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Abstract 8 

Microalgae are photosynthetic organisms, and thus one of the most important factors affecting their 9 

growth is light. Effective design and operation of cultivation systems requires mathematically 10 

consistent simulation models that can accurately predict light availability and its impact on 11 

microalgae growth in photobioreactors (PBR). Three cylindrical column reactors, mimicking typical 12 

open pond reactors, with different diameters were used to conduct experiments where the light 13 

distribution was monitored inside the reactor. A batch experiment was conducted where the effect 14 

of nutrients and light availability on the pigmentation of the microalgae was monitored together 15 

with the light distribution. The effect of reactor size and cultivation conditions on the light 16 

distribution in PBRs was evaluated. Moreover, we assessed the effect of using different simulation 17 

model structures on the model prediction accuracy and uncertainty propagation. Results obtained 18 

show that light scattering can have a significant effect on light distribution in reactors with narrow 19 

diameter (typical to panel-type PBRs) and under cultivation conditions that promote low 20 

pigmentation. The light attenuation coefficient was estimated using the Lambert-Beer equation and 21 

it was compared to Schuster’s law. The light attenuation was found to be dependent on biomass 22 



2 
 

concentration and microalgae pigmentation. Using a discretized layer model to describe the light 23 

distribution in PBRs resulted in the most accurate prediction of microalgal growth and lowest 24 

uncertainty on model predictions.  25 

Keywords 26 
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1. Introduction 28 

Optimizing microalgal cultivation is critical for effective reactor operation. One of the most 29 

important factors affecting microalgal growth is light availability [1]. Light is essential for 30 

microalgae to conduct photosynthesis and photoautotrophic cultivation is not viable without 31 

sufficient light in the reactor [2]. During photosynthesis microalgae convert carbon dioxide and 32 

water into carbohydrates and oxygen using light as an energy source [3]. In the light reactions, the 33 

light harvesting antenna collects the incoming light (i.e., photons) that is transported to the reaction 34 

centres (PSI and PSII) where this energy is converted into chemical energy in the form of NADPH2 35 

and ATP [4]. In the dark reaction or Calvin cycle the produced chemical energy is used to reduce 36 

carbon dioxide to phosphoglycerate, which can be further converted to, e.g., carbohydrates [4]. In 37 

closed photobioreactors (PBR), the light is more efficiently distributed as a result of optimal reactor 38 

designs, e.g., flat-panel [5]. However, in open pond cultivation systems, 90% of the incoming light 39 

intensity is absorbed in the first few centimetres of the culture, resulting in an inefficient 40 

distribution of photons [6]. Consequently, effective mixing is required to ensure that microalgal 41 

cells are regularly exposed to light [7]. Therefore for proper design of algal cultivation systems, the 42 

application of process models that accurately describe light distribution dynamics is essential [8]. 43 

Another factor affecting microalgae cultivation in open pond cultivation is the potential 44 

contamination by bacteria or protozoa [6]. Open cultivation of microalgae is used especially in used 45 
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water resource recovery systems, where the potential for bacterial contamination is high [9]. The 46 

presence of bacteria can further affect the light distribution in PBRs. 47 

There are two major groups of photosynthetic pigments in green algae: chlorophylls (green 48 

pigment), absorbing in two spectrum bands (blue (450-475 nm) and red (630-675 nm)), and 49 

carotenoids (yellow pigment), absorbing at 400-550 nm. Chlorophylls are the main photon-50 

harvesting pigments, whilst carotenoids can serve as protective pigments against high irradiance 51 

and reactive oxygen species and improve the light absorbance and the light utilization [10,11]. 52 

Depending on the culture conditions – mainly nitrogen and light availability –  chlorophylls and 53 

carotenoids are expressed in different quantities [12–15]. Pigments are also important high value 54 

products that can be used as, e.g., food and feed ingredients or cosmetics [11,16–18]. 55 

Typically, there are three distinct light regimes prevailing through algal growth. Under light limited 56 

conditions, photosynthesis shows linear dependency on light intensity. The maximum 57 

photosynthetic rate is reached at saturation light intensity, from where the photosynthetic rate is 58 

limited by the dark reactions [2]. Light intensity that is higher than the saturation level causes 59 

photoinhibition, whereby the photosynthetic rate declines due to non-photochemical quenching to 60 

dissipate the excess energy as heat [19]. Algae exposed to inhibiting light intensities for more than 1 61 

min will be affected by photoinhibition [19]. Due to light dynamics, microalgae have developed 62 

acclimation mechanisms to cope with light intensity changes. Regulation occurs in the reaction 63 

centres, mainly in PSII, by altering their photon-harvesting capacity or the number of reaction 64 

centres [20]. Under light limiting conditions microalgae increase the amount of chlorophyll, i.e. 65 

their photon-harvesting capacity. Under high light intensity, chlorophyll levels are reduced to avoid 66 

excess energy harvesting [19]. 67 
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Light attenuation in the PBR is affected by the absorption capacity of photosynthetic pigments, the 68 

shading effect by cells and light scattering caused by reactor wall and cells [10]. The Lambert-Beer 69 

expression accounts for the light absorption in the reactor by the biomass concentration [21] or by 70 

the combination of biomass and pigments concentration [22], but  does not account for scattering. 71 

Schuster’s law can be used in cases where the light scattering is considered [21]. When the pigment 72 

concentration impact on light distribution is considered, it is necessary to include pigments 73 

concentration in the biological model as a state-variable. There are several approaches to model 74 

pigment concentration: i) relating the intracellular chlorophyll content to the internal nitrogen quota 75 

[22] or to the nitrogen assimilation [23], ii) considering photo-acclimation as the driving force of 76 

chlorophyll accumulation [20], or iii) relating the chlorophyll synthesis to inorganic carbon uptake 77 

[24]. The dependence of microalgal growth on light intensity can be modelled by following three 78 

complexity levels [19]. Type 1 consists of biokinetic models that employ incident or average light 79 

intensity, i.e., algal cells are assumed to be exposed to the same light intensity through the entire 80 

reactor volume and have the same photosynthetic rate, thus neglecting the effect of photo-81 

acclimation and light attenuation (see, e.g.,[25]). Type II models account for light distribution in the 82 

culture by applying, e.g., the Lambert-Beer expression (e.g.,[21,26]) to predict the light intensity at 83 

a given reactor depth. Finally, type III models account for culture history in terms of light exposure 84 

as cells move around in the system (e.g.,[27]). Light intensity is commonly measured and expressed 85 

in the photosynthetically active radiation (PAR) range (400-700 nm) (e.g. [5,28,29]). 86 

A microalgal biokinetic process model developed in the framework of activated sludge modelling 87 

(ASM-A) was proposed earlier [25], including photoautotrophic and heterotrophic microalgal 88 

growth, nitrogen and phosphorus uptake and storage and biomass decay processes. The effect of 89 

light intensity on photoautotrophic growth was experimentally assessed and found to be best 90 

described by the Steele equation. An average light intensity is used to account for light intensity 91 
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inside the reactor (i.e., Type I model). Moreover, in the paper, the effect of light intensity on 92 

heterotrophic growth was assessed. The goal of the ASM-A model is to move towards a consensus 93 

based process model for green microalgae. As discussed above, light intensity within PBRs can be 94 

accounted for in different ways, which was not evaluated in the original ASM-A biokinetic process 95 

model. Thus, to further develop a comprehensive process modelling framework for green 96 

microalgae, in this paper, different approaches to predict the effects of light intensity on microalgal 97 

growth are assessed.   98 

Hence, the objectives of this study are: (i) to assess the distribution of light intensity in column 99 

reactors used for microalgae cultivation with different dimensions, biomass concentrations and 100 

pigmentation, receiving light from the top; (ii) to assess the effect of cultivation conditions on the 101 

light distribution and the pigment synthesis during batch cultivation; (iii) to identify a process 102 

model structure that can describe pigments accumulation and degradation as a function of substrate 103 

availability; (iv) to compare different simulation model complexity levels used to predict light 104 

intensity in PBRs. 105 

2. Materials and methods 106 

2.1. Microalgae and culture media 107 

A mixed green microalgal consortium consisting mainly of Chlorella sorokiniana and Scenedesmus 108 

sp. was used in this study [25]. The mixed culture was cultivated using the MWC+Se synthetic 109 

medium [30] by adjusting the nitrogen and phosphorus concentrations as later specified. The 110 

consortium was also grown in effluent water from a laboratory-scale enhanced biological 111 

phosphorus removal (EBPR) system [31] operated at 16 days of solids retention time (SRT) fed 112 

with pre-clarified used water from Lundtofte WWTP (Kgs. Lyngby, Denmark). 113 



6 
 

2.2. Microalgal cultivation in batch reactors 114 

Batch experiments were carried out in an 8-L batch reactor (made out of clear acrylic material, see 115 

Fig. S1, Supporting Information (SI)), to assess the effect of nutrients and light availability on the 116 

pigments concentration of the microalgae. The cylindrical reactor had a diameter of 140 mm, height 117 

of 0.6 m and working volume of 8-L. Constant aeration with CO2 enriched air (5 % CO2) at a flow 118 

rate of 20 L/h was used to mix the biomass and to provide CO2. Light was supplied from the top of 119 

the reactor with a custom-built lamp, providing 1500 ± 150 µmol photons m-2 s-1, with a metal-120 

halide light bulb (OSRAM©, Germany). The reactor wall was covered with a black cloth from the 121 

outside to reduce the effect of ambient light on the monitoring of the incoming light intensity. The 122 

light sensor (described in section 2.3) was only placed inside the reactor for the course of the light 123 

intensity measurements (otherwise it was kept outside of the reactor to not interfere with the light 124 

penetration). The inoculum for the batch cultivation was taken from a reactor where the culture was 125 

cultivated under light limited conditions due to high biomass concentration (data not reported). 126 

