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Density of chromatic roots in minor-closed graph families

Thomas J. Perrett∗ and Carsten Thomassen∗
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Technical University of Denmark, DK-2800 Lyngby, Denmark.
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Abstract

We prove that the roots of the chromatic polynomials of planar graphs are dense in

the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where

τ is the golden ratio. This interval arises due to a classical result of Tutte, which states

that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our

results lead us to conjecture that τ + 2 is the only such number less than 4.

Keywords: roots of chromatic polynomials, minor-closed graph families.

MSC(2010): 05C15, 05C31, 05C83.

1 Introduction

The chromatic polynomial was introduced in 1912 by Birkhoff [1] in order to study the 4-

colour problem which says that 4 is not a root of the chromatic polynomial of any planar

graph. Since then, chromatic polynomials and their roots, which we call chromatic roots,

have also become of interest in statistical physics, see e.g. [7], where complex chromatic roots

are studied. In the present paper we deal exclusively with real chromatic roots. If G is a

class of graphs, then we let R(G) denote the set of real chromatic roots of the graphs in G.

It is easy to see that 0 and 1 are the smallest chromatic roots. Jackson [3] proved the

surprising result that every other chromatic root is strictly greater than 32/27 and that this

bound is sharp. Thomassen [8] proved that chromatic roots are dense in the interval from

32/27 to infinity, so that the chromatic roots of all graphs are understood in the sense that

if G denotes the class of all graphs, then R(G) = {0, 1} ∪ [32/27,∞). Here, A denotes the

closure of a set A.

By contrast, the situation for planar graphs is much less clear. Birkhoff and Lewis [2]

proved that all chromatic roots of planar graphs are less than 5, and conjectured that the

∗Research supported by ERC Advanced Grant GRACOL, project number 320812.
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same should hold with 5 replaced by 4. On the other hand, Thomassen [8] proved that the

chromatic roots of planar graphs are dense in the interval from 32/27 to 3. Thus, for planar

graphs, the remaining interval from 3 to 4 is of interest.

Conjecture 1.1. [8] If G denotes the family of planar graphs, then [3, 4] ⊆ R(G).

Recently, Royle [4] proved that real chromatic roots of planar triangulations can be found

in any interval (4 − ε, 4) for ε > 0. In the present paper we prove that the chromatic roots

of planar graphs are dense in most of the interval [3, 4], almost settling Conjecture 1.1.

Theorem 1.2. The set of chromatic roots of planar graphs contains a dense subset of (3, t1)∪
(t2, 4), where t1 and t2 are constants with t1 ≈ 3.618032 and t2 ≈ 3.618356.

To prove Theorem 1.2, we develop a technique which relates the set R(G) to the numbers

at which the chromatic polynomial of some graph in G is negative. The unsolved interval

(t1, t2) in Theorem 1.2 arises because our technique breaks down in connection with the

following fascinating result of Tutte.

Theorem 1.3. [9] If G is a planar triangulation, then P (G, τ+2) > 0, where τ is the golden

ratio.

Indeed, note that τ + 2 ≈ 3.618033 which falls within the interval (t1, t2). Thus it is

possible that Tutte’s result [9] can be extended to a small neighbourhood around τ + 2.

However, we do not believe this to be the case. In fact, the intermediate results in this paper

lead us to a conjecture that τ + 2 is the only number in the interval (3, 4) at which the

chromatic polynomials of planar graphs are always positive.

Finally, we remark that one can ask similar questions about the set R(G) for other classes

of graphs G. In [5], the techniques of this paper are used to prove results regarding the classes

of K3,3-minor free graphs, K5-minor free graphs, and graphs on surfaces. Indeed, when G
denotes the K3,3-minor free graphs, we provide a complete characterisation of R(G) unless

there are counterexamples to the Birkhoff and Lewis conjecture.

2 Chromatic roots of minor-closed graph families

Let G be a possibly infinite family of finite graphs. Recall that R(G) denotes the set of all real

chromatic roots of graphs in G. Similarly, we denote by Ro(G) the set of all chromatic roots

of odd multiplicity of graphs in G. Finally, we denote by N(G) the set of all real numbers q

such that the chromatic polynomial of some graph in G is negative at q. It is easy to show

that these sets are related.

