 1.816 82.65 0.133 11.69 0.338 0.086 0.112 18 1
72A 5 4.780 2.936 120.3 0.200 24.47 0.317 0.150 0.209 12 1
75A 4 4.042 1.639 121.4 0.200 17.23 0.214 0.074 0.120 9 1
99A 1 4.290 3.701 73.67 0.600 2.404 0.080 0 0 2 1
112A 1 3.811 0.952 122.0 0.375 17.47 0.175 0.082 0.175 10 1
113A 2 5.916 1.736 74.86 0.941 5.323 0.302 0.558 1.267 3 1
232A 2 3.574 0.445 78.62 0 10.85 0.223 0.068 0.079 19 1

103B 6 4.081 0.899 119.2 0.136 24.37 0.261 0.141 0.179 14 −1
127B 5 2.989 0.405 123.9 0.095 26.26 0.248 0.117 0.135 20 −1
225B 1 3.230 −0.173 82.13 0 21.20 0.276 0.060 0.107 23 −1

69C 5 2.975 −0.262 100.3 0.235 21.09 0.249 0.265 0.361 19 1
106C 0 3.193 0.631 76.21 0 10.07 0.126 0.048 0.070 18 1
168C 3 7.323 0.216 146.0 0.285 17.45 0.240 0.157 0.209 16 1
172C 3 5.293 1.527 135.9 0.120 17.83 0.240 0.205 0.278 18 1
228C 0 2.785 0.216 82.54 0.250 10.98 0.139 0.078 0.118 9 1
234C 0 5.773 1.375 103.1 0.636 8.498 0.129 0.122 0.453 11 1
236C 0 4.817 1.991 87.99 0 15.76 0.135 0.044 0.167 15 1

257D 5 4.322 −2.362 92.33 0.555 21.42 0.210 0.181 0.147 11 −1
259D 5 5.337 1.957 125.6 0.272 23.87 0.211 0.118 0.146 9 −1
260D 5 2.712 −0.550 80.64 0.333 19.52 0.163 0.139 0.138 10 −1
261D 2 2.535 1.013 63.79 0 8.046 0.194 0.142 0.091 14 −1
262D 5 0.973 −2.504 53.37 0.600 22.90 0.318 0.101 0.053 9 −1
263D 2 1.885 −0.117 78.01 0.153 14.19 0.241 0.082 0.085 16 −1
264D 6 3.087 −0.344 105.9 0.470 30.51 0.216 0.275 0.265 13 −1
268D 6 2.238 −3.768 81.98 0.625 22.92 0.242 0.172 0.122 14 −1
277D 8 3.873 −1.060 131.4 0.592 27.47 0.264 0.228 0.250 11 −1
281D 7 2.635 −2.279 131.1 0.333 23.31 0.255 0.140 0.127 9 −1
282D 7 2.527 −3.503 120.0 0.583 31.18 0.232 0.262 0.203 13 −1
286D 5 2.224 −0.838 97.04 0.187 24.75 0.269 0.048 0.062 21 −1
287D 7 3.143 −2.273 108.6 0.666 27.23 0.223 0.147 0.092 10 −1
293D 8 1.711 −3.031 125.8 0.461 22.98 0.222 0.158 0.081 9 −1
297D 4 5.833 2.786 119.9 0.318 18.96 0.217 0.217 0.360 11 −1
303D 7 0.706 1.014 91.94 0.500 23.03 0.277 0.240 0.332 10 −1
312D 5 2.059 −2.657 80.60 0.625 19.27 0.153 0.177 0.173 6 −1
313D 5 3.122 −1.484 100.5 0.333 24.33 0.218 0.079 0.064 12 −1
314D 8 0.977 −2.283 111.8 0.333 32.95 0.243 0.131 0.128 15 −1

aIndex numbers as they appear in the Supporting Information (Table S1) bChemical structures of selective 15S-LOX1 (A) and 12S-LOX1 (B)
inhibitors from this table are shown in Chart 1.
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descriptors are the same, although with different ordering.
ALogP is the top descriptor for the decision tree but is ranked
6th by RF2. There is a consensus regarding XLogP (second),

whereas HybRatio is ranked third by the decision tree and
fourth by RF. Interestingly, RF2 identifies nHBAcc as the top
descriptor, whereas the decision tree ignores it. The differences
observed in the ranking of descriptors between the RF and the
single decision tree are not atypical as they are attributed to the
greediness of the single tree.112

3. CONCLUSIONS

In the present study, we have created a dataset of structurally
diverse molecules hitherto known as active against three LOX
isoenzymes (15S-LOX1, 12S-LOX1, and 15S-LOX2). Sub-
sequently, we considered a binary classification problem with
the aim of exploring the selective activity of chemicals toward
the enzyme 15S-LOX1. We identified a set of 37 structural
descriptors of high discriminatory affinity, which are responsible
for binding selectivity toward 15S-LOX1. Based on these
descriptors, we created two highly accurate stacked models
(RF9 and RF10) as ensembles of SVM, RF, and KNN
algorithms that predict the selective interactions of various
chemicals with 15S-LOX1. The models successfully classify the
compounds as active/inactive against LOX1 and most
importantly, they discriminate the molecules with selective
activity toward either one of the isozymes 15S-LOX1 and 12S-
LOX1. These QSAR classifiers can be used in drug discovery as
computational filters in the virtual screening of novel LOX1
inhibitors, whereas the selected descriptors can be used as a
guide for the design and synthesis of new 15S-LOX1 inhibitors.