Moreover, the inoculum was grown in a modified MWC+Se medium, and kept under nutrients in 127 

excess conditions for the inoculation period (data not shown). The MWC+Se medium was modified 128 

to reach 7.55 mg NH4
+
-N/L, 12.7 mg NO3

--N /L and 3.5 mg PO4-P/L. The reactor was kept at room 129 

temperature (23-24 °C). The pH of the algal culture varied in the range of 6.8 - 7.9 during the 130 

experiments. After 15 days of starvation, when nutrients were depleted in the cultivation medium, 131 

nitrogen and phosphorus were spiked again reaching 1.8 mg NH4
+
-N/L, 6.6 mg NO3

--N /L and 0.6 132 

mg PO4-P/L. Algae biomass was diluted by replacing 20% of the culture with fresh cultivation 133 

medium, thereby supplying other micronutrients that were likely depleted. 134 

Moreover, three reactors (made out of clear acrylic material, Fig. S2, SI) of different diameters were 135 

used in the experiments where the effect of reactor size, nutrient availability and cultivation media 136 

on light attenuation were assessed. Reactor 1 had a diameter of 240 mm, height of 0.6 m and 137 
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working volume of 22.5-L. Reactor 2 had a diameter of 140 mm, height of 0.6 m and working 138 

volume of 8-L. Finally, reactor 3 had a diameter of 110 mm, height of 1.2 m and working volume of 139 

10.5-L. Light was supplied from the top of the reactor from 30 W fluorescent lamps (Philips, The 140 

Netherlands) in case of the tests with synthetic medium. Custom made light source was used during 141 

the tests done with used water resources. In order to eliminate ambient light, the reactor walls were 142 

covered with a black cloth during the measurements. The incident light intensity measured in each 143 

experiment is reported in Table S1, SI. Light intensity distribution in the algae suspension 144 

cultivated in synthetic medium was measured for three different concentrations of algal biomass in 145 

each reactor. Two tests were conducted using synthetic medium. In the first case microalgae were 146 

cultivated under nutrient limited conditions. The light attenuation in the culture was measured on 147 

day 1, day 2 and on day 4 of the nutrient limited cultivation. Thus three different concentrations 148 

were achieved (Table S1). In the second case microalgae were cultivated in nutrients in excess 149 

medium. The culture was grown to reach the highest biomass concentration (158 mg/L) and the 150 

light attenuation was measured. The culture was diluted two times with synthetic medium, to 151 

conduct the light attenuation measurements at the lower concentrations as well (at 79 mg/L and 39.5 152 

mg/L). More details on the experimental design are reported in the SI, SI-1. 153 

2.3. Analytical methods  154 

LI-193 SA Spherical Quantum Sensor (LI-COR, USA) was used to measure the light intensity 155 

inside the reactors, connected to a LI-1400 data logger (Fig. S1, SI). The sensor measures within the 156 

PAR range. The sensor has a uniform sensitivity to light wavelengths between 400 and 700 nm, 157 

which corresponds to light used by algae for photosynthesis. The light intensity sensor was placed 158 

in a circular fitting, to ensure that it stayed vertical during the measurement (Fig. S3, SI). It was 159 

submerged at the centre of each reactor through the top opening of the reactor and the cable was 160 

fitted through a 20 mm hole in the bottom (Fig. S3, SI). The sensor could be moved up and down 161 
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the reactor column. Light intensity was measured every 2-2.5 cm over the operational depth of each 162 

reactor.  163 

pH was monitored with a pH-electrode Sentix 940 sensor, connected to a MultiLine multi-meter 164 

3430 (WTW, Germany), and dissolved oxygen was monitored using a FDO 925 optical oxygen 165 

sensor (WTW, Germany), connected to the same multi-meter. 166 

Total suspended solids (TSS) measurement was carried out using glass fibre filters (Advantec©, 167 

USA) with a pore size of 0.6 µm based on standard methods [32]. Total nitrogen and phosphorus 168 

measurements in the suspension were done using commercial test kits (Hach-Lange©, USA). 169 

Ammonium, nitrate, nitrite and phosphate concentrations were measured after sample filtration 170 

through 0.2 µm syringe filters (Sartorius, Germany) using test kits supplied by Merck© (USA). The 171 

internal cell quota of nitrogen was obtained based on the difference of total nitrogen measured in 172 

the algal suspension (algae + medium) and total soluble nitrogen in the filtrate (soluble organic N + 173 

ammonium + nitrite + nitrate). The internal cell quota of phosphorus was calculated by taking the 174 

difference of total phosphorus measured in the algal suspension and soluble phosphate measured in 175 

the filtrate. 176 

Pigments extraction method was adapted from literature [11,33] and the detailed protocol is 177 

reported in the SI, SI-2. The pigments were analysed using ultra high performance liquid 178 

chromatography (UHPLC) based on [33]. We targeted chlorophyll a and b as well as some 179 

carotenoids (lutein, β-carotene, violaxanthin) as these were the most common pigments found in 180 

Chlorella sp. according to literature [11,16,33,34]. 181 

2.4. Calculations and statistical analysis 182 

Principle component analysis (PCA) was carried out to assess the relevant correlations between 183 

factors that could affect the light attenuation using Matlab (The MathWorks, USA). The variables 184 
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that were considered in the PCA were chosen to be the internal nitrogen and phosphorus quota, the 185 

chlorophyll a and b content, the violaxanthin, β-carotein and lutein concentrations and the biomass 186 

concentration. The variables were standardized based on their mean and standard deviation in order 187 

to be able to represent them on the same scale.  188 

SigmaPlot® was used to fit regression on the experimental data obtained in the three reactors 189 

presented in section 2.2. The standard error of the estimate parameter values obtained through the 190 

fitting is shown as error bars in the figures in the results section.  191 

The Lambert-Beer expression and the Schuster’s law (see, e.g., [21]) were fitted on light 192 

distribution curves measured inside the reactor in SigmaPlot® (CA, USA). The two equations were 193 

chosen to compare the fitting including light scattering (Schuster´s law) and without light scattering 194 

(Lambert-Beer equation).  195 

The Schuster’s law is expressed as [35]: 196 

𝐼 = 𝐼0 ∗
4𝛼

(1+𝛼)2∗𝑒
𝛿∗𝑋𝐴𝑙𝑔∗𝑧

−(1−𝛼)2∗𝑒
−𝛿∗𝑋𝐴𝑙𝑔∗𝑧   Eq. 1 197 

where    198 

 𝛼 = √
𝐸𝑎

𝐸𝑎+𝐸𝑠
     and     𝛿 = √𝐸𝑎 ∗ (𝐸𝑎 + 𝐸𝑠) 199 

where I (µmol m-2s-1) is the light intensity measured at depth z (m), I0 (µmol m-2s-1) is the incident 200 

light intensity, XAlg (g m-3) is the biomass concentration, Ea is the light absorption coefficient and Es 201 

is the light scattering coefficient. 202 

Another approach proposed in this study accounts for light scattering by increasing the measured 203 

light path length (depth of the reactor) with a correction factor. An optical path length multiplication 204 
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(PLM) factor was determined from the curve fit by fitting the Lambert-Beer equation, modified 205 

with the PLM: 206 

𝐼 = 𝐼0 ∗ 𝑒−𝑘𝑎∗𝑋𝐴𝑙𝑔∗𝑧∗𝑃𝐿𝑀   Eq. 2 207 

where I (µmol m-2s-1) is the light intensity measured at depth z (m), I0 (µmol m-2s-1) is the incident 208 

light intensity,  ka (m
2 g-1) is the attenuation coefficient, XAlg (g m-3) is the biomass concentration 209 

and PLM (-) is the path length multiplication factor. In this way, the true optical path length caused 210 

by scattering was predicted. 211 

2.5. ASM-A model complexity analysis and model extension 212 

As discussed earlier, different model complexities are used to account for light intensity in the PBR. 213 

We tested three different assumptions to account for light intensity during model simulations, all of 214 

them based on the Lambert-Beer law – see section 3.3. Complexity level 1 (CL-1) assumes that 215 

there is a constant average light intensity available in the reactor throughout the simulation. The 216 

average light intensity (Iav), which was set constant over time, was calculated by integration of the 217 

Lambert-Beer law as presented in Wágner et al.[25]. CL-2 includes the dynamic calculation of the 218 

average light intensity (by integration of the Lambert-Beer law, as in CL-1) for each time-step of 219 

the simulation. In this way, light intensity can be updated over time taking into account the impact 220 

of biomass concentration. Finally, in CL-3, the culture volume was discretized into n equal layers 221 

parallel to each other and orthogonal to the light source, which entered from the top of the reactor. 222 

The layer model structure is similar to the model reported by Huesemann et al.[29]. The light 223 

intensity is calculated in the middle of each layer using the Lambert-Beer equation. The ASM-A 224 

biokinetic model is then solved in each layer for one time-step, whereby different growth rates are 225 

expected due to the gradient in light intensity within the PBR. The reactor is modelled as a 226 

continuously stirred tank reactor (CSTR) operated as a batch. Therefore, the state-variables 227 
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calculated in each layer are then numerically averaged for the entire volume at the end of each time-228 

step and average values were used as initial conditions for the next time-step. The optimal time-step 229 

and the number of layers were estimated to be 0.1 d and 10 layers, respectively, by comparing the 230 

root mean square normalized error (RMSNE) of the simulations (Fig. S4, SI). The RMSNE was 231 

calculated by comparing the simulation to the experimental data in Batch 1. The attenuation 232 

coefficient present in the Lambert-Beer equation was estimated first based on the TSS concentration 233 

(Eq. 3) and then based on the total chlorophyll concentration (Eq. 4) resulting in six assessments in 234 

total.  235 

The ASM-A model was extended with the prediction of the chlorophyll content of the microalgae. 236 