Lemma 2.1. If G is a class of graphs, then Ro(G) ⊆ N(G).
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Proof. Let q0 be a real number such that q0 ∈ Ro(G). Thus, for some graph G in G, the

chromatic polynomial P (G, q) is of the form (q− q0)rS(q) where r is an odd natural number

and S is a polynomial such that S(q0) 6= 0. By continuity, S(q) is non-zero in an interval

(q0 − ε, q0 + ε) for some ε > 0. Now, for any ε′ such that 0 < ε′ < ε, it follows that precisely

one of P (G, q0 − ε′) and P (G, q0 + ε′) is negative. Thus, q0 is in the closure of N(G).

For two graphs G and H, and an integer k ≥ 2, a k-clique sum of G and H is any graph

formed by identifying a clique of size k in G with a clique of size k in H. Thomassen [8]

showed that in certain circumstances, a construction based on a 2-clique sum can produce a

graph with a chromatic root in a given interval.

Proposition 2.2. [8] Let q0 and δ be real numbers with q0 > 2 and δ > 0. Let G be a

graph, and e ∈ E(G). Let H ′k,` be the graph formed by a 2-clique sum of k copies of G,

and ` copies of C4, where the edge identified is e. Finally, let Hk,` be the graph formed

from H ′k,` by deleting the edge corresponding to e. If |P (G, q0)| < (q0 − 1)|P (G/e, q0)| and

P (G, q0)P (G/e, q0) < 0, then there exist k, ` ∈ N, and a real number q1 ∈ (q0− δ, q0 + δ) such

that q1 ∈ Ro({Hk,`}).

We say that G is closed under taking k-clique sums if all k-clique sums of graphs G,H ∈ G
are members of G. Under certain conditions, we can now prove a stronger relationship

between the closures of the sets Ro(G) and N(G).

Theorem 2.3. Let G be a class of graphs such that C4 ∈ G. If G is closed under edge deletion

and taking 2-clique sums, then Ro(G) ∩ [2,∞) = N(G) ∩ [2,∞).

Proof of Theorem 2.3. By Lemma 2.1, it suffices to show that N(G) ∩ [2,∞) ⊆ Ro(G), so

suppose that q0 ∈ N(G)∩ [2,∞). Thus, there is a graph G ∈ G, such that P (G, q0) < 0. This

implies that q0 6= 2, because the chromatic polynomial of any graph evaluated at a positive

integer is non-negative. Assume that G is edge-minimal with this property, so for each edge

e we have P (G− e, q0) ≥ 0. Note that G is not edgeless, since the chromatic polynomial of a

graph with no edges is positive at any q0 > 0. By the deletion-contraction formula, we have

P (G− e, q0) = P (G, q0) + P (G/e, q0).

Hence P (G/e, q0) ≥ −P (G, q0) and P (G/e, q0) > 0, and so G and q0 satisfy the conditions

in Proposition 2.2, which implies that for all δ > 0, there is a graph H such that P (H, q)

has a root of odd multiplicity in (q0 − δ, q0 + δ). Furthermore, H ∈ G since C4 ∈ G and G is

closed under edge deletion and taking 2-clique sums. Thus q0 ∈ Ro(G).

Let G be a minor-closed class of graphs, and denote by Forb(G) the minor-minimal graphs

not in G. We note the following simple fact.
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Proposition 2.4. If G is a minor-closed class of graphs such that all graphs in Forb(G) are

3-connected, then G is closed under taking 2-clique sums.

Proof. Let G be a graph formed by a 2-clique sum of graphs G1, G2 ∈ G. If G contains a

3-connected minor F , then F must be a minor of G1 or G2, a contradiction. Hence G ∈ G
as required.

Since minor-closed classes of graphs are clearly closed under edge-deletion, we deduce the

following from Theorem 2.3 and Proposition 2.4.

Theorem 2.5. Let G be a minor-closed class of graphs such that C4 ∈ G. If all graphs in

Forb(G) are 3-connected, then Ro(G) ∩ [2,∞) = N(G) ∩ [2,∞).

We note one final relationship, which is a simple consequence of the addition-contraction

formula. If G is a class of graphs, let Gmax denote the set of edge-maximal graphs in G. Also,

let A(G) denote the set of real numbers such that P (G, q) > 0 for every G ∈ G.

