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In this paper, we investigate the lateral dynamics of a railway wheelset suspended under a moving
car with linear springs and dry friction dampers. Both theoretical and numerical methods are
used to complement each other. The car runs on an ideal, straight and perfect track with a
constant speed. A nonlinear relation between the creepages and the creep forces is used in this
paper. The nonsmoothness of this model is due to the dry friction dampers. The speed is selected
as the bifurcation parameter. The one-dimensional bifurcation diagram, which gives a general
view of the dynamics of the system, is presented. Both symmetric and asymmetric periodic
motions, quasi-periodic motions and chaotic motions are found. In addition to bifurcations
that can exist in both smooth and nonsmooth systems, a kind of sliding bifurcations that are
unique to nonsmooth systems is found. Bifurcation diagrams, phase portraits, Poincaré sections
and Lyapunov exponents are presented to ensure that no contradictory results are given. The
influence of the conicity of the wheel tread on the Hopf bifurcation type is examined.

Keywords : Railway wheelset; nonlinearity; nonsmoothness; bifurcations; chaos.

1. Introduction

Railway vehicle dynamics as an interesting topic
in railway engineering has been investigated by
researchers for more than a century. The funda-
mental railway guidance system consists of a flanged
rigid wheelset and two rigid rails. When the
wheelset runs above a certain critical speed it may
oscillate laterally combined with a yaw motion that
is known as the hunting motion of the wheelset.
Based on the kinematic instability the basic analysis
of the hunting motion was done by Klingel [1883].

Since no dynamical forces were considered in his
paper, he could not explain the difference between
the theory and the experimental results. Carter
[1916] first included the dynamical forces in the
wheelset stability problem. Later, for the first time,
Huilgol [1978] introduced the bifurcation analysis
from nonlinear dynamics into the railway vehicle
dynamical problems, which initiated a new trend of
investigations among the railway engineers around
the world. Possel et al. [1960] presented a best sta-
bility analysis of a two-axle railway vehicle in 1950,
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and won a prize provided by the Office for Research
and Experiments of the Union of International
Railways.

With the spread and development of bifurca-
tion theory, many dynamical railway applications
are possible. True and Kaas-Petersen [1983] found
that the bifurcation to periodic motion is subcrit-
ical and the critical speed must be found by an
investigation of the existence of multiple attractors.
They used Kaas-Petersen’s program ‘PATH’ [Kaas-
Petersen, 1986b] for the investigations of both the
stable and unstable stationary and periodic solu-
tions. Kaas-Petersen [1986a] used this program for
the investigation of the dynamical motion of a
railway bogie model and discovered chaos in this
model. Knudsen et al. [1992] discovered both sym-
metric and asymmetric oscillations and chaos in
a model of a rolling railway wheelset that were
used to explain a lopsided wear of the wheelset.
Knudsen et al. [1994] extended the investigations
in another paper [Jensen & True, 1997] and dis-
cussed the different transitions to chaos. Gao et al.
[2012], Gao et al. [2013], Gao et al. [2015] put for-
ward the “resultant bifurcation diagram” method to
investigate the symmetric/asymmetric periodic and
chaotic motions in the symmetric railway vehicle
models. They also found that symmetry breaking
bifurcations and symmetry restoring bifurcations
happened repeatedly in the symmetric railway vehi-
cle models, and finally chaotic attractors appeared
through a series of period doubling bifurcations or
quasi-periodic motions.

The nonsmoothness of the former mentioned
researches was mainly from the flanged wheels. In
real life, however, the nonsmoothness often exists
in the form of impact, sliding, switching and other
discrete state transitions. Xia [2002] investigated
the dynamics of a nonsmooth three-piece-freight
truck in his PhD thesis. Because of the dry friction,
sticking and sliding motions exist in this model,
which leads to a discontinuity in the behavior of
the dynamical system, and leads to a collapse of the
state space. Hoffmann and Petersen [2003] studied
the dynamics of a Hbbills 311 freight wagon with
dry friction and impact. With the development of
the nonsmooth dynamical theory in recent years,
a lot of research has appeared. Andronov et al.
[1965] investigated nonsmooth equilibrium bifurca-
tions. Feigin [1994] introduced C-bifurcations into
the piecewise-smooth dynamical systems. Filippov
[1988] studied sliding motions of nonsmooth