As previously reported in the literature (e.g.[22]), the chlorophyll content is set proportional to the 237 

internal nitrogen quota (XAlg,N). Chlorophyll is reported to be an easily accessible nitrogen source 238 

from the internal nitrogen pool that can be degraded under nitrogen limitation [36]. Thus, it is 239 

hypothesized that the chlorophyll that is degraded provides nitrogen to be used inside the cells. We 240 

introduced an independent decay term for the chlorophyll content (R7, Table 1), assuming that it is 241 

degraded faster than the internal nitrogen content. 242 

<Table 1> 243 

2.6. Model implementation, calibration and evaluation 244 

The different model structures were implemented in Matlab (The MathWorks, USA) as extensions 245 

of the ASM-A simulation model by Wágner et al.[25]. Parameter estimation and model 246 

identifiability analysis were carried out based on the Latin-Hypercube-Sampling-based priors for 247 

Simplex (LHSS) method [25]. Parameter identifiability is assessed by analysing the posteriori 248 

parameter distribution, i.e., parameter 95% confidence interval and covariance based on 500 249 
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Simplex runs. Values for parameters not estimated in this study were taken from the original ASM-250 

A calibration.  251 

The model complexity was compared based on four criteria: (1) model accuracy assessment based 252 

on the root mean square normalised error (RMSNE) and Akaike’s information criterion (AIC) [37]; 253 

(2) parameter uncertainty based on the comparison of mean value and 95% confidence interval; (3) 254 

parameter correlation based on [38]; (4) model prediction uncertainty, assessed based on the 95% 255 

confidence bands using average relative interval length (ARIL, based on Dotto et al.[39]) together 256 

with the coverage, expressed as ARILC by Ramin et al.[40]. For further details on calculating the 257 

above criteria, the reader is referred to the SI, SI-3. 258 

3. Results and discussion 259 

3.1. Estimation of light attenuation under different growth conditions – preliminary 260 

evaluation in short term batch experiments 261 

As light penetrates in a PBR containing a microalgal suspension, there is a decrease in the light 262 

intensity with increasing depth (see an example in Fig. 1a). This is due to the light absorption and 263 

shading effect by the culture [7]. The Lambert-Beer equation was fitted to light distribution data 264 

(see examples in Fig. 1a and 1b) experimentally obtained to estimate the light attenuation 265 

coefficient in three PBRs, having different reactor diameters and using three different biomass 266 

concentrations. The light attenuation coefficient (ka) (reported in Table S2, SI) was found to vary as 267 

a function of biomass concentrations (Fig. 2a and 2b, Table S3, SI). There was no significant 268 

difference in the dependence of ka on biomass concentration between 240 and 140 mm diameter 269 

reactors (Fig. 2a and 2b), whilst the narrowest reactor (110 mm diameter) showed a different 270 

relationship with the biomass concentration. We note that the sensor used to measure the light 271 

intensity inside the reactor has a diameter comparable to that of R3 (6.1 cm and 11 cm, 272 
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respectively), which could potentially affect our observations (e.g., increase of light scattering). 273 

This factor is assumed to be negligible in influencing measured light intensity data in our study. 274 

Additionally, the nutrient availability was found to have significant impact on the predicted light 275 

attenuation coefficient (Fig. 2a and 2b). The bubble size did not significantly (based on standard 276 

deviation and student t-test) affect the light attenuation in the PBR (Fig. S5, SI). However, a more 277 

dedicated analysis of using different diffusers, mixing-conditions and air-flows should be done to 278 

thoroughly evaluate the effect of bubble size on, e.g. light scattering. 279 

<Figure 1> 280 

As light penetrates through the culture it can be affected by the scattering from the reactor walls and 281 

back-scattering from the microalgal cells [5]. Scattering from the reactor walls can enhance the light 282 

intensity as light penetrates through the reactor (see Fig. 1c). Scattering from the reactor walls 283 

changes the direction of the light beam as it propagates through the reactor, thereby changing and 284 

potentially increasing the true optical path length of light within the algal culture. Therefore, light 285 

scattering was quantified by increasing the measured path length with a correction factor (i.e. the 286 

optical path length multiplier, PLM), thereby predicting the true optical path length. The Lambert-287 

Beer equation was fitted on the curves, using ka as estimated in Table S3 (SI) for the nutrient 288 

limited and nutrients in excess scenarios. Values of PLM were estimated using the curve fit (Eq. 2, 289 

Table S4, SI). The best fit was obtained based on R2. In the case of the narrowest reactor for all 290 

tested biomass concentrations, the model predictions can be improved by using the PLM. In case of 291 

the wider reactors PLM was only needed for the nutrient limited scenario (Table S4, SI). Under 292 

nutrient limited condition the pigment composition changes in the culture, which can result in 293 

decreased light absorption by the biomass (Fig. 2a and 2b) compared to nutrients in excess 294 

cultivation. Due to the lower light absorption, light scattering can be enhanced by the reactor wall, 295 

and thus the use of PLM can improve model prediction. Additionally, Pandey et al.[41] found that 296 
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the wall reflection of light in the reactor has higher impact at lower biomass concentration than in 297 

high concentration. Our results (Fig. 2c and 2d) suggest higher attenuation coefficients at low 298 

biomass concentrations. Observations made using the PLM were confirmed by fitting Schuster’s 299 

law on the light distribution curves (Table S5, SI). In case scattering becomes insignificant, the 300 

parameter Es in Schuster’s law approaches 0, and thus the expression becomes identical to the 301 

Lambert-Beer law. Comparing the attenuation coefficient (ka) estimated using the Lambert-Beer 302 

law (Table S2, SI) and Ea estimated using the Schuster’s law (Table S5, SI), indicates that when Es 303 

is 0, Ea and ka are equal or not significantly different. This was found to be the case for R1 and 2 304 

under in-excess nutrients concentrations, whilst under nutrient limited conditions the Schuster’s law 305 

gave better fit. In case of R3 (narrowest diameter) a better fit was obtained by applying Schuster’s 306 

law compared to that of Lambert-Beer under both nutrient limited and in-excess conditions. Thus, 307 

modelling the effect of scattering by implementing Schuster’s law [21] or the PLM approach is 308 

needed to accurately predict light attenuation in reactors with narrow diameter, e.g. flat-plate PBR. 309 

However, the prediction by the Lambert-Beer equation, i.e. without accounting for scattering, is 310 

sufficient in reactors intended to be used at high biomass concentrations, typically the case in PBRs. 311 

Based on the correlation between the attenuation coefficient and the TSS concentration an 312 

exponential relation was obtained, and used to approximate data points (Fig. 2c): 313 

𝑘𝑎 = 𝑎 ∗ 𝑒−𝑏∗𝑋𝐴𝑙𝑔    Eq. 3 314 

where a (m2 g-1) and b (m3 g-1) are the correlation parameters estimated and XAlg (g m-3) is the 315 

biomass concentration.  316 

The light distribution in a PBR also depends on the cultivation conditions, i.e. nutrient availability 317 

and culture medium, which can affect microalgal physiology (e.g., pigments content and 318 

composition). Under nutrient limited cultivation the estimated attenuation coefficient values are 319 
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significantly higher than for parameters estimated under nutrients in-excess cultivation (Fig. 2c), 320 

suggesting that algae absorb less light when algae are cultivated under nutrient limited conditions. 321 

As a result of different cultivation conditions, algae change their pigmentation (see Fig. S6, SI). 322 

Under nitrogen limitation, chlorophylls are considered to be the first nitrogen pools inside the algae 323 

accessed by the cells [14], and thus the chlorophyll content of the algae is expected to decrease 324 

together with nutrient availability. Moreover, in more diluted cultures, the light intensity that the 325 

algae is exposed to is comparably high, thereby promoting the production of carotenoids serving as 326 

photo-protective pigments by capturing energy on characteristic wavelengths [42]. This effect can 327 

alter the light absorption of the microalgal cells and thus the light attenuation in the reactor. 328 

<Figure2> 329 

The composition of cultivation medium can also affect the light distribution in PBR, e.g., treated 330 

wastewater contains chromophores and particulate matter that can interfere with light attenuation in 331 

PBRs. We assessed the effect of such chromophores on light attenuation in PBR using treated water 332 

derived from a laboratory scale EBPR (Fig. 1c and Fig. 2c). We found that using treated used water 333 

as cultivation medium resulted in comparably high absorbance (i.e., lower ka) than using clear and 334 

colourless synthetic medium (Fig. 2c). Moreover, we assessed the effect of increasing bacterial 335 

biomass concentration on light attenuation. Increasing bacterial biomass concentration can further 336 

increase light absorption in the reactor (Fig. 2d). Thus, experiments designed for the estimation of 337 

the attenuation coefficient should be carried out using the cultivation medium relevant for the 338 

system. This effect is crucial to model combined bacterial-algal cultivation systems where the 339 

bacterial biomass concentration can vary (e.g.[43,44]).  340 



16 
 

3.2. Effect of cultivation condition on pigments synthesis and light attenuation – evaluation 341 

under dynamic conditions 342 

A 16-day batch experiment was run (Batch 1), where after 3 days the nutrients were depleted from 343 

the medium, whilst the biomass concentration kept increasing until day 6 (Fig. 3a and 3b). The 344 

chlorophyll a and b concentration inside the biomass decreased from the beginning of the 345 

experiment, reaching a plateau after 4 days (Fig. 3c). A slight increase in the chlorophyll a (the 346 

primary chlorophyll type) content of the microalgae can also be observed by the end of the 347 

cultivation (Fig. 3c). Among the measured carotenoids, lutein was present in the highest 348 

concentration (Fig. 3d).  349 

<Figure3> 350 

As opposed to the observed trends in chlorophyll depletion, carotenoids were accumulated in the 351 

first 2 days and then depleted until the end of the cultivation period, possibly due to the increase of 352 

biomass concentration, which results in reduced light intensity inside the reactor (Fig. 4a). When 353 

microalgae are exposed to high light intensities, the chlorophyll production is suppressed and 354 

carotenoids are synthesized due to photo-acclimation processes against high light intensity 355 