Lemma 2.6. If G is a minor-closed class of graphs, then A(G) = A(Gmax).

Proof. Clearly A(G) ⊆ A(Gmax) hence it just remains to prove the reverse inclusion. To this

end, suppose for a contradiction that there is q ∈ A(Gmax) such that q 6∈ A(G). Thus, there

is a graph G ∈ G such that P (G, q) ≤ 0. Suppose that G has as few vertices as possible

and, subject to that, suppose further that G is edge maximal. Since q ∈ A(Gmax), we have

that G is not edge-maximal. Thus there are u, v ∈ V (G) such that G+ uv ∈ G. Now by the

addition-contraction formula, we have

P (G, q) = P (G+ uv, q) + P (G/uv, q). (1)

Since G is minor-closed, we also have that G/uv ∈ G. Furthermore, by the vertex-minimality

and edge-maximality assumptions on G, we have P (G + uv, q) > 0 and P (G/uv, q) > 0. It

follows from (1) that P (G, q) > 0, a contradiction.

3 Chromatic roots of planar graphs

In this section we apply Theorem 2.5 to deduce Theorem 1.2. However we first discuss the

current situation with regards to the chromatic roots of the set G of planar graphs. Recall the

result of Jackson mentioned in the introduction and the following widely believed conjecture

of Birkhoff and Lewis.

Conjecture 3.1. [2] A planar graph has no chromatic root in the interval [4,∞).
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p1 p2

q16 1
q15 -48 1
q14 1098 -45
q13 -15902 961
q12 163358 -12934
q11 -1263582 122848
q10 7622430 -873498
q9 -36631145 4811140
q8 141942413 -20939539
q7 -445623415 72739711
q6 1131241573 -202024440
q5 -2299985643 445549685
q4 3673360947 -766835653
q3 -4454394269 996884682
q2 3863934525 -923047942
q1 -2138431325 543148340
q0 567438039 -152643002

Figure 1: Coefficients of the polynomials p1 and p2.

Collectively, these would imply that R(G) ⊆ {0, 1} ∪ (32/27, 4). Moreover, the result of

Thomassen and the work of this paper suggests that R(G) = {0, 1} ∪ [32/27, 4]. However

this simple statement does not capture the richness of behaviour exhibited by the chromatic

polynomials of planar graphs.

Indeed, recall Theorem 1.3 which says that τ + 2 ∈ A(Gmax) where G is the set of planar

graphs. Applying Lemma 2.6, one may deduce that Theorem 1.3, holds not just for planar

triangulations, but for all planar graphs. We suspect this is known, though we include it

here as we have been unable to find a written reference.

Theorem 3.2. If G denotes the class of planar graphs, then τ + 2 ∈ A(G).

It follows naturally to ask for a precise description of the set A(G) where G denotes the

class of planar graphs. We believe the answer to be the following.

Conjecture 3.3. If G denotes the class of planar graphs, then A(G) = {τ + 2} ∪ [4,∞).

Note that Conjecture 3.3 contains Conjecture 3.1, Theorem 3.2 and the Four-Colour

Theorem. In addition, it also implies Conjecture 1.1 via an application of Theorem 2.5. In

what follows we shall show that (3, t1) ∪ (t2, 4) ⊆ N(G), where t1 and t2 are defined below.

Therefore, as in the problem of determining R(G), the only part of Conjecture 3.3 that

remains to be proven are the intervals (t1, t2) and (4, 5).
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Figure 2: The graphs F and W with distinguished 4-cycles in bold.

Let p1 and p2 be the polynomials whose coefficients are listed in Figure 1. Let t1 ≈
3.618032 be the largest real root of p1, and let t2 ≈ 3.618356 be the second largest real root

of p2.

Lemma 3.4. If G denotes the class of planar graphs, then (3, t1) ∪ (t2, 3.8) ⊆ N(G).

Proof. Let F and W be the graphs in Figure 2, and let G1 be the unique graph obtained from

the union of F and W by identifying the two distinguished 4-cycles. It may be calculated

that G1 has chromatic polynomial

P (G1, q) = q(q7 − 18q6 + 141q5 − 619q4 + 1627q3 − 2525q2 + 2107q − 714),

which is negative in the interval (3, 3.6).