dynamical systems. With regard to the concepts,
definitions and methods about the analysis of non-
smooth bifurcations we refer readers to the books
by di Bernardo et al. [2008] and Simpson [2010].
True and Asmund [2002] first unveiled the dynamics
of a railway wheelset system containing a coupling
between a dry friction damper and the basic non-
linearity (the wheel/rail contact forces), in railway
dynamics with regard to railway vehicle nonsmooth
dynamics. True and Thomsen [2005] and True et al.
[2013] tested several integrators (both explicit and
implicit) to demonstrate how the numerical railway
vehicle nonsmooth dynamical problems are solved,
and how reliable dynamic results are obtained. They
also compared the performances of different inte-
grators with respect to the accuracy and the time
consumed.

In this paper, the bifurcation behavior and
chaotic motions of a railway wheelset with dry fric-
tion dampers are examined. This model, without
dry friction dampers, was studied by Knudsen et al.
[1992], Silvsgaard and True [1994]. The running
speed V is chosen as the control parameter with
all other parameters constant. Both smooth bifurca-
tions, that can exist in smooth as well as nonsmooth
dynamic systems, and nonsmooth bifurcations, that
only exist in nonsmooth dynamic systems, are
found in this simple model. In the low speed range
both subcritical Hopf bifurcation and a saddle-node
bifurcation, that are common in the models with-
out dry friction dampers, are found. The crossing-
sliding bifurcation, which is special for nonsmooth
dynamical systems, is also found. Furthermore, a
Neimark–Sacker bifurcation is found at a higher
speed than the Hopf bifurcation point. Different
transitions among periodic windows, quasi-periodic
motions and chaotic attractors are discussed in
detail in different speed ranges. Finally, the influ-
ence of the conicity of the wheel tread on the Hopf
bifurcation forms is investigated.

2. The Mathematical Model

A schematic diagram of a railway wheelset model
with lateral dry friction dampers is shown in Fig. 1.
The coordinate system used for the description of
the mechanical model is also shown in Fig. 1. The
wheelset is suspended under a moving car running
on an ideal, straight and perfect track with a con-
stant speed. Both the wheels and the rails are rigid
bodies. It is assumed that the wheels and the rails
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Car frame

Bogie Linearly elastic 
spring

Dry friction damper
Wheelset

X

Y

Z

Fig. 1. Schematic diagram of a nonsmooth wheelset model.

remain at one-point contact. The wheel profile is
conical. The rail surface is an arc of a circle. The
wheelset can move laterally in the bogie frame,
which is connected to the car through a friction-
less vertical pivot, linear springs and dry friction
dampers. The transfer of the weight of the car body
and the bogie frame is included but not specified in
the model. To consider the worst case of the dynam-
ical behavior of this model, no yaw stiffness is con-
sidered here. To emphasize the influence of the dry
friction dampers on the bifurcations and chaos, the
nonsmoothness caused by the flange contact force
is neglected in this paper.

The wheelset model has two degrees of freedom,
which are the lateral and yaw motion of the wheelset
model. The nonlinearities in this model mainly stem
from the nonlinear relation between the creepages
and the creep forces and the dry friction dampers.
The lateral displacement and the yaw angle are
denoted as yw and ψ respectively. According to the
linear kinematic relation between the wheel and the
rail, the longitudinal and lateral creepage can be
expressed as: 


ξx =

aψ̇

V
+
λyw

r0
,

ξy =
ẏw

V
− ψ,

(1)

where a dot above the variable means differentiation
with respect to time, and the meaning and value
of other symbols that can be found in [Knudsen
et al., 1992; True & Asmund, 2002], are listed in
Table 1.