[11,15,20,21,42,45,46]. In the beginning of the cultivation the sudden increase of light intensity 356 

(average light intensity was 215 µmol m-2 s-1 in the start of the cultivation after the inoculum was 357 

acclimated to low light intensity) could potentially result in photo-inhibition as suggested by, e.g., 358 

García-Camacho et al.[20] or Vaquero et al.[42]. Moreover, Adesanya et al.[24]  report the decrease 359 

of chlorophyll in Chlorella vulgaris instantaneously after the start of batch cultivation due to 360 

nitrogen limitation in the culture with initial nitrogen concentration similar to our case. Ferreira et 361 

al.[36] report that microalgae increase their chlorophyll content under low light intensity to harvest 362 

light more efficiently, which can be observed in our experiment at the end of the cultivation period. 363 

Furthermore, photo-protective pigments such as carotenoids can be used by microalgae to reduce 364 
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the negative effects of elevated light intensity. Carotenoids can dissipate excess light through non-365 

photochemical processes, and as antioxidants they can reduce the effect of reactive oxygen species 366 

[13,42]. Thus the increase in carotenoids content in the beginning of the process is likely due to the 367 

elevated light intensities.  Moreover, the increase in the carotenoid concentration in the end of the 368 

experiment (when chlorophyll content increases as well) can be related to the widening of the light 369 

absorption spectrum, whereby carotenoids enhance the light harvesting capacity to enhance the 370 

photosynthetic activity [36,42]. 371 

<Figure4> 372 

In the beginning of the second batch experiment (Batch 2), to assess the change in pigments 373 

concentration under changing nutrient availability, nutrients were spiked to the starved culture. 374 

There is an increase in chlorophyll a and b concentration during the first 2 days (Fig. 3e). This is 375 

possibly due to the available nitrogen in the medium that promotes the synthesis of chlorophyll to 376 

enhance photosynthesis [21,36]. 2 days after the bulk nitrogen source is depleted, there is a decrease 377 

of the chlorophyll a and b concentration. As previously stated, chlorophyll is reported to be an 378 

easily degradable nitrogen source for microalgae [36] and under nitrogen starvation chlorophyll is 379 

degraded to support growth [14]. Lutein concentration increases slightly in Batch 2 (Fig. 3f). In this 380 

case it is unlikely that lutein serves as a photo-protective pigment, as the average light intensity is 381 

similar to the one estimated in the end of the cultivation in Batch 1 (Fig. 4a). Likely, lutein serves to 382 

widen the light absorption spectrum, to promote effective photosynthesis [36]. Results are subject to 383 

the pigment extraction protocol which were demonstrated to be inefficient for lutein extraction [47]. 384 

3.3. Modelling of the effect of chlorophyll on light attenuation 385 

The total chlorophyll concentration was expressed as nitrogen based on the nitrogen content of 386 

chlorophyll in the molecular formula (chlorophyll a: C55H72O5N4Mg and chlorophyll b: 387 
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C55H70O6N4Mg; [48]). We found a linear correlation with the nitrogen quota of the microalgae and 388 

the total chlorophyll content (Fig. 5), as also suggested by Bernard[22]. Moreover, Ikaran et al.[49] 389 

found similar trends between the stored protein and chlorophyll content of microalgae during batch 390 

cultivation, where protein is suggested to be part of the nitrogen quota [14]. However, the maximum 391 

nitrogen content present as chlorophyll in the total nitrogen quota was about 2% in our study and 392 

thus it forms an insignificant fraction of nitrogen storage. This is in agreement with  Geider and La 393 

Roche [48], who reported that 0.2-3% of the intracellular nitrogen is associated with chlorophyll.  394 

<Figure 5> 395 

The ka was estimated inside the reactor during the course of the 8-L batch experiments using the 396 

Lambert-Beer expression. Similar to the previous results presented in section 3.1, values of ka 397 

change as function of the TSS concentration (Fig. S7, SI), which can be described using an 398 

exponential relation (Table S6, SI). Thus, to effectively predict the light distribution in the PBR, the 399 

value of ka cannot be expressed as a constant value, but as a variable updated during the cultivation 400 

period (Fig. 4b). We calculated the effective attenuation coefficient that is the product of the 401 

attenuation coefficient (ka) and the biomass concentration (XAlg), to decouple the effect of biomass 402 

concentration on the light attenuation. This value increases (Fig. 4c) during the cultivation period. 403 

As the biomass concentration increases and thus the light intensity inside the reactor decreases the 404 

effective attenuation coefficient increases, as can be seen in Eq. 2.  405 

Results obtained in a PCA analysis (Fig. 6a) - whereby the smaller the angles between vectors the 406 

stronger correlation is [50] – suggest ka to be the most dependent on the chlorophyll a and b content 407 

and the internal nitrogen quota and not dependent on the carotenoids, whereas it is negatively 408 

correlated with the biomass concentration. Consequently, the ka expressed as a function of total 409 

chlorophyll concentration is proposed. We found different trends between the attenuation and the 410 
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total chlorophyll concentration than in the case of TSS (Fig. 6b). The correlation between the 411 

cellular pigment content-specific attenuation coefficient (ka,p) and the chlorophyll concentration is 412 

assessed based on analysing different algebraic expressions (in SigmaPlot®) and it is identified 413 

(based on R2) as: 414 

𝑘𝑎,𝑝 =
𝑑

𝑋𝐶ℎ𝑙
− 𝑐   Eq. 4 415 

where ka,p (m
2 g-1 Chl) is the attenuation coefficient specific for pigments, c (m2 g-1 Chl) and d (m-1) 416 

are the regression parameters estimated and XChl (g Chl m-3) is the total chlorophyll concentration  417 

that cannot equal zero. Above approximately 4 mg Chl/L, ka,p becomes independent of the 418 

chlorophyll content (Fig. 6b). The correlation between ka,p and the pigments concentration (based on 419 

Eq. 4) is shown in Table S6, SI.  420 

<Figure 6> 421 

The cellular chlorophyll content can be modelled as a function of the internal nitrogen quota and by 422 

introducing a specific chlorophyll decay process rate (R7, Table 1). The specific chlorophyll decay 423 

rate coefficient (bXChl) was estimated using measured data obtained in Batch 1. A value of 424 

bXChl=0.45±0.043 d-1 was estimated using the LHSS method. The fraction of chlorophyll-nitrogen 425 

(fXNChl) to the total cellular nitrogen quota was estimated from the slope of Fig. 5, i.e. fXNChl = 426 

0.026 gN-Chl/gN.  The chlorophyll concentration can effectively be predicted using the extended 427 

ASM-A simulation model (Fig. 7). The variability of bXChl was assessed using the Janus coefficient 428 

(J) by comparing RMSNE values obtained with Batch 1 (used for model calibration) and Batch 2 429 

(used for model validation). J~1, thus bXChl estimate derived from Batch 1 can be used to achieve 430 

accurate model prediction in Batch 2 (Fig. S8, SI). In the following section (3.3) we evaluate the 431 

difference of calculating ka as a function of TSS and chlorophyll content on the model simulations 432 

(in all complexity levels CL1-CL3). 433 
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<Figure 7> 434 

3.4. Simulation model complexity evaluation 435 

Three different model structures to predict the impact of light on algal growth were compared, 436 

together with different expressions for the light attenuation coefficient (ka or ka,p), using four 437 

selection criteria (see section 2.6). Model accuracy assessment was based on RMSNE and AIC 438 

calculations (Table S7, SI). Based on these two criteria, the accuracy of the predicted biomass 439 

concentration (XAlg) improved by using a model structure with higher complexity, i.e. the layer-440 

model, regardless of the constitutive equation used to calculate the attenuation coefficient. The sum 441 

of RMSNE calculations suggest, as opposed to the AIC results, that there is a worse overall fit with 442 

using the layer model. This discrepancy is due to that normalized objective functions, e.g. RMSNE 443 

used in this study, result larger values when experimental data are low (e.g., values below 1) [51]. 444 

In case of the AIC calculation there is no normalization included (Eq. S2, SI). We hypothesise that, 445 

using an average and constant light intensity value might result in the inaccurate prediction of the 446 

measurement data in both cases. Under high biomass concentrations the simulation model tends to 447 

over-predict the experimental data (Fig. S9 and S10, SI). Implementing the time-variable average 448 

light intensity function reduces this over-prediction (Fig. S11 and S12, SI). Finally, using a one-449 

dimensional model structure improves the goodness of fit predominantly for the prediction of the 450 

biomass concentration (Fig. S13 and S14, SI and Table S7, SI), as a result of the more realistic 451 

prediction of light availability for algal growth in the PBR.  452 

The parameter uncertainty was assessed based on the comparison of the mean value and 95% 453 

confidence interval of the parameter subset estimated using the different simulation model 454 

complexity levels and attenuation coefficients (Fig. 8, Table S8, SI,). The different model structures 455 

do not significantly influence the parameter estimates across the scenarios. The mean estimate for 456 
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the maximum specific growth rate using the layer model structure is similar to the maximum 457 

specific growth rate estimated for Chlorella sorokiniana [52], which was estimated in a flat-plate 458 

PBR, where no light limitation occurs. 459 

<Figure 8> 460 

The parameter correlation was compared using the LHSS method. The posteriori parameter 461 

distributions were presented as histograms (Table S9-S14, SI). The histograms are narrow and the 462 

95% confidence interval is low (below 40%) in case of CL-2 and CL-3. However, in case of CL-1, 463 

the 95% confidence interval is higher than 40% in case of µA,max and kNO,Alg, due to the simplifying 464 

assumption of using average light intensity. The covariance matrices show that most of the 465 

parameters are identifiable (covariance is below 0.5) in case of CL-2 and CL-3, thus the reduction 466 

of uncertainty with more complex model structures might improve parameter identifiability. 467 