Now let K be the graph in Figure 3. Let G2 denote the planar triangulation formed from

K and two copies of F , say F1 and F2, by identifying the two distinguished 4-cycles in K

with the distinguished 4-cycles in F1 and F2 respectively. We do this in such a way that

the vertices of degree 3 in F1 and F2 are at distance 2 in G2. It may be computed that this

graph has chromatic polynomial

P (G2, q) = q(q − 1)(q − 2)(q − 3)3p1(q),

where p1 is the polynomial in Figure 1. Among other places, the polynomial P (G2, t) is

negative in the interval (3.5, t1).

Finally, let G3 be the unique planar triangulation formed from the disjoint union of F , K

and W by identifying the two distinguished 4-cycles in K with those in F and W respectively.

It may be computed that the chromatic polynomial of this graph is

P (G3, q) = q(q − 1)(q − 2)(q − 3)2p2(q),

where p2 is the polynomial in Figure 1. The polynomial P (G3, q) is negative in the interval

(t2, 3.8).
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Figure 3: The graphs K and L with distinguished 4-cycles in bold.

In Section 4, we investigate an infinite family of planar triangulations T (n), n ∈ N. These

graphs are formed from the graphsW , K and L depicted in Figure 2 and Figure 3. We analyse

their chromatic polynomials using a transfer matrix approach to obtain the following result.

Lemma 3.5. For every q ∈ (3.7, 4), there exists n ∈ N such that P (T (n), q) < 0.

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. Let G denote the class of planar graphs. Lemma 3.4 and Lemma 3.5

show that (3, t1) ∪ (t2, 4) ⊆ N(G). By Wagner’s Theorem [10], which is equivalent to Kura-

towski’s Theorem, Forb(G) = {K5,K3,3}. Since both K5 and K3,3 are 3-connected, Theo-

rem 2.5 now implies the result.

4 Proof of Lemma 3.5

Let K and L be the graphs in Figure 3. We denote by Ln the graph obtained from n copies

of L, say L1, . . . , Ln, by identifying the inner 4-cycle of Li with the outer 4-cycle of Li+1 for

each i ∈ {1, . . . , n − 1}. The resulting graph is planar and has two distinguished 4-cycles.

Also let W denote the wheel on 5 vertices, see Figure 2, and let K ′ denote the graph formed

from K by adding a single edge, triangulating one of the distinguished 4-cycles. In this

section, we analyse the family of planar triangulations T (n), n ∈ N, formed by identifying

the distinguished 4-cycles of Ln with the distinguished 4-cycles of W and K ′ respectively.

The graphs T (n), n ∈ N were first studied by Royle [4], who took inspiration from a graph

found by Woodall and from graphs studied in the field of statistical mechanics. Indeed, the

family of graphs Ln, n ∈ N can be viewed as 4 × n strips of the infinite triangular lattice,

see [4, Figure 1], where one side of the strip is wrapped around and identified with the other.

A standard technique to compute the chromatic polynomial of such graphs is the so-called

transfer matrix approach, see [6]. We employ this technique in the form used by Royle [4],

and give here a fairly condensed analysis. A more detailed presentation can be found in [4].
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q1 q2 q3 q4

q11 1 1 1
q10 -34 -34 -34
q9 1 538 538 538
q8 -28 -5244 -5244 -5246
q7 362 35078 35078 35148
q6 -2846 -169490 -169490 -170548
q5 15036 604806 604806 613920
q4 -55448 -1595807 -1595807 -1645010
q3 142716 3051803 3051803 3222645
q2 -246724 -4024676 -4024676 -4397342
q1 258889 3286881 3286881 3753346
q0 -124884 -1255163 -1255163 -1511254

Figure 4: Coefficients of the polynomials q1, q2, q3 and q4, see [4, Table 1].

Let A be a graph with a distinguished 4-cycle a1a2a3a4. We may partition the colourings

φ of A into four types.

Type 1: φ(a1) = φ(a3) and φ(a2) = φ(a4),

Type 2: φ(a1) = φ(a3) and φ(a2) 6= φ(a4),

Type 3: φ(a1) 6= φ(a3) and φ(a2) = φ(a4),

Type 4: φ(a1) 6= φ(a3) and φ(a2) 6= φ(a4).