According to the creepage-creep force relation
by Vermeulen and Johnson [1964], we can get the
expressions for the resultant creep force FR:

FR = µtN



u− 1

3
u2 +

1
27
u3, u < 3,

1, u ≥ 3,

(2)

with the longitudinal component Fx and the lateral
component Fy as:


Fx =

ξxFR

ΦξR
,

Fy =
ξyFR

ΨξR
,

(3)

where ξR =
√

(ξx/Φ)2 + (ξy/Ψ)2 is the resultant
creepage, and u = (Gπaebe/µtN) = CξR/µtN .

As for the dry friction dampers, the dry fric-
tion model from the paper [True & Asmund, 2002],
that is convenient for numerical realization with-
out losing the essential characteristics, is selected.
The expression for the dry friction dampers in this
model is:

Fµ = Fd sech(αẏw) + Fs(1 − sech(αẏw)). (4)

Therefore, the mathematical model of the wheelset
can be formulated as:{

mÿw + 2Fy − 2Ksyw − sign(ẏw)Fµ = 0,

Iψ̈ + 2aFx = 0.
(5)

Table 1. Wheelset parameters.

Parameter Comment Value

m Mass of the wheelset 1022 kg

I Yaw moment of wheelset 678 kg · m2

a Half the distance between 0.75 m
the contact points

C Constant related to the 6.5630 MN
resultant creep force

Ks Lateral spring stiffness 1MN · m−1

Ψ Lateral wheel-rail contact 0.54219
parameter

Φ Longitudinal wheel-rail 0.60252
contact parameter

r0 Centered wheel rolling radius 0.4572 m
λ Conicity 0.15
µt Coefficient of adhesion 0.15

µtN N is the vertical force 10 kN
between wheel and rail

α A scaling factor 50m/s
Fd Kinetic friction force of 1000 N

dry friction dampers
Fs Static friction force of 1200 N

dry friction dampers
V Speed of the wheelset —
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We make a change of variables, [x1, x2, x3, x4] =
[yw, ẏw, ψ, ψ̇], to obtain the following four first-
order autonomous piecewise-smooth differential
equations:



ẋ1 = x2,

ẋ2 = −2Fy

m
+

2Ksx1

m
+ sign(x2)

Fµ

m
,

ẋ3 = x4,

ẋ4 = −2aFx

I
.

(6)

3. The Method of Investigation

The dynamical system of the wheelset model can
be viewed as an initial value problem of a set
of first-order autonomous piecewise-smooth dif-
ferential equations. Here we select the speed of
the wheelset as the control parameter with other
parameters constant. Due to the nonlinearities and
the nonsmoothnesses in this model, it is impossible
to investigate the bifurcations and chaos in a purely
analytic way. Since the system is of low dimen-
sion, we can combine the analytic method with the
numerical analysis.

The pseudo-arclength continuation method and
Newton’s iteration are used to follow the stationary
solutions. The bifurcation of periodic orbits from
the stationary solutions, that is known as a Hopf
bifurcation, is located according to the method pro-
posed by Zou et al. [2006], and the Hopf bifurcation
type is determined from the first Lyapunov coeffi-
cient [Kuznetsov, 2004]. Because of the dry friction
dampers in the system, a special sliding bifurcation
is determined based on the theory of sliding bifurca-
tions in Filippov systems [di Bernardo et al., 2008].

For the numerical integrations we apply the
standard ode45 function in MATLAB with a
variable step size. According to a trial-and-error
approach both the absolute and relative error are
set to 10−7 to make a compromise between the accu-
racy of the solutions and the time consumption.
The bifurcation diagram is constructed through an
increase and decrease process of the speed based on
a Poincaré map. Here the Poincaré map is defined
by

∏
= {(x, V ) ∈ R4 ×R+ |x1 ≥ 0, x2 = 0}.

In order to investigate the quasi-periodic and
chaotic behaviors of the wheelset model we con-
tinue the integration after the transients have died

out. Phase portraits, Poincaré sections and Lya-
punov exponents are computed to distinguish the
quasi-periodic motions from the chaotic motions.
We emphasize here that different methods are used
so that no contradictory results are given. The Lya-
punov exponents, which measure the mean conver-
gence or divergence of the nearby trajectories in
the phase space, are the most efficient indicators
to determine if the motion of the system is quasi-
periodic or chaotic. In this paper, we use Wolf’s
method [Wolf et al., 1985] to calculate the Lyapunov
exponents of the wheelset system. We choose a time
step of 0.5 s for the Gram–Schmidt renormalization
procedure. Refer to [Wolf et al., 1985] for the details
of the numerical calculation of the Lyapunov expo-
nents of dynamic systems from time series.