Interestingly, µA,max and kNO,Alg show correlation in all cases that can be due to the challenges of 468 

calibrating kNO,Alg, as discussed in Wágner et al.[25].   469 

The model prediction uncertainty was assessed based on the 95% confidence bands using ARIL 470 

divided by the percentage coverage, expressed as ARILC (based on Ramin et al.[40]). The 471 

simulation model performance is improved with increasing model structural complexity. The width 472 

of the uncertainty bands is reduced as model complexity increases (Fig. 9; Table S7, SI; Fig. S15-473 

S19, SI). This is due to the reduced parameter uncertainty, based on 95% confidence interval (Fig. 474 

8) when using a more complex model to predict light impact on algal growth. However, in the case 475 

of the internal nitrogen cell quota there is a significant number of data points outside of the 476 

prediction band for both variable light intensity and layer model cases, mainly due to the decrease 477 

of the wideness of the prediction.  478 
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Using the average light intensity to account for light (CL-1) gave the least accurate predictions. This 479 

scenario is furthest from reality as we assume that the light intensity is the same throughout the 480 

cultivation, which is not true, because among others, the biomass concentration increases and thus 481 

light intensity decreases. Using the variable average light intensity (CL-2) as a measure of 482 

modelling light inside the reactor gives comparably more accurate model predictions. This scenario 483 

is also closer to reality, as we account with the effect of the change in biomass on light intensity in 484 

the reactor. Using a model with discretized layers (CL-3) to predict the light distribution in PBRs 485 

resulted in the most accurate prediction of the microalgal growth as well as the reduction of the 486 

uncertainty of the overall model output. However, the computational time significantly increases 487 

(although the optimal layer number and time-step was optimised in Fig. S4.) in case of using the 488 

layer model (up to 100 fold increase compared to CL-1) which can considerably increase the time 489 

and computational power needed. CL-2 and CL-3 performed similarly apart from the prediction of 490 

biomass concentration (a critical variable in microalgae cultivation). Thus, we conclude that using 491 

CL-3 can improve the prediction accuracy especially in case of biomass concentration. Therefore, 492 

the modeler should choose between CL-3 and CL-2 depending on the system to be modeled and the 493 

accuracy required to predict, e.g., biomass productivity. 494 

<Figure 9> 495 

4. Conclusions 496 

In this study, we developed a consistent simulation model extension to the ASM-A framework to 497 

accurately predict light attenuation and distribution in PBRs using cylindrical PBRs with different 498 

diameters and under different cultivation conditions.  499 
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Three different simulation model structures were compared to predict light intensity inside the PBR. 500 

Light scattering had an effect on light distribution in reactors with narrow diameter or under 501 

cultivation conditions that promote low biomass concentrations and decreased pigmentation. This is 502 

important e.g. when biomass is grown for lipid accumulation in PBR under nutrient limitation and 503 

one must be careful to account with possible scattering.  504 

Nitrogen limited conditions resulted in the decrease of chlorophyll content, whilst elevated light 505 

intensity promoted the synthesis of carotenoids. In the new model, the light attenuation coefficient 506 

is predicted as a function of the pigmentation – calculated as total chlorophyll content of 507 

microalgae, thus defining it as a dynamic variable. Algal chlorophyll content is predicted by the 508 

model as a function of the internal nitrogen quota and the pigment decay process rate.  509 

We propose a consistent simulation model structure using a one-dimensional discretization (layers) 510 

to predict the light distribution in PBRs. As a result, more accurate prediction of the microalgal 511 

growth as well as the reduction of the uncertainty of the overall model output is obtained. This 512 

comes at a cost of increased computational time.  513 

The ASM-A simulation model shows high predictive accuracy with the dynamic laboratory-scale 514 

systems. High variability of nutrient loading is typically the case in used water resource recovery 515 

systems. Under such conditions, it is also important to consider the effect of the cultivation 516 

medium, which is now also accounted for by the developed simulation model.  517 

The significant outcomes of the paper help to better understand and predict the effects of cultivation 518 

conditions on light attenuation in PBRs. For practitioners, investigating other cultures, the 519 

implementation of the simulation model developed - using rigorous experimental, statistical and 520 

computational approaches (used in our previous study and this study) - is straightforward.  521 
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Figure 1: Light attenuation and scattering in photobioreactors, PBR (reactor diameter: 0.14 m) - effects of 683 

scattering on light distribution in PBRs. Due to the scattering on the reactor walls, the light intensity 684 

increases towards the bottom of the reactor – the bottom and the sides of the reactor were both covered with 685 

black cloth, thus light only entered from the top of the reactor. (a) Light attenuation inside the PBRs at 686 

different biomass concentrations, with nutrient-limited cultivation, and in clean water; (b) Light attenuation 687 

inside the PBR at different biomass concentrations with nutrients in excess cultivation; (c) Light attenuation 688 

inside the PBR with clean water and effluent used water. 689 
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 692 

Figure 2: Estimation of the attenuation coefficient (ka) values in PBRs with three different diameters and at 693 

three different biomass concentrations. The estimation of ka values was done both at (a) nutrient limited 694 

conditions and at (b) nutrients-in-excess conditions (see Fig. S6, SI where the different pigmentations are 695 

shown). The lines show exponential regression functions fitted on the measured data sets (values of 696 

regression coefficients shown in Table S4). The dashed red line shows the fitting for R1, the solid orange 697 

line shows the fitting for R2 and the dotted blue line shows the fitting for R3. (c) Values of ka obtained at 698 

different biomass concentrations with algae cultivated in synthetic medium and EBPR process effluent water 699 

(denoted as ww in the legend). The observations were made in Reactor 2 (140 mm diameter). (d) The effect 700 

a b 

c d 
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of increased bacterial biomass concentration on the light attenuation in the PBR. TSS in this figure represents 701 

the total TSS of algal + bacterial biomass where the amount of bacteria was increased whilst algal biomass 702 

was kept constant (at 75 mg/L). The observations were made in Reactor 2 (140 mm diameter). The error bars 703 

present the standard error of the estimate parameter value obtained through regression in SigmaPlot®. 704 
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Figure 3: Batch algal cultivation. (a) Microalgal biomass growth during the batch cultivation where 708 

nutrients were added to a dilute culture (185 mg COD/L initial algal biomass) at day 0 and were depleted by 709 

day 3 (Batch 1). (b) Nitrogen and phosphorus concentration during cultivation in Batch 1. (c) Chlorophyll a 710 

and b and (d) carotenoids concentrations obtained in Batch 1. (e) Chlorophyll a and b and (f) carotenoids 711 

concentration obtained in batch cultivation in Batch 2 where nutrients were added to a dense (400 mg 712 

COD/L initial biomass concentration) and highly nutrient limited culture at day 0 and were depleted by day 2 713 
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 716 

Figure 4: Light intensity and attenuation in Batch 1 and 2. (a) Average light intensity in the reactor during 717 

Batch 1 and Batch 2 cultivation. The average light intensity was calculated by integrating the Lambert-Beer 718 

equation at each time step. (b) Variation of the light attenuation coefficient (ka) over time during the batch 719 

cultivation (in Batch 1). Values of ka were estimated by measuring the light intensity at different depths of 720 

the reactor and fitting the Lambert-Beer equation. (c) Variation of the effective attenuation coefficient, 721 

calculated by the product of ka and the biomass concentration (XAlg). The error bars present the standard error 722 

of the estimate parameter value obtained through regression in SigmaPlot®. 723 
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Figure 5: The nitrogen content of total chlorophyll expressed as Chl-N plotted against the internal nitrogen 727 

quota. The fraction of chlorophyll-nitrogen (fXNChl) to the total cellular nitrogen quota was estimated from 728 

the slope. 729 
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 fXNChl = 0.026 gN-Chl/gN 
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Figure 6: Light attenuation and prediction of ka in PBR. (a) PCA analysis showing the factors that can 732 

affect the light attenuation. (b) Estimation of the attenuation coefficient specific for the chlorophyll 733 

content in Batch 1. The error bars present the standard error of the estimate parameter value obtained through 734 

regression in SigmaPlot®. 735 
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 737 

Figure 7: Simulation of batch experimental data using the extended ASM-A model. Prediction of 738 

the chlorophyll content of the microalgae in Batch 1. 739 

  740 
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  741 

Figure 8: Comparison of the estimated parameter (mean value and 95% confidence interval) values 742 

using different model complexity levels (CL1 - CL3). On the y-axis Weibull type scaling is used to 743 

allow comparison of parameter values at different scales. (a) The TSS is used to calculate the 744 

attenuation coefficient (ka). (b) The simulation model extended to predict the algal chlorophyll 745 

content is used to estimate the pigment specific attenuation coefficient (ka,p). 746 

 747 

  748 

p
a
ra

m
e
te

r 
v
a
lu

e

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20
30

average light

variable average light

layer model

A,max

K
NO,Alg

K
PO4,Alg

k
NO,Alg

k
PO4,Alg

b
Alg

p
a
ra

m
e
te

r 
v
a
lu

e

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20
30

average light

variable average light

layer model

A,max

K
NO,Alg

K
PO4,Alg

k
NO,Alg

k
PO4,Alg

b
Alg

a b 



41 
 

 749 

Figure 9: Simulation of batch experimental data (Batch 1) using the extended ASM-A implemented 750 

as CL- 3 (one-dimensional layer model) with the mean values of the parameters estimated. The 751 

uncertainty bands are shown in blue. The chlorophyll content is used to calculate the pigment 752 

specific attenuation coefficient (ka,p) that is used in the simulations to predict the light intensity. 753 
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Table 1: The Gujer matrix of ASM-A model including the state-variables, the stoichiometric coefficients and the process rate equations identified in [25]. The grey highlighted columns 

and rows include the model extension presented in this paper to estimate the chlorophyll content. 