4. METHODS

4.1. Binary Classification and Model Generation. The
present work is concerned with a binary classification problem
studied in supervised machine learning.39 Therefore, the
response (output) variable is categorical, and the two categories
are predefined according to the biological activity in vitro of
various chemicals toward the enzyme 15S-LOX1, that is, active
(1) and inactive (−1).
QSAR modeling was carried out with R.40 R is both a

language and an environment for statistical computing and

Chart 1. Chemical Structures of Selective 15S-LOX1 (A) and 12S-LOX1 (B) Inhibitors from Table 3

Figure 8. A single decision tree created on the validation set using the
10 top descriptors as ranked by the classifier RF2. The decision path
clarifies which features are associated with every decision as well as the
threshold values of the top descriptors that are responsible for a
molecule being classified as active/inactive against 15-LOX1.
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graphics. Extended functionalities were added to R by installing
a number of packages, which are machine learning algorithms
implemented as third party libraries.The following R packages
were used for the analysis: rcdk,41 SparseM,42 randomForest,43

caret,44 e1071,45 pROC,46 rpart,47 AppliedPredictiveModeling,48

and caretEnsemble.49

4.2. Calculation of Molecular Descriptors. A total of 317
structurally diverse molecules with recorded biological activity
in vitro toward three LOX subtypes (15S-LOX1, 12S-LOX1,
and 15S-LOX2) were used for the classification analysis
(Supporting Information, Table S1). The molecules have
been collected from available public sources: (a) reviews and
reports50−79 and (b) the PubChem Bioassay database, where
we found several assays concerning the biological activity of
series of molecules toward LOX.80−91 Special consideration was
taken to avoid structural redundancy. The ligands were drawn
in ACD/ChemSketch92 (Advanced Chemical Development)
and a single 3D conformation was created for each structure
with the Bioclipse software.93,94 An SDF file containing the 3D
coordinates of the molecules was imported in R, and the rcdk
package was used to calculate automatically a number of
descriptor variables. These descriptors are divided broadly into
three main groups,95 that is, atomic, bond, and molecular and
belong to the specific categories “topological”, “geometrical”,
“hybrid”, “constitutional”, and “electronic”. The calculation
resulted in 282 descriptors for each molecule.
4.3. IC50 Experimental Data. It is a common practice in in

vitro experiments to use three different LOX subtypes50−79 to
draw conclusions regarding biological activity toward human
15S-LOX1: The human 15S-LOX1, the soybean 13LOX1, and
the mammalian (rabbit reticulocyte) 12-/15-LOX1. Such
extrapolations are valid on the grounds that the enzymes
have high structural similarity, most importantly in the area of
the binding site, and the mode of action of the small molecule
inhibitors is similar.4,13,14,19 Therefore, for the collection of data
for the training of the classification models, we adopted the
same rationale.
Rabbit reticulocyte 12-/15-LOX1 has been characterized19

and, as mentioned above, is often used as a standard for
biochemical assays. Soybean 13LOX1 has been for many years
a model system for understanding catalysis and structure of all
lipoxygenases.4 It is sufficiently stable, obtainable in large
quantities, and relatively easy to purify.4,19 In addition, the
overall architecture of the soybean structure is similar to the
mammalian, although the latter is much more compact.19

Therefore, soybean 13LOX1 is used in bioassays for recording
bioactivity toward 15S-LOX1, although the IC50 values of a
molecule may be different for the two enzymes.
In the present analysis, we have considered the molecules

with IC50 ≥ 100 μM as being inactive. Also, as already
mentioned, we have included a number of molecules, which,
although inactive against 15S-LOX1, exhibit bioactivity toward
other LOX isozymes. These molecules were considered to be
inactive. Our aim was to train our models to distinguish subtle
differences among chemical structures and to be able to predict
those that showed selectivity for 15S-LOX1.
In accordance to their inhibitory activity in vitro toward 15S-

LOX1, the molecules were classified as follows: (a) active (1):
selective 15S-LOX1 inhibitors and nonselective inhibitors with
preference for the 15S-LOX1 pocket and (b) inactive (−1):
molecules exhibiting selectivity toward two other LOX
isozymes (12S-LOX1 and 15S-LOX2) but inactive against
15S-LOX1 and molecules inactive toward LOX in general. For

all the molecules in the dataset, the IC50 values were recorded
(Supporting Information, Table S1).
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