4. Some Results

The full bifurcation diagram in the speed range
between 35 m/s and 65 m/s was computed and
shown in Fig. 2 according to the numerical meth-
ods mentioned in the last section. Compared with
the wheelset without dry friction dampers [Knud-
sen et al., 1992], a set of stationary points takes the
place of the globally stable trivial solutions. The
qualitative behavior of the system at V = 35m/s is
shown in Fig. 3 from which we can see that in the
stationary state the lateral displacement is zero, but
the yaw angle is different from zero. From the point
of view of physics, because of the existence of the
friction damper in the model, the wheelset can run
without hunting motions under a low running speed

Fig. 2. Bifurcation diagram for the wheelset model. (Only
stable solutions are shown.)
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Fig. 3. Qualitative behavior of the system at V = 35 m/s.

even if its yaw angle with respect to the track center
line is different from zero.

Assume that the linearized system of both
sides has a pair of complex conjugate eigenvalues
α±(V )± iω±(V ), where + and − indicate the right
and the left sides respectively, and i2 = −1. Let

B(V ) =
α+(V )
ω+(V )

+
α−(V )
ω−(V )

. (7)

As the speed is increased, a subcritical Hopf
bifurcation [Eva, 1992; True, 1993] will be reached
at V = 44.4571 m/s which is confirmed by Fig. 4
with B(V ) = 0 and a positive first Lyapunov co-
efficient l1(0) = 1.3738 × 1010. An unstable limit
cycle bifurcates to the left side of the Hopf bifurca-
tion point, and it continues until V = 44.4450 m/s
where the unstable limit cycle regains its stabil-
ity through a saddle-node bifurcation. From this

Fig. 4. Detection of Hopf bifurcation point.

point and increasing the speed with a small
step, a crossing-sliding bifurcation, where the two
sliding segments vanish, will be reached at V =
44.5080 m/s. At this point

[x1, x2, x3, x4] = [0.0026m, 0.0000m/s,

1.8017 × 10−4 rad,−0.0509 rad/s],

which satisfies all the conditions from [di Bernardo
et al., 2008] for a crossing-sliding bifurcation to
happen. Orbits of the system before and after the
crossing-sliding bifurcation are shown in Fig. 5. To
give a better view of the transition at the crossing-
sliding bifurcation point, an enlargement of the 2D
phase portraits in Fig. 5 is shown in Fig. 6. From
Fig. 2, we can see that the system undergoes a peri-
odic motion in a large speed range. A variety of
bifurcation phenomena happen in the speed range
56–65 m/s. In the following, the bifurcation anal-
ysis in four important speed ranges is elaborated,
and transitions between different bifurcations are
discussed.

4.1. Speed range 56.2–57m/s

A blow-up of the bifurcation diagram in the speed
range 56.2–57 m/s is shown in Fig. 7. The transi-
tions in this speed range are of interest because of
the sequences of bifurcations in this narrow speed
interval, that finally lead to asymmetrical periodic
orbits through a crisis. The wheelset undergoes
quasi-periodic and periodic motions alternatively
during this speed range. The first bifurcation hap-
pens around V = 56.2380 m/s where the stable
limit cycle loses its stability, and an invariant two-
dimensional torus appears through a Neimark–
Sacker bifurcation. This is illustrated in Fig. 8
where the Poincaré maps were plotted under two
different speeds before and after the Neimark–
Sacker bifurcation respectively. The Poincaré map
is constructed after the transients have died out. It
is seen that a point in the Poincaré map converts
into a closed curve, which indicates the existence of
a biperiodic oscillation.