 

Component NH4 NO3 
Internal 

quota N 
PO4 

Internal 

quota P 

Inorganic  

carbon 
Acetate O2 

Algal 

Biomass 

Inert 

Particulates 

Slowly 

biodegradable 

Particulate 

Chlorophyll 

content Process 

rate 

equations Symbol SNH4 SNO XAlg,N SPO4 XAlg,PP SAlk SA SO2 XAlg XI XS XChl 

Unit gN/m3 gN/m3 gN/m3 gP/m3 gP/m3 gC/m3 gCOD/m3 gCOD/m3 gCOD/m3 gCOD/m3 gCOD/m3 gN/m3 

Process                                         Stoichiometric Matrix   

Uptake and storage of 

nitrogen from NH4 
−1 

 
1−fXNChl 

   
 

   

 
fXNChl R1 

Uptake and storage of 

nitrogen from NO3  
−1 1−fXNChl 

   
 

   

 
fXNChl R2 

Uptake and Storage of 

PO4    
−1 1 

 
 

   

  
R3 

Autotrophic growth 
  

− iNXalg 
 

−iPXalg 
−1/YXalg,SAlk  

 
2.67/YXalg,SAlk 

1 
 

  
R4 

Heterotrophic growth   − iNXalg  −iPXalg 
0.4/YAc 

−1/YAc 
−(1/YAc−1) 

1  
  

R5 

Decay 

iNXalg − fXI ∙ iNXalgI − 

(1−fXI) ∙ iNXalgS 

 
  

iPXalg − fXI ∙ iPXalgI − 

(1−fXI) ∙ iPXalgS 
  

 −(1−fXI) −1 fXI 1− fXI 

 

R6 

Decay of XChl   1 
 

 
 

     −1 R7 

 Process rate equations  

R1 [g N m-3 d-1] 
 

𝑘𝑁𝐻4,𝐴𝑙𝑔 ∙
𝑆𝑁𝐻4

𝑆𝑁𝐻4 +  𝐾𝑁𝐻4,𝐴𝑙𝑔 
∙

𝑋𝐴𝑙𝑔,𝑁𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔 −  𝑋𝐴𝑙𝑔,𝑁

𝑋𝐴𝑙𝑔,𝑁𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔
∙ 𝑋𝐴𝑙𝑔 

R2 [g N m-3 d-1] 
 

𝑘𝑁𝑂,𝐴𝑙𝑔 ∙
𝑆𝑁𝑂

𝑆𝑁𝑂 +  𝐾𝑁𝑂,𝐴𝑙𝑔 
∙

𝐾𝑁𝐻4,𝐴𝑙𝑔

𝐾𝑁𝐻4,𝐴𝑙𝑔 + 𝑆𝑁𝐻4
∙

𝑋𝐴𝑙𝑔,𝑁𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔 −  𝑋𝐴𝑙𝑔,𝑁

𝑋𝐴𝑙𝑔,𝑁𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔
∙ 𝑋𝐴𝑙𝑔 

R3 [g P m-3 d-1] 
 

𝑘𝑃𝑂4,𝐴𝑙𝑔 ∙
𝑆𝑃𝑂4

𝑆𝑃𝑂4 +  𝐾𝑃𝑂4,𝐴𝑙𝑔
∙

𝑋𝐴𝑙𝑔,𝑃𝑃𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔 −  𝑋𝐴𝑙𝑔,𝑃𝑃

𝑋𝐴𝑙𝑔,𝑃𝑃𝑚𝑎𝑥 ∙ 𝑋𝐴𝑙𝑔
∙ 𝑋𝐴𝑙𝑔 

R4 [g COD m-3 d-1] 
 

𝜇𝐴,𝑚𝑎𝑥 ∙ (1 −
𝑋𝐴𝑙𝑔,𝑁𝑚𝑖𝑛𝑋𝐴𝑙𝑔

𝑋𝐴𝑙𝑔,𝑁
) ∙ (1 −

𝑋𝐴𝑙𝑔,𝑃𝑃𝑚𝑖𝑛𝑋𝐴𝑙𝑔

𝑋𝐴𝑙𝑔,𝑃𝑃
 ) ∙

𝑆𝐴𝑙𝑘

𝑆𝐴𝑙𝑘 + 𝐾𝐴𝑙𝑘 
∙

𝐼𝐴𝑣

𝐼𝑆
∙ 𝑒

1− 
𝐼𝐴𝑣
𝐼𝑆 ∙ 𝑋𝐴𝑙𝑔 

R5 [g COD m-3 d-1] 
 

𝜇𝐻,𝑚𝑎𝑥 ∙ (1 −
𝑋𝐴𝑙𝑔,𝑁𝑚𝑖𝑛𝑋𝐴𝑙𝑔

𝑋𝐴𝑙𝑔,𝑁
) ∙ (1 −

𝑋𝐴𝑙𝑔,𝑃𝑃𝑚𝑖𝑛𝑋𝐴𝑙𝑔

𝑋𝐴𝑙𝑔,𝑃𝑃
 ) ∙

𝑆𝐴

𝑆𝐴 +  𝐾𝐴
∙

𝑆𝑂2

𝑆𝑂2 +  𝐾𝑂2
∙

𝐾𝐼

𝐾𝐼 +  𝐼𝐴𝑣
∙ 𝑋𝐴𝑙𝑔 

R6 [g COD m-3 d-1]  𝑏𝑋𝑎𝑙𝑔 ∙ 𝑋𝐴𝑙𝑔 

R7 [g N m-3 d-1]  𝑏𝑋𝐶ℎ𝑙 ∙ 𝑋𝐶ℎ𝑙 
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SI-1 Measurement of light distribution in three reactors with different diameters 

First, a blank test was carried out, where light intensity was measured over depth in reactors filled 

with clean tap water. The effect of aeration with different bubble size was assessed. Three different 

diffusers were tested during the experiments. Bubble size was measured manually based on pictures 

taken during the experiments, by relating the bubble size to the size of the diffuser.  

Microalgae were cultivated in the effluent water of a laboratory-scale EBPR system (as described in 

section 2.1), to assess the effect of effluent water on the light attenuation in the reactor. A blank test 

was carried out to assess the light attenuation in the reactor in effluent water, without the addition of 

algae. Moreover, bacterial biomass was taken from the EBPR system and was spiked in the reactor 

containing microalgae cultivated in the effluent water to assess its impact on the light attenuation. 

Biomass concentrations used in each experiment are reported in Table S1. 
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SI-2 Pigment extraction protocol 

1 ml of microalgae sample was collected in 1.5 ml Eppendorf tube and centrifuged for 10 min at 

10000 rpm. The pellet was kept at -20 ºC until the extraction. The pigment extraction was done in 

darkness using green light to minimize the degradation of extracted pigments and when possible 

keeping them in ice. 1 ml 99.9 % HPLC grade methanol (Sigma-Aldrich, Germany) was added to 

the pellets and mixed with vortex. Ultrasonic bath (Retsch U1, Germany) was used to break the 

microalgal cells. During the sonication the samples were cooled with ice. Following the 60 min 

sonication the samples were kept on ice for 30 min to enhance extraction of pigments. The samples 

were then centrifuged for 5 min at 10000 rpm. The supernatant was filtered through 0.2 µm syringe 

filters (Agilent Technologies, USA) and 200 µl filtered sample was mixed with 600 µl 28mM 

Tetrabutylammoniumacetate buffer solution in amber glass vials. The samples were placed in the 

UHPLC and were cooled at 8 ºC until analysis.  

 

 

  



46 
 

SI-3 Model evaluation criteria 

The RMSNE was calculated as: 

𝑅𝑀𝑆𝑁𝐸 = √
1

𝑛
∑ (

𝑦𝑚−𝑦

𝑦𝑚
)

2
𝑛
𝑖=1    Eq. S1 

where n is the number of measurement points, ym is the measured value and y is the predicted value. 

The AIC criterion is estimated by Akaike (1973): 

𝐴𝐼𝐶 = 𝑁 ∗ ln (
𝑆𝑆

𝑁
) + 2 ∗ 𝐾    Eq. S2 

where N is the number of data points, SS is the sum of squares of the difference between the 

measured data and model prediction, K is the number of parameters estimated plus one. This 

criteria indicates the goodness of fit of the model predictions, where a lower AIC suggests better fit. 

Mean and 95% confidence interval of the estimated parameter subsets were compared in the second 

criterion, and the parameter correlation in the third criterion, thereby assessing the impact of model 

structure on parameter identifiability based on the LHSS output. Finally, in the fourth criterion, the 

model prediction uncertainties were compared. Monte Carlo simulations were performed to obtain a 

confidence interval of model predictions (Sin et al., 2009). The uncertainty classes were assigned to 

each parameter based on Wágner et al. (2016). The probability range of the estimated parameters 

was calculated by the mean and the 95% confidence interval. 1000 MC simulations were run as 

specified by Wágner et al. (2016). 

 ARIL is calculated based on (Dotto et al., 2012): 

𝐴𝑅𝐼𝐿 =
1

𝑁
∑

𝐿𝑖𝑚𝑖𝑡𝑢𝑝𝑝𝑒𝑟,𝑖−𝐿𝑖𝑚𝑖𝑡𝑙𝑜𝑤𝑒𝑟,𝑖

𝑋𝑜𝑏𝑠,𝑖

𝑁
𝑖=1    Eq. S3 
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where Limitupper,i and Limitlower,i are the upper and lower bounds, based on the 95% confidence 

interval obtained in the Monte Carlo simulations, Xobs,i is the measured value, N is the number of 

measurement points. ARIL is used in combination with the coverage, which is the percentage of the 

observations that are within the prediction bands. Lower ARIL and a higher coverage suggest better 

model performance. Ramin et al. (2016) expressed the combination of the two evaluation criteria: 

𝐴𝑅𝐼𝐿𝐶 =
𝐴𝑅𝐼𝐿

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
    Eq. S4 

where a smaller ARILC indicates better model prediction. 
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Tables 

Table S1: Initial conditions of the experiments used to assess the light distribution in three different 

reactors (R1, R2 and R3) at different biomass concentrations. 