Let Pi(A, q) denote the number of q-colourings of A of type i. Note that identifying two

vertices a1 and a3, say, gives a graph whose colourings correspond bijectively to the colourings

φ of A such that φ(a1) = φ(a3). Alternatively, adding the edge a1a3 produces a graph whose

colourings correspond bijectively to the colourings φ of A such that φ(a1) 6= φ(a3). Thus,

for computational purposes, we have for example that P2(A, q) = P (A/a1a3 + a2a4, q). We

collect this information in a vector Q(A, q) called the partitioned chromatic polynomial

Q(A, q) =


P1(A, q)

P2(A, q)

P3(A, q)

P4(A, q)

 .

Let 〈q〉k denote the k’th falling factorial q(q − 1) · · · (q − k + 1) and let q1, . . . , q4 be the

polynomials whose coefficients are listed in Figure 4. The partitioned chromatic polynomials

of W and K ′ are given below. The formula for Q(W, q) is trivial, whereas the formula for

Q(K ′, q) appears in [4] and was verified by the present authors.
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Q(W, q) =


〈q〉3
〈q〉4
〈q〉4
〈q〉5

 Q(K ′, t) =


〈q〉5 · q1(q)
〈q〉4 · q2(q)
〈q〉4 · q3(q)

〈q〉4 · (q − 3) · q4(q)


In a similar way, for a graph with two distinguished 4-cycles, we may define a square

matrix whose entries capture the types of colourings on those two 4-cycles. More precisely,

we let the element in the ith row and jth coloumn be the number of colourings of the graph

which are of type i on the outer distinguished 4-cycle and type j on the inner distinguished

4-cycle. The matrix M corresponding to the graph L in Figure 3 is as follows. The expression

appears in [4] and was verified by the present authors.

M =


〈q〉4 〈q〉5 〈q〉5 〈q〉6
〈q〉5 〈q〉4 + 2〈q〉5 + 〈q〉6 〈q〉4 + 2〈q〉5 + 〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7
〈q〉5 〈q〉4 + 2〈q〉5 + 〈q〉6 〈q〉4 + 2〈q〉5 + 〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7
〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7 4〈q〉5 + 4〈q〉6 + 〈q〉7 M44

 ,

where M44 = 2〈q〉4 + 16〈q〉5 + 20〈q〉6 + 8〈q〉7 + 〈q〉8. We can now state a lemma of Royle.

Lemma 4.1. [4] Let A and B be graphs with distinguished 4-cycles. If XA,B(n) denotes the

graph obtained from Ln by identifying its two distinguished 4-cycles with those of A and B

respectively, then the chromatic polynomial of XA,B(n) is the sole entry of the 1× 1 matrix

Q(A)TD(MD)nQ(B),

where

D =


1/〈q〉2 0 0 0

0 1/〈q〉3 0 0

0 0 1/〈q〉3 0

0 0 0 1/〈q〉4

 .

The matrix MD is called the transfer matrix of the graph L, as it describes how colourings

transfer from one 4-cycle to the other. As we let n tend to infinity, the matrix (MD)n is

determined by the spectral properties of MD. Indeed let λ1, . . . , λ4 and v1, . . . , v4 denote

the eigenvalues and eigenvectors of MD respectively. Furthermore, let ‖v‖ denote the norm

of the vector v with respect to the inner product 〈u, v〉 = uTDv. Royle proves the following.

Lemma 4.2. [4] If A and B are graphs with distinguished 4-cycles and q is a fixed real

number in (τ + 2, 4) , then

P (XA,B(n), q) = α1β1λ
n
1‖v1‖2 + α2β2λ

n
2‖v2‖2 + α3β3λ

n
3‖v3‖2 + α4β4λ

n
4‖v4‖2,
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where αi‖vi‖2 = Q(A, q)TDvi and βi‖vi‖2 = Q(B, q)TDvi for i ∈ {1, 2, 3, 4}.