From Fig. 7 we can see there are six periodic
windows during this speed range. Here we only
choose the first periodic window to give a detailed
analysis of the transitions near this periodic
window. A refined bifurcation diagram near this
periodic window is shown in Fig. 9. The most
noticeable phenomenon is the period-20 window
around V = 56.2843 m/s. The Poincaré map under
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(a) v = 44.45 m/s (b) v = 44.45 m/s
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(c) v = 44.51 m/s (d) v = 44.51 m/s

Fig. 5. Orbits before and after the crossing-sliding bifurcation.
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0.005

0.01

0.015

(a) v = 44.45 m/s (b) v = 44.51 m/s

Fig. 6. Enlargement of 2D phase portraits in Fig. 5.
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Fig. 7. A blow-up bifurcation diagram in the range 56.2–
57 m/s.

0.0245 0.0255 0.0265 0.0275
2.5

3.5

4.5

5.5

6.5

7.5
10-3

(a) v = 56.20 m/s

0.0245 0.0255 0.0265 0.0275
2.5

3.5

4.5

5.5

6.5

7.5
10-3

(b) v = 56.245 m/s

Fig. 8. Poincaré maps near the Neimark–Sacker bifurcation
point.

Fig. 9. A refined bifurcation diagram near the first periodic
window.

this speed is shown in Fig. 10, which consists of
20 points on a closed curve. The numbers in the
figure indicate the sequence of the points appear-
ing on the Poincaré map. On both sides biperiodic
solutions will be found, which are confirmed by the
discrete arcs on the Poincaré maps. The transitions
around the other five periodic windows are similar
to this one, which will not be analyzed in detail in
this paper.

As the speed increases further, the system
enters into chaos through a torus breakdown in
the speed range 56.80–56.90 m/s. Comparing the
Poincaré maps in Fig. 12, it can be seen that fold-
ings are displayed at the speed of V = 56.90 m/s,
which are typical features of chaos. The largest
two Lyapunov exponents of the system shown in
Fig. 12 indicate that chaos occurs at the speed of

0.0261 0.0263 0.0265 0.0267 0.0269
4.9

5.1

5.3

5.5

5.7

5.9
10-3

1

12

3

14

5
16

7 18 9

10 19 8 17
6

15

4

13

2

11

20

Fig. 10. Poincaré map at V = 56.2843 m/s.
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(a) v = 56.2841 m/s (b) v = 56.2845 m/s

Fig. 11. Poincaré maps on both sides of the periodic window.

(a) v = 56.80 m/s (b) v = 56.90 m/s
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0.1

0.2

0 500 1000 1500 2000
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(c) v = 56.80 m/s (d) v = 56.90 m/s

Fig. 12. (a) and (b) Poincaré maps and (c) and (d) the two largest Lyapunov exponents.
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(c) v = 56.9665 m/s

Fig. 13. Phase portraits of the model near the crisis.

V = 56.90 m/s. At around V = 56.9665 m/s two
asymmetric periodic solutions bifurcate from the
chaos through a crisis which is confirmed by the
phase portraits of the model near the crisis shown in
Fig. 13, where the initial conditions for Figs. 13(b)
and 13(c) are

[x1, x2, x3, x4] = [0.0179m,−0.5681m/s,

−0.0059 rad,−0.5144 rad/s]

and

[x1, x2, x3, x4] = [−0.0179m, 0.5681m/s,

0.0059 rad, 0.5144 rad/s]

respectively. It can be seen that Fig. 13(c) is a reflec-
tion of Fig. 13(b) around the axis ψ(rad) followed
by a reflection around the axis ẏw(m/s).

4.2. Speed range 59.5–61.5m/s

From Fig. 2 we can see that the asymmetrical peri-
odic solutions exist in a broad speed range. In this

section, we give a detailed bifurcation analysis in the
speed range 59.5–61.5 m/s. A blow-up bifurcation
diagram in this speed range is shown in Fig. 14. The
transitions in this speed range are simple, where the
asymmetrical periodic solutions go through period
doublings. Therefore, four asymmetrical periodic
solutions are created. The asymmetrical periodic
solutions undergo a complete period doubling cas-
cade to chaos, which will be explained in the next
section. A variety of the characteristic periodic win-
dows are shown in Fig. 15. It can be seen that the
two period doubling cascades cross with the oth-
ers four times (here we only show the first one at
around V = 60.77 m/s. Except for the left-top dot
the other three dots consist of two points each.