  

R1 (240 mm) R2 (140 mm) R3 (110 mm) 

 

XAlg 

(mg/L) 

I0 

(µmol/m2/s) 

Xbacteria 

(mg/L) 

I0 

(µmol/m2/s) 

Xbacteria 

(mg/L) 

I0 

(µmol/m2/s) 

Xbacteria 

(mg/L) 

nutrient limited 

cultivation 

14 104 

 

112 

 

229 

 

28 112 113 234 

92 112 110 266 

nutrients in excess 

cultivation 

39.5 42 44 353 

79 42 44 353 

158 38 44 353 

cultivation in used 

water resources 

52 

 

1032 

 

82 1021 

129 1054 

202 1087 

318 975 

500 1170 

addition of bacteria 

75 1099 0 

75 1059 39 

75 1068 97 

75 1281 195 
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Table S2: The estimated attenuation coefficients (based on the Lambert-Beer equation) for the nutrient 

limited and nutrients in excess cultivation in three different reactor diameters and six biomass concentrations. 

The blue shading refers to scenarios where the estimated attenuation coefficient is equal (or not significantly 

different from) to the Ea estimated by the Schuster’s law. 

 

 

 

 

TSS 

(mg/l) 

Diameter (mm) 

240 140 110 

ka 

(m2/g) 

ka 

(m2/g) 

ka 

(m2/g) 

nutrient limited 

14 0.364 0.364 0.295 

28 0.257 0.281 0.259 

92 0.14 0.144 0.17 

nutrients in excess 

39.5 0.15 0.16 0.207 

79 0.15 0.14 0.152 

158 0.11 0.11 0.14 

 

Table S3: Light parameters a and b estimated (average ± standard deviation) for the nutrient limited, 

nutrients in-excess cultivation in synthetic medium and cultivation in treated water. Constitutive relation for 

light attenuation: 𝑘𝑎 = 𝑎 ∗ 𝑒−𝑏∗𝑋𝐴𝑙𝑔 . 

 
Nutrient limited Nutrient in-excess Treated water 

a (m2/g) 
0.374±0.029 0.194±0.0079 0.094±0.003 

b (g/m3) 
0.01±0.0017 0.0031±0.0004 0.0017±0.0001 
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Table S4: In-reactor light path length multiplier (PLM) calculated for the nutrient limited and 

nutrients in excess scenarios. Curve fitting was done by using the estimated ka in the two scenarios 

and the Lambert-Beer equation. PLM was used to improve fit (based on R2). The blue shading 

refers to scenarios where PLM is not needed. 

 TSS (mg/l) 

diameter (mm) diameter (mm) diameter (mm) 

 

240 140 110 240 140 110 240 140 110 

 PLM (-) R2 of fit without PLM R2 of fit with PLM 

nutrient limited 

14 1.4 1.6 1.4 0.51 0.04 0.5 0.82 0.7 0.74 

28 1.1 1.3 1.3 0.86 0.69 0.79 0.88 0.83 0.87 

92 1 1.1 1.3 0.97 0.92 0.87 0.97 0.96 0.95 

nutrients in 

excess 

39.5 1 1 1.6 0.93 0.97 0.33 0.93 0.97 0.86 

79 1 1 1.1 0.93 0.94 0.9 0.93 0.94 0.96 

158 1 1 1.2 0.93 0.95 0.91 0.93 0.95 0.99 
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Table S5: The Lambert-Beer equation is fitted on the light curves and their fit is compared to the 

fitting with Schuster’s law. The comparison is based on R2 of the fit. The blue shading refers to 

scenarios where scattering is not relevant thus Lambert-Beer equation and Shuster’s law give the 

same fitting. 

 

TSS 

(mg/l) 

Diameter (mm) 

240 140 110 

Ea 

(m2/g) 

Es 

(m2/g) 

Ea 

(m2/g) 

Es 

(m2/g) 

Ea 

(m2/g) 

Es 

(m2/g) 

nutrient limited 

14 0.003 1.86 0.01 2.4 0.017 2.35 

28 0.019 1.26 0.016 1.63 0.023 1.64 

92 0.14 0 0.025 0.53 0.026 0.64 

nutrients in 

excess 

39.5 0.15 0 0.16 0 0.013 1.2 

79 0.14 0 0.14 0 0.021 0.64 

158 0.11 0 0.1 0 0.14 0 

 R2 of the fit with Lambert-Beer equation 

nutrient limited 

14 0.82 0.7 0.74 

28 0.88 0.83 0.87 

92 0.98 0.96 0.95 

nutrients in 

excess 

39.5 0.98 0.98 0.86 

79 0.93 0.97 0.96 

158 0.94 0.96 0.99 

 R2 of the fit with Schuster’s law 

nutrient limited 

14 0.96 0.97 0.98 

28 0.99 0.98 0.99 

92 0.98 0.99 0.98 

nutrients in 

excess 

39.5 0.98 0.98 0.99 

79 0.93 0.97 0.99 

158 0.94 0.96 0.99 

 

 

 

  



52 
 

Table S6: Light parameters a and b estimated for Batch 1 defining the attenuation coefficient based 

on the TSS (𝑘𝑎 = 𝑎 ∗ 𝑒−𝑏∗𝑋𝐴𝑙𝑔). Light parameters c and d estimated for Batch 1 defining the 

attenuation coefficient based on the chlorophyll content (𝑘𝑎,𝑝 =
𝑑

𝑋𝐶ℎ𝑙
− 𝑐).  

 

a 

(m2/g TSS) 

b 

(m3/g TSS) 

c  

(m2/g Chl) 

d  

(m3/g Chl) 

Batch 1 0.135±0.009 0.0018±0.0003 1.06±0.8 29.3±0.65 

 

Table S7: RMSNE, AIC and ARILC values obtained with simulations using three different light 

modelling complexities, first using TSS to calculate the attenuation coefficient (ka) and second 

using the chlorophyll content to calculate the pigment specific attenuation coefficient (ka,p).  

 calculated with ka calculated with ka,p 

 

Average 

light 

Variable 

average 

light 

Layer 

model 

Average 

light 

Variable 

average 

light 

Layer 

model 

RMSNE (-) 

XAlg 0.167 0.157 0.092 0.149 0.159 0.094 

XAlgN 0.124 0.142 0.171 0.125 0.149 0.164 

SNO3 0.88 0.87 0.889 0.879 0.881 0.879 

XAlgP 0.281 0.284 0.229 0.277 0.24 0.293 

SPO4 0.803 0.885 1.036 0.775 1.379 0.692 

sum 2.255 2.338 2.417 2.204 2.808 2.121 

AIC (-) 

XAlg -97 -101 -134 -104 -100 -133 

XAlgN -115 -107 -96 -115 -104 -98 

SNO3 6 5 7 6 6 6 

XAlgP -65 -64 -77 -66 -75 -62 

SPO4 0.4 6 16 -2 33.9 -9 

sum -271 -260 -284 -281 -239 -296 

ARILC (-) 

XAlg 0.0043 0.0041 0.0011 0.0041 0.0039 0.0036 

XAlgN 0.003 0.0031 0.0007 0.0033 0.0033 0.0048 

SNO3 0.033 0.022 0.0074 0.026 0.02 0.018 

XAlgP 0.0081 0.0077 0.0032 0.0091 0.0071 0.0084 

SPO4 0.023 0.021 0.02 0.022 0.034 0.019 

sum 0.071 0.057 0.033 0.065 0.068 0.054 
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Table S8: Comparison of the estimated parameter subsets using the three complexity levels. The 

values are presented as mean ± 95% confidence interval. 

 calculated with ka  calculated with ka,p  

 

CL-1 

Average 

light 

CL-2 

Variable 

average 

light 

CL-3 

Layer model 

CL-1 

Average 

light 

CL-2 

Variable 

average 

light 

CL-3 

Layer model 

µA,max (d-1) 4.1±1.91 3.81±1.51 6.2±0.53 4.08±1.69 5.28±1.8 5.5±1.27 

KNO,Alg (gN m-3) 14.83±0.56 14.59±1.53 14.61±1.46 14.86±0.4 14.52±1.68 14.82±0.42 

KPO4,Alg (gP m-3) 4.22±1.38 4.19±1.41 4.31±1.52 4.14±1.42 4.49±1.37 4.07±1.52 

kNO,Alg (gN g-1COD d-1) 0.13±0.068 0.1±0.034 0.17±0.025 0.13±0.067 0.12±0.044 0.16±0.04 

kPO4,Alg (gN g-1COD d-1) 0.016±0.006 0.015±0.005 0.014±0.004 0.016±0.006 0.011±0.003 0.018±0.006 

bAlg (d-1) 0.24±0.025 0.24±0.024 0.25±0.008 0.24±0.024 0.25±0.006 0.22±0.036 

 

Table S9: Model calibration and identifiability analysis using the average constant light intensity-

CL1. TSS was used to calculate the attenuation coefficient (ka). Histograms obtained for the 

posterior parameter distribution and correlation matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CL1- 

Average light 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1 
     

KNO,Alg 

 (gN∙m-3) 0.023 1 
    

KPO4,Alg 

 (gP∙m-3) 0.104 -0.018 1 
   

kNO,Alg 

(gN∙g1COD∙d-1) -0.936 0.076 -0.152 1 
  

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.665 -0.038 0.61 0.663 1  

bAlg  

(d-1) 0.237 -0.045 0.367 -0.319 0.099 1 
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Table S10: Model calibration and identifiability analysis using the average constant light intensity - 

CL1. The chlorophyll content was used to calculate the pigment specific attenuation coefficient 

(ka,p). Histograms obtained for the posterior parameter distribution and correlation matrix.  