In essence, Lemma 4.2 says that if λi > 0 is the eigenvalue of largest absolute value,

then in the limit as n tends to infinity, the chromatic polynomial of XA,B(n) has the sign of

αiβi. Moreover, this sign can be determined simply by looking at the partitioned chromatic

polynomials of A and B and the eigenvector vi. With this in mind we first find the eigenvalues

and eigenvectors of MD. Indeed, if a is the polynomial q4 − 10q3 + 43q2 − 106q + 129, then

we have that λ1 = 2,

λ2 =
1

2
(q − 3)(q3 − 9q2 + 33q − 48− (q − 4)a(q)1/2),

λ3 =
1

2
(q − 3)(q3 − 9q2 + 33q − 48 + (q − 4)a(q)1/2),

and λ4 = 0. The corresponding eigenvectors are v1 = (1,−1,−1, 1)T ,

v2 =


(q2 − 7q + 15 + a(q)1/2)/(2(q − 2)(q − 3)2)

(q2 − 9q + 21 + a(q)1/2)/(4(q − 3)2)

(q2 − 9q + 21 + a(q)1/2)/(4(q − 3)2)

−1

 ,

v3 =


(q2 − 7q + 15− a(q)1/2)/(2(q − 2)(q − 3)2)

(q2 − 9q + 21− a(q)1/2)/(4(q − 3)2)

(q2 − 9q + 21− a(q)1/2)/(4(q − 3)2)

−1

 ,

and v4 = (0, 1,−1, 0)T .

We remark that in the notation of this section, the graphs T (n) in Lemma 3.5 can be

denoted XK′,W (n). We can now prove Lemma 3.5.

Proof of Lemma 3.5. Let t be a fixed real number in (3.7, 4). At t, we have λ1 > λ2 >

λ3 > λ4 = 0. For i ∈ {1, 2, 3, 4}, let αi be such that αi‖vi‖2 = Q(K ′, t)TDvi, and let βi

be the corresponding value for the graph W . It may be calculated that α1‖v1‖2 = 0 and

β1‖v1‖2 = 0. Similarly, if b denotes the polynomial q3− 9q2 + 25q− 24, and the polynomials

c and d are defined as in Figure 5, then it may be calculated that

α2‖v2‖2 =
d(q)a(q)1/2 − c(q)

2(q − 3)
,

and

β2‖v2‖2 =
(q − 2)a(q)1/2 − b(q)

2(q − 3)2
.
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From these expressions and by Lemma 4.2, the dominant term in the expression for P (T (n), q)

is α2β2λ
n
2‖v2‖2. Thus, for large enough n, the sign of P (T (n), q) depends on the sign of

α2β2. A short calculation gives that α2‖v2‖2 < 0 for q ∈ (3.7, 4) and β2‖v2‖2 > 0 for

q ∈ (3, 4), which implies that α2β2 is negative in (3.7, 4). Therefore, there is n ∈ N such that

P (T (n), q) < 0.

c d

q13 1

q12 -38

q11 676 1

q10 -7473 -33

q9 57452 506

q8 -325572 -4770

q7 1405168 30784

q6 -4698525 -143070

q5 12224002 489214

q4 -24510275 -1231299

q3 36830333 2234215

q2 -39168919 -2778891

q1 26277660 2126441

q0 -8337189 -755627

Figure 5: Coefficients of the polynomials c and d.

4.1 Remarks on the computations

The calculation of chromatic polynomials in this article was done with Maple. The calcu-

lation of eigenvalues and eigenvectors of the matrix MD was performed with Matlab and

cross-checked with the series expansion expressions presented in [4].

4.2 Concluding remarks

Theorem 1.2 is close to a proof of Conjecture 1.1. Indeed the missing interval (t1, t2) has

length less than 0.0004. Because of Tutte’s result [9], it will require an infinite family of

planar graphs to shrink this interval to the point τ + 2. It seems conceivable that for some

graph S, the family XS,W (n), n ∈ N may be useful to dispose of the interval (τ + 2, t2).

Indeed, by mirroring the proof of Lemma 3.5, one only needs to find a graph S, with a

distinguished 4-cycle, such that Q(S, t)Dv2 < 0 for q ∈ (τ + 2, t2). Royle observed the
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striking fact that the eigenvalues λ1, . . . , λ4 are not distinct for q = τ + 2. However, they are

distinct for q ∈ (3, 4) \ {τ + 2}. Thus it seems possible that the families XS,W (n), n ∈ N may

also be useful to dispose of the interval (t1, τ + 2).
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[10] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-

590.

12