4.3. Speed range 61.6–62.2m/s

With the increase of the speed the system enters
into chaos through a period doubling cascade. A
refined bifurcation diagram in speed range 61.6–
62.2 m/s is shown in Fig. 16 (constructed with an
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Fig. 14. A blow-up bifurcation diagram in the range 59.5–
61.5 m/s.

increase of the speed). To give a clear description
of the transitions we divide it into four regions as
shown in Fig. 17. As the transitions in these four
regions are similar, we only give a detailed descrip-
tion of region 1. Four-band chaos develops after the
period doubling cascade. Two pairs of asymmet-
ric chaotic attractors merge into two asymmetric
chaotic attractors with the increase of the speed
followed by another asymmetry breaking of the
chaotic attractors, where only one chaotic attractor
exists. When the speed reaches V = 61.9684 m/s a
period-3 solution bifurcates from the chaotic attrac-
tor through a crisis followed by a period dou-
bling cascade again, which leads the system into
a broad-band chaos. Another crisis happens around
V = 62.1473 m/s where the system jumps from the
chaotic attractor to a limit cycle.
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(c) v = 60.77 m/s (d) v = 61 m/s

Fig. 15. Poincaré maps.
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Fig. 16. A blow-up bifurcation diagram in the range 61.6–
62.2 m/s.

From Fig. 16 it is seen that this system pos-
sesses hysteresis phenomenon in this speed range.
We construct the bifurcation diagram again by
decreasing the speed, which is shown in Fig. 18. It
can be seen that another jump happens at around
V = 61.878 m/s with the decrease of the speed,
where a period-4 attractor jumps to the four-band
chaotic attractor that can be recognized in Fig. 18.

4.4. Speed range 62.5–65m/s

A blow-up bifurcation diagram in this speed range
is shown in Fig. 19, which shows that the system
alternates between periodic windows and chaotic
attractors. At around V = 62.7125 m/s, the stable
period-4 limit cycle loses stability through a crisis
to two asymmetric chaotic attractors, which is

(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

Fig. 17. Refined bifurcation diagrams of Fig. 16.
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Fig. 18. Bifurcation diagram in the range 61.6–62.2 m/s by
decreasing the speed.

Fig. 19. A blow-up bifurcation diagram in the range
62.5–65 m/s.
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(c) v = 62.7124 m/s (d) v = 62.7125 m/s

Fig. 20. (a) and (b) Poincaré maps and (c) and (d) the two largest Lyapunov exponents of the system near the first crisis.
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(a) v = 62.8210 m/s (b) v = 62.8212 m/s

Fig. 21. Poincaré maps near the second crisis.

(a) Initial value 1 (b) Initial value 2

Fig. 22. Phase portraits of the model at V = 65 m/s.

confirmed by the Poincaré maps and the largest
two Lyapunov exponents displayed in Fig. 20. The
four points in Fig. 20(a) indicate a period-4 solu-
tion, and the stripes in Fig. 20(b) indicate chaos.
These are confirmed by the two largest Lyapunov
exponents of the system shown in Figs. 20(c)
and 20(d), where the largest Lyapunov exponent
changes from zero to a positive value. When the
speed increases to V = 62.8212 m/s the two asym-
metric chaotic attractors lose stability through
another crisis to a period-8 attractor, which is
illustrated in Fig. 21 by the Poincaré maps simi-
lar to Fig. 20 but in a reserve transition. After a
small range of periodic windows the asymmetric
chaotic attractors regain stability. At still higher
speed around V = 63.0100 m/s the asymmetric
chaotic attractors merge into a chaotic attractor.
With the increase of the speed the chaotic attrac-
tor loses stability into a period 13 attractor. After

several times of alternating between periodic win-
dows and symmetric chaos, the system enters into
asymmetric chaotic motions followed by a reverse
period doubling cascade into two asymmetric limit
cycles, which can be seen from the phase portrait
of the system at V = 65 m/s shown in Fig. 22
under two different initial values ([x1, x2, x3, x4] =
[0.0167m, 0.6299m/s, 0.0112 rad, −0.2821 rad/s]
and [x1, x2, x3, x4] = [−0.0167m,−0.6299m/s,
−0.0112 rad, 0.2821 rad/s]) respectively.