 

  

CL1- 

Average light 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1      

KNO,Alg 

 (gN∙m-3) 0.0798 1     

KPO4,Alg 

 (gP∙m-3) 0.091 0.035 1    

kNO,Alg 

(gN∙g1COD∙d-1) -0.947 -0.019 -0.207 1   

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.639 -0.028 0.659 0.571 1  

bAlg  

(d-1) 0.31 0.046 0.411 -0.385 0.148 1 
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Table S11: Model calibration and identifiability analysis using the variable average light intensity – 

CL2. TSS was used to calculate the attenuation coefficient (ka). Histograms obtained for the 

posterior parameter distribution and correlation matrix.  

 

 

  

CL2- 

Variable 

average light 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1      

KNO,Alg 

 (gN∙m-3) -0.081 1     

KPO4,Alg 

 (gP∙m-3) -0.038 -0.022 1    

kNO,Alg 

(gN∙g1COD∙d-1) -0.912 0.347 -0.1 1   

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.571 0.026 0.804 0.446 1  

bAlg  

(d-1) 0.271 -0.030 0.278 -0.351 0.146 1 
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Table S12: Model calibration and identifiability analysis using the variable average light intensity – 

CL2. The chlorophyll content was used to calculate the pigment specific attenuation coefficient 

(ka,p). Histograms obtained for the posterior parameter distribution and correlation matrix.  

 

 

 

  

CL2- 

Variable 

average light 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1      

KNO,Alg 

 (gN∙m-3) -0.172 1     

KPO4,Alg 

 (gP∙m-3) -0.021 -0.096 1    

kNO,Alg 

(gN∙g1COD∙d-1) -0.882 0.376 -0.233 1   

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.491 -0.057 0.807 0.195 1  

bAlg  

(d-1) 0.206 0.25 0.131 -0.229 0.008 1 
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Table S13: Model calibration and identifiability analysis using the layer model – CL3. TSS was 

used to calculate the attenuation coefficient (ka). Histograms obtained for the posterior parameter 

distribution and correlation matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CL3- Layer 

model 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1      

KNO,Alg 

 (gN∙m-3) 0.005 1     

KPO4,Alg 

 (gP∙m-3) -0.116 -0.003 1    

kNO,Alg 

(gN∙g1COD∙d-1) -0.213 0.596 -0.423 1   

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.293 -0.026 0.931 -0.518 1  

bAlg  

(d-1) 0.186 0.195 -0.006 0.034 0.041 1 
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Table S14: Model calibration and identifiability analysis using the layer model – CL3. The 

chlorophyll content was used to calculate the pigment specific attenuation coefficient (ka,p). 

Histograms obtained for the posterior parameter distribution and correlation matrix.  

 

  

CL3- Layer 

model 

 
 µA,max  

(d-1) 

KNO,Alg 

 (gN∙m-3) 

KPO4,Alg 

 (gP∙m-3) 

kNO,Alg 

(gN∙g1COD∙d-1) 

kPO4,Alg  

(gP∙g-1COD∙d-1) 

bAlg 

 (d-1) 

µA,max  

(d-1) 1      

KNO,Alg 

 (gN∙m-3) 0.115 1     

KPO4,Alg 

 (gP∙m-3) 0.035 -0.017 1    

kNO,Alg 

(gN∙g1COD∙d-1) -0.961 -0.008 -0.167 1   

kPO4,Alg  

(gP∙g-1COD∙d-1) -0.401 -0.099 0.867 0.28 1  

bAlg  

(d-1) 0.459 0.042 0.324 -0.418 0.246 1 
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Figures 

 

Figure S1: The cylindrical shaped clear walled plastic reactor used for the experiments, with the 

light sensor inside, connected to a data logger (picture on the left). The 8-L reactor used for the 

batch experiments with the custom built lamp mounted above (picture on the right). The black cloth 

on the bottom was used to cover the reactor wall from the side. 

 

Figure S2: The cylindrical shaped clear walled plastic reactors with three different diameters used 

for the experiments. Reactor 1 with a diameter of 240 mm (picture on the left). Reactor 2 with a 

diameter of 140 mm (picture in the middle). Reactor 3 with a diameter of 110 mm (picture on the 

right). 
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Figure S3: The fitting on the bottom of the reactor, used to mount the cable of the light sensor 

(picture on the left). The plastic fitting, used to keep the light sensor in a vertical upward position 

inside the reactor (picture on the right). 

 

 

 

Figure S4: Evaluation of optimal number of layers and optimal time-step of the layer model based 

on the RMSNE of the simulation. The RMSNE was calculated by comparing the simulation to the 

experimental data in Batch 1. 
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Figure S5: Light attenuation inside the PBR with 140 mm diameter assessing the effect of bubble 

size. 

 

 

Figure S6: Colour change due to nutrient limited conditions (see Fig. 2a). The left metal plate 

contains a glass-fibre filter that has a deep green colour, due to high chlorophyll content at nutrients 

in excess conditions (see Fig. 2b). The metal plate on the right contains a filter that has yellowish 

colour due to the increase in carotenoid level under nutrient limited conditions. 
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Figure S7: Attenuation coefficient during the batch cultivation as a function of biomass 

concentration. The figures include the data for nutrients in excess cultivation, for comparison with 

the batches. 

 

Figure S8: Simulations of Batch 2 using the parameter set estimated in Batch 1. 
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Figure S9: Simulation using model CL-1 (average constant light intensity, 127 µmol m-2s-1) with 

the mean values of the paremeters estimated. TSS was used to calculate the attenuation coefficient 

(ka).  

 

Figure S10: Simulation using model CL-1 (average constant light intensity, 118 µmol m-2s-1) with 

the mean values of the paremeters estimated. The chlorophyll content was used to calculate the 

pigment specific attenuation coefficient (ka,p). 
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Figure S11: Simulation using model CL-2 (time-variable light intensity) with the mean values of 

the paremeters estimated. TSS was used to calculate the attenuation coefficient (ka).  

 

Figure S12: Simulation using model CL-2 (time-variable light intensity) with the mean values of 

the paremeters estimated. The chlorophyll content was used to calculate the pigment specific 

attenuation coefficient (ka,p). 
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Figure S13: Simulation using model CL-3 (discretized layer model) with the mean values of the 

paremeters estimated. TSS was used to calculate the attenuation coefficient (ka). 

 

Figure S14: Simulation using model CL-3 (discretized layer model) with the mean values of the 

paremeters estimated. The chlorophyll content was used to calculate the pigment specific 

attenuation coefficient (ka,p). 
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Figure S15: Simulation using model CL-1 (average constant light intensity, 127 µmol m-2s-1) with 

the mean values of the parameters estimated. The uncertainty bands are shown in blue. The TSS is 

used to calculate the attenuation coefficient (ka).  
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Figure S16: Simulation using model CL-1 (average constant light intensity, 118 µmol m-2s-1) with 

the mean values of the parameters estimated. The uncertainty bands are shown in blue. The 

chlorophyll content is used to calculate the pigment specific attenuation coefficient (ka,p). 
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Figure S17: Simulation using model CL- 2 (time-variable light intensity) with the mean values of 

the parameters estimated. The uncertainty bands are shown in blue. The TSS is used to calculate the 

attenuation coefficient (ka).  
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Figure S18: Simulation using model CL- 2 (time-variable light intensity) with the mean values of 

the parameters estimated. The uncertainty bands are shown in blue. The chlorophyll content is used 

to calculate the pigment specific attenuation coefficient (ka,p). 
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Figure S19: Simulation using model CL- 3 (one-dimensional layer model) with the mean values of 

the parameters estimated. The uncertainty bands are shown in blue. The TSS is used to calculate the 

attenuation coefficient (ka).  

  

Layer TSS

time(d)

0 2 4 6 8 10 12 14 16

S
N

H
4

 (
g

N
.m

-3
)

0

2

4

6

8

time(d)

0 2 4 6 8 10 12 14 16

S
P

O
4

 (
g

P
.m

-3
)

0

1

2

3

4

time(d)

0 2 4 6 8 10 12 14 16

X
A

lg
 (

g
C

O
D

.m
-3

)

0

200

400

600

800

1000

time(d)

0 2 4 6 8 10 12 14 16
X

N
, A

lg
 (

g
N

.m
-3

)
0

10

20

30

40

time(d)

0 2 4 6 8 10 12 14 16
X

P
P

, A
lg

 (
g

P
.m

-3
)

0

1

2

3

4

time(d)

0 2 4 6 8 10 12 14 16

S
N

O
3
 (

g
N

.m
-3

)

0

2

4

6

8

10

12

14
Area between 5th and 95th percentile

mean

measurement data



71 
 

References 

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle, in: 

International Symposium on Information Theory. pp. 267–281. 

Dotto, C.B.S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D.T., Freni, G., 

Rauch, W., Deletic, A., 2012. Comparison of different uncertainty techniques in urban stormwater 

quantity and quality modelling. Water Research 46, 2545–2558. 

Ramin, P., Valverde-Pérez, B., Polesel, F., Locatelli, L., Plósz, B.G., 2017. A systematic model 

identifcation method for chemical transformation pathways – the case of heroin biomarkers in 

wastewater. Scientific Reports 7, 9390. 

Sin, G., Gernaey, K. V., Neumann, M.B., van Loosdrecht, M.C.M., Gujer, W., 2009. Uncertainty 

analysis in WWTP model applications: A critical discussion using an example from design. Water 

Research 43, 2894–2906. 

Wágner, D.S., Valverde-Pérez, B., Sæbø, M., de la Sotilla, M.B., Van Wagenen, J., Smets, B.F., 

Plósz, B.G., 2016. Towards a consensus-based biokinetic model for green microalgae – the ASM-

A. Water Research 103, 485–499. 

 

 

 

 

 

 

 

 

 

 

 

 

 