5. Investigation of the Influence
of the Conicity

In this section, we investigate the influence of the
conicity of the wheels on both the Hopf bifurca-
tion point and the first Lyapunov coefficient, which
is used to determine the bifurcation form of the
system. From Fig. 23 we can see that the speed
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Hopf bifurcation point vHopf (m/s)

Fig. 23. Influence of the conicity on the Hopf bifurcation
point.

corresponding to the Hopf bifurcation point, which
is the linear critical speed of the wheelset sys-
tem, decreases with the increase of the conicity.
The value of the conicity has a significant influence
on the Hopf bifurcation point when it is smaller
than 0.1. Because of the wear of the wheels in
the running process, the conicity of the wheels will
change. Therefore, it is of interest to study the influ-
ence of the conicity on the bifurcation forms of the
system. To have a clear knowledge of the influence
of the conicity on the Hopf bifurcation forms of the
system, the first Lyapunov coefficient of the system
under different values of the conicity is calculated.
From Fig. 24 we can see that when the conicity
increases to 0.3420 the system changes from a sub-
critical Hopf bifurcation into a supercritical Hopf
bifurcation. When the conicity reaches 0.4180, the
first Lyapunov coefficient of the system changes sign
from negative to positive, which means the system
changes from a supercritical Hopf bifurcation into

-2
200

0

2

150 0.6

1010

4

6

100 0.4

8

50 0.2
0 0

Fig. 24. Influence of the conicity on the first Lyapunov
coefficient.

a subcritical Hopf bifurcation. It can be concluded
that a subcritical Hopf bifurcation is common in
the railway vehicle system in a wide range of the
conicity.

6. Conclusion

In this paper, we investigate the lateral dynamics of
a nonsmooth railway wheelset model, that consists
of two degrees of freedom with linear characteris-
tic springs and dry friction dampers. The nonlinear
forces between the wheel and the rail are calculated
by combining the linear kinematic relation between
the wheel and the rail with nonlinear creepage-creep
force relation [Vermeulen & Johnson, 1964]. This
simple model has rich dynamical features. A vari-
ety of possible motions such as stable stationary
motions, periodic motions, quasi-periodic motions
and chaotic attractors are illustrated in this paper.

Unlike wheelset models with smooth dampers,
the wheelset model with dry friction dampers has a
set of stationary points under a low running speed.
With the increase of the speed the stationary points
lose stability through a subcritical Hopf bifurcation,
where an unstable limit cycle bifurcates to the left
side. The unstable limit cycle regains its stability
through a fold bifurcation where a stable limit cycle
bifurcates to the right side. A crossing-sliding bifur-
cation, which is special for nonsmooth dynamical
systems, happens at V = 44.5080 m/s, where two
sliding segments disappear.

At higher speed many complicated dynamical
motions can happen. A Neimark–Sacker bifurca-
tion occurs at V = 56.2380 m/s, where a two-
dimensional torus develops. After several transi-
tions between periodic and aperiodic motions, the
two-dimensional torus loses its stability through a
torus breakdown into a chaos followed by a crisis
into two asymmetric periodic oscillations. Through
a period doubling cascade the system enters into
chaos again followed by another crisis around V =
62.1473 m/s, where the system enters into a period-
4 oscillation. With a further increase of the speed,
the motion of the system transits between chaos
and periodic windows alternatively until a reverse
period doubling casecade leads the system into two
asymmetric limit cycles.

Since the conicity of the wheel, which will
change with the wear of the wheel, is an important
parameter for the lateral dynamics of the wheelset
system, it is desirable to study the influence of this
parameter value on the Hopf bifurcation point and
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the bifurcation forms of the system. From the cal-
culated results it can be seen that the conicity has
a significant influence on the Hopf bifurcation point
when it is lower than 0.1.
